
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Evolutionary Multi-valued Decision Diagrams for
Obtaining Motion Representation of

Humanoid Robots
Masashi Sakai, Masayoshi Kanoh, Member, IEEE and Tsuyoshi Nakamura, Member, IEEE

Abstract—In this paper, we propose a method using multival-
ued decision diagrams (MDDs), to obtain motion representation
of humanoid robots. Kanoh et al. have proposed a method,
which uses multi-terminal binary decision diagrams (MTBDDs),
to acquire robot controller. However, non-terminal vertices of
MTBDDs can only treat values of 0 or 1; multiple variables
are needed to represent a single joint angle. This increases
the number of the non-terminal vertices and MTBDDs that
represent the controller become complex. Therefore, we consider
using the MDD, in which its non-terminal vertices can take
on multiple output values. To obtain humanoid robot motion
representation, we propose evolutionary MDDs (EMDDs) and
show experimental results comparing evolutionary MDDs and
evolutionary MTBDDs through simulations of acquisition of
robot motion in this paper. Moreover, we verify whether the
evolution of MDD using a memetic algorithm is effective.

Index Terms—Multi-valued decision diagram (MDD), evolu-
tionary computation, genetic programming, motion representa-
tion, robot control.

I. INTRODUCTION

IN recent years, domestic robots that clean homes or mon-
itor homes in the owner’s absence, or even communicate

with humans have been attracting much attention in the field
of robotics [1]–[7]. Of such robots, interest is particularly
high in humanoid robots that have bodies similar to humans
because they can perform various tasks in place of humans.
However, control of the complex mechanisms possessed by
humanoid robots is difficult and requires complex mechanics
computations. As a way to avoid this problem, we consider
use of Binary Decision Diagrams (BDDs) to represent robot
motion in this paper.

BDDs are a way of representing a logic function using
a directed graph that has a single starting point (root), and
that consists of binary switches having one input and two
outputs, and they are mainly used to design LSIs [8]–[10]. We
believe that if a robot controller can be represented optimally
by BDDs, then the robot motion can be generalized. If robot
controller that output generalized action can be obtained,
then we could expect that even robots that have somewhat
different forms can be controlled by using the same diagram.

M. Sakai and T. Nakamura are with the Graduate School of Engineering,
Nagoya Institute of Technology, Gokiso-cho, Showaku, Nagoya 466-8555,
Japan (email: sakai@ai.nitech.ac.jp and tnaka@nitech.ac.jp).

M. Kanoh is with the Dept. of Mechanics and Information Technology,
School of Information Science and Technology, Chukyo University, 101
Tokodachi, Kaizu-cho, Toyota 470-0393, Japan (email:mkanoh@sist.chukyo-
u.ac.jp).

Manuscript received April 19, 2005; revised January 11, 2007.

However, as with logic functions, the variables of BDDs
can only take values of 0 or 1 as input-output values, so
they do not have enough representation of a robot controller.
Optimal or suboptimal solution of representation of a BDD
for a motion of a robot may be not earned. To acquire robot
controllers, Kanoh et al. [11] used Multi-Terminal Binary
Decision Diagrams (MTBDDs), and obtained robot motion
representation of MTBDDs. However, non-terminal vertices
of MTBDDs take only binary values, so multiple variables are
needed to represent an angle of robot joint, and that causes the
problem of complex representation. Therefore, we consider to
represent humanoid robot motion using Multi-valued Decision
Diagrams (MDDs).

MDDs, which have multi-branch tree structure, are an
extension of MTBDDs, and can represent multi-valued logic
functions in compact form on a computer. There are many
techniques to find optimal variable ordering of decision dia-
grams [12]–[16]. These techniques optimize diagrams using
given Boolean function(s). However, it is difficult to find an
optimum MDD for representing robot motion using the above
techniques, because robot motion representation via a Boolean
function is unknown. In this paper, we propose evolutionary
MDDs (EMDDs) to acquire robot motion representation [17].

We show experimental results comparing evolutionary
MDDs and evolutionary MTBDDs through simulations of
acquisition of robot motion. Moreover, we verify whether the
evolution of MDD using a memetic algorithm is effective.

II. DECISION DIAGRAMS

A. Binary Decision Diagrams

Binary decision diagrams (BDDs) [8]–[10] are data struc-
tures that are compact representations of Boolean functions.
BDDs are constructed by two types of vertices (non-terminal
vertices and terminal vertices) and two types of edges (0-
edge and 1-edge). Each non-terminal vertex has exactly two
outgoing edges, one 0-edge and one 1-edge. If the value of the
variable assigned to the non-terminal vertex is 0, the 0-edge
is followed; when the value is 1, the 1-edge is followed. Each
edge connects to a lower non-terminal vertex or a terminal
vertex. The terminal vertices represent the Boolean values, 0
or 1. The processing of the variables proceeds from the root,
which is the top of the diagram, in order until it reaches a
terminal vertex.

An example BDD is shown in Fig. 1(a), where non-terminal
vertices are represented by circles and terminal vertices are

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

0 1

0
1

0 1

0
1

0 1 2

01

0 1

0 1

0 1 42 3

01

0 1

0 1

2

01

(a) BDD (b) MTBDD (c) MDD
Fig. 1. Decision diagram examples.

represented by squares. In the BDD in Fig. 1(a), three
variables (x1, x2, x3) can be processed. For example, when
(x1, x2, x3) = (0, 1, 1) is input, first, the 0-edge of the non-
terminal vertex for x1 located at depth 0 is followed. Second,
the 1-edge of the non-terminal vertex for x3 at depth 2 is
followed, then the terminal vertex of 1 is reached. Considering
all combinations of input, you can know that the BDD depicts
the function, f = x1x̄2 + x3.

B. Multi-terminal Binary Decision Diagrams

Multi-terminal binary decision diagrams (MTBDDs) extend
BDDs to have multiple output values. That is to say, MTBDDs
allow the constant terminal vertices to have multiple values
other than 0 or 1.

In the example MTBDD shown in Fig. 1(b), three variables
(x1, x2, x3) can be processed. If (x1, x2, x3) = (1, 0, 1) is
input for example, first, the 1-edge is followed from the non-
terminal vertex for x1 located at depth 0. Next, the 0-edge is
followed from non-terminal vertex for x2 at depth 1 to arrive
at the output of 2.

C. Multi-valued Decision Diagrams

Multi-valued decision diagrams (MDDs) [18] give multi-
branching structured graphs which are improved MTBDDs.

In the example MDD shown in Fig. 1(c), (y1, y2, y3) can be
processed. The definition domains of each variable are y1 ∈
{0, 1, 2}, y2 ∈ {0, 1}, and y3 ∈ {0, 1}. When (y1, y2, y3) =
(2, 1, 1) is input for example, first, the 2-edge of non-terminal
vertex for y1 at depth 0 is followed, and then the 1-edge of
non-terminal vertex for y3 at depth 2 is followed to reach the
output 3.

Such decision diagrams as Fig. 1 in which different vari-
ables appear in the same order on all paths from the root are
called ‘ordered’ and ‘reduced’. An ordered decision diagram
is one in which each variable is encountered no more than
once in any path and always in the same order along each
path. Therefore, the number of variables of an ordered decision
diagram limits the maximum depth of one. A reduced decision
diagram has two properties: there are no redundant vertices in
which both of the two edges leaving the vertex point to the
same next vertex present within the diagram; isomorphic sub-
diagrams are shared.

Here, all decision diagrams treated in this paper are ordered
and reduced. These properties allow a decision diagram rep-
resentation to be canonical for a given variable ordering.

III. EVOLUTIONARY MDD VIA GENETIC PROGRAMMING

This section describes the evolutionary MDD (EMDD) [17]
via genetic programming [19].

The more compact representation of robot motion is better,
so it is desirable that the number of variables constructing a
MDD is smaller. However, the problem of finding the best
variable ordering of BDDs is NP-hard [20]. Moreover, truth
table for appropriate robot motion is unknown, that is, its
representation via a Boolean function cannot be provided in
advance. In this paper, we consider to acquire quasi-optimum
solution by using evolutionary computation.

A. Algorithm Overview

Fig. 2 shows the overview of EMDD. The procedure for the
evolution of MDDs is as follows.

1) Initialize generation g ← 0.
2) Generate the initial population U = {u1, u2, ..., un},

where n is the number of individuals.
3) Compute the fitness of the individuals in U .
4) Select the top k individuals from U , and let them be the

set P = {p1, p2, ..., pk} (elitist strategy).
5) To Q = U \ P , and perform genetic operations to Q.
6) Generate the next-generation set U = P ∪Q.
7) Increment g ← g + 1, and return to step 3.

We describe genetic operations for evolutionary MDDs in
the next section.

B. Genetic Operations

The genetic operations of EMDDs include five operations
(insertion, mutation, deletion, replacement, and inversion).
These operations were proposed by Kanoh et al. [11] and
Moriwaki et al. [21], [22] for evolutionary BDD and MTBDD.
We apply these operations to evolution of MDDs. The opera-
tions are explained below.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Input

(Sensor values of robot)
R

U Evaluation Selection

Operations

Elitist
strategy

F
Nose

F
Nose

gg+1

P

Q = U \ PNew
population

g0

U = QP

Fitness computation

Insertion

Mutation

Deletion

Replacement

Invertion

Fig. 2. Evolutionary MDD.

0 1

0 1
2

0 1

0

0

1

1
2

2

0 1

0

0

1

1
2

2

0 1

0

0

1

1
2

2

0 1

0

0

1

1
2

2

0 1

0 1
2

(a) Insertion (b) Mutation (c) Deletion

0 1

0

0

1

1
2

2

0 1

0

0

1

1
2

2

0 1

0

0

1

1
2

2

0 1

2

0

1

1
2

0

(d) Replacement (d) Inversion
Fig. 3. Genetic operations for MDD.

1) Insertion (Fig. 3(a)): Insertion operation adds a new
non-terminal vertex above a randomly selected edge. One of
the edges of the added non-terminal vertex remains connected
to the vertex to which it was connected prior to the addition.
The other edges connect to any lower non-terminal or terminal
vertices.

If the variable ordering of MDDs is fixed, it cannot be
applied to complex problems, so robot motion may be not
obtained. In this paper, we introduce a genetic insert operation,
in which a vertex is allocated dynamically on a MDD. We

consider that generalized robot motion can be represented
through the operation optimally or suboptimally.

Figure 4 shows the insertion operation algorithm.

This algorithm is one in which a non-terminal vertex is
inserted while variable ordering is decided dynamically. First,
a suffix i of variable is selected at random (l. 2 in Fig. 4). If
the variable xi is used as the variable of the root, a suffix is
selected again because the root is single vertex (ll. 4 and 5
in Fig. 4). Second, checking whether xi is used is performed.
When xi is used, the non-terminal vertex V (xi) should be

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Insert an vertex
Input S: a set of suffixes of variables already used in MDD.
1. begin
2. select a suffix i ∈ {1, ...,m} of variable at random;
3. create a new non-terminal vertex V(xi)

which variable is xi;
4. if xi is used as the variable of the root
5. then go to 2.;
6. if i ∈ S
7. then begin
8. O = {e|e is an edge

on which V(xi) can be inserted};
9. if O �= φ

10. then begin
11. select an edge e ∈ O at random;
12. insert V(xi) on e;
13. end;
14. else go to 2.;
15. end;
16. else insert V(xi) on an edge selected at random;
17. end.

Fig. 4. New insertion operation.

inserted on the same depth, so a set O, which elements are
edges on which V (xi) can be inserted, is created (l. 8 in Fig.
4). If O �= φ, an edge e ∈ R is selected at random, then V (xi)
is inserted on it. Otherwise if R = φ, an variable is selected
again because it cannot be inserted (l. 14 in Fig. 4). When xi

is not used, V(xi) on an edge selected at random is inserted
(l. 16 in Fig. 4).

This algorithm can construct MDDs with dynamic variable
ordering.

2) Mutation (Fig. 3(b)): Mutation operation is a change
in the destination of one randomly selected edge of an
non-terminal vertex to a randomly selected subordinate non-
terminal or terminal vertices.

3) Deletion (Fig. 3(c)): Deletion operation deletes a ran-
domly selected non-terminal vertex. The edges connected to
the deleted vertex are set to connect to the vertices to which
the edges of the deleted vertex pointed.

4) Replacement (Fig. 3(d)): Replacement operation ran-
domly selects two variables (xi, xj) that are to be processed
and swaps them. That is to say, after the replacement operation,
the vertices that originally processed xi treat xj , and the
vertices that originally processed xj treat xi.

5) Inversion (Fig. 3(e)): Inversion operation exchanges the
destinations of the edges of a randomly selected non-terminal
vertex. If the vertex has three or more edges, the edge
destinations are reassigned randomly.

IV. EVOLUTION SIMULATION EXPERIMENTS

A. Experiment Overview

The evolutionary MTBDDs showed better performance than
the evolution of finite state automata and classifier system [21],
[22]. In this paper, to confirm the effectiveness of EMDDs,
we conducted simulation experiments on obtaining motion

Fig. 5. Standing up from a chair. Fig. 6. Overview of HOAP-1
(Humanoid for Open Architecture
Platform).

TABLE I
CORRESPONDENCE BETWEEN ANGLE DATA AND VARIABLE VALUES.

Sensed degree EMDD EMTBDD
y (x0, x1)

θmin ≤ θ < 1
4
θmax + 3

4
θmin 0 (0, 0)

1
4
θmax + 3

4
θmin ≤ θ < 1

2
θmax + 1

2
θmin 1 (0, 1)

1
2
θmax + 1

2
θmin ≤ θ < 3

4
θmax + 1

4
θmin 2 (1, 0)

3
4
θmax + 1

4
θmin ≤ θ < θmax 3 (1, 1)

representation for a humanoid robot standing up from the
position of being seated in a chair (Fig. 5), and compared the
results of EMDD and the evolutionary MTBDD (EMTBDD)
[11]. The simulation was done using the virtual body of the
humanoid robot HOAP-1 (Humanoid for Open Architecture
Platform) made by Fujitsu Automation Ltd. Figure 6 shows
HOAP-1. The robot is 48 centimeters tall, weighs 6 kilograms,
has 20 DOFs, and has 4 pressure sensors each on the soles of
its feet. Additionally, angular rate and acceleration sensors are
mounted in its chest. To simulate evolution of robot motion,
we used the Open Dynamics Engine [23].

The robot control time interval was taken as Δt = 0.01
[s]. One trial was ended when the robot fell down or time
exceeded 10.00 [s]. The fitness was the sum of the values
of the robot’s chest position h(t) [m] at all times t during
a trial (Fitness =

∑
t h(t))), and the standing-up motion

was defined as the decision diagram that outputs action whose
fitness was 320.0 or higher.

The population size in an EMDD and an EMTBDD was
|U | = 50 and |P | = 3.

B. Robot Control with EMDD

The robot using an EMDD obtains the following data from
sensors.

y(t) = (yW , yK , yA, yB), (1)

where, y ∈ {0, 1, 2, 3}, and yW , yK , and yA are variables that
represent the angles of the waist, knee, and ankle, respectively;
yB represents the pitch of the body. These variable values are
determined from the current joint angle values as shown in
second column of Table I.

In that table, θmin and θmax are limiting values of the motor
range of motion, and they are defined as θWmin = −80.0 [deg],
θWmax = 70.0 [deg], θKmin = 0.0 [deg], θKmax = 120.0 [deg],
θAmin = −60.0 [deg], θAmax = 60.0 [deg], θBmin = −60.0 [deg],

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

TABLE II
TYPES OF BEHAVIOUR.

Terminal vertex Motor output
Waist Knee Ankle

a0 + + +
a1 + + −
a2 + + 0
a3 + − +
a4 + − −
a5 + − 0
a6 + 0 +
a7 + 0 −
a8 + 0 0
a9 − + +
a10 − + −
a11 − + 0
a12 − − +
a13 − − −
a14 − − 0
a15 − 0 +
a16 − 0 −
a17 − 0 0
a18 0 + +
a19 0 + −
a20 0 + 0
a21 0 − +
a22 0 − −
a23 0 − 0
a24 0 0 +
a25 0 0 −
a26 0 0 0

and θBmax = 60.0 [deg], respectively. The variables of the
EMDDs are to be placed from depth 0 to depth 3 because
the total number of variables is 4.

The robot action output is shown in Table II, where the plus
signs (‘+’) signify that the joint is moved at 20.0 [deg/s] and
the minus signs (‘−’) signify that the joint is moved at −20.0
[deg/s].

C. Robot Control with EMTBDD

The robot using an EMTBDD obtains the following data
from sensors.

x(t) = (xW
0 , xW

1 , xK
0 , xK

1 , xA
0 , x

A
1 , x

B
0 , x

B
1), (2)

where, xi ∈ {0, 1}, and xW
i , xK

i , and xA
i are variables that

represent the angles of the waist, knee, and ankle, respectively;
xB
i represents the pitch of the body. These variable values are

determined from the current joint angle values as shown in
third column of Table I.

The robot action output, which is the same as for EMDD,
is presented in Table II.

D. Probabilities of Genetic Operations

We do not suppose that the method using the genetic oper-
ations described above generates a huge variety of individuals
if there are a few vertices in the decision diagram. Therefore,
the probability of insertion operation, which increases vertices
in decision diagrams, is high in early stage of the experiment,
when decision diagrams have a few vertex. On the other hand,
the probability of deletion operation, which decreases vertices,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

Generation

insertion
deletion

Fig. 7. Probabilities of insertion and deletion operations.

 260

 270

 280

 290

 300

 310

 320

 330

 340

 0 200 400 600 800 1000

Fi
tn

es
s

Generation

EMTBDD
EMDD

Fig. 8. Relation of generations and fitness (average for 150 repetitions).

is high to generate decision diagrams which have fewer ver-
tices. However, the decrease of vertices decelerates evolution.
Therefore, the probability of deletion is high in the final stage,
when decision diagrams finish evolving. In the experiment, the
probabilities of insertion and deletion vary with the number of
generations as shown in Fig. 7. The probabilities of mutation,
inversion, and replacement operations are 0.10, 0.05, and 0.05,
respectively.

V. EXPERIMENTAL RESULTS

This section presents the results of evolution simulation
experiments using EMDDs and EMTBDDs. The evolution
simulation experiments were performed 150 times for EMDDs
and EMTBDDs.

A. EMDD Experimental Results

All experiments using EMDDs acquired robot motion
representation. The standing-up motion acquisition required
155.1 ± 145.0 (mean ± S.D.) generations. The total number
of non-terminal vertices at the 1000th generation was 8.5±3.6
(mean ± S.D.). The solid line in Fig. 8 represents the relation
between number of generations and fitness for EMDDs. The
numbers of occurrences of each variable at each depth for
experiments are given in Table III. The motion of the best

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

TABLE III
VARIABLES AND DEPTHS OF OCCURRENCE USING EMDDS (AVERAGE FOR 150 REPETITIONS).

Variables Depth Mean S.D.0 1 2 3 Not used
yW 20 31 55 41 3 1.80 1.00
yK 21 47 26 46 10 1.69 1.09
yA 41 38 41 29 1 1.39 1.09
yB 68 34 28 19 1 0.99 1.08

0sec 2sec 4sec 6sec 8sec 10sec
Fig. 9. Evolution results with EMDD (1000th generation).

0sec 2sec 4sec 6sec 8sec 10sec
Fig. 10. Motion of HOAP-1 robot using EMDD of Fig. 11.

1
2

3
0

0
1 2

3

12
3 0

1
23

0

1
2

3 0
1, 3

2
0

Fig. 11. Acquired EMDD for standing-up motion.

individuals at the 1000th generation is presented in Figs. 9 and
10, where we can see that the robot maintains balance while
standing up. The EMDD that outputs this motion is shown in
Fig. 11.

Here, we try to apply the EMDD for HOAP-1 to another
robot, the Kondo KHR-2HV (Fig. 12) [24]. The robot is 35.3
centimeters tall, weighs 1.27 kilograms, and has 17 DOFs.
Figure 13 shows the motion result using the EMDD in Fig. 11.
You can see that the Kondo KHR-2HV stood up from a chair.
This result indicates that motion representation by EMDDs
outputs generalized actions.

B. EMTBDD Experimental Results

All experiments using EMTBDD acquired the standing-up
motion. The standing-up motion acquisition required 99.9 ±
68.7 (mean ± S.D.) generations. At the 1000th generation,
the total number of variable vertices was 12.8± 5.3 (mean ±
S.D.). The broken line in Fig. 8 represents the relation of the
number of generations and fitness when EMTBDD is used.
The numbers of occurrences of each variable at each depth
for experiments are given in Table IV. The motion of the best
individuals at the 1000th generation is presented in Fig 14.
You can see that Figs. 9 and 14 have similar look because all
EMDDs and EMTBDDs acquired the motion representation
in the experiment. The EMTBDD that outputs this motion is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

0sec 2sec 4sec 6sec 8sec 10sec
Fig. 13. Motion of KHR-2HV robot using EMDD of Fig. 11.

TABLE IV
VARIABLES AND DEPTHS OF OCCURRENCE USING EMTBDDS (AVERAGE FOR 150 REPETITIONS).

Variables Depth Mean S.D.0 1 2 3 4 5 6 7 Not used
xW
0 12 15 21 17 21 18 17 14 15 3.57 2.14

xW
1 9 25 16 21 20 19 14 7 19 3.27 2.00

xK
0 22 20 19 11 27 18 16 3 14 2.99 2.09

xK
1 12 15 18 31 17 24 14 8 11 3.40 1.96

xA
0 10 17 19 15 16 13 14 18 28 3.60 2.26

xA
1 27 23 18 22 23 16 7 5 9 2.65 2.01

xB
0 22 17 20 10 16 12 19 4 30 2.94 2.22

xB
1 36 18 19 22 7 12 11 5 20 2.39 2.16

0sec 2sec 4sec 6sec 8sec 10sec
Fig. 14. Evolution results with EMTBDD (1000th generation).

Fig. 12. Overview of Kondo KHR-2HV.

shown in Fig. 15.

C. Discussion

In the assigned position of variables of decision diagrams,
there are two tendencies; variables that exert strong control on
output of decision diagrams are positioned higher (closer to the
root), and variables having local computation are positioned at
similar depth [25]–[28]. These tendencies also appear in the
assigned position of EMDD variables. Therefore, the assigned
variable ordering is useful for humans to understand the
importance of variables.

Table III and Table IV show the means and standard
deviations of depth of each variable. To evaluate importance
of each variable, we did the Friedman test, a nonparametric

0

0

0 0

0

0

0 0

0

0

0

0

1

1

1

1

1

1

1
1

1

1

1

1

Fig. 15. Acquired EMTBDD for standing-up motion.

one-way analysis of variance, and the Scheffe test, a test of
statistical significance, because of ordinal scales. Tables V and
VI show these test results. From Table V, the importance of
each variable of experiments using EMDDs is considered as

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE V
SCHEFFE TEST RESULT (EMDD). THE MARK ‘*’ AND ‘**’ MEAN

SIGNIFICANT DIFFERENCE AT p < 0.05 AND p < 0.01, RESPECTIVELY.

yW yK yA yB

yW – 0.8794 0.0133 0.0000
yK – 0.1187 0.0000
yA * – 0.0141
yB ** ** * –

TABLE VI
SCHEFFE TEST RESULT (EMTBDD). THE MARK ‘*’ AND ‘**’ MEAN

SIGNIFICANT DIFFERENCE AT p < 0.05 AND p < 0.01, RESPECTIVELY.

xW
0 xW

1 xK
0 xK

1 xA
0 xA

1 xB
0 xB

1

xW
0 – 0.04 0.05 0.04 0.05 1.00 0.88 0.40

xW
1 * – 0.86 0.01 0.06 0.02 0.06 0.74

xK
0 – 0.42 0.69 0.16 0.00 0.01

xK
1 * * – 0.01 0.60 0.37 0.05

xA
0 ** – 0.07 0.03 0.66

xA
1 * – 0.72 0.00

xB
0 ** * – 0.00

xB
1 * ** ** –

follows:
yB > {yA, yK , yW }. (3)

In the result of EMDD, the joint angle is represented by a sin-
gle variable, so it is not difficult to understand the importance
of each joint. From the EMDD variable importance, the body
pitch is the most important than all of the other joints, and
the ankle joint is more important than waist joint. Similarly,
considering the importance of each variable in EMTBDDs,
there was no variable making significant difference to all other
variables. In the test result of EMTBDDs, you can not see what
is the most important joint or control variable at first glance.
This indicates that it is difficult to understand the importance
of each joint through motion representation by EMTBDDs.
From the above discussion, EMTBDDs do not work well to
understand the importance of joints, on the other side EMDDs
work well. Therefore, we can conclude that the EMDD method
is proper to discover important joints in comparison with
EMTBDD.

Second, we discuss the evolution of EMDDs. The evolution
process before the EMDD in Figure 11 is shown in Figure
16. You can see that the structure of EMDD becomes more
complex at the beginning of the evolution, but the final MDD
in Figure 11 is very compact. Figure 17 shows the number of
non-terminal vertices of the best individual in each generation.
The evolution increases the number of non-terminal vertices
until about 600th generation, and then decreases it. This result
arises from the setting of probabilities of insertion and deletion
operations (see Figure 7). By this setting, we can consider that
the compact motion representation by MDD was acquired.

Third, we verify and discuss the effectiveness of proposed
insertion operation. We consider that appropriate motion rep-
resentation is acquired because variable ordering in MDD is
changed dynamically by using the dynamic insertion opera-
tion. Figure 18 shows the results when variable ordering is
fixed as ‘Best order’ (yB – yA – yK – yW), and ‘Worst order’
(yW – yK – yA – yB). These ordering were decided from the

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

N
um

be
r o

f n
on

-t
er

m
in

al
 v

er
tic

es

Generation

Fig. 17. The number of non-terminal vertices.

 270

 280

 290

 300

 310

 320

 330

 340

 350

 0 200 400 600 800 1000

Fi
tn

es
s

Generation

Best order

Dynamic insertion
Worst order

Fig. 18. Comparison with EMDDs via fixed variable ordering (average for
20 repetations).

mean of depth (see Table III). The solid line in the figure is the
same as the line of EMDD in Figure 8. Note that if variable
ordering is fixed, the replacement operation cannot use. In
this experiment, we divided the probability of replacement up
evenly between other four operations. This figure shows that
the fitness of the dynamic insertion is better than other two
fixed methods. In the line of worst order, variables that exert
strong control on output of MDDs are positioned lower, so
this approach did not work well. On the other hand, the best
order earned the fitness nearly equal to dynamic insertion in
the 1000th generation. However, around 150 to 500 generation,
its fitness is lower than dynamic insertion. We consider that
the best final solution can be found by the best order, but
local solution (e.g. the motion of half rise from the chair) may
require another order. These results indicate that our method
can use effectively to the optimization of the problem that not
only truth table but also variable ordering is unknown.

Next, we compare learning efficiency between EMDDs and
EMTBDDs. As you can see from Fig. 8, the learning efficiency
of EMDDs is lower than EMTBDDs. There is significant
difference (p < 0.000) between the required generations of
EMDDs (155.1±145.0) and EMTBDDs (99.9±68.7) to obtain
standing-up motion. Similarly, there is significant difference
(p < 0.000) between their fitnesses in 1000th generation:
EMDD; 333.6 ± 3.15, EMTBDD; 334.8 ± 2.38. However,
the numerical difference of fitness is very small, so EMDDs
have little direct difference on the learning. If you want to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

1 23
0

1
2

3
0

1
2

0, 3

(a) 10th generation

0 1
23

3

0
2

1
1 0

2

3

12
03

13
20

2
13

0

0

3

2

1
1

3
0

2

321 0
3

1
20 1

3
2 0

2
1 0

3

(b) 50th generation

1
2

3
03

1
2
0

1
3 0

2
2

1
3 0 1 2

30
2 0

31
32

01
3

21, 0

1
3
2 0

1 2
03

0
3 1

22
1

3

0

2
3, 0

1 2
31

03

2
1

0 0
2

3
1

0
3

2 1

(c) 100th generation

1 2
3 2

1
30

2
0 1 2

2 1 010
22

302
3

3

0

32 3 1
2

123

3
2 1

0

30
1

1

032
1

1
3, 2

1

023

0

3, 0
2 2

3
1

3

10

0

0

3

0, 2 1

3 3

1
1 0

0

1
1 0 23

2

0
1 3, 2 0

3
2

1
0

(d) 200th generation

Fig. 16. EMDDs of best individuals in each generation.

obtain motion quickly and do not need the important joint
information, you may use EMTBDDs.

Finally, we discuss to introduce memetic computing to the
evolution of MDDs. The earliest and fastest growing area
of memetic computing research is memetic algorithm [29]–
[31]. The memetic algorithm is a hybrid global-local heuristic
search methodology, and is variously used for design of
optimal control systems [32], fuzzy rule selection [33], robust
design [34], and so on. We evolve MDDs by the following
memetic algorithm.

1) Initialize generation g ← 0.

2) Generate the initial population U ′ = {u′
1, u

′
2, ..., u

′
n′},

where n′ is the number of individuals.
3) For i-th individual, apply local search and create a set

Ri = {r1, r2, ..., rl} ∪ {u′
i}, where l is the number of

neighborhood individuals of u′
i.

4) For each Ri, choose the best individual bi by computing
the fitness of the individuals in Ri.

5) Generate the next-generation set U ′ = {b1, b2, ..., bn′}.
6) Increment g ← g + 1, and return to step 3.

Here, in the problem of obtaining robot motion representation,
not only global search but also local search requires dynamics

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

 260

 270

 280

 290

 300

 310

 320

 330

 340

 0 200 400 600 800 1000

F
itn

es
s

Generation

MDD
Memetic MDD (a)
Memetic MDD (b)

Fig. 19. Comparison between EMDD and memetic EMDDs (average for 20
repetaions).

computation.
For the memetic experiments, we prepared two parameters:

(a) |U ′| = 10 and |Ri| = 4; (b) |U ′| = 5 and |Ri| = 9.
These parameters were decided to equalize the number of
dynamics computations (i.e., for example in memetic EMDD
(a), one group which is made by an individual and four local
searches needs 5 dynamic computations). Figure 19 shows the
experimental results. You can see that memetic EMDD (b)
can obtain better performance than other two methods. In this
evolutionary experiment, the variable yB is more important
than other three variables, and it should be located at depth 0.
In memetic EMDD (b), the parameter of |U ′| = 5 suffices for
locating yB at depth 0, because the probability of yB being
located at depth 0 is a 1 in 4. Moreover, local search for
each individual is done enough, so we consider that memetic
MEDD (b) earned higher fitness.

From the above results, effectiveness of memetic algorithm
in motion control of humanoid robots using EMDD was
confirmed.

VI. RELATED WORKS

Many methods for robot control tasks exist; methods us-
ing reinforcement learning [35]–[38], genetic programming
[39]–[41], decision tree learning [42], [43], and so on. The
EMDD has a feature; it obtains simpler motion representation
than these methods, because it requires discrete state space
and actions. The EMDD can decide the number of output
variables arbitrarily, so we consider that it can treat complex
motion learning via changing the number of terminal vertices.
Kuwayama et al. proposed a motion learning method using
the c4.5 decision tree generator [42], [43]. They indicated
that motion obtained by decision tree learning is stable.
However, to use the method, preparing positive and negative
examples and then extracting guidepost for motion generation
are required before decision tree learning. Preparing negative
examples is done easily, but assembling positive examples
is very difficult, especially in learning of complex motion
such as locomotion. Moreover, developing a motion generator
using guidepost is also needed. On the other hand, the EMDD

evolves a tree which outputs appropriate motion, instead of
preparing motion before learning. That is, compared with the
method by Kuwayama et al., the EMDD has two merits; it
does not require assembling motions, and can obtain motion
representation dynamically. The EMDD has two tendencies
described in Section V-C, and may represent implicit knowl-
edge of motion of human beings or robots.

VII. CONCLUSION

We proposed a method for obtaining robot motion rep-
resentation through the evolution of MDDs. To confirm the
effectiveness of this method, we performed experiments on
motion representation acquisition for the standing-up motion
of a humanoid robot. As the result of the experiments, we
acquired robot motion in all experiments. We performed the
same experiments using the evolutionary MTBDD, and we
confirmed that the evolutionary MDD is also more effective
than the evolutionary MTBDD in discovering important vari-
ables from the decision diagrams. Our future work is acquisi-
tion of motion representation for more complex motions than
the standing-up motion.

ACKNOWLEDGMENT

A part of this study was carried out by the Grant-in-Aid for
Young Scientists (A) of the Ministry of Education, Culture,
Sports, Science and Technology (No. 20680014).

REFERENCES

[1] J. Sung, R. E. Grinter, H. I. Christensen, and L. Guo, “Housewives
or Technophiles?: Understanding Domestic Robot Owners,” ACM/IEEE
International Conference on Human Robot Interaction pp. 129–136,
2008.

[2] J. Forlizzi and C. DiSalvo, “Service Robots in the Domestic En-
vironment: A Study of the Roomba Vacuum in the Home,” ACM
SIGCHI/SIGART Conference on Human-robot Interaction, pp. 258–265,
2006.

[3] P. Saulnier, E. Sharlin and S. Greenberg, “Using Bio-electrical Signals
to Influence the Social Behaviours of Domesticated Robots,” ACM/IEEE
International Conference on Human Robot Interaction, 2009.

[4] K. Wada and T. Shibata, “Living with Seal Robots. Its Sociopsycholog-
ical and Physiological Influences on the Elderly at a Care House,” IEEE
Transactions on Robotics, vol. 23, no. 5, pp. 972–980, 2007.

[5] M. Kanoh, S. Iwata, S. Kato and H. Itoh, “Emotive Facial Expressions
of Sensitivity Communication Robot “Ifbot”,” Kansei Engineering In-
ternational, vol. 5, no. 3, pp. 35–42, 2005.

[6] M. Fujita, “On Activating Human communications with Pet-type Robot
AIBO,” Proceedings of IEEE, vol. 92, no. 11, pp. 1804–1813, 2004.

[7] Y. Fujita, “Personal Robot PaPeRo,” Journal of Robotics and Mecha-
tronics, vol. 14, no. 1, pp. 60–63, 2002.

[8] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Com-
puters, vol. 27, no. 6, pp. 509–516, 1978.

[9] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipu-
lation,” IEEE Transaction on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[10] D. E. Knuth, “The Art of Computer Programming,” vol. 4, fascicle 1,
Addison-Wesley, 2009.

[11] M. Kanoh and H. Itoh, “A New Dynamic Insertion Operation for n-
BDD – Applying to Obtaining Robot Controller –,” Journal of Japan
Society for Fuzzy Theory and Intelligent Informatics, vol. 20, no. 6, pp.
909–920, 2008 (in Japanese).

[12] P.W. C. Prasad, A. Assi, A. Harb, and V.C. Prasad, “Binary Decision
Diagrams: An Improved Variable Ordering using Graph Representation
of Boolean Functions,” International Journal of Computer Science, vol.
1, no. 1, pp. 1–7, 2006.

[13] S. J. Friedman and K.J. Supowit, “Finding the Optimal Variable Ordering
for Binary Decision Diagrams,” IEEE Transactions on Computers, vol.
39, pp. 710–713, 1990.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

[14] F. Somenzi, “Efficient Manipulation of Decision Diagrams,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 3, pp.171-
181, 2001.

[15] S. Panda and F. Somenzi, “Who Are the Variables in Your Neighbor-
hood,” IEEE/ACM International Conference on Computer-Aided Design,
pp. 74–77, 1995.

[16] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams,” IEEE/ACM International Conference on Computer-Aided
Design, pp. 42–47, 1993.

[17] M. Sakai, Y. Tomoto, M. Kanoh, T. Nakamura, and H. Itoh: “Acquisition
of Robot Control Rules by Evolving MDDs,” IEEE World Congress on
Computational Intelligence, pp.550-556, 2010.

[18] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton, “Algorithms for
Discrete Function Manipulation,” IEEE/ACM International Conference
on Computer-Aided Design, pp. 92–95, 1990.

[19] J. R. Koza, “Genetic Programming, On the Programming of Computers
by Means of Natural Selection,” MIT Press, 1992.

[20] B. Bollig, and I. Wegener, “Improving the Variable Ordering of OBDDs
Is NP-Complete,” IEEE Transactions on Computers, vol. 45, no. 9, pp.
993–1002, 1996.

[21] K. Moriwaki, N. Inuzuka, M. Yamada, K. Itoh, H. Seki, and H. Itoh,
“Self Adaptation of Agent’s Behavior using GA with n-BDD,” IEEE
International Workshop on Robot and Human Communication, pp. 96–
101, 1996.

[22] K. Moriwaki, N. Inuzuka, M. Yamada, H. Seki, and H. Itoh, “A Genetic
Method for Evolutionary Agents in a Competitive Environment,” Soft
Computing in Engineering Design and Manufacturing, pp. 153–162,
1997.

[23] Russell Smith, “Open Dynamics Engine.” Available from: http:// www.
ode. org/

[24] Kondo Kagaku Co.Ltd., Available from: http:// kondo-robot. com/ guide/
english.html

[25] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvement
of Boolean Comparison Method based on Binary Decision Diagrams,”
IEEE/ACM International Conference on Computer-Aided Design, pp.
2–5, 1988.

[26] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic
Verification using Binary Decision Diagrams in a Logic Synthesis
Environment,” IEEE/ACM International Conference on Computer-Aided
Design, pp. 6–9, 1988.

[27] S. Minato, “Techniques for BDD Manipulation on Computers,” Journal
of Information Processing Society of Japan, vol. 34, no. 5, pp. 593–599,
1993 (in Japanese).

[28] M. Yanagiya, “Combinational Optimization via BDD-based Procedures,”
Journal of Information Processing Society of Japan, vol. 34, no. 5, pp.
617–623, 1993 (in Japanese).

[29] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms,” Caltech Concurrent
Computation Program, Report 826, 1989.

[30] X. S. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A Multi-Facet
Survey on Memetic Computation,” IEEE Transactions on Evolutionary
Computation, Accepted in 2011 and In Press.

[31] Y. S. Ong, M. H. Lim, and X. S. Chen, “Research Frontier: Memetic
Computation - Past, Present & Future,” IEEE Computational Intelligence
Magazine, vol. 5, no. 2, pp. 24–36, 2010.

[32] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner,
“A Fast Adaptive Memetic Algorithm for Online and Off line Control
Design of PMSM Drives,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 37, pp. 28–41, 2007.

[33] H. Ishibuchi, and T. Yamamoto, “Fuzzy Rule Selection by Multi-
objective Genetic Local Search Algorithms and Rule Evaluation Mea-
sures in Data Mining,” Fuzzy Sets and Systems, vol. 141, pp. 59–88,
2004.

[34] Y. S. Ong, P. B. Nair, and K. Y. Lum, “Max-min surrogate-assisted
evolutionary algorithm for robust design,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, pp. 392–404, 2006.

[35] M. Asada, Y. Katoh, M. Ogino, and K. Hosoda, “A Humanoid Ap-
proaches to the Goal – Reinforcement Learning Based on Rhythmic
Walking Parameters –”, RoboCup International Symposium, 2003.

[36] Y. Nakamura, T. Mori, M. Sato, and S. Ishii, “Reinforcement Learning
for a Biped Robot Based on a CPG-Actor-Critic Method,” Neural
Networks, vol. 20, no. 6, pp. 723–735, 2007.

[37] J. Morimoto and K. Doya, “Acquisition of Standup Behavior by a
Real Robot Using Hierarchical Reinforcement Learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 2001.

[38] J. Morimoto and C. G. Atkeson, “Learning Biped Locomotion: Appli-
cation of Poincare-map-based Reinforcement Learning,” Robotics and
Automation Magazine, IEEE, vol. 14, no. 2, pp. 41–51, 2007.

[39] T. Yanase and H. Iba, “Evolutionary Motion Design for Humanoid
Robots, Frontiers in Evolutionary Robotics,” Hitoshi Iba (Ed.), Frontiers
in Evolutionary Robotics, I-Tech Education and Publishing, 2008. Avail-
able from: http://www.intechopen.com/articles/show/title /evolutionary
motion design for humanoid robots

[40] S. Kamino, H. Mitsuhashi, and H. Iba, “Integration of Genetic Pro-
gramming and Reinforcement Learning for Real Robots,” Genetic and
Evolutionary Computation Conference, pp. 470–477, 2003.

[41] N. Ogihara and N. Yamasaki, “Generation of Human Bipedal Loco-
motion by a Bio-Mimetic Neuro-musculoskeletal Model,” Biological
Cybernetics, vol. 84, no. 1, pp. 1–11, 2001.

[42] K. Kuwayama, S. Kato, and H. Itoh, “A Concept Learning Based
Approach to Motion Control for humanoid robots,” International Con-
ference on Informatics in Control, Automation and Robotics, vol. 2, pp.
335–338, 2004.

[43] K. Kuwayama, S. Kato, T. Kunitachi, and H. Itoh, “Motion Control for
Humanoid Robots Based on the Motion Phase Decision Tree Learning,”
IEEE International Symposium on Micro/Nanomechatronics and Human
Science, pp. 157–162, 2004.

Masashi Sakai received the B.E. degree from the
Department of Computer Science, Nagoya Institute
of Technology in 2010. He is currently pursuing
M.E. degree at the Department of Computer Science
and Engineering, Graduate School of Engineering,
Nagoya Institute of Technology. His research inter-
ests include robotics and genetic algorithm.

Masayoshi Kanoh received the B.S., M.S. and
Ph.D. degrees in Engineering from Nagoya Institute
of Technology, Japan, in 1999, 2001 and 2004,
respectively. Between 2004 and 2010, he was an
Assistant Professor at Chukyo University, where he
is currently an Associate Professor. His research
interests include human-robot interaction, intelligent
robots and humanoid robots.

Tsuyoshi Nakamura received the Ph.D. degree
from Nagoya Institute of Technology in 1998,
studying computer graphics based on softcom-
puting. He joined Nagoya Institute of Technol-
ogy as a research associate in 1998. In 2003
and now, he is an associate professor. His re-
search interests include CG, CV softcomputing, and
HAI(http://ai.web.nitech.ac.jp). He is a member of
the IEEE and the ACM.

