T. Arima - S. Taniguchi • T. Ruggeri • M. Sugiyama

Extended Thermodynamics of Dense Gases

Dedicated to Prof. Ingo Müller on the occasion of his 75th birthday.

Received: date / Accepted: date

Abstract

We study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux. As a result, most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also analyze three physically important systems, that is, a gas with the virial equations of state, a hard-sphere system and a van der Waals fluid, by using the general theory developed in the former part of the present work.

Keywords Extended thermodynamics • Dense gas • Dynamic pressure • Virial equations of state • Hard-sphere system • van der Waals fluid

PACS 05.70.Ln • 47.10.ab • 51.10.+y

1 Introduction

Extended thermodynamics (ET) [1] is a phenomenological field theory capable of describing nonequilibrium phenomena with steep gradients and rapid changes that may be out of local equilibrium. While thermodynamics of irreversible processes (TIP) [2] relies essentially on the assumption of local equilibrium. In this respect, the validity range of ET is wider than that of TIP. Moreover, ET can predict finite speeds of disturbances as its basic system of equations is hyperbolic. On the contrary, TIP predicts infinite speeds of disturbances because of its parabolic character.

A well-known theory of viscous heat-conducting fluids based on TIP is the Navier-Stokes Fourier theory with 5 independent field variables; the mass density, the velocity and the temperature [2,3]. On the other hand, ET adopts more independent field variables. To be more specific, let us summarize ET

[^0]for rarefied monatomic gases with 13 independent fields; mass density $F(=\rho)$, momentum density F_{i}, momentum flux $F_{i j}$, and energy flux $F_{p p i}[1,4]$. The system of field equations is of balance type such that
\[

$$
\begin{align*}
& \frac{\partial F}{\partial t}+\frac{\partial F_{k}}{\partial x_{k}}=0 \\
& \frac{\partial F_{i}}{\partial t}+\frac{\partial F_{i k}}{\partial x_{k}}=0 \tag{1}\\
& \frac{\partial F_{i j}}{\partial t}+\frac{\partial F_{i j k}}{\partial x_{k}}=P_{\langle i j\rangle} \\
& \frac{\partial F_{p p i}}{\partial t}+\frac{\partial F_{p p i k}}{\partial x_{k}}=P_{p p i}
\end{align*}
$$
\]

where $F_{i j k}$ and $F_{p p i k}$ are the fluxes of $F_{i j}$ and $F_{p p i}$, respectively, and $P_{\langle i j\rangle}$ and $P_{p p i}$ are the productions with respect to $F_{i j}$ and $F_{p p i}$, respectively. Here $P_{\langle i j\rangle}$ is a symmetric traceless tensor. The first two equations and the trace part of the third equation represent the conservation laws of mass, momentum and energy, respectively. We notice the hierarchy structure of the system such that: (i) the tensorial rank of the equations increases one by one starting from the mass balance equation, and (ii) the flux in one equation becomes the density in the next equation. Such hierarchy is dictated by the moment equations in the kinetic theory of monatomic gases. As a consequence, $F_{i i}\left(=\rho v^{2}+3 p\right)$ is, except for a factor $1 / 2$, equal to the energy density, $\rho v^{2} / 2+\rho \varepsilon$, and therefore $3 p=2 \rho \varepsilon$, where v_{i}, ε and p are the velocity, specific internal energy density and pressure, respectively. Therefore ET with this hierarchy structure is valid only for rarefied monatomic gases.

When the hierarchy of the basic equations are truncated as in the system (1), we need, as a closure procedure, constitutive equations for the quantities that are not in the list of the densities (independent field variables). In ET, we assume that such quantities depend locally on the densities. Their functional forms are severely restricted by the universal physical principles; the principle of objectivity, the entropy principle and the principle of causality. Most of the constitutive equations are fully prescribed by the equilibrium properties of gases $[1,4]$.

ET constructed in such a phenomenological way was proved to be consistent with the Grad's procedure in the kinetic theory based on the Boltzmann equation [5]. Moreover, this theory was generalized in order to develop ET with any number of independent variables. These theories of ET have been applied successfully to various nonequilibrium phenomena such as light scattering, sound waves, heat waves (second sound), structure of shock waves [1].

The Navier-Stokes Fourier theory comes out as a limiting case of ET through carrying out the so-called Maxwellian iteration [6]. In this respect, the Navier-Stokes Fourier theory can be seen as an approximation of ET where the relaxation times of dissipative fluxes (viscous stress and heat flux) are negligible (Navier-Stokes Fourier limit).

However, within its validity range, the classical Navier-Stokes Fourier theory is applicable to any fluids that are not necessarily limited to rarefied gases nor to monatomic gases. Therefore, after the successful establishment of ET for rarefied monatomic gases, there appeared many studies of ET for rarefied polyatomic gases [7-9] and also for real gases (or dense gases) [10-15].

In dense gases, no simple relationship between the pressure p and the specific internal energy ε exists, and moreover the so-called dynamic pressure Π (trace of the viscous stress tensor) does not vanish. Taking these facts into account, the previous authors tried to establish ET by postulating a similar hierarchy structure to (1), but with 14 densities including a fourth-rank tensorial density [12, $14,15]$. However, the other feature that a flux in a equation becomes a density in the next equation was abandoned. Because of this generality, the constitutive equations could not be fully determined from the knowledge of the equilibrium properties of gases. Moreover, as we expect, when the Maxwellian iteration procedure is applied, we have to obtain the Navier-Stokes Fourier constitutive equations. The postulation of the fourth-rank tensorial density seems to be not well justified because, as can be seen in the next section, it does not have any straightforward counterpart in the Navier-Stokes Fourier limit.

The objective of the present paper is to propose an ET theory of dense gases by adopting the system of field equations with a different hierarchy structure to (1). We will show that most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. We will also analyze three physically important systems, that is, a gas with a virial equations of state,
a hard-sphere system and a van der Waals gas, by using the general theory developed in the present paper.

Notations

- A dot on a generic quantity ψ represents the material time derivative:

$$
\dot{\psi} \equiv \frac{\partial \psi}{\partial t}+v_{i} \frac{\partial \psi}{\partial x_{i}} .
$$

- Parentheses around a set of N indices represent the symmetrization with respect to these indices, that is, the sum over all N ! permutations of the indices divided by N !. For example,

$$
\begin{aligned}
& a_{(i} b_{j)}=\frac{1}{2!}\left(a_{i} b_{j}+a_{j} b_{i}\right), \\
& a_{(i} b_{j} c_{k)}=\frac{1}{3!}\left[a_{i}\left(b_{j} c_{k}+b_{k} c_{j}\right)+a_{j}\left(b_{k} c_{i}+b_{i} c_{k}\right)+a_{k}\left(b_{i} c_{j}+b_{j} c_{i}\right)\right] .
\end{aligned}
$$

- Angular brackets denote the symmetric traceless part with respect to these indices (deviatoric part). For example,

$$
a_{\langle i j\rangle}=a_{(i j)}-\frac{1}{3} a_{k k} \delta_{i j} .
$$

2 Model of dense gases

2.1 Heuristic viewpoint

In order to grasp the structure of the basic system appropriate for ET of dense gases, first of all, let us reconsider the structure of the Navier-Stokes Fourier system. In addition to the usual conservation laws of mass, momentum, and energy:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{k}}\left(\rho v_{k}\right)=0 \\
& \frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x_{k}}\left(\rho v_{i} v_{k}-t_{i k}\right)=0 \tag{2}\\
& \frac{\partial}{\partial t}\left(\frac{\rho v^{2}}{2}+\rho \varepsilon\right)+\frac{\partial}{\partial x_{k}}\left[\left(\frac{\rho v^{2}}{2}+\rho \varepsilon\right) v_{k}-t_{k j} v_{j}+q_{k}\right]=0
\end{align*}
$$

we have the constitutive equations:

$$
\begin{equation*}
S_{\langle i j\rangle}=2 \mu \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}, \quad \Pi=-\nu \frac{\partial v_{k}}{\partial x_{k}}, \quad q_{i}=-\kappa \frac{\partial T}{\partial x_{i}} \tag{3}
\end{equation*}
$$

where $t_{i j}$ is the stress tensor expressed by

$$
\begin{equation*}
t_{i j}=-p \delta_{i j}+S_{i j}=-(p+\Pi) \delta_{i j}+S_{\langle i j\rangle} \tag{4}
\end{equation*}
$$

with $S_{i j}$ being the viscous stress tensor and $\Pi\left(\equiv-S_{i i} / 3\right)$ the dynamic pressure, and q_{i} is the heat flux. The coefficients μ, ν and κ are the shear viscosity, the bulk viscosity and the heat conductivity, respectively. Here we observe that, as in the paper [16], the equation (3) can be rewritten in the form:

$$
\begin{align*}
& \frac{\partial}{\partial x_{k}}\left(v_{i} \delta_{j k}+v_{j} \delta_{i k}-\frac{2}{3} v_{k} \delta_{i j}\right)=\frac{S_{\langle i j\rangle}}{\mu}, \\
& \frac{\partial v_{k}}{\partial x_{k}}=-\frac{\Pi}{\nu} \tag{5}\\
& \frac{\partial T}{\partial x_{k}}=-\frac{q_{k}}{\kappa} .
\end{align*}
$$

The system composed of equations (2) and (5) can be seen as a system of 14 equations for the 14 unknown variables: $\rho, v_{i}, \varepsilon, q_{i}, S_{\langle i j\rangle}$ and Π. Its mathematical structure is in the form of balance type, but, in eq. (5), we have no term with time derivative. Therefore the system is not hyperbolic but parabolic.

It is, therefore, natural to assume that the mathematical structure of balance laws in ET of dense gases must be of the following type:

$$
\begin{array}{ll}
\frac{\partial F}{\partial t}+\frac{\partial F_{k}}{\partial x_{k}}=0, & \frac{\partial G_{i i}}{\partial t}+\frac{\partial G_{i i k}}{\partial x_{k}}=0 \\
\frac{\partial F_{i}}{\partial t}+\frac{\partial F_{i k}}{\partial x_{k}}=0, & \frac{\partial G_{p p i}}{\partial t}+\frac{\partial G_{p p i k}}{\partial x_{k}}=Q_{p p i} \tag{6}\\
\frac{\partial F_{i j}}{\partial t}+\frac{\partial F_{i j k}}{\partial x_{k}}=P_{i j}, &
\end{array}
$$

where F is the mass density, F_{i} is the momentum density, $G_{i i}$ is the energy density, $F_{i j}$ is the momentum flux, and $G_{p p i}$ is the energy flux. And $F_{i j k}$ and $G_{p p i k}$ are the fluxes of $F_{i j}$ and $G_{p p i}$, respectively, and $P_{i j}$ and $Q_{p p i}$ are the productions with respect to $F_{i j}$ and $G_{p p i}$, respectively. To justify this structure, we observe that equations (2) correspond to $(6)_{1,2,3}$ with the condition that $F_{i i}$ is different from $G_{i i}$ because, as mentioned before, no simple relation exists between the pressure and the internal energy in dense gases. The equation $(6)_{4}$ can be split into the deviatoric and trace parts that have the mathematical structure of $(5)_{1,2}$ when the terms with time derivatives are neglected. While equation $(6)_{5}$ in the steady case have the mathematical structure of the type of the Fourier's law $(5)_{3}$.

We observe also that the structure of (6) is much more restrictive than that adopted in the previous works, and moreover the system does not have the fourth-rank tensor in the set of densities.

To sum up, the hierarchy structure of the system (6) is composed of two parallel series: The one is the series starting from the mass and momentum balance equations (F-series) and the other is from the energy balance equation (G-series). In each series, the flux in one equation becomes the density in the next equation. Such a structure is also completely consistent with the structure of the set of balance equations derived from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of many-body distribution functions [17] in statistical mechanics, which is valid not only for rarefied gases but also for dense gases and liquids.

2.2 Statement of the model of dense gases

We can now definitely formulate the thermodynamic model for ET of dense gases as follows: The basic system of field equations is of balance type given by (6) with 14 independent field variables,

mass density:	$F(=\rho)$,
momentum density:	$F_{i}\left(=\rho v_{i}\right)$,
energy density:	$G_{i i}$,
momentum flux:	$F_{i j}$,
energy flux:	$G_{p p i}$.

2.3 Galilean invariance

We decompose $F_{i_{1} \cdots i_{n} k}$ and $G_{i_{1} \cdots i_{n} k}$ into the convective and non-convective parts:

$$
\begin{aligned}
& F_{i_{1} \cdots i_{n} k}=F_{i_{1} \cdots i_{n}} v_{k}+H_{i_{1} \cdots i_{n} k}, \\
& G_{i_{1} \cdots i_{n} k}=G_{i_{1} \cdots i_{n}} v_{k}+J_{i_{1} \cdots i_{n} k} .
\end{aligned}
$$

In particular, the quantities $F_{i j k}$ and $G_{p p i k}$ are decomposed as follows: $F_{i j k}=F_{i j} v_{k}+H_{i j k}$ and $G_{p p i k}=G_{p p i} v_{k}+J_{p p i k}$.

The balance equations (6) should be invariant under the Galilean transformation. The general theory of the invariance with respect to the Galilean transformation was given in [18]. As the present
balance equations have a natural order like a moment-theory, we assume that the Galilean invariant form of one equation depends only on its previous ones in the order, and in agreement with the result of [18] we have the unique polynomial dependence of the quantities on the velocity expressed by

$$
\begin{align*}
& G_{i i}=\rho v_{i} v_{i}+m_{i i}, \\
& F_{i j}=\rho v_{i} v_{j}+M_{i j}, \\
& G_{p p i}=\rho v_{p} v_{p} v_{i}+m_{p p} v_{i}+2 v_{p} M_{p i}+m_{p p i}, \\
& H_{i j k}=2 v_{(i} M_{j) k}+M_{i j k}, \tag{8}\\
& J_{p p i k}=3 v_{(p} v_{p} M_{i) k}+2 v_{p} M_{p i k}+v_{i} m_{p p k}+m_{p p i k}, \\
& Q_{p p i}=Q_{i}+2 v_{p} P_{p i},
\end{align*}
$$

where $m_{i i}, M_{i j}, m_{p p i}, M_{i j k}$ and $m_{p p i k}$ do not depend on the velocity, and the productions $P_{i j}$ and Q_{i} are also independent of the velocity. Moreover the term $v_{p} M_{p i}$, by taking into account that the tensor $M_{p i}$ can be represented as the sum of its deviatoric and trace parts, can be written as $v_{p} M_{\langle p i\rangle}+$ $(1 / 3) v_{i} M_{p p}$. Similarly we have $v_{p} M_{p i k}=v_{p} M_{\langle p i\rangle k}+(1 / 3) v_{i} M_{p p k}$.

With Eq. (8), the balance equations (6) can be rewritten as

$$
\begin{align*}
& \dot{\rho}+\rho \frac{\partial v_{k}}{\partial x_{k}}=0 \\
& \rho \dot{v}_{i}+\frac{\partial M_{i j}}{\partial x_{j}}=0, \\
& \dot{m}_{i i}+m_{i i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial m_{i i k}}{\partial x_{k}}+2 \frac{\partial v_{i}}{\partial x_{k}} M_{i k}=0, \\
& \dot{M}_{i i}+M_{i i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial M_{i i k}}{\partial x_{k}}+2 \frac{\partial v_{i}}{\partial x_{k}} M_{i k}=P_{i i}, \tag{9}\\
& \dot{M}_{\langle i j\rangle}+M_{\langle i j\rangle} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial M_{\langle i j\rangle k}}{\partial x_{k}}+2 \frac{\partial v_{\langle i}}{\partial x_{k}} M_{j\rangle k}=P_{\langle i j\rangle}, \\
& \dot{m}_{p p i}+m_{p p i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial m_{p p i k}}{\partial x_{k}}+2 \frac{\partial v_{p}}{\partial x_{k}} M_{p i k}+\frac{\partial v_{i}}{\partial x_{k}} m_{p p k}+2 M_{p i} \dot{v}_{p}+m_{p p} \dot{v}_{i}=Q_{i} .
\end{align*}
$$

As the first three equations represent the conservation laws of mass, momentum and energy, the quantities $M_{i j}, m_{i i}$ and $m_{p p i}$ have the following conventional meanings:

$$
\begin{array}{ll}
\text { stress tensor: } & t_{i j}=-M_{i j}\left(=-(p+\Pi) \delta_{i j}+S_{\langle i j\rangle}\right), \\
\text { specific internal energy: } & \varepsilon=\frac{1}{2 \rho} m_{i i}, \\
\text { heat flux: } & q_{i}=\frac{1}{2} m_{p p i},
\end{array}
$$

where the pressure p depends only on ρ and $m_{i i}$. We will see in Section 3.3 that the decomposition in Eq. (10) is consistent in the present theory. $M_{i j}$ is symmetric because we deal with non-polar materials. Therefore $P_{i j}$ is symmetric and $M_{i j k}$ is symmetric only with respect to the first two indices.

We may adopt $\left\{\rho, v_{i}, m_{i i}, \Pi, M_{\langle i j\rangle}, m_{p p i}\right\}$ as a set of independent variables instead of $\left\{F, F_{i}, G_{i i}, F_{i i}\right.$, $\left.F_{\langle i j\rangle}, G_{p p i}\right\}$. The balance equation of $M_{i i}$ (Eq. $\left.(9)_{4}\right)$ is then rewritten as follows:

$$
\begin{align*}
\dot{\Pi}+(& \left.\frac{5}{3} p-\rho \frac{\partial p}{\partial \rho}-\left(m_{r r}+2 p\right) \frac{\partial p}{\partial m_{q q}}\right) \frac{\partial v_{k}}{\partial x_{k}}+\left(\frac{5}{3}-2 \frac{\partial p}{\partial m_{q q}}\right) \Pi \frac{\partial v_{k}}{\partial x_{k}} \\
& +2\left(\frac{1}{3}-\frac{\partial p}{\partial m_{q q}}\right) \frac{\partial v_{r}}{\partial x_{k}} M_{\langle r k\rangle}+\frac{1}{3} \frac{\partial M_{r r k}}{\partial x_{k}}-\frac{\partial p}{\partial m_{q q}} \frac{\partial m_{r r k}}{\partial x_{k}}=\frac{P_{r r}}{3} \tag{13}
\end{align*}
$$

3 Constitutive equations

We need the constitutive equations in order to set up the closed system of field equations. We assume that the constitutive quantities at one point and time depend on the independent fields at that point and time, i.e., local and instantaneous, therefore we have

$$
\begin{equation*}
\Psi=\hat{\Psi}\left(\rho, m_{i i}, \Pi, M_{\langle i j\rangle}, m_{p p i}\right) \tag{14}
\end{equation*}
$$

where Ψ is one of the constitutive quantities $\left\{M_{i j k}, m_{p p i k}, P_{i j}, Q_{i}\right\}$.
We apply to the present case the constitutive theory established in ET [1] where we impose the following universal physical principles on the constitutive equations:

- Material frame indifference principle:

The proper constitutive equations are independent of an observer. The material frame indifference principle together with the requirement of the Galilean invariance of balance laws constitute the so-called objectivity principle (the principle of relativity).

- Entropy principle:

All solutions of the system of field equations must satisfy the entropy balance with a non-negative entropy production:

$$
\begin{equation*}
\frac{\partial h}{\partial t}+\frac{\partial\left(h v_{k}+\varphi_{k}\right)}{\partial x_{k}}=\Sigma \geqq 0 \quad \Leftrightarrow \quad \dot{h}+h \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial \varphi_{k}}{\partial x_{k}}=\Sigma \geqq 0 \tag{15}
\end{equation*}
$$

where h is the entropy density, h_{k} is the entropy flux $\left(h_{k}=h v_{k}+\varphi_{k}: \varphi_{k}\right.$ is the non-convective entropy flux), and Σ is the entropy production. Here h and φ_{k} are constitutive quantities:

$$
\begin{align*}
& h=h\left(\rho, m_{i i}, \Pi, M_{\langle i j\rangle}, m_{p p i}\right) \\
& \varphi_{k}=\varphi_{k}\left(\rho, m_{i i}, \Pi, M_{\langle i j\rangle}, m_{p p i}\right) \tag{16}
\end{align*}
$$

- Causality:

This requires the concavity of the entropy density and guarantees the hyperbolicity of the system of field equations. This also ensures the well-posedness (local in time) of a Cauchy problem and the finiteness of the propagation speeds of disturbances.
3.1 Relations derived from the entropy principle

The entropy principle can be expressed that the following inequality with Lagrange multipliers $\Lambda, \Lambda_{i}, \lambda, \Lambda_{i j}$ and λ_{i} must be satisfied for all fields, ρ through $m_{p p i}$ [19]:

$$
\begin{aligned}
\dot{h} & +h \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial \varphi_{k}}{\partial x_{k}}-\Lambda\left[\dot{\rho}+\rho \frac{\partial v_{k}}{\partial x_{k}}\right]-\Lambda_{i}\left[\rho \dot{v}_{i}+\frac{\partial M_{i j}}{\partial x_{j}}\right] \\
& -\lambda\left[\dot{m}_{i i}+m_{i i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial m_{i i k}}{\partial x_{k}}+2 \frac{\partial v_{i}}{\partial x_{k}} M_{i k}\right] \\
& -\Lambda_{i i}\left[\dot{\Pi}+\left(\frac{5}{3} p-\rho \frac{\partial p}{\partial \rho}-\left(m_{r r}+2 p\right) \frac{\partial p}{\partial m_{q q}}\right) \frac{\partial v_{k}}{\partial x_{k}}+\left(\frac{5}{3}-2 \frac{\partial p}{\partial m_{q q}}\right) \Pi \frac{\partial v_{k}}{\partial x_{k}}\right. \\
& \left.+2\left(\frac{1}{3}-\frac{\partial p}{\partial m_{q q}}\right) \frac{\partial v_{r}}{\partial x_{k}} M_{\langle r k\rangle}+\frac{1}{3} \frac{\partial M_{r r k}}{\partial x_{k}}-\frac{\partial p}{\partial m_{q q}} \frac{\partial m_{r r k}}{\partial x_{k}}-\frac{P_{r r}}{3}\right] \\
& -\Lambda_{\langle i j\rangle}\left[\dot{M}_{\langle i j\rangle}+M_{\langle i j\rangle} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial M_{\langle i j\rangle k}}{\partial x_{k}}+2 \frac{\partial v_{\langle i}}{\partial x_{k}} M_{j\rangle k}-P_{\langle i j\rangle}\right] \\
& -\lambda_{i}\left[\dot{m}_{p p i}+m_{p p i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{\partial m_{p p i k}}{\partial x_{k}}+2 \frac{\partial v_{p}}{\partial x_{k}} M_{p i k}+\frac{\partial v_{i}}{\partial x_{k}} m_{p p k}+2 M_{i p} \dot{v}_{p}+m_{p p} \dot{v}_{i}-Q_{i}\right] \\
& \geqq 0 .
\end{aligned}
$$

Using the expressions (14) and (16) and taking into account the fact that the following derivatives,

$$
\begin{equation*}
\dot{\rho}, \dot{v}_{i}, \dot{m}_{l l}, \dot{\Pi}, \dot{M}_{\langle i j\rangle}, \dot{m}_{p p i}, \frac{\partial \rho}{\partial x_{k}}, \frac{\partial v_{i}}{\partial x_{k}}, \frac{\partial m_{l l}}{\partial x_{k}}, \frac{\partial \Pi}{\partial x_{k}}, \frac{\partial M_{\langle i j\rangle}}{\partial x_{k}}, \frac{\partial m_{p p i}}{\partial x_{k}}, \tag{17}
\end{equation*}
$$

can have any values, we obtain the relations:

$$
\begin{align*}
& \mathrm{d} h=\Lambda \mathrm{d} \rho+\lambda \mathrm{d} m_{i i}+\Lambda_{i i} \mathrm{~d} \Pi+\Lambda_{\langle i j\rangle} \mathrm{d} M_{\langle i j\rangle}+\lambda_{i} \mathrm{~d} m_{p p i}, \tag{18}\\
& \mathrm{~d} \varphi_{k}=\Lambda_{k} \mathrm{~d} p+\Lambda_{k} \mathrm{~d} \Pi+\Lambda_{i} \mathrm{~d} M_{\langle i k\rangle}+\left(\lambda-\Lambda_{l l} \frac{\partial p}{\partial m_{q q}}\right) \mathrm{d} m_{i i k} \\
& \quad+\frac{\Lambda_{l l}}{3} \mathrm{~d} M_{i i k}+\Lambda_{\langle i j\rangle} \mathrm{d} M_{\langle i j\rangle k}+\lambda_{i} \mathrm{~d} m_{p p i k}, \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
& \Lambda_{i}=-\frac{1}{\rho}\left(\lambda_{i} m_{k k}+2 \lambda_{j} M_{i j}\right), \tag{20}\\
& {\left[h-\Lambda \rho-\lambda\left(m_{s s}+2 p\right)-2 \lambda \Pi-\Lambda_{l l}\left(\frac{5}{3} p-\rho \frac{\partial p}{\partial \rho}-\left(m_{s s}+2 p\right) \frac{\partial p}{\partial m_{r r}}\right)\right.} \\
& \left.-\Lambda_{l l} \Pi\left(\frac{5}{3}-2 \frac{\partial p}{\partial m_{r r}}\right)-\Lambda_{\langle r s\rangle} M_{\langle r s\rangle}-\lambda_{r} m_{s s r}\right] \delta_{i k} \\
& -2 \lambda M_{\langle i k\rangle}+2 \frac{\partial p}{\partial m_{r r}} M_{\langle i k\rangle} \Lambda_{l l}-2 \lambda_{j} M_{\langle i j\rangle k}-\frac{2}{3} \lambda_{i} M_{l l k} \\
& -\lambda_{i} m_{l l k}-2 \Lambda_{\langle i r\rangle} M_{\langle r k\rangle}-\frac{2}{3} \Lambda_{l l} M_{\langle i k\rangle}-2 \Lambda_{\langle i k\rangle}(p+\Pi)=0 . \tag{21}
\end{align*}
$$

The residual inequality is given by

$$
\begin{equation*}
\Sigma=\frac{1}{3} \Lambda_{i i} P_{j j}+\Lambda_{\langle i j\rangle} P_{\langle i j\rangle}+\lambda_{i} Q_{i} \geqq 0 . \tag{22}
\end{equation*}
$$

3.2 Equilibrium

Equilibrium is defined as a process in which the productions $P_{i i}, P_{\langle i j\rangle}$ and Q_{i} vanish. The entropy production Σ becomes minimum and vanishes in equilibrium, and then we obtain the necessary conditions:

$$
\begin{equation*}
\Lambda_{i i}^{E}=0, \quad \Lambda_{\langle i j\rangle}^{E}=0, \quad \lambda_{i}^{E}=0 \tag{23}
\end{equation*}
$$

where index E denotes equilibrium. Therefore the Lagrange multipliers $\Lambda_{i i}, \Lambda_{\langle i j\rangle}$ and λ_{i} play a role of characterizing nonequilibrium phenomena, and will be called nonequilibrium variables.

From Eq. (18) and $m_{i i}=2 \rho \varepsilon$, we have the relation:

$$
\begin{equation*}
\mathrm{d} h^{E}=\Lambda^{E} \mathrm{~d} \rho+2 \lambda^{E} \mathrm{~d}(\rho \varepsilon) . \tag{24}
\end{equation*}
$$

On the other hand, taking into account that $h^{E}=\rho s$ where s is the entropy density and that $T d s=$ $d \varepsilon-\left(p / \rho^{2}\right) d \rho$ (the Gibbs equation), we have

$$
\begin{equation*}
\mathrm{d} h^{E}=-\frac{g}{T} \mathrm{~d} \rho+\frac{1}{T} \mathrm{~d}(\rho \varepsilon) \tag{25}
\end{equation*}
$$

where $g(=\varepsilon+p / \rho-T s)$ is the chemical potential and T the abosolute temperature. Now, by comparison, we conclude that

$$
\begin{equation*}
\Lambda^{E}=-\frac{g}{T}, \quad \lambda^{E}=\frac{1}{2 T} \tag{26}
\end{equation*}
$$

We observe that the trace part of Eq. (21) in equilibrium becomes an identity.
3.3 Derivation of the constitutive equations

In order to transform the independent variables from $\left\{\rho, m_{i i}, \Pi, M_{\langle i j\rangle}, m_{p p i}\right\}$ to $\left\{\Lambda, \lambda, \Lambda_{i i}, \Lambda_{\langle i j\rangle}\right.$, $\left.\lambda_{i}\right\}$, we introduce the new potentials h^{\prime} and φ_{k}^{\prime} as follows:

$$
\begin{align*}
& h^{\prime}=\Lambda \rho+\lambda m_{i i}+\Lambda_{i i} \Pi+\Lambda_{\langle i j\rangle} M_{\langle i j\rangle}+\lambda_{i} m_{p p i}-h, \tag{27}\\
& \varphi_{k}^{\prime}=\lambda m_{i i k}+\frac{1}{3} \Lambda_{l l} M_{i i k}+\Lambda_{\langle i j\rangle} M_{\langle i j\rangle k}+\lambda_{i} m_{p p i k}-\varphi_{k} \tag{28}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \mathrm{d} h^{\prime}= \rho \mathrm{d} \Lambda+m_{i i} \mathrm{~d} \lambda+\Pi \mathrm{d} \Lambda_{l l}+M_{\langle i j\rangle} \mathrm{d} \Lambda_{\langle i j\rangle}+m_{p p i} \mathrm{~d} \lambda_{i} \tag{29}\\
& \mathrm{~d} \varphi_{k}^{\prime}=-\Lambda_{k}(\mathrm{~d} p+\mathrm{d} \Pi)-\Lambda_{i} \mathrm{~d} M_{\langle i k\rangle}+\frac{\partial p}{\partial m_{j j}} \Lambda_{l l} \mathrm{~d} m_{p p k} \\
&+m_{p p k} \mathrm{~d} \lambda+\frac{1}{3} M_{i i k} \mathrm{~d} \Lambda_{l l}+M_{\langle i j\rangle k} \mathrm{~d} \Lambda_{\langle i j\rangle}+m_{p p i k} \mathrm{~d} \lambda_{i} . \tag{30}
\end{align*}
$$

By using the representation theorem that ensures the principle of objectivity, the potentials h^{\prime} and φ_{k}^{\prime} are expanded around an equilibrium state with respect to the nonequilibrium variables $\left\{\Lambda_{k k}, \Lambda_{\langle i j\rangle}, \lambda_{i}\right\}$ as follows:

$$
\begin{align*}
h^{\prime}= & h^{E} \\
& +h_{1} \Lambda_{k k}+h_{2} \Lambda_{k k}^{2}+h_{3} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+h_{4} \lambda_{i} \lambda_{i}+h_{5} \Lambda_{k k}^{3}+h_{6} \Lambda_{k k} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \tag{31}\\
& +h_{7} \Lambda_{\langle i j\rangle} \Lambda_{\langle i n\rangle} \Lambda_{\langle n j\rangle}+h_{8} \Lambda_{k k} \lambda_{i} \lambda_{i}+h_{9} \lambda_{i} \lambda_{j} \Lambda_{\langle i j\rangle}+O(4), \tag{32}\\
\varphi_{k}^{\prime}= & \left(\beta_{1}+\beta_{2} \Lambda_{l l}\right) \lambda_{k}+\beta_{3} \Lambda_{\langle k i\rangle} \lambda_{i}+O(3),
\end{align*}
$$

where the coefficients h_{1}, \cdots, h_{9} and $\beta_{1}, \beta_{2}, \beta_{3}$ are the functions of Λ and λ. From Eqs. (26)-(27), we have the relation:

$$
\begin{equation*}
h^{E}=\Lambda^{E} \rho+\lambda^{E} m_{i i}-h^{E}=-\frac{p^{E}}{T} . \tag{33}
\end{equation*}
$$

From Eqs. (31) and (32), we obtain

$$
\begin{align*}
& \mathrm{d} h^{\prime}=\mathrm{d} h^{\prime E} \\
&+\Lambda_{k k} \mathrm{~d} h_{1}+\Lambda_{k k}^{2} \mathrm{~d} h_{2}+\Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \mathrm{d} h_{3}+\lambda_{i} \lambda_{i} \mathrm{~d} h_{4}+\Lambda_{k k}^{3} \mathrm{~d} h_{5} \\
&+\Lambda_{k k} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \mathrm{d} h_{6}+\Lambda_{\langle i j\rangle} \Lambda_{\langle i n\rangle} \Lambda_{\langle n j\rangle} \mathrm{d} h_{7}+\Lambda_{k k} \lambda_{i} \lambda_{i} \mathrm{~d} h_{8}+\lambda_{i} \lambda_{j} \Lambda_{\langle i j\rangle} \mathrm{d} h_{9} \\
&+\left(h_{1}+2 h_{2} \Lambda_{k k}+3 h_{5} \Lambda_{k k}^{2}+h_{6} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+h_{8} \lambda_{i} \lambda_{i}\right) \mathrm{d} \Lambda_{l l} \\
&+\left(2 h_{3} \Lambda_{\langle i j\rangle}+3 h_{7} \Lambda_{\langle n\langle i\rangle} \Lambda_{\langle j\rangle n\rangle}+2 h_{6} \Lambda_{k k} \Lambda_{\langle i j\rangle}+h_{9} \lambda_{\langle i} \lambda_{j\rangle}\right) \mathrm{d} \Lambda_{\langle i j\rangle} \tag{34}\\
&+\left(2 h_{4} \lambda_{i}+2 h_{8} \Lambda_{k k} \lambda_{i}+2 h_{9} \Lambda_{\langle i j\rangle} \lambda_{j}\right) \mathrm{d} \lambda_{i}+O(4) \\
& \mathrm{d} \varphi_{k}^{\prime}=\lambda_{k} \mathrm{~d} \beta_{1}+\Lambda_{l l} \lambda_{k} \mathrm{~d} \beta_{2}+\Lambda_{\langle k i\rangle} \lambda_{i} \mathrm{~d} \beta_{3}+\left(\beta_{1}+\beta_{2} \Lambda_{l l}\right) \mathrm{d} \lambda_{k} \tag{35}\\
&+\beta_{3} \Lambda_{\langle k i\rangle} \mathrm{d} \lambda_{i}+\beta_{2} \lambda_{k} \mathrm{~d} \Lambda_{l l}+\beta_{3} \lambda_{i} \mathrm{~d} \Lambda_{\langle k i\rangle}+O(3)
\end{align*}
$$

Comparing two expressions of $\frac{\partial h^{\prime}}{\partial \Lambda_{l l}}$ derived from Eqs. (29) and (34) with each other, we obtain

$$
\begin{equation*}
\Pi=h_{1}+2 h_{2} \Lambda_{k k}+3 h_{5} \Lambda_{k k}^{2}+h_{6} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+h_{8} \lambda_{i} \lambda_{i}+O(3) . \tag{36}
\end{equation*}
$$

As Π vanishes in equilibrium, $h_{1} \equiv 0$. In a similar way, we compare two expressions of $\frac{\partial h^{\prime}}{\partial \Lambda}, \frac{\partial h^{\prime}}{\partial \lambda}, \frac{\partial h^{\prime}}{\partial \Lambda_{\langle i j\rangle}}$ and $\frac{\partial h^{\prime}}{\partial \lambda_{i}}$ derived from Eqs. (29) and (34) with each other, then we obtain

$$
\begin{align*}
& \rho=\rho^{E}+\frac{\partial h_{2}}{\partial \Lambda} \Lambda_{k k}^{2}+\frac{\partial h_{3}}{\partial \Lambda} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+\frac{\partial h_{4}}{\partial \Lambda} \lambda_{i} \lambda_{i}+\frac{\partial h_{5}}{\partial \Lambda} \Lambda_{k k}^{3}+\frac{\partial h_{6}}{\partial \Lambda} \Lambda_{k k} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \\
&+\frac{\partial h_{7}}{\partial \Lambda} \Lambda_{\langle i j\rangle} \Lambda_{\langle n\langle i\rangle} \Lambda_{\langle j\rangle n\rangle}+\frac{\partial h_{8}}{\partial \Lambda} \Lambda_{k k} \lambda_{i} \lambda_{i}+\frac{\partial h_{9}}{\partial \Lambda} \lambda_{i} \lambda_{j} \Lambda_{\langle i j\rangle}+O(4), \\
& m_{i i}=m_{i i}^{E}+\frac{\partial h_{2}}{\partial \lambda} \Lambda_{k k}^{2}+\frac{\partial h_{3}}{\partial \lambda} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+\frac{\partial h_{4}}{\partial \lambda} \lambda_{i} \lambda_{i}+\frac{\partial h_{5}}{\partial \lambda} \Lambda_{k k}^{3}+\frac{\partial h_{6}}{\partial \lambda} \Lambda_{k k} \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \tag{37}\\
&+\frac{\partial h_{7}}{\partial \lambda} \Lambda_{\langle i j\rangle} \Lambda_{\langle n\langle i\rangle} \Lambda_{\langle j\rangle n\rangle}+\frac{\partial h_{8}}{\partial \lambda} \Lambda_{k k} \lambda_{i} \lambda_{i}+\frac{\partial h_{9}}{\partial \lambda} \lambda_{i} \lambda_{j} \Lambda_{\langle i j\rangle}+O(4), \\
& M_{\langle i j\rangle}=2 h_{3} \Lambda_{\langle i j\rangle}+3 h_{7} \Lambda_{\langle n\langle i\rangle} \Lambda_{\langle j\rangle n\rangle}+2 h_{6} \Lambda_{k k} \Lambda_{\langle i j\rangle}+h_{9} \lambda_{\langle i} \lambda_{j\rangle}+O(3), \\
& m_{p p i}=2 h_{4} \lambda_{i}+2 h_{8} \Lambda_{k k} \lambda_{i}+2 h_{9} \Lambda_{\langle i j\rangle} \lambda_{j}+O(3),
\end{align*}
$$

where $\rho^{E}=\rho^{E}(\Lambda, \lambda)$ and $m_{i i}^{E}=m_{i i}^{E}(\Lambda, \lambda)=2 \rho^{E}(\Lambda, \lambda) \varepsilon^{E}(\Lambda, \lambda)$. From Eqs. (37) ${ }_{1,2}$, we can represent the pressure p as follows:

$$
\begin{align*}
& p\left(\rho, m_{i i}\right)=p^{E}\left(\rho^{E}, m_{i i}^{E}\right)+\left(\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}}\left(\frac{\partial h_{2}}{\partial \Lambda}\right)_{\lambda}+\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho}\left(\frac{\partial h_{2}}{\partial \lambda}\right)_{\Lambda}\right) \Lambda_{k k}^{2} \\
& +\left(\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}}\left(\frac{\partial h_{3}}{\partial \Lambda}\right)_{\lambda}+\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho}\left(\frac{\partial h_{3}}{\partial \lambda}\right)_{\Lambda}\right)_{\langle i j\rangle} \Lambda_{\langle i j\rangle} \\
& +\left(\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}}\left(\frac{\partial h_{4}}{\partial \Lambda}\right)_{\lambda}+\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho}\left(\frac{\partial h_{4}}{\partial \lambda}\right)_{\Lambda}\right) \lambda_{i} \lambda_{i}+O(3) . \tag{38}
\end{align*}
$$

From equations $(37)_{1,2}$ and (38), we notice an important point that we have a nonequilibrium density ρ and an equilibrium density ρ^{E}, and that the difference $\rho-\rho^{E}$ is in the second order of magnitude with respect to the nonequilibrium variables. This justifies the equality, $\rho=\rho^{E}$, as far as the linear theory with respect to the nonequilibrium variables is concerned. The same is true for the quantities $m_{i i}$ and p. This point will play a crucial role in the next subsection.

Next we compare two expressions of $\frac{\partial \varphi_{k}^{\prime}}{\partial \Lambda}, \frac{\partial \varphi_{k}^{\prime}}{\partial \lambda}, \frac{\partial \varphi_{k}^{\prime}}{\partial \Lambda_{l l}}, \frac{\partial \varphi_{k}^{\prime}}{\partial \Lambda_{\langle i j\rangle}}$ and $\frac{\partial \varphi_{k}^{\prime}}{\partial \lambda_{i}}$ derived from Eqs. (30) and (35) with each other, then we obtain

$$
\begin{align*}
& 0=\left[\frac{\partial \beta_{1}}{\partial \Lambda}-2 \frac{\partial p}{\partial \Lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{k} \\
&+\left[\frac{\partial \beta_{2}}{\partial \Lambda}-\frac{4 h_{2}}{\rho} \frac{\partial p}{\partial \Lambda}-2 \frac{\partial p}{\partial m_{i i}} \frac{\partial h_{4}}{\partial \Lambda}-2 \frac{\partial h_{4}}{\partial \Lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \Lambda_{l l} \lambda_{k} \\
&+\left[\frac{\partial \beta_{3}}{\partial \Lambda}-4 \frac{h_{3}}{\rho} \frac{\partial p}{\partial \Lambda}-2 \frac{\partial h_{3}}{\partial \Lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{i} \Lambda_{\langle i k\rangle}+O(3) \\
& 0=\left[\frac{\partial \beta_{1}}{\partial \lambda}-2 h_{4}-2 \frac{\partial p}{\partial \lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{k} \\
&+\left[\frac{\partial \beta_{2}}{\partial \lambda}-2 h_{8}-\frac{4 h_{2}}{\rho} \frac{\partial p}{\partial \lambda}-2 \frac{\partial p}{\partial m_{i i}} \frac{\partial h_{4}}{\partial \lambda}-2 \frac{\partial h_{4}}{\partial \lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \Lambda_{l l} \lambda_{k} \tag{39}\\
&+\left[\frac{\partial \beta_{3}}{\partial \lambda}-2 h_{9}-4 \frac{h_{3}}{\rho} \frac{\partial p}{\partial \lambda}-2 \frac{\partial h_{3}}{\partial \lambda}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{i} \Lambda_{\langle i k\rangle}+O(3) \\
& M_{i i k}=3\left[\beta_{2}-2 h_{2}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{k}+O(2), \\
& M_{\langle i j\rangle k}=\left[\beta_{3}-2 h_{3}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{\langle i} \delta_{j\rangle k}+O(2), \\
& m_{p p i k}=\left[\beta_{1}+\left\{\beta_{2}-2 h_{4}\left(\frac{\partial p}{\partial m_{p p}}\right)_{\rho}\right\} \Lambda_{l l}\right] \delta_{i k}+\beta_{3} \Lambda_{\langle i k\rangle}+O(2) .
\end{align*}
$$

We now derive the relations among the coefficients h_{2}, \cdots, h_{9} and $\beta_{1}, \beta_{2}, \beta_{3}$. By substituting Eqs. (37), (39) $)_{3,4}$ and (31) into Eq.(21), we have

$$
\begin{align*}
& h_{2}=\frac{1}{4 \lambda}\left(-\frac{5}{3} p^{E}+\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}^{E}} \rho^{E}+\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} m_{r r}^{E}+2\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} p^{E}\right), \\
& h_{3}=-\frac{p^{E}}{2 \lambda}, \\
& h_{5}=\left(2\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}}-\frac{7}{6}\right) \frac{h_{2}}{3 \lambda}-\frac{1}{3}\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}^{E}}\left(\frac{\partial h_{2}}{\partial \Lambda}\right)_{\lambda}-\frac{1}{3}\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}}\left(\frac{\partial h_{2}}{\partial \lambda}\right)_{\Lambda}, \\
& h_{6}=\frac{1}{4 \lambda^{2}}\left(\frac{7}{3} p^{E}-\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}^{E}} \rho^{E}-\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} m_{r r}^{E}-4\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} p^{E}\right), \tag{40}\\
& h_{7}=\frac{p^{E}}{3 \lambda^{2}}, \\
& h_{8}=-\frac{1}{3 \lambda}\left[\frac{5}{3} \beta_{3}+\beta_{2}-\frac{1}{\rho^{E}}\left(\frac{10}{3} h_{3}+2 h_{2}\right)\left(m_{i i}^{E}+2 p^{E}\right)\right] \\
&-\frac{5}{6 \lambda} h_{4}-\left(\frac{\partial p^{E}}{\partial \rho^{E}}\right)_{m_{i i}^{E}}\left(\frac{\partial h_{4}}{\partial \Lambda}\right)_{\lambda}-\lambda\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}}\left(\frac{\partial h_{4}}{\partial \lambda}\right)_{\Lambda}, \\
& h_{9}=-\frac{1}{\lambda}\left[\frac{\beta_{3}}{6}+\beta_{2}-\frac{1}{\rho^{E}}\left(\frac{h_{3}}{3}+2 h_{2}\right)\left(m_{i i}^{E}+2 p^{E}\right)\right]-\frac{h_{4}}{\lambda} .
\end{align*}
$$

From Eqs. $(39)_{1,2}$, we have the relations:

$$
\begin{align*}
\frac{\partial \beta_{1}}{\partial \Lambda} & =2 \frac{\partial p^{E}}{\partial \Lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right) \\
\frac{\partial \beta_{2}}{\partial \Lambda} & =\frac{4 h_{2}}{\rho^{E}} \frac{\partial p^{E}}{\partial \Lambda}+2\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} \frac{\partial h_{4}}{\partial \Lambda}+2 \frac{\partial h_{4}}{\partial \Lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right) \\
\frac{\partial \beta_{3}}{\partial \Lambda} & =4 \frac{h_{3}}{\rho^{E}} \frac{\partial p^{E}}{\partial \Lambda}+2 \frac{\partial h_{3}}{\partial \Lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right) \\
\frac{\partial \beta_{1}}{\partial \lambda} & =2 h_{4}+2 \frac{\partial p^{E}}{\partial \lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right) \tag{41}\\
\frac{\partial \beta_{2}}{\partial \lambda} & =2 h_{8}+\frac{4 h_{2}}{\rho^{E}} \frac{\partial p^{E}}{\partial \lambda}+2\left(\frac{\partial p^{E}}{\partial m_{i i}^{E}}\right)_{\rho^{E}} \frac{\partial h_{4}}{\partial \lambda}+2 \frac{\partial h_{4}}{\partial \lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right) \\
\frac{\partial \beta_{3}}{\partial \lambda} & =2 h_{9}+4 \frac{h_{3}}{\rho^{E}} \frac{\partial p^{E}}{\partial \lambda}+2 \frac{\partial h_{3}}{\partial \lambda}\left(\varepsilon^{E}+\frac{p^{E}}{\rho^{E}}\right)
\end{align*}
$$

Note that the coefficient h_{4} appears only in $(40)_{6,7}$ and in $(41)_{2,4,5}$.
3.4 Definitions of the temperature and the chemical potential in nonequilibrium

As explained before, from Eqs. (37) $)_{1,2}$ and (38), we notice the following two points: (i) The density ρ and the internal energy $m_{i i}$ at a nonequilibrium state with $\left(\Lambda, \lambda, \Lambda_{k k}, \Lambda_{\langle i j\rangle}, \lambda_{i}\right)$ are equal to the equilibrium quantities ρ^{E} and $m_{i i}{ }^{E}$ at (Λ, λ) to within second-order terms. This means that, as far as the linear constitutive equations are concerned, the values of (Λ, λ) are exactly those of the associated local equilibrium state [20] with the nonequilibrium state. Therefore we can use the relations (26), and can introduce the temperature T and the chemical potential g into the nonequilibrium state through the following relations:

$$
\begin{equation*}
\Lambda=-\frac{g}{T}, \quad \lambda=\frac{1}{2 T} \tag{42}
\end{equation*}
$$

Hereafter we will use T and g with this understanding. (ii) The pressure p is also equal to the local equilibrium quantity p^{E} to within second-order terms. Thus we assure the adequateness of the decomposition prescribed in Eq. (10).

For convenience, we take $\{\rho, T\}$ as independent variables instead of $\{\Lambda, \lambda\}$. Then the relations (40) are rewritten in terms of $\{\rho, T\}$ as follows:

$$
\begin{align*}
h_{2} & =-\frac{5}{6} T p+\frac{\rho T}{2}\left(\frac{\partial p}{\partial \rho}\right)_{T}+\frac{T^{2}}{2 \rho} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}^{2}}{\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}} \\
h_{3} & =-T p \\
h_{5} & =\frac{2 T h_{2}}{3}\left(-\frac{7}{6}+\frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}\right)+\frac{\rho T}{3}\left(\frac{\partial h_{2}}{\partial \rho}\right)_{T}+\frac{T^{2}}{3}\left(\frac{\partial h_{2}}{\partial T}\right)_{\rho} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}, \\
h_{6} & =\frac{7}{3} p T^{2}-\rho T^{2}\left(\frac{\partial p}{\partial \rho}\right)_{T}-T^{2}\left(p+T\left(\frac{\partial p}{\partial T}\right)_{\rho}\right) \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}, \tag{43}\\
h_{7} & =\frac{4}{3} T^{2} p \\
h_{8} & =-\frac{2}{3} T \beta_{2}-\frac{10}{9} T \beta_{3}-\frac{5}{3} T h_{4}+\rho T\left(\frac{\partial h_{4}}{\partial \rho}\right)_{T}+T^{2}\left(\frac{\partial h_{4}}{\partial T}\right)_{\rho} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}} \\
+ & \frac{8 T}{3}\left(\varepsilon+\frac{p}{\rho}\right)\left(h_{2}-\frac{5}{3} T p\right), \\
h_{9} & =-2 T \beta_{2}-\frac{T}{3} \beta_{3}-2 T h_{4}+4 T\left(\varepsilon+\frac{p}{\rho}\right)\left(2 h_{2}-\frac{T p}{3}\right)^{2} .
\end{align*}
$$

And the relations (41) are rewritten as follows:

$$
\begin{align*}
& \frac{\partial \beta_{1}}{\partial \rho}=2\left(\varepsilon+\frac{p}{\rho}\right)\left(\frac{\partial p}{\partial \rho}\right)_{T} \\
& \frac{\partial \beta_{2}}{\partial \rho}=4 \frac{h_{2}}{\rho}\left(\frac{\partial p}{\partial \rho}\right)_{T}+4\left(\varepsilon+\frac{p}{\rho}\right)\left(\frac{\partial h_{2}}{\partial \rho}\right)_{T}+\left(\frac{\partial h_{4}}{\partial \rho}\right)_{T} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}} \\
& \frac{\partial \beta_{3}}{\partial \rho}=-4 T\left(\varepsilon+2 \frac{p}{\rho}\right)\left(\frac{\partial p}{\partial \rho}\right)_{T}, \\
& \frac{\partial \beta_{1}}{\partial T}=2\left(\varepsilon+\frac{p}{\rho}\right)\left(\frac{\partial p}{\partial T}\right)_{\rho}-\frac{h_{4}}{T^{2}}, \tag{44}\\
& \frac{\partial \beta_{2}}{\partial T}=\frac{2}{3 T} \beta_{2}+\frac{10}{9 T} \beta_{3}+\frac{5}{3 T} h_{4}-\frac{\rho}{T}\left(\frac{\partial h_{4}}{\partial \rho}\right)_{T}-h_{2}\left[\frac{8}{3 T}\left(\varepsilon+\frac{p}{\rho}\right)-\frac{4}{\rho}\left(\frac{\partial p}{\partial T}\right)_{\rho}\right] \\
&+4\left(\varepsilon+\frac{p}{\rho}\right)\left[\frac{10}{9} p+\left(\frac{\partial h_{2}}{\partial T}\right)_{\rho}\right], \\
& \frac{\partial \beta_{3}}{\partial T}=\frac{2}{T} \beta_{2}+\frac{1}{3 T} \beta_{3}+\frac{2}{T} h_{4}-8\left(\varepsilon+\frac{p}{\rho}\right)\left(\frac{p}{3}+\frac{h_{2}}{T}\right)-4 T\left(\varepsilon+2 \frac{p}{\rho}\right)\left(\frac{\partial p}{\partial T}\right)_{\rho}
\end{align*}
$$

We will show in Sections 7 and 8 that, by using the relations (43), (44) and the equations of state $(\varepsilon=\hat{\varepsilon}(\rho, T), p=\hat{p}(\rho, T))$, we can derive uniquely the explicit expressions of these coefficients except for the integration constants.
3.5 Linear constitutive equations

From Eqs. (37) and (39) $)_{3,4,5}$, the linear constitutive equations are summarized as follows:

$$
\begin{align*}
& \Pi=2 h_{2} \Lambda_{k k}, \\
& M_{\langle i j\rangle}=2 h_{3} \Lambda_{\langle i j\rangle}, \\
& m_{p p i}=2 h_{4} \lambda_{i}, \\
& M_{i i k}=3\left[\beta_{2}-4 h_{2}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{k}, \tag{45}\\
& M_{\langle i j\rangle k}=\left[\beta_{3}-4 h_{3}\left(\varepsilon+\frac{p}{\rho}\right)\right] \lambda_{\langle i} \delta_{j\rangle k}, \\
& m_{p p i k}=\left[\beta_{1}+\left\{\beta_{2}-h_{4} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}\right\} \Lambda_{l l}\right] \delta_{i k}+\beta_{3} \Lambda_{\langle i k\rangle} .
\end{align*}
$$

It is usually more convenient to take $\left\{\rho, T, S_{\langle i j\rangle}, \Pi, q_{i}\right\}$ as independent variables instead of $\{\rho, T$, $\left.\Lambda_{\langle i j\rangle}, \Lambda_{l l}, \lambda_{i}\right\}$. From Eqs. $(45)_{1,2,3},(10)$ and (11), the Lagrange multipliers are expressed by

$$
\begin{equation*}
\Lambda_{k k}=\frac{1}{2 h_{2}} \Pi, \quad \Lambda_{\langle i j\rangle}=-\frac{1}{2 h_{3}} S_{\langle i j\rangle}, \quad \lambda_{i}=\frac{1}{h_{4}} q_{i} . \tag{46}
\end{equation*}
$$

Then we may express the linear constitutive equations as follows:

$$
\begin{align*}
& M_{i i k}=3 L q_{k} \\
& M_{\langle i j\rangle k}=K q_{\langle i} \delta_{j\rangle k} \\
& m_{p p i k}=\left[\beta_{1}+\left\{\frac{h_{4}}{2 h_{2}}\left(L-\frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}\right)+2\left(\varepsilon+\frac{p}{\rho}\right)\right\} \Pi\right] \delta_{i k}-\left(\frac{h_{4}}{2 h_{3}} K+2\left(\varepsilon+\frac{p}{\rho}\right)\right) S_{\langle i k\rangle} \tag{47}
\end{align*}
$$

where the coefficients h_{2}, h_{3}, h_{4} and $\beta_{1}, \beta_{2}, \beta_{3}$ are the functions of ρ and T. And instead of β_{2} and β_{3}, we introduce the coefficients L and K that are the functions of ρ and T defined by

$$
\begin{equation*}
L=\frac{1}{h_{4}}\left[\beta_{2}-4 h_{2}\left(\varepsilon+\frac{p}{\rho}\right)\right], \quad K=\frac{1}{h_{4}}\left[\beta_{3}-4 h_{3}\left(\varepsilon+\frac{p}{\rho}\right)\right] \tag{48}
\end{equation*}
$$

3.6 Entropy density and entropy flux

With Eqs. (27), (28), (31), (32) and the constitutive equations (47), the entropy density and the entropy flux are expressed as

$$
\begin{align*}
h & =h^{E}+\frac{1}{4 h_{2}} \Pi^{2}+\frac{1}{4 h_{3}} S_{\langle i j\rangle} S_{\langle i j\rangle}+\frac{1}{h_{4}} q_{i} q_{i}+O(3), \tag{49}\\
\varphi_{k} & =\frac{1}{T} q_{k}+\frac{1}{2 h_{2}}\left(L-\frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}\right) \Pi q_{k}-\frac{K}{2 h_{3}} q_{i} S_{\langle i k\rangle}+O(3) . \tag{50}
\end{align*}
$$

3.7 Productions

The productions are also expanded with respect to the nonequilibrium variables $\left\{\Lambda_{k k}, \Lambda_{\langle i j\rangle}, \lambda_{i}\right\}$ around an equilibrium state. In the linear approximation, we have

$$
\begin{equation*}
P_{\langle i j\rangle}=\sigma \Lambda_{\langle i j\rangle}, \quad P_{i i}=3 \zeta \Lambda_{k k}, \quad Q_{i}=\tau \lambda_{i} \tag{51}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\Sigma=\sigma \Lambda_{\langle i j\rangle} \Lambda_{\langle i j\rangle}+\zeta \Lambda_{k k}^{2}+\tau \lambda_{i} \lambda_{i} \geqq 0 \tag{52}
\end{equation*}
$$

There are three conditions for the coefficients:

$$
\begin{equation*}
\sigma>0, \quad \zeta>0, \quad \tau>0 \tag{53}
\end{equation*}
$$

The constitutive equations (51) may also be expressed as

$$
\begin{equation*}
P_{\langle i j\rangle}=-\frac{\sigma}{2 h_{3}} S_{\langle i j\rangle}, \quad P_{i i}=\frac{3 \zeta}{2 h_{2}} \Pi, \quad Q_{i}=\frac{\tau}{h_{4}} q_{i} . \tag{54}
\end{equation*}
$$

4 Concavity of the entropy density and causality

The system (6) must be symmetric hyperbolic so as to ensure the causality. Near equilibrium this requirement corresponds to the condition of the concavity of the entropy density [1,21]. ${ }^{1}$

As the second derivative of the entropy density h near equilibrium is given by

$$
\begin{equation*}
\mathrm{d}^{2} h=\mathrm{d}^{2} h^{E}+\frac{1}{4 h_{2}}(\mathrm{~d} \Pi)^{2}+\frac{1}{4 h_{3}} \mathrm{~d} S_{\langle i j\rangle} \mathrm{d} S_{\langle i j\rangle}+\frac{1}{h_{4}} \mathrm{~d} q_{i} \mathrm{~d} q_{i}, \tag{55}
\end{equation*}
$$

the condition is satisfied when h^{E} is a concave function with respect to $\left\{\rho, m_{i i}\right\}$ and the following inequalities are fulfilled:

$$
\begin{equation*}
h_{2}<0, \quad h_{3}<0, \quad h_{4}<0 \tag{56}
\end{equation*}
$$

Using the well-known results of thermodynamic stability in equilibrium thermodynamics and the relations $(43)_{2,3}$ and $(44)_{4}$, the concavity condition is expressed as follows:

$$
\begin{align*}
& p>0,\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}>0,\left(\frac{\partial p}{\partial \rho}\right)_{T}>0, \\
& -\frac{5}{6} T p+\frac{\rho T}{2}\left(\frac{\partial p}{\partial \rho}\right)_{T}+\frac{\frac{T^{2}}{2 \rho}\left(\frac{\partial p}{\partial T}\right)_{\rho}^{2}}{\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}}<0, \tag{57}\\
& 2 T^{2}\left(\varepsilon+\frac{p}{\rho}\right)\left(\frac{\partial p}{\partial T}\right)_{\rho}-T^{2}\left(\frac{\partial \beta_{1}}{\partial T}\right)_{\rho}<0 .
\end{align*}
$$

[^1]
5 Field equations

The closed system of field equations is obtained by substituting the equations (47) into the system (9):

$$
\begin{align*}
& \dot{\rho}+\rho \frac{\partial v_{k}}{\partial x_{k}}=0, \\
& \rho \dot{v}_{i}+\frac{\partial p}{\partial x_{i}}+\frac{\partial \Pi}{\partial x_{i}}-\frac{\partial S_{\langle i j\rangle}}{\partial x_{j}}=0, \\
& \rho\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho} \dot{T}+\left[p+\Pi-\rho^{2}\left(\frac{\partial \varepsilon}{\partial \rho}\right)_{T}\right] \frac{\partial v_{k}}{\partial x_{k}}-\frac{\partial v_{i}}{\partial x_{k}} S_{\langle i k\rangle}+\frac{\partial q_{k}}{\partial x_{k}}=0, \\
& \dot{S}_{\langle i j\rangle}-2 p \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}+S_{\langle i j\rangle} \frac{\partial v_{k}}{\partial x_{k}}-2 \Pi \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}+2 \frac{\partial v_{\langle i}}{\partial x_{k}} S_{\langle j\rangle k\rangle}-q_{\langle i} \delta_{j\rangle k} \frac{\partial K}{\partial x_{k}}-K \frac{\partial q_{\langle i}}{\partial x_{j\rangle}}=-\frac{1}{\tau_{S}} S_{\langle i j\rangle}, \\
& \dot{\Pi}-\frac{2 h_{2}}{T} \frac{\partial v_{k}}{\partial x_{k}}+\left(\frac{5}{3}-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right) \Pi \frac{\partial v_{k}}{\partial x_{k}}-\left(\frac{2}{3}-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right) \frac{\partial v_{\langle i}}{\partial x_{k\rangle}} S_{\langle i k\rangle} \\
& +q_{k} \frac{\partial L}{\partial x_{k}}+\left(L-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right) \frac{\partial q_{k}}{\partial x_{k}}=-\frac{1}{\tau_{\Pi}} \Pi, \tag{58}\\
& \dot{q}_{j}+\left(1+\frac{K}{2}\right) q_{j} \frac{\partial v_{k}}{\partial x_{k}}+\frac{K}{2} q_{k} \frac{\partial v_{k}}{\partial x_{j}}+\left(1+L-\frac{K}{3}\right) q_{k} \frac{\partial v_{j}}{\partial x_{k}} \\
& -\frac{h_{4}}{2 T^{2}} \frac{\partial T}{\partial x_{j}}+\frac{h_{4}}{4 h_{2}}\left(L-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right) \frac{\partial \Pi}{\partial x_{j}}-\frac{h_{4}}{4 h_{3}} K \frac{\partial S_{\langle j k\rangle}}{\partial x_{k}} \\
& +\Pi\left[\left\{\frac{\partial \varepsilon}{\partial \rho}-\frac{p}{\rho^{2}}+\frac{\partial}{\partial \rho}\left(\frac{h_{4}}{4 h_{2}}\left(L-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right)\right)\right\} \frac{\partial \rho}{\partial x_{j}}\right. \\
& \left.+\left\{\frac{\partial \varepsilon}{\partial T}+\frac{\partial}{\partial T}\left(\frac{h_{4}}{4 h_{2}}\left(L-\frac{\frac{\partial p}{\partial T}}{\rho \frac{\partial \varepsilon}{\partial T}}\right)\right)\right\} \frac{\partial T}{\partial x_{j}}-\frac{1}{\rho} \frac{\partial \Pi}{\partial x_{j}}+\frac{1}{\rho} \frac{\partial S_{\langle j k\rangle}}{\partial x_{k}}\right] \\
& -S_{\langle j k\rangle}\left[\left\{\frac{\partial \varepsilon}{\partial \rho}-\frac{p}{\rho^{2}}+\frac{\partial}{\partial \rho}\left(\frac{h_{4}}{4 h_{3}} K\right)\right\} \frac{\partial \rho}{\partial x_{k}}\right. \\
& \left.+\left\{\frac{\partial \varepsilon}{\partial T}+\frac{\partial}{\partial T}\left(\frac{h_{4}}{4 h_{3}} K\right)\right\} \frac{\partial T}{\partial x_{k}}-\frac{1}{\rho} \frac{\partial \Pi}{\partial x_{k}}+\frac{1}{\rho} \frac{\partial S_{\langle i k\rangle}}{\partial x_{i}}\right]=-\frac{1}{\tau_{q}} q_{j},
\end{align*}
$$

where τ_{S}, τ_{Π} and τ_{q} are the relaxation times given by

$$
\begin{equation*}
\tau_{S}=-\frac{2 h_{3}}{\sigma}, \quad \tau_{\Pi}=-\frac{2 h_{2}}{\zeta}, \quad \tau_{q}=-\frac{2 h_{4}}{\tau} \tag{59}
\end{equation*}
$$

6 Relationship between ET and Navier-Stokes-Fourier theory

We carry out the Maxwellian iteration [1,6] in the system (58): The first iterates $\Pi^{(1)}$, $S_{\langle i j\rangle}^{(1)}$ and $q_{i}^{(1)}$ are obtained by the substitution of the 0th iterates $S_{\langle i j\rangle}^{(0)}=0, \Pi^{(0)}=0$ and $q_{i}^{(0)}=0$ into the left hand side of $(58)_{4,5,6}$. Then we obtain

$$
\begin{equation*}
S_{\langle i j\rangle}^{(1)}=2 p \tau_{S} \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}, \quad \Pi^{(1)}=\frac{2 h_{2}}{T} \tau_{\Pi} \frac{\partial v_{k}}{\partial x_{k}}, \quad q_{i}^{(1)}=\frac{h_{4}}{2 T^{2}} \tau_{q} \frac{\partial T}{\partial x_{i}} . \tag{60}
\end{equation*}
$$

On the other hand, we have the laws of Navier-Stokes and Fourier expressed by (3). The comparison reveals that

$$
\begin{equation*}
\mu=p \tau_{S}, \quad \nu=-\frac{2 h_{2}}{T} \tau_{\Pi}, \quad \kappa=-\frac{h_{4}}{2 T^{2}} \tau_{q} \tag{61}
\end{equation*}
$$

We can therefore estimate the values of the relaxation times τ_{S}, τ_{q} and τ_{Π} from the experimental data of the coefficients μ, ν and κ.

The second iterates are obtained by substituting the first iterates into the left hand side of $(58)_{4,5,6}$, and higher iterates are obtained in a similar way.

In conclusion, the system can be certainly closed by the universal principles except for some nonessential constants, provided that we know the thermal and caloric equations of state and the viscosity and heat conductivity coefficients. This surprising result, which could not be achieved in previous works on this subject, shows clearly the power of our hierarchy assumption.

7 Rarefied-gas limit

It is important to study the rarefied-gas limit of the present theory in order to check its consistency with the results from the kinetic theory of gases [22]. The dependence of the limit on the degrees of freedom of a molecule is also made clear.

7.1 Equations of state

From the ideal gas law with the equipartition law of energy, the thermal and caloric equations of state for a classical rarefied gas are expressed as

$$
\begin{equation*}
p=\frac{k_{B}}{m} \rho T, \quad \varepsilon=\frac{D}{2} \frac{k_{B}}{m} T, \tag{62}
\end{equation*}
$$

where k_{B} and m being, respectively, the Boltzmann constant and the mass of a molecule, and D is the degrees of freedom of a molecule, i.e., $D=3+f$ where 3 corresponds to the translational motion in the 3 -dimensional space and f is the internal degrees of freedom.

7.2 Linear constitutive equations

The coefficients h_{2}, \cdots, h_{9} and $\beta_{1}, \beta_{2}, \beta_{3}$ in this case are easily obtained from the relations (43) and (44). We assume that the integration constants in $\beta_{1}, \beta_{2}, \beta_{3}$ vanish. This assumption is reasonable because of the fact that our results below are consistent with those of the kinetic theory [22].

The linear constitutive equations are given by

$$
\begin{align*}
& M_{i i k}=\frac{10}{D+2} q_{k} \\
& M_{\langle i j\rangle k}=\frac{4}{D+2} q_{\langle i} \delta_{j\rangle k}, \\
& m_{p p i k}=\frac{k_{B}}{m} T[(D+2) p+(D+4) \Pi] \delta_{i k}-\frac{k_{B}}{m} T(D+4) S_{\langle i k\rangle}, \\
& P_{i i}=-\frac{9 D \zeta}{2(D-3) \frac{k_{B}}{m} \rho T^{2}} \Pi, \tag{63}\\
& P_{\langle i j\rangle}=\frac{\sigma}{2 \frac{k_{B}}{m} \rho T^{2}} S_{\langle i j\rangle} \\
& Q_{i}=-\frac{\tau}{(D+2)\left(\frac{k_{B}}{m}\right)^{2} \rho T^{3}} q_{i} .
\end{align*}
$$

We notice a subtle point in Eq. $(63)_{4}$ for the case of rarefied monatomic gases where $D=3$ and as a consequence $\Pi=0$. Note also that the coefficient h_{2} vanishes in this case. We will discuss this point in Section 7.5.
7.3 Concavity of the entropy density

The entropy density and the entropy flux are expressed as

$$
\begin{align*}
h & =h^{E}-\frac{3 D}{4(D-3) \frac{k_{B}}{m} \rho T^{2}} \Pi^{2}-\frac{1}{4 \frac{k_{B}}{m} \rho T^{2}} S_{\langle i j\rangle} S_{\langle i j\rangle}-\frac{1}{(D+2)\left(\frac{k_{B}}{m}\right)^{2} \rho T^{3}} q_{i} q_{i}+O(3), \tag{64}\\
\varphi_{k} & =\frac{1}{T} q_{k}-\frac{D^{2}+6 D-12}{(D-3)(D+2) \frac{k_{B}}{m} \rho T^{2}} \Pi q_{k}+\frac{2}{(D+2) \frac{k_{B}}{m} \rho T^{2}} q_{i} S_{\langle i k\rangle}+O(3) . \tag{65}
\end{align*}
$$

The requirement of the concavity of the entropy density are expressed as

$$
\begin{align*}
& p>0,\left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}>0,\left(\frac{\partial p}{\partial \rho}\right)_{T}>0, \\
& \frac{D}{(D-3) \frac{k_{B}}{m} \rho T^{2}}>0, \quad \frac{1}{(D+2)\left(\frac{k_{B}}{m}\right)^{2} \rho T^{3}}>0 . \tag{66}
\end{align*}
$$

It is easy to see that all inequalities are identically satisfied for classical polyatomic gases with $D>3$.
However, as will be discussed in Section 7.5, we should be careful for monatomic gases with $D=3$.

7.4 Field equations

Using the constitutive equations (63), we obtain the closed system of field equations:

$$
\begin{align*}
& \dot{\rho}+\rho \frac{\partial v_{k}}{\partial x_{k}}=0, \\
& \rho \dot{v}_{i}+\frac{\partial p}{\partial x_{i}}+\frac{\partial \Pi}{\partial x_{i}}-\frac{\partial S_{\langle i j\rangle}}{\partial x_{j}}=0, \\
& \dot{T}+\frac{2}{D \frac{k_{B}}{m} \rho}(p+\Pi) \frac{\partial v_{k}}{\partial x_{k}}-\frac{2}{D \frac{k_{B}}{m} \rho} \frac{\partial v_{i}}{\partial x_{k}} S_{\langle i k\rangle}+\frac{2}{D \frac{k_{B}}{m} \rho} \frac{\partial q_{k}}{\partial x_{k}}=0, \\
& \dot{S}_{\langle i j\rangle}-2 p \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}+S_{\langle i j\rangle} \frac{\partial v_{k}}{\partial x_{k}}-2 \Pi \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}+2 \frac{\partial v_{\langle i}}{\partial x_{k}} S_{\langle j\rangle k\rangle}-\frac{4}{D+2} \frac{\partial q_{\langle i}}{\partial x_{j\rangle}}=-\frac{1}{\tau_{S}} S_{\langle i j\rangle}, \\
& \dot{\Pi}+\frac{2(D-3)}{3 D} p \frac{\partial v_{k}}{\partial x_{k}}+\frac{5 D-6}{3 D} \Pi \frac{\partial v_{k}}{\partial x_{k}}-\frac{2(D-3)}{3 D} \frac{\partial v_{\langle i}}{\partial x_{k\rangle}} S_{\langle i k\rangle} \tag{67}\\
& \quad+\frac{4(D-3)}{3 D(D+2)} \frac{\partial q_{k}}{\partial x_{k}}=-\frac{1}{\tau_{\Pi}} \Pi, \\
& \dot{q}_{i}+\frac{D+4}{D+2} q_{i} \frac{\partial v_{k}}{\partial x_{k}}+\frac{2}{D+2} q_{k} \frac{\partial v_{k}}{\partial x_{i}}+\frac{D+4}{D+2} q_{k} \frac{\partial v_{i}}{\partial x_{k}}+\frac{D+2}{2}\left(\frac{k_{B}}{m}\right)^{2} \rho T \frac{\partial T}{\partial x_{i}} \\
& \quad+\frac{k_{B}}{m} T \frac{\partial \Pi}{\partial x_{i}}-\frac{k_{B}}{m} T \frac{\partial S_{\langle i k\rangle}}{\partial x_{k}}+\Pi\left[-\frac{\frac{k_{B}}{m} T}{\rho} \frac{\partial \rho}{\partial x_{i}}+\frac{D+2}{2} \frac{k_{B}}{m} \frac{\partial T}{\partial x_{i}}-\frac{1}{\rho} \frac{\partial \Pi}{\partial x_{i}}+\frac{1}{\rho} \frac{\partial S_{\langle i k\rangle}}{\partial x_{k}}\right] \\
& \quad-S_{\langle i k\rangle}\left[-\frac{\frac{k_{B}}{m} T}{\rho} \frac{\partial \rho}{\partial x_{k}}+\frac{D+2}{2} \frac{k_{B}}{m} \frac{\partial T}{\partial x_{k}}-\frac{1}{\rho} \frac{\partial \Pi}{\partial x_{k}}+\frac{1}{\rho} \frac{\partial S_{\langle p k\rangle}}{\partial x_{p}}\right]=-\frac{1}{\tau_{q}} q_{i},
\end{align*}
$$

where τ_{S}, τ_{q} and τ_{Π} are the relaxation times given by

$$
\begin{equation*}
\tau_{S}=\frac{2 p T}{\sigma}, \quad \tau_{\Pi}=\frac{2(D-3) p T}{3 D \zeta}, \quad \tau_{q}=\frac{2(D+2)\left(\frac{k_{B}}{m}\right)^{2} \rho T^{3}}{\tau} \tag{68}
\end{equation*}
$$

The relaxation times are related to the shear and bulk viscosities and the heat conductivity:

$$
\begin{equation*}
\mu=p \tau_{S}, \quad \nu=\frac{2(D-3)}{3 D} p \tau_{\Pi}, \quad \kappa=\frac{D+2}{2} \frac{p^{2}}{\rho T} \tau_{q} \tag{69}
\end{equation*}
$$

7.5 Remarks

Two remarks are made:
(i) For diatomic gases with $D=5$ where only the rotational degrees of freedom are taken into account, above field equations coincide with those derived from the kinetic theory of diatomic gases [22] except for the expressions of the relaxation times. This shows the soundness of the present theory.
(ii) Equation $(67)_{5}$, when $D=3$, is reduced to $\Pi=0$, as is expected in rarefied monatomic gases. In this case, Eq. $(67)_{5}$ plays no more role. And the theory becomes singular because of the change of the system itself, that is, the change from 14 equations to 13 equations. Therefore, the field equations with $D=3$ now constitute the same system of field equations as that in ET of rarefied monatomic gases [1]! As mentioned in the Introduction, only in this case, the relation $F_{i i}=G_{i i}$ is satisfied, and then $(6)_{3}$ and the trace part of $(6)_{4}$ degenerate into one equation. Above observation is evidently consistent with this fact.

8 Application to special systems

The general theory developed so far is applied to three physically important systems: (i) the system with the virial equations of state, (ii) a hard-sphere system, and (iii) a van der Waals fluid. The analysis of the first system shows explicitly the corrections to the results in the rarefied-gas limit when the system is no more dilute enough. As a hard-sphere system plays an important role in the perturbation theory in liquid-state physics [23-25], it seems to be interesting for the researchers in this field to understand ET of the system. A van der Waals fluid is the well-known simple model that can describe real-gas effects including gas-liquid phase transitions.

8.1 System with the virial equations of state

The thermal and caloric equations of state are given in the form of virial expansion:

$$
\begin{align*}
& p=\frac{k_{B}}{m} \rho T\left(1+B_{2}(T) \rho+B_{3}(T) \rho^{2}+\cdots\right) \\
& \varepsilon=\frac{D}{2} \frac{k_{B}}{m} T-\frac{k_{B}}{m} T^{2} \rho B_{2}^{\prime}(T)-\frac{1}{2} \frac{k_{B}}{m} T^{2} \rho^{2} B_{3}^{\prime}(T)+\cdots \tag{70}
\end{align*}
$$

where $B_{2}(T), B_{3}(T), \cdots$ are the second and third virial coefficients, and so on. Here a prime means a derivative with respect to the temperature T.

Using the equations of state (70), we can obtain the explicit expressions of the coefficients in the constitutive equations in the following way: We obtain $h_{2}, h_{3}, h_{5}, \cdots, h_{9}$ except for h_{4} from (43). Integrating (44) ${ }_{1}$ with respect to ρ, we obtain β_{1} as follows:

$$
\begin{aligned}
\beta_{1} & =\int_{\rho_{0}}^{\rho} 2\left(\varepsilon(\bar{\rho}, T)+\frac{p(\bar{\rho}, T)}{\bar{\rho}}\right)\left(\frac{\partial p(\bar{\rho}, T)}{\partial \bar{\rho}}\right)_{T} \mathrm{~d} \bar{\rho}+C_{1}\left(\rho_{0}, T, T_{0}\right) \\
& =\left(\frac{k_{B}}{m}\right)^{2}(D+2) T^{2} \rho+\left(\frac{k_{B}}{m}\right)^{2} T^{2} \rho^{2}\left((D+3) B_{2}-T B_{2}^{\prime}\right)+O\left(\rho^{3}\right)+C_{2}\left(\rho_{0}, T, T_{0}\right),
\end{aligned}
$$

where $C_{1,2}\left(\rho_{0}, T, T_{0}\right)$ are integration functions, and ρ_{0} and T_{0} are, respectively, the mass density and temperature in a reference state. As β_{1} at an arbitrary value of T must asymptotically approaches $\left(\frac{k_{B}}{m}\right)^{2}(D+2) T^{2} \rho$ in the rarefied-gas limit discussed in Sec. 7 , we obtain $C_{2}\left(\rho_{0}, T, T_{0}\right)=0$. Now β_{1} has been determined within the approximation adopted here, we get the explicit form of h_{4} from $(44)_{4}$. β_{2} and β_{3} can be determined in a similar way. We can easily check the consistency that β_{2} and β_{3} obtained in this way satisfy the remaining relations $(44)_{5,6}$.

For simplicity, we show the constitutive equations up to the first correction with respect to ρ :

$$
\begin{align*}
& M_{i i k}=\left[\frac{10}{D+2}+\frac{5(D+2) T B_{2}^{\prime}+10 T^{2} B_{2}^{\prime \prime}}{(D+2)^{2}} \rho+O\left(\rho^{2}\right)\right] q_{k}, \\
& M_{\langle i j\rangle k}=\left[\frac{4}{D+2}+\frac{2(D+2) T B_{2}^{\prime}+4 T^{2} B_{2}^{\prime \prime}}{(D+2)^{2}} \rho+O\left(\rho^{2}\right)\right] q_{\langle i} \delta_{j\rangle k}, \\
& m_{p p i k}=\frac{k_{B}}{m} T\left[\left\{\frac{k_{B}}{m}(D+2) \rho T+\frac{k_{B}}{m}\left((D+3) B_{2}-T B_{2}^{\prime}\right) \rho^{2} T+O\left(\rho^{3}\right)\right\}\right. \\
& \left.\quad+\left\{D+4+\frac{4(D-3) B_{2}-5 D T B_{2}^{\prime}-6 T^{2} B_{2}^{\prime \prime}}{2(D-3)} \rho+O\left(\rho^{2}\right)\right\} \Pi\right] \delta_{i k} \\
& -\frac{k_{B}}{m} T\left\{D+4+\rho\left(2 B_{2}-T B_{2}^{\prime}\right)+O\left(\rho^{2}\right)\right\} S_{\langle i k\rangle}, \tag{71}\\
& P_{i i}=-\frac{9 D}{2 \frac{k_{B}}{m}(D-3) \rho T^{2}}\left[1+\frac{(D+12) B_{2}+\frac{12}{D}(D+2) T B_{2}^{\prime}+\frac{12}{D} T^{2} B_{2}^{\prime \prime}}{2(D-3)} \rho+O\left(\rho^{2}\right)\right] \zeta \Pi, \\
& P_{\langle i j\rangle}=\frac{1}{2 \frac{k_{B}}{m} \rho T^{2}}\left[1-B_{2} \rho+O\left(\rho^{2}\right)\right] \sigma S_{\langle i j\rangle}, \\
& Q_{i}=-\frac{1}{\left(\frac{k_{B}}{m}\right)^{2}(D+2) \rho T^{3}}\left[1-\left(B_{2}-\frac{T^{2} B_{2}^{\prime \prime}}{D+2}\right) \rho+O\left(\rho^{2}\right)\right] \tau q_{i} .
\end{align*}
$$

As can be seen above, the first correction depends on both the virial coefficients B_{2} and the degrees of freedom D.

The closed system of field equations can be easily obtained by using above constitutive equations. We omit its expression for simplicity.

The relaxation times are related to the shear and bulk viscosities and the heat conductivity:

$$
\begin{align*}
\mu & =\frac{k_{B}}{m} \rho T\left(1+B_{2}(T) \rho+O\left(\rho^{2}\right)\right) \tau_{S}, \\
\nu & =\frac{1}{3 D} \frac{k_{B}}{m} \rho T\left[2(D-3)-\left((D+12) B_{2}+\frac{12}{D}(D+2) T B_{2}^{\prime}+\frac{12}{D} T^{2} B_{2}^{\prime \prime}\right) \rho+O\left(\rho^{2}\right)\right] \tau_{\Pi}, \tag{72}\\
\kappa & =\frac{1}{2}\left(\frac{k_{B}}{m}\right)^{2} \rho T\left[D+2+\left((D+2) B_{2}-T^{2} B_{2}^{\prime \prime}\right) \rho+O\left(\rho^{2}\right)\right] \tau_{q} .
\end{align*}
$$

8.2 Hard-sphere system

The thermal and caloric equations of state are given by

$$
\begin{align*}
& p=\frac{k_{B}}{\omega} T \eta \Gamma(\eta), \\
& \varepsilon=\frac{D}{2} \frac{k_{B}}{m} T, \tag{73}
\end{align*}
$$

where η is the packing fraction related to the mass density ρ by

$$
\begin{equation*}
\eta=\frac{\rho \omega}{m}, \tag{74}
\end{equation*}
$$

and $\Gamma(\eta)$ is a function of η determined explicitly by computer experiments [23]. Here ω is the volume of a hard sphere. In this subsection, we use η instead of ρ.

Using the expressions of the coefficients in the constitutive equations derived in the same way as above, we obtain the constitutive equations:

$$
\begin{align*}
& M_{i i k}=\frac{10 \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}}{D \eta \Gamma+2 \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}} q_{k}, \\
& M_{\langle i j\rangle k}=\frac{4 \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}}{D \eta \Gamma+2 \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}} q_{\langle i} \delta_{j\rangle k}, \\
& m_{p p i k}=\frac{k_{B}}{m} T\left[\frac{k_{B}}{\omega} \eta T\left(D \Gamma+\Gamma^{2}+\frac{1}{\eta} \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}\right)\right. \\
& \left.\quad+\left\{D+2 \Gamma-\frac{6 D \Gamma^{2}+\frac{2}{\eta}(-5 D+6 \Gamma) \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}}{2 D \Gamma-6 \Gamma^{2}-3 D \eta \Gamma^{\prime}}\right\} \Pi\right] \delta_{i k} \tag{75}\\
& \quad-\frac{k_{B}}{m} T\left(D+2 \Gamma+\frac{2}{\eta \Gamma} \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}\right) S_{\langle i k\rangle}, \\
& P_{i i}=-\frac{9 D \zeta}{\frac{k_{B}}{\omega} \eta T^{2}\left(2 D \Gamma-6 \Gamma^{2}-3 D \eta \Gamma^{\prime}\right)} \Pi, \\
& P_{\langle i j\rangle}=\frac{\sigma}{2 \frac{k_{B}}{\omega} \eta T^{2} \Gamma} S_{\langle i j\rangle}, \\
& Q_{i}=-\frac{\tau}{\left(\frac{k_{B}}{m}\right)^{2} \frac{m}{\omega} \eta T^{3}\left(D \Gamma+\frac{2}{\eta} \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}\right)} q_{i},
\end{align*}
$$

where $\Gamma^{\prime}=\mathrm{d} \Gamma(\eta) / \mathrm{d} \eta$.
The relaxation times are related to the shear and bulk viscosities and the heat conductivity:

$$
\begin{align*}
\mu & =p \tau_{S} \\
\nu & =\frac{1}{3 D} \frac{k_{B}}{\omega} \eta T\left(2 D \Gamma-6 \Gamma^{2}-3 D \eta \Gamma^{\prime}\right) \tau_{\Pi} \tag{76}\\
\kappa & =\left(\frac{k_{B}}{m}\right)^{2} \frac{m}{\omega} \eta \frac{T}{2}\left(D \Gamma+\frac{2}{\eta} \int_{0}^{\eta} \Gamma^{2}(\bar{\eta}) \mathrm{d} \bar{\eta}\right) \tau_{q} .
\end{align*}
$$

The concavity condition of the entropy density in this case can be expressed by only one inequality:

$$
\begin{equation*}
-\frac{\Gamma}{3}+\frac{\Gamma^{2}}{D}+\frac{\eta \Gamma^{\prime}}{2}<0 \tag{77}
\end{equation*}
$$

Then we find that there is a critical packing fraction η_{C} such that the above condition is satisfied in the region $0<\eta<\eta_{C}$. In the case of $D=5$, for example, we can estimate $\eta_{C}=0.0447$ by adopting the following functional form of Γ [26]:

$$
\begin{equation*}
\Gamma(\eta)=\frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}} \tag{78}
\end{equation*}
$$

The dependence of η_{C} on D is shown in Fig. 1. It is remarkable that $\eta_{C}=0$ in the case of $D=3$.

8.3 van der Waals fluid

The thermal and caloric equations of state are given by

$$
\begin{align*}
& p=\frac{k_{B}}{m} \frac{T \rho}{1-b \rho}-a \rho^{2}, \tag{79}\\
& \varepsilon=\frac{D}{2} \frac{k_{B}}{m} T-a \rho,
\end{align*}
$$

Fig. 1 Dependence of the critical packing fraction η_{C} on the degrees of freedom D.
where the material-dependent constants a and b represent, respectively, a measure of the attraction between the constituent molecules and the effective volume (or exclusion volume) of a molecule.

The constitutive equations are obtained by using the same procedure as above:

$$
\begin{align*}
& M_{i i k}=10 \frac{\frac{k_{B}}{m} T+\frac{a}{b^{2} \rho}(1-b \rho)(b \rho+\log (1-b \rho))}{(D+2) \frac{k_{B}}{m} T-D(1-b \rho) a \rho} q_{k}, \\
& M_{\langle i j\rangle k}=4 \frac{\frac{k_{B}}{m} T+\frac{a}{b^{2} \rho}(1-b \rho)(b \rho+\log (1-b \rho))}{(D+2) \frac{k_{B}}{m} T-D(1-b \rho) a \rho} q_{\langle i} \delta_{j\rangle k}, \\
& m_{p p i k}=\frac{k_{B}}{m} T\left[(D+2) p+\frac{k_{B}}{m} T \frac{b \rho^{2}}{(1-b \rho)^{2}}-2 a \rho^{2} \frac{1+b \rho}{1-b \rho}+\frac{8}{3} \frac{a^{2} \rho^{3}}{\frac{k_{B}}{m} T}\right. \\
& \quad+\left\{\frac{k_{B}}{m} T \frac{2(D-3)(D+4)-\left(7 D^{2}+18 D-12\right) b \rho+5 D(D+2) b^{2} \rho^{2}}{1-b \rho}\right. \\
& \quad+\frac{a}{b}\left(D(1-b \rho)^{2}(10+D b \rho)+12 b \rho(2+D b \rho)\right)-4 D \frac{a^{2} \rho^{2}}{\frac{k_{B}}{m} T}(1-b \rho)^{2} \\
& \left.\quad+10 D \frac{a}{b^{2} \rho}(1-b \rho)^{2} \log (1-b \rho)\right\} \Pi \\
& \left.\quad /\left\{\frac{k_{B}}{m} T(2(D-3)-5 D b \rho)+D a \rho(1-b \rho)^{2}\right\}\right] \delta_{i k} \tag{80}\\
& -\frac{k_{B}}{m} T\left\{\frac{k_{B}}{m} T \frac{D+4-(D+2) b \rho}{1-b \rho}+\frac{a}{b}\left(2-(D+8) b \rho+D b^{2} \rho^{2}\right)\right. \\
& \left.\quad+4 \frac{a^{2} \rho^{2}}{\frac{k_{B}}{m} T}(1-b \rho)+2 \frac{a}{b^{2} \rho}(1-b \rho) \log (1-b \rho)\right\} S_{\langle i k\rangle} \\
& /\left\{\frac{k_{B}}{m} T-a \rho(1-b \rho)\right\}, \\
& P_{i i}=-\frac{k_{B}}{\frac{k_{B}}{m} \rho T^{2}(2(D-3)-5 D b \rho)+D a \rho^{2} T(1-b \rho)^{2}} \zeta \Pi, \\
& P_{\langle i j\rangle}=\frac{1-b \rho}{2 \frac{k_{B}}{m} \rho T^{2}-2 a \rho^{2} T(1-b \rho)} \sigma S_{\langle i j\rangle}, \\
& Q_{i}=-\frac{(1-b \rho)}{\left(\frac{k_{B}}{m}\right)^{2}(D+2) \rho T^{3}-\frac{k_{B}}{m} D \rho^{2} T^{2} a(1-b \rho)} \tau q_{i} .
\end{align*}
$$

The relaxation times are related to the shear and bulk viscosities and the heat conductivity:

$$
\begin{align*}
\mu & =p \tau_{S} \\
\nu & =\left(\frac{k_{B}}{m} \frac{\rho T}{3 D(1-b \rho)^{2}}(2(D-3)-5 D b \rho)+\frac{a \rho^{2}}{3}\right) \tau_{\Pi} \tag{81}\\
\kappa & =\frac{1}{2}\left(\left(\frac{k_{B}}{m}\right)^{2} \frac{D+2}{1-b \rho} \rho T-\frac{k_{B}}{m} D a \rho^{2}\right) \tau_{q}
\end{align*}
$$

We now study the concavity condition of the entropy density (57). For later convenience, we introduce the dimensionless variables:

$$
\begin{equation*}
\hat{p}=\frac{p}{p_{c r}}, \quad \hat{\rho}=\frac{\rho}{\rho_{c r}}, \quad \hat{T}=\frac{T}{T_{c r}}, \tag{82}
\end{equation*}
$$

where $\rho_{c r}=1 /(3 b), p_{c r}=a /\left(27 b^{2}\right)$ and $T_{c r}=8 a /\left(27 \frac{k_{B}}{m} b\right)$ are, respectively, the mass density, the pressure and the temperature at the critical point. Then the thermal and caloric equations of state are rewritten in terms of the dimensionless quantities as

$$
\begin{align*}
& \hat{p}=\frac{8 \hat{T} \hat{\rho}}{3-\hat{\rho}}-3 \hat{\rho}^{2}, \\
& \hat{\varepsilon}=\frac{\rho_{c r}}{p_{c r}} \varepsilon=\frac{4 D \hat{T}}{3}-3 \hat{\rho} . \tag{83}
\end{align*}
$$

As the inequality $(57)_{2}$ is always satisfied, the concavity condition is now expressed as

$$
\begin{align*}
& \frac{8 \hat{T} \hat{\rho}}{3-\hat{\rho}}-3 \hat{\rho}^{2}>0, \frac{8 \hat{T}}{(3-\hat{\rho})^{2}}-2 \hat{\rho}>0 \tag{84}\\
& \frac{18+D(5 \hat{\rho}-6)}{D(\hat{\rho}-3)^{2}} \hat{T}^{2} \hat{\rho}-\frac{3}{8} \hat{T} \hat{\rho}^{2}<0, \frac{8(D+2) \hat{T}+3 D(\hat{\rho}-3) \hat{\rho}}{(\hat{\rho}-3)} \hat{T}^{2} \hat{\rho}<0
\end{align*}
$$

The condition is satisfied in the shaded regions in Fig. 2 for several values of D. The minimum integer of D for the concavity region to contain the critical point is 8 . For purposes of theoretical exploration, we also depict the figure of $D=100$ as a case of large D.

Fig. 2 The concavity condition (84) is satisfied in the shaded region. The degrees of freedom: $D=5,8$ and 100. The curve represents the coexistence curve.

9 Concluding remarks

In conclusion we make the following two remarks:
(i) We have proposed and explained a possible phenomenological model of ET of dense gases. The model has been constructed with no reference to microscopic details of the system such as the internal motion of molecules, i.e., molecular rotation and vibration. In this respect, the standpoint of the present work is purely phenomenological and is quite different from that of the previous works dealing with so-called molecular ET [7-9].
(ii) As discussed in the previous sections, we have understood a subtle point in the present theory in the case of monatomic gases with $D=3$. This point seems to be interesting from both physical and mathematical viewpoints, and is worthy of further study. This will be the subject for the next paper.

Acknowledgements The authors thank Prof. Nanrong Zhao for valuable discussions. This work was partially supported by: Japan Society of Promotion of Science (JSPS) No. 08J08281 (S.T.), No. 20560054 (M.S.); MIUR/PRIN Project "Nonlinear Propagation and Stability in Thermodynamical Processes of Continuous Media"(T.R.).

References

1. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second edn. Springer, New York (1998).
2. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1963).
3. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Pergamon Press, London (1958).
4. Liu, I-S., Müller, I.: Extended thermodynamics of classical and degenerate ideal gases. Arch. Rational Mech. Anal. 83(4), pp.285-332 (1983).
5. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2(4), pp.331-407 (1949).
6. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell's kinetic theory. J. Rational Mech. Anal. 5, pp.1-54 (1956).
7. Engholm Jr., H., Kremer, G.: Thermodynamics of a diatomic gas with rotational and vibrational degrees of freedom. Int. J. Engng Sci. 32(8), pp.1241-1252 (1994).
8. Kremer, G.M.: Extended thermodynamics and statistical mechanics of a polyatomic ideal gas. J. Non-Equil. Therm. 14, pp.363-374 (1989).
9. Kremer, G.M.: Extended thermodynamics of molecular ideal gases. Continuum Mech. Thermodyn. 1, pp.2145 (1989).
10. Liu, I-S. : Extended thermodynamics of fluids and virial equations of state. Arch. Rational Mech. Anal. 88, pp.1-23 (1985).
11. Kremer, G.M.: Extended thermodynamics of non-ideal gases. Physica 144A, pp.156-178 (1987).
12. Liu, I-S., Kremer, G.M.: Hyperbolic system of field equations for viscous fluids. Mat. Aplic. Comp 9(2), pp.123-135 (1990).
13. Liu, I-S., Salvador, J.A.: Hyperbolic system for viscous fluids and simulation of shock tube flows. Continuum Mech. Thermodyn. 2, pp.179-197 (1990).
14. Kremer, G.: On extended thermodynamics of ideal and real gases. In:Sieniutycz, S., Salamon, P.(eds.) Extended Thermodynamics Systems, pp.140-182. Taylor and Francis, New York(1992).
15. Carrisi, M. C., Mele, M. A., Pennisi, S.: On some remarkable properties of an extended thermodynamic model for dense gases and macromolecular fluids. Proc. R. Soc. A 466, pp.1645-1666 (2010).
16. Ruggeri, T.: Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. Acta Mechanica 47, pp.167-183 (1983).
17. Humenyuk, Y., Tokarchuk, M.: Extension of hydrodynamic balance equations for simple fluids. J. Stat. Phys. 142, pp.1052-1084 (2011).
18. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics. Cont. Mech. Thermodyn. 1, pp.3-20 (1989).
19. Liu, I-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46, pp.131-148 (1972).
20. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York-London (1974).
21. Friedrichs, K.O., Lax, P.D. : Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA. 68(8), pp.1686-1688 (1971).
22. Mallinger, F.: Generalization of the Grad Theory to Polyatomic Gases. Research Report RR-3581, INRIA (1998).
23. Münster, A.: Statistical Thermo-dynamics, Vol. 2. Springer-Verlag, Berlin, Heidelberg, New York, (1974).
24. Barker, J.A., Henderson, D.: What is "liquid"? Understanding the states of matter. Rev. Mod. Phys. 48, pp.587-671 (1976).
25. Hansen, J.P., McDonald, J.R.: Theory of Simple Liquids. Academic Press, London, (1986).
26. Carnahan, N,F,. Starling, K.E.: Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 51, pp.635-636 (1969).

[^0]: Takashi Arima
 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
 E-mail: tks@stat.nitech.ac.jp
 Shigeru Taniguchi
 Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555, Japan
 E-mail: taniguchi@stat.nitech.ac.jp
 Tommaso Ruggeri
 Department of Mathematics \& Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna, Italy
 E-mail: ruggeri@ciram.unibo.it
 Masaru Sugiyama
 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
 E-mail: sugiyama@nitech.ac.jp

[^1]: 1 The entropy density used in the mathematical community has usually opposite sign to the present entropy density. As a consequence, they speak about convexity instead of concavity.

