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Formation mechanism of the hierarchic structure in lath martensite phase 

 

Abstract 

Martensitic transformation is the phase transformation accompanying orderly shear 

deformation without atomic diffusion. The structures made by martensitic transformation are 

classified as thin plate, lens or lath in steels. The mechanism by which the hierarchic microstructure 

in the lath martensite phase forms has heretofore not been understood. We have made clear the 

mechanism by considering, independently, two plastic deformations using the slip deformation 

model proposed by Khachaturyan, and present herein a deformation matrix for each of the six 

crystallographic variants in a packet of the hierarchic structure. Our results are quantitatively 

consistent with experimental results for the K-S crystal-orientation relationship and habit plane.  

Furthermore, the important points of our study are as follows: (1) the origin of the sub-block 

structure and the specific combination of the sub-block structure are clarified; (2) the laths existing 

in a block can be explained; and (3) deviations between the directional parallel and plane parallel 

are obtained quantitatively, without any adjustable parameters. 

 

Keywords: martensite, lath, structure, plastic, slip, deformation, K-S, orientation relationship, habit 

plane 
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1. Introduction 

Martensitic transformation is the adiabatic-phase transformation accompanying a change in 

crystal structure.  The martensite phase inevitably contains dislocations or twins as lattice defects 

that release strain between the martensite crystal and the surrounding untransformed crystal. 

Minimization of this strain energy determines the morphology of the martensite phase. 

 There are several kinds of martensite morphologies in steels. Thin-plate martensite contains 

only internal twins; lens martensite contains both internal twins and dislocations; and lath 

martensite contains only dislocations.  This lath martensite is observed only in steels (ferrous 

alloys) and is not observed in nonferrous systems.  In this study, we focus on lath martensite, 

whose formation mechanism is not yet understood. 

 It is reported that the lath martensite phase forms in steels having relatively high martensite 

start (Ms) temperatures and that the habit plane is near  557  different by about 10 degrees from 

 111  [1] [2].  Its crystal-orientation relationship is nearly K-S, composed of the relationships 

        '' 111//011,011//111   , 

where  111  and   '011   are close-packed planes and  011  and   '111   are close-packed 

directions in the austenite phase (γ) and the martensite phase (α′), respectively.  A total of 24 

crystallographic variants satisfy this orientation relationship as shown in Table 1. 

The lath martensite phase possesses a hierarchic structure as shown schematically in Fig. 1. 

This hierarchy is as follows: (i) A prior austenite grain is composed of packets; (ii) A packet is 

composed of an ensemble of grains, called blocks, which have the same  111  plane as does the 

habit plane; and (iii) A block is composed of an ensemble of single martensite crystals called laths, 

which have nearly the same crystal orientation and high dislocation densities [3] [4]. 
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Crystal orientation in the lath martensite phase was recently analyzed over a relatively wide 

area using the electron back-scattering pattern (EBSP) measured with a scanning electron 

microscope (SEM).  Before EBSP became available, a block was considered to be composed of an 

assembly of laths with the same variant (Fig. 2 (a)), separated into regions with small 

crystallographic inclinations to one another; the inclination boundary was also the lath boundary 

(broken lines in the figure).  However, using EBSP, Morito et al. found that crystal orientation in 

low-carbon steels deviates locally at each point in a block, and that blocks are composed of not just 

one but rather a combination of two specific crystallographic variants [2] [3] as illustrated in Fig. 2 

(b).  For example, grains belonging to variant 4 are observed only in blocks that are composed 

predominantly of variant 1; similarly, grains belonging to variant 5 are observed only in blocks that 

are composed predominantly of variant 2 and so on.  The boundary between V1 and V4 in the 

figure, drawn as a solid line, is the block boundary. The researchers called this morphology 

sub-blocks and distinguished it from conventional blocks [2] [3]. 

 Many theories regarding the deformation geometry of martensitic transformation, such as 

Bowles–MacKenzie (BM) theory and Wechsler–Lieberman–Read (WLR) theory, have been 

proposed [5][6].  They are collectively called the phenomenological theory of martensite 

crystallography (PTMC).  PTMC is based on the experimental observation that deformation with 

martensitic transformation is invariant plane deformation, because the martensite phase maintains 

continuity with the surrounding austenite phase.  As a result, the martensite phase has the invariant 

plane as the habit plane.  In PTMC, all deformations induced by martensitic transformation are 

explained by a combination of lattice deformation (as crystal structure changes), lattice-invariant 

deformation occurring from shear deformations and rigid-body rotation.  Well-known examples 

applying PTMC to lath martensite include studies by Sandvik and Wayman, and Kelly [7][8]. 
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However, it is unlikely that transformation actually occurs in this sequence.  In other words, 

PTMC describes the result of transformation well but does not explain the mechanism of 

transformation. 

 Khachaturyan has presented a model describing deformation with martensitic transformation 

[9].  His model considers all deformations to be a combination of lattice deformation (as crystal 

structure changes from fcc to bct) and lattice-invariant deformations with plastic deformations by 

slip.  This model is reasonable in its explanation of the transformation mechanism, but has not yet 

been verified by detailed, quantitative analyses.  Also, as far as we know, there is no report of the 

plastic deformation that considers several slip systems independently.  Furthermore, it remains 

unclear why the lath martensite phase should contain sub-blocks as reported by Morito et al., 

although the lath martensitic structure is important for its contribution to the strength of steel.  

Thus, it is important for both practical and academic reasons to clarify the mechanism by which the 

structure forms. 

In this paper, we extend Khachaturyan’s slip deformation model by considering two plastic 

deformations independently without any adjustable parameters.  We discuss in detail each 

crystallographic variant involved in a packet—that is, the six variants V1, V2, V3, V4, V5 and V6 

from among a total of 24 variants that satisfy the K-S crystal-orientation relationship (Table 1).  

Through these discussions, we clarify the formation mechanism of the hierarchic structure in lath 

martensite in steels.  By considering two slip systems independently, it is found for the first time in 

this paper that the existence of sub-blocks and laths in martensite is clarified as an inevitable 

consequence of the plastic deformation by slip in martensite transformation.  
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2. Calculation procedure 

 In the slip model proposed by Khachaturyan [9], crystal deformations induced by 

martensitic transformation are described as a combination of lattice deformation from fcc to bct and 

plastic deformations to release the strain energy caused by lattice deformation.  

 

2.1. Lattice deformation 

 First, we consider lattice deformation as described by the Bain deformation model [10].  

In this model, a tetragonal unit cell exists between two fcc unit cell (Fig. 3 (a)).  The bct martensite 

lattice is made from this tetragonal unit cell by Bain deformation (Figs. 3 (b) and (c)).  Here, a  

is a lattice parameter of the fcc austenite phase, and 'a  and 'c  are lattice parameters of the bct 

martensite phase.  The length of the a-axis in the tetragonal unit cell before deformation is 2/a
,
 

and the length of the c-axis is a ; similarly, the length of the a-axis in the bct unit cell after 

deformation is 'a  and the length of the c-axis is 'c .  Therefore, these deformations can be 

expressed by the Bain deformation matrix 3B  as follows: 
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 aa /2 '1  , 

 ac /'3  . 

 

The direction relationship [11] between the coordinate systems for the fcc parent phase (austenite 

phase) and the bct martensite phase is given by 
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The plane relationship [11] between the two coordinate systems is given by 
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These relationships are called the lattice correspondence.  There are six crystallographic 

variants in a packet (Table 1).  When a bct martensite lattice is formed by Bain deformation (Figs. 

3 (b) and (c)), we consider which variants are closely related with respect to crystal orientation. The 

result is the two variants V1 and V4 [3]. 

The relationship described in Eqs. (1), (2) and (3), and in Figs. 3 (b) and (c), is the case in 

which the  001  axis coincides with the   '001   axis.  The  001 ,  100
 
and  010

 
axes are 

equivalent in fcc austenite crystals, and hence the other two cases in which  100  coincides with 

  '001   and  010  coincides with   '001   should also be considered.  As shown in Table 1, for 

the former of the two additional cases, V2 and V5 show the closest crystallographic relationship; for 

the latter, V3 and V6 show the closest relationship.  The three sets of lattice deformations—V1 and 

V4, V2 and V5, and V3 and V6—are shown in Figs. 4 (a), (b) and (c), respectively.  
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For the case in which  100  coincides with   '001  —that is, for the set of V2 and V5 

(Fig. 4 (b))—the Bain deformation matrix 1B  and the lattice correspondence are given by 
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For the case in which  010  coincides with   '001  —that is, for the set of V3 and V6 (Fig. 4 

(c))—the Bain deformation matrix 2B  and the lattice correspondence are given by 
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2.2. Plastic deformations 

 Lattice deformation is inevitable in martensitic transformation.  But its magnitude is so 

large that a bct martensite crystal cannot exist in the host austenite crystal with only the elastically 

constrained condition.  Therefore, as mentioned previously, plastic deformations of the martensite 

crystal are needed. 

We consider now the case in which the  001  axis coincides with the   '001   axis. The 

elastically constrained condition can be released by plastic deformations along the c-axis in the bct 

martensite lattice (Fig. 3 (c)).  In the simplest case, this relaxation can be accomplished by two slip 

systems,    '011101   and    '101011  , as shown in Fig. 5 (a).  Strictly speaking, neither 

   '011101   nor    '101011   are slip systems in bct crystals, but these slips can be made by a 

combination of two 
'

1112/


a  dislocations having the Burgers vectors 1b  and 2b  (Fig. 5 (b)).  

In fact, it is reported that 
'

1112/


a  dislocations reportedly exist in high-density in lath martensite 

[12]. 

When bct martensite crystal vector α'r  is transformed into α'r'  by deformation, the 

relationship between the two vectors is given by 

 

 α'α'α' rTrr'  ,                                                  (10) 

 

where  α'rT  is total displacement.  Because total displacement is generated by deformations in 
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the   '101   and   '011   directions,  α'rT  can be written as 

 

      20111101
''
nn


TTrT α'  ,                                          (11) 

 

where 1n  and 2n  are the numbers of active slip planes, and   '101 
T  and   '011 

T  are the 

displacements in each slip direction.  In addition, 1n  and 2n  can be written as 
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where 1m  and 2m  are the average numbers of lattice planes between the nearest active slip plane 

in each slip system, H  is a reciprocal lattice vector and   α'rH
'hkl  is the total number of   'hkl  

planes within the length of the vector α'r .  Substituting Eqs. (11), (12) and (13) into Eq. (10), we 

get 
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where I  is the unit matrix.  In Eq. (14), 
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is a matrix that transforms vector α'r  into α'r' .  In other words, Eq. (15) is a matrix representing 

the plastic deformations. 

 

2.3. Total deformation in the martensite phase 

The procedure mentioned in sections 2.1. and 2.2. describes lattice deformation according 

to the Bain deformation and plastic deformations for releasing strain caused by lattice deformation. 

The total deformation that occurs by martensitic transformation can thus be evaluated by this 

procedure. 

From Eq. (1), transformation of vector γr  (austenite phase) into α'r  by lattice 

deformation is written as 

 

   γ3α' rBr  .                                                      (16) 

 

Substituting Eq. (16) into Eq. (14), we get 
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From the relationship 
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we get the equation 
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Substituting Eqs. (18), (19), (22) and (23) into Eq. (17), we get 
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1
1







mmmmmm

mmmmmm

mmmmmm

             (25) 
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is the matrix that represents the total deformation caused by both lattice deformation and plastic 

deformations.  V1 or V4 can be determined using the deformation expressed by this matrix. 

 

2.4. Determination of the quantitative value of the total deformation 

 To prove the validity of Eq. (25) in describing deformation by martensitic transformation, 

we consider deviations between the calculated invariant plane and the habit plane observed in lath 

martensite steels.  We also examine deviations from the K-S crystal-orientation relationship with 

respect to close-packed planes and close-packed directions. 

Eigenvalues of the matrix in Eq. (25), in ascending order, are 1 , 2  and 3 ; the 

corresponding eigenvectors are 1e , 2e  and 3e .  The condition that the matrix gives an invariant 

plane deformation is 1,1,1 321   , [14] (see Appendix).  When this condition is satisfied, 

the normal vector n  of the invariant plane is given by 

 

   31 een
2
1

2
3

2
3

2
1

2
3

2
1 11















 
.                                            (26) 

 

Let the vector in the direction of strain be l  and the amount of strain be 0 .  We then have 

 

31 eel
2
1

2
3

2
3

12
1

2
3

2
1

3

11














 ,                                        (27) 

130   .                                                         (28) 

 

Then normal vector  α'
H pqr  of an arbitrary plane in the reciprocal space and the vector   'uvwT  of 
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an arbitrary direction in the martensite lattice are given by 

 

   
  
  n
ln

lH
HH

0

0

1' 




 


hkl

hklpqr ,                                           (29) 

      


 abcabcuvw nTlTT 0'
 .                                             (30) 

 

The relationship between the   'pqr  and  hkl  planes satisfies the lattice 

correspondence in Eq. (3), and the relationship between the   '
uvw


 and  abc  directions 

satisfies the lattice correspondence in Eq. (2). 

To investigate the reliability of the deformation in Eq. (25), we evaluated the angular 

deviation between the normal vector of the invariant plane in Eq. (26) and the normal vector of the 

 557  habit plane reported by experimental observations by calculating the scalar products 

between the two vectors. 

 To determine the crystal-orientation relationship, first we calculated the normal vector of 

  '011   with Eq. (29) and evaluated angular deviations between the normal vectors  111  and 

  '011  .  Then we calculated each vector of 
'

111


, which are the close-packed directions of V1 

and V4 listed in Table 1, with Eq. (30), and evaluated angular deviations between the vectors 

101


    and 
'

1 11


    as well as between 011


    and 
'

11 1


   .  Although 1m  and 2m  

should be integer in a crystal, all calculations were conducted as real for 1m  and 2m  in order to 

obtain the rigorous invariant plane deformation condition, that is, 2 1  .  
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3. Calculated results 

3.1. Deformation matrix 

 As mentioned in Section 2.3, the deformation matrix for the lattice deformation 

corresponding to V1 and V4 (Fig. 4 (a)) is given by Eq. (25).  Similarly, the matrix for V2 and V5 

(Fig. 4 (b)) is given by 

 













































































































1
21

1
21

1
21

1
21

1
21

1
21

3
21

3
21

3
21

2

1

2

1
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
1

2

1

2

1

111111
1







mmmmmm

mmmmmm

mmmmmm

           (31) 

 

and the matrix for V3 and V6 is given by 

 













































































































1
21

1
21

1
21

3
21

3
21

3
21

1
21

1
21

1
21

2

1

2

1
1

2

1

2

1

2

1

2

1

1111
1

11

2

1

2

1

2

1

2

1

2

1

2

1
1







mmmmmm

mmmmmm

mmmmmm

.              (32) 

 

Using these matrices, each invariant plane vector n , normal vector  α'
H pqr  of an arbitrary 

plane and vector  uvw  T  of an arbitrary direction are obtained when the eigenvalue in each matrix 

satisfies the condition 2 1  , as mentioned in Section 2.4.  In Eq. (32),  1m  and 2m  are 

variables.  For 0.1% C steel, the lattice parameters used in these calculations are 
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ma 1010599.3  , ma 10
' 108667.2  , and mc 10

' 108796.2  , according to the empirical 

formula '( / ) 1 0.045[% ]c a C   . 

 

3.2. Angular deviation between the calculated invariant plane and the observed habit plane 

Figure 6 (a) shows the relationship between 1m  and 2m  when the eigenvalue of 2  = 1 

is satisfied for V1 and V4.  Figure 6 (b) shows the plot of the angular deviation between the 

calculated invariant plane (the normal vector n ) and the observed habit plane  557  against the 

1m  value, and the arrows correspond to those in Fig. 6 (a).  In Figs. 6 (a) and (b), 1m  and 2m  

are not independent of each other under the condition 2 = 1.  In other words, the independent 

variables 1m  and 2m  are determined unambiguously as an inevitable result of the invariant plane 

deformation condition of 2 1  .  When 1 2 17.8m m  , the angular deviation between the 

calculated invariant plane and the normal vector of the observed habit plane reaches the minimum 

value of 3.36 degree, as indicated by the open circles in Figs. 6 (a) and (b).  According to lattice 

equivalence (Fig. 4), the habit planes are as follows: for V1 and V4,  557  (Fig. 4 (a)); for V2 and 

V5,  755  (Fig. 4 (b)); and for V3 and V6,  575  (Fig. 4 (c)).  The relationship between the 

im  ( 1,2i  ) values and the angular deviation, as shown in Figs. 6 (a) and (b), is the same for each 

equivalent lattice. 

 

3.3. Angular deviation from the K–S orientation relationship 

Figure 7 shows the angular deviations between  111  and   '011  , between the 

equivalent close-packed directions 101


    and   '
1 11

  (for V1), and between the equivalent 

close-packed directions  01 1


 and   '
11 1


 (for V4), calculated from the deformation matrix Eq. 
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(25) for V1 and V4.  The  111  and   '011   planes are close packed in each lattice system, and 

they should be parallel in a K–S orientation relationship.  In addition, each set of two close-packed 

directions should be parallel according to the K–S orientation relationship. 

The angular deviation between  111  and   '011   reaches the minimum value of 

approximately 0.17 degree at 1 17.8m  , indicated by the open circle in Fig. 7.  The position of 

this open circle is exactly consistent with the angular deviation in Fig. 6 (a) ( 1 2 17.8m m  ).  In 

contrast, the angular deviation between the equivalent close-packed directions exhibits the 

minimum value of zero at 1 28.6m   for V1, indicated by the open triangle, and at 1 14.4m   for 

V4, indicated by the open square in Fig. 7.  In these two cases, 2 14.4m   for V1 and 2 28.6m   

for V4, because 1m  and 2m  are not independent of each other, as mentioned in Section 3.2.  The 

corresponding open square and triangle are also plotted in Fig. 6 (a).  These results show that the 

K–S relationship in the close-packed direction is well satisfied when deformation is greater in one 

direction than in the other. 

The calculation results of angular deviations are summarized in Table 2.  In the table, only 

one variant set originates from the same lattice deformation, that is, V1 and V4, but the other 

variant sets for V2 and V5 and for V3 and V6 can be obtained using the same symmetry 

relationships with respect to 1m  and 2m .  Hence, the results show that the two close-packed 

planes are almost parallel (see the column “Plane parallel” in Table 2).  The K–S orientation 

relationship is thus satisfied for a relatively wide range of im  ( 1,2i  ) values.  That is, both 1m  

and 2m  are approximately greater than 14 (see also Fig. 7), although they do not change 

independently of each other; rather, they change along the line in Fig. 6 (a).  The angular deviation 

between the close-packed planes reaches a minimum at 1 2 17.8m m  . 
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4. Discussion 

As shown in Fig. 6 and Table 2, the angular deviation between the invariant plane and the 

observed habit plane reaches a minimum at 1 2 17.8m m  .  To discuss the variant relationships, 

we consider the angular deviation for the calculated invariant planes from the  557
 
habit plane 

obtained experimentally (Fig. 6 (b)), close-packed planes in the K–S orientation relationship, and 

close-packed directions in the K–S orientation relationship with 1m  (Fig. 7).  The angular 

deviations between each calculated invariant plane and the  557  habit plane reach a minimum 

when 1m  = 2m = 17.8 (Table 2), as indicated by the open circles in Figs. 6 (a) and (b).  In this 

condition, the angular deviations from the close-packed direction, which are denoted by solid and 

broken lines in Fig. 7, become equal (0.64 degree in Table 2), as indicated by the arrow in Fig. 7.  

That is, the angular deviation from the close-packed direction for V1 is equal to that for V4 (Table 

2).  This fact indicates that there is an equal possibility of V1 and V4 in martensite crystal.  The 

same situation occurs for V2 and V5 as well as for V3 and V6.  Consequently, if mmm  21 , it 

is impossible to distinguish these two sets of variants in the K–S orientation relationship.  If 1m  > 

2m , deviation becomes small for V1; in other words, V1 is formed by slip deformation (Table 2).  

Similarly, if 2m  > 1m , V4 becomes stable (Table 2).  In the same manner, V3 and V5 become 

stable if 1m  > 2m  and V2 and V6 are stable if 2m  > 1m .  These results are obtained by 

calculating Eqs. (31) and (32). 

Thus, it can be inferred that each variant of lath martensite is determined by the magnitude 

of 1m  and 2m .  This indicates that formation of the variant is determined by a combination of 

lattice deformation and two kinds of subsequent plastic deformations.  In particular, V1 forms by 

lattice deformation as per Eq. (25) and subsequent plastic deformations primarily consisting of the 

   '101011   system, which can be produced by 2 111  a  and 2 1 11  a  on   '
101


 slip 
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systems.  Similarly, V2 is characterized by Eq. (31) and the    '011101   system, V3 by Eq. (32) 

and the    '101011   system, V4 by Eq. (25) and the    '011101   system, V5 by Eq. (31) and the 

   '101011   system, and V6 by Eq. (32) and the    '011101   system. 

The rule of variant determination mentioned above is not related im  ( 1,2i  ).  In other 

words, it is not necessary for a variant to have a unique im  value.  This indicates that a particular 

variant is not always formed by the same specific magnitude of plastic deformation, and the 

magnitudes vary widely.  Each single lath crystal is a region with a unique im  value, and a block 

is a region with multiple im  values, that is, an aggregation of single laths with slightly different 

im  values.  This is consistent with the experimental observation that a block is an aggregation of 

laths that are slightly misoriented with respect to each other (Fig. 8 (a)) [3].  The sub-blocks 

reported by Morito et al. are invariably observed as a peculiar combination of variants originating 

from the same lattice deformations: V1 and V4, V2 and V5, and V3 and V6.  These are regions of 

alternating magnitudes of 1m  and 2m  (Fig. 8 (b)).  Inevitability of the existence of sub-blocks 

and laths in a block is clarified by the present study employing for the first time two kinds of plastic 

deformations in martensitic transformation of steels.  In other words, two kinds of slip systems 

need substantially to form sub-blocks and laths, and this is absolutely different from Khachaturyan’s 

approach.  

Regarding the K–S orientation relationships, as can be seen in Fig. 7 and Table 2, the value 

of 1 2( )m m  for the relationship of close-packed planes is different from that of close-packed 

directions.  Hence, the plane parallel and the direction parallel relationships cannot be 

simultaneously satisfied.  This is the reason that lath martensite steels satisfy the relationship of 

close-packed planes with high accuracy but deviate from the relationship of close-packed directions, 

as reported by experimental observations [14]. 
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5. Conclusions 

To clarify the formation mechanism of the lath martensite phase in steels, we extended 

Khachaturyan’s deformation model and examined deformations accompanying martensitic 

transformation by considering two independent plastic deformations for six variants belonging to a 

packet.  We obtained the following conclusions: 

 

1. The experimental observations showed that lath martensite has six crystallographic variants, an 

invariant plane, and the K–S orientation relationship.  These observations can be explained by a 

combination of lattice deformation by Bain correspondence and subsequent plastic deformations 

corresponding to the two slip systems    '011101   and    '101011  , both of which can be 

produced by a combination of two 
'

/ 2 111 a . 

 

2. Lattice deformation determines the variants; the magnitude of the two subsequent plastic 

deformations determines the identity of the variants.  The two variants belonging to a sub-block 

are generated by the same lattice deformation.  Only a difference in the magnitude of the two 

subsequent plastic deformations causes the variants to differ.  Hence, a sub-block always contains 

the same two variants. 

 

3. A particular variant is not always formed by the same specific magnitude of plastic deformation; 

rather, the magnitudes of plastic deformation widely vary.  A single lath is generated by a specific 

magnitude of plastic deformation, and a block is generated by a slightly different magnitude of 

plastic deformation, resulting in small misorientations between laths. 
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4. The magnitude of plastic deformation that satisfies the parallel relationship of close-packed 

planes in the K–S orientation relationship is different from that which satisfies the parallel 

relationship of close-packed directions in the K–S orientation relationship.  Hence, both 

relationships cannot be satisfied simultaneously.  This is the reason that lath martensite steels 

deviate from the K–S relationship with respect to close-packed directions.  Thus, the calculations 

in this paper coincide well with the observed facts. 
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Appendix 

The condition of eigenvalues of the deformation matrix for representing invariant plane 

deformation 

 

We consider the case that vector x  is transformed into y  in orthonormal coordinate system α. 

When the matrix that represents this transformation is written as S , 

    xSy  .                                                              (A-1) 

In general, a homogeneous deformation can be regarded as a combination of a pure deformation and 

a rigid rotation. Thus, we can write the deformation matrix S  in the form 

    PRS  .                                                             (A-2) 

where P  is the pure dilatation matrix (diagonal matrix) and R  is the rigid rotation matrix. 

With (A-1) and (A-2), we get the expression 

    xPRy  .                                                           (A-3) 

Now we define the matrix that transforms the coordinate system from α to β as L . Transformation 

of the coordinate system from β to α is thus written as 1L . Transformation of vector x  ( = x  

in coordinate system α) into y  ( = y  in coordinate system α) in coordinate system β is written 

as 

    xSy  ,                                                              (A-4) 

where S  is the transformation matrix that represents deformation in coordinate system β.  

Now, from the following two relationships, 

 xLx 1 ,                                                             (A-5) 

 yLy 1 ,                                                              (A-6) 
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Eq. (A-1) is written as 

    xLSyL 11   .                                                         (A-7) 

Multiplying Eq. (A-7) by L , we get 

    xLLSy 1 .                                                          (A-8) 

Comparing this equation to Eq. (A-4), we get 

   1 LLSS  .                                                            (A-9) 

Similarly, for pure dilatation P , we get 

   1 LLPP  ,                                                           (A-10) 

LPLP 
1 .                                                           (A-11) 

Rewriting Eq. (A-4) using Eqs. (A-2), (A-9) and (A-11) gives us 

   











xPLLR

xLLPLLR

xLPLR

xLLS

xSy

1

11

1

1



















.                                                     (A-12) 

 

When the deformation is invariant plane deformation, vectors on the invariant plane remain 

unchanged in length, so the following equation should be satisfied  

   







xx

xPPx

xPLLRLRLPxyy

'

''

'''''' 11





 

,                                     (A-13) 

where ‘prime’ denotes the index of matrices representing the transposition. 

From Eq. (A-13), the condition enabling invariant plane deformation is 
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    xxxPPx '''  .                                                    (A-14) 

Now, we write the eigenvalues of the matrix S  as i . Using the equation 

2

'

'''







P

PP

PRRPSS







,                                                  (A-15) 

we find that eigenvalues of the matrix  SS' , i.e. 2
i , are the square of each eigenvalue of the 

matrix P , where P  is a diagonal matrix with eigenvalue i  and is written as 

    iji P .                                                            (A-16) 

Using Eq. (A-16), Eq. (A-14) becomes 

   222
iii xx   .                                                            (A-17) 

Eq. (A-17) is expressed in the form 

           01111 22222222  kkjjiiii xxxx   .                            (A-18) 

For the invariant plane, 0jx , and hence we get 

   
2

2

2

2

1

1

i

k

k

i

x

x












.                                                          (A-19) 

For a real solution to Eq. (A-19), the sign of  12 i  must differ from the sign of  12 k . 

Therefore, in the matrix representing invariant plane deformation, three eigenvalues of the matrix 

are less than 1, equal to 1 and greater than 1. 
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Captions 

Table 1  All 24 crystallographic variants that satisfy the K–S orientation relationship 

Table 2  Calculation results of angular deviations for V1 and V4 

Fig. 1  Lath martensite hierarchic structure 

Fig. 2  Block-grain structure 

Fig. 3  Lattice deformation 

Fig. 4  Three types of lattice deformations that occur in a packet 

Fig. 5  Plastic deformations by slips for V1 and V4 

Fig. 6  Calculation result of the deformation matrix Eq. (25) when the eigenvalue of 2 1  .  

(a) relationship between 1m  and 2m  values, (b) plot of angular deviation between the 

calculated invariant plane and the observed habit plane  557  against the 1m  value.  

Fig. 7  Angular deviations between  111  and   '011  , between the equivalent close-packed  

directions 101


    and   '
1 11

  (for V1), and between the equivalent close-packed 

directions  01 1


 and   '
11 1


 (for V4), calculated from the deformation matrix Eq. (25) 

for V1 and V4. 

Fig. 8  Block region with varying m values. 
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(a) Conventional structure

V1 V1 V1 V1

V1 V4 V1 V1

V1 V1 V4 V1

V1 V1 V1 V1

(b) Sub-block structure
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Block boundary

Lath boundary

(a) An illustration of a block grain. Here, 
each lath which belongs to variant 1 has 

unique m1 and m2 values (m1 > m2). The m
values of each lath in this block are slightly 
different, i.e., m’1 m’’1 and  m’ 2 ≠ m’’2.

(b) An illustration of sub-block structure. 
Each lath has unique m1 and  m2 values. 
The m values of each lath in this block are 
slightly different, same as in (a). 
In particular, for the lath that belongs to 
variant 4, the magnitudes of m1 and  m2 are 
alternated, i.e., m’1 > m’2 and  m’’1 < m’’2.
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