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Higher order parameters in the hard disk fluid are computed to investigate the number, the life-
time, and size of transient crystal nuclei in the pre-freezing phase. The methodology introduces fur-
ther neighbor shells bond orientational order parameters and coarse-grains the correlation functions
needed for the evaluation of the stress autocorrelation function for the viscosity. We successfully
reproduce results by the previous collision method for the pair orientational correlation function,
but some two orders of magnitude faster. This speed-up allows calculating the time dependent four
body orientational correlation between two different pairs of particles as a function of their sepa-
ration, needed to characterize the size of the transient crystals. The result is that the slow decay
of the stress autocorrelation function near freezing is due to a large number of rather small crys-
tal nuclei lasting long enough to lead to the molasses tail. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4767061]

I. INTRODUCTION

The slow dynamics of supercooled liquids and glasses
have been actively discussed for 30 years from the view point
of both spatial distributions of heterogeneities and long time
correlations. Recently, the role played by heterogeneities in
the slow dynamics of glasses has been emphasized' and char-
acterized in terms of 4-point correlation functions. The long
time correlation appear in the slow decaying potential part
of the shear-stress autocorrelation function (SACF) and has
been called the “molasses tail” to differentiate it from the hy-
drodynamic origin of the long time tail in the velocity au-
tocorrelation function’™ and to emphasize its relation to the
highly viscous glassy state.” The decay of the SACFs have
been investigated by mode coupling theory (MCT)® and ki-
netic theory similar to the velocity autocorrelation function
that applies to the kinetic part of the shear autocorrelation
function, but not to the potential part, which is central to the
molasses tail. Numerical studies eventually proved that the
long time tail of both the kinetic and potential parts have a
power decay consistent with MCT, however, the amplitude of
the SACF in dense fluids was found to be orders of magni-
tude greater than predicted. This discrepancy was ascribed to
the possibility that the numerical results were not sufficiently
long to resolve the long time correlations. However, the cause
of this tail is likely due to the slow structural relaxation in
the dense liquid around the peak of the structure factor rather
than by hydrodynamic phenomena at long wavelength. The
existence of transiently crystal nuclei was also demonstrated
in colloid experiments’ and Langevin dynamics simulation
in glassy dense system.® Transient ordering mechanism in a
quasi-two-dimensional (2D) liquid near freezing was also in-
vestigated by Sheu and Rice.”!® However, the microscopic
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mechanism of the stress field relaxation has not been thor-
oughly investigated.'!~!4

Twenty years ago, Ladd and Alder have speculated that
the long time tail of the shear stress autocorrelation function
near the solid-fluid transition point in the hard sphere sys-
tem is due to transient crystal nuclei formation.'> They found
that the potential part of the SACF and the angular orienta-
tional autocorrelation function (OACF) are identical in the
long time limit and show non-algebraic decay in time. Since
the evidence suggested that the reason for non-algebraic de-
cay is structural relaxation rather than hydrodynamic flow, an
attempt was made to understand this slow decaying mecha-
nism by decomposing the OACFs into two-, three-, and four-
body correlations, however, the four-body correlations have
not been obtained accurately due to computer limitation. The
prediction of the cooling rate necessary to prevent crystalliza-
tion requires knowledge of the rate of growth of a cluster the
size of a critical solid nuclei and the time they exist in this
transient state and can only be obtained from the four body
correlation.

In our previous work we have investigated the slow
decay of the pair, C,, orientational autocorrelation function in
a two-dimensional system consisting of elastic hard disks at a
single density near the solid-fluid transition point, placed in a
square box with periodic boundary conditions, using a mod-
ern fast algorithm based on event-driven molecular dynam-
ics (MD) simulation.'® The time evolution of various sized
cluster were detected by using the bond orientational order
parameter.'®~2! Near the fluid-solid phase transition, we found
three regimes in the relaxation of the pair orientational auto-
correlation function, namely, the kinetic, molasses (stretched
exponential), and diffusional power decay (pairs breaking
apart). We confirmed the non-algebraic decay (stretched ex-
ponential) at intermediate times presumably due to the exis-
tence of various sized solid clusters at high densities decaying
at different rates.

16,17
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Then, we focused on the rapidly increasing time with in-
creasing density for the decay of the OACFs and were able
to establish the length of time for which the biggest such nu-
clei exists at each density. The largest cluster near the freezing
density was found to be only a few sphere diameters in size
and to persist for typical argon parameters for only about 30
ps. We also compared the results to theoretical predictions of
the final power law decay.!’

To make further quantitative progress, we need to inves-
tigate the OACF of the quadruplet component, C4(AR, t), as a
function of the distance between the two colliding pairs AR.
From this information, it will be possible to tell how the clus-
ter size distribution changes with time and density, and, sub-
sequently, determine how fast one has to increase the density
to get a glass instead of a crystal. Because this is computation-
ally a very demanding task, we introduce two methodologies
in this paper, which are more efficient methods for analysis
of the quadruplet contribution to the orientational autocorre-
lation function. One is a more efficient coarse-grained (CG)
algorithm for calculating pair and quadruplet contributions to
the OACFs, rather than the previous collision based calcula-
tion. The other is the extension of the usual bond orientational
parameter ¢>é to a higher order one involving further neighbor
shells. We demonstrate that the coarse-grained results are in
quite good agreement with the previous one, but two order
of magnitude faster, allowing for the faster evaluation of the
4-body autocorrelation functions C4(AR, ?).

This paper is organized as follows. In Sec. II, we describe
how to detect further nearest neighbors and summarize details
of the new algorithm. In Sec. III, the results of the new im-
provement are described. Finally, in Sec. IV, we summarize
the results and discuss the relaxation time of transient clusters
and their size distribution.

Il. DETERMINATION OF TRANSIENT CRYSTALS
IN DENSE LIQUIDS

In this section, we explain how to categorize neighboring
shells. Then, generalization of the bond orientational order
parameter is described in order to calculate the autocorrela-
tion of the orientational function.

N=4096
v=0.69 |

1st N.N.

ne [ disks

- 2nd NN, | 1
disks K

ol 3rd N.N.

/ di{,sks L

\central : =
disk | '
ignore more than

l l 4th N.N.
¥ ¥

0 i 1

Radial Distribution Function g(r)

FIG. 1. Radial distribution function at v = 0.69 with the cut-off arrows.
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FIG. 2. Perfect crystal configuration and neighbor shells at v = 0.69.

A. Detecting higher nearest neighbors

To consider further neighbors than nearest neighbors sys-
tematically, we define neighbor shells based on the minima of
the radial distribution functions (RDF) for each packing frac-
tion v, which are obtained by an independent calculations via
event-driven MD. The radial distribution function, g(r), at v
= 0.69 in a 2D system composed of N = 4096 hard disks
with a diameter o are shown in Fig. 1. We show 4 red arrows
for 3 shell radii beyond the central particle, the 1st nearest
neighbors (N.N.), 2nd N.N., and 3rd N.N., which are named
by the shell index I, J, K, and L, respectively. (For example,
J indicates the particles belong to 1st N.N. against the central
particle 1.) Note that the 2nd N.N. peak has a shoulder nearby,
which likely indicates that the transient crystal becomes sig-
nificant in dense liquids. The result is the shell radii given as
the cut-off distance r,,, for each packing fraction, as summa-
rized in Table I. We only consider 3rd N.N. shell in this paper,
however, considering further neighbors would be straightfor-
ward, but such large clusters were found to be rare.

To justify the concept of the above categorization of
neighbors, we consider the perfect crystal configuration for
v = 0.69 as a reference, which is shown in Fig. 2. We also
show 4 red shells (circles) correspond to the cut-off radius
in Fig. 2. The simulation results on the probability distribu-
tion for the particle number of neighbors and its averages are
shown in Fig. 3 and Table II, respectively. We hereby justify
that neighbors can be detected for 1st to 3rd N.N. by setting
simple cut-off distances from the central particle based on the
RDFs.

TABLE I. The distances from the central particle i to further neighbor are
shown in units of o at various packing fraction.

v 1st N.N. 2nd N.N. 3rd N.N.
0.69 1.579 2.592 3.606
0.65 1.616 2.638 3.660
0.57 1.702 2.747 3.838
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FIG. 3. Probability distributions of particle number for each neighbor shell
atv =0.69 (—) and v = 0.57 (---) are shown.

B. Decomposition of the orientational factors
and autocorrelation functions

To investigate the temporal properties of clusters in the
liquid state, the time correlation functions of dynamical vari-
ables ) ; ; A(r;;, t) are considered,” where r;; in the relative
distance between the position of two particles r; and r;. The
time correlation function can be written as

C(t) = < > Aw;o) Y A(rkz<t>>>. (1)

ij k.l
(i#)) (kA1)
We have investigated the potential part of the SACF
(L @) JF(0)) relevant for the molasses tail, where J [ is the
potential part of the momentum current .lx’;. For a pairwise
potential ¢(ry), J, is

1
1 ([ nm? \* xijyij
A(r;j) = Jx}; =3 (NkBT> L= (), ()

rij

where n and m are number density and mass of disks, kg
and T are Boltzmann constant and temperature, (x;;, y;) = (x;
— xj, ¥; — y;) are the relative positions between particles i and
Jj- In the case of hard disks, this becomes

.
Jh) =Y —mb; ;ﬁ’ 5t — 1), 3)
Y

where b;; = v;; - r;; and ), means the accumulation of col-
lisional contributions at the colliding time #,. In general,
C(¢) can be decomposed into pair C,(¢) (ij — ij pair), triplet

TABLE II. The Ist to 3rd N.N. particle numbers for a perfect crystal and
the actual particle number for various packing fractions.

v Ist (J) 2nd (K) 3rd (L)
Perfect crystal 6 12 18
0.69 5.93 11.57 17.23
0.65 5.88 11.29 16.71
0.57 5.68 10.62 16.32
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Cs(t) (ij — ik pair), and quadruplet C4(¢) (ij — kI pair)
contributions?* 23

Ct) = < > Awy0) > A(rkz<r>>> “)

ij k.l
(%)) (ks#l)

=2 ) (A (0)Ar; (1))
()

+4 Z (A(I'U(O))A(rlk(t)»

i,j.k
ik

+ ) (A (0) A (1))
i,j,k,1l
(i#j]#ksﬁl)

= C(t) + C3(1) + C4(t). o)

Since velocities and positions are no longer correlated be-
yond a few mean collision times, only the orientational part
of the SACF, namely, the OACF, (O.,(#)0,,(0)), needs to be
studied.'>-7 O, (1) is defined as

Ony(t) =3 T 5 — 1), 6)

o
Y

To avoid the delta function singularity of O,,(#) for hard
particles, the alternative Einstein-Helfand expression®?* in-
volving the second derivative, obtained by the numerical dif-

ferentiation, is needed for calculating the correlation function

C(t) = (Oxy(1) Oxy(0))

1 d? 5
= EW((GO) — G(0))), @)
where
G =3 25400 1), ®)

14

and where ©O(7) is the unit step function. Note that there are
three independent orientational factors (O,y, Oy., and O,) in
3D. The pair and quadruplet contributions of OACF are de-
fined as

1 [
Cot) ~ 5 ;G-'o) , )
A#])

C ~1d2 3 G ()GH 10
a0~ 5 ,»;z G @) ), (10)

(i#j#k#D)
since (GU(0)) = (G¥(0)) = 0 (G'() = 0(x), G¥(1)

= Oi"v(t)). To ease calculating C, and C4, we introduce a
“collision pair index”

vi=Wi— DN —y(vi — D/24+ vy — v, (11)
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where y; and y; are particle indexes of colliding pairs, which
identifies a given pair quickly, thus avoiding having to check
whether the same collision pair has collided before. For ex-
ample, in case of N = 4, the total number of collision pairs
are N(N — 1)/2 = 6, which can be listed as (y;, y;) = (1, 2),
(1,3),(1,4),(2,3),(2,4), (3,4), where y; < y;. By using the
“collision pair index,” we obtain y; = 1, 2, 3, 4, 5, 6 for each
collision pair, respectively. Therefore, it is convenient to deal
with the collision pair as the sequential number to sort and in-
sert into the array of correlation pairs of G¥(r). This speeds up
the calculation considerably. All properties in this paper are
normalized and indicated by C*(#*), where r* is the reduced
time t* = t/ty(ty is the mean free time).

C. Higher order orientational factor based on course
graining method

Here, we propose an alternative methodology for calcu-
lating the OACEF efficiently, which differs from the previous
method based on collision events. The new method needs
only configurational data of particles at a certain discrete time
t = A x Atinstead of collisions, where X is an integer number
and Aris taken at an interval, e.g., the mean free time, Ar = t,.
The essential idea of our improvement is the coarse graining
of collision events in neighbor shells at discrete small times,
in which we recognize the tagged particles as the candidates
of collisions within At. Therefore, we can calculate orienta-
tional factors by summing those candidates with the following
slight modification:

0, = Y O

2
™, (o +6r)
= ZCOS@]} sin911, (12)
1,J

where 8r = /x7;(t)2 + y;7(t)? — 0 (KL0o) is the small gap

distance between particle / and J and 6, is the angle of vector
r;; against a reference axis (e.g., x axis). Such a modification

LA R ,—vﬁ':.

0.5 B B
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has a great advantage in efficiency since we do not wait for
the actual particle collisions as in the event-driven scheme.
We restrict the particle pairs considered as the reference pairs
at the start of each simulation as nearest neighbors. This is ex-
pected to improve sampling drastically by quick sorting over
choosing arbitrary reference particle pairs as we have done in
the previous method.!”

D. Generalized order parameter based
on crystal structure

1. Bond orientational order parameter

The usual bond orientational order parameter ¢¢ for a
hard disk i is defined by"®

1o .
o = N ;exp (6i6/), (13)

where N; is the number of the nearest neighbors around the
tagged particles i, and 6; is the angle between the position
vector from the disk j to i and an arbitrary fixed reference axis
(e.g., x axis).

Previously, two disks are defined as nearest neighbors if
the separation is within a distance, say 1.4—1.7¢. This choice
is reasonable from the view point of our definition by the

RDFs. The absolute value CD% =,/ ¢>é*¢é takes on values be-
tween 0 and 1, and measures the degree of crystallization in
terms of considering only nearest neighbors, where qbé* is the
complex conjugate of ¢é. Figure 4 shows typical snapshots of
the spatial distribution of @y at the packing fraction v = 0.65
(left) and 0.69 (right), respectively. The gradation in shading
of the particles indicates the value of ®i: the darker, the closer
to unity. We clearly observe the dramatic growth of several
solid nuclei as the density nears solidification. However, those
solid nuclei will disappear after a certain transient time.'!” To
investigate those transient clusters more quantitatively, we ex-
tended the usual bond orientational order parameter ¢¢ toward

FIG. 4. The spatial distribution of <I>é for 4096 particles system at a given time for two packing fractions, v = 0.57 (left) and 0.69 (right). The darker the region,

the closer <I>é is to unity.
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TABLE III. (¢, n) pairs for neighbors.

Central particle (I) 0,0)

Ist N.N. (J)
2nd N.N. (K)

(1,0), (0,1), (=1,1), (=1,0), (0,—1), (1,—1)
(1,1), (=1,2), (=2,1), (=1,—1), (1,=2), (2,—1)
(2,0), (0,2), (—2,2), (—=2,0), (0,—-2), (2,—2)
(3,0), (2,1), (1,2), (0,3), (—=1,3), (=2,3)
(=3,3), (=3,2), (=3,1), (=3,0), (=2,—1), (=1,-2)
(0,-3), (1,-3), (2,-3), (3,-3), 3,—2), (3,—1)

3rd N.N. (L)

further neighbors, that is, the 2nd to 3rd N.N. and investigate
the relaxation time via autocorrelation functions.

2. Angle for neighbors based on triangle
crystal lattice

Here, the angle between bond vectors for the general-
ized order parameter is considered. It is easy to deal with the
neighbors when we introduce the integer index (¢, n) summa-
rized in Table III. If the particle is located on the crystal lattice
with the side distance a, the position vector of particle ¢ can
be described as

c=7Ca+nb, (14)
\/3

where (¢, n) are integers and a = (1, O)a, b = (%, 5
unit vectors of the crystal lattice.

We next consider the angle of bond vectors. If the particle
positions are in a perfect crystal, that is r = ¢, the bond vector

between central particle / and 1st N.N. J can be defined as

)a are

Cjy=¢C; —¢Cy. (15)

We can define 6 kind of bond vectors (¢j;, €7, €17 Cky,
c¢.s, and ¢ ) within 3rd N.N. Angles 6 between bond vectors
for ¢j; and ¢/ (J' # J) are easily calculated as 6 = n’ x 7/3,
where 1’ is an integer, which reduces to the usual calculation
for ¢¢. In general, the angle between bond vectors can be cal-
culated by

677 = cos™! (M> (16)
lesrlles|

We can define 432 pairs of bond vectors within 3rd N.N.,
of which 6 are for ¢j;, 12 for ¢k, 18 for ¢;;, 72 for ¢y, 108 for
¢z, and 216 for ¢, x. We do not consider ¢y, ¢z; in this paper.
Based on the perfect crystal, we calculate the angle proba-
bility distribution between the bond vector pairs (i) (c;7, ¢7)
(CKI, CKI) (CLI, CLI), (ll) (C][, CKL)- ThllS, the COIle:pt of bond
orientational order parameter for further neighbors can be
extended.

3. Generalized order parameter based
on crystal structure

The usual ¢¢ order parameter is obtained from the angle
between the position vector from disk J to  and “an arbitrary
fixed reference axis.” To consider the angle between 1st and
2nd neighbors pairs (and more), the bond angle can be rede-

J. Chem. Phys. 137, 194501 (2012)

fined by relative vectors between /I-J and I-K (etc.), instead of
“an arbitrary fixed reference axis.” The complex generalized
order parameter for a tagged particle I with the actual position
vectors r,; can be generalized by

N;
1
I
= xE ), 17
(ox NN, — D) j<J’X (xyr,ryr) a7
Xs(Xyr, ) =exp(so(ryy, ryy)), (18)

J I gl ~1( s Ty
O, r;) =6" = (0] —6])=cos ( )
Iyl

19)

If s = 6 and r;; = (1, 0) (i.e., unit vector of x axis) are
fixed, we can reduce the above expression to the usual ¢¢ or-
der parameter described in Eq. (13).

lll. RESULTS

The systems considered are hard disks placed in a L,
x Ly(=A) square box with periodic boundary conditions.
Initially, the simulation systems for each packing fraction v
(=Nm(c/2)*/A) are prepared in an equilibrium state by a suf-
ficiently long preliminary run. For the close packed area Ay,
v = 11/(2+/3(A/Ap)). The system evolves through collisions,
using an algorithm based on event-driven MD simulation. '8
Most of the calculations are done with a relatively small par-
ticle numbers, N = 4096, since long time runs for calculat-
ing accurate tails of autocorrelation functions are needed. We
confirmed that periodic boundary effects on the OACF do not
appear for this system size.!” The density is set at relatively
dense values near the solid-fluid transition point v, near 0.70,
namely, at v = 0.69, 0.65, and 0.57, primarily to compare with
the previous results.'%!7

A. Total and pair orientational
autocorrelation functions

The algorithm for C,(#) is described in the following
steps:

1. Prepare the list of vectors for particle pairs within the 3rd
N.N. shells at t = 0, which are likely collision candidates
in a short time. This is called “a reference particle pair
list.” This list is similar to the neighbor list known in the
standard MD technique to increase efficiency. Note that
if we only register particles within 1 N.N. shell, they can
escape from that shell after a short time and; therefore,
the 3rd N.N. choice is a better one.

2. Sort the above list vectors by sequential number accord-
ing to the collision pair index y (eq. (11)), where y; and
v are the index of the colliding candidate particles.

3. During the event-driven MD simulation at each discrete
time t = AAf (A= 1,2, 3, --), we list particle pairs within
3rd N.N. shell into such arrays and sort them sequen-
tially by using the pair list index.

4. Next, compare the pair particle index y obtained from
configurations at time ¢ with the list of reference pair
index prepared at time ¢t = 0.
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FIG. 5. Comparison on the OACF (Cyyq) at two densities between previous
collision-based method and new method. The vertical axis is normalized and
the horizontal axis is the scaled time by the mean free time, #,.

5. [If the pair particle index is found to be the same as the
reference pair index for the Ist N.N., we insert it in
the CG modified orientational factor Oy}() (Eq. (12)).
If the particle index is not the same as in the list of ref-
erence pairs, we discard it.

6. After the simulation is performed for a long time we ob-
tain averages for y; and hence C,(f) via the Einstein-
Helfand formula with time resolution At.

In Figs. 5 and 6, comparison of the C,,,; and C, at two
densities between the previous collision-based method and
the new method are shown. The relaxation time and long time
behavior of both Cy,,; and C, obtained by the new method are
in fairly good agreement with that of the previous method at
both densities.!” However, the efficiency proved to be drasti-
cally improved. Although the efficiency depends on the par-
ticle number N which determines the total array for particle
pairs, the efficiency was more than 16 and 77 times faster than

108

10 3
Yo
S
N=4,096 ¢
4| & v=0.690 (New Method)
10 ¢ .
O v=0.650 (New Method) 4

——  (Previous Method)

10° 10’ 10 10
t (=tty)

FIG. 6. Comparison of C; at two densities between previous collision-based
method and new method. The vertical axis is normalized and the horizontal
axis is the scaled time by the mean free time, 7.
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FIG. 7. The probability distribution function of AR in the unit of o for
v = 0.65 and 0.69.

previously for the total and pair autocorrelation function at
(N, v) = (4096, 0.69), respectively.

B. Quadruplet orientational autocorrelation functions

We then showed that the new method can calculate higher
order correlations such as the distance dependence of the au-
tocorrelation for the quadruplet contribution, which cannot be
resolved by the collision based calculation.'’

The Cj algorithm is basically constructed as was C»,
however, it is more complex since we need to use more sort-
ing procedures and searching method for detecting valid pairs
for i — j and k — [ within 3rd N.N. The main computational
task is to search the particle pair index in the reference parti-
cle pair list for both i — j and k — /. To detect the valid particle
pairs for i — j and k — [ within 3rd N.N. separated by a cal-
culable distance at each discrete time is relatively easy, since
those candidate pairs have already been registered at r = 0.
Therefore, it leads to a significant improvement for calculat-
ing the C4 autocorrelation functions. Note that since not only
i — j pair but also k — [/ must be the collisional candidates,
k — [ pairs are searched under the condition that k — / are also
1 N.N.

Figure 7 shows the probability distribution function of
AR in units of o, where AR is the separation between the
center of mass of the particle pairs i — j and k — I. The con-
tribution beyond the 4th N.N. is not calculated. For a perfect
crystal, the number of distinct quadruplet pairs (i — j, k — [)
for tagged particle i is ~118.5N in the N particle system. The
actual sampling of quadruplet pairs are about 91 pairs for each
tagged particle i at v = 0.69. Figure 8 shows the time depen-
dence of C4(AR, f) normalized by C4(AR, 0) for two packing
fraction v = 0.69 and 0.65 for the AR/o corresponding to 1st,
2nd, and 3rd peaks in Fig. 7, respectively.

In C4(AR, t) beyond AR/o ~ 3.4, the contribution of
outer particles of 4th N.N. shell gradually becomes dominant.
Computational costs are just a few times larger than for the
C,. In Fig. 8, we found that C, for 1st peak changes from
positive to negative values around #* ~ 246(v = 0.69) and
53(v = 0.65), respectively. On the contrary, C, for 2nd peaks
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FIG. 8. The distance dependence normalized C4(AR, t) for each packing
fraction v = 0.69 and 0.65 are shown.

changes negative to positive values around ¢* ~ 197(v = 0.69)
and 39(v = 0.65), respectively. This is because the geometry
of configurations between i — j and k — [ pairs. Those re-
sults indicate that C,4 in v = 0.65 decays much faster than that
of v = 0.69. In our new method, C4(AR, ) can resolve how
the cluster size distribution changes in time for each density
quantitatively.

C. Generalized order parameter

Tables IV shows the results for the generalized order pa-
rameters (GOP), @' = ,/¢i*¢i, for s =6, 12, 18 (i.e., Ist-3rd
N.N.) as described in Sec. II D for each packing fraction v
=0.57, 0.65, and 0.69. In Table IV, the GOPs are calculated
based on the fixed reference axis (i.e., x axis, ry; = (1, 0)).
We note that all GOPs decrease for higher neighbors for each
packing fraction and increase for the higher packing fraction.
Figure 9 shows the spatial distribution of GOP @ (s = 12

0.5 I
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TABLE IV. The generalized order parameter, <I>f;, at various packing
fractions.

v 0.57 0.65 0.69
(D) 0.487 0.556 0.645
(@) 0.369 0416 0.496
(®ig) 0.300 0.341 0.402

(left) and s = 18 (right)) for 4096 particles system at a given
time at the packing fractions v = 0.69. Comparing with Fig. 4,
the darker the region in Fig. 4 gradually decreases for 2nd and
3rd N.N. This can be useful to determine the crystal size quan-
titatively and to further characterizing the transient clusters.

D. Autocorrelation function based on generalized
order parameter

The autocorrelation functions based on the generalized
order parameter for each particle i is decomposed into real
and imaginary parts

¢,(1) = Re({(1)) + ilm(g;(1)). (20)
leading to the following autocorrelations:
Caor(t) = (@} ()3(0)), @1

= (Re(¢i(t))Re(¢i(0)) 4+ Im(¢!(1))Im(¢.(0))). (22)

The decay of this autocorrelation function Cgop(#) for
s =6, 12, 18 at v = 0.69 and 0.65 normalized by C&qp(t)
= Cgop(t)/ (d}i)z is given in Table V. The decay of the shear
stress is directly related to the decay of C (see, Fig. 6 and Ta-
ble V), and its life time to the dissolution of the cluster, i.e.,
when its core, Cy, melts.'®!” A movie of a transient crystal
nuclei formation shows that the growing process involves the
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FIG. 9. The spatial distribution of generalized order parameter <1>§ (for s = 12 (left) and s = 18 (right)) in 4096 particles system at a given time at v = 0.69.
The darker the region, the closer ®¢ is to unity. For s = 6, see Fig. 4 (right). Note that GOPs of higher order N.N. for a given central particles may occasionally
have a higher correlation than that of a lower order N.N. because the core particles may not be as highly ordered.
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TABLE V. Relaxation time t for Cyy, Ca, and 7 of C(AR, t) for Ist (k =
1) and 2nd (k = 2) peaks, and 7(;,p for nth N.N. at v = 0.69 and 0.65. All
time are in the unit of #y (mean free time).

v (Com)  T(C)  T1(Cs)  T2(Cs)  Thop  Téor  Toop
0.69 12 133 78 66 40 20 15
0.65 6 41 21 21 9 7 6

increasing order of the neighboring particles to as large as 3rd
neighbors followed by the dissolving process till the nearest
neighbors are no longer ordered. The overall average of all
nucleation processes has a time scale given in Table V at v
= 0.69 of 40, 20, 15 for the 1st, 2nd, and 3rd N.N.,
respectively.

IV. SUMMARY AND DISCUSSION

In this paper, a method for analysing higher order pa-
rameter of the liquid state is developed, especially to investi-
gate transient crystals in dense liquid systems. Instead of cal-
culating orientational factors and their decomposition based
on collision event as previously,'®!” we developed a more
efficient methodology by introducing neighbor shells which
coarse-grained collision events within these neighbor shells
as candidates of further collisions during short times. We con-
firmed that the same results and relaxation time are obtained
as previously. We also demonstrate that this improvement per-
mits calculating higher order parameters of orientational con-
tributions such as the distance dependence of the autocorrela-
tion function of the quadruplet contributions C4(AR, f), pro-
viding information on the size and number of the transient
crystals and their life time. The size and number distribution
can be investigated not only for 1st N.N. but also for further
neighbors, as shown in Fig. 10. If we somewhat arbitrary rec-
ognize particles with ®! > 0.9 as the center of crystal-like
structures as before,!” it is possible to estimate the crystalline
fraction for higher neighbors, as shown in Fig. 11.
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FIG. 10. The probability distribution functions of @ at v = 0.69 for further
neighbors.

At v = 0.69, we found that ~15% of the particles in
the system have crystal-like nearest neighbors, ~1.8% 2nd
N.N. and ~0.13% 3rd N.N. This means that there are ~5 (i.e.,
=4096 x 0.0013) crystal clusters of the size of 3rd N.N. shell
or the size of ~36 particles in the system. The typical snap-
shot of the spatial distribution confirmed the above estimation
of size and cluster number. (See, the right of Fig. 11). Rarely
have the central particles and some of the next nearest neigh-
bor order beyond W! > 0.9 at the same time because such 3rd
order N.N. are rare events.

The lifetime of these clusters given in the unit of £
(mean free time) are determined from the autocorrelations for
Croal(t), C2(1), C4(AR, 1), and Cgop(?) that are of the stretched
exponential form. The relaxation time is defined as the time
when the auto-correlation function decays to 1/e of its initial
value. In Table V, the relaxation time t for C;sy, Co, and 7y
of C(AR, 1) for kth peaks, and t§p for nth N.N. at v = 0.69
and 0.65 are summarized. As expected, the relaxation time in-
creases when the packing fraction increases and decreases for
the higher neighbor shells. In comparing the relaxation time
for C,, C4 for the 1st peak and GOP for 1st N.N., account

FIG. 11. (left) The percentage of GOP with @i > 0.9 in terms of nth N.N. for v = 0.65, 0.69 are shown. (right) The distribution of GOP for the central particle
of a cluster is plotted using threshold W; > 0.9 for 3rd N.N. in the same configuration as Fig. 9.
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must be taken of the number of particles involved, namely, 2,
4, and 6 particles, respectively. The larger the numbers, the
quicker their order is destroyed. C4(AR, f) for the 1st peak
loses orientational order faster than C, and T(l;op even faster.
Interestingly, the relaxation curves for C4 at v = 0.65 are al-
most the same for the first and second peaks although the am-
plitudes are different, while C4(AR, t) for the 1st peak at v
= 0.69 has a somewhat slower decay than that for the 2nd
peak. The rapid increase in relaxation time of clusters with
density as well their number and size is closely related to the
rapid increase in viscosity near freezing. If we cool the system
or compress much faster than the relaxation time estimated by
the methods presented here, we can determine the condition
under which glass might form.
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