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PAPER

An Extension of Separable Lattice 2-D HMMs for Rotational Data
Variations

Akira TAMAMORI†a), Nonmember, Yoshihiko NANKAKU†b), and Keiichi TOKUDA†c), Members

SUMMARY This paper proposes a new generative model which can
deal with rotational data variations by extending Separable Lattice 2-D
HMMs (SL2D-HMMs). In image recognition, geometrical variations such
as size, location and rotation degrade the performance. Therefore, the ap-
propriate normalization processes for such variations are required. SL2D-
HMMs can perform an elastic matching in both horizontal and vertical di-
rections; this makes it possible to model invariance to size and location. To
deal with rotational variations, we introduce additional HMM states which
represent the shifts of the state alignments among the observation lines in
a particular direction. Face recognition experiments show that the pro-
posed method improves the performance significantly for rotational vari-
ation data.
key words: image recognition, hidden Markov models, variational method

1. Introduction

For many years, many researchers of pattern recognition
have developed the field of image recognition as the main
focus of pattern recognition and various techniques have
been proposed. Especially, statistical approaches based on
Principal Component Analysis (PCA) such as eigenface
methods and subspace methods show good recognition per-
formance in many applications [1], [2]. However, if images
contain geometric variations such as size, location and rota-
tion, the recognition performance is significantly degraded.
Therefore, normalization processes for such geometric vari-
ations are required prior to applying these methods.

In many image recognition systems, the normalization
process is included in the pre-process part of the classifica-
tion, and heuristic normalization techniques are used. How-
ever, it is necessary to develop the normalization technique
for each task, because such heuristic techniques usually use
task dependent information. Furthermore, in image recogni-
tion, the final objective is not to accurately normalize images
for human perception but to achieve a better recognition per-
formance. Therefore, it is natural to use the same criterion
for both training classifiers and normalization. This means
that the normalization process should be integrated into clas-
sifiers.

Hidden Markov model (HMM) based techniques have
been proposed as approaches for geometric variations. The
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geometric matching between input images and model pa-
rameters is represented by discrete hidden variables and
the normalization process is included in the calculation of
probabilities. However, the extension of HMMs to multi-
dimensions generally leads to an exponential increase in
the amount of computation for its training algorithm. To
reduce the computational complexity, the model structure
needs to be constrained by limiting the number of possible
alignments and/or assuming independence between hidden
variables. Pseudo 2-D HMMs (or called embedded HMMs)
have been proposed [3] and applied to many image recogni-
tion tasks. A pseudo 2-D HMM has a composite state struc-
ture for an efficient 2-D representation avoiding the com-
plexity burden of a fully connected 2-D HMM. The states of
a superior HMM in the horizontal direction are called super-
states and each super-state has a one-dimensional HMM in
the vertical direction instead of a probability density func-
tion. This assumption reduces the computational complex-
ity and the maximum likelihood training algorithm has been
derived [4]. However, the state alignments of consecutive
observation lines in the vertical direction are calculated in-
dependently of each other and this hypothesis does not al-
ways hold true in practice.

Essentially, the studies of 2D dynamic programming
(2D-DP) treat the same problem of the 2D-HMMs. The
main difference between these studies is the definition of the
cost function; The 2D-DP focuses on finding the mapping
between two images with a pre-defined cost function, while
the likelihood of 2D-HMMs is defined between an input im-
age and the distribution which is estimated from multiple
training images. Although some efficient approximation al-
gorithms have been proposed for the 2D-DP problem [7]–
[9], they still need high complicated costs and prior knowl-
edge to determine the cost function is required for repre-
senting an accurate elastic matching dependently on image
variations.

For another HMM based approach, Separable Lattice
2-D HMMs (SL2D-HMMs) have been proposed [5] to re-
duce the computational complexity while retaining the good
properties for modeling multi-dimensional data. Further-
more, hidden Markov eigenface models (HMEMs) have
been proposed [6] where the eigenface methods are inte-
grated into SL2D-HMMs. The SL2D-HMMs have the com-
posite structure of multiple hidden state sequences which
interact to model the observation on a lattice. SL2D-HMMs
perform an elastic matching in both horizontal and vertical
directions; this makes it possible to model not only invari-
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ance to the size and location of an object but also nonlinear
warping in each dimension. However, SL2D-HMMs still
cannot deal with rotational variations.

In this paper, we propose a new generative model
which can deal with rotational data variations by extend-
ing SL2D-HMMs. To reduce the complexity, SL2D-HMMs
have only one state sequence in each direction; this means
that all horizontal/vertical lines of an observation lattice
have the same state alignment for each direction. However,
to represent the rotational variations, the models should have
a different state alignment for each observation line and hor-
izontal/vertical state alignments should be changed along
with vertical/horizontal direction. Furthermore, it should
take account of the dependency of the state alignments be-
tween consecutive observation lines to perform a continu-
ous elastic matching. In this paper, we introduce additional
HMM states which represent the shifts of the state align-
ments of the observation lines in a particular direction.

The parameters of the proposed model can be esti-
mated via the Expectation Maximization (EM) algorithm
for approximating the Maximum Likelihood (ML) estimate.
However, similar to the training of SL2D-HMMs, the ex-
act expectation step is computationally intractable. To de-
rive a feasible algorithm, we applied the variational EM al-
gorithm [10] to the our proposed model. The variational
method approximates the posterior distribution over the hid-
den variables by a tractable distribution. The rest of the
paper is organized as follows. Section 2 explains SL2D-
HMMs briefly. Section 3 defines the structure of the model
representing rotational variations and, the training algorithm
for the proposed model is derived in Sect. 4. In Sect. 5,
we describe face recognition experiments on the XM2VTS
database and finally conclude in Sect. 6.

2. Separable Lattice 2-D HMMs

Separable lattice 2-D hidden Markov models are defined for
modeling two-dimensional data. The observations of two-
dimensional data, e.g., pixel values of an image and image
sequence, are assumed to be given on a two-dimensional
lattice:

O = {Ot |t = (t(1), t(2)) ∈ T} (1)

where t denotes the coordinates of the lattice in two-
dimensional space T and t(m) = 1, . . . ,T (m) is the co-
ordinate of the m-th dimension. The observation Ot

is emitted from the state indicated by the hidden vari-
able St ∈ K. The hidden variables St ∈ K can
take one of K = K(1)K(2) states which assumed to
be arranged on an two-dimensional state lattice K =

{(1, 1), (1, 2), . . . , (1,K(2)), (2, 1), . . . , (K(1),K(2))}.
In other words, a set of hidden variables {St |t ∈ T}

represents a segmentation of observations into the K states
and each state corresponds to a segmented region in which
the observation vectors are assumed to be generated from
the same distribution. Since the observation Ot is depen-
dent only on the state St as in ordinary HMMs, dependen-

cies among hidden variables determine the properties and
the modeling ability of two-dimensional HMMs.

To reduce the number of possible state sequences,
we constrain the hidden variables to be composed of two
Markov chains:

S = {S(1),S(2)} (2)

S(m) = {S (m)
1 , . . . , S

(m)
t(m) , . . . , S

(m)
T (m) } (3)

where S(m) is the Markov chain along with the m-th coordi-
nate and S (m)

t(m) ∈ {1, . . . ,K(m)}. In the separable lattice 2-D
HMMs, the composite structure of hidden variables is de-
fined as the product of hidden state sequences:

St = (S (1)
t(1) , S

(2)
t(2) ) (4)

This means that the segmented regions of observations are
constrained to be rectangles and this allows an observation
lattice to be elastic in both vertical and horizontal directions.
Using this structure, the number of possible state sequences

can be reduced from {∏m K(m)}∏m T (m)
to

∏
m{K(m)}T (m)

. Fig-
ures 1 and 2 show the model structure of the separable lattice
2-D HMMs and its graphical representation, respectively.

The joint probability of observation vectors O and hid-
den variables S can be written as

P(O,S | Λ)

= P(O | S,Λ) ·
∏

m=1,2

P(S(m) | Λ)

=
∏

t

P(Ot | St ,Λ)

×
∏

m=1,2

⎡⎢⎢⎢⎢⎢⎢⎣P(S (m)
1 | Λ)

T (m)∏
t(m)=2

P(S (m)
t(m) | S (m)

t(m)−1
,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

where Λ is a set of model parameters.

Fig. 1 Model structure of the separable lattice 2-D HMMs: hidden state
sequences are composed of independent two Markov chains.
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Fig. 2 Graphical representation of the separable lattice 2-D HMMs: the
observation are emitted from the product of horizontal and vertical hidden
state sequences.

3. Model Structure Representing Rotational Varia-
tions

To represent rotational variations, the models should have a
different state alignment for each observation line and hor-
izontal/vertical state alignments should be changed along
with vertical/horizontal direction. In this paper, we pro-
pose a new model structure with additional HMM states
which represent the shifts of the state alignments of obser-
vation lines in a particular direction. Since the degree of
the shift is controlled by the Markov chains, the proposed
model can represent the dependency of the state alignments
between consecutive observation lines. Therefore, the pro-
posed model can perform a continuous elastic matching in-
cluding rotational transformations. Figures 3 and 4 show the
model structure of the proposed model and graphical repre-
sentation for the proposed model, respectively.

The likelihood function of the proposed model is de-
fined as follows:

P(O,S, d | Λ)

= P(O | S, d,Λ) · P(S | Λ) · P(d | Λ)

=
∏

t

P(Ot | St , dt ,Λ)

×
∏

m

P(S(m) | Λ) ·
∏

m

P(d(m) | Λ) (6)

where S represents the reference state sequences corre-
sponding to the state sequences of SL2D-HMMs and d rep-
resents the shift state sequences and consists of two Markov
chains for each dimension:

d =
{
d(1), d(2)

}
(7)

Fig. 3 Model structure of the proposed model: The horizontal/vertical
state alignments is changed along with vertical/horizontal state direction to
represent the rotational variations.

Fig. 4 Graphical representation of the proposed model: The shift se-
quence affects the all data on the same observed line.

d(m) =
{
d(m)

1 , d(m)
2 , . . . , d(m)

T (n)

}
(8)

d(m)
t(n) ∈

{
D(m)

min, D(m)
min + 1, . . . , D(m)

max

}
, n � m (9)

where D(m)
min and D(m)

max represent the minimum and maximum
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Fig. 5 An example of state alignment of the proposed model for refer-
ence states and shifted states in horizontal direction: Without shift states
(SL2D-HMMs), rectangle state alignments can be obtained while with shift
states, monotonically shifted state alignments can be obtained in the pro-
posed model.

shift of the m-th coordinate respectively, and St is the shifted
state defined as

St =

(
S (1)

t
(1) , S (2)

t
(2)

)
=

(
S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

)
(10)

where the following boundary conditions are assumed:

S (m)

t
(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(
t
(m) ≤ 0

)
K(m)

(
t
(m)
> T (m)

) (11)

Figure 5 shows an example of the state alignment of the pro-
posed model where monotonic alignment can be obtained by
using shift states.

Model parameters of the proposed model are summa-
rized as follows:

• Parameters for state transition probability of refer-
ence states S:

1) Π(m)
S = {π(m)

S ,i |1 ≤ i ≤ K(m)}: the initial state prob-

ability distribution, where π(m)
S ,i = P(S (m)

1 = i|Λ)
is the probability of state i at t(m) = 1 in the m-th
state sequence S(m).

2) A(m)
S = {a(m)

S ,i j | 1 ≤ i, j ≤ K(m)}: the transition prob-

ability matrix, where a(m)
S ,i j = P(S (m)

t(m) = j|S (m)
t(m)−1

=

i,Λ) is the transition probability from state i to
state j in the m-th state sequence S(m).

• Parameters for state transition probability of shift
states d:

1) Π(m)
d = {π(m)

d,i |1 ≤ i ≤ K(m)
d }: the initial state prob-

ability distribution, where π(m)
d,i = P(d(m)

1 = i|Λ) is
the probability of state i at t(n) = 1 in the m-th state
sequence d(m).

Fig. 6 The example of topology of the transition probabilities of the m-th
dimension shift states where D(m)

min = −2 and D(m)
max = 2; from this topology,

monotonically increasing or decreasing sequence of the shift amount can
be obtained and clockwise or counterclockwise rotational variations can be
represented.

2) A(m)
d = {a(m)

d,i j|D(m)
min ≤ i, j ≤ D(m)

max}: the transi-

tion probability matrix, where a(m)
d,i j = P(d(m)

t(n) =

j|d(m)
t(n)−1

= i,Λ) is the transition probability from

state i to state j in the m-th state sequence d(m).

• Parameters for output probability distribution:
B = {bk(Ot)|k ∈ K}: the output probability distribu-
tions, where bk(Ot) is the probability of observation
vector Ot at the state k on the state lattice K and as-
sumed to be a single Gaussian distribution: P(Ot |St =

k) = N(Ot ;µk,Σk) where µk and Σk are the mean vec-
tor and the covariance matrix, respectively.

Using the above shorthand notation, the proposed model is
defined as

Λ = {Λ(1)
S ,Λ

(2)
S ,Λ

(1)
d ,Λ

(2)
d , B}, (12)

Λ
(m)
S = {Π(m)

S , A
(m)
S }, (13)

Λ
(m)
d = {Π(m)

d , A
(m)
d }. (14)

The proposed model has potential to perform an con-
tinuous elastic matching beyond rotational variations. How-
ever, in this paper, the topology and the shift amounts are
constrained to a special form which is expected to repre-
sent the continuous rotational variations. The example of the
form for the m-th dimension where D(m)

min = −2 and D(m)
max = 2

is shown in Fig. 6.

4. Training Algorithm

4.1 Variational EM Algorithm

The parameters of the proposed model can be estimated via
the Expectation Maximization (EM) algorithm which is an
iterative procedure for approximating the Maximum Like-
lihood (ML) estimate. This procedure maximizes the ex-
pectation of the complete data log-likelihood so called Q-
function:
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Q(Λ,Λ′) =
∑
S,d

P(S, d | O,Λ) ln P(O,S, d | Λ′) (15)

By maximizing the Q-function with respect to model pa-
rameters Λ, the re-estimation formula in the M-step can be
easily derived. However, the calculation of the posterior dis-
tribution P(S, d | O,Λ) in the E-step is computationally in-
tractable due to the combination of hidden variables. To de-
rive a feasible problem, we applied the variational EM algo-
rithm [10] to the training algorithm of the proposed model.

The variational methods approximate the posterior dis-
tribution over the hidden variables by a tractable distribu-
tion. Any distribution over the hidden variables defines a
lower bound on the log-likelihood

ln P(O | Λ) = ln
∑

S

∑
d

Q(S, d)
P(O,S, d | Λ)

Q(S, d)

≥
∑

S

∑
d

Q(S, d) ln
P(O,S, d | Λ)

Q(S, d)

= F (Q,Λ) (16)

where Jensen’s inequality has been applied. The difference
between ln P(O | Λ) and F is given by the KL divergence
between Q(S, d) and the posterior distribution of the hidden
variables P(S, d | O,Λ):

F (Q,Λ) =
∑

S

∑
d

Q(S, d) ln
P(O,S, d | Λ)

Q(S, d)

=
∑

S

∑
d

Q(S, d|Λ) ln P(O | Λ)

+
∑

S

∑
d

Q(S, d) ln
P(S, d | O,Λ)

Q(S, d)

= ln P(O | Λ) − KL(Q || P) (17)

Since the true log-likelihood ln P(O | Λ) is independent of
Q(S, d), maximizing the lower bound F is equivalent to
minimizing the KL divergence. If we allow Q(S, d) to have
complete flexibility then we see that the optimal Q(S, d) dis-
tribution is given by the true posterior P(S, d | O,Λ), in the
case where the KL divergence is zero and the bound be-
comes exact. In order to yield a tractable algorithm, it is
necessary to consider a more restricted structure of Q(S, d)
distributions. Given the structure, the parameters of Q(S, d)
are varied so as to obtain the tightest possible bound, which
maximizes F .

The variational EM algorithm iteratively maximizes F
with respect to the Q and Λ holding the other parameters
fixed:

(E-step) : Q(k+1) = arg max
Q∈C

F (Q,Λ(k))

(M-step) : Λ(k+1) = arg max
Λ

F (Q(k+1),Λ)

where C is the set of constrained distributions. In this pro-
cedure, the lower bound F is guaranteed to increase instead
of the value of the Q-function.

The complexity and the approximation property of the

variational EM algorithm are dependent on a constraint to
the posterior distribution Q(S, d) and it should be deter-
mined for each structure of graphical models. Here we con-
sider a constrained family of variational distributions for the
proposed model by assuming that Q(S, d) factorizes over
subset S(m) and d(m) of the variables in S and d, so that

Q(S, d) = Q(S)Q(d) (18)

=

M∏
m=1

Q(S(m))
M∏

m=1

Q(d(m)) (19)

where Q(S) and Q(d) are the posterior distribution over
S and d, respectively. Also,

∑
S(m) Q(S(m)) = 1 and∑

d(m) Q(d(m)) = 1, m = 1, . . . ,M. The optimal distributions
of the subsets are obtained by maximizing F independently
while keeping the other distributions fixed:

Q(S(m)) ∝ P(S(m) | Λ)

× exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

d

Q(d)
∑

S\S(m)

∏
n�m

Q(S(n)) ln P(O | S, d,Λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(20)

Q(d(m)) ∝ P(d(m) | Λ)

× exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

S

Q(S)
∑

d\d(m)

∏
n�m

Q(d(n)) ln P(O | S, d,Λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

The E-step consists of the updates of Q(S(1)), Q(S(2)),
Q(d(1)) and Q(d(2)), which interact through the expectations.
By inspection, the distribution Q(S(1)), Q(S(2)), Q(d(1)) and
Q(d(2)) have the same structure as the posterior of standard
HMMs. Therefore, the forward-backward algorithm can be
used to compute the following expectations efficiently:〈(

S (m)
t(m) , i

)〉
=

∑
S(m)

Q(S(m))δ(S (m)
t(m) , i) (22)

〈(
S (m)

t(m)−1
, i
) (

S (m)
t(m) , j

)〉
=

∑
S(m)

Q(S(m))δ(S (m)
t(m)−1
, i)δ(S (m)

t(m) , j)

(23)〈(
d(m)

t(n) , i
)〉
=

∑
d(m)

Q(d(m))δ(d(m)
t(n) , i) (24)

〈(
d(m)

t(n)−1
, i
) (

d(m)
t(n) , j

)〉
=

∑
d(m)

Q(d(m))δ(d(m)
t(n)−1
, i)δ(d(m)

t(n) , j)

(25)〈(
S (m)

t(m)+d(m)

t(n)

, k(m)

) (
d(m)

t(n) , l
(m)

)〉

=
∑
S(m)

∑
d(m)

Q(S(m))Q(d(m))

× δ(S (m)

t(m)+d(m)

t(n)

, k(m))δ(d(m)
t(n) , l

(m)) (26)

〈(St , k)(dt , l)〉 =
∏

m

〈(
S (m)

t(m)+d(m)

t(n)

, k(m)

) (
d(m)

t(n) , l
(m)

)〉
(27)

where n � m. Using these expectations, the re-estimation
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(a) no variation (b) size and location variations

(c) rotational variations (d) size, location and rotational variations

Fig. 7 Examples of training data; with no variation (a) and with variations of size and location (b),
with rotational variations (c) and with variations of size, location and rotations (d).

formula of the proposed model in the M-step are derived as
follows.

π(m)
S ,i =

〈(
S (m)

1 , i
)〉

(28)

π(m)
d,i =

〈(
d(m)

1 , i
)〉

(29)

a(m)
S ,i j =

T (m)∑
t(m)=2

〈(
S (m)

t(m)−1
, i)(S (m)

t(m) , j
)〉

T (m)∑
t(m)=1

〈(
S (m)

t(m) , i
)〉 (30)

a(m)
d,i j =

T (n)∑
t(n)=2

〈(
d(m)

t(n)−1
, i)(d(m)

t(n) , j
)〉

T (n)∑
t(n)=1

〈(
d(m)

t(n) , i
)〉 (31)

µk =

∑
t

∑
l

〈(St , k)(dt , l)〉Ot

∑
t

∑
l

〈(St , k)(dt , l)〉
(32)

Σk =

∑
t,l

〈(St , k)(dt , l)〉 (Ot − µk)(Ot − µk)


∑
t,l

〈(St , k)(dt , l)〉
(33)

5. Experiments

5.1 Experimental Conditions

In order to demonstrate the modeling ability of the pro-
posed model, face recognition experiments on the XM2VTS
database [11] were conducted. We prepared eight images of
100 subjects; seven images are used for training and one
image for testing. The face images were extracted form the
original images (720×576 pixels and transformed into gray-
scale) and then sub-sampled to 64 × 64 pixels. In this pro-
cess, we prepared four sets of data:

• “dataset 1”: the size- and location-normalized data.

The original database does not include much variations
of size and location, hence the center of the original
images was used as the face location and the size was
fixed to 550 × 550 pixels.

• “dataset 2”: the data with size and location variations.
The sizes and locations were randomly generated by
Gaussian distributions almost within the location shift
of 40 × 20 pixels from the center and the range of size
500 × 500 ∼ 600 × 600 with fixed aspect.

• “dataset 3”: the data with rotational variations. The
rotation angles are randomly generated within −10 ∼
10 degrees from Gaussian distribution with 0.0 mean
and 5.0 standard deviation.

• “dataset 4”: the data with size, location and rotational
variations. The size and location variations were gener-
ated as well as “dataset 2” and the rotational variations
were generated as well as “dataset 3”.

Figure 7 shows the examples of four datasets. Although
it was already confirmed that the recognition performance
was significantly improved with appropriate feature vectors
such as 2-D discrete cosine transform coefficients or linear
regression coefficients of images, the pixel intensity values
were used as features in this paper. This is because the ob-
jective of this experiment was not to obtain the best perfor-
mance of the proposed model but to demonstrate the prop-
erty of the proposed model to normalize rotational varia-
tions. For the purpose of improving the recognition perfor-
mance, the SL2D-HMMs were extended by integrating with
a linear feature extraction such as probabilistic PCA or fac-
tor analyzers [6]. In the paper, it was confirmed that SL2D-
HMMs and their extensions exceed the eigenface methods
and subspace methods in face recognition experiments. The
structure proposed in this paper can be easily integrated with
a linear feature extraction as [6] for improving recognition
performance.

The number of reference states was 24 × 24 and the
number of shift states was varied among 6 × 6, 10 × 10,
14 × 14, 18 × 18 and 22 × 22, corresponding to the condi-
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(a) no variation (b) size and location variations

(c) rotational variations (d) size, location and rotational variations

Fig. 8 Recognition rates of the SL2D-HMMs and proposed model for each shift states tested on the
dataset with no variation (a), with variations of size and location (b), with rotational variations (c) and
with variations of size, location and rotations (d), respectively. In the figures, plain boxes and meshed
ones represent the recognition rates of the models trained from the dataset with no variation and the
same variation as the test dataset, respectively.

tions that −D(m)
min = D(m)

max = 1, 2, 3, 4 and 5, respectively.
The number of reference states was previously optimized
to give the best recognition performance on SL2D-HMMs.
The transition probabilities for each sequence of reference
states were assumed to be a left-to-right and top-to-bottom
no skip topology and the transition probabilities for each se-
quence of shift states were assumed to be the topology as
shown in Fig. 6.

5.2 Experimental Results

5.2.1 Recognition Performance

Figure 8 (a), 8 (b), 8 (c) and 8 (d) show the recognition rates
of the test dataset with no variation (a), with variations of
size and location (b), with rotational variations (c) and with
variations of size, location and rotations (d), respectively.
In the figures, plain boxes and meshed ones represent the
recognition rates of the models trained from the dataset with
no variation and the same variation as the test dataset, re-
spectively.

From Fig. 8(b), it can be seen that the proposed

model possesses the comparable normalization ability to
the SL2D-HMMs for size and location variations. Also,
from Fig. 8(c), it can be seen that SL2D-HMMs degrade
the recognition performance when they were trained and
tested on “dataset3” where rotational variations were in-
cluded, while the proposed model improves the recognition
performance significantly compared with the SL2D-HMMs
(meshed boxes). Especially, the highest recognition rate of
81% was obtained at 14× 14 and 22× 22 shift states, which
is comparable to the recognition rate of SL2D-HMMs on
“dataset 1.” This means that the proposed model can nor-
malize rotational variations appropriately. It also can be
seen that the proposed model improves the performance to
rotational variations from Fig. 8(d) (meshed boxes). Partic-
ularly, the recognition rates of 79% at 6×6, 10×10, 14×14
and 22 × 22 shift states were obtained, which also indicates
that the proposed model can normalize not only the size and
location variations but also the rotational variations accu-
rately.

Comparing the models trained from no variation
datasets (plain boxes) and matched variation datasets
(meshed boxes), the recognition rates of the matched varia-
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(i) SL2D-HMMs; (ii)-(a) proposed model; (ii)-(b) proposed model; (ii)-(c) proposed model;
no variations no variations size and location variations rotational variations

(ii)-(d) proposed model;
size, location and rotational variations

Fig. 9 Example of mean vectors: (i) is the mean vectors of the SL2D-HMMs. (ii) is the mean vectors
of the proposed model. The number of shift state of (ii) is 22 × 22. They were estimated from the
normalized data (“dataset 1”).

tion were higher than those of the no variation datasets, even
though no variation datasets were appropriately normalized.
This is because the models over-fitted to the variation of the
training datasets. However, from another point of the view,
the proposed model can preserve the information of varia-
tion in the training data. It might be useful for some classi-
fication tasks, e.g., the model can use a kind of information
that some target objects tend to rotate and the others are not
for classification.

5.2.2 State Alignments

Figures 9 and 10 show the examples of mean vectors of
SL2D-HMMs and the proposed model, and the visualized
state alignments obtained by the Viterbi algorithm, respec-
tively. In figure 9, the number of shift states of the proposed
model is 22 × 22. The mean vectors were estimated from
“dataset 1,” “dataset 2,” “dataset 3,” and “dataset 4,” respec-
tively. The state alignments are represented by the mean
vectors of the states corresponding to the observations of
the test data. The values below the images represent the av-
eraged log-likelihoods of the observation per pixel given the
best alignments. When the visualized alignment is similar
to the test data, it means that the model appropriately nor-
malized the variations of the test data. The likelihood of the
test data can also be regarded as an objective measure of
the similarity; higher likelihood means that more preferable
matching was obtained in terms of the maximum likelihood
criterion.

From the results, we can observe that SL2D-HMMs
could not deal with the rotational variations due to the con-
straint of the model structure. The likelihood of the test
data was also significantly decreased with increasing the ro-
tational angle of the test data. Contrary to this, when the
rotational angle of the test data was −10, 0 or 10 degrees,
the rotational variations of the data can be represented by
the proposed model and the differences of the likelihood be-
tween 0 degree and 10, −10 degrees were smaller than those
of the SL2D-HMMs. It seemed that the maximum value of

the shift amount obtained by the proposed model was suf-
ficient to represent the rotational angle ±10 degrees. For
the model (c) and (d), the maximum/minimum value of the
rotational angle in the corresponding training dataset was
between ±10 degrees. This also led to the preferable results.
On the other hand, when the rotational angle was larger,
i.e. ±20 degrees, the shift amount provided by the proposed
model was not sufficient, so that the proposed model could
not deal rotational variations compared to the results as the
angle was ±10. Similarly, the proper state alignment of
the reference state was not obtained. This is because, as
shown in Eqs. (20) and (21), the reference state sequences
and the shift state sequences are dependent on each other
through the variational distributions. Therefore it was dif-
ficult to estimate the proper reference state sequences once
the improper shift state sequences were estimated from the
test data. From these results, it was suggested that the num-
ber of shift states need to be determined according to the
degree of rotational variation.

6. Conclusion

We extended the model structure of separable lattice hidden
Markov models for rotational variations. To represent rota-
tional variations, the proposed model has additional HMM
states which represent the shifts of the state alignments of
observation lines in a particular direction. In face recogni-
tion experiments on the XM2VTS database, the proposed
model achieved better results to the images than the conven-
tional SL2D-HMMs. Moreover, the state alignments shows
that the proposed model can normalize not only size and lo-
cation variations but also rotational variations. The model
parameter estimation from images with rotational variations
and extensions to more flexible models will be future work.



2082
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.8 AUGUST 2012

θ = 20◦ θ = 10◦ θ = 0◦ θ = −10◦ θ = −20◦

test data

SL2D-HMMs

F = −4.56 F = −3.54 F = −3.13 F = −3.81 F = −4.60

proposed model;
(a) no variation

F = −3.83 F = −3.32 F = −3.12 F = −3.29 F = −3.97

proposed model;
(b) size and loca-
tion variations

F = −4.17 F = −3.45 F = −3.11 F = −3.51 F = −4.14

proposed model;
(c) rotational
varations

F = −3.77 F = −3.27 F = −3.05 F = −3.38 F = −4.44

proposed model;
(d) size, location
and rotational
varations

F = −3.68 F = −3.28 F = −3.12 F = −3.39 F = −4.19

Fig. 10 Examples of test data and the visualized state alignments: The θ means the rotational angle
for each test data. The F means the estimated log-likelihood to test data.
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