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In this paper, we present time-reversible simulation algorithms for rigid bodies in the quater-
nion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata,
and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the
angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible
algorithms. They are easily implemented in codes. The codes are compared with that of ex-
isting algorithms through demonstrative simulation of a nanometer-sized water droplet to find
their stability of the total energy and computation speeds. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4729284]

I. INTRODUCTION

Molecules are often handled as rigid bodies in molec-
ular dynamics simulation. Despite the simplification, in the
case of the TIP4P potential1 for H2O molecules, for instance,
one can reproduce various physical properties of interest with
reasonable accuracies such as the freezing and boiling con-
ditions, the electric permittivity, and the interfacial energy
of ice and water. The simplification by ignoring the fast vi-
bration of constituting atoms of a molecule is highly ef-
fective for taking a long time step to realize a long-time
simulation.2 Several time-integration algorithms for rotational
motion of rigid body molecules have been deviced, e.g., (i)
the Gear’s predictor-corrector algorithm,2 (ii) the Matubayasi-
Nakahara’s algorithm,3 (iii) the symplectic algorithms,4–8 (iv)
the angular momentum Verlet (AMV) algorithm,9 and (v) the
numerically exact time-reversible (NET) algorithm.10

The algorithm (i) is very accurate for a short time step.
However, it is not time reversible, and becomes unstable or
the total energy increases significantly in a long-time simula-
tion run. It is highly unstable for longer time steps. The al-
gorithm (ii) is time reversible and non-symplectic. It shows
high stability, however, it is slightly complicated with its pro-
cedure composed of several parts that use auxiliary functions.
The algorithms (iii) have the feature of time reversibility in
addition to the symplecticness and show very high stability;
a conserved quantity that is close to Hamiltonian exists. The
algorithm (iv) is easy to understand and interesting since it is
constructed in an analogous manner to the velocity-Verlet al-
gorithm. Although it is not time reversible in the strict sense,
it shows smaller fluctuation in the total energy than does the
leap-flog algorithm2 when it is applied to the system of tetra-
hedral molecules. However, we find the total energy increases
monotonously during the simulation runs for some systems
including a water droplet. The algorithm (v) is time reversible

a)Also at Nagoya Zokei University, Komaki, Aichi 485-8563, Japan.
Electronic mail: y-kajima@nifty.com.

and is more stable than the AMV algorithm approaching to
the quality of the algorithm (ii). However, it requires an it-
eration procedure to get the angular velocity resulting in a
relatively slow simulation speed as compared to the AMV
algorithm.

The aim of this paper is to propose fast time-reversible al-
gorithms, called the FT algorithms, for rigid body molecules
without such an iteration procedure by advancing the NET
algorithm. We will give two FT algorithms. The difference
between them lies only in the method of eliminating the it-
eration procedure. In the method, the three components of
the angular velocity vector are treated as a set. Mutually dif-
ferent treatments are applied to the three components with
the feature of phase-space conservation in the other method.
The FT algorithms will be fast time-reversible ones for rigid
molecules, since each of which consists of relatively fewer op-
erations of basic arithmetic and square root (see Sec. III C and
Table I). Simulations of the FT algorithms will show much
greater stability than that of the NET algorithm, and compa-
rable stability to that of the Matubayasi-Nakahara algorithm.3

The rest of the paper is organized as follows. In Sec. II,
we will formulate the FT algorithms to propose a set of proce-
dures for each. In Sec. III, the FT algorithms will be applied
to simulate a water droplet composed of 499 H2O molecules
to demonstrate their stability in the total energy and computa-
tion speeds. Section IV is devoted to summary and concluding
remarks.

II. FAST TIME-REVERSIBLE ALGORITHMS

The motion of a rigid molecule is decomposed into the
translational motion and the rotational motion around the cen-
troid. The equations of the FT algorithms for the translational
motion are given in Sec. II A 1 by employing the velocity-
Verlet algorithm. The velocity-Verlet algorithm is time re-
versible and symplectic for point particles showing high sta-
bility. The equations of the FT algorithms for the rotational

0021-9606/2012/136(23)/234105/8/$30.00 © 2012 American Institute of Physics136, 234105-1
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TABLE I. Computation timings averaged over 106 measurements required to update angular velocity and
angular position on various machines for various algorithms.

Computation timing (10−8 s) Number of operations

Algorithm Core i7a SPARCb Xeonc Four rulesd Trigonometrice Square root

FT1 7.2 20 9.5 154 0 1
FT2 5.7 19 8.8 82 0 1
Symplectic 21 52 29 274 10 0
MNf 11 65 15 166 18 1
NETg 7.5 26 12 169 0 1

a3.1GHz Intel Core i7 950 with Intel Fortran compiler Ver. 12.0, option = “-fast.”
b2.5GHz Fujitsu SPARC64VII with Fujitsu Fortran compiler, option = “-Kfast.”
c3.0GHz Intel Xeon E5472 with Intel Fortran compiler Ver. 11.1, option = “-fast.”
dThe four rules of arithmetic, i.e., addition, subtraction, multiplication (including exponentiation), and division.
eTrigonometric functions.
fMatubayasi-Nakahara algorithm.3
gNET algorithm with one time iteration.10

motion are derived in Secs. II A 2, II A 3, and II B. In
Sec. II C, we show the procedure of the FT algorithm.

A. Equations of FT algorithms

For simplicity, we present the set of equations common to
two FT algorithms for a single rigid molecule, which is com-
posed of the updates of centroid position, centroid velocity,
angular position, and angular velocity. In actual simulation of
a molecular system, the equations will be applied in parallel
to all the rigid molecules.

1. Determination of centroid position and velocity

We employ the time-reversible velocity-Verlet algorithm
to describe the translational motion of the centroid of a rigid
molecule

�r(t + �t) = �r(t) + �t

(
�v(t) + �t

2m
�f (t)

)
, (1)

�v(t + �t) = �v(t) + �t

2m
( �f (t) + �f (t + �t)). (2)

Here, the vectors �r and �v represent the position and velocity
of the centroid, respectively. The �f is the summation of the
forces on the constituting atoms of the molecule, and m is the
mass of the molecule. The force on each atom is assumed to
be a function of the atomic positions only.

2. Determination of angular position

The angular position of a rigid molecule is described with
the quaternion. The aim of this subsection is to derive Eq. (20)
below, by which we update the angular position. We intro-
duce a coordinate frame fixed to a rigid body molecule so that
the moment of inertia tensor is diagonal; that is, the body-
fixed coordinates of a point are obtained as its projections
on the principal axes of inertia. We assume that the origin
Ob of the body-fixed frame coincides with the centroid of the
rigid molecule. Similarly, the space-fixed frame is introduced,
whose origin is denoted by Os.

Let a matrix
←→
Rq rotate the three axes of the space-fixed

frame to be parallel to that of the body-fixed frame. The
←→
Rq

is parametrized by a unit quaternion �q = t(q0, q1, q2, q3) (the
superscript “t” means the transpose operation) with |�q| = 1

←→
Rq =

⎛
⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎠. (3)

We add the superscript “(b)” or “(s)” to clarify that the associ-
ated vector is represented as a 3 × 1 matrix in the body-fixed
or space-fixed frame, respectively. Then, for any point P,

−−→
ObP

(s) = ←→
Rq

−−→
ObP

(b). (4)

The quaternion and Euler angles11 are related to each other
through q0 = cos (θ /2)cos [(φ + ψ)/2], q1 = sin (θ /2)cos

[(φ − ψ)/2], q2 = sin (θ /2)sin [(φ − ψ)/2], and q3

= cos (θ /2)sin [(φ + ψ)/2]. Here θ , φ, and ψ are the three Eu-
ler angles of the body-fixed frame relative to the space-fixed
one in the standard convention.11, 12 Hereafter, we exploit the
unit quaternion �q exclusively to represent the rotational posi-
tion of a rigid body in the space-fixed frame through Eq. (4).

Since we have assumed that the three axes of the body-
fixed frame are the principal axes of inertia, we can write the
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angular momentum �L(b) = t(Lx,Ly, Lz) as follows:

Lx = Ixωx(t), Ly = Iyωy(t), Lz = Izωz(t), (5)

where Ix, Iy, and Iz are the principal moments of inertia, and
�ω(b)(t) = t(ωx(t), ωy(t), ωz(t)) is the angular velocity of the
rigid molecule. In the following, we will use �ω(t) to mean
�ω(b)(t). It is known that the following identity holds:3, 4

d

dt

⎛
⎜⎜⎝

q0

q1

q2

q3

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

ωx

ωy

ωz

⎞
⎟⎟⎟⎠. (6)

Let

←→
A [ �ω] =

⎛
⎜⎜⎜⎝

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎞
⎟⎟⎟⎠ (7)

and

�q(t) = t(q0(t), q1(t), q2(t), q3(t)). (8)

Notice here that
←→
A [ �ω] above is not a product of

←→
A and �ω

but a matrix of �ω. Then Eq. (6) is rewritten as3

d

dt
�q(t) = ←→

A

[
1

2
�ω(t)

]
�q(t), (9)

and then

d2

dt2
�q(t) = d

dt

(
d

dt
�q(t)

)

=
(←→

A

[
1

2
�ω(t)

])2

�q(t) + ←→
A

[
1

2

d

dt
�ω(t)

]
�q(t).

Since (
←→
A [ 1

2 �ω(t)])2 = − ∣∣ 1
2 �ω(t)

∣∣2 ←→
E (

←→
E is the identity ma-

trix), the equation above yields

d2

dt2
�q(t) = −

∣∣∣∣1

2
�ω(t)

∣∣∣∣
2

�q(t) + ←→
A

[
1

2

d

dt
�ω(t)

]
�q(t). (10)

From Eqs. (9) and (10),

�q(t) + d

dt
�q(t)�t + 1

2

d2

dt2
�q(t)�t2

= �q(t) + ←→
A

[
1

2
�ω(t)

]
�q(t)�t

+1

2

(
−

∣∣∣∣1

2
�ω(t)

∣∣∣∣
2

�q(t) + ←→
A

[
1

2

d

dt
�ω(t)

]
�q(t)

)
�t2

=
(

1 − 1

2

∣∣∣∣1

2
�ω(t)

∣∣∣∣
2

�t2

)
�q(t)

+←→
A

[
1

2

(
�ω(t) + 1

2

d

dt
�ω(t)�t

)
�t

]
�q(t), (11)

where we have used the fact that
←→
A [ �ω] is linear with respect

to �ω. Let us define

s = 1 − 1

2

∣∣∣∣1

2
�ω(t)

∣∣∣∣
2

�t2 and
−→
V

= 1

2

(
�ω(t) + 1

2

d

dt
�ω(t)�t

)
�t. (12)

Then, Eq. (11) is equal to (s
←→
E + ←→

A [
−→
V ])�q(t), and thus

�q(t + �t) = �q(t) + d

dt
�q(t)�t + 1

2

d2

dt2
�q(t)�t2 + O(�t3)

= (s
←→
E + ←→

A [
−→
V ])�q(t) + O(�t3). (13)

Since s > 0 and | �V | < 1 for usual time steps,13 it follows from
Eq. (13) that

�q(t + �t) =
(√

1 − |−→V |2←→E + ←→
A [

−→
V ]

)
�q(t) + O(�t3).

(14)

Here, we have used the fact

s = 1 − 1

2

∣∣∣∣1

2
�ω(t)

∣∣∣∣
2

�t2

= 1 − 1

2

∣∣∣∣1

2
�ω(t) + 1

4

d

dt
�ω(t)�t

∣∣∣∣
2

�t2 + O(�t3)

= 1 − 1

2
| �V |2 + O(�t3) =

√
1 − |−→V |2 + O(�t3).

Note that
√

1 − |−→V |2←→E + ←→
A [

−→
V ] in Eq. (14) is an orthog-

onal matrix, which conserves the distance or the norm of the
quaternion.

We define the orthogonal matrix
←→
R [�v] for a vector �v

= t(vx, vy, vz) (|�v| < 1) as

←→
R [�v] =

√
1 − |�v|2←→E + ←→

A [�v]

=

⎛
⎜⎜⎜⎜⎝

√
1 − |�v|2 −vx −vy −vz

vx

√
1 − |�v|2 vz −vy

vy −vz

√
1 − |�v|2 vx

vz vy −vx

√
1 − |�v|2

⎞
⎟⎟⎟⎟⎠.

(15)

It is easy to see that
←→
R [�v] satisfies

←→
R [�v]

←→
R [−�v] = ←→

E . (16)

Using the notations above, we rewrite Eq. (14) as

�q(t + �t) = ←→
R [

−→
V ]�q(t) + O(�t3). (17)

Let us define

�φ(t,�t) = �ω(t) + 1

2

d

dt
�ω(t)�t. (18)

Then we have
−→
V = 1

2
�φ(t,�t)�t and Eq. (17) yields

�q(t + �t) = ←→
R

[
1

2
�φ(t,�t)�t

]
�q(t) + O(�t3). (19)
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From Eq. (19), we obtain an equation to update the quaternion
�q as

�q(t + �t) = ←→
R

[
1

2
�φ(t,�t)�t

]
�q(t). (20)

Here,
←→
R [ 1

2
�φ(t,�t)�t] is an orthogonal matrix (i.e., distance

conserving), and hence |�q(t + �t)| = |�q(t)|. Consequently,
the �q is normalized automatically for any �t.

There remains the task of calculating �φ(t,�t). From
Eq. (18),

φx(t,�t) = ωx(t) + 1

2

dωx(t)

dt
�t,

φy(t,�t) = ωy(t) + 1

2

dωy(t)

dt
�t,

φz(t,�t) = ωz(t) + 1

2

dωz(t)

dt
�t. (21)

Here, the derivatives of the angular velocity are given by the
following Euler’s equation of motion:

dωi

dt
= Ij − Ik

Ii

ωjωk + ti

Ii

, (22)

where (i, j, k) = (x, y, z), (y, z, x), and (z, x, y), and ti is the
component of the torque �τ (b) = t(tx, ty, tz). Then we have

φx(t,�t) = ωx(t) + (αωy(t)ωz(t) + δtx(t))�t,

φy(t,�t) = ωy(t) + (βωx(t)ωz(t) + λty(t))�t,

φz(t,�t) = ωz(t) + (γωx(t)ωy(t) + μtz(t))�t, (23)

where

α = Iy − Iz

2Ix

, β = Iz − Ix

2Iy

, γ = Ix − Iy

2Iz

,

δ = 1

2Ix

, λ = 1

2Iy

, and μ = 1

2Iz

. (24)

We can calculate �φ(t,�t) with Eq. (23), by which we update
the angular position of the rigid molecule with Eq. (20).

Note that the equations of �φ = t(φx, φy, φz) in Eq. (23)
will be changed slightly later within the order of �t2 to avoid
an iteration procedure in determining angular velocity. Even
in that case, the order of error of updated quaternion remains
within �t3 (see Sec. II B).

We remark that �φ(t,�t) introduced in Eq. (18) can be
regarded as the angular velocity at the midstep t + 1

2�t in
Ref. 3, and that we can derive Eq. (20) also by using the equa-
tions in that reference. However, our derivation above will be
helpful to clarify our method.

3. Determination of angular velocity

The principal aim of this subsection is to derive Eq. (29)
below that the updated angular velocity should obey. We de-
termine the updated angular velocity in the same way as
the NET algorithm, that is, we determine it so as to satisfy
the time-reversibility condition.10 From Eq. (20), the time-
reversibility condition gives

←→
R

[
1

2
�φ(t + �t,−�t)(−�t)

]
�q(t + �t) = �q(t). (25)

Combining Eqs. (20) and (25), we have

←→
R

[
1

2
�φ(t + �t,−�t)(−�t)

]←→
R

[
1

2
�φ(t,�t)�t

]
�q(t) = �q(t).

(26)

Therefore, we determine �φ(t + �t,−�t) by the following
equation:

←→
R

[
1

2
�φ(t + �t,−�t)(−�t)

]←→
R

[
1

2
�φ(t,�t)�t

]
= ←→

E .

(27)
Since

←→
R

[
1

2
�φ(t,�t)(−�t)

]←→
R

[
1

2
�φ(t,�t)�t

]
= ←→

E (28)

from Eq. (16), we find

�φ(t + �t,−�t) = �φ(t,�t) (29)

from Eq. (27). Using Eqs. (23) and (29), we obtain the follow-
ing equations:

ω+
x − (αω+

y ω+
z + δt+x )�t = ωx + (αωyωz + δtx)�t,

ω+
y − (βω+

x ω+
z + λt+y )�t = ωy + (βωxωz + λty)�t,

ω+
z − (γω+

x ω+
y + μt+z )�t = ωz + (γωxωy + μtz)�t,

(30)

where we mean ωi = ωi(t), ω+
i = ωi(t + �t), ti = ti(t), and

t+i = ti(t + �t) for i = {x, y, z}. Equations (30) contain un-
known variables ω+

x , ω+
y , and ω+

z . If we combine these three
equations to obtain a single equation of a single variable, the
degree of the single variable equation is at least 5. It is difficult
to solve it algebraically. In the NET algorithm, we solve sim-
ilar equations numerically for every time step by an iteration
method.

In Ref. 10, we derived the equations similar in mean-
ing to Eqs. (20), (23), and (29). However, those equations in
Ref. 10 were formulated suitable for iteration procedure. We
cannot apply the following iteration-free method directly to
those equations. Therefore, we have derived essential equa-
tions in the present subsection.

B. Ideas to remove iteration procedure

We propose two methods to determine the updated angu-
lar velocity without iteration. As mentioned before, we mod-
ify Eqs. (23) slightly within the order of �t2. We use the
modified equations to evolve quaternion in time by Eq. (20)
and to get the updated angular velocity by setting them into
Eq. (29). Hereafter, we abbreviate φx(t, �t), φy(t, �t), φz(t,
�t), φx(t + �t, −�t), φy(t + �t, −�t), φz(t + �t, −�t),
ωx(t), ωy(t), ωz(t), ωx(t + �t), ωy(t + �t), and ωz(t + �t) as
φx, φy, φz, φ+

x , φ+
y , φ+

z , ωx, ωy, ωz, ω+
x , ω+

y , and ω+
z ,

respectively.
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1. Method 1: Modification to linear equations

Instead of Eqs. (23), we redefine �φ(t,�t) = t(φx, φy, φz)
by the following combined equations:

ω̃x = ωx + δtx�t, ω̃y = ωy + λty�t, ω̃z = ωz + μtz�t

(31)
and

φx = ω̃x + αω̃zφy�t, φy = ω̃y + βω̃xφz�t, φz

= ω̃z + γ ω̃yφx�t. (32)

We solve these linear equations (Eqs. (32)) to get
�φ(t,�t). The so defined φx, φy, and φz differ from the
original ones within the order of �t2, which is easy
to see by solving Eqs. (31) and (32). For example, φx

= (ω̃x + αω̃yω̃z�t + αβω̃xω̃
2
z�t2)/(1 − αβγ ω̃xω̃yω̃z�t3)

= ωx + (αωyωz + δtx)�t + O(�t2). Therefore, the order
of error of the updated quaternion given by Eq. (20) for
�φ = t(φx, φy, φz) defined above remains within �t3.

Then, �φ(t + �t,−�t) = t(φ+
x , φ+

y , φ+
z ) is given simi-

larly by

ω̃+
x = ω+

x − δt+x �t, ω̃+
y = ω+

y − λt+y �t, ω̃+
z

= ω+
z − μt+z �t (33)

and

φ+
x = ω̃+

x − αω̃+
z φ+

y �t, φ+
y = ω̃+

y − βω̃+
x φ+

z �t, φ+
z

= ω̃+
z − γ ω̃+

y φ+
x �t. (34)

Since φ+
x = φx , φ+

y = φy , and φ+
z = φz from Eq. (29), we

can calculate the updated angular velocity t(ω+
x , ω+

y , ω+
z ) by

considering the reverse order operation of Eqs. (33) and (34).
Equations (34) are linear in ω̃+

x , ω̃+
y , and ω̃+

z , which are
easy to solve. Then we get the updated angular velocity
t(ω+

x , ω+
y , ω+

z ) from Eqs. (33).
Method 1 requires to solve three linear equations for

three variables twice (one for Eq. (32) and the other for
Eq. (34) to get the updated angular velocity. In Subsection
II B 2, a method consisting of substitutions only but losing
symmetry with respect to the three components in Eqs. (23)
will be proposed.

2. Method 2: Successive substitution

Instead of Eqs. (23), we redefine �φ(t,�t) = t(φx, φy, φz)
successively as follows. The arrow that is facing left in an
equation below stands for substitution in a computer code.
We proceed in the sequence

φx(1) ← ωx, φy(1) ← ωy, φz(1) ← ωz, (35)

φx(2) ← φx(1) + δtx�t, φy(2) ← φy(1) + λty�t,

φz(2) ← φz(1) + μtz�t, (36)

φx ← φx(2) + αφy(2)φz(2)�t, (37a)

φy ← φy(2) + βφxφz(2)�t, (37b)

φz ← φz(2) + γφxφy�t. (37c)

Here, φx, φy, and φz defined in Eqs. (37a)–(37c) differ from
the original ones within the order of �t2. Thus, the order of
error of the updated quaternion remains within �t3 as before.

Then, �φ(t + �t,−�t) = t(φ+
x , φ+

y , φ+
z ) is given simi-

larly as above, and we can solve it to get the updated angular
velocity t(ω+

x , ω+
y , ω+

z ) as follows:

φ+
z (2) ← φ+

z + γφ+
x φ+

y �t, (38a)

φ+
y (2) ← φ+

y + βφ+
x φ+

z (2)�t, (38b)

φ+
x (2) ← φ+

x + αφ+
y (2)φ+

z (2)�t, (38c)

φ+
x (1) ← φ+

x (2) + δt+x �t, φ+
y (1) ← φ+

y (2) + λt+y �t,

φ+
z (1) ← φ+

z (2) + μt+z �t, (39)

ω+
x ← φ+

x (1), ω+
y ← φ+

y (1), ω+
z ← φ+

z (1). (40)

For Eqs. (38) φ+
i = φi (i = {x, y, z}) from Eq. (29). Note that

Eqs. (38) are arranged in the direction opposite to Eqs. (37)
so that the time reversibility holds.

We denote the FT algorithms with Methods 1 and 2 as
FT1 and FT2 algorithms, respectively. Note that the FT2 al-
gorithm satisfies the following equation of phase-space con-
servation (see Eq. (14) in Ref. 3):

∣∣∣∣∂(�r(t + �t), �v(t + �t), �q(t + �t), �ω(t + �t))

∂(�r(t), �v(t), �q(t), �ω(t))

∣∣∣∣ = 1. (41)

C. FT algorithm for single time step

We describe here the procedure for a single time step
of the FT algorithm, especially for FT2, for a single rigid
molecule composed of atoms. In actual simulation of a molec-
ular system, the algorithm will be applied in parallel to all the
rigid molecules. The procedure of the FT1 algorithm is
similar.

The procedure of the FT2 algorithm consists of the fol-
lowing eight steps. They are the steps required to evaluate �r ,
�v, �q, and �ω at time t + �t from that at time t. Step 4 is devoted
to the calculation of the quaternion and step 8 the angular ve-
locity. These two steps distinguish the FT algorithm from the
other ones. The other steps are generally installed in every
algorithm for the motion of rigid molecule in the quaternion
representation.

Setting: The body-fixed frame is introduced with its
axes corresponding to the principal axes of inertia of a rigid
molecule, whose origin coincides with the centroid of the
rigid molecule. We denote its principal moments of inertia by
Ix, Iy, and Iz. Here, we use the constants α, β, γ , δ, λ, and μ

defined in Eqs. (24). Take the data at time t of the molecule:
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the position of the centroid �r(t)(s), the velocity of the centroid
�v(t)(s), the quaternion of the rigid molecule �q(t), and the an-
gular velocity of the rigid molecule �ω(t)(b) = t(ωx, ωy, ωz).

Step 1: Calculate the atomic positions of the molecule in
the space-fixed frame by Eqs. (3) and (4).

Step 2: Calculate the forces on the atoms using the atomic
positions calculated in step 1. Then calculate the force �f (t)(s)

acting on the centroid, and the torque �τ (t)(b) = t(tx, ty, tz).
Step 3: Determine the updated position of the centroid by

Eq. (1).
Step 4: Determine �φ(t,�t) = t(φx(t,�t), φy(t,�t),

φz(t,�t)) by Eqs. (35)–(37). Set it into Eq. (20) to determine
the updated quaternion.

Step 5: Calculate the updated positions of the atoms in
the space-fixed frame by Eq. (4). (In actual simulation, we in-
stall the procedure to normalize the quaternion every thousand
steps to avoid numerical error. It is not always necessary.)

Step 6: Calculate the updated forces on the atoms. Then
obtain the torque �τ+(b) = t(t+x , t+y , t+z ) and the force �f (t
+ �t) acting on the centroid.

Step 7: Determine the updated velocity of the centroid by
Eq. (2).

Step 8: Determine the updated angular velocity, ω+
x , ω+

y ,
and ω+

z , by Eqs. (38)–(40) after setting φ+
x = φx , φ+

y = φy ,
and φ+

z = φz where φx, φy, and φz are obtained in step 4 and
t+x , t+y , and t+z in step 6.

Note that if we choose to use the FT1 algorithm, we
have only to replace the equations in steps 4 and 8 by
Eqs. (31) and (32) and Eqs. (33) and (34), respectively. The FT
algorithms can also be applied to linear molecules. For a lin-
ear molecule, we set z axis of the body-fixed frame along the
molecule. Then we have Ix = Iy > 0 and Iz = 0. Here, we set
ω3 = 0, α = 1

2 , δ = 1/Ix, β = − 1
2 , λ = 1/Iy, γ = 0, μ = 0,

and tz = 0. Under such a setting, the procedure explained
above can be used for linear molecules.

III. COMPUTATION RESULTS: COMPARISON AMONG
FT1, FT2, SYMPLECTIC, AND NET ALGORITHMS

The FT algorithms are applied to a water droplet in vac-
uum. We choose to use the TIP4P (Ref. 1) inter-molecular
potential, in which a H2O molecule is described as a rigid,
planar four charged points. It is known that various physi-
cal properties1, 14 are reproduced well in both liquid and crys-
talline phases with the TIP4P potential. Our purposes of the
present application are to examine the stability and the com-
putation timings of the FT algorithms in realistic settings
through comparison of that of existing algorithms.

To prepare a water droplet, we first cut, from crystalline
ice in Ih-phase,15 a collection of 499 molecules in spheri-
cal shape. Second, we keep the temperature of the system at
around T = 300 K by controlling both translational and an-
gular velocities for more than 1.0 ns to obtain a water droplet
with a diameter of about 3.0 nm in vacuum at thermal equilib-
rium; no molecule is detached from the droplet. This prepara-
tion simulation is performed with �t = 2.5 fs using either FT,
symplectic, or NET algorithm to obtain three initial configu-
rations for each algorithm.

For precise comparison, we follow the method in Ref. 3
and introduce the local error ε(1) and the global error ε̃ (see,
below). We define

ε(n) =
〈∣∣∣∣E(i + n)

E(i)
− 1

∣∣∣∣
〉

, (42)

where E(i) is the total energy of the system at step-i and the
average 〈· · ·〉 is taken over all possible i and three runs of 105

steps starting from different configurations. The ε(1) gives the
relative error of the total energy after �t. The global error is
defined as ε̃ = limn→∞ ε(n)/n. To reduce the numerical fluc-
tuation, we, in practice, calculate

ε̃ = ε(10000) − ε(1000)

9000
. (43)

In this section, the symplectic algorithm is coded accord-
ing to Ref. 8 after removing unnecessary parts as the thermo-
stat part, and the quaternions are normalized every thousand
steps to avoid numerical error as in the case of the FT
algorithm.

A. Stability of FT1 algorithm

Figure 1 shows the local error, ε(1), and the global error,
ε̃, for the FT1, symplectic, and NET algorithms with vari-
ous �t.16 It is seen in Fig. 1 that log ε(1) grows linearly with
log �t with the slope of approximately 3 in the three algo-
rithms. It reflects the fact that the algorithms contain the local
errors of order �t3. We find in Fig. 1 that the global error, ε̃,
in the FT1 algorithm is about 10% of that in the NET algo-
rithm and is intermediate of those in the NET and symplectic
algorithms.

The global errors in the symplectic algorithm increase
significantly for �t ≥ 6 fs approaching to the FT1 results as
seen in Fig. 1. We do not know the reason of this, but we think
that the trajectory of the conserved quantity H̃ of Miller’s

FIG. 1. Local errors, ε(1), and global errors, ε̃, in the water droplet simula-
tion at T = 300 K in the symplectic, FT1, FT2 (xzy), and NET algorithms
for various values of �t.
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algorithm assured by the symplectic method may not be con-
tained in a restricted area of (q, p) phase space or may not
converge (since H̃ is a power series with respect to �t) for
some large �t. If it is the case, there may be a possibility
that our method works better than symplectic. However, we
cannot find such a time step as our method works better than
symplectic. The global errors of the symplectic algorithm do
not exceed that of the FT algorithms even in �t ≥ 6 fs. More
exactly, in the cases where �t ≥ 8 fs both FTs and symplectic
become unstable, and it is difficult to compare the stability of
the algorithms precisely.

We note that there exist other possibilities of modifying
Eqs. (23) similar to Eqs. (32). One is the way to use the equa-
tions below instead of Eqs. (32)

φx = ω̃x + αφzω̃y�t, φy = ω̃y + βφxω̃z�t,

φz = ω̃z + γφyω̃x�t. (44)

The other is to take the mean of Eqs. (32) and (44)

φx = ω̃x + 1

2
α(ω̃zφy + φzω̃y)�t,

φy = ω̃y + 1

2
β(ω̃xφz + φxω̃z)�t,

φz = ω̃z + 1

2
γ (ω̃yφx + φyω̃x)�t. (45)

These two algorithms give quite similar results for ε(1) and
ε̃ to that of the FT1 algorithm.

B. Stability of FT2 algorithm

Here, we compare both local and global errors of the FT2
algorithm with that of other algorithms. In Sec. II B 2, we
have obtained φx, φy, and φz by substituting successively as
Eqs. (35)–(37). However, the sequential order of Eqs. (37a)–
(37c) can be different. There are 3! = 6 ways of permuting
Eqs. (37a)–(37c). We perform the simulations for all six cases,
to find no significant differences. Here, we show three sim-
ulations of the six cases. For the case denoted as (xyz), the
order is Eqs. (37a), (37b), and (37c). For (yzx), the order is
Eqs. (37b), (37c), and (37a). For (xzy), the order is Eqs. (37a),
(37c), and (37b). In each case, Eqs. (37a)–(37c) are arranged
in the direction opposite to Eqs. (37a)–(37c). In the present
setting, the magnitudes of the principal moment of inertia are
Ix > Iz > Iy.

Figure 2 shows the local error, ε(1), and the global error,
ε̃, of the simulations with the FT2 and NET algorithms for
various �t.16 We find in Fig. 2 that the three global errors,
ε̃(xyz), ε̃(yzx), and ε̃(xzy), in the FT2 algorithm are only
about 10% of that in the NET algorithm.

Figure 1 also shows that the global errors of the FT1 and
FT2 (we compare here especially FT2(xzy)) algorithms. The
global errors are almost the same between the two algorithms
and are inferior to the symplectic algorithm by about an order
of magnitude.

FIG. 2. Local errors, ε(1), and global errors, ε̃, in the water droplet sim-
ulation at T = 300 K in the FT2 and NET algorithms for various values
of �t.

C. Computation timings of FT algorithms

In this subsection, we discuss computation timings of
various time-reversible algorithms of rotational motion that
use quaternion to represent angular position. To compare
computation timings of such algorithms, we compare the re-
quired timings of the parts that update quaternion and angular
velocity of a rigid molecule. We assume the remaining part
is almost same in every algorithm using quaternion
representation.

Table I shows computation timings averaged over 106

measurements and numbers of operations17 of the FT1, FT2,
symplectic, Matubayasi-Nakahara, and NET algorithms re-
quired for updating angular velocity and quaternion. The
number of iteration in the NET algorithm is set to one, which
is not realistic but gives us the lower limit of its computa-
tion timings. Computation timings are measured on 3.1 GHz
Intel Core i7, 2.5 GHz Fujitsu SPARC64VII, and 3.0 GHz
Intel Xeon E5472. The FT2 algorithm requires less than 100
operations and all of the operations are four basic arithmetic
operations except for one square root operation.

As seen in Table I, computation timings depend on ma-
chines and the order can be reversed. However, we see that
the computation timing for updating angular velocity and
quaternion of the FT2 algorithm is no more than that of the
FT1, symplectic, Matubayasi-Nakahara, and NET algorithms.
Thus, assuming the remaining part of algorithm is almost
same for every time-reversible one, we think that the FT2 al-
gorithm is a fast algorithm in the time-reversible ones using
quaternion representation.

IV. SUMMARY AND CONCLUDING REMARKS

We have proposed the fast time-reversible (FT1 and FT2)
simulation algorithms for rigid molecules. The stability of the
FT algorithms for various values of the time step is compared
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with that of the NET and symplectic algorithms, through
demonstrative simulation of a water droplet composed of 499
molecules at 300 K.

The global errors of the FT algorithms are only about
10% of that of the NET algorithm. We think that the smallness
is caused by various factors including the elimination of accu-
mulation error in the iteration. The local and global errors of
the FT algorithms are almost the same as that of Matubayasi-
Nakahara3 algorithm.

It may seem that the FT algorithms are similar to
Matubayasi-Nakahara algorithm. However, there are differ-
ences between the two algorithms. The main difference lies
in the choice of equations to be modified in order to get the
updated angular velocity. To get the updated angular veloc-
ity, Matubayasi and Nakahara modified differential equations
for the angular velocity, and got several differential equations.
They integrated them one by one, determined the angular ve-
locity at the midstep t + 1

2�t , integrated these equations in re-
verse order, and then determined the angular velocity at time
t + �t. The error involved in the algorithm is �t3. In the
FT algorithms, on the other hand, we have introduced tempo-
rally (algebraic) equations by which we update the quaternion
within the error of �t3, and have modified these equations
within �t3. Then, we have solved these equations conversely
to get the angular velocity at time t + �t.

Noteworthy features of the FT algorithms are the follow-
ing: (i) The FT2 algorithm will be a fast time-reversible al-
gorithm for rotational motion comparable to other fast time-
reversible ones using quaternion. (ii) From the viewpoint of
total energy conservation, the FT algorithms are superior to
the NET algorithm, and are comparable to the Matubayasi-
Nakahara algorithm. (iii) Even if the equations of dynamics
involve the friction term or an external force field, the FT
algorithms are useful by interpreting the force appropriately
for negative time step −�t. (iv) The FT2 algorithm satisfies
Eq. (41) as the Matubayasi-Nakahara algorithm does.
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