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Abstract

Basing on the recent theory of extended thermodynamics of dense gases, we study a thermodynamic theory of gases with the energy
transfer from molecular translational mode to internal modes as an extension of the Meixner’s theory. We focus our attention on
the simplest case with only one dissipative process due to the dynamic pressure. The dispersion relation for sound derived from the
present theory is compared with that from the Meixner’s theory. Kinetic theoretical basis of the present approach is also discussed.
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1. Introduction

Energy transfer from molecular translational mode to inter-
nal modes, such as rotational and vibrational modes, affects the
propagation speed and attenuation of a sound in a gas composed
of polyatomic molecules. Especially when the frequency ω of
the sound is in the same order of magnitude as the inverse of
the relaxation time of the energy transfer, 1/τ, the effect on the
sound is prominent. Such nonequilibrium phenomena are usu-
ally observed in the ultrasonic frequency range.

The thermodynamic theory with nonequilibrium parameters
governed by the relaxation equations [1, 2, 3] has been utilized
to describe the phenomena for many years. In order to grasp the
essence of the theory, let us consider the simplest case where
only one relaxation equation for a nonequilibrium parameter ξ
is present in addition to the system of Euler equations for a gas
that expresses the mass, momentum and energy conservation
laws. That is, we neglect all dissipative processes but the relax-
ation process. The relaxation equation is introduced in such a
way that

ξ̇ = −βA, (1)

where a dot on ξ represents the material time derivative, β is a
positive coefficient, and A is the affinity of the relaxation pro-
cess of the energy transfer that depends not only on ξ but also
on other thermodynamic quantities, say, the mass density and
the entropy density. When ωτ ≪ 1, it was proved that the re-
laxation process may be interpreted in terms of the dynamic
pressure Π, which is related to the gas velocity v as

Π = −νeffdiv v

∗Corresponding author
Email addresses: tks@stat.nitech.ac.jp (Takashi Arima),

taniguchi@stat.nitech.ac.jp (Shigeru Taniguchi),
tommaso.ruggeri@unibo.it (Tommaso Ruggeri),
sugiyama@nitech.ac.jp (Masaru Sugiyama )

with νeff being the effective bulk viscosity.
Although the Meixner’s theory mentioned above seems to be

natural, there remain some problems that should be overcome:
(i) In the Meixner’s theory, the relaxation equation (1) is not
fully congruous with the Euler equations. It has not been in-
troduced on the same ground of the Euler equations as one of
the general thermodynamic basic field equations. In fact, in a
rarefied gas limit, the relaxation equation is not consistent with
its counterpart of the moment equations derived from the ki-
netic theory of gases [4]. See also section 4.2 below. (ii) The
Meixner’s theory is formulated within the framework of ther-
modynamics of irreversible processes [3]. The local equilib-
rium assumption is premised from the beginning. However, in
such phenomena as ultrasonic wave propagation where tempo-
ral and spatial changes are rapid and steep, this assumption is
not well-satisfied [5].

In this paper, we propose a fully-consistent thermodynamic
theory of the sound propagation in a gas with the energy trans-
fer where the local equilibrium assumption is not necessarily
valid, and thereby try to extend the Meixner’s theory. We adopt
the theory of extended thermodynamics (ET) [6] of dense gases
[7]. As before, the essence of our theory can be most clearly
shown by studying the simplest case where only one dissipative
process due to the dynamic pressure exists. In section 2, we de-
rive the closed system of field equations for gases. In section 3,
we study the dispersion relation for sound and compare it with
that derived from the Meixner’s theory. The last section is de-
voted to concluding remarks with the discussions of subsystems
and the kinetic theoretical basis of the present theory.

2. Extended thermodynamics of real gases with 6 fields

First of all, let us recall that, for a rarefied monatomic gas,
it is simple to costruct a rational theory of extended thermo-
dynamics as a hyperbolic counterpart of the Navier-Stokes-
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Fourier theory becasue the hierarchy of the basic system of
differential equations is properly dictated by the kinetic theory
[6]. While, for rarefied polyatomic gases and for dense gases,
a satisfactory theory was not established [8, 9, 10, 11, 12, 13]
until the appropriate binary hierarchy of the differential equa-
tions for dense gases with 14 fields has been proposed by the
present authors [7]. In fact, using only general principles such
as the Galilean invariance and the entropy principle, we proved
that the system of field equations can be closed with respect
to the independent field variables and the constitutive functions
are determined explicitly by the equilibrium thermal and caloric
equations of state.

2.1. Binary hierarchy of the differential equations

As mentioned above, we restrict our study within the sim-
plest case of 6 independent field variables, that is,

mass density: F (= ρ),
momentum density: Fi (= ρvi),
energy density: Gii

trace part of momentum flux: Fii.

We adopt the following binary hierarchy (F-series and G-series,
see also section 4.2.) of the balance equations [7]:

∂F
∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Gii

∂t
+
∂Giik

∂xk
= 0, (2)

∂Fii

∂t
+
∂Fiik

∂xk
= Pii

where Fik is the momentum flux, Fiik is the flux of Fii, Giik is
the energy flux, and Pii is the production with respect to Fii.
The equations with no production term represent the mass, mo-
mentum and energy conservation laws.

As the balance equations (2) should be invariant under the
Galilean transformation, the dependence of the quantities on
the velocity can be expressed as follows [14]:

Fi j = ρviv j + Mi j,

Gii = ρvivi + mii,

Fiik = ρvivivk + 3M(ikvi) + Miik,

Giik = ρvivivk + miivk + 2Mikvi + miik,

(3)

where Mi j, mii, Miik and miik do not depend on the velocity.
Parentheses around a set of indices represent the symmetriza-
tion with respect to the indices. The production Pii is also inde-
pendent of the velocity.

With Eq. (3), the balance equations (2) can be rewritten as

ρ̇ + ρ
∂vk

∂xk
= 0,

ρv̇i +
∂Mi j

∂x j
= 0,

ṁii + mii
∂vk

∂xk
+
∂miik

∂xk
+ 2
∂vi

∂xk
Mik = 0,

Ṁii + Mii
∂vk

∂xk
+
∂Miik

∂xk
+ 2
∂vi

∂xk
Mik = Pii.

(4)

We notice that the quantities Mi j, mii and mppi have the follow-
ing conventional meanings:

stress: ti j = −Mi j (= − (p + Π) δi j + M⟨i j⟩),

specific internal energy: ε =
1

2ρ
mii,

heat flux: qi =
1
2

mppi,

where the pressure p depends only on ρ and mii, Π is the
dynamic pressure, and angular brackets denote the symmetric
traceless part.

We may now adopt {ρ, vi, mii, Π} as a set of independent
variables instead of {F, Fi, Gii, Fii}. The balance equation of
Mii (Eq. (4)4) is then rewritten as

Π̇ +

5
3

p − ρ
(
∂p
∂ρ

)
mii

− (mrr + 2p)
(
∂p
∂mqq

)
ρ

 ∂vk

∂xk

+

5
3
− 2

(
∂p
∂mqq

)
ρ

Π∂vk

∂xk
+ 2

1
3
−

(
∂p
∂mqq

)
ρ

 ∂vr

∂xk
M⟨rk⟩

+
1
3
∂Mrrk

∂xk
−

(
∂p
∂mqq

)
ρ

∂mrrk

∂xk
=

Prr

3
.

2.2. Constitutive equations

We need the constitutive equations in order to set up the
closed system of field equations. We assume that the constitu-
tive equations at one point and time depend on the independent
fields at that point and time. Therefore the constitutive quanti-
ties {M⟨i j⟩, Miik, miik, Pii} are expressed as functions of

(ρ, mii, Π).

We apply the constitutive theory of ET [6] where the follow-
ing universal physical principles (A)-(C) are imposed on the
constitutive equations: (A) Material frame indifference princi-
ple: This requires that constitutive equations are independent
of an observer. This principle and the Galilean invariance for
the balance laws constitute the objectivity principle (the prin-
ciple of relativity). (B) Entropy principle: All solutions of the
system of field equations must satisfy the entropy balance law:

∂h
∂t
+
∂(hvk + φk)
∂xk

= Σ = 0⇔ ḣ + h
∂vk

∂xk
+
∂φk

∂xk
= Σ = 0
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where h is the entropy density, hk is the entropy flux (hk = hvk+

φk: φk is the non-convective entropy flux), and Σ is the entropy
production. Here h and φk are constitutive quantities:

h ≡ ĥ(ρ, mii, Π), φk ≡ φ̂k(ρ, mii, Π).

(C) Causality: This requires the concavity of the entropy den-
sity and guarantees the hyperbolicity of the system of field
equations. This also ensures the well-posedness (local in time)
of a Cauchy problem and the finiteness of the propagation
speeds of disturbances.

As the result of the universal principles, in the neighborhood
of equilibrium, we obtain the constitutive equations:

M⟨i j⟩ = 0, Miik = 0, miik = 0, Pii = −
3ζ

Ta1
Π, (5)

where ζ is a positive function of the density ρ and the tempera-
ture T , and a1 is given by [7]

a1 =
5
3

p − ρ
(
∂p
∂ρ

)
T
− T
ρ

(
∂p
∂T

)2

ρ

(
∂ε

∂T

)−1

ρ

.

The entropy density and entropy flux are given by

h = hE − 1
2Ta1

Π2, φk = 0, (6)

where hE is the entropy density in equilibrium. From (6), we
obtain the concavity conditions at an equilibrium state:(

∂ε

∂T

)
ρ

> 0,
(
∂p
∂ρ

)
T
> 0, a1 > 0.

2.3. Field equations
The closed system of field equations is obtained by substitut-

ing the constitutive equations (5) into the system (4):

ρ̇ + ρ
∂vk

∂xk
= 0,

ρv̇i +
∂p
∂xi
+
∂Π

∂xi
= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +
[
p + Π − ρ2

(
∂ε

∂ρ

)
T

]
∂vk

∂xk
= 0,

Π̇ + (a1 + a2Π)
∂vk

∂xk
= − 1
τΠ
Π,

(7)

where the relaxation time τΠ and a2 are given by

τΠ =
Ta1

ζ
, a2 =

5
3
− 1
ρ

(
∂p
∂T

)
ρ

(
∂ε

∂T

)−1

ρ

.

The evolution equation (7)4 for Π is now obtained consistently,
which may be seen as the counterpart of the relaxation equation
in the Meixner’s theory.

If we apply the Maxwellian iteration [6, 15] to the system
(7), the first iterate Π(1) is obtained by the substitution of the
0th iterate Π(0) = 0 into the left hand side of (7)4:

Π(1) = −a1τΠ
∂vk

∂xk
,

from which the bulk viscosity ν is given by

ν = a1τΠ =
Ta2

1

ζ
.

Therefore we can calculate ζ from the experimental data of ν.

3. Dispersion relation for sound: comparison with the
Meixner’s theory

In this section, we study a linear plane harmonic wave and
obtain its dispersion relation. The result obtained is compared
with that from the Meixner’s theory.

Without loss of generality, we may study the wave in the fol-
lowing form:

u = u0 + ū

where u = (ρ, v,T,Π)T is a state vector with v being the x-
component of the velocity v, u0 = (ρ0, 0, T0, 0)T is a state vector
at a reference equilibrium state, and ū = (ρ̄, v̄, T̄ , Π̄)T is the
deviation from u0 expressed as

ū = wei(ωt−kx).

Here w is the amplitude, ω is the frequency, and k is the com-
plex wave number such that k = kr + iki (kr = ℜ(k), ki = ℑ(k)).

From the linearized system of field equations, which is ob-
tained by linearizing (7) with respect to ū, we can easily obtain
the dispersion relation [6]:

det
(
I − zA0 +

i
ω

B0

)
= 0, (8)

where z = k/ω, I is the unit matrix, and

A0 =



0 ρ 0 0
1
ρ

(
∂p
∂ρ

)
T

0
1
ρ

(
∂p
∂T

)
ρ

1
ρ

0
p − ρ2

(
∂ε

∂ρ

)
T

ρ

(
∂ε

∂T

)
ρ

0 0

0 a1 0 0


0

,

B0 =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 − 1
τΠ


0

.

The index 0 indicates the values at the reference state.
From the dispersion relation, the phase velocity vph and the

attenuation factor α are obtined as the functions of ω:

vph =
ω

ℜ(k)
=

1
ℜ(z)

, α = −ℑ(k) = −ωℑ(z).

By the requirement of the linear stability, α must be positive
(negative) for the waves traveling to the x-positive (negative)
direction.
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The high-frequency limits of vph and α are given by [6, 16] :

lim
ω→∞

vph(ω) = λ0 =

√
5p0

3ρ0
, lim
ω→∞
α(ω)λ0 = −l0 · B0 · d0,

(9)

where the characteristic velocity λ0 is the non-zero eigenvalue
of A0, and l0 and d0 are the left and right eigenvectors of A0,
respectively. It is remarkable that, even for polyatomic gases,
the high frequency limit vph(∞) does not depend on the inter-
nal degrees of freedom in a rarefied gas limit. The attenuation
factor is given by

α(∞) = ± 1
2τΠ

√
3ρ0

5p0

(
1 − 3

5
c2

0
ρ0

p0

)
,

where c0 is the sound velocity in the reference state:

c2
0 =


(
∂p
∂ρ

)
T
+

(
∂p
∂T

)2

ρ
T(

∂ε
∂T

)
ρ
ρ2


0

.

Finally let us compare the dispersion relation (8) with that of
the Meixner’s theory. The relation (8) can be rewritten as

(c0z)2
− 5p0

3c2
0ρ0
+

i
τΠω

 + 1 − i
τΠω

= 0.

While the dispersion relation derived from the Meixner’s theory
is given by [3]

(c0z)2
−vph(∞)2

c2
0

+
i
τω

 + 1 − i
τω
= 0.

By taking the relation (9)1 into account, it is easy to show that,
if τΠ = τ, both dispersion relations coincide with each other.

4. Subsystems and kinetic theory

We have shown in the above that, through studying the sim-
plest case, a fully-consistent thermodynamic theory of sounds
in a gas with the energy transfer can be established on the basis
of ET. This is valid even in the region beyond the local equilib-
rium assumption. The relationship between the present theory
with 6 independent variables and the Meixner’s theory is also
shown. It is found that, as far as the dispersion relation for a
weak sound propagating in an equilibrium state is concerned,
both theories predict the same expression of the relation.

Lastly we make four concluding remarks 4.1-4.4:

4.1. ET of 14 fields and the concept of subsystems

The extended thermodynamic theory of dense gases that
takes into account not only the dynamic pressure but also the
shear stress and heat flux has already been proposed by the
present authors [7]. This is the theory of real gases with 14
field variables. In this respect, it is important to recognize that

the theory with 6 variables presented above is a principal sub-
system of the 14-variable theory according to the definiton due
to Boillat and Ruggeri [17]. We may, therefore, assert that the
6-variable theory is the simplest variant among dissipative sys-
tems from the non-dissipative Euler system. In contrast to the
well-known Navier-Stokes-Fourier model that is of parabolic
type, the present variant is of hyperbolic type. To sum up, the
present 6-variable system is the simplest non-trivial hyperbolic
one next to the system of Euler equations.

4.2. Consistency with the kinetic theory of polyatomic gases
Let us study the system (7) in the rarefied gas limit, and adopt

the thermal and caloric equations of state:

p =
kB

m
ρT, ε =

D
2

kB

m
T, (10)

where kB and m are the Boltzmann constant and the mass of
a molecule, and the constant D is the degrees of freedom of a
molecule, i.e., D = 3 + f where 3 corresponds to the trans-
lational motion and f is the internal degrees of freedom. The
system of field equations are expressed as

ρ̇ + ρ
∂vk

∂xk
= 0,

ρv̇i +
∂p
∂xi
+
∂Π

∂xi
= 0,

Ṫ +
2

D kB
m ρ

(p + Π)
∂vk

∂xk
= 0,

Π̇ +
2(D − 3)

3D
p
∂vk

∂xk
+

5D − 6
3D

Π
∂vk

∂xk
= − 1
τΠ
Π.

(11)

The relaxation time τΠ and the bulk viscosity ν are given by

τΠ =
2(D − 3)pT

3Dζ
, ν =

2(D − 3)
3D

pτΠ.

For monatomic gases (D = 3), as is expected, τΠ and ν vanish
and the evolution equation (11)4 for Π has now no role.

In this subsection, we show that above results are fully con-
sistent with the kinetic theory. That is, the balance equations
for rarefied polyatomic gases (11) can be obtained via the ki-
netic theory [18] in which the internal energy of a molecule I
is taken into account. Physical quantities are expressed as the
moments of a one-body distribution function f (xi, ci, t, I) with
ci being the velocity of a molecule. The mass density ρ and the
momentum density ρvi are expressed as

ρ =

∫
m f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

ρvi =

∫
mci f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

(12)

where φ(I)dI is a nonnegative measure. We adopt φ(I) = Iσ

[18], whereσwill be related to the degrees of freedom D below.
The integration range is taken as [0,∞) for I and (−∞,∞) for
c1, c2 and c3. By using the peculiar velocity Ci defined by

Ci ≡ ci − vi,
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the internal energy ε, and the sum of the pressure p and the
dynamic pressure Π are expressed as

2ρε =
∫

(mC2 + 2I) f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

3(p + Π) =
∫

mC2 f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

(13)

where C2 = CiCi. It is noticeable that there exist two kinds of
second order moments: the energy density and the momentum
flux, which appear in the binary structure introduced in section
2. Therefore, as proposed in [19], the moments of the F-series
and G-series can be obtained at the kinetic level:

Fi1i2···in =

∫
mci1 ci2 · · · cin f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

Gi1i2···inll =

∫
(mc2 + 2I)ci1 ci2 · · · cin f (xi, ci, t, I)φ(I)dIdc1dc2dc3,

where c2 = cici.
We adopt the Bhatnagar-Gross-Krook (BGK) equation [20]

as the basic equation in the kinetic approach:

∂ f
∂t
+ ci
∂ f
∂xi
= − f − fE

τ′
,

where τ′ is the relaxation time and fE is the local equilibrium
distribution function given by [18]

fE =
n

q(T )

(
m

2πkBT

)3/2

e−
1

kBT ( m
2 C2+I) (14)

with n being the number density (n = ρ/m) and q(T ) the nor-
malization function defined by

q(T ) =
∫
φ(I)e−

I
kBT dI.

Inserting (14) into (13), we have the relation σ = (D− 5)/2 due
to the consistency between (13) and (10).

Multiplying the BGK equation by mΦ(ci, I) ≡
m

(
1, ci, (c2 + 2I/m), c2

)
and integrating over the whole

space, we have the balance equations of 6 moments
u ≡ (F, Fi,Gii, Fii), which are certainly the same as (2) with the
collision term: Pii = −(1/τ′)

∫
mc2 ( f − fE)φ(I)dIdc1dc2dc3.

Concerning the closure at the kinetic level, we adopt
the maximum entropy principle (MEP) proposed for rarefied
monatomic gases in [21, 6] and for polyatomic ones in [19].
Under MEP, the distribution function is calculated by maximiz-
ing the enrtopy, which is a functional of f , under the constraints
of fixed values for the moments. In the neighborhood of equi-
librium the distribution function is given by [22, 23]

f = fE

(
1 − m

kB
Λ ·Φ(ci, I)

)
, (15)

where Λ is the non equilibrium Lagrange multiplier. The
nonequilibrium part of u is thus given by

u − uE = −
m2

kB

∫
fE Λ ·Φ(ci, I) Φ(ci, I)φ(I)dIdc1dc2dc3,

where uE is the equilibrium part. On the other hand, from the
definitions of (12) and (13), we know that u−uE ≡ (0, 0, 0, 3Π).
Therefore we obtain Λ in terms of the independent variables.
By using the distribution function (15) with this Λ, all moments
are expressed in closed forms. These are the same, if τ′ = τΠ,
as the constitutive equations used in (11).

In this way, we have confirmed in the case of rarefied poly-
atomic gases that our macroscopic thermodynamic theory is
perfectly in agreement with the kinetic theory and also in this
case the entropy principle gives the same results of the MEP
as in the case of monatomic gases [22]. The compatibility
between two different approaches supports the validity of the
present macroscopic ET theory for any real gases given by the
general system (7).

Finally we recall that the basic system of differential equa-
tions can be written in a symmetric form by using the main field
u′ that, in the case of rarefied polyatomic gases, coincides with
the Lagrange multiplier vector Λ + λE (see [22] and references
therein):

λE ≡
1
T

(
−g +

v2

2
, −vi,

1
2
, 0

)
(16)

Λ ≡ m
kBρT 2Π

(
−v2

2
, vi,

3
2(D − 3)

, − D
2(D − 3)

)
with g being the chemical potential.

4.3. Characteristic velocities and hyperbolic region
In a general nonequilibrium state, the characteristic velocities

are given by

λ = vn (multiplicity 4), λ = vn ±
√

5
3

p + Π
ρ

where vn = v · n with n being the unit normal of the wave front.
The condition of hyperbolicity is then expressed by Π > −p.

4.4. Possible applications of ET of dense gases
Obviously, the consistent thermodynamic theory of dense

gases that is valid beyond the local equilibrium assumption is
crucially important, for example, in acoustics [24] and gas dy-
namics [25], and in their various applications in the fields of
engineering, biology and so on. Study of nonlinear waves such
as acceleration waves and shock waves in dense gases based on
the theory of ET is also quite promising.
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