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Abstract

In the EMIME project, we developed a mobile device that performs personalized speech-to-speech translation such that
a user’s spoken input in one language is used to produce spoken output in another language, while continuing to sound
like the user’s voice. We integrated two techniques into a single architecture: unsupervised adaptation for HMM-based
TTS using word-based large-vocabulary continuous speech recognition, and cross-lingual speaker adaptation (CLSA)
for HMM-based TTS. The CLSA is based on a state-level transform mapping learned using minimum Kullback-Leibler
divergence between pairs of HMM states in the input and output languages. Thus, an unsupervised cross-lingual speaker
adaptation system was developed. End-to-end speech-to-speech translation systems for four languages (English, Finnish,
Mandarin, and Japanese) were constructed within this framework. In this paper, the English-to-Japanese adaptation is
evaluated. Listening tests demonstrate that adapted voices sound more similar to a target speaker than average voices
and that differences between supervised and unsupervised cross-lingual speaker adaptation are small. Calculating the
KLD state-mapping on only the first 10 mel-cepstral coefficients leads to huge savings in computational costs, without
any detrimental effect on the quality of the synthetic speech.

Keywords: HMM-based speech synthesis, unsupervised speaker adaptation, cross-lingual speaker adaptation,
speech-to-speech translation

1. Introduction

The goal of speech-to-speech translation research is to
“enable real-time, interpersonal communication via natu-
ral spoken language for people who do not share a com-
mon language” (Liu et al., 2003). Several research and
commercial speech-to-speech translation efforts have been
pursued in recent years, for example: Verbmobil, a long-
term project of the German Federal Ministry of Education,
Science, Research and Technology1, Technology and Cor-
pora for Speech to Speech Translation (TC-STAR), an FP6
European project2, and the Global Autonomous Language
Exploitation (GALE) DARPA initiative3. In the European
FP7 project EMIME4, we developed a mobile device that
performs personalized speech-to-speech translation, such
that a user’s spoken input in one language is used to pro-
duce spoken output in another language, while continuing
to sound like the user’s voice.

In contrast to previous “pipeline” speech-to-speech
translation systems that combined isolated automatic
speech recognition (ASR), machine translation (MT), and

1http://verbmobil.dfki.de/overview-us.html
2http://www.tc-star.org/
3http://www.darpa.mil/ipto/programs/gale/gale.asp
4http://www.emime.org/

text-to-speech (TTS) components, EMIME places the
main emphasis on coupling ASR with TTS, specifically to
enable speaker adaptation for HMM-based ASR (Wood-
land, 2001) and TTS (Yamagishi et al., 2009a) in cross-
lingual scenarios. Other work that has investigated cou-
pling components of the speech-to-speech translation sys-
tems are, for example, Gao (2003) and Ney (1999) which
investigated the coupling of ASR and MT, or Noth et al.
(2000) in which natural language processing and prosody
processing were connected. The principal modeling frame-
work of speaker-adaptive HMM-based speech synthesis is
conceptually and technically similar to conventional ASR
systems (although without discriminative training) mak-
ing it possible for both ASR and TTS systems to be built
from the same corpora (Yamagishi et al., 2010). This
enables the sharing of Gaussians, decision trees or linear
transforms between the two (Dines et al., 2010).

In the EMIME project, we conducted extensive exper-
iments exploring the possibilities for combining ASR and
TTS models and for achieving unsupervised speaker adap-
tation (Wester et al., 2010). For example, unsupervised
adaptation techniques for HMM-based TTS using either a
phoneme recognizer (King et al., 2008) or a word-based
large-vocabulary continuous speech recognizer (LVCSR)
(Yamagishi et al., 2009b) were explored. In addition, map-
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ping between ASR and TTS acoustic models was inves-
tigated using 2-pass decision trees (Gibson, 2009) or by
the marginalization of decision trees (Dines et al., 2009;
Liang et al., 2010). In addition to this, various cross-
lingual adaptation techniques for HMM-based TTS were
developed. For instance, Wu and Tokuda (2009) proposed
a mapping algorithm which maps either the adaptation
data or transforms based on the Kullback-Leibler diver-
gence (KLD) between the HMM states of input and output
languages. This mapping approach has also been explored
by Qian et al. (2009); Liang et al. (2010).

This paper describes the integration of these devel-
opments into a single architecture which achieves unsu-
pervised cross-lingual speaker adaptation for HMM-based
speech synthesis. We demonstrate an end-to-end speech-
to-speech translation system built for four languages –
American English, Mandarin, Japanese, and Finnish. Al-
though all language pairs and directions are possible in
our framework, only the English-to-Japanese adaptation
is evaluated in the perceptual experiments presented here;
these experiments focus on measuring the similarity of the
output Japanese synthetic speech to the speech of the orig-
inal English speaker in order to assess and evaluate the
performance of the proposed unsupervised cross-lingual
speaker adaptation technique. In addition, we investigated
whether restricting the features on which the KLD is cal-
culated affects the quality of the output speech. Instead of
using 120 mel-cepstral coefficients (including statics, deltas
and delta-deltas), only the first 10 static mel-cepstral co-
efficients were used.

The article is organized as follows. Section 2 gives
details of the EMIME speech-to-speech translation sys-
tem using HMM-based ASR and TTS. In Section 3, an
overview of the unsupervised cross-lingual speaker adap-
tation method adopted is given. Section 4 describes the
experimental set-up that we used to analyze and evalu-
ate the system. The analysis of the proposed cross-lingual
speaker adaptation method, i.e., an analysis of the KLD
output is given in Section 5. This is followed in Section 6
by the results of the listening tests. Finally, Section 7
summarizes our findings and gives suggestions for future
work.

2. Overview of the EMIME speech-to-speech
translation system

Figure 1 shows a diagram of the EMIME speech-to-
speech translation system. It comprises HMM-based ASR,
HMM-based TTS, MT, and cross-lingual speaker adapta-
tion (CLSA). A short description of each of these compo-
nents is given here.

All acoustic models, for both HMM-based ASR and
TTS, are trained on large conventional speech databases,
comprising speech from hundreds of speakers, which were
originally intended for ASR: Wall Street Journal (WSJ0/1)
databases for English (Paul and Baker, 1992), Speecon
databases for Mandarin and Finnish (Iskra et al., 2002),
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translation (S2ST)
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models for TTS
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Figure 1: Overview of the EMIME Speech-to-Speech Translation
system using HMM-based ASR and TTS.

and the JNAS database for Japanese (Itou et al., 1998).
Details of the front-end text processing used to derive
phonetic-prosodic labels from the word transcriptions can
be found in Yamagishi et al. (2010).

For ASR of each language, 3-state no-skip triphone
speaker-independent HMMs are trained. Either MFCCs
or Perceptual Linear Predictive (PLP) cepstral coefficients
(Hermansky, 1990) can be used as the acoustic features for
ASR. The ASR language models used for English, Man-
darin and Japanese each contain about 20k bi-grams; the
language model for Finnish is a word 10-gram plus a morph
bi-gram (Hirsimäki et al., 2009). They are smoothed using
the standard Kneser-Ney method (Kneser and Ney, 1995).

For TTS of each language, 5-state no-skip context-
dependent speaker-independent MSD-HSMMs (Tokuda
et al., 2002; Zen et al., 2007b) are trained as “aver-
age voice models” using speaker-adaptive training (SAT)
(Anastasakos et al., 1996; Gales, 1998). For the state
tying (Young et al., 1994), minimum description length
(MDL) automatic decision tree clustering is used (Shin-
oda and Watanabe, 2000). TTS acoustic features com-
prise the spectral and excitation features required for the
STRAIGHT (Kawahara et al., 1999) mel-cepstral vocoder
(Tokuda et al., 1994) with mixed excitation (McCree and
Barnwell III, 1995; Kawahara et al., 2001).

For unsupervised cross-lingual speaker adaptation and
decoding, a multi-pass framework is used:

1. In the first pass, initial transcriptions are obtained
using “Juicer” (Moore et al., 2006), a weighted finite
state transducer (WFST) decoder with speaker inde-
pendent (SI) HMMs.

2. In the second pass, constrained structural maximum
a posteriori linear regression (CSMAPLR) adaptation
(Yamagishi et al., 2009a) is applied to SAT-HMMs
(ASR) using the hypotheses obtained in the first pass.
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3. In the third pass, using these adapted models, the
speech is decoded again and the transcriptions are
refined.

4. In the final pass, CSMAPLR transforms are estimated
for SAT-HSMMs (TTS) with the refined transcrip-
tions.

5. Finally, these transforms are applied to the SAT-
HSMMs for the output language, by employing a
state-level mapping that has been constructed based
on the Kullback-Leibler divergence (KLD) between
pairs of states from the input and output TTS HMMs
(Wu and Tokuda, 2009). Details of this state-mapping
are given in the next section.

Note that EMIME did not focus on translation technol-
ogy research. This was a deliberate choice, to allow us to
concentrate on ASR and TTS research. Therefore, for the
MT module, we simply used Google translation provided
via their AJAX language APIs5. This translator only pro-
vides the 1-best result.

Finally, the speech waveform is output in the TTS mod-
ule. Acoustic features (spectral and excitation features)
are generated from the adapted HSMMs in the output
language using a parameter generation algorithm that con-
siders the global variance (GV) of a trajectory (Toda and
Tokuda, 2007). Then, mixed excitation signals are pro-
duced using a mel-logarithmic spectrum approximation
(MLSA) filter (Fukada et al., 1992) which corresponds to
the generated STRAIGHT mel-cepstral coefficients. These
vocoder modules are the same as Zen et al. (2007a).

3. Cross-lingual speaker adaptation based on a
state-level transform mapping learned using
minimum KLD

A cross-lingual adaptation method based on a state-level
mapping, learned using the KLD between pairs of states,
was proposed by Wu and Tokuda (2009) and is summa-
rized here. We call this approach “state-level transform
mapping.” The state-mapping is learned by searching for
pairs of states that have minimum KLD between input
and output language HMMs. Linear transforms estimated
with respect to the input language HMMs are applied to
the output language HMMs, using the mapping to deter-
mine which transform to apply to which state in the output
language HMMs.

3.1. Learning the state-mapping
The mapping between the input language and output

language states are learned as follows. For each state ∀j ∈
[1, J ] in the output language HMM λoutput, we search for
the state î in the input language HMM λinput with the
minimum symmetrized KLD to state j in λoutput:

î = argmin
1≤i≤I

DKL (j, i) , (1)

5http://code.google.com/intl/ja/apis/ajaxlanguage/
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Figure 2: Graphical representation of the state-level mapping using
minimum KLD between input and output language HMMs.

where λoutput has J states and DKL (j, i) represents the
KLD between state i in λinput and state j in λoutput (Fig-
ure 2). DKL (j, i) is calculated as in Qian et al. (2009):

DKL (j, i) ≈DKL (j || i) + DKL (i || j) , (2)

DKL (i || j) =
1
2

ln
(
|Σj |
|Σi|

)
− D

2
+

1
2
tr

(
Σ−1

j Σi

)
+

1
2

(µj − µi)
>Σ−1

j (µj − µi) , (3)

where µi and Σi represent the mean vector and covariance
matrix of the Gaussian pdf associated with state i.

3.2. Estimating the input language HMM transforms
Next, we estimate a set of state-dependent linear trans-

forms Λ̂ for the input language HMM λinput in the usual
way:

Λ̂ =
(
Ŵ1, . . . , ŴI

)
=argmax

Λ
P (O | λinput,Λ) P (Λ) , (4)

where Wi represents a linear transform for state i, I is the
number of states in λinput, and O represents the adap-
tation data. P (Λ) represents the prior distribution of
the linear transform for CSMAPLR (Yamagishi et al.,
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2009a). Note that the linear transforms will usually be
tied (shared) between groups of states known as regres-
sion classes, to avoid over-fitting and to enable adaptation
of all states, including those with no adaptation data.

3.3. Applying the transforms to the output language HMM
Finally, these transforms are mapped to the output lan-

guage HMM. The Gaussian pdf in state j of λoutput is
transformed using the linear transform for state î, which
is transform Ŵbi. By transforming all Gaussian pdfs in
λoutput in this way, cross-lingual speaker adaptation is
achieved.

3.4. Unsupervised cross-lingual adaptation
We can extend this method to unsupervised adaptation

simply by automatically transcribing the input data us-
ing ASR-HMMs. For supervised adaptation, λinput and
λoutput are both TTS-HMMs (for the input and output
languages, respectively). For unsupervised adaptation of
HMM-based speech synthesis, λinput may be either a TTS-
HMM, or an ASR-HMM that utilizes the same acous-
tic features as TTS. When the ASR-HMM uses Gaussian
mixtures, we can use an approximated KLD (Goldberger
et al., 2003). No other constraints need to be placed on
the ASR-HMM. In particular, it does not need to use
prosodic-context-dependent-quinphones (which are neces-
sary for TTS models).

3.5. Efficient methods for calculating the KLD
The state-mapping is learned by searching for pairs of

states that have minimum KLD between input and output
language HMMs. The computational cost is huge because
KLD calculation of all combinations of states in both lan-
guage HMMs is required.

In Dines et al. (2010) it was shown that the use of the
lower dimensional part of mel-cepstral STRAIGHT coef-
ficients (e.g., 1st to 13-th dimensions of a 40-dimensional
mcep) is sufficient for recognizing phonemes in an ASR sys-
tem. It was also found that using the higher dimensional
mel-cepstral coefficients results in higher word error rates
for ASR. For TTS it was shown that the use of the higher
dimensional mel-cepstral coefficients increases naturalness,
as evaluated using mean opinion scores (MOS). From
Dines et al. (2010) it can be concluded that the higher mel-
cepstral dimensions mainly contribute to speaker identity
and naturalness rather than phoneme identity.

The KLD state-mapping is calculated between the aver-
age voice models of input and output languages, i.e., it is
learning the mapping between two languages. This type of
mapping concerns phoneme identity rather than speaker
identity and naturalness, therefore, it seems that disre-
garding the higher dimensional mel-cepstral coefficients
may be possible without affecting the state-mapping out-
come in a negative way. To investigate this and as a solu-
tion to the computational cost associated with KLD on the
full feature vector, we restrict the number of mel-cepstral

dimensions for KLD calculation. The proposed method
eliminates delta and high dimensional mel-cepstral coeffi-
cients as phoneme identity information is available in the
static and low dimensional mel-cepstral coefficients.

Although log F0 and aperiodicity features are used for
speaker adaptation in the same way as the mel-cepstral
coefficients, this technique of reducing computational cost
were used for only mel-cepstral coefficients. We explored
the effect of the following KLD calculations:

• KLD calculation using 120-dimensions (40-dim static,
40-dim delta, 40-dim delta-delta)

• KLD calculation using only the first 20 of the 40 static
dimensions

• KLD calculation using only the first 10 of the 40 static
dimensions

The low dimensional mel-cepstral coefficients (i.e. the first
10) contain more information than higher dimensional mel-
cepstral coefficients (Imai, 1983). Furthermore, the static
features also contain more information than the dynamic
features (Yu et al., 2008).

4. Experimental setup

We performed experiments on English-to-Japanese
speaker adaptation for HMM-based speech synthesis.
First, specifics on the data that was used to analyze the
KLD state-mapping are given. Next, the set-up of the
perceptual experiments is described.

4.1. Models and data for KLD analysis

The objective of the analysis is to illustrate the effective-
ness of the KLD state-mapping in phonetic and speaker
similarity terms. KLD simply measures divergences be-
tween HMM states. No explicit linguistic or phonetic
knowledge is used. In order to get an idea of the phonetic
appropriateness of the mapping, we compare the vowel tri-
angle in Japanese for the average voice model, a male and a
female voice. Next, we compare the vowel spaces for cross-
lingual speaker adapted Japanese and speaker-dependent
American-English TTS for a single male speaker. We also
present a comparison between this male speaker and a
group of 60 male American speakers. F1 vs F2 - F1 space
(whose dimensions are the first formant vs the difference
between the second and first formants) is used to exam-
ine phonetic properties. F1 vs F2 - F1 space results in
a closer visual correspondence between the formant plots
and the IPA vowel chart than F1 vs F2 space (Ladefoged
and Maddieson, 1996). F0 vs F1 space is used to examine
speaker identity.
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Table 1: The word accuracy of the ASR systems (second pass)

Number of sentences
speaker 5 50 2000

001 85.32 87.54 85.63
002 86.88 87.08 84.78

4.2. Training and adaptation data

An English speaker-independent model for ASR and av-
erage voice model for TTS were trained on the pre-defined
training set “SI-84” comprising 7.2k sentences uttered by
84 speakers included in the “short term” subset of the
WSJ0 database (15 hours of speech). A Japanese aver-
age voice model for TTS was trained on 10k sentences
uttered by 86 speakers from the JNAS database (19 hours
of speech). The two average voice models were used to
learn the KLD state-mapping.

One male and one female American English speaker, not
included in the training set, were chosen from the “long
term” subset of the WSJ0 database as target speakers.
They are named 001 and 002 in the following experiments,
respectively.

2000 randomly chosen English sentences (about 2 hours
in duration) uttered by 001 and 002 were selected from the
“long term” subset of the WSJ0 corpus. These 2000 sen-
tences were used as the two speaker’s adaptation data.
This data was used as adaptation data to adapt the
Japanese average voice model to speaker 001 and 002. This
data was also used to create speaker-dependent acoustic
English TTS models for speaker 001 and 002. This made it
possible to compare their English and Japanese synthetic
vowel spaces to each other.

4.3. Features and acoustic models

Speech signals were sampled at a rate of 16 kHz and
windowed by a 25ms Hamming window with a 10 ms shift
for ASR and by an F0-adaptive Gaussian window with a
5 ms shift for TTS. ASR feature vectors consisted of 39-
dimensions: 13 PLP features and their dynamic and ac-
celeration coefficients. TTS feature vectors comprised 138-
dimensions: 39-dimension STRAIGHT mel-cepstral coeffi-
cients (plus the zero-th coefficient), log F0, 5 band-filtered
aperiodicity measures, and their dynamic and acceleration
coefficients. We used 3-state left-to-right triphone HMMs
for ASR and 5-state left-to-right context-dependent multi-
stream MSD-HSMMs for TTS. Each state had 16 Gaus-
sian mixture components for ASR and a single Gaussian
for TTS. The word recognition accuracy in the second pass
of the ASR system, which is used for TTS unsupervised
speaker adaptation in the third pass, is shown in Table
1. Although the accuracy is not very high, the ASR sys-
tem uses only very standard techniques and is an adequate
benchmark system for comparing the differences between
supervised and unsupervised adaptation for TTS.

4.4. Speaker adaptation

For speaker adaptation, the linear transforms Wi had a
tri-block diagonal structure, corresponding to the static,
dynamic, and acceleration coefficients. Since automati-
cally transcribed labels for unsupervised adaptation con-
tain errors, we adjusted a hyper-parameter (τb in Yamag-
ishi et al. (2009a)) of CSMAPLR to a higher-than-usual
value of 10000 in order to place more importance on the
prior (which is a global transform that is less sensitive to
transcription errors).

We applied the CSMAPLR transforms Wi to the Gaus-
sian pdfs of the output language HMMs using the pro-
posed KLD-based state-level mapping. For the transform
mapping in the MSD streams that have both voiced and
unvoiced spaces for the F0 modelling, the KLD calcula-
tion was conducted between a pair of Gaussian pdfs in the
voiced space; Qian et al. (2009) calculates KLD using both
voiced and unvoiced spaces.

5. Analysis of KLD state-mapping

5.1. Speech material for KLD analysis

Japanese synthetic speech was generated using the
Japanese average voice model and the two speakers, in
other words the cross-lingual adapted speaker 001 and 002
models. As we were interested in measuring vowel for-
mants, 50 sentences containing each of the Japanese vowels
in Table 2 were generated. This gave us about 2000 vowel
tokens per vowel to analyze. For each of the speakers, 2000
sentences of English adaptation data were used.

The F1 and F2 values of the vowels were measured using
the Snack Sound Toolkit (Sjölander et al., 1998; Sjölander
and Beskow, 2000). The algorithm for formant extraction
used in Snack applies dynamic programming to select and
optimize a formant trajectory from multiple candidates
which are obtained by solving for the roots of the linear
predictor polynomial (poles of a filter).

For the speaker-dependent comparison between English
and Japanese vowel spaces, 001’s synthetic English and
Japanese was used. The same vowels as above for Japanese
were used and 50 English sentences were generated. This
gave us 5315 English vowel tokens to analyze.

Our final analysis looking at the KLD output is a com-
parison between male speaker 001 and a group of 60 other
male American speakers, in F0 vs F1 vowel space. The 60
male speakers were selected from the “short term” subset
of the WSJ0 corpus. For each speaker, approximately 150
sentences were available. The sentences were all manually
transcribed and the vowels were segmented using forced-
alignment. The speakers all utter different sentences. F0
and F1 values for each of the 60 speakers were calculated
at the midpoint of each vowel and we took the mean over
all vowel tokens (once again using the Snack toolkit). We
used the synthetic speech from Yamagishi et al. (2010) for
the 60 speakers.
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Table 2: General American English and Japanese monophthongs in
the two TTS systems. (IPA notation)

English Japanese
Features IPA Example IPA Example/meaning

close front i fleece i ojisan (uncle)
near close front I kit
close-mid front e waist e seto (city in Japan)
open-mid front E dress
near open front æ trap

mid central @ comma
open central a obasan (aunt)

close back u goose W yuki (snow)
near close back U foot
close-mid back o tori (bird)
open-mid back 2, O strut, cloth
open back A lot

We also calculated F0 and F1 values for speaker 001’s
English synthetic speech and Japanese synthetic speech
which was achieved by cross-lingual speaker adaptation
based on his English speech data (2000 adaptation sen-
tences). 50 Japanese sentences were generated, the vow-
els were segmented and measured in the same way as de-
scribed above.

5.2. Phonetic analysis – Vowels

One of great advantages of the state-mapping cross-
lingual adaptation used in these experiments is that the
technique is applicable to any acoustic models that use the
same acoustic features, regardless of phoneme and contex-
tual differences. We can effortlessly apply the mapping of
linear transforms between English and Japanese acoustic
models even though the models are based on completely
different TTS text-processing modules and the languages
share only a limited amount of similar sounds.

Table 2 shows the English and Japanese monophthongs
which are used in the two text-processing modules (repre-
sented here in IPA notation) (Fitt, 2000; Yoshimura et al.,
1999). It can be seen that there appears to be little over-
lap between Japanese and English vowel sets, according to
the IPA.

Not shown in Table 2, but certainly also of interest, is
the different way in which diphthongs and long vowels are
described in the two languages. From a phonological per-
spective, generally speaking, short vowels are counted as
one unit and long vowels and diphthongs as two. However
in phonetics, this is arguably not the case. For English
listeners, long vowels and diphthongs in English are per-
ceived as one indivisible unit. Moreover, English listeners
also treat diphthongs in Japanese as one indivisible unit
(Yoneyama, 2004). In Japanese, however, due to the in-
fluence of mora (rather than syllable structure) long vow-
els and diphthongs are divisible, and can be perceived as
two units by Japanese listeners (Yoneyama, 2004; Tsu-
jimura, 2006). Consequently, in English front-end TTS
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Figure 3: Japanese vowel triangles of the average voice, male speaker
001 and female speaker 002. For the male and female speaker, cross-
lingual speaker adaptation is applied. Their adaptation data is En-
glish speech data.

processing diphthongs and long vowels are treated as dis-
tinct phonemes (i.e., additions to the vowel set, not combi-
nations of monophthongs) whereas in Japanese front-end
TTS processing diphthongs and long vowels are described
by sequences of monophthongs.

It is interesting to confirm that the transforms estimated
for the input language data are being applied to the out-
put language vowels in a phonetically appropriate way. If
this is indeed the case, it indicates that the KLD state-
mapping is functioning as intended. Figure 3 shows the
shift in Japanese vowel triangles in F1 vs F2 - F1 space
after applying cross-lingual speaker adaptation (for details
of formant measurements see Section 5.1).

The normal line represents that of the average voice, the
broken lines represent that of male speaker 001 and female
speaker 002. Figure 3 shows that the vowel triangles are
roughly similar in size and shape even after the applica-
tion of cross-lingual speaker adaptation. This is despite
the large differences between English and Japanese vowel
spaces.

To get an indication of the distance between a single tar-
get speaker’s vowels in the two languages, we measured F1
and F2 values for speaker 001’s synthetic Japanese and En-
glish vowel tokens. The mean values per vowel are shown
in Figure 4 for English and Japanese synthetic vowels in
F1 vs F2 - F1 space. 50 sentences including 5315 vow-
els were used for calculating the average. Circle markers
indicate synthetic Japanese vowels after applying cross-
lingual speaker adaptation using male speaker 001’s En-
glish adaptation data. Cross markers show speaker 001’s
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Figure 4: Japanese and English vowels of male speaker 001 in F1
vs F2 - F1 space. Japanese vowels were created by applying cross-
lingual speaker adaptation using English speech data.

English synthetic vowels which were generated using the
speaker-dependent English TTS acoustic models.

From this figure, we can first see that the two phonemes
which are represented by the same IPA symbol in Japanese
and English – /i/ and /e/ – are also located near to each
other in the F1 vs F2 - F1 vowel space. Recall that the
KLD mapping algorithm does not utilize any phonetic or
linguistic knowledge at all: it simply measures the KLD
between two Gaussians pdfs and then the linear transform
estimated from the English acoustic models is applied to
the corresponding states of the Japanese model, thus per-
forming an affine transform of mel-cepstral acoustic space
in Japanese. We see that the affine transform results in
close F1 vs F2 - F1 values for these two vowels. This is
an indication that the state-mapping cross-lingual adap-
tation behaves in a way that is consistent with phonetic
knowledge.

Figure 4 also shows that the other Japanese vowels –
which do not have a direct match in English (in the IPA
representation) are transformed to phonetically reasonable
places. For instance, we see that the Japanese vowel /a/
achieved by cross-lingual adaptation lies between the En-
glish vowels /æ/, /2/ and /E/, which closely mirrors the
IPA vowel chart.

5.3. Comparison with 60 different English speakers in the
F0 vs F1 space

An F0 vs F1 vowel space can be viewed as a low dimen-
sional perceptual space which matches listeners discrimi-
nation between different speakers to a certain extent (Bau-
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60 male speakers (average of /i/ and /e/ in English phonemes)

male speaker 001 (average of /i/ and /e/ in English phonemes)

male speaker 001 (average of /i/ and /e/ in Japanese phonemes)

Figure 5: 60 male English speakers and male speaker 001 in English
and Japanese in the log F0 vs F1 space. These points were calculated
only from two common phonemes of English and Japanese – /i/ and
/e/ –. The 60 different speakers are represented by white points and
speaker 001 in English and Japanese are represented by black points
and black stars, respectively.

mann and Belin, 2010). It can also be used to illustrate
degree of speaker similarity between different speakers.
To illustrate the effectiveness of our cross-lingual speaker
adaptation from English to Japanese we compared speaker
001’s English and Japanese speech in F0 vs F1 space to 60
other male English speakers. Note that our HMMs have
both mel-cepstral features and log F0 and these are simul-
taneously transformed into those of the target speaker by
our cross-lingual speaker adaptation.

The method we used to measure F0 vs F1 data points
for each of the speakers is described in Section 5.1. These
points were calculated only from the phonemes which En-
glish and Japanese have in common – /i/ and /e/ –.

The results are shown in Figure 5 where we can see
English and Japanese versions of the 001 synthetic voices
are close to each other, compared to the data points for
the other 60 speakers. Note that these points represent the
averages of log F0 and log F1 values calculated from the
two common phonemes. This result supports our claim
that the state-mapping cross-lingual adaptation achieves
a high degree of speaker similarity between the synthetic
speech of a targeted speaker in two different languages at
the segmental level (as far as vowels are concerned).

5.4. Phonetic analysis – Consonants

Table 3 shows the consonants used in our experiments.
In contrast to vowels, where only two phonemes are shared
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Table 3: English and Japanese consonants according to the IPA
consonant chart.

Features English Japanese

voiceless bilabial plosive p p
voiced bilabial plosive b b
voiceless coronal plosive t t
voiced coronal plosive d d
voiceless velar plosive k k
voiced velar plosive g g

voiced labiodental nasal M

voiced bilabial nasal m m
voiced coronal nasal n ï n
voiced velar nasal N

voiced coronal tap or flap R

voiceless labiodental fricative f f
voiced labiodental fricative v
voiceless dental fricative T

voiced dental fricative D

voiceless alveolar fricative s s
voiced alveolar fricative z z
voiceless postalveolar fricative S S

voiced postalveolar fricative Z

voiceless glottal fricative h h

voiced coronal approximant ô ô

voiced palatal approximant j j
voiced velar approximant î

voiceless labialized velar approximant û

voiced labialized velar approximant W

voiced coronal lateral approximant l

voiceless alveolar affricate �µ

voiceless postalveolar affricate Ù

voiced postalveolar affricate Ã

voiceless alveolo-palatal affricate Ć

voiced alveolo-palatal affricate dý

between English and Japanese, there are relatively many
shared consonants. We calculated phoneme level KLDs
for the phonemes shared across languages and verified
whether the pairs with minimum KLD corresponded to
the same consonants in both languages. The accuracy
achieved was 45%. This means that about half of the map-
ping ‘rules’ automatically learned by the KLD without any
linguistic knowledge are phonetically plausible. One might
feel that this accuracy is not good enough for cross-lingual
speaker adaptation. We therefore analyzed the errors. We
checked the N-best results of the KLD mapping and found
that most of the errors happened due to misjudgment of
voiced and unvoiced categories such as unvoiced bilabial
plosive /p/ and voiced bilabial plosive /b/.

This can be explained perfectly well by the theoretical
limitations of the current KLD calculation strategy: We
calculated the KLD per Gaussian per feature. In other
words, we did not utilize F0 values and voicing information
for the KLD calculation of spectral features. Therefore the
mapping rules learned from the KLD between Gaussians
for spectral features cannot represent any voicing cate-
gories and as a consequence the confusion between voiced

and unvoiced categories happens frequently. Development
of better learning methods for mapping ‘rules’ across not
just spectral but also source and voicing features is an im-
portant future task.

6. Results for the listening tests

6.1. Perceptual Experiments

To assess and evaluate our method perceptually, we per-
formed several perceptual experiments. The aims of the
perceptual experiments are 1) to confirm that the state-
mapping approach to cross-lingual adaptation can improve
speaker similarity in the output language, 2) to assess the
differences between supervised and unsupervised adapta-
tion and 3) to confirm that the proposed method for effi-
cient KLD estimation does not reduce the quality of the
synthetic speech. The first and second aims were investi-
gated in the first listening test. The third aim was assessed
separately but using the same stimuli.

First, experiments on supervised and unsupervised
English-to-Japanese speaker adaptation for HMM-based
speech synthesis were performed. Synthetic stimuli were
generated from seven models: the average voice model and
supervised or unsupervised adapted models each with 5,
50, or 2000 English adaptation sentences.

Ten Japanese native listeners participated in the two
listening tests for speaker similarity judgement and intel-
ligibility tasks. In the speaker similarity judgement task,
each listener was presented with 12 pairs of sentences in
random order: the first sample in each pair was a refer-
ence original utterance from the database (English) and
the second was a synthetic speech utterance generated us-
ing one of the seven models (Japanese). For each pair,
listeners were asked to give an opinion score for the sec-
ond sample relative to the first (DMOS), expressing how
similar the speaker identity was on a 5-point scale. As no
Japanese speech data were available for the target English
speakers, the reference utterances were in English. The
text for the 12 Japanese sentences in the listening test for
the speaker similarity task comprised six written Japanese
news sentences randomly chosen from the Mainichi corpus
and six spoken English news sentences from the English
adaptation data that had been recognized using ASR and
then translated into Japanese text using MT. In the in-
telligibility task, the listeners heard semantically unpre-
dictable sentences (SUS) (Benoit et al., 1996) and were
asked to type in what they heard. Typographical errors
and spelling mistakes were allowed for in the scoring pro-
cedure.

6.2. Subjective evaluation results for cross-lingual speaker
adaptation – speaker similarity

Figure 6 shows the average DMOSs and 95% confidence
intervals. First of all, we can see that the adapted voices
are judged to sound more similar to the target speakers
than the average voice. However, the figure also shows
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Figure 6: DMOS results for supervised and unsupervised speaker
adaptation. “0 sentences” refers to the unadapted average voice
model for Japanese.
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Figure 7: DMOS results for Japanese news texts chosen from the
corpus and English news texts which were recognized by ASR then
translated into Japanese by MT. “0 sentences”refers to the un-
adapted average voice model for Japanese.

that the maximum scores are less than three. Our earlier
analysis on vowels (Section 5.2) showed that the state-
mapping cross-lingual adaptation does seem to change the
speaker similarity of synthetic speech in F0 vs F1 space to
match that of a target speaker well at the segmental level
(for vowels). We hypothesize that the reason this does not
translate to higher speaker similarity scores in this exper-
iment is 1) the gap between natural speech and synthetic
speech and 2) the gap between English and Japanese. As
references for judging the degree of speaker similarity of
the synthetic speech to the original speaker, we used nat-
ural speech. However, it has been shown that there is a
significant degradation in a listener’s ability to decide on
speaker similarity when comparing natural and synthetic
speech stimuli (Wester and Karhila, 2011). The task here
is further made more complex by requiring the listeners
to rate speaker similarity across languages. This has also
been shown to affect speaker similarity rating significantly
(Wester, 2010). These two factors combined explain why
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Figure 8: Phoneme error rates for supervised and unsupervised
speaker adaptation. “0 sentences” refers to the unadapted average
voice model for Japanese.

speaker similarity scores were not higher.
Next, we can see that the differences between super-

vised and unsupervised adaptation are very small. This
is a positive outcome because real-world applications of
these techniques would most likely need to use unsuper-
vised adaptation. A somewhat puzzling result however is
that the amount of adaptation data has a relatively small
effect. This requires further investigation in future work.

In the DMOS test, two different types of sentence were
synthesised and presented to the subjects: fluent sentences
chosen from the Japanese news text corpus; sentences that
had been recognized using ASR and then had been trans-
lated from English into Japanese. To clarify the effect
of the text types used in speech synthesis, we then ana-
lyze the scores of Figure 6 in a different way. Figure 7
shows the average scores using Japanese news texts from
the Mainichi corpus and English news texts recognized by
ASR and translated by MT. It appears that the speaker
similarity scores are affected by the text of the sentences.
Interestingly the gap becomes larger as the number of
adaptation sentences increases; a parallel investigation was
performed and we found that fluency of translated texts
affect synthetic speech. For details, refer to Hashimoto
et al. (2011a,b).

6.3. Subjective evaluation results for cross-lingual speaker
adaptation – Intelligibility

Figure 8 shows the phoneme error rates of the SUS sen-
tences used in the intelligibility test. First of all, very
interestingly, we can see that all the adapted voices have
better phoneme error rates than that of the average voice.
To investigate this initially surprising result, we compared
the adapted voices with the average voice and found out
that the adapted models always have smaller variance than
that of the average voice model. Note that CSMAPLR
transforms not only the mean vectors but also the vari-
ance matrices of Gaussian pdfs of the average voice model.
Figure 9 shows the average of the diagonal components
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Figure 9: Comparison of the average of dialogue components of vari-
ance matrices of all Gaussian pdfs.

of the covariance matrices of all Gaussian pdfs for mel-
cepstra of the average voice model and adapted models
using 5, 50 and 2000 sentences, in supervised and unsuper-
vised manners. We can see that for all dimensions of the
mel-cepstra, variance becomes smaller after speaker adap-
tation. We hypothesize that this smaller variance causes
the generated mel-cepstral trajectories to be more ‘pro-
totypical’ and hence more intelligible, as reflected in the
better phoneme error rates.

We can also see that voices using unsupervised adap-
tation always have worse phoneme error rates than ones
using supervised adaptation. This is not surprising be-
cause we adapted the voices using automatically tran-
scribed sentences that have typically 13% to 15% word
error rate. However, it is worth emphasising that the in-
crease in phoneme error rate is just 1% absolute.

6.4. Results of listening test for efficient KLD calculation

Experiments investigating the effect of using restricted
order mel-cepstral coefficients on the KLD calculation of
state-mapping were performed. Although the number of
mel-cepstral coefficients for calculation of KLD was dif-
ferent, the number of log F0 coefficients for calculation
of KLD was not different. Ten Japanese native listen-
ers participated in the listening test. They carried out a
DMOS test: after listening original speech and synthetic
speech, the subjects were asked how similar to the target
speaker’s identity. Experimental methods were described
in section 3.5. Once again the reference utterances were
English. In the speaker similarity judgement and intelli-
gibility tasks, Japanese news sentences randomly chosen
from the Mainichi corpus and SUSs, respectively, were
used as the sentences in this listening test. Synthetic stim-
uli were generated from the average models and the super-
vised adapted models with 2000 utterances.

Figure 10 plots DMOSs. The results show that speaker
similarity of the speech samples with low dimensional
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Figure 10: Experimental results: DMOS comparison of dimension
for KLD calculation.

state-mapping achieve the same level as the baseline.
Comparing “120” and “10” in the figure, we see that com-
putational cost required for mel-cepstrum state-mapping
was reduced by about 90 percent without any detrimental
effect on the quality of the synthetic speech. To further
underpin this result, we analysed and compared the KLD
state-level mapping rules before and after we restricted the
order of mel-cepstral coefficients. We found that when we
restrict the order of mel-cepstral coefficients to be used
for KLD to “20” or “10”, 21% and 16% of state-mapping
rules acquired are identical to those using all dimensions,
respectively. Although the number of pairs shared between
the mappings generated by the baseline and the proposed
methods is small because of the different criterion, it can
be seen from the figure that an appropriate state-mapping
was still found by the proposed method.

Figure 11 shows the subjective phoneme error rates of
the SUS sentences in the intelligibility test. We can see
that using restricted order mel-cepstral coefficients for the
KLD calculation of state-mapping does not degrade the
intelligibility of the adapted voices. In fact, restricting the
order of the mel-cepstral coefficients to 20 was found to
slightly increase intelligibility.

7. Conclusions

In this paper, several developments have been inte-
grated into a single architecture which achieves unsu-
pervised cross-lingual speaker adaptation for HMM-based
speech synthesis. We demonstrate an end-to-end speech-
to-speech translation system built for four languages (En-
glish, Finnish, Mandarin, and Japanese). The phonetic
analysis supports the finding the state-mapping cross-
lingual adaptation achieves a high degree of speaker simi-
larity between the synthetic speech of a targeted speaker
in two different languages at the segmented level. The
listening tests for English-to-Japanese adaptation demon-
strate that the adapted voices sound more similar to the
target speaker than the average voice and that differences
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Figure 11: Experimental results: intelligibility comparison of dimen-
sion for KLD calculation.

between supervised and unsupervised cross-lingual speaker
adaptation are small in terms of both the quality and in-
telligibility of the synthetic speech. Using the proposed
efficient KLD calculation method, the computational cost
of finding the mel-cepstrum state-mapping is significantly
reduced without any detrimental effect on the quality and
intelligibility of the synthetic speech.

We have not addressed the question of whether the
cross-lingual adapted voices should sound like a true bilin-
gual or an adult second language learner (with an obvious
‘foreign accent’). Our instructions to the subjects were
simply to rate how similar they thought the synthesized
speech was to the original speaker. In parallel with the
research presented in this paper, other research has been
investigating the above issues. For more details, please re-
fer to Wester (2010); Wester and Karhila (2011); Tsuzaki
et al. (2011).

Since December 2002, we have made regular public re-
leases of an open-source software toolkit named “HMM-
based speech synthesis system (HTS)” to provide a re-
search and development platform for statistical parametric
speech synthesis. Various organizations currently use it to
conduct their own research. HTS version 2.2 was released
in December 2010 and supports the cross-lingual adapta-
tion method based on state-level mapping, learned using
the KLD between pairs of states.

Future work includes unsupervised cross-lingual speaker
adaptation using linear transforms estimated directly by
ASR-HMMs, which must therefore use the same acous-
tic features as TTS-HSMM and to use an approximated
KLD to efficiently measure the distance between pairs of
Gaussian mixtures, necessitated by the fact that ASR-
HMMs typically use Gaussian mixture output densities
(Goldberger et al., 2003). Spectral state mapping that
uses the voicing information to improve the linguistic ac-
curacy of the KLD mapping, especially for consonants, as
found in Section 5.4, is also part of our future work. In this
paper, we had performed experiments only on English-to-
Japanese speaker adaptation. The other language pairs

should also be evaluated. Speech samples used in this ex-
periments are available online (http://www.sp.nitech.
ac.jp/~uratec/clsa.html).
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Sjölander, K., Beskow, J., Gustafson, J., Lewin, E., Carlson, R., and
Granström, B. (1998). Web-based educational tools for speech
technology. In Proc. ICSLP 1998 .

Toda, T. and Tokuda, K. (2007). A speech parameter generation
algorithm considering global variance for HMM-based speech syn-
thesis. IEICE Trans. Inf. & Syst., E90-D(5), 816–824.

Tokuda, K., Kobayashi, T., Masuko, T., and Imai, S. (1994). Mel-
generalized cepstral analysis — a unified approach to speech spec-
tral estimation. In Proc. ICSLP-94 , pages 1043–1046, Yokohama,
Japan.

Tokuda, K., Masuko, T., Miyazaki, N., and Kobayashi, T. (2002).
Multi-space probability distribution HMM. IEICE Trans. Inf. &
Syst., E85-D(3), 455–464.

Tsujimura, N. (2006). An Introduction to Japanese Linguistics
(Blackwell Textbooks in Linguistics). Blackwell Publishing Lim-
ited.

Tsuzaki, M., Tokuda, K., Kawai, H., and Ni, J. (2011). Estimation of
perceptual spaces for speaker identities based on the cross-lingual
discrimination task. In INTERSPEECH 2011 , pages 157–160,
Florence, Italy.

Wester, M. (2010). Cross-lingual talker discrimination. In Proc.
Interspeech 2010 , Tokyo, Japan.

Wester, M. and Karhila, R. (2011). Speaker similarity evaluation
of foreign-accented speech synthesis using HMM-based speaker
adaptation. In Proc. ICASSP 2011 , pages 5372 – 5375, Prague,
Czech Republic.

Wester, M., Dines, J., Gibson, M., Liang, H., Wu, Y.-J., Saheer,
L., King, S., Oura, K., Garner, P. N., Byrne, W., Guan, Y., Hir-
simäki, T., Karhila, R., Kurimo, M., Shannon, M., Shiota, S.,
Tian, J., Tokuda, K., and Yamagishi, J. (2010). Speaker adap-
tation and the evaluation of speaker similarity in the EMIME
speech-to-speech translation project. In Proceedings of the 7th
ISCA Speech Synthesis Workshop, Kyoto, Japan.

Woodland, P. C. (2001). Speaker adaptation for continuous den-
sity HMMs: A review. In Proceedings of the ISCA workshop on
adaptation methods for speech recognition, pages 11–19.

Wu, Y.-J. and Tokuda, K. (2009). State mapping based method for
cross-lingual speaker adaptation in HMM-based speech synthesis.
In Proc. Interspeech 2009 , pages 528–531, Brighton, U.K.

Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., and Isogai,
J. (2009a). Analysis of speaker adaptation algorithms for HMM-
based speech synthesis and a constrained SMAPLR adaptation
algorithm. IEEE Audio, Speech, & Language Processing, 17(1),
66–83.

Yamagishi, J., Lincoln, M., King, S., Dines, J., Gibson, M., Tian, J.,
and Guan, Y. (2009b). Analysis of unsupervised and noise-robust
speaker-adaptive HMM-based speech synthesis systems toward a
unified ASR and TTS framework. In Proc. Blizzard Challenge
Workshop, Edinburgh, U.K.

Yamagishi, J., Usabaev, B., King, S., Watts, O., Dines, J., Tian, J.,
Hu, R., Guan, Y., Oura, K., Tokuda, K., Karhila, R., and Kurimo,
M. (2010). Thousands of voices for HMM-based speech synthesis
– Analysis and application of TTS systems built on various ASR
corpora. IEEE Audio, Speech, & Language Processing, 18(5),
984–1004.

Yoneyama, K. (2004). A cross-linguistic study of diphthongs in spo-
ken word processsing in Japanese and English. In Proc. Inter-
speech 2004 , Jeju Island, Korea.

Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., and
Kitamura, T. (1999). Simultaneous modeling of spectrum,
pitch and duration in HMM-based speech synthesis. In Proc.
EUROSPEECH-99 , pages 2374–2350, Budapest, Hungary.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-based
state tying for high accuracy acoustic modeling. In Proc. ARPA
Human Language Technology Workshop, pages 307–312, Plains-
boro, NJ.

Yu, Z., Wu, Y.-J., Zen, H., Nankaku, Y., and Tokuda, K. (2008).
Analysis of stream-dependent tying structure for HMM-based
speech synthesis. In Proc. ICSP 2008 , pages 655–658.

Zen, H., Toda, T., Nakamura, M., and Tokuda, K. (2007a). Details
of Nitech HMM-based speech synthesis system for the Blizzard
Challenge 2005. IEICE Trans. Inf. & Syst., E90-D(1), 325–333.

Zen, H., Tokuda, K., Masuko, T., Kobayashi, T., and Kitamura,
T. (2007b). A hidden semi-Markov model-based speech synthesis

12



system. IEICE Trans. Inf. & Syst., E90-D(5), 825–834.

13


