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Probability density functions (PDF’s) of the eigenvalues of the strain tensor of an incompressible isotropic
turbulence in 3, 4, and 5 dimensions are computed by direct numerical simulation of Navier-Stokes equations. The
PDF’s of the smallest (negative) eigenvalue are found to be wider than those of the other ones in all dimensions
and to be very insensitive to the dimension. In any dimension, the eigenvalues other than the lowest one increase
as the lowest one decreases, so that they tend to be positive for the large magnitude of the lowest eigenvalue.
In such a situation the flow comes in along a single direction and comes out in the other directions, which is
consistent with the dynamics of the Burgers turbulence in d dimensions. It is suggested that a driving motor
of most intermittent turbulent structure is the compression along a single direction. For the velocity 2 form the
conditional averages of the enstrophy and the total squared strain in three dimensions are computed as functions
of the smallest eigenvalue and found to be monotonically increasing as the magnitude of the smallest eigenvalue
increases. Also, it is found that PDF of the source term of the Poisson equation for the pressure is positively
skewed but tends to be symmetric with increase of the spatial dimension. Dimension effects on the dynamics of
the most compressible eigenvalue are argued.
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I. INTRODUCTION

In the study of turbulence there have been many efforts to
search for something reasonable to approach from the well
known and tractable state such as the multivariate Gaussian
field by perturbative expansion or nonlinear mapping and so
on, as inspired by the success in the statistical mechanics
and quantum field theory. One way is to examine the
dimension effects [1–7]. The effects of the spatial dimension
on turbulence have been studied theoretically and numerically,
and it was suggested that as the spatial dimension increases
the incompressibility condition becomes less restrictive and
larger (negative) longitudinal velocity gradient tends to be
more probable than in three dimensions due to the local
compressible strain, implying that the energy transfer toward
high wavenumbers is enhanced and the local dynamics
becomes closer to that of Burgers turbulence [1,8–11]. In
the Burgers turbulence the shock structure is formed and the
energy dissipation occurs in a thin layer of the shock so that the
scaling exponent of the velocity structure function saturates at
large order, the maximal intermittency.

This motivates us to examine the local flow structure in
homogeneous isotropic turbulence in 3, 4, and 5 dimensions
and to get insight into the role of spatial dimensions on
the dynamics and statistical laws of turbulence, from which
we may be able to find hints to develop a new theoretical
approach to turbulence. In 3D turbulence, for instance, the
ensemble of strong vortices is developed and a model of
Burgers vortices [12] is proposed to embody such a turbulent
flow that the fluid flows in radially and flows out along an
axial direction of a strong vortex tube amplifying the vorticity.
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This model suggests that the straining motion plays a key
fundamental role to transfer the energy to smaller scales of
motion by squeezing a fluid blob or vortex. Such a structure
can be analyzed in local coordinates in which the strain tensor
is diagonal; one can easily imagine flow structure that a flow
element is stretched along some axial directions, flowing in
from the other directions even when the spatial dimensions are
increased. In order to understand the role of spatial dimensions
in the Navier-Stokes hydrodynamics, it is important and useful
to examine in this frame how strong and frequent the squeezing
and stretching action occur and how their relative ratios vary
when the spatial dimension changes. To obtain a common
picture as to the flow structure that holds in any dimension, we
extend the dimension of turbulence to 3, 4, and 5, because the
additional invariants other than the energy, which is conserved
through the nonlinear term in the Navier-Stokes equations, are
dependent on the parity of the dimension [8].

The NS equations of incompressible decaying turbulence
are simulated for dimensions from three to five using the
spectral method. Then we investigate the distributions of
eigenvalues of the strain field from a point of view of
comparing those among different dimensions. The fluid ele-
ments are locally compressed along directions of the negative
eigenvalues and stretched along directions of the positive ones.
Hence, the distribution of the eigenvalues can reveal the local
flow structure. Such a study for various dimensions enables us
to know the universal flow structure independent of dimension.

We obtained the following observations. The normalized
probability density functions (PDF’s) of the lowest (negative)
eigenvalue are wider than those of the highest (positive) ones in
all dimensions. The normalized PDF’s of the lowest eigenvalue
are independent of the dimension, so that the compression
mechanism is universal irrespective of the dimension. In any
dimension, the eigenvalues other than the lowest one increase
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as the latter decreases, so that they are positive for the large
magnitude of the lowest eigenvalue. In such a situation, the
flow comes in along a single direction and comes out in
the other directions. A driving motor of turbulence is the
compression along a single direction, which is the steepening
mechanism in Burgers equation in one dimension.

The present paper is organized as follows. In Sec. II the
basic equations for any dimension is presented. Section III is
devoted to the analysis of the eigenvalues of the strain field.
The lowest one is shown to play a crucial role of scaling
other components. In Sec. IV the velocity 2 form, which is the
antisymmetric tensor of the velocity derivative, is examined
based on the lowest eigenvalue. Discussion and conclusion are
given in Sec. V.

II. BASIC EQUATIONS

The Navier-Stokes equations of an incompressible fluid are
given as

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν�ui, (2.1)

∂uj

∂xj

= 0, (2.2)

where ui is the velocity field, p the pressure, ρ the mass density,
and ν the molecular viscosity, and the summation convention
is assumed for the repeated indexes otherwise stated. The
velocity derivative ∂ui/∂xj is conveniently decomposed into
the symmetric and antisymmetric part as

∂ui

∂xj

= sij + 1

2
�ij , (2.3)

where

sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (2.4)

�ij = ∂ui

∂xj

− ∂uj

∂xi

. (2.5)

Although �ij is related to the vorticity field ω in three
dimensions as

ωi = − 1
2εijk�jk, (2.6)

we use the antisymmetric form of �ij in parallel to sij in an
arbitrary dimension.

The equations for sij become

dsij

dt
= 1

4
�ik�jk − siksjk − ∂2p

∂xi∂xj

+ ν�sij , (2.7)

where

d

dt
= ∂

∂t
+ uk

∂

∂xk

is the Lagrangian derivative in the moving frame. The equation
for the pressure is obtained by setting j equal to i and taking
the summation over i in Eq. (2.7);

�p = 1
4�2

jk − s2
jk ≡ Q, (2.8)

where the incompressible condition sjj = 0 is used. Taking
the spatial average of Eq. (2.8) leads to

〈Q〉 = 0 (2.9)

by homogeneity.
On the other hand, the equations for �ij are

d�ij

dt
= −�ikskj − sik�kj + ν��ij . (2.10)

A set of Eqs. (2.7) and (2.10) determine the configuration of
the microscopic structure of turbulence.

The microscopic structure of turbulence can be investigated
in terms of sij and �ij . Which quantity is more convenient
for such an analysis? The symmetric strain tensor can be
represented by d eigenvalues, while the antisymmetric tensor
has d(d − 1)/2 components. Hence, sij is more convenient
to use for the analysis of high-dimensional turbulence. In the
following we analyze the simulated results for three to five
dimensions with the aid of sij .

III. EIGEN VALUES OF THE STRAIN FIELD

We integrate numerically the Navier-Stokes Eq. (2.1) in
decaying turbulence in spatial dimension 3, 4, and 5 by
using the spectral method and investigate the distributions
of eigenvalues of the strain tensor from a point of view
of comparing those among different dimensions. The initial
velocity field is Gaussian random with zero mean and has the
energy spectrum

Ed (k) ∝ (k/k0)d+1 exp
[− 1

2 (k/k0)2
]
,

where

E(t) = 1

2
〈u2(t)〉 = d

2
u2

rms =
∫ ∞

0
E(k,t) dk

and k0 is the wavenumber of the energy spectrum peak.
The details of the numerical integration are the same as in
Refs. [9,10,13].

In order to have a meaningful comparison among different
dimensions we simulated Eq. (2.1) on the grid points 64d ,
and the data are sampled at the time slightly after the energy
dissipation rate becomes maximum, Rλ being 16.2 then for all
the runs. In order to obtain better statistical convergence in 3
dimensions, we took an average over ten runs with different
random initial conditions.

The eigenvalues λ̃i of sij are computed on each mesh point.
For convenience we normalize λ̃i in such a way,

λi = λ̃i√∑
i λ̃

2
i

= λ̃i√
ε/2ν

,

where ε is the average rate of the energy dissipation.
The normalized eigenvalues are ordered in such a way

that λ1 > λ2 > · · · > λd . The incompressibility condition
demands that

∑
i λi = 0, so that λ1 > 0 and λd < 0 always.

The intermediate eigenvalues can take any sign.

A. Probability distribution of the eigenvalues

In Fig. 1 we depict the PDF’s of eigenvalues for d = 3, 4,
and 5. Looking at those three figures we notice that the PDF’s
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FIG. 1. (Color online) Normalized PDF of λi at Rλ = 16.2.
Peaks of the curves are for λ1, . . . ,λd from the rightmost. (a) 3D,
(b) 4D, (c) 5D.

of the lowest eigenvalue λd and the highest one λ1 look like the
same for all dimensions. To confirm it, the PDF’s of λd and λ1

of different dimensions are compared in Fig. 2. The findings
are as follows. (1) PDF’s of λd and λ1 are asymmetric about
their peaks, (2) PDF of λd is wider than that of λ1, (3) PDF’s
of the intermediate eigenvalues tend to become approximately
symmetric and narrower and tend to evenly distribute between
the PDF’s of λd and λ1 when the spatial dimension increases,
(4) PDF’s tend to decrease exponentially at far tail with
increase of the spatial dimension, (5) the PDF shape of λd is
insensitive to the variation of the spatial dimension, suggesting
that the compression mechanism is universal irrespective of
the dimension, (6) the PDF shape of λ1, on the other hand,
depends slightly on the spatial dimension. In particular, the
distribution in 5D is narrower than that in 3D, and the PDF in
4D is narrower than those for odd dimensions. It is not clear
at present whether the additional invariants depending on the
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FIG. 2. (Color online) Normalized PDF’s of the lowest and the
highest eigenvalues for various dimensions at the same Reynolds
number Rλ = 16.2. Curves of λ1 > 0 are for 3D, 5D, and 4D from
the uppermost at λ1 = 1.5, respectively. Curves of λd are for 3D, 4D,
and 5D from the uppermost at λd = −2, respectively.

parity of the dimension affect the result [8]. In this context, 6D
turbulence may answer this issue. Observation (2) is consistent
with the negative skewness 〈(∂1u1)3〉/〈(∂1u1)2〉3/2

, which is
a measure of the energy transfer to small scales of motion.
The above observations suggest that λd , the most negative
eigenvalue, plays an important key role, which will be seen in
the following.

B. Conditional average

The PDF’s in Fig. 1 cannot give any account of how the
eigenvalues of different sign distribute on grid points. Consider
a case of three dimensions, for instance, where the types of
eigenvalues (+, −, −,) and (+, +, −,) are possible. It is
not meaningful to count the number of two types without
restrictive condition. We would like to find a degree of
correlation between the appearing rate of those types and
the level of activeness in turbulence. Since 〈∑i λ̃

2
i 〉 = ε/2ν,

the local level of turbulent activeness is high where the
magnitude of λd and λ1 are large. Here we choose the smallest
eigenvalue λd as the representative of the level of turbulence.

1. 3D

In 3D, another simulation was made on 5123 grid points, the
data being sampled at Rλ = 53.7. In Fig. 3(a) the appearing
rate of two types of pattern (+, +,−) and (+, −,−) for
λ3 < x is given as a function of x. We notice that the pattern
(+, +,−) is dominant any time. The above result indicates that
the sign of λ2 is strongly governed by the magnitude of λ3. In
order to know the correlation between λ2 and λ3, we plotted
a set of (λ2,λ3) observed on all grid points in Fig. 4, where
every 40 points are plotted to reduce the figure size. Notice that
there is a distinct anticorrelation between both eigenvalues; λ2

increases statistically as λ3 decreases. From the distributions
of (λ1,λ3) and (λ2,λ3) we compute the conditional averages of
λ1 and λ2 for a given value of λ3 as

〈λ1|λ3〉 = −0.67λ3 + 0.094,
(3.1)

〈λ2|λ3〉 = −0.33λ3 − 0.094,
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FIG. 3. (Color online) Appearing rate of two, three, and four types
for λd in d = 3, 4, and 5, respectively. (a) 3D at Rλ = 53.7, (b) 4D at
Rλ = 21.1, (c) 5D at Rλ = 16.2.

where the constants were determined by the least square
fitting over the range −3 < λ3 < −0.5. When the fitting
range was changed to −3.5 < λ3 < −1.0, it was found that
the slopes varied about 10% and the constants about 20%
reflecting the small Reynolds number and the finiteness
of sample points, especially for large |λ3|. This trend is
also applied to higher dimensions. However, the variation
of the constants does not affect the arguments in what
follows.

The incompressible condition 〈λ1|λ3〉 + 〈λ2|λ3〉 + λ3 = 0
is satisfied even statistically. The first member shows 〈λ1|λ3〉 >

0 as it should be. The second member of Eq. (3.1) means that
a region with a large value of |λ3| tends to have positive value
of λ2, statistically speaking, which is in accordance with the
result derived from Fig. 3(a). We call such a set of points
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FIG. 4. (Color online) Scatter plot (plus) of λ2 against λ3 in 3D
at Rλ = 53.7. Triangles are the average value of λ2 for given λ3, and
the straight line is the linear regression curve fitted over the range
[−3, −0.5].

as the active region where there exists a single direction of
compression and the type (+, + ,−) prevails. As is clearly seen
in Fig. 4 the distribution of points is bounded by two straight
lines; λ2 = λ3 for the lower boundary and λ2 = −λ3/2(λ1 =
λ2) for the upper one, which are easily obtained by noting
that λ1 > λ2 > λ3 and λ1 + λ2 + λ3 = 0. It is also possible to
choose λ1 instead of λ3 as the representative. However, since
the action to squeeze a fluid blob is closely related to the energy
transfer to smaller scales, we employ the lowest eigenvalue λd

as the reference parameter in treating four and five dimensions
afterward.

2. 4D

In 4D, an additional simulation was done on the grid points
1284 and the data were sampled at Rλ = 21.1, which is about
40% of that in 3D. Three types (+, −, −,−), (+, +, −,−),
and (+, +, +,−) are possible in principle. We plot the
appearing rate of those types for λ4 < x against x in Fig. 3(b).
For λ4 < −1, the type (+, +, +,−) becomes predominant.
From the plots of λ1, λ2, λ3 against λ4 as in Fig. 4, we obtain
the following relationships:

〈λ1|λ4〉 = −0.51λ4 + 0.12,

〈λ2|λ4〉 = −0.28λ4 − 0.03, (3.2)

〈λ3|λ4〉 = −0.21λ4 − 0.15,

over the range −3.0 < λ4 < −0.5. The first two conditional
averages 〈λ1|λ4〉 and 〈λ2|λ4〉 are positive except for a small
value of |λ4|, while 〈λ3|λ4〉 is positive for λ4 < −0.71. Hence,
the active region is characterized by a type (+, +, +,−),
suggesting a single direction of compression there.

3. 5D

In 5D, the simulation was done on the grid points 645

and the data sampling at Rλ = 16.2. Four types (+, −, −,

−,−), (+, +, −, −,−), (+, +, +, −,−), and (+, +, +,

+,−) are possible. The appearing rates of those types are
given against λ5 in Fig. 3(c). For λ5 < −2, the type (+, +, +,

+,−) becomes dominant. Again, we plot the distribution of
λ1, λ2, λ3, and λ4 against λ5, as in Fig. 4, and obtain the
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conditional averages as

〈λ1|λ5〉 = −0.47λ5 + 0.16,

〈λ2|λ5〉 = −0.23λ5 + 0.12,
(3.3)

〈λ3|λ5〉 = −0.16λ5 + 0.03,

〈λ4|λ5〉 = −0.13λ5 − 0.29,

over the range −3.0 < λ5 < −0.5. It should be noted that
when i increases, the proportional constant ai decreases
initially but the decay rate becomes smaller. Consequently,
λ1,λ2, and λ3 are statistically positive. The sign of λ4 depends
on the magnitude of λ5; it is positive in the region where
λ5 < −2.2. Hence, in the strongly active region, only the type
(+, +, +, +,−) is possible.

IV. STRUCTURE OF VELOCITY 2-FORM FIELD

Now let us turn to the velocity 2-form �ij , the antisym-
metric tensor of the velocity gradient. It is known that in
three dimensions �ij is related to the vorticity by Eq. (2.6)
and ω tends to align the direction parallel to the eigenvector
belonging to λ2. In d dimensions, however, it is difficult and
may not be effective to examine which eigenvector is correlated
to �ij , especially for large d. Instead we examine the statistical
dependence between the local strain field and the enstrophy in
d-dimensional turbulence, which is defined as

Q1 = 1
4�2

ij . (4.1)

Correspondingly, we consider also the total squared strain

Q2 = s2
ij , (4.2)

which is equal to ε/2ν. In the instantaneous diagonal frame-
work, the above two quantities are

Q1 = 1
4�2

ij , Q2 = λ2
j , (4.3)

where �ij is understood as the one transformed in terms of the
orthogonal matrix. The Q1 and Q2 are related to the pressure
by Eq. (2.8), which now becomes

�p = Q1 − Q2 ≡ Q. (4.4)

As in the previous section, we consider the conditional
averages 〈Q1|λd〉 and 〈Q2|λd〉 for a given value of the most
compressible eigenvalue λd of the strain tensor. By projecting
Q1 and Q2 on the most negative eigenvalue λd , we can infer
to what extent the locally compressed action of the strain field
is responsible for the pressure, enstrophy, and so on.

We have computed the conditional averages Q1 and Q2 as
functions of λ3 by the three-dimensional simulation with 5123

grid points at Rλ = 68.6. Figure 5 depicts the scatter plots
(dots) and the conditional averages (symbols) and the fitted
lines of (a) 〈Q1|λ3〉, (b) 〈Q2|λ3〉, (c) 〈Q|λ3〉, and (d) close up
view near the origin as functions of λ3, where λ3 is normalized
by

√∑
i λ

2
i = √

ε/(2ν), and Q1,Q2,Q by ε/(2ν). Because the
number of data is enormous, every 2 × 104 points was plotted
to save the data size in the scatter plots. A large number of
points are located in the region |λ3| < 3, but still many points
are outside the region, although they are not clearly seen in the
figures because of the substantial reduction of points.
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FIG. 5. (Color online) Scatter plots and conditional averages of
(a) 〈Q1|λ3〉, (b) 〈Q2|λ3〉, and (c) 〈Q|λ3〉 as function of λ3 in 3D.
(d) Close up of the conditional averages near the origin obtained
by DNS. Dots, each point; symbols, the conditional average of
DNS; lines, the best fitting curve. In (d): square, 〈Q1|λ3〉; open
circle, 〈Q2|λ3〉; filled circle, 〈Q|λ3〉. λ3 is normalized by

√∑
i λ

2
i =√

ε/(2ν), and Q1,Q2, and Q by ε/(2ν).

In Fig. 5(a), the scatter of the data points is large, which
indicates that the enstrophy Q1 is not governed restrictively by
λ3. The vorticity is significantly large even where |λ3| is not
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large. It is very probable that the vorticity diffuses from the
region where it is amplified by the strong strain field into the
region where the strain field is very weak. From the close-up
view of Fig. 5(d) it follows that 〈Q1|λ3〉 is finite and positive
at |λ3| � 1. The curve is fitted as

〈Q1|λ3〉 = 1.42λ2
3 + 0.64λ3 + 0.53 (4.5)

over the range −5 < λ3 < 0. When the fitting range was
changed to −4 < λ3 < 0, three constants vary within 15%.

Figure 5(b) shows the scatter plot and the conditional
average 〈Q2|λ3〉 (symbols). The scatter of the data points
from the conditional average is very small when compared
to 〈Q1|λ3〉 as expected from the definition of Q2 (4.3). It
should be noted that (1) 〈Q1|λ3〉 grows faster than 〈Q2|λ3〉
with increase of |λ3|, on the other hand, (2) 〈Q2|λ3〉 vanishes
and has zero slope at the origin but is larger than 〈Q1|λ3〉 for the
moderate value of |λ3| as seen from Fig. 5(d). The conditional
average is beautifully fitted in the range −5 < λ3 < 0 by the
curve

〈Q2|λ3〉 = 1.60λ2
3, (4.6)

which is consistent with the value evaluated from the result
Eq. (3.1) with the small constant terms being ignored. When
the fitting range is changed to −4 < λ3 < 0, the constant varies
about 0.1%.

The sum Q is depicted in Fig. 5(c). The fitting curve is
computed as

〈Q|λ3〉 = −0.18λ2
3 + 0.64λ3 + 0.53 (4.7)

by subtracting Eq. (4.6) from Eq. (4.5). The fitted curve follows
well the numerically obtained 〈Q|λ3〉. In Fig. 5(d), 〈Q|λ3〉 by
DNS for −0.5 < λ3 < 0 is approximately constant at about
0.17, while the constant 0.53 of Eq. (4.7) is larger by about
three times. This difference implies that Q1 is independent of
small |λ3|.

It follows that the magnitude of 〈Q|λ3〉 is much smaller than
〈Q1|λ3〉 and 〈Q2|λ3〉 up to λ3 = −7 due to the cancellation.
It should be stressed that this does not necessarily mean that
at each grid point the cancellation occurs. Although 〈Q1|λ3〉
grows in proportion to −0.18λ2

3, the PDF of λ3 decays rapidly
for large negative λ3 as seen in Fig. 1(a) so that the average
vanishes:

〈Q〉 =
∫ 0

−∞
〈Q|λ3〉P (λ3)dλ3 = 0. (4.8)

Indeed, we confirmed that 〈Q〉 = 3.5 × 10−16 in the simula-
tion.

Unfortunately, the above analysis has not been made for the
dimensions 4 and 5. However, effects of the spatial dimension
on Q1,Q2, and Q may be inferred from the PDFs P (Q) of
Q plotted in Fig. 6 for dimension d = 3,4, and 5, which are
computed at the same Reynolds number Rλ = 16.2. In any
dimension, the PDF tail on the positive side of Q is longer
than that on the negative side. It means that the intense �ij is
more probable than the strain field, which is consistent with the
observation of Fig. 5. When the dimension increases, the right
tail becomes shorter while the left tail becomes slightly longer,
so that the asymmetry of the PDF becomes weaker. Since the
pressure is determined by the Poisson equation [Eq. (4.4)],
the shorter positive tail of P (Q) means that the probability
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FIG. 6. (Color online) PDF of Q for dimensions from 3 to 5. The
abscissa is normalized in terms of the standard deviation of Q. Curves
on the positive side are for 3D, 4D, and 5D from the uppermost at
Q = 7, respectively. Curves on the negative side are for 5D, 4D, and
3D from the uppermost at Q = −7, respectively. The parabola is the
Gaussian PDF.

of finding the large negative pressure events becomes smaller,
which in turn leads to less probability of the large enstrophy
Q1 (vorticity). On the other hand, the longer negative tail of
P (Q) means that the probability of the large positive pressure
increases and so does for the probability of the large total
squared strain Q2 (dissipation). The effects of dimension
appear stronger on the right tail than on the left. This can
be understood as follows. In the local diagonal framework
of the strain tensor, Q1 is given by the sum of d(d − 1)/2
terms, while Q2 has d terms from Eq. (4.3). Therefore, when
d becomes large, the central limit theorem applies stronger to
Q1 than Q2, so that the right tail of P (Q) becomes shorter and
the left tail tends to be slightly longer, yielding a symmetric
PDF of Q with the exponential tail, which would be the one
resulting from the Gaussian random velocity field [10].

V. DISCUSSION AND CONCLUSION

The conditional average of the eigenvalue of the strain
tensor in 3, 4, and 5 dimensions is well approximated
as the linear function of λd : 〈λi |λd〉 = −aiλd + bi, where
ai are positive definite while bi change sign randomly.
The incompressibility condition implies the constraints a1 +
a2 + · · · + ad−1 = 1, and b1 + b2 + · · · + bd−1 = 0. The for-
mer condition is well satisfied for all dimensions d = 3,4,
and 5, while the latter is satisfied only approximately. The
Reynolds number dependence of ai is not known. One
interesting observation is the fact that the constant ai decreases
as i increases but tends to saturate for large i. There seem
two possibilities that (A) the large compression is balanced
by d − 1 similar amplitudes stretching, or (B) the large
compression with λd is countered mainly by a single large
stretching motion with λ1 accompanied by several small
positive stretching λi(i = 2, . . . ,d − 1). Although our DNS
data are not enough to definitely determine which case is
more probable, it is interesting to examine how the energy
is dissipated in both cases. First, we consider case (A). In
this case, the simplest model for ai is to put ai = 1/(d − 1).
In the active region where bi term is small compared to
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FIG. 7. (Color online) Normalized PDF’s of λd (left curve) and
the collection (right curve) of the remaining components in 5D.

the linear term −aiλd , the local energy dissipation rate
ε(x) is expressed as ε = 2ν(

∑d−1
i a2

i + 1)λ2
d = 2νcdλ

2
d , where

cd = d/(d − 1). If we substitute Eqs. (3.1) to (3.3) into this
expression, we obtain cDNS

d = 1.56,1.38,1.34 for d = 3,4,5,
respectively, while the theoretical values cd are 1.5,1.33,1.22
for d = 3,4,5, respectively, which are close to the DNS values.
In the large limit of d, the energy dissipation occurs mostly in
a small space perpendicular to the eigenvector corresponding
to λd . Next, we consider case (B). The simplest model is
to put λi = 0,(i = 2, . . . ,d − 1), so that λd = −λ1, which
is similar to the case in two dimensions, and the energy
dissipation is ε = 4νλ2

d . However, this is a rather extreme
case.

The PDF of the collected eigenvalues {λi} other than λd in
5D is plotted in Fig. 7. We see that the PDF of the remaining
eigenvalues is similar to that of λd when the sign is inverted but
with rather rounded peak, which implies that λd competes with

the other components. From the previous consideration and the
PDF’s of eigenvalues in 5D in Figs. 1(c) and 7, we are lead to
consider that case (A) is more plausible than case (B), and that
the smallest eigenvalue λd overwhelms other components in
any dimension and that the flow comes in along a direction of
the smallest eigenvalue and comes out toward other directions,
the Burgers dynamics in d dimensions. This picture is also
consistent with the theoretical prediction by Refs. [1,9–11].

The conditional averages of the enstrophy and the total
squared strain in three dimensions are found to be increasing
functions of λ3. It is found that 〈Q1|λ3〉 grows faster than
〈Q2|λ3〉 for large negative λ3. The PDF of the source term of
the Poisson equation of the pressure is found to be positively
skewed and approaches a symmetric PDF as the dimension
increases. This is due to the relatively faster increase of the
number of terms involved in the enstrophy (right tail) than that
of the total squared strain (left tail).

The above observations and theoretical considerations lead
us to conclude that when the spatial dimension increases
the enhanced compression in one direction and the weak
expansion in other (many) directions tend to dominate the
dynamics and the enhanced energy transfer, the Burgers
dynamics in d dimensions. Therefore, the compression along
the direction is a driving motor of turbulence.
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