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Direct numerical simulations (DNSs) of a zero-pressure-gradient boundary layer flow
of a polymeric fluid have been performed. The FENE-P model was used for the
polymer stresses and a wide range of Weissenberg numbers (We) was addressed. In
all cases, the streamwise variations of the level of polymer stretching and the level
of drag reduction are anticorrelated. Consistent with earlier studies, the inlet condition
for the flow consists of Newtonian velocity data with no polymer stretching, so in
the upstream region of the boundary layer the polymer molecules stretch strongly
in response, leading to an initial spatial maximum in polymer stretching. Beyond
this initial region, the level of drag reduction increases with increasing downstream
position, while the polymer stretch is decreasing. At sufficiently high Weissenberg
numbers, these variations are monotonic with streamwise position (outside the
upstream region), but at We = 25, both the polymer stretching and level of drag
reduction display a decaying oscillation in the downstream position. The streamwise
dependence of the velocity statistics is also shown. In addition, simulations in which
the polymer stress is turned off beyond a chosen downstream position were performed;
in this case the flow continues to exhibit substantial drag reduction well downstream of
the cutoff position. These observations are analysed in light of other recent literature
and in particular the observations of ‘active’ and ‘hibernating’ turbulence recently
found in minimal channel flow by Xi and Graham. All of these observations suggest
that an important role for viscoelasticity in the turbulent drag reduction phenomenon,
at least near solid surfaces, is to suppress conventional turbulence, while leaving
behind a much weaker form of turbulence that can persist for a substantial length of
time (or downstream distance) even in the absence of viscoelastic stresses.

Key words: drag reduction, polymers, turbulent boundary layers

1. Introduction
It is well known that significant drag reduction can be observed for wall-bounded

turbulent flows of viscoelastic fluids such as dilute polymer and surfactant solutions.
A key result in the literature of drag reduction was obtained by Virk (1975) who
noted the existence of a parameter regime called the maximum drag reduction
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(MDR) asymptote. In this regime the mean velocity profile has a log-law region
with a distinct slope that is universal with respect to molecular weight, concentration,
polymer species, and pipe diameter. It has been reported that in the MDR regime the
Reynolds shear stress substantially decreases (Warholic, Massah & Hanratty 1999a;
Warholic, Schmidt & Hanratty 1999b). The Virk mean velocity profile in the MDR
regime has been reproduced by direct numerical simulations (DNSs) of drag-reducing
turbulent channel flow of polymer solutions (e.g. Ptasinski et al. 2003; Dubief et al.
2005; Li, Sureshkumar & Khomami 2006).

However, despite numerous efforts in this field (e.g. Virk 1975; Sreenivasan &
White 2000; Benzi, De angelis & L’vov 2006; Procaccia, L’vov & Benzi 2008),
understanding of MDR remains largely phenomenological or empirical (White &
Mungal 2008). Since the pioneering papers of Sureshkumar, Beris & Handler (1997)
and Dimitropoulos et al. (2005) on the DNS of the drag-reducing channel flow
and boundary layer, respectively, numerous DNS studies have been performed to
investigate the viscoelastic wall-bounded turbulent flows using constitutive equation
models such as the finitely extensible nonlinear elastic Peterlin (FENE-P) model,
Oldroyd-B model and Giesekus model (Bird, Armstrong & Hassager 1987a,b). As
reported in the review of White & Mungal (2008), these studies can predict some
experimental findings such as a steeper gradient of the mean velocity profile in
wall units and more suppression of wall-normal turbulence intensity and Reynolds
shear stress with the amount of the drag reduction, and have revealed the effect of
viscoelastic stress on velocity fields.

More specifically, DNS studies on drag-reducing turbulent channel flows indicate
that the elongational viscosity and Weissenberg number are key parameters for the
drag reduction (e.g. Dimitropoulos, Sureshkumar & Beris 1998; Housiadas & Beris
2004; Li et al. 2006; Yu & Kawaguchi 2003, 2006). At a constant Weissenberg
number, moreover, Tamano et al. (2009a) performed DNS of the drag-reducing
turbulent boundary layer in viscoelastic fluids using the Oldroyd-B, Giesekus and
FENE-P models, and clarified the effects of rheological properties such as the
elongational and shear viscosities, and the first and the second normal stress
differences on the drag reduction. Owing to these macroscopic approaches, substantial
new knowledge on the relation between the drag reduction and rheological properties
of viscoelastic solutions such as the relaxation time and elongational viscosity
has been obtained. In terms of relation between polymer stress and turbulence
structures, moreover, many researchers showed that polymer stresses counteract near-
wall streamwise vortices (e.g. De Angelis, Casciola & Piva 2002; Stone, Waleffe &
Graham 2002; Stone et al. 2004; Dubief et al. 2004, 2005; Li & Graham 2007;
Kim et al. 2007, 2008). However, how polymers or surfactant micelles interact with
near-wall turbulence structure, especially as the level of drag reduction approaches the
MDR regime, remains poorly understood.

Xi & Graham (2010a,b) have recently studied Newtonian and viscoelastic turbulent
dynamics in a minimal channel flow geometry. A number of the observations from
that study are relevant to the present work. The main overall observation Xi &
Graham (2010b) was the existence of time intervals of what they called ‘hibernating’
turbulence, during which the polymer stresses decreased while the mean velocity was
increasing. During hibernation, the instantaneous mean velocity profile approached a
log-law with a slope approaching that found in the MDR regime, and the Reynolds
shear stresses, streamwise vortex strength and streamwise variation of the flow field
all dropped to low values. Under the conditions considered, these hibernation intervals
last about five eddy turnover times, after which the turbulence reverts to a more
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conventional, ‘active’ state. As the Weissenberg number increases, the active intervals
become shorter, while the hibernating intervals remain approximately the same length.
Thus, a key result of this paper is that in the minimal channel, the instantaneous
levels of polymer stretching and drag reduction are anticorrelated in time: during the
active turbulence intervals, the polymers become highly stretched and the resulting
stresses suppress the active turbulence, driving the flow into hibernation. During
hibernation, the turbulence is very weak and does not stretch the polymer molecules,
which therefore relax. The hibernating turbulence is unstable and eventually new
three-dimensional turbulent fluctuations grow, moving the turbulence back into the
active regime. Finally, another key result of this study was that intervals of hibernation
displaying the Virk slope are observed even in the limit of zero Weissenberg number:
Newtonian flow. One key goal of the present work is to determine to what extent
the anticorrelation of polymer stretching and drag reduction observed in the minimal
channel results is found in boundary layer turbulence.

There is some existing evidence that this scenario is relevant, with time replaced
with downstream position, for boundary layer flow. Dimitropoulos et al. (2005) found
that drag reduction increases as polymer extension decreases. Dimitropoulos et al.
(2005) and Hou, Somandepalli & Mungal (2008) also proposed that in the steady-state
region, the reduced turbulent intensity allowed the polymer to be less stretched and
still maintained a high drag reduction, so that the polymer stress was not necessarily
high. As reported by Hou et al. (2008), the dependence of turbulence intensity of the
velocity fluctuations on the drag reduction ratio is more complex compared with the
turbulent channel flow. Very recently, Dubief et al. (2011) observed, in a simulation
of Newtonian boundary layer flow, that at a spatial position just upstream of where
streamwise vortices and turbulent spots form the mean velocity profile looks strikingly
similar to the Virk MDR profile. This observation is further evidence of the transient
presence of MDR-like dynamics in Newtonian flow.

In the present study, we perform DNS of a zero-pressure gradient turbulent
boundary layer of a drag-reducing homogeneous viscoelastic fluid with the FENE-P
model at Weissenberg numbers up to We = 100, and investigate the effects of We on
streamwise variations in turbulence statistics and structures in the turbulent boundary
layer. Although there have been some past comparisons of turbulence statistics at
We = 25 and 50 for the boundary layer (see Dimitropoulos et al. 2005; Tamano et al.
2009a), the literature on the effect of We on turbulence structures is very limited in
comparison to channel flow. In particular, the modification of streamwise variations
remains unknown. In the present study, the streamwise computational domain is
enlarged by a factor of two compared with our previous DNS at We = 25 (Tamano
et al. 2007). A particular focus of this work is the evaluation of the results in light
of the observations of active and hibernating turbulence in channel flow and their
relevance in the more complex case of boundary layer flow.

The present paper is arranged as follows. The fundamental equations and numerical
methods are presented in §§ 2 and 3. In § 4, numerical simulation results are presented.
First, the effect of We on turbulence statistics and their streamwise variations are
investigated. Next, the joint probability density functions of instantaneous wall-shear
stress (or trace of conformation tensor) and streamwise velocity scaled by friction
velocity at a constant wall-normal position are discussed. Finally, the results of
additional numerical simulations at We = 100 with a damping function which makes
all components of conformation tensor zero in the downstream region are presented in
order to clarify the role of conformation tensor. Throughout, we assess the relevance of
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the active–hibernating picture for the boundary layer flow. Key results are summarized
and conclusions are given in § 5.

2. Formulation
The non-dimensional continuity and momentum equations for incompressible

viscoelastic flow are
∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
=− ∂p

∂xi
+ 1− β

Reθ0

∂Eij

∂xj
+ β

Reθ0

∂2ui

∂xj∂xj
, (2.2)

where ui is the velocity component, p is pressure, xi is a spatial coordinate, t is time
and Eij is the viscoelastic stress component. In this paper, x1 (x), x2 (y) and x3 (z)
directions are streamwise, wall-normal and spanwise, respectively. In the present study,
the non-dimensional computational parameters are the momentum–thickness Reynolds
number Reθ0 and the Weissenberg number We, which are defined as follows:

Reθ0 =
ρUeθ0

η0
, (2.3)

We= λUe

θ0
, (2.4)

where Ue is the free stream velocity, θ0 is the momentum–thickness at the inlet plane
of the driver part, ρ is density and λ is the relaxation time. The ratio of solvent
viscosity ηs to zero shear rate solution viscosity η0 is β. The non-dimensional FENE-P
constitutive equation for the conformation tensor Cij is as follows (Bird et al. 1987b):

∂Cij

∂t
+ uk

∂Cij

∂xk
− ∂ui

∂xk
Ckj − ∂uj

∂xk
Cik =−Eij. (2.5)

The viscoelastic stress is related to the conformation tensor as

Eij = fCij − δij

We
, (2.6)

where the Peterlin function f is defined by

f = L2

L2 − Tr(Cij)
, (2.7)

and L represents the maximum extension of the polymer. For the FENE-P model, the
extensibility parameter Ex is given by

Ex = 2L2(1− β)
3β

. (2.8)

This is the maximum value of the ratio between polymeric and viscous contributions
to extensional viscosity (Trouton ratio). Only when the extensibility parameter Ex is
much larger than unity are significant effects of the polymer on turbulence expected. In
the present study, in which β and L2 are fixed at 0.9 and 10 000, respectively, the value
of Ex is 740.74.

In this study, the inflow condition for the boundary layer is given by the method
proposed by Lund, Wu & Squires (1998), so that the computational domain is divided
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into the main part and driver part from which the inflow condition for the main
part is obtained. This approach was also used in prior studies (Dimitropoulos et al.
2005, 2006; Tamano et al. 2007, 2009a). The inlet boundary condition is discussed
further in the next section.

3. Numerical method and conditions
The second-order accurate finite difference scheme on a staggered grid is used. The

velocity components are discretized on the grid cell edges, whereas the pressure and
all components of the viscoelastic stress tensor Eij and conformation tensor Cij are
defined at the centre of each cell. The coupling algorithm of the discrete continuity
and momentum equations (2.1) and (2.2) is based on the second-order splitting method
(Dukowicz & Dvinsky 1992). The resulting discrete Poisson equation for the pressure
is solved by the Bi-CGSTAB (bi-conjugate gradients stabilized) method (Van Der
Vorst 1992) after fast Fourier transform (FFT) in the periodic (z) direction. The
second-order upwind difference scheme is used for the polymer-stress convection term
uk∂Cij/∂xk in (2.5). An artificial diffusion term 1/(ScReθ0)∂

2Cij/∂xj
2 is added in (2.5)

to prevent numerical instability, where Sc = η0/(ρD) is the Schmidt number and D is
an artificial stress diffusion coefficient for polymer. (Using the actual, very small value
of the molecular diffusivity would not lead to stabilization.) The semi-implicit time
marching algorithm is used where the diffusion term in the wall-normal direction is
treated implicitly with the Crank–Nicolson scheme, and the third-order Runge–Kutta
scheme is used for all other terms.

The non-slip boundary condition (u = v = w = 0) is applied on the wall. The
boundary conditions on the top surface of the computational domain are ∂u/∂y = 0,
v = Ue dδ∗/dx, and ∂w/∂y = 0, where δ∗ is the boundary layer displacement
thickness. Periodic boundary conditions for the velocity and viscoelastic stress
components are imposed in the spanwise direction. A convective boundary condition,
∂ui/∂t + Ue∂ui/∂x = 0, is used at the outlet plane. The inflow condition is generated
using the recycle method of Lund et al. (1998) as mentioned above. This is
because otherwise, a very long streamwise computational domain would be necessary
to capture the spatially developing boundary layer flow including the laminar to
turbulent transition Wu & Moin (2009). Simulating this entire region would be
extremely computationally expensive. In the present study, the velocity field data
at the streamwise centre of the driver part provide inflow data at the inlet of the
main part. The present inlet boundary conditions are the same as those of previous
studies (Dimitropoulos et al. 2005, 2006; Tamano et al. 2007, 2009a). The boundary
conditions for the viscoelastic stress components are given by solving the constitutive
equations at the wall with the velocity boundary conditions satisfied, except for the
inlet boundary of the main part at which all of the viscoelastic stress components Eij

are fixed at zero, i.e. the Newtonian velocity data are imposed directly. It is known
that this type of inlet boundary condition has consequences for the predicted level
of the drag reduction and the polymer conformation state near the inlet region. In
particular, the polymer molecules stretch rapidly from their equilibrium state and the
resulting large extensional viscosity leads to an initial increase in drag relative to the
Newtonian flow, and thus to a negative level of drag reduction (see figures 3 and 10b).
Physically, the imposed inlet condition is somewhat analogous to injecting the polymer
into a boundary layer at a finite distance downstream from the leading edge.

In the present study, the momentum–thickness Reynolds number Reθ0 is 500 and
the Weissenberg number We = 25, 50, 75 and 100 (see table 1). The size of the
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We β L2 1tUe/θ0

Newtonian — 1.0 — 0.020
FENE-P 25, 50, 75, 100 0.9 10 000 0.008

TABLE 1. Numerical and physical conditions.

We Tresidence/λ Tintegral/λ

25 16.0 80
50 8.0 40
75 5.3 27
100 4.0 20

TABLE 2. Residence and integral time versus relaxation time.

computational domain for the present simulations is equal to (Lx × Ly × Lz) =
(400θ0 × 30θ0 × 20πθ0/3) in the streamwise, wall-normal and spanwise directions,
respectively. The grid size is (Nx×Ny×Nz) = (512×64×64). The grid spacing in x and
z directions is uniform, and the wall-normal grids are given by a hyperbolic tangent
stretching function. The present spatial resolution is (1x+|inlet , 1y+min|inlet − 1y+max |inlet ,
∆z+|inlet) = (20, 0.38–37, 8.5) for both Newtonian and the FENE-P model, which
is somewhat larger than that of previous DNSs (Dimitropoulos et al. 2005, 2006)
for the corresponding drag-reducing turbulent boundary layer with the same spatial
discretization method. Recent high-resolution spectral DNSs for Newtonian flows
showed surprisingly large differences in both basic integral quantities such as the
friction coefficient and the shape factor, and revealed that the numerical simulation
of turbulent boundary layers was, mainly due to the spatial development of the flow,
very sensitive to, for example, proper inflow condition, sufficient settling length and
appropriate box dimensions (see Schlatter & Örlü 2010). The present numerical gird
resolution is not enough to compare quantitatively such recent spectral DNS results
for Newtonian flows, but it is not expected to affect the qualitative conclusions
obtained in the present study on the drag-reducing effects (see also § 4.1 for details).
The streamwise and spanwise computational sizes in wall units at the inlet are
L+x |inlet = 1.0 × 104 and L+z |inlet = 5.5 × 102, respectively. Here, the ratios of present
residence time in the computational domain, Tresidence = Lx/Ue, and integral time for
ensemble average of turbulence statistics Tintegral to the relaxation time λ are presented
in table 2. Even at We = 100, the residence time is a factor of four larger than the
relaxation time. For all of the cases, the present integral time is much larger than the
relaxation time.

In the driver part, the computational domain and grid size are (100θ0 × 30θ0 ×
20πθ0/3) and (128 × 64 × 64), respectively. The present turbulence statistics are
obtained by averaging over space (spanwise direction) and time of over 2000θ0/Ue

after the turbulent flow becomes stationary, where the time increment 1tUe/θ0 is 0.008
for the FENE-P model and 0.02 for Newtonian fluid. In this paper, and ′ represent
the time–space (spanwise direction) average and the deviation, respectively. The
superscript + represents the spanwise- and time averaged local variables normalized
by wall variables. The superscript ++ represents values scaled by inner variables
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FIGURE 1. Streamwise variations in (a) boundary layer thickness δ/θ0, (b) momentum
thickness θ/θ0, (c) displacement thickness δ∗/θ0, (d) wall-shear stress τw/(ρU2

e ).

without spatial and time average, i.e. with the local value of wall shear stress. In this
study, the Schmidt number Sc is fixed at Sc = 0.2, which gives a constant artificial
diffusivity of 1/(ScReθ0) = 0.01. For comparison, Dimitropoulos et al. (2005, 2006)
used 1/(ScReθ0) = 1, but only applied at locations where the conformation tensor lost
positive definiteness. It is known that this type of artificial diffusive term smears the
steep gradient of polymer stresses unlike the local artificial diffusivity scheme (see
Min, Yoo & Choi 2001; Dubief et al. 2005), but it should not affect the physical
interpretation of the results (e.g. Sureshkumar & Beris 1995; Sureshkumar et al. 1997;
Dimitropoulos et al. 1998; Ptasinski et al. 2003; Li et al. 2006; Kim et al. 2007; Xi &
Graham 2010a).

4. Results
4.1. Boundary layer parameters and drag reduction ratio

Figures 1(a)–(d) show the streamwise variations in boundary layer thickness
δ/θ0(= δ99.5/θ0), momentum thickness θ/θ0, displacement thickness δ∗/θ0, and wall-
shear stress τw/(ρU2

e ), respectively. The streamwise development of δ/θ0 is suppressed
more with the increase in We, and δ/θ0 at We = 75 and 100 are almost identical.
The value of θ/θ0 at We = 50–100 is strongly suppressed, while at We = 25 it is
between the Newtonian and higher We cases. The value of δ∗/θ0 at We = 50–100 is
larger in the downstream region compared with the Newtonian fluid, while at We= 25
it is smaller than that for the Newtonian fluid. The behaviour of θ/θ0 and δ∗/θ0 is
directly related to the shape factor H = δ∗/θ (see figure 2a later). At We= 50–100, the
wall shear stress τw/(ρU2

e ) increases near the inlet region and monotonically decreases,
while at We = 25, τw/(ρU2

e ) oscillates in the downstream region, in which its value
is still smaller than that of Newtonian fluid. The τw/(ρU2

e ) corresponds to the friction
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FIGURE 2. Boundary layer development: (a) shape factor versus Reynolds number and
(b) friction coefficient versus momentum–thickness Reynolds number.
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FIGURE 3. Streamwise variation in drag reduction ratio.

coefficient Cf = τw/(ρU2
e/2) (see figure 2b), and this behaviour is closely related to the

drag reduction ratio (see figure 3).
Figures 2(a) and 2(b) show the dependence of the shape factor H and skin friction

coefficient Cf on the momentum–thickness Reynolds number Reθ , which is useful
for comparison with experimental data. In these figures, the solid and dotted lines
represent Coles’ curves (Coles 1962) and DNS data obtained by Spalart (Spalart 1988),
respectively. The data of H for Newtonian fluid agree well with Coles’ curves and
DNS data of Spalart, while the data of Cf is somewhat larger. This may be due to the
effect of grid resolution as mentioned in § 3. However, the trend of Cf is consistent
with the Coles’ curves and the value is within a 10 % tolerance. It should be noted that
even in the spectral DNS of Newtonian flows, it is not only the actual values of Cf

that differ, but also inconsistent trends with respect to Reθ (see Schlatter & Örlü 2010).
As the Reynolds number increases, the value of H at We = 25–100 first decreases

near the inlet region, and then drastically increases from Reθ ' 650 to the outlet plane
(figure 2a). The increase in H versus Reθ observed here is consistent with the previous
experimental study on the drag-reducing turbulent boundary layer flow in cationic
and non-ionic surfactant solutions (see Itoh et al. 2005; Tamano et al. 2009b, 2010).
It should be noted that at We = 25, H oscillates in the downstream region, and at
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We = 50, it has a maximum around Reθ = 800. The value of Cf increases with the
increase in Reθ for Reθ . 650, after the maximum it decreases. At We = 25, Cf

oscillates in the streamwise direction. The behaviour of Cf is consistent with that of
H. The comparison of Cf with Newtonian fluid is discussed by estimating the drag
reduction ratio (see figure 3).

Figure 3 shows the streamwise variation in the drag reduction ratio DR for the four
values of We studied here. This ratio is defined as follows:

DR(x)= Cf Newtonian(x)− Cf Viscoelastic(x)

Cf Newtonian(x)
, (4.1)

where Cf Newtonian(x) and Cf Viscoelastic(x) are the skin friction coefficients for Newtonian
and viscoelastic fluids, which are functions of the streamwise position x. The drag-
reducing effect shifts downstream with the increasing We. It can be concluded that the
streamwise profile of DR shifts downstream with the increase in the relaxation time,
since the other rheological parameters and the Reynolds number are constant. The
level of DR at We = 25 is much smaller than those of We = 50 and higher, which is
consistent with the previous DNSs (Dimitropoulos et al. 2005; Tamano et al. 2009a).
At We = 50–100, the DR becomes larger in the streamwise direction, and seems to
saturate at more than 60 %. On the other hand, at We= 25, the region of DR is below
∼40 %, and oscillates with downstream position: the first maximum is at x/θ0 ' 150,
the minimum is at x/θ0 ' 260, and a second slight maximum is at x/θ0 ' 380.

In the inlet region, the negative DR is due to the sudden change of velocity fields
caused by the unrealistic effect of the inlet boundary condition in which the velocity
field data of Newtonian fluid in the driver part are used directly (see Dimitropoulos
et al. 2005, 2006; Tamano et al. 2007, 2009a).

4.2. Turbulence statistics
Figure 4(a–d) show the wall-normal profiles of mean (spanwise and time averaged)
velocity, U+, at different streamwise locations. In these figures, the linear profile
U+ = y+, the log-law profile (U+ = 2.44 ln y+ + 5.0) and the Virk ultimate profile
(Virk 1975) (U+ = 11.7 ln y+ − 17) are also shown. At We = 25, U+ shifts upward
compared with the Newtonian log-law. On the other hand, at We = 50 and higher, U+

shifts upward more and increases with the increase in x, i.e. the increase in DR, and
the slope is much larger than that of the Newtonian log-law. The present DNS results
are consistent with previous experiments (e.g. Warholic et al. 1999a; Itoh et al. 2005;
Tamano et al. 2009b) and DNS (e.g. Dimitropoulos et al. 2005; Tamano et al. 2009a).
At We = 75 and 100, the mean velocities at x/θ0 = 392.2 agree well with the Virk
ultimate profile.

Figure 5 shows profiles of streamwise turbulence intensity, u′+rms, at We = 25–100.
At We = 25, except in the upstream region where the DR is negative, u′+rms is
larger than that from the DNS by Spalart (1988) for Newtonian fluid, and the
maximum becomes larger in the streamwise direction. The wall-normal location of
the maximum is slightly farther from the wall. At We = 50, the maximum of u′+rms
in the downstream region is much larger than that of the Newtonian fluid, over 1.5
times larger at x/θ0 = 392.2. At We= 75, the maximum of u′+rms (outside the upstream
region) becomes larger in the streamwise direction, as in the case of We = 50, but
the maxima near the wall are much smaller compared with those of We = 50, and
the plateau region appears around y+ = 100, which is not detected in We = 25 and
50. At We = 100, the streamwise turbulence intensity is strongly attenuated across
the boundary layer (figure 5d), and the maximum of u′+rms shows somewhat complex
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FIGURE 4. Profiles of streamwise mean velocity in wall units: (a) We= 25, (b) We= 50,
(c) We= 75 and (d) We= 100.

behaviour. This observation is related to the phase difference between streamwise
profiles of the drag reduction ratio and streamwise turbulence intensity as further
discussed below (see figure 9c for details).

Figure 5(d) also shows that at We = 100 a second maximum appears around
y+ = 200, and the second maximum values are almost independent of the streamwise
location. This second peak rises due to the strong suppression of u′+rms in the log layer
and seems to be consistent with experimental measurements on drag-reduced turbulent
boundary layer for dilute cationic surfactant solutions, in which the second peak is
observed near the centre of the boundary layer (see Itoh et al. 2005; Tamano et al.
2009b). These authors claimed that the second peak is due to the formation of the
shear-induced structure (SIS), which is strongly related to the viscoelasticity and the
drag-reducing ability in the turbulent flow of the dilute cationic surfactant solution.
However, the second peak here may be due to long relaxation time, since the present
DNS does not take the structure modification such as the SIS into account. Thus,
further investigations are needed to understand the origin of the second peak of the
streamwise turbulence intensity.
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Figure 6 shows distributions of the wall-normal turbulence intensity v′+rms in wall
units. For all of the cases of We, the wall-normal turbulence intensity v′+rms is smaller
than that for the Newtonian fluid. At the same streamwise location, the maximum of
v′+rms becomes smaller with the increase in We. At We = 75 and 100, the maxima of
v′+rms are almost half those of the Newtonian fluid. The maxima of v′+rms also move
away from the wall; the maxima at We = 50–100 are located at y+ ' 200, while the
maximum at We= 25 is located at y+ ' 100.

Figure 7 shows distributions of the Reynolds shear stress −u′v′
+

. At We = 25,
−u′v′

+
is slightly smaller than that of Newtonian fluid. As a whole, −u′v′

+
decreases

with the increase in We. At We= 75 and 100, the Reynolds shear stress is weak across
the boundary layer in the downstream region. This is consistent with experimental
results that the Reynolds shear stress is very small at large drag reduction ratios for
wall-bounded turbulent flows (see e.g. Warholic et al. 1999a,b; Kawaguchi et al. 2002;
Itoh et al. 2005; Tamano et al. 2009b).

Figure 8 shows profiles of trace of the conformation tensor, Ckk/L2. The maximum
of Ckk/L2 in the region of 10< y+ < 30 indicates that turbulence statistics are strongly
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affected in the buffer layer by the high elongational viscosity. The value of Ckk/L2 is
almost zero in the region away from the wall. At the same streamwise location, the
Ckk/L2 becomes larger with the increase in We.

Next, we investigate streamwise profiles of turbulence statistics at y+ = 30, since
both their modification and the polymer elongation are largest in the vicinity of this
value, as observed above. Figure 9(a–e) show streamwise variations in the mean
velocity, trace of conformation tensor, streamwise turbulence intensity, wall-normal
turbulence intensity and Reynolds shear stress, respectively. In figure 9(a), solid and
dashed lines represent Virk and Newtonian log-laws, respectively. For the Newtonian
fluid, mean velocities scaled by the friction velocity at y+ = 30, U+|y+=30 are almost
constant and slightly smaller than the Newtonian log-law in the whole computational
domain. For viscoelastic fluids, near the inlet region, U+|y+=30 decreases in the
streamwise direction, and has a minimum. This corresponds to the region of negative
drag reduction and is again due to the inlet condition. Downstream of this region at
We= 25 U+|y+=30 has a maximum at x/θ0 ' 150 and a slight minimum at x/θ0 ' 270,
and slightly increases again. At We= 50, U+|y+=30 has a slight maximum in the region
of 250 6 x/θ0 6 300. At We = 75 and 100, U+|y+=30 gradually increases and reaches
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the Virk log-law value. Streamwise profiles of U+|y+=30 are similar with those of drag
reduction ratio DR (cf. figures 9a and 3).

Figure 9(b) shows that the maximum of Ckk|y+=30/L
2, which is observed near

x/θ0 = 50, increases with the increase in We. Note that streamwise locations of
maxima of Ckk|y+=30/L

2 correspond to locations of minima of DR. Downstream of
such maxima, at We = 25, Ckk|y+=30/L

2 has a slight minimum at x/θ0 ' 180 and
a slight maximum at x/θ0 ' 300. At We = 50, 75, 100, Ckk|y+=30/L

2 decreases in
the streamwise direction, while U+|y+=30 or DR increases. This indicates that once
polymers are strongly stretched in the upstream region, which results in the high
extensional viscosity, large viscoelastic stress is not necessary for the large DR in the
downstream region. We elaborate on this observation below. It is also reminiscent of
the observation by Xi & Graham (2010b) in minimal channel flow that during intervals
of ‘hibernation’, in which the level of drag reduction is highest, the polymer chains
are relaxing. That is, what occurs temporally in the minimal channel is similar to what
occurs spatially in boundary layer flow. The connection between these observations
is particularly close in the We = 25 case, where the level of drag reduction displays
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both a maximum, at x/θ0 ≈ 160, and a minimum, at x/θ0 ≈ 260. The level of polymer
stretching has corresponding extrema a short distance downstream, i.e. a minimum at
x/θ0 ≈ 180 and a maximum at x/θ0 ≈ 280. The present result is also consistent with
the DNS of Dimitropoulos et al. (2005) and the experiment of Hou et al. (2008).

It can be observed that the streamwise profile shifts downstream as We increases
(figure 9c). At We = 25, the streamwise location at which u′+rms|y+=30 of viscoelastic
fluids becomes larger than that of Newtonian fluid shifts downstream compared with
the streamwise location at which the DR becomes positive. The same behaviour is
observed at We = 50 and higher. Moreover, such phase difference between DR and
u′+rms|y+=30 increases with the increase in We, i.e. the relaxation time λ. The lack of
correspondence of DR and u′+rms|y+=30 observed here is consistent with the first DNS of
Dimitropoulos et al. (2005) who reported that the phase difference between polymer
stretch and vortex damping increased with We.

Figure 9(d) shows that the wall-normal turbulence intensity at y+ = 30, v′+rms|y+=30,
sharply decreases as We increases. At We = 25, v′+rms|y+=30 starts to increase at x/θ0 '
100, reaches the maximum at x/θ0 ' 230 and then slightly decreases in the streamwise
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tensor, (c) streamwise turbulence intensity, (d) wall-normal turbulence intensity and
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direction. At We = 50, v′+rms|y+=30 gradually increases from x/θ0 ' 200, while at
We = 75 and 100, it very slightly increases from around x/θ0 = 350–380, respectively.
The streamwise profiles of v′+rms|y+=30 seem to be shifted more downstream compared
with those of u′+rms|y+=30. This can be seen for example by the fact that the maximum
of v′+rms|y+=30 is more downstream than that of u′+rms|y+=30.

Figure 9(e) shows the Reynolds shear stress −u′v′
+|y+=30. Its qualitative behaviour

is similar to that of v′+rms|y+=30. At We = 100, the −u′v′
+|y+=30 is very small in

100 < x/θ0 < 200, and is slightly increasing with downstream distance. The small
value of the Reynolds shear stress has been reported in experimental studies on
drag-reducing cationic surfactant solutions (see e.g. Warholic et al. 1999b; Kawaguchi
et al. 2002; Itoh et al. 2005; Tamano et al. 2009b) and polymer solutions (Warholic
et al. 1999a).
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Comparing streamwise variations among the drag reduction ratio DR, trace of
conformation tensor, and turbulence statistics (cf. figures 3 and 9), it is revealed
that the trace of conformation tensor, i.e. the magnitude of polymer elongation is
anticorrelated with DR. On the other hand, compared with the streamwise profile
of DR, streamwise profiles of streamwise and wall-normal turbulence intensities and
the Reynolds shear stress shift downstream, and the phase difference becomes larger
with the increase in We, in which the phase difference from DR is largest for the
wall-normal intensity and is smallest for the streamwise turbulence intensity.

To clarify the dependence on the relaxation time λ of the streamwise variations
of turbulence statistics, the abscissa in figure 9, x/θ0, is replaced by x/θ0/We in
figure 10. With this change, we are measuring downstream distance in length travelled
per polymer relaxation time. When viewed this way it is seen that the variations in
streamwise and wall-normal turbulence intensities and the Reynolds shear stress at
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different We are comparable, unlike in figure 9. In particular, the positions of the
extrema on figure 10 display a much weaker dependence on We than on figure 9.
This observation indicates that the phase difference observed here is mainly due to the
difference in the relaxation time.

4.3. Correlations between stress, velocity and polymer conformation
The results above show a general trend of the level of drag reduction (or, equivalently,
the mean velocity at y+ = 30) increasing while the polymer stress decreases. As noted,
this observation is generally consistent both with some previous work on boundary
layers (Dimitropoulos et al. 2005) and the observations of Xi & Graham (2010b)
in minimal channel flow, although the present results are somewhat influenced by
the artificial inlet boundary condition. In this section we examine in more detail the
relationship between wall shear stress, velocity and polymer conformation.

Figure 11 shows instantaneous contours of local wall-shear stress fluctuation
τ ′′w = τw − τw

z scaled by τw
z. Black and white contours represent high and low

wall-shear stress regions, respectively. For the Newtonian fluid, many small high and
low wall-shear stress regions appear. On the other hand, at We = 25, high and low
wall-shear stress regions show larger scales. At We = 50, some high wall-shear stress
regions are observed and the instantaneous wall-shear stress is almost homogeneous
in the downstream region. At We = 75 and 100, the local wall-shear stress is almost
uniform except in the upstream region, where the influence of the artificial inlet
boundary condition is large.

To examine the relationships between velocity, wall-shear stress and polymer
conformation in more detail, we present in figure 12 joint probability density functions
(JPDFs) of instantaneous wall-shear stress τw/(ρU2

e ) and streamwise velocity scaled by
friction velocity U++ at wall normal position y++ = 30 in the whole computational
domain. Figure 12(a–c) reveal that the correlation between τw/(ρU2

e ) and U++|y++=30
is negative, and the strongest correlation is observed around the Newtonian log-law
line for the Newtonian fluid, in the region between the Virk and Newtonian log-
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FIGURE 12. Joint probability density functions of instantaneous wall-shear stress and
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domain: (a) Newtonian, (b) We= 25 and (c) We= 50.

law lines at We = 25, and around the Virk log-law line at We = 50. Figure 13
shows JPDFs of instantaneous trace of conformation tensor Ckk/L2 at y++ = 30 and
U++|y++=30 in the whole computational domain. The negative correlation between
Ckk|y++=30/L

2 and U++|y++=30 is observed at both We = 25 and 50. Figure 14
shows JPDFs of instantaneous wall-shear stress τw/(ρU2

e ) and trace of conformation
tensor Ckk/L2 at y++ = 30 in the whole computational domain. One can confirm the
positive correlation between τw/(ρU2

e ) and Ckk|y++=30/L
2 at both We = 25 and 50,

which is consistent with the finding that U++|y++=30 is negatively correlated to both
Ckk|y++=30/L

2 and τw/(ρU2
e ).

Figure 15 shows values of U++|y++=30 versus τw/(ρU2
e ) at a particular time instant

at z = 3Lz/4, i.e. along a line oriented in the streamwise direction. For the Newtonian
case, these ‘trajectories’ show movement with a negative correlation over a wide range
of U++|y++=30 and τw/(ρU2

e ). At We = 25, the trajectories are confined to a smaller
range of τw/(ρU2

e ). At We = 50, the range of U++|y++=30 is almost the same as in the
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Newtonian case, but there is much less (spatial) fluctuation. Figure 16 shows values
of U++|y++=30 versus Ckk|y++=30/L

2 as a function of x at z = 3Lz/4. It is found that at
We= 50 the movement is less and the range is wider than at We= 25.

The results presented here clearly indicate a local negative correlation between the
level of drag reduction (mean velocity) and polymer stress, and are again consistent
with the presence of the active and hibernating turbulence mechanism in the turbulent
boundary layer flow.
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4.4. Effect of removal of polymer stresses in downstream region
To further examine the role of the viscoelastic stresses in the downstream evolution
of the level of drag reduction, we performed simulations at We = 100 in which the
viscoelastic stresses were set to zero beyond a fixed downstream distance b. Two
values of b were tested: b = 100θ0, where the polymer stretching and turbulence
intensity are large and the level of drag reduction is slightly negative (because of
the inlet conditions), and b = 200θ0, where the polymer stress is still substantial but
the level of drag reduction is high. The removal of the stresses was implemented by
multiplying them by the damping function,

W(x)= 1
2

1−
tanh

{
α(x− b)

(1− 2b)x+ b

}
tanh(α)

 , (4.2)
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where α is fixed at 50. All other numerical and physical conditions are the same as in
the previous sections.

Figure 17(a–f ) show the streamwise dependence of the trace of conformation tensor
Ckk|y+=30/L

2, the drag reduction ratio DR, the mean velocity U+|y+=30, the streamwise
and wall-normal turbulence intensities u′+rms|y+=30 and v′+rms|y+=30, and the Reynolds
shear stress −u′v′

+|y+=30 in these cases.
Consider first the case of damping at x/θ0 = 100. The streamwise profile of DR

starts to depart from the profile without damping at x/θ0 = 80 and reaches a maximum
around x/θ0 = 130, in which the value is more than twice the value of DR without
damping at the same streamwise location (figure 17b). The sudden change of the
momentum balance (removal of the polymer contribution to the shear stress) causes
the large drag reduction around x/θ0 = 130, which corresponds to the maximum of
U+|y+=30 (see also figure 17c).

After the maximum, the level of DR drastically decreases, becoming negative and
almost constant in the region of 280 6 x/θ0 6 400 (figure 17b). This rapid reversion
to essentially normal Newtonian turbulence does not seem to be linked to outer region
dynamics as these are hardly affected at all by the polymer dynamics. This point is
illustrated in figure 18, which suggests that the difference in outer region turbulence
statistics with and without damping is small.

Now consider the case of damping at x/θ0 = 200, where there is already a
substantial degree of drag reduction. As in the above case, there is a slight increase
in the level of drag reduction due to removal of the polymer shear stresses,
but in contrast to that case, the level of drag reduction now remains high in
the remainder of the domain. Similarly, U+|y+=30 with damping at x/θ0 = 200 is
larger than without damping (cf. figures 17b and 17c). These results support the
hypothesis that once the flow has been driven by polymer stretching into a regime
with substantial drag reduction, the viscoelastic stress is not necessary for the drag
reduction to persist for a substantial distance in the downstream region. (Of course,
one expects that in a sufficiently long domain the flow would eventually revert
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(a) trace of conformation tensor, (b) drag reduction ratio, (c) mean velocity, (d) streamwise
turbulence intensity, (e) wall-normal turbulence intensity and (f ) Reynolds shear stress.

back to conventional Newtonian turbulence.) Analogous results were found in the
minimal channel simulations of Xi & Graham (2010b). They observed that once the a
viscoelastic simulation had begun to enter a hibernation interval, the polymer stresses
could be turned off and the flow would continue to hibernate for several eddy turnover
times, exhibiting for example the same transient approach to the Virk log-law slope
found in the fully viscoelastic case.

Values of u′+rms|y+=30, v′+rms|y+=30 and −u′v′
+|y+=30 with damping at x/θ0 = 100 have

maxima at x/θ0 = 200, 250 and 220, respectively, which are much larger than in
the Newtonian case, and then decrease to the outlet plane. At x/θ0 > 300, they are
almost constant and u′+rms|y+=30 and −u′v′

+|y+=30 are slightly smaller than that in the
Newtonian case. On the other hand, with damping at x/θ0 = 200, the u′+rms|y+=30,
v′+rms|y+=30 and −u′v′

+|y+=30 increase monotonically from x/θ0 ' 180 to the outlet
plane, at which u′+rms|y+=30 is almost twice that of Newtonian fluid, while v′+rms|y+=30

and −u′v′
+|y+=30 are still smaller than those of Newtonian fluid. These increases in the
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velocity fluctuations are consistent with expectation mentioned above that far enough
downstream, the turbulence will revert to normal.

5. Conclusions
DNS of a zero-pressure gradient drag-reducing turbulent boundary layer of a

viscoelastic fluid were performed at the momentum–thickness Reynolds number
Reθ0 = 500 and Weissenberg numbers We = 25, 50, 75 and 100 using the FENE-
P model with the maximum chain extensibility parameter L2 = 10 000 and the ratio
of solvent viscosity to zero shear rate solution viscosity β = 0.9. An important
limitation of the present study (as with many previous studies of boundary layer
flow) is the artificial inlet condition. This condition leads to substantial transient
stretching of the polymers and correspondingly to a negative level of drag reduction
in the upstream region of the flow. (This condition is somewhat similar to the case
of injecting polymers into an established turbulent boundary layer.) On the other
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hand, most of the key qualitative results of this work arise from observations of
the dynamics well downstream of this region, as well as trends with increasing We
that are expected to be independent of the details of the upstream conditions. Key
observations include the following. As We increases, i.e. the relaxation time becomes
longer, the streamwise profile of DR shifts downstream. Here DR increases with the
streamwise location, while the trace of conformation tensor decreases. More generally,
the trace of conformation tensor, i.e. the magnitude of polymer elongation is spatially
anticorrelated with DR, while in terms of streamwise and wall-normal turbulence
intensities and the Reynolds shear stress, the phase difference from DR becomes larger
with the increase in We, in which such the difference is largest and smallest for
the wall-normal and streamwise turbulence intensities, respectively. The relationship
between polymer stretching, velocity and wall shear stress was further illustrated by
examination of joint probability density functions of instantaneous values of these
quantities. These results shed further light on the spatial anticorrelation between
polymer stretching and drag reduction as well as showing a related anticorrelation
between the mean velocity at the edge of the log layer and the wall shear stress.
Finally, by performing simulations in which the polymer stress is set to zero beyond
a given downstream position, it is shown that high levels of drag reduction can be
maintained for some distance downstream in the absence of polymer stress.

These results are consistent with recent observations by Xi & Graham (2010b) in
minimal channel flow of viscoelastic fluids, and suggest that an important role for
viscoelasticity in the turbulent drag reduction phenomenon, at least near solid surfaces,
is to suppress conventional turbulence, while leaving behind a much weaker form of
turbulence that can persist for a substantial length of time (or downstream distance)
even in the absence of viscoelastic stresses.
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