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We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of
fluidized granular media under gravity by two independent approaches, based on theory and numerical
simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which
was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any
dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory
predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces
the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test
the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular
dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response
function of the center of mass height were measured and closely compared with theoretical predictions. It is shown
that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short
time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic
deviations in the low-frequency (long time) region and the time scales of the driven granular system.
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I. INTRODUCTION

Granular materials show fluid-like behavior when they are
supplied sufficient energy by external vibration. Fluidized
states of granular matter have been studied as interesting
examples of nonequilibrium fluids. They exhibit a rich variety
of phenomena such as convection, pattern formation on the
surface, and segregation (see Ref. [1] and references therein).
Besides these pattern-forming instabilities, the plain stationary
state of vibrated granular fluids without complex spatial
structures serves as an archetypal example of nonequilibrium
stationary states (NESSs). It has been a fundamental goal for
many years to find any thermodynamic-like description or to
identify the common property of fluctuations in a wide variety
of NESSs in nature.

One of the important issues addressed in this paper is
the validity of the fluctuation-dissipation relation (FDR) in
granular fluids subject to external vibration. An FDR connects
the response of an equilibrium system to a small perturbation
with the time correlation of spontaneous fluctuations in the
system without perturbation. Recently there has been much
interest in how an FDR is violated or should be modified
in ageing systems, such as glass, and in NESSs of various
systems. (See Refs. [2,3] for recent reviews.)

For granular systems, FDRs have been studied for several
situations. Much work has been devoted to the case of freely
cooling granular gas, where the gas develops freely without
external forces and “cools” as a result of the dissipative nature
of the grain interactions. The aim has been to derive a (mod-
ified) Green-Kubo relation from which transport coefficients
can be calculated [4–7]. While there is no stationary state
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for a freely cooling granular gas, a granular gas NESS can
be achieved by supplying energy from outside by means of
external forcing. A typical experimental means of injecting
energy is to shake a container or vibrate a bottom wall (see, e.g.,
Ref. [8]). In the case where the shaking (or vibrating) is strong
enough to inject energy to all grains by frequent collisions
with the vibrating wall, the effect of the vibrating wall is often
modeled using a thermal bath that couples to every particle.
FDRs in such uniformly driven granular systems have been
studied in Refs. [9–13]. Puglisi et al. [9] carried out numerical
simulations of a model of uniformly driven granular gas and
studied FDRs for two different observables. They observed that
the FDRs were satisfied if the equilibrium temperature in the
FDR for a system at equilibrium was replaced by the granular
temperature, defined as the mean-square fluctuation of the
grain velocity. Garzó [10] studied the diffusion of impurities
immersed in a granular gas under the influence of uniform
driving forces analytically. They showed that a modified form
of the Einstein relation, in which the temperature of the gas
is replaced by the temperature of the impurity, is violated
due to the non-Maxwellian behavior of the impurity velocity
distribution function. Bunin et al. [12] analyzed a mean-field
model of uniformly driven granular gas and showed that the
effective temperature defined by an FDR depends on the
frequency. In the case where the shaking (or vibrating) is
not strong enough to be regarded as uniform driving, energy
injection through a boundary has to be explicitly considered.
Brey et al. [13] studied the volume fluctuations of a vibrated
low-density granular gas confined at the top by a mobile
piston numerically. In this system, energy is supplied from
the vibrating bottom wall. They discussed the interpretation of
an effective temperature defined by requiring the same relation
between fluctuations of volume and compressibility as in
equilibrium systems. The FDRs and effective temperatures in
much denser systems have also been studied by several authors
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[14–17]. Among these studies, we refer to an experimental
study by D’Anna et al. [17], because their theory based on
a Langevin equation formally has the same form as ours,
although their experimental setup was very different. They
performed an experiment to observe the fluctuating motion of
a torsion oscillator immersed in vibration-fluidized granular
matter and found that it can be described to first approximation
by the formalism for Brownian motion in equilibrium, and an
FDR with an effective temperature approximately holds.

We investigated the fluctuating motion of the center of mass
(COM) in an NESS of granular matter fluidized by an external
energy source located at a bottom wall, under the influence
of gravity. Instead of using macroscopic probes such as a
piston [13] or torsion oscillator [17], we focused on the position
of the COM, which is observable using digital high-speed
photography in experiments [18]. Our major motivation for
studying fluctuations of the COM is that a simple (or universal)
law might hold as a result of the following properties. First, the
fluctuations of macrovariables such as the COM position often
possess the largest time scales in the system. Second, they are
expected to be Gaussian in a similar sense to the central limit
theorem. (In the case of a Markovian stochastic process, the
Gaussian property of macrovariables fluctuations can indeed
be derived from a master equation of the Markovian process
[19].) With this expectation we proposed a phenomenological
theory based on a simple formalism for Brownian motion that
describes the motion of the COM height in the NESS of a
one-dimensional vibrated granular fluid [20]. We found that
the important qualitative features of the dynamics of the COM
in event-driven molecular dynamics (MD) simulations were
all accounted for by the theory. The theory was extended to a
two-dimensional granular fluid on a thermal wall [21]. Here
we show that when we apply the phenomenological theory to
granular fluids in higher dimensions, careful consideration of
time scales in granular hydrodynamics [22,23] is necessary.
Within the time range for which our theory is valid, it predicts
the existence of an FDR. However, the equilibrium temperature
in the FDR for an equilibrium system must be modified by
the effective temperature of the COM velocity fluctuation.
To test our prediction, we performed extensive and accurate
event-driven MD simulations for a two-dimensional system of
inelastic hard disks on a thermal wall.

Our main result is that an FDR with an effective temperature
holds within statistical uncertainty for simulations in a high-
frequency (short time) region, while it is violated in a low-
frequency (long time) region. The effective temperature is
defined by the COM kinetic energy. We observed in our
simulations that the ratio between the effective temperature
and the global granular temperature increases with inelasticity;
the former can be more than four times larger than the latter
for the highest inelasticity case.

This paper is organized as follows. In Sec. II we describe a
model granular system and discuss important time scales in the
system. In Sec. III the Langevin equation is introduced, and
analytical expressions for the power spectrum and response
function of the COM height are described briefly. We also
remark on the FDR between these two functions. The complete
derivation of the Langevin equation and detailed calculation
for the power spectrum and the response function are sum-
marized in Appendixes A and B, respectively. A comparison

between the theoretical predictions and an extensive event-
driven MD are shown in Sec. IV. Finally, in Sec. V we
summarize the main results for FDR validity and comment
on the relation between the systematic deviations in the
low-frequency (long time) region and the time scales of the
driven granular system.

II. THE MODEL SYSTEM

A. System

As a model of grains bouncing on a vibrating bottom
plate under gravity, we consider a d-dimensional system of
N inelastic particles on a “thermal” bottom wall in a constant
gravitational field g. The particles in the system have diameter
σ and mass m; the total mass of particles is denoted by M

(=Nm). The thermal wall is kept at a constant temperature
T0, which plays the role of a heat source supplying sufficient
translational energy to the particles to fluidize them. The z

direction is chosen to be opposite to the direction of gravity,
and the thermal wall is fixed at z = 0. For simplicity we adopt
periodic boundary conditions in horizontal directions, so as
to ignore the boundary (side-wall) effects. Collisions between
particles are inelastic; inelasticity of the particle collisions is
characterized by a normal restitution coefficient r . To avoid
any pattern-forming instability in the horizontal directions, we
chose both the inelasticity and linear scales of the system in
horizontal directions to be sufficiently small that the system
remained homogeneous in the horizontal directions. These
conditions are discussed in more detail in Sec. IV.

B. Time scales

Before discussing the important time scales in the system,
we define several quantities that characterize the macroscopic
properties of the system. We first define the kinetic energy per
particle as K(t) ≡ (1/N)

∑N
i=1 mvi(t)2/2 and the long time

average of K(t) in an NESS as K ≡ limT →∞(1/T )
∫ T

0 K(t)dt

(hereafter, the overline on a quantity represents its long time
average in an NESS). We also define the global granular
temperature T as kBT ≡ (2/d)K , where kB is the Boltzmann
constant, and the thermal velocity as c ≡ (dkBT /m)1/2 =
(2K/m)1/2. A characteristic length scale of the system in the
vertical direction l is then defined as l ≡ c2/g.

Bromberg et al. [23] have suggested that there are three
important time scales in this system at the hydrodynamical
level: the macroscopic oscillation time τosc (referred to as the
“fast time scale” in Ref. [23]), the relaxation time for thermal
conduction τtherm, and the relaxation time for collisional
dissipation τdiss.

For simplicity we assume that the system is nearly ho-
mogeneous, although this is not true for small r and large
N . The time scale τosc represents the period of the slowest
oscillation in the vertical direction, that is, the period of the
sound mode with the longest wavelength. Thus, τosc ∼ l/cs ,
where cs is the sound velocity. Assuming cs ∼ c, which is
satisfied for a normal gas, τosc can be estimated as τosc ∼ c/g.
Because l/cs also characterizes the pressure relaxation time
τp, we can regard τp and τosc as on the same order, τp ∼
τosc ∼ c/g. The relaxation time for thermal conduction τtherm

is estimated as τtherm ∼ l2/(κ/ρcp), where κ is the thermal
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conductivity, ρ is the mass density, and cp is the specific
heat at constant pressure [24]. ρ can be estimated as ρ ∼
M/(lA) ∼ mNz/(lσ d−1), where A represents the area of the
bottom plate in three dimensions (A represents the length of the
bottom plate in two dimensions and A = 1 in one dimension)
and Nz represents the number of monolayers at rest. κ and
cp are obtained from kinetic theory for elastic spheres and
disks [25]: κ ∼ kBc/σ d−1 and cp ∼ kB/m. Substituting these
results, we obtain τtherm ∼ Nzc/g. The relaxation time for
collisional dissipation τdiss can be estimated as the inverse
of (1 − r2)ν, where ν is the collision frequency between
two particles. Substituting the lowest order estimation of ν

based on kinetic theory, ν ∼ ρσd−1c/m ∼ Nzc/l, we obtain
τdiss ∼ (1 − r2)−1c/(Nzg).

The time scales estimated above are summarized as follows:

τosc ∼ τp ∼ c

g
, τtherm ∼ Nz

c

g
,

(1)
τdiss ∼ [Nz(1 − r2)]−1 c

g
.

It is important to note that all time scales τosc, τp, τtherm, and
τdiss, are proportional to c/g. This means that for a system with
given Nz and r , the macroscopic dynamics with time scaled
by c/g are independent of g. We utilize this fact later to obtain
a frequency response function in an efficient way.

There are three dimensionless parameters, obtained as
the ratios between two of these three time scales. The first
is τtherm/τosc ∼ Nz. The second is τosc/τdiss ∼ Nz(1 − r2).
The third is τtherm/τdiss ∼ N2

z (1 − r2). The first and third
parameters are the governing parameters for the hydrodynamic
description of the system, as introduced by Bromberg et al.
[23]. They showed that the steady-state profile is governed
only by the parameter

� ≡
√

π

2
Nz(1 − r2)1/2, (2)

which is proportional to (τtherm/τdiss)1/2. If 1 − r � 1, the
second parameter τosc/τdiss is related to X ≡ Nz(1 − r). It
plays the role of the governing transition parameter from a
condensed to fluidized state in a one-dimensional column
of beads on a vibrating bottom plate [26]. In our study, we
consider the case Nz � 1 and assume τtherm � τosc in the
following theoretical analysis.

III. THEORETICAL DERIVATION OF THE
FLUCTUATION-DISSIPATION RELATION

Here we summarize the theoretical derivation of (i) the
power spectrum, (ii) the frequency response function, and (iii)
the FDR between (i) and (ii). First we introduce a Langevin
equation as a first approximation that describes the fluctuating
motion of the COM on the fast time scales τosc and τp. Note
that the derivation of our theory has already been published
in Ref. [20]. We assume τtherm � τosc, as mentioned above,
and focus on the dynamics of the COM on the time scale τosc,
ignoring the significant slow relaxation process of fluctuations
of global granular temperature around its stationary value
(2/d)K/kB . The effect of this slow dynamics of granular
temperature and validity of our time scale assumption are
discussed later.

We summarize the details of the derivation of our Langevin
formalism in Appendix A and show the final result here. We
denote the height of the COM of granular fluids at time t as
Z(t), the time average of Z(t) over a long time interval in an
NESS as Z, and small deviations of Z(t) from Z as δZ(t) ≡
Z(t) − Z. The Langevin equation for fluctuating motion of
δZ(t) is given by [see Eq. (A5) in Appendix A]

d2δZ

dt2
= −
2δZ − μ

dδZ

dt
+ R(t)

M
, (3)

where R(t) represents a random force, which is assumed to be
a Gaussian white noise:

〈R(t)〉 = 0, 〈R(t)R(t ′)〉 = Iδ(t − t ′). (4)

The brackets 〈· · ·〉 denote an average over the random force.
In NESS it is reasonable to assume 〈Z(t)〉st = Z, where 〈· · ·〉st
represents the average in a stationary state. The constant I

represents the intensity of the random force, which is related
to the second moment of the COM velocity fluctuations.
This relation can be obtained by calculating the average
kinetic energy of the COM motion in z direction KCOMz ≡
〈MVz(t)2/2〉st, where Vz is the z component of the velocity of
the COM, Vz(t) ≡ dZ(t)

dt
. Using an analytical solution Eq. (B1)

of the Langevin equation, we obtain KCOMz = I/4Mμ. Hence
the constant I is identified as

I ≡ 4MμKCOMz. (5)

This is the same procedure used to determine the noise
intensity I when the Langevin equation describes fluctuations
in equilibrium at temperature T . In equilibrium, equipartition
of energy implies KCOMz = kBT /2, that is, the mean kinetic
energy of the COM in the z direction KCOMz and the mean
kinetic energy of a particle in one direction kBT /2 are the
same. Thus we obtain the well-known result I = 2MμkBT .
In the case of an NESS of granular fluids, the violation of
equipartition of energy is observed in various systems. A
heated binary granular system (see Ref. [27] and references
therein) is one notable example in which nonequipartition
between the mean kinetic energies of two species has been
studied. Later we present numerical simulations that clearly
show violation of equipartition KCOMz �= kBT /2 when we
recognize T as the global granular temperature.

The coefficients 
 and μ describe an angular frequency
of the slowest oscillation of the COM height and frictional
coefficient with respect to relative motion of the COM height
against the bottom wall, respectively. According to the time
scales we consider here, we assume 
 ∼ τ−1

osc and μ ∼ τ−1
p

and write them as


 = 
̂g/c, μ = μ̂g/c. (6)

Because values of the coefficients 
̂ and μ̂ cannot be estimated
in our phenomenological theory, they are fixed as fitting
parameters when we compare results of simulations with the
theoretical predictions.

Power Spectrum. The power spectrum S(ω) that represents
the fluctuations of Z around the NESS is defined as the Fourier
transform of the time correlation function,

S(ω) ≡
∫ ∞

−∞
dt e−iωt 〈δZ(0)δZ(t)〉st . (7)
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The derivation of S(ω) using the analytic solution of the
Langevin equation is straightforward. The final expression of
S(ω) in this system is

S(ω) = 1

M

4μKCOMz

(
2 − ω2)2 + (μω)2
. (8)

See Appendix B for a detailed derivation.
Response Function. The frequency response function χ (ω)

that characterizes the linear response of Z in the NESS against
a small external force εf (t) can be defined as

χ (ω) ≡ lim
ε→0

〈δZ̃(ω)〉/εf̃ (ω), (9)

where δZ̃(ω) and f̃ (ω) are the Fourier transform of δZ(t) and
f (t), respectively. The analytical expression of χ (ω) is given
as

χ (ω) = 1

M

1


2 − ω2 + iμω
. (10)

A detailed derivation is given in Appendix B. According to
conventional definition, χ (ω) can be decomposed into real
χ ′(ω) and imaginary χ ′′(ω) parts as χ (ω) = χ ′(ω) − iχ ′′(ω).
Thus we obtain the expression

χ ′(ω) = 1

M


2 − ω2

(
2 − ω2)2 + (μω)2
, (11)

χ ′′(ω) = 1

M

μω

(
2 − ω2)2 + (μω)2
. (12)

Fluctuation Dissipation Relation. Comparing Eqs. (8) and
(12) we obtain the FDR

ωS(ω)

2kBTeff
= χ ′′(ω), (13)

where Teff is an effective temperature defined as Teff ≡
2KCOMz/kB . This has the same form as the FDR in an equi-
librium system except for Teff, which replaces the equilibrium
temperature.

IV. NUMERICAL SIMULATIONS

Here we compare the three theoretical predictions described
in the previous section with results of the numerical simulation
of a two-dimensional granular gas system. The predictions are
the power spectrum Eq. (8), the frequency response function
Eq. (10), and the fluctuation-dissipation relation Eq. (13). Our
system consisted of N inelastic hard disks of mass m and
diameter σ moving in two dimensions on a thermal wall with
a fixed temperature T0. Here, the x and z axes represent the
horizontal and vertical directions of the system, respectively.
The system width is denoted as L, and periodic boundary
conditions were adopted in the horizontal direction at x = 0
and x = L. The bottom wall was located at z = 0, and there
was no top wall. Gravitational force was exerted on each disk
along the negative z direction. Inelastic collisions between hard
disks were considered by the normal restitution coefficient r .
When a disk collided with a thermal wall at the bottom, it left
with a value of z component of velocity vz sampled from the
probability density

p(vz) = mvz

kBT0
exp

(
− mv2

z

2kBT0

)
. (14)

The horizontal component of velocity did not change during
the collision.

Numerical simulations were performed with an event-
driven algorithm devised to enhance the speed of calculation
in dense hard sphere systems [28]. In the following all
simulation data are presented with mass, length, and time
in units of m, σ , and σ/(kBT0/m)1/2, respectively. This
corresponds to choosing kBT0 = 1. We set N = 5000 and
L = 100 (these parameters are unchanged throughout this
paper). For our main results, r = 0.99–0.999 and g = 10−3

were used unless otherwise mentioned. These correspond to
Nz = 50, 0.05 � X � 0.5 and 1.98 � � < 6.25. A system
of width L = 100 for r � 0.99 is small enough to prevent
any horizontal pattern formation (e.g., ripples or undulations).
The global temperature T and the thermal velocity c were
calculated using T = K/kB and c = (2K/m)1/2, where K is
the long time average of the kinetic energy per disk.

A. Macroscopic properties in the NESS

In Fig. 1 (top) we show typical snapshots of particle
configurations in the system of N = 5000 and g = 10−3 for
r = 0.999 and 0.992. The corresponding area-fraction profiles
are plotted in Fig. 1 (bottom). For a nearly elastic case (r =
0.999), the profile had one peak around the height z  350.
However, the area fraction was relatively dilute (less than
0.06), even at the height of the peak. Many inelastic particles
were raised up relatively high, like the equilibrium profile
of the Boltzmann distribution. In contrast, for r = 0.992,
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FIG. 1. Top: Snapshots of the two-dimensional simulation with
N = 5000, L = 100, and g = 10−3 for different values of the
restitution coefficient (a) r = 0.999 and (b) r = 0.992. Bottom:
Area-fraction profiles averaged over a long time period for r = 0.999
and r = 0.992.
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FIG. 2. (Color online) Kinetic energy per particle K (cir-
cles) and kinetic energy of the COM KCOMz (squares), plot-
ted vs � =

√
π

2 50(1 − r2)1/2 for r = 0.9999, 0.9996, 0.999, 0.998,

0.996, 0.994, 0.992, and 0.99 from left to right. The solid line gives
a numerical fit of the form 1.04 × �−1.48.

the profile drastically changed. Most particles condensed at
a relatively low level in a cluster; the area-fraction profile
showed a clear peak above the low-density region around
the thermal wall. This state is known as density inversion
state and has been observed in many experiments [29,30] and
simulations [31,32] of vibrofluidized granular matter.

In accordance with the theoretical study by Bromberg
et al. [23], which showed that the steady state is characterized
by a single parameter �, defined in Eq. (2), we plotted the
average kinetic energy per disk K and the average kinetic
energy of the COM KCOMz as a function of � in Fig. 2.
The statistical error bars with standard deviation were also
plotted in all figures throughout the paper. � = 0 (i.e., r = 1)
corresponds to the equilibrium state in which equipartition
of energy 2KCOMz = K = kBT0 = 1 is satisfied. The factor 2
comes from the fact that KCOMz is defined using only the z

component of the COM velocity. The horizontal component of
the velocity of the COM vanished in our simulations because
the horizontal component of disk velocity was unchanged
on collision with the bottom wall. While K systematically
decreased following a power law ∼�−1.48, KCOMz reached
a minimum at �  2 (r = 0.999) and increased with �

for � > 2. Figure 2 clearly indicates that equipartition of
energy breaks down when � > 2 (i.e., 2KCOMz �= K). Similar
behavior in much smaller systems has been reported by us [21].
In Ref. [23] it was shown that the density inversion appears
above the threshold �c (� > �c), where �c  1.06569. In the
density inversion state, which becomes pronounced for � > 2,
as shown in Fig. 1, a low-density and high-temperature gaseous
region near the bottom can cause large fluctuations of the dense
cluster on top. Therefore, this violation of the equipartition of
energy should be closely connected to development of the
density inversion.

The relation between the long time average of the COM
height Z and the kinetic energy per particle is given in Fig. 3. A
linear relation Z = K/mg + const was satisfied for K > 0.1,
even when the system had a density inversion with a relatively
high density cluster. In an equilibrium system of dilute gases,
the relation Z = K/mg + const holds as a result of statistical

0 0.1 0.2 0.3 0.4
K

0

100

200

300

400

500

Z

K/mg + const.
(const. = 39)

FIG. 3. (Color online) The average height of the center of mass Z

vs K for r = 0.999, 0.998, 0.996, 0.994, 0.992, and 0.99 from right
to left. The error bars are smaller than the size of the marks. The
solid line gives a linear fit with the slope (mg)−1, where m = 1 and
g = 10−3.

mechanics. The fact that K characterizes Z in the same way
as in equilibrium suggests that the global granular temperature
T in the inhomogeneous nonequilibrium state still retains the
same meaning as the equilibrium temperature, at least in a
macroscopic sense.

In Fig. 4 K is plotted as a function of the gravitational
acceleration g. The dependence of K on g turned out to be
rather weak. We utilized this fact to measure the response
function from simulations in an efficient way (see Sec. IV C).

In Fig. 5 we plotted the probability distribution P (C) of
the scaled COM velocity C ≡ Vz/(2KCOMz/M)1/2. The data
were fitted sufficiently by a Gaussian for all cases studied in
this paper, as expected from the central limit theorem. This
Gaussian property was consistent with our theory based on a
linear Langevin equation with additive Gaussian noise.

B. Power spectrum of the COM height

We first tested the theoretical prediction Eq. (8) for the
power spectrum of the COM height. Using the relation Eq. (6),

0 0.005 0.01
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0
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0.3
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r=0.999
r=0.998
r=0.996
r=0.994
r=0.992
r=0.99

FIG. 4. (Color online) Kinetic energy per particle K as a function
of g. The error bars are smaller than the sizes of the marks.
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FIG. 5. (Color online) Probability distribution of the scaled COM
velocity C ≡ Vz/(2KCOMz/M)1/2. The solid line is Gaussian with
unity dispersion.

Eq. (8) can be rewritten as

Ŝ(ω̂) ≡ S(ω̂g/c)

/[
4

(
c

g

)3
KCOMz

M

]

= μ̂

(
̂2 − ω̂2)2 + (μ̂ω̂)2 , (15)

where ω̂ is the scaled angular frequency, defined by ω̂ ≡ ωc/g.
This expression suggests that if we scale the power spectrum
and the angular frequency as in Eq. (15), it shows a universal
behavior independent of any system parameters.

In Fig. 6 (top) the power spectrum S(ω) is plotted for
different values of r . Two sharp peaks were observed; one
is near zero angular frequency (ω = 0), the other one is at the
angular frequency of the macroscopic oscillation (ω = ωosc),
which increased as r decreased. The heights of both these
peaks decreased with r . Figure 6 (bottom) shows the scaled
power spectrum Ŝ(ω̂) obtained by scaling S(ω) in Fig. 6 (top),
according to Eq. (15) using c and KCOMz calculated from
simulation data. The theoretical prediction Eq. (15) with fitting
numerical parameters μ̂ = 0.50, 
̂ = 1.7 is presented as a
thick solid line. It is consistent with the results of simulations
for the range 0.99 � r � 0.996 in this region near the peak
at ω̂ = ω̂osc ≡ ωoscc/g, where we expect our theory to serve
as a first-order approximation. We found large deviations
from the theoretical prediction in the region ω̂ < ω̂osc (the
sharp peak near ω̂ = 0). As we illustrate below, the peak near
ω̂ = 0 could be associated with slow fluctuations of global
granular temperature due to thermal conduction and collisional
dissipation. Because τtherm/τosc ∼ Nz � 1 and τdiss/τosc ∼
[Nz(1 − r2)]−1 � 1.0 for our simulations with Nz = 50 and
r � 0.99, the contributions of these two processes should
appear at ω̂ < ω̂osc. We also found that for r � 0.998, the
simulation data in Fig. 6 (bottom) deviated from our theory,
even in the region near the peak at ω̂ = ω̂osc. These deviations
near ω̂osc could be attributed to the drastic change in density
profiles shown in Fig. 1 as r is varied. Concerning our
theory, the change in density profiles may affect the numerical
coefficients 
̂ and μ̂ in Eq. (6). Furthermore, in the region ω̂ <

ω̂osc, the effect of global temperature fluctuations mentioned
above could become pronounced for r � 0.998, because both
τtherm and τdiss became much larger than τosc, and hence the
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FIG. 6. (Color online) Top: Power spectrum for the COM height
vs angular frequency ω. Averages were taken over 400 realizations.
Bottom: Scaled power spectrum for the COM height. The solid line
depicts the theoretical prediction given in Eq. (15) with μ̂ = 0.50 and

̂ = 1.7.

fluctuations had long lifetimes. Nonetheless, a satisfactory
explanation of these deviations for r � 0.998 has not yet been
given.

Here we show simulations suggesting that the behavior of
S(ω) in the region near ω = 0 can be described by taking into
account the slow dynamics of K(t). We denote the slowly
varying part of K(t) as K ′(t) and suppose it fluctuates on a
much longer time scale than τosc due to thermal conduction
and collisional dissipation. Then, K ′(t)/kB can be regarded
as a time-dependent global granular temperature. Similarly,
we let Z′(t) denote the slowly varying part of Z(t) on
the same time scale as K ′(t). We assume here that in this
long time scale, K ′(t) and Z′(t) play the same role as their
long time averages K and Z. That is, they satisfy the same
linear relation as their long time averages observed in Fig. 3:
Z′(t) = K ′(t)/mg + const, with the same constant factor. If
this is the case, the power spectrum of δZ(t), S(ω), in the
region near ω = 0 should be given by the power spectrum
of δK ′(t)/mg, where δK ′(t) = K ′(t) − K . In Fig. 7 we show
the power spectrum of δK(t)/mg, where δK(t) = K(t) − K

and S(ω) for r = 0.999 and 0.992. The figure shows that
the curves around the peak in S(ω) near ω = 0 and the peak
in the power spectrum of δK(t)/mg near ω = 0 are consistent.
The consistency between the two curves is also observed for
the other r values. This result indicates that the peak in S(ω)
near ω = 0 can be accounted for by slow dynamics of K(t) due
to thermal conduction and collisional dissipation. It should be
emphasized that in our present theory, fluctuations of granular
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FIG. 7. (Color online) Power spectrum (PS) of δK(t)/mg and of
δZ(t), S(ω) for (a) r = 0.999 and (b) r = 0.992.

temperature in both space and time are ignored and only the
global granular temperature T is defined, using the long time
average of K(t). Further investigation is necessary to construct
a theory that fully describes the behavior of S(ω), taking into
account the effect of slow fluctuations of granular temperature.

C. Response functions

Next, we test the theoretical prediction Eqs. (11) and (12)
for the frequency response functions of the COM. By scaling
these functions in the same way as the power spectrum, we
can derive universal equations

χ̂ ′(ω̂) ≡ χ ′(ω̂g/c)Mg2/c2 = 
̂2 − ω̂2

(
̂2 − ω̂2)2 + (μ̂ω̂)2 , (16)

χ̂ ′′(ω̂) ≡ χ ′′(ω̂g/c)Mg2/c2 = μ̂ω̂

(
̂2 − ω̂2)2 + (μ̂ω̂)2 . (17)

The frequency response function was measured using
numerical simulations via the following procedure. First, we
prepared for a system in the stationary state with a given Nz,
r , and g after a sufficiently long relaxation time from the
initial state of particles with randomly distributed positions and
velocities. At t = 0 we exerted a small constant external force
on all particles in the direction of gravity and measured the
height of the COM at t > 0; from this COM relaxation process
we deduced a response function by the standard procedure
given in textbooks (see, e.g., Ref. [33]). In other words, we
measured a response function against a step functional external
force. The frequency response function was obtained as the
Fourier transform of the response function.

It is important to note that in the response of the COM height
against a small but finite external force in our system, nonlinear
effects resulting from time scale changes were non-negligible.
This can be seen from the fact that the relevant time scales
shown in Eq. (1) all depended on g and that exerting a
constant force in the direction of gravity was equivalent to
changing g. Therefore, a linear response could be defined

only in the limit of small external force. This shows that
our Langevin-type theory is different from the well-known
Langevin theory for Brownian motion in a fixed harmonic
potential, where the response of a Brownian particle is linear
against a finite external force. Consequently, we had to exert
an external force that was much smaller than the gravitational
force in our system, in order to measure the linear response of
the COM height. Because the fluctuation of the COM height
of 5000 particles was typically much larger than the response
against such a small constant force, we needed to perform
the response function measurement for a large number of
systems with the same parameters Nz, r , and g but different
initial conditions and take an average of the response functions
over all realizations. As shown later, in the case of a constant
force that is 1% of the gravitational force, we needed more
than 104 realizations to obtain sufficient statistics for clear
response functions. This required relatively long CPU times
that impeded long simulations with a wide range of parameters
r , Nz, and g.

We therefore optimized the method by choosing an ap-
propriate parameter to approximately evaluate the response
function from a small number of realizations, which could
be provided in an acceptable time with our computational
facilities. Suppose a system with gravitational field g is initially
in an NESS and the gravitational acceleration is increased at
t = 0 from g to g + �g. This is equivalent to exerting a step
function external force −M�gθ (t) on the COM height, where
θ (t) is the Heaviside unit step function. Now we define the
function χ (t ; g,g + �g) as

χ (t ; g,g + �g) ≡ −d 〈δZ〉t
dt

/
M�g, (18)

where 〈· · ·〉t represents the average taken over the ensemble
of realizations δZ at time t . This is a function of �g in our
system due to the nonlinear effects mentioned above; it would
equal the response function only if 〈δZ〉t were linear in �g. We
denote the Fourier transform of χ (t ; g,g + �g) as χ (ω; g,g +
�g). According to Eq. (9), the frequency response function
χ (ω; g) for the system in the stationary state with g is given
by

χ (ω; g) = lim
�g→0

χ (ω; g,g + �g). (19)

We now consider the time scales that we introduced in
Sec. II B, which characterize macroscopic dynamics at t > 0.
As we discussed in Sec. II B, all these time scales in the NESS
depend on g in the form τ = c(g)/g × const, where we wrote
the g dependence of c explicitly for the sake of clarity. Based
on our observations in Fig. 4 that c(g) changed a few percent as
g was increased by 10%, we assumed that the thermal velocity
at t > 0 is given by c(g) if �g is sufficiently small. Thus, these
time scales at t > 0 have the form τ = c(g)/(g + �g) × const,
where g + �g is the gravitational acceleration at t > 0. This
dependence of all the characteristic time scales on �g leads
us to the scaling relation

χ (ω; g,g + �g) = 1

M

(
c(g)

g + �g

)2

χ̂

(
ω

c(g)

g + �g

)
, (20)

where χ̂ is a nondimensional function.
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FIG. 8. (Color online) The real part χ ′ (top) and the imaginary
part χ ′′ (bottom) of the frequency response function vs angular
frequency ω for r = 0.992. Circles show the data for �g/g = 10−1

using Eq. (21) with averages obtained over 800 realizations. Squares
are for �g/g = 10−2 without using Eq. (21); averages were obtained
over 41 000 realizations.

As long as Eq. (20) holds, we can estimate the limit in
Eq. (19) as

χ (ω; g) =
(

g + �g

g

)2

χ

(
ω

g + �g

g
; g,g + �g

)
. (21)

To verify the validity of the scaling relation Eq. (20),
we performed two series of simulations for r = 0.992. First,
we measured the function χ (ω; g, g + �g) in Eq. (18) for
�g/g = 10−2, taking the average over 41 000 realizations.
Second, we measured the frequency response function χ (ω; g)
using Eq. (21) for �g/g = 10−1, taking the average over 800
realizations. In Fig. 8 we compare the frequency response
functions obtained from these two series of simulations. We
found that they were consistent, although there were some
discrepancies in χ ′(ω) near ω = 0.

More evidence of validity of the scaling relation comes from
the fact that an FDR in an equilibrium system is satisfied when
we measured the frequency response function using Eq. (21).
This is discussed further later (see Fig. 10).

The frequency response functions presented below were
obtained using the scaling relation Eq. (20) [and Eq. (21)] by
averaging over 800 realizations. In Fig. 9 we show the real (top)
and imaginary (bottom) parts of the scaled response functions
χ̂ ′ and χ̂ ′′ as functions of ω̂. Here values of c in Eq. (16)
and (17) were calculated in an NESS without perturbation.
Theoretical predictions Eqs. (16) and (17) with the same
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FIG. 9. (Color online) Real (top) and imaginary (bottom) parts
of the scaled frequency response function vs the scaled angular
frequency ω̂ = ωc/g. Averages were taken over 800 realizations.
The thick lines are the theoretical prediction Eqs. (16) and (17) with
fitting parameters μ̂ = 0.50, 
̂ = 1.7.

(universal) fitting parameter as estimated in Fig. 6, μ̂ = 0.50
and 
̂ = 1.7, are shown by thick lines. It appears that χ̂(ω) is
consistent with the theoretical predictions if r � 0.996.

D. Fluctuation-dissipation relation

To test the FDR Eq. (13) predicted by our theory, we
evaluate the left- and right-hand sides independently using the
results of simulations on S(ω) (Sec. II B) and χ ′′(ω) (Sec. II C)
presented in previous subsections. Note that KCOMz were
measured in the NESS where S(ω) was measured.

First, we confirmed that the FDR held within the error
bounds of the simulation result in the whole range of ω given
r = 1 in Fig. 10. The stationary state is just the equilibrium
state of elastic particles on a thermal wall. In Fig. 11 the left-
and right-hand sides of the FDR are plotted as a function of
ω for different r values. For all r (0.99 � r � 0.999), we
found that the FDR held within the error bounds in the higher
frequency range of ω, including a region near the highest peak
at ω = ωp. The angular frequency of the highest peak ωp

was close to ωosc, defined as the angular frequency of a peak in
S(ω). We stress here that we defined Teff as Teff = 2KCOMz/kB

in the FDR. The quantitative agreement in Fig. 11 supports
this definition of Teff, using KCOMz instead of using the global
granular temperature T , because Teff is more than three times
larger than T for r � 0.996 (see Fig. 2).
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We found systematic deviations in the region ω < ωp for
r = 0.999 and r � 0.994. These deviations were related to the
fact that there was a peak near ω = 0 in S(ω) (shown in Fig. 6),
while no corresponding peak near ω = 0 appeared in χ ′′(ω).
As we discussed in Sec. IV B, the peak near ω = 0 could have
been connected with slow fluctuations of granular temperature
due to thermal conduction and collisional dissipation. For
r = 0.999, the time scales of these two processes (τtherm and
τdiss) became much larger than τosc. Hence, the fluctuations
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FIG. 11. (Color online) Left-hand side ωS(ω)/2kBTeff and right-
hand side χ ′′(ω) of Eq. (13) for (a) r = 0.999, (b) r = 0.998,
(c) r = 0.996, (d) r = 0.994, (e) r = 0.992, and (f) r = 0.99. N =
5000, L = 100, and g = 10−3, with averages over 400 realizations
for S(ω) and over 800 realizations for χ ′′(ω).

with long lifetimes might be responsible for the deviations at
small ω. For r � 0.994, the deviation appeared to increase as r

decreased. Because the system had lower granular temperature
for smaller r , a larger heat current from the thermal wall
was induced, causing larger fluctuations in global granular
temperature. Further investigation is necessary to understand
this violation of the FDR more precisely.

V. CONCLUSION

We studied the validity of the fluctuation-dissipation rela-
tion with regard to the COM motion in an NESS of a driven
granular fluid under gravity. By neglecting the fluctuations
of global temperature caused by thermal conduction and
collisional dissipation, which change much slower than the
macroscopic oscillation of the fluid, we derived a Langevin
equation for the COM height using phenomenological con-
siderations. This equation predicts functional forms of the
correlation and response functions for the COM height that
contain two phenomenological numerical constants μ̂ and

̂, which are used as fitting parameters. It also gives a
fluctuation-dissipation relation accompanied by an effective
temperature Teff that characterizes the agitating motion of the
COM height by Teff = 2KCOMz/kB .

To test the fluctuation-dissipation relation we performed
event-driven MD simulations and measured the power spec-
trum and response function for the COM height. While the
power spectrum was consistent with our theory for r � 0.996
and ω around the angular frequency of the slowest oscillation
of the COM, it also showed large deviations from the
theoretical predictions near ω = 0 for all r (0.99 � r � 0.999)
and in the whole range of ω for r > 0.996. The response
function agreed closely with our theory for r � 0.996 but
showed deviations for r > 0.996. Furthermore, we compared
the left- and right-hand sides of the FDR. The results showed
that the FDR held in a region of ω near the highest peak for all
cases of r we tested. It was violated near ω = 0 for small r ,
r � 0.994, and for r close to unity, r = 0.999. For r � 0.994,
the violation became more pronounced as r decreased. The
violation of the FDR was attributed to a peak near ω = 0 in
the power spectrum for the COM height, which was absent
in the imaginary part of the frequency response function. The
peak near ω = 0 in the power spectrum cannot be described
by our theory.

We showed that these deviations near ω = 0 could be
attributed to slow fluctuations of global temperature, defined as
the slowly varying part of the kinetic energy per particle K(t)
due to thermal conduction and collisional dissipation. These
fluctuations of global temperature were neglected in our theory.
The deviations in the power spectrum and resulting violation
of the FDR are expected to be accounted for by a theory that
describes both Z(t) and K(t), which we will investigate in the
future.

In Ref. [34] a formula that connects the violation of the FDR
in an NESS with the energy dissipation, or equivalently the
energy input from outside, was proposed. A theory extended
to include the slow dynamics of K(t) and direct measurement
of energy input in our simulations might give some insight into
the generality of their formula.
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Finally, the basic question of whether the effective tem-
perature Teff obtained here has any physical meaning in
terms of thermodynamics remains. The definition of effective
temperature in a system that relaxes in several time scales,
typically glass, has been debated in Refs. [2,35,36]. It would
be interesting to apply their theories to our problem with three
time scales τtherm, τdiss, and τosc. It would also be interesting to
investigate via simulation what happens if two systems with
different effective temperatures are in contact with each other.
Measuring the direction of heat flow directly might clarify the
physical meaning of the effective temperature.
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APPENDIX A: LANGEVIN EQUATION

In this section we summarize the derivation [20,21] of the
Langevin equation that describes the motion of the COM of
grains.

The equation of motion for the COM of the grains in the
model described in Sec. II can be written as

M
d2Z

dt2
= −Mg + Fb. (A1)

The right-hand side of the equation of motion for the COM
must be, in general, the sum of the external forces acting on
the grains. In our model, these are the gravitational force −Mg

and the z component of the force exerted by the bottom wall
Fb. Thus, it is essential to understand the properties of Fb for
the study of COM motion.

Let us consider the reaction force F ′
b (= −Fb): the force

exerted by grains against the bottom wall. A snapshot of the
granular fluid is sketched in Fig. 12(a). Suppose the COM is
at a height Z and is moving downward at velocity V . We now
change the frame of reference to the center of mass frame [see
Fig. 12(b)]; the bottom wall that lies a distance Z away from

Fbʼ

V
Z

Center  

of mass

(a)

Fbʼ
-V

Z

(b) (c)

Fbʼ
-V

FIG. 12. (a) Schematic of the system observed in the laboratory
frame of reference, (b) the same system observed in the center of mass
frame, and (c) the Rayleigh piston: a piston that undergoes random
collisions with a one-dimensional heat bath of particles.

the COM in the z direction is moving upward with velocity
−V . Now the problem is how to determine F ′

b, the force
acting on the bottom wall as a result of frequent collisions of
granular particles, in the situation shown in Fig. 12(b). There
the bottom wall is moving upward with velocity −V against
the macroscopically static fluid.

This problem is similar to the problem of determining
the force acting on a one-dimensional Brownian particle
(the Rayleigh piston [19]) moving in the z direction with a
velocity −V [see Fig. 12(c)]. We create an expression for
F ′

b on the basis of this analogy and assume that F ′
b consists

of three components. The first is a systematic force fP (t)
that equals the pressure multiplied by the area of the bottom
wall. Because the local density near the bottom wall changes
according to the motion of the COM, this force may depend
on time. Apparently the long time average of fP (t), that is, fP ,
must be equal to −Mg, the gravitational force acting on all
particles. The simplest assumption for the time-dependent part
of fP (t) is that it is proportional to the deviation of the COM
height from its stationary value, Z(t) − Z. This is because the
change in local density near the bottom wall is proportional
to −[Z(t) − Z] if the change in the height of the COM is
sufficiently small: |Z(t) − Z|/Z � 1. The second component
is a frictional force. We assume here the simplest form of the
frictional force: linear in the relative velocity −V (t) of the
bottom wall to the COM. The third component is a random
force. We assume

F ′
b(t) = −Mg + M
2[Z(t) − Z] + MμV (t) + R′(t)

= −Fb(t), (A2)

where 
 is a coefficient that specifies the angular frequency
of the slowest oscillation of the COM, and μ is the frictional
coefficient. According to the discussion of characteristic time
scales in Sec. II B, the time scales for macroscopic oscillation
τosc and that for pressure relaxation τp are τosc ∼ τp ∼ c/g.
Thus we assume


 = 
̂/τosc = 
̂g/c, μ = μ̂/τp = μ̂g/c. (A3)

For the random force we assume stationary Gaussian white
noise in the same way as for the Rayleigh piston:

〈R′(t)〉 = 0, 〈R′(t)R′(t ′)〉 = Iδ(t − t ′), (A4)

where I represents the intensity of the random force.
Substituting the Fb obtained in (A2) into the equation of

motion of the COM (A1), we obtain

d2δZ

dt2
= −
2δZ − μ

dδZ

dt
+ R(t)

M
, (A5)

where δZ ≡ Z(t) − Z and R(t) = −R′(t). The random force
R(t) has exactly the same property described in (A4) as R′(t).
Note that the Langevin equation (A5) has the same form as
that describing Brownian motion in a harmonic potential.

APPENDIX B: DERIVATION OF THE POWER SPECTRUM
AND THE RESPONSE FUNCTION

Derivation of the power spectrum and the response function
from the Langevin equation describing Brownian motion in a
harmonic potential is given in textbooks (see, e.g., Ref. [37]).
We therefore present only essential steps in their calculation.
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First, we consider the power spectrum of the fluctuating motion
of the COM obeying the Langevin equation (A5). The formal
solution of Eq. (A5) is written as

Z(t) − Z =
∫ t

−∞
G(t − t ′)

R(t ′)
M

dt ′ + Fini(t), (B1)

where the function G(t) is given by

G(t) = e− μ

2 t

ω0
sin (ω0t) , (B2)

and ω0 is defined by ω0 ≡ [
2 − (μ/2)2]1/2. The last term
Fini(t) in Eq. (B1) consists of those that depend on the initial
conditions and vanish after a sufficient amount of time. Thus,
the term is negligible when calculating long time averages of
physical quantities in the stationary state.

Using this formal solution, we can calculate the two-time
correlation function φ(t) in an NESS defined by φ(t) ≡
limt ′→∞〈δZ(t ′)δZ(t ′ + t)〉, where the brackets 〈· · ·〉 indicate
an average over the random force R(t). We took the limit
t ′ → ∞ to ensure that the system is in the stationary state.

The power spectrum of δZ(t) can be obtained using the
Winner-Khinchin theorem:

S(ω) =
∫ ∞

−∞
dte−iωtφ(t) (B3)

= I

M2

1

(
2 − ω2)2 + (μω)2
. (B4)

Next, we consider the response function for the COM,
which describes the linear response of the COM with regard
to a small external force εf (t). The Langevin equation in this
case is written as

d2δZ

dt2
+ 
2δZ + μ

dδZ

dt
− εf (t)

M
− R(t)

M
= 0. (B5)

Taking the average over the random force, we obtain

d2 〈δZ〉
dt2

+ 
2 〈δZ〉 + μ
d 〈δZ〉

dt
− εf (t)

M
= 0. (B6)

The response function χ (t) is defined as

〈δZ(t)〉 =
∫ t

−∞
dt ′χ (t − t ′)εf (t ′). (B7)

Here the external force εf (t) is assumed to be infinitely
small. The Fourier transform of this relation yields 〈δZ̃(ω)〉 =
χ (ω)εf̃ (ω), and hence

χ (ω) = lim
ε→0

〈δZ̃(ω)〉/εf̃ (ω). (B8)

Performing the Fourier transform of the relation (B6) and
comparing it with Eq. (B8), we obtain the frequency response
function (complex admittance)

χ (ω) = 1

M

1


2 − ω2 + iμω
. (B9)
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