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Abstract

Statistics of a passive scalar flux in a uniform mean scalar gradient convected by homogeneous isotropic steady
turbulence are numerically studied by using very high resolution direct numerical simulation. It is found that the
Nusselt number increases in proportion to tieelBt number and that the one point probability density function of the
scalar flux is negatively skewed exponential and insensitive to the variation oéthet Rumber. The scalar field is
studied by visualization and ramp-glstructure and mesa-canyon structure are observed along the directions parallel
and perpendicular to the mean scalar gradient, respectively. The probability density function of the scalar flux is
theoretically computed and found to be in good agreement with the numerical results. A Lagrangian statistical theory
for the scalar flux is developed and predicts that the scalar transfer flux is given by the time integral of the Lagrangian
velocity autocorrelation and increases in proportion to teel&® number which is consistent with the results of the
direct numerical simulation. A physical explanation of the asymmetry of the scalar flux PDF is explored.
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1. Introduction wherex is the molecular diusivity of the passive scalar.
Itis known thatNuincreases with thed@let number but

Transport of a scalar by turbulent flow is one of s yrediction and evaluation as to how large and how
the central issues of fundamental physics of turbulence fast it grows with respect to&let number and other

and "T‘po”ar_‘t |n'eng|neer|ng, oceanographic and atmo- turbulence characteristics are still not well understood
spheric applications [1, 2, 3]. In many cases there ex- [4, 5]

ists a mean scalar gradient in turbulent flows which can

be quite often regarded as uniform over the distances The scalar flux fluctuates around its mean value.
longer than the characteristic macro scale of the turbu- Since the scalar flux is the product of the scalar and the
lent flows. When the mean scalar gradient is uniform, Vvelocity component along the mean gradient, one point
say in xs direction, the total scalar field is written as Probability density function (PDF) of the scalar flux is
0 = I'xs+0wherel™ = (V@) is the uniform mean scalar  dependent on the statistics of the velocity and scalar or
gradient'g is the scalar fluctuation ar(d) is the ensem- their joint PDF. It is well known that the one point PDF
ble average. In this circumstance, there exists a nonzero©f the velocity is approximately Gaussian distribution,
mean scalar flux; = (6us) along the direction of the but there are arguments about the PDF of the passive
mean gradient, whene is the velocity component par- ~ scalar in turbulence, Gaussian or exponential. It has
allel to the mean scalar gradient. The nondimensional been argued that condition for observing the exponen-
scalar flux is the Nusselt number which is defined by tial tail of PDF of the scalar amplitudes is stringent and
the system size needs to be large enough when com-

Nu=— (6us) , 1) pared to the integral scale of the turbulent velocity field
kI’ [2, 4, 6, 7, 8, 9, 10]. There are many studies on the
asymptotic behavior of the PDFs gdodthe moments of
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versality [2, 3, 11, 12, 13, 14]. On the other hand, the respectively, wher@ and¢’ are the root mean squares
fluctuations of the scalar have attracted less attention, of the velocity and scalar fluctuations. The angle
in spite of their practical and fundamental importance. bracket(---) indicates the spatial and temporal aver-
This seems partly due to the fact that the scalar flux is ages. The mean dissipation rates Eboand E, are de-
the quantity dominated by large scales of motion where fined by

universality is less expected. However, in order to un- Y 5

derstand the interplay between the velocity and scalar €= §<((9in +0;) > ¥ =«{(@67),  (6ab)
fields and to get better prediction of the scalar trans-

port, it is necessary and indispensable to examine therespectively, and we introduce several characteristic
flux fluctuations around the mean under an ideal cir- scales, such as the integral scales,

cumstance. In this paper, we describe results of a se- - -

ries of direct numerical simulations (DNSs) of a passive | = Ef K1EK) dk, Lg= Lf K~ 1Eq(K) dk,
scalar convected by isotropic steady turbulence under 4E Jo 2By Jo

the uniform mean scalar gradient, and analyze the sta- (7a,b)
tistical behavior of the fluctuations of the scalar flux,
especially, the €clet number dependence of the Nus-

selt number and the one point PDF of the scalar flux. > ” \/ﬁ
We also develop a statistical theory for the mean value A= V<u1>/<(01u1) ) o= (62)/{(0:6)%), (8a)
and the PDF of the scalar flux and compare with the the Kolmogorov and Batchelor scales,

DNS results, and explore the physical explanation for
the results. B\YA 2
(7)ol

the Taylor microscales,

K~V

1/4
T) = T_]S Cﬁl/z, (9a,b)
€

€

2. Direct Numerical Simulation and the skewness of the velocity and passive scalar

The incompressible velocity field;(x,t) and the ((61un)3) ((B1u1)(010))
scalar fieldd(x,t) are assumed to be governed by the SM) = ——35 32° So(t) = 212 2\’
. . - ; ((01u1)?) ((01u1)?)*%((016)*)
Navier-Stokes and advectionfillision equations, (10a,b)

2
@+ ujdj)ui = —0iP +vdjui + 1, Giui =0, (1a,b) respectively. The correlation cfiieient between the
passive scalar and the velocity along the direction of the

A9 = k20 —
(0¢ +u;6;)6 = k076 — I'us, (2) mean scalar gradient is defined by

respectively, where the summation convention over re- r=(0ug)/o'\. (11)
peated indices is assumed. The external solenoidal

Gaussian random forck which has spectrum support A series of DNSs is characterized by thecket num-

at low wavenumber band 1 < |k| < 2 is added to ber Pe = UL/, Taylor microscale Reynolds number
maintain a statistical steady state [15, 16]. Equations (1) R, = u’2/v and Schmidt numbeBc = v/«, and pa-
and (2) were numerically integrated in a periodic box of rameters of DNSs are listed in Table 1. Runs G1 to
size £ = 2x. Pseudo spectral method was used for the G4 are conducted to examine the Reynolds number ef-
nonlinear and convective terms, and the time integration fects withSc = 1 and Runs S01 and S2 are made to
was performed by using the fourth-order Runge-Kutta- see the Schmidt numbeffects with constant Reynolds
Gill method. The uniform mean scalar gradient was set numbers at abouR; = 174. Kmnax is the maximum

to bel”’ = 1 without loss of generality. The spectra of the wavenumber retained in DNS afgy is the time dura-
kinetic energy and scalar variance, and the cospectrumtion of the time average. Since the scalar flux is the large

of the scalar flux are defined by scale quantity, it is necessary to average over longer
- time interval to achieve good statistical convergence.
E = }<u2> = §u’2 - f E(K) dk, (3) As for the spatial resolution, an overall criterion for the
2 2 0 accuracy in the spatial resolution inap > 1 ~ 2
1 1 * [11, 15, 17, 18, 19, 20]. Watanabe and Gotoh studied
E=—92=—9’2=fEkdk 4 - .
o 2< > 2 0 o(k) dk; @) systematically the accuracy of the statistics obtained by

o DNS and found that the statistical data of low to mod-
—(ust) = j(; Euo(k) dk, () erate order at scales larger than the dissipation scale is



Table 1: DNS parameters.

Run Gl G2 G3 G4 S01 S2
N3 256° 512 1024 2048 256° 512
Re 973 2160 6480 10200 1000 933
Pe 973 2160 6480 10200 100 1870
R, 174 263 468 586 176 170
Sc 1 1 1 1 01 2
v(x107%) 13 0.60 024 013 13 13
Kmaxi? 0.99 109 105 139 0.99 197
Talr/L 27.1 562 397 229 7.01 890
v 1.07 110 121 111 1.07 106
74 161 158 188 122 178 146
L 118 117 128 119 121 114
Ly 0.745 Q752 Q778 0662 1.03 0631
A(x107Y) 212 144 0927 0686 215 209
Ag(x107Y) 107 Q712 Q432 Q312 3.36 Q743
-Su 0.508 Q530 Q0559 0610 0.505 Q545
-Sy 0.434 Q0458 Q0450 Q508 0.497 Q0493
eL/u® 0.482 0468 Q444 Q0446 0.486 Q484
xL/ue? 0.379 Q378 Q402 Q430 0.387 Q379
(Q) -0.885 -0.919 -1.05 -0.599 -1.13 -0.698
oyq 192 182 240 137 210 163
r={(qy/ue -0517 -0532 -0460 -0.442 -0.598 -0.453
oq/Ue 112 105 106 101 110 105
Nu=q/«I" 678 1530 4390 4700 87.1 1070
ra/xy 1.00 105 Q785 101 1.06 0934
A=TL/¢ 0.733 Q741 0681 Q975 0.680 Q0781
insensitive to the resolution provided thigt,7 > 1 SO(3) decomposition, thus the scalar field is excited at

[21]. Therefore we consider that the one point statistics all the wavenumbers up tky, which is in sharp con-
of the velocity and scalar amplitudes and the spectrum attrast to the case of the random scalar injection which
wavenumbers below the dissipation range in the presentis applied only at low wavenumbers. Since the inte-

study do not sffer from the resolutionféects. gral scale of the longitudinal velocity correlation func-
It is important and useful to examine the statistical tions is twice that of the transverse onelgs= 2L, at

nature of the scalar injectiofy(x,t) = —I'us(x,t) in large scales and; = V24, at small scales, the same

Eq.(2). The statistics ofy is identical to that ofus, anisotropy as that afi; is imprinted onf, at all of the

so thatf, is statistically steady, homogeneous and the scales. Moreover, the source term shares the same cor-
one point statistics of, is close to the Gaussian, and its  relation time and intermittencyfiects with those ofis.
Eulerian two point two time correlation is given by

(fo(x, 1)y = 0, (12)
(To(x + 1.OT(x. 9) 3. Spectra
1d r df(r) The spectrum carries very fundamental knowledge
_ 22— F(3fy_ _Z2\J
= (3r2 dr(r D 3 dr P2(cos) about the distribution of the fluctuations over the scale.
GE (Ut - §/r), (13) In this section we briefly describe the spectra of the

kinetic energy and the scalar variance for complete-
whereg is the angle between the direction of the mean ness although they have already been published in
scalar gradient and andf(r) is the longitudinal veloc- [26]. The compensated spectra of the three dimen-
ity correlation function. The functio®GE(x) describes sional kinetic energg %3k%3E(k) and scalar variance
the Eulerian decorrelation in time and monotonically y eY*k%3E,(k) are plotted in Figs. 1 and 2, respec-
decreasing function ok. Equation (13) means that tively [27, 28, 29]. Since the scalar spectrum is weakly
the correlation function of the scalar injection has the anisotropic, the three dimensional spectrig(k) is un-
anisotropic contributions from thie= 2 sector of the derstood as the isotropic sector in tB&)3) decom-
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Figure 1: Compensated energy spect@ii>k5/3E(K).
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Figure 2: Compensated scalar variance specitta®>k>/3Eq(K).

10" - :
1072 | 3

K73
1073 |

104 + K2

< 10° - -
10° #

107 |
108 |
10° | . .

401

103 1072

kn
Figure 3:

_ 101t 1

Three dimensional spectrum of scalar flux.

position. The Kolmogorov and Obukhov-Corrsin con-
stants are found to b = 1.61 andKoc = 0.68, re-
spectively which are in good agreement with those by
DNSs [11, 12, 15, 16, 26, 30] and by the experiments
[1, 31, 32]. Similarly Obukhov-Corrsin constant in the
one dimensional scalar spectrumxndirection is com-
puted a<CIP = 0.408 which is close to the experimental
values ¥ [32] and 045- 0.55 [5, 22] and 34 by DNS
[11].

The cospectrum of the scalar in three dimensions
is shown in Fig. 3 and the compensated spectrum
I 3K BE,(K) is plotted in the inset figure &, =
586 [26]. There have been arguments about as to
whether the scaling exponent of the scalar flux spectrum
is —2 or —7/3 in the inertial range [5, 22]. A theoreti-
cal study using EDQNM [25] suggests a slow approach
to 7/3 only for very largeR,. The present DNS data
supports the Lumley scaling & (k) o« k=7/3 [23, 24].
One reason for the dispute is presumably due to the fact
that the Reynolds numbers of the previous DNS stud-
ies were not high enough to achieve the well developed
scaling range.

4. Field structure

Itis interesting and useful to see the scalar field struc-
ture before going to the detailed analysis of the scalar
flux. Figure 4 shows the total scalar (top) and the
scalar dissipation fields (bottom) in the plane parallel
to the uniform mean scalar gradient, respectively. In the
plateau regions in Fig.4, the total scalar field is nearly
constant with small fluctuations, which means that the
scalar field is well mixed, and jumps at the periphery,
forming a stair structure [1, 33, 34, 35]. The bound-
ary formed by the jumps tends to align with the direc-
tion perpendicular to the mean gradient, and is highly
convoluted (readers may enlarge the PDF version of the
figures). The typical length of the sharp boundary is a
few times the velocity integral scale. Also at the sharp
jumps the scalar dissipation has large values as expected
and seen in the bottom plate of Fig.4 [7, 12].

In order to see the field in more precisely, the ve-
locity ugz, scalarf (or total scalari'xs + 6) and scalar
flux g = uzd are plotted along the coordinate parallel
and perpendicular to the mean scalar gradient for Run
G3. Three bars in each figure show the integral scales
of the velocityL, scalarLy and half the velocity inte-

set figure shows the compensated three dimensional spectrumgral scalel/2, respectively. In Fig.5(a), the scalar fluc-

e BRRE(K).

tuations have plateau regions and jumps, mesa-canyon
structure along the; direction. Although it is dificult
to say which length scalk, Ly, or L/2 is relevant, the



Figure 4: Total scalar amplitude (top) and the scalar dissipation (bottorr)Znlane atPe = 6480 of Run G3.
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Figure 5: One dimensional plots of the veloaity scalar fluctuations,
and scalar flux for Run G3. Curves of the velocity and scalar are
shifted by—-5 and 5, respectively, and black dotted lines show the

zero level for each field. The black solid bars repredetior the
longitudinal velocity correlation and, the scalar correlation, arid 2
for the transversal velocity correlation, respectively.

10*

10° |

Nu

10 |

101 L L L
10t 10? 10° 10* 10°
Pe

Figure 6: Variation of the Nusselt number againgtlet number.e
(red) : present DNSA (green): DNS by Overholt and Pope [37],
v (blue): experiment by Mydlarski [5], Straight lines shdwu o
Pe for the theoretical prediction Eq.(33), adu « P&?55 for the
experiment, respectively.

characteristic length of the velocity along thex; di-
rection looks to be closer tb/2 which is the integral
scale of the transverse velocity, and the scalar fluctu-
ations tend to have a similar length scale as inferred
by the anisotropy of the scalar injection. On the other
hand, the ramp-dii structure is clearly seen in Fig.5(b)
[1, 33, 34, 35, 36, 37]. Roughly speaking the signs of
the velocity and scalar fluctuations are opposite, which
is consistent with the negative value of the mean scalar
flux. The jumps of the scalar amplitudes look to oc-
cur irrespective of the velocity fluctuation in this plot,
and also appear as the magnified jumps in the scalar
flux. Figure 5(c) shows that the total scalar has the wide
plateau regions whose length is abauand the jumps,
forming the stair structure. A common feature observed
in the above plots is that the scalar fluctuations tend to
have a large scale coherency (mesa-canyon and ramp-
cliff structure) in the sense that the amplitudes of the
scalar fluctuations are comparable to those of the small
scale velocity over the velocity integral scale, and that
the coherency is broken by the jumps whose strength
are a few times the rms of the scalar fluctuations. This
is a generic property of the passive scalar fluctuations
and independent of the direction of the mean scalar gra-
dient.

5. Statistics of scalar flux

Figure 6 shows the variation of the Nusselt number
obtained by DNSs as well as those by experiment [5, 37]
with respect to the &let number. The reason for plot-
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10t ‘
ting Nu againstPeinstead ofR, is due to the fact that 10l pGe'fL{%% - 1
the mean scalar fluggus) is the quantity characterized e 1870
by the large scale, which is also supported by the La- 10" ¢ Pe=2160 — 1
grangian spectral theory predictihgu o« Pewhich will 5 102 Pe=10200 — ]
be described in Sec.6. The present DNS data and those T
by Overholt and Pope witRr = 0.7 [37] scale well as LE 10° b
Nu « Pe the theoretical prediction. On the other hand, 10 ]
Nu by the experiments increases s o« Pe’88[4] or
Nu o P59[5] in which the exponents are evaluated by 10° ¢ i
the least square fit. The reason for the slower increase 10°° ‘ \
is not known. The correlation cffecientr as a func- -10 -5 0 5 10
tion of the Feclet number is also plotted in Fig.7. When e

the Feclet number is small, the correlation fidgient ] _ ) o

is weakly decreasing and approaches a constant aboug;?;rfsgégg{r:ﬂztfg?Fs of scalar flux multiplied Bfl/q for
0.45 for largePe Since the Nusselt number is given by

Eq.(1), the nearly constant behavior rofs consistent

with the scalingNu o« Pe and 05 < q < 2.0, respectively and plotted in Fig.10.
Figure 8 shows the normalized PDEgP(q) of the Bothc, andc_ are almost constant over the range of the

scalar flux for various &clet numbers, where, is the ~ Peclet numbers studied.

standard deviation af. The PDF curves are well col- We now theoretically consider the PDF of the scalar

lapsed on a single curve and negatively skewed so thatflux. Equation (2) means that in the steady state the pas-
the left tails are longer than the right ones. The lat- sive scalar fluctuations are injected by tagomponent

ter observation is consistent with the experimental ob- of the turbulence velocity and th@sandw = us is well
servation by Mydlarski [5], while the skewness of the correlated. We assume that the one point PDFs of the
PDFs by DNS is slightly larger than in the experiments. Vvelocity and scalar at large scales are close to the Gaus-
The PDF curves for smalt are of the form of cusp  sian, thenitis reasonable to expect thahdus obey the

of |g~Y/2 which is predicted by the theory in Sec.6, and joint Gaussian PDF as Thoroddsen and Van Atta studied
the cusp can be removed by multiplyiigq) the pref- [5, 38, 39]. We follow their approach in the following.
actor|q|*/?. Figure 9 shows the thus compensated PDFs  First we examine the one point PDFs of the velocity
which are straight lines and again well collapsed each and scalar in Figs.11 and 12 by using DNS data. The
other, meaning that the PDIq) is exponential. The  normalized PDF of the velocity is approximately Gaus-
slopec, of the PDF defined by(q) o« exp(-c.|al/oq) sian, while that of the passive scalar decreases faster
for the positive and negative tails are computed by us- than the Gaussian and the curves are smooth over the
ing the least square fit for the range-ef < g < -0.5 range of unity to 16° [7]. Therefore we believe that the
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faster decrease d¢#(9) than the Gaussian is not due to
the artifact of instficient number of sample sizes.
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Figure 13: Comparison of theoretical prediction for PDF of scalar flux
with DNS data aPe = 6480.

whereKq(X) is the modified Bessel function of the sec-
ond kind at zeroth order. Since the asymptotic expres-

With these observations of the PDFs of the velocity sion of Ko(X) is /Ze™, we have the asymptotic form

and scalar, we consider the joint PDF as

1
P(w, f)dwdh = ——
2o wog V1 — 12
1 w2 2rwo 62
X exp(——z(l_ 2) (U_ev - —O_Wo_g + U—g]) dwd,

(14)

wherer = (W) / owop. By changing the variables from
(w, 8) to (w, g = wo) and integrating ovew we obtain

P(g)dg =

1 rq )
ex
mowog V1 —1r2 p((l_rz)o'wo'e
xKo( d )dq (15)

A -rd)owoy

of the PDF of the scalar flux as

C+H), C+=L( 7

Toyg 1+r\owoy

P(q) ~ 1 exp(— ) (16)

Vid
Equation (16) indicates thaP(q) has the prefactor
|oj~Y/2 for small|g| and is exponential for largjg| with
different slope for each side. Since< 0, we have
C_ < C; so that the left tail of PDF is higher than the
right tail.

Figure 13 shows the comparison of the theoretical
prediction Eq.(15) with the PDF obtained by DNS at
Pe = 6480, in which the DNS data of the correlation
codficientr is substituted into Eq.(15). The theoretical
PDF of the scalar flux agrees well with that by DNS ex-
cept the far left tail, and the same trend is observed for



other Feclet numbers (figure not shown). The faster roll
off of the left tail at largdq| than the exponential may
be attributed to the fact that the one point PDF of the

For the moment we neglect the moleculaffusion ef-
fects. Then the above equation can be integrated with
respect to timé from theinitial time sas

passive scalar decreases faster than the Gaussian at the

large amplitudes as seen in Fig.12, although the reason

for the sub-Gaussian nature of the PDFs of the passive
scalar is not well known.

6. Theory of scalar flux

We consider the scalar flux from the view point of
the Lagrangian frame. For this purpose we introduce a
set of Lagrangian variables. First, we define Lagrangian
positionZ(x, gt) as the position of a fluid particle mea-
sured at timé whose trajectory passesat times. Then
a generalized Lagrangian velocitgx, Sit) is defined as
the velocity measured at timef the fluid particle, and a
generalized Lagrangian scalar fiélgk, st) is similarly
defined as the amount of scalar carried by that fluid par-
ticle measured at time(see Kraichnan 1965, Kaneda
and Gotoh 1986). They satisfy

P20 _vix 30 = uz(e 0.0, (47)
6(x, gt) = 8(Z(x, Sit), 1). (18)

Note thatv(x, t|t) = u(x,t) andd(x,tjt) = 6(x,t). The
Lagrangian position function is defined by

Uy tIx, s) = 6(y — Z(x, sit)) (19)
and obeys the equation
0
(5 AR Vy) ytix 9 =0 (20)
(!/(y’ th,t) = 6(y - X)v (21)

whered(x) is Dirac’s delta function. Both generalized
velocity and scalar are expressed in terms of the La-
grangian position function as

v(x, St) = f Sy uy.dy,  (22)

6(x, St) = f JYtX 90y dy.  (23)

The equation of the generalized scalar field with respect
to measuring timés obtained by dferentiatingd(x, slt)

by t, by using equation of and, and by using the
incompressibility condition for the velocity as

Do(x, Sit)

20— [ uty.tx. 9 («700 - ragy.) .

(24)

o(x, gt) = 9(X,S|S)—Ff\t/3(x, st’) dt’ (25)
= 0(X, S) — I'4Z3(x, dt), (26)

wheredZz(x, gt) = Zz(x, gt) — x3 is a displacement in
x3 direction of the fluid particle during the time interval
t—s

The above Eg.(26) suggests a mechanism to generate
the ramp structure of the scalar fluctuations. Consider a
set of timess; = s+ j(t—s)/n,(j = 0,1,---n) and the
n + 1 fluid particles that leava at times; and arrive at
Z(x, sjlt) at timet. Then those fluid particles are on a
smooth curve (streak line) connecting the poixtand
z = Z(x, §t) and the scalar distribution on the curve
is given by Eq.(26). Since the velocity component at
scale ofL varies slowly in time of the order of =
L/u’, the streak line formed by the set of fluid particles
is approximately straight line with length of the order of
U'(t — s) provided that — s < T, so that the distribution
of the passive scalar is approximately a linear function
of the local coordinate, the ramp structure of the scalar
fluctuations.

Let us consider the physical reason for the negatively
skewed PDF of the scalar flux. When= 0, the equa-
tion (26) is also written as

0(x,1|s) 27)

S
o(x, tt)y —r f v3(X, t)t’) dt’
t
O(x,t) + F'4Z3(x,t|s), for t>s (28)

wheredZs(x,t|s) = x3 — Z3(X, t|s) is the displacement
in x3 component during the time intervial s. Suppose
that theinitial value ofg at time s(< t) is zero, then the
above equation means

0(x,t) = —=I'4Z3(x,1|9), (29)
and the scalar flux is written as
d(x,t) = =Iug(x, t)4Z3(x,tls) for t>s (30)

for the zero difusivity. Negativeqoccurs wheruz and

AZ3 have the same sign. In other words, the fluid par-
ticle uz keeps moving in the same mode as before (see
Fig.14). On the other hand, positigeoCcurs when the
signs ofuz andA4Z; are opposite, meaning that the fluid
particle has changed its direction of motion g di-
rection, and thex; component of the fluid velocity has
changed its sign, at least one time. This turn of the fluid
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Figure 14: A schematic picture of the velocity and fluid particle ex-

cursion in thexz direction.d For the path APAx3(x,t|s) > 0 and
- = —T'uz(Xs, t)4x3(X, t|s) < 0. For the path BRIx3(x,t|s) < 0 and
G+ = —T'uz(xs, t)4x3(x,t|s) > 0. In order for the positivel, to be
realized the fluid particle must turn before arriving at the posikgn
so that there is less chance fpto have large positive values than in
the case of the large negatige ~

isotropic and in steady state, we may write as
r 00
0z 9u(z1) = -3 [ QHw)dr = -CarvL. (32)
0

where Q-(t) = (v(x,0[t) - v(x,0[0)), T_ is the La-
grangian integral time of the velocity autocorrelation
andCq is a nondimensional constant of the order one.
Therefore the Nusselt number is computed as

T (33)

If we substitute the relatiolRe « Ra’2Sc'/? into

Eq.(33), we havaNu « (RasS ¢%/2 for the moderates ¢

which corresponds to the Kraichnan regime [43]. Equa-

tion (33) is consistent with DNS data as seen in Fig.1.
The correlatiorr is estimated as

particle leads to the fact that the fluid particle experi-

ences less chances of simultaneously having large ve- . _ W0) _ «" we) Nu _ _AC, (34)
locity and large excursiodZs with opposite sign, im- owoy  owog K[ Pe '
plying less probability of finding large positive scalar A= _F_L (35)

flux than in the negative one, thus we have< c,. oy

Now we consider the correlation between the velocity
and scalar. We assume that the velocity and scalar fluc-
tuations are statistically homogeneous, isotropic and in
the steady state and= 0, then we proceed as

(0(z Y)us(z 1)) = (B(Z(X, Sit), Yuz(Z (X, sit), 1))
-r | (s, S Vs(x, 0

+(O(X, uz(Z(x, sit), t))
=TI j: (va(X, gt")va(x, St)) dt’

where A is the nondimensional constant of the order
unity and listed in Table 1. The correlation is indepen-
dent of Pein the limit of large Fclet number, which
agrees well with the DNS results in Fig.7.

The constan€, can be evaluated in the largédtet
number limit by using the Lagrangian renormalized ap-
proximation (LRA) which is a Lagrangian spectral the-
ory developed by Kaneda [44, 45]. The result is

1 00
Cq= E|<1/2| ~ 0734 | =f G-(x)dx= 1.2, (36)
0
r ! ’ ’
==y f f(Vs(X, St')vs(x, sit)) dx dt whereK = 1.72 is the Kolmogorov constant computed
S by LRA andG" is the Lagrangian response function.
When the valuéA is read from Table 1, we haver =

ACy = 0.500 for Run G3 which is close to the DNS
value as seen in Fig.7.

t
=- § f f (V(x, t'[t")va(x, t'[t)) dx dit’
S

t
=-T f Q5(x, t't) dt’ < O, (31)

S
Wherngg(x, t’|t) is the autocorrelation function of the
Lagrangian velocity in theg direction. The first line
is due to the homogeneity, stationarity, and zero dif-
fusivity, the passage from the second to the third line

7. Summary

We have studied the passive scalar flux convected by
homogeneous isotropic steady turbulence under the uni-
uses the fact that the velocity at tihe- sis indepen- form mean scalar gradient by using the very high res-
dent of the passive scalar, the fourth line is due to the olution DNSs. It was found that the isotropic sector
homogeneity, the fifth line is obtained by using the la- of the scalar spectrum has the small but finite width of
beling time transformation for the homogeneous system the inertial-convective range with the exponent close to
([40, 41, 42]). Equation (31) shows that the correlation —5/3 and the cospectrum has the exponent3. The
(Bug) is given by the time integral of the Lagrangian Nusselt number was found to scaleMs « Pe The
autocorrelation of the velocity in the direction parallel field structures of the scalar, total scalar and scalar dissi-
to the mean scalar gradient. Since the velocity field is pation were visualized and it was observed that the stair
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structure for the total scalar and the mesa-canyon struc-[10]
ture for the scalar in the direction parallel and perpen-
dicular to the mean gradient, respectively. Large scale
coherent structure within which there exist small am- [1
plitude fluctuations and sharp jumps at periphery are

generic feature of the passive scalar field convected [13]
by turbulence. The PDF of the scalar flux was also ,,
computed and compared with the theoretical prediction

starting from the joint Gaussian PDF for the velocity [15]
and scalar. It was found that the PDFs are negatively

(11]

skewed and exponential with the prefactgr/? and H%

very insensitive to the &let number. The rates of roll  [18]

off of the PDFs were computed by the joint Gaussian 8]
1

theory and found to be expressed in terms of the corre-
lation codficient between the velocity and scalar at large [20]
scales. The Lagrangian theory for the mean scalar flux [21]
(the Nusselt number) was developed for the zero limit [22]
of the ditusivity and found to b&lu o« Pewhich agrees [24]
well with the DNS data. The ramp structure was ex- |25
plained by the Lagrangian theory. It was shown that the

asymmetry of the PDF of the scalar flux is interpreted [26]
. . . . L [27]

as the way that the fluid motion with the same sign in 28]
the velocity and displacement of a fluid particle is more [z
probable than the one with opposite sign. [30]
[31]
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