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A Bayesian Framework Using Multiple Model Structures for
Speech Recognition

Sayaka SHIOTA†a), Kei HASHIMOTO†b), Nonmembers, Yoshihiko NANKAKU†c),
and Keiichi TOKUDA†d), Members

SUMMARY This paper proposes an acoustic modeling technique
based on Bayesian framework using multiple model structures for speech
recognition. The aim of the Bayesian approach is to obtain good predic-
tion of observation by marginalizing all variables related to generative pro-
cesses. Although the effectiveness of marginalizing model parameters was
recently reported in speech recognition, most of these systems use only
“one” model structure, e.g., topologies of HMMs, the number of states and
mixtures, types of state output distributions, and parameter tying structures.
However, it is insufficient to represent a true model distribution, because a
family of such models usually does not include a true distribution in most
practical cases. One of solutions of this problem is to use multiple model
structures. Although several approaches using multiple model structures
have already been proposed, the consistent integration of multiple model
structures based on the Bayesian approach has not seen in speech recog-
nition. This paper focuses on integrating multiple phonetic decision trees
based on the Bayesian framework in HMM based acoustic modeling. The
proposed method is derived from a new marginal likelihood function which
includes the model structures as a latent variable in addition to HMM state
sequences and model parameters, and the posterior distributions of these
latent variables are obtained using the variational Bayesian method. Fur-
thermore, to improve the optimization algorithm, the deterministic anneal-
ing EM (DAEM) algorithm is applied to the training process. The pro-
posed method effectively utilizes multiple model structures, especially in
the early stage of training and this leads to better predictive distributions
and improvement of recognition performance.
key words: speech recognition, acoustic modeling, Bayesian approach,
model structure integration, deterministic annealing

1. Introduction

The maximum likelihood (ML) criterion has usually been
used for training statistical models for speech recognition
systems. However, since the ML criterion produces a point
estimate of model parameters, the estimation accuracy may
degrade when little training data is available. The aim of
the Bayesian approach is to obtain good prediction of obser-
vation by marginalizing all variables related to generative
processes, and it can accurately estimate observation distri-
butions even if the amount of training data is small. How-
ever, the calculation becomes complicated due to the com-
bination of latent variables, i.e., state sequences and model
parameters. To solve this problem, the variational Bayesian
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(VB) method has been proposed as an effective approxima-
tion method of the Bayesian approach [1], [2], and the ef-
fectiveness of marginalizing model parameters was recently
reported in speech recognition [3]–[7].

In conventional speech recognition based on gener-
ative models, there are many efforts to find appropriate
model structures to predict observation vector sequences
(e.g., multi-mixture models, clustering techniques and more
complicated models). However, most of these systems use
only “one” model structure, e.g., topologies of HMMs, the
number of states and mixtures, types of state output distri-
butions, and parameter tying structures. In most practical
cases, it is insufficient to represent a true model distribution
because a family of such models usually does not include a
true distribution. One of solutions of this problem is to use
multiple model structures. Although several approaches us-
ing multiple model structures have already been proposed,
e.g., ROVER [8], random forest [9] and model structure an-
nealing [10], the consistent integration of the multiple model
structures based on the Bayesian approach has not seen in
speech recognition. This paper focuses on integrating the
multiple model structures based on the Bayesian framework
in HMM based acoustic modeling. The proposed method is
derived from a new marginal likelihood function which in-
cludes the model structures as a latent variable in addition to
HMM state sequences and model parameters, and the poste-
rior distributions of these latent variables are obtained using
the VB method.

The conventional VB method sometimes suffers from
the local maxima problem because of the combination of
the latent variables. To overcome this problem, some ap-
proaches have been reported [11], [12], and we have also
reported the training algorithm applying the deterministic
annealing EM (DAEM) algorithm [13] to the conventional
VB method for speech recognition system [14]. Since the
proposed method also treats the multiple model structures
as a latent variable additionally, the local maxima problem
becomes more serious than the conventional VB method.
Therefore, to improve the training algorithm of the proposed
method, the deterministic annealing framework is applied
to the training process. The proposed method which ap-
plied the deterministic annealing process effectively utilizes
multiple model structures, especially in the early stage of
training and this leads to better predictive distributions and
improvement of recognition performance.

The proposed method has a similarity to the non-
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parametric Bayesian method [15] because both methods use
multiple model structures and integrate them based on the
Bayesian framework. The main difference between these
methods is that the non-parametric Bayesian method as-
sumes generating processes of multiple model structures for
each data sample. Although the proposed method simply
prepared multiple model structures in advance, it still has
the effect of model structure marginalization and can be per-
formed without increasing the complexity of the training
process.

The rest of this paper is organized as follows. Section 2
describes the speech recognition based on the variational
Bayesian approach. The Bayesian speech recognition in-
cluding multiple model structures and the training algorithm
using the DAEM algorithm are described in Sect. 3. Sec-
tion 4 illustrates results of the continuous phoneme recogni-
tion experiments, and the final section presents conclusions
and future work.

2. Speech Recognition Based on Variational Bayesian
Method

2.1 Bayesian Approach

The output distribution is obtained based on a left-to-right
HMM which has been widely used to represent an acoustic
model for speech recognition. Let O = (o1, o2, . . . , oT ) be a
set of training data, and T denotes the frame number. The
likelihood function of an HMM are represented by

P(O | Λ) =
∑

Z

P(O, Z | Λ) (1)

=
∑

Z

T∏
t=1

azt−1ztN(ot | μzt
,S−1

zt
), (2)

where Z = (z1, z2, . . . , zT ) is a sequence of HMM states,
zt ∈ {1, . . . ,N} denotes a state at frame t, and N is the
number of states in an HMM. A set of model parameters
Λ = {πi, ai j,μi,Si}Ni, j=1 consists of the intial state probabil-
ity πi of state i, the state transition probability ai j from state
i to state j, the mean vector μi and the covariance matrix
S−1

i of a Gaussian distribution N(· | μi,S
−1
i ), Note that the

initial state probability of an HMM is represented by az0z1 .
Although Gaussian mixture model is typically used for out-
put probabilities in many systems, this paper assumes a sin-
gle Gaussian distribution for the simplicity of description.
However, assuming that Z includes the index sequences of
the mixture components as well as the state index sequences,
the following equations can be easily extended to those of
the Gaussian mixture models.

The Bayesian approach assumes that the model param-
eter Λ is a latent variable, while the ML approach estimates
constant model parameters. The posterior distribution for a
set of model parameters Λ is obtained with the Bayes theo-
rem as follows:

P(Λ | O) =
∑

Z

P(O, Z | Λ)P(Λ)
P(O)

, (3)

where P(Λ) is a prior distribution for Λ. Once the posterior
distribution P(Λ | O) is estimated, a predictive distribution
for input data X is represented by

P(X | O) =
∑
Zx

∫
P(X, Zx | Λ)P(Λ | O)dΛ. (4)

Since the model parameters are marginalized out in Eq. (4),
the effect of over-fitting is mitigated. However, it is diffi-
cult to solve the integral and expectation calculations. Espe-
cially, when the model includes latent variables, the calcu-
lation becomes more complicated. To overcome this prob-
lem, the variational Bayesian (VB) method has been pro-
posed as a tractable approximation method of the Bayesian
approach [1].

2.2 Variational Bayesian Method

In the Bayesian method, the marginal likelihood† is repre-
sented by

log P(O) = log
∑

Z

∫
P(O, Z | Λ)P(Λ) dΛ. (5)

However, the calculation of Eq. (5) requires averaging over
all configurations of the latent variables. Therefore, in the
variational Bayesian (VB) method, a lower bound of the log
marginal likelihood F is maximized instead of the true like-
lihood. The lower bound of the log marginal likelihood F
is defined by using Jensen’s inequality:

log P(O) = log
∑

Z

∫
Q(Z,Λ)

P(O, Z | Λ)P(Λ)
Q(Z,Λ)

dΛ

≥
∑

Z

∫
Q(Z,Λ) log

P(O, Z | Λ)P(Λ)
Q(Z,Λ)

dΛ

= F , (6)

where Q(Z,Λ) is an arbitrary distribution. Then, the relation
between the log marginal likelihood and the lower bound F
is represented from Eq. (6).

log P(O) − F =
∑

Z

∫
Q(Z,Λ) log

Q(Z,Λ)
P(Z,Λ | O)

dΛ,

= KL[Q(Z,Λ) | P(Z,Λ | O)], (7)

where KL[Q(Z,Λ) | P(Z,Λ | O)] denotes the Kullback-
Leibler (KL) divergence [16] between Q(Z,Λ) and the true
posterior distribution P(Z,Λ | O). As the difference be-
tween the true log marginal likelihood and the lower bound
is reduced, Q(Z,Λ) approximates the true posterior distri-
bution P(Z,Λ | O). Therefore, by maximizing the lower
bound F , the optimal posterior distribution Q(Z,Λ) is esti-
mated. However, the calculation becomes complicated be-
cause of the combination of latent variables and Q(Z,Λ)
include the integration of the model parameter. To obtain

†The marginal likelihood is corresponded to the free energy
function in statistical mechanics.
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approximate posterior distributions Q(Z,Λ), the variational
method is applied. In the variational method, the latent vari-
ables are assumed conditionally independent† each other as
follows:

Q(Z,Λ) = Q(Z)Q(Λ). (8)

Under this assumption, the optimal VB posterior distribu-
tions which maximize the objective function F are given by
the variational method:

Q(Z) = CZ exp
{〈

log P(O, Z | Λ)
〉

Q(Λ)

}
, (9)

Q(Λ) = CΛP(Λ) exp
{〈

log P(O, Z | Λ)
〉

Q(Z)

}
, (10)

where 〈·〉Q denotes the expectation with respect to Q, CZ and
CΛ are the normalization terms of Q(Z) and Q(Λ), respec-
tively. Since the obtained VB posterior distributions Q(Λ)
and Q(Z) are dependent on each other, these updates should
be iterated as the EM algorithm, which increases the value
of the objective function F at each iteration until conver-
gence.

Although the Bayesian approach achieved higher per-
formance than the ML approach [3], the local maxima prob-
lem in the Bayesian approach is more serious than in the
ML-based approach because the Bayesian approach treats
not only state sequences but also model parameters as latent
variables. Therefore, the optimization algorithm is impor-
tant for the VB method. To optimize the training algorithm,
we applied the DAEM algorithm to the VB method [14].

2.3 DAEM Algorithm for Variational Bayesian Method

To adopt the DAEM algorithm [13] to the variational
Bayesian method, the lower bound of the log marginal like-
lihood F (Eq. (6)) can be written as follows:

F =
∑

Z

∫
Q(Z,Λ) log P(O, Z | Λ)P(Λ)dΛ

−
∑

Z

∫
Q(Z,Λ) log Q(Z,Λ)dΛ. (11)

From the view of statistical physics, the lower bound F cor-
responds to the negative of the Helmholtz free energy with
temperature T = 1:

FHelmholtz = E − TS, (12)

where E and S denote the internal energy and the entropy,
corresponding to the first and second term of Eq. (11) re-
spectively. For the DAEM algorithm, the inverse tempera-
ture parameter β = 1/T is introduced and a new objective
function Fβ is defined:

Fβ=
1
β

∑
Z

∫
Q̂(Z,Λ) log

Pβ(O, Z | Λ)Pβ(Λ)

Q̂(Z,Λ)
dΛ. (13)

This function can be regarded as the lower bound of the fol-
lowing function by using Jensen’s inequality. Therefore, the
marginal likelihood function based on the DAEM algorithm

Lβ can also be redefined:

Lβ =
1
β

log
∑

Z

∫
Pβ(O, Z | Λ)Pβ(Λ) dΛ. (14)

To obtain the VB posterior distributions, the constraint
(Q̂(Z,Λ) = Q̂(Z)Q̂(Λ)) is applied to the lower bound Fβ.
Under the constraint, the optimal VB posterior distributions
which maximize the lower bound can be obtained as fol-
lows:

Q̂(Z) = CZ exp
{〈

log Pβ(O, Z | Λ)
〉

Q̂(Λ)

}
, (15)

Q̂(Λ) = CΛPβ(Λ) exp
{〈

log Pβ(O, Z | Λ)
〉

Q̂(Z)

}
. (16)

By applying the deterministic annealing framework to the
VB method, the temperature parameter β is attached to the
original VB posterior distributions (Eqs. (9) and (10)). In the
deterministic annealing process, since temperature denotes
1/β, the temperature parameter β is gradually increased and
the form of the VB posterior distributions depends on each
temperature parameter. When β is set to the initial tempera-
ture β(0) � 0, the VB posterior distributions Q̂(Z) and Q̂(Λ)
take a form nearly uniform distribution. While the tempera-
ture is decreasing, the form of Q̂(Z) and Q̂(Λ) become close
to each original posterior distribution. Finally at the tem-
perature β = 1, Q̂(Z) and Q̂(Λ) take each original posterior
distribution, and the reliable model parameters can be esti-
mated without the effect of the local maxima problem.

3. Bayesian Speech Recognition Using Multiple Model
Structures

Recently, to improve the model complexity, some ap-
proaches were reported using multiple model structures
(e.g., random forest [9], ROVER [8], and the model structure
annealing [10]). Although various integration techniques
and criteria can be considered, this paper focuses on model
structure integration based on the Bayesian framework in
acoustic modeling.

3.1 Marginal Likelihood Function Including Multiple
Model Structures

For considering the proposed framework of using multiple
model structures based on the Bayesian approach for speech
recognition, we define a marginal likelihood function which
includes model structures as a latent variable as follows:

log P(O) = log
∑

m

∑
Z

∫
P(O, Z,m,Λm)dΛm, (17)

†“Conditionally independent” means that the distribution is as-
sumed to be independent under the condition that observation O
and structure m are given. Even the variables of the prior distribu-
tion (distribution without the condition) are independent, the vari-
ables of the posterior distribution (distribution with the condition)
are usually dependent each other by the condition. Therefore the
conditional independent assumption (Eq. (8)) can be regarded as a
kind of approximation.
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P(O, Z,m,Λm) = P(O, Z | m,Λm)P(Λm | m)P(m), (18)

where m ∈ {1, . . . ,M} indexes model structures, Λm ∈
{Λ1, . . . ,ΛM} denotes a set of model parameters for the m-th
model structure, and the prior distribution P(Λm | m) is cal-
culated from each model structure m. Note that this paper
regards a structure of a phonetic decision tree as a model
structure. In Eq. (18), the state sequence Z is not depen-
dent of the model structures m. This means that the state
sequences are estimated from a combination of the multiple
model structures, and it is expected reliable posterior dis-
tributions of state sequences are estimated. However, the
proposed method also treats the model structures as a la-
tent variable, the local maxima problem is more serious than
the conventional Bayesian method. Therefore, the proposed
framework should adopt the deterministic annealing process
for the training algorithm.

3.2 Applying DAEM Algorithm to Proposed Framework

We redefine the free energy function which based on the
marginal likelihood function (Eq. (17)) as follows:

L̄β =
1
β

∑
m

∑
Z

∫
log Pβ(O, Z | m,Λm)

× Pβ(Λm | m)Pβ(m)dΛm. (19)

The difference of the new free energy function from Eq. (14)
is that model structure m is added as a latent variable. The
lower bound of the free energy function L̄β is defined by
using Jensen’s inequality:

F̄β =
1
β

∑
m

∑
Z

∫
Q̃(Z,m,Λm)

× log
Pβ(O, Z | m,Λm)Pβ(Λm | m)Pβ(m)

Q̃(Z,m,Λm)
dΛm. (20)

An arbitrary distribution Q̃(Z,m,Λm) has a combination of
the three latent variables, and it makes the objective function
more complicated than the conventional method which uses
only one model structure. To obtain approximate posterior
distributions, we assume the following constraint:

Q̃(Z,m,Λm) = Q̃(Z)Q̃(m)Q̃(Λm | m). (21)

Note that the dependency between model parameters
and model structures remains as the prior distribution in
Eq. (18). Under this constraint, by maximizing the lower
bound F̄β, the optimal posterior distributions Q̃(Z), Q̃(m)
and Q̃(Λm | m) are obtained:

Q̃(Z) = CZ exp

{〈〈
log Pβ(O, Z | m,Λm)

〉
Q̃(Λm | m)

〉
Q̃(m)

}
, (22)

Q̃(m) = CmPβ(m) exp

{〈〈
log Pβ(O, Z | m,Λm)

〉
Q̃(Z)

+ log
Pβ(Λm | m)

Q̃(Λm | m)

〉
Q̃(Λm)

}
, (23)

Q̃(Λm | m) = CΛm Pβ(Λm | m)

× exp

{〈
log Pβ(O, Z | m,Λm)

〉
Q̃(Z)

}
. (24)

From Eqs. (22), (23) and (24), since the optimal variational
posterior distributions Q̃(Z), Q̃(m) and Q̃(Λm | m) depend
on each other, these distributions should be updated itera-
tively in the deterministic annealing framework. Since a set
of model parameter Λm consist of the parameters of transi-
tion probability Λ(a) and output probability Λ(b)

m , Eqs. (22)
and (24) are rewritten as:

Q̃(Z) = CZ exp
〈
log Pβ(Z | Λ(a))

〉
Q̃(Λ(a))

×
∏

m

[
exp

〈
log Pβ(O | Z,m,Λ(b)

m )
〉

Q̃(Λ(b)
m | m)

]Q̃(m)
, (25)

Q̃(Λ(a)) = CΛ(a) Pβ(Λ(a)) exp
〈
log Pβ(Z | Λ(a))

〉
Q(Λ(a))

, (26)

Q̃(Λ(b)
m | m) = C

Λ
(b)
m

Pβ(Λ(b)
m | m)

× exp
〈
log Pβ(O | Z,m,Λ(b)

m )
〉

Q̃(Z)
, (27)

where the state transition probability Λ(a) is independent
of the model structure m. The VB posterior distribution
Q̃(Z) takes the same form of the posterior distribution
based on the ML criterion: exp

〈
log Pβ(Z | Λ(a))

〉
Q̃(Λ(a))

and exp
〈

log Pβ(O | Z,m,Λ(b)
m )

〉
Q̃(Λ(b)

m | m) correspond to the
state transition probability and the output probability re-
spectively, and Q̃(m) can be regarded as a stream weight
of multi-stream HMMs. Thus, the state occupancy is cal-
culated from the Forward-Backward algorithm as the stan-
dard multi-stream HMMs (This step is called VB-E step).
However, contrary to the standard multi-stream HMMs, the
proposed method can estimate the stream weights as the up-
date of posterior distribution Q̃(m) automatically. Updates
of Q̃(Λ(a)) and Q̃(Λ(b) | m) correspond to the M-step in the
standard EM algorithm (This step is called VB-M step). Ad-
ditionally, the concrete forms of Q̃(Z), Q̃(m), Q̃(Λm | m)
and the normalization terms is written in the appendix. In
the proposed framework, the multiple model structures are
previously constructed and the context clustering is not con-
ducted during the annealing process. If infinite number of
model structures can be used, the proposed method is the-
oretically regarded as performing the context clustering at
each annealing step. Although the proposed method can
use only a finite number of the model structures in practice,
the reliable model parameters can be estimated by using the
multiple model structures.

Since the proposed framework adopts the determinis-
tic annealing process for the training algorithm, similar to
the Sect. 2.3, the temperature parameter β is gradually in-
creasing from 0 to 1, and at each temperature the posterior
distributions are estimated. Figure 1 shows the training pro-
cess in the proposed method. As this figure, at the initial
temperature (β � 0), the variational posterior distributions
Q̃(Z), Q̃(m) and Q̃(Λm | m) take a form nearly uniform dis-
tribution. This means that all model structures can be used
almost uniformly used for estimating the model parameters



SHIOTA et al.: A BAYESIAN FRAMEWORK USING MULTIPLE MODEL STRUCTURES FOR SPEECH RECOGNITION
943

Fig. 1 Training process.

and the state sequences in the initial step. While the tem-
perature is decreasing (β→ 1), the form of Q̃(Z), Q̃(m) and
Q̃(Λm | m) change to each original posterior distribution. At
the final temperature (β = 1), Q̃(Z), Q̃(m) and Q̃(Λm | m)
take each original posterior distribution. Through this pro-
cess, the optimal posterior probability of each model struc-
ture can be automatically estimated.

3.3 Related Approaches

We reported the approximation method of the joint opti-
mization of the state sequences and model structures based
on the ML-based speech recognition [10]. This framework
depends on the negative free energy function which is de-
fined as follows:

Lβ(Λ) =
1
β

log
∑

Z

∑
m

Pβ(O, Z | m,Λ)Pβ(m). (28)

Comparing this function with the function of the proposed
method, the previous work can be regarded as the the pro-
posed method which produced a point estimation of model
parameters. In the ML-based framework, there was a serious
problem that accurate posterior probabilities of the model
structures cannot be selected automatically. This is because
the ML criterion selects the largest model structure, and the

largest model structure is not always adequate. On the other
hand, the Bayesian criterion can be used to select the ade-
quate model structure [7]. Thus, the proposed method can
estimate the adequate posterior distributions of the model
structures and be expected to improve the speech recogni-
tion performance.

From another point of view, the proposed method has
a similarity to the non-parametric Bayesian method [6],
[15] because both methods use multiple model structures
with different complexities and are integrated based on the
Bayesian framework. The main difference between them
is that the non-parametric Bayesian method assumes pro-
cesses to generate multiple model structures for each data
sample. Although the proposed method simply prepared
multiple model structures, it still has the effect of model
structure marginalization and can be performed without in-
creasing the complexity of the training process.

Random forest [9] is one of the techniques using multi-
ple model structures. There are some different points be-
tween the random forest (RF) method and the proposed
method. One of the different points is how to construct the
model structures. The RF method is changing the data set
or question set for constructing other model structures. Al-
though the proposed method can also use these methods,
we use the Bayesian framework for constructing the ade-
quate model structures. Another point is how to use mul-
tiple model structures. In the RF method, several methods
of model combination have been tried, because there is no
criteria for deciding the combination weights. The proposed
method can automatically estimate the posterior probability
of each model structure.

In recent state-of-the-art speech recognition systems,
discriminative approaches have been used [17], [18]. Con-
trary to this, the proposed method is based on a genera-
tive model of the observations as the conventional HMM
based speech recognition. However, the most discriminative
approaches use structures of generative statistical models,
and finding the appropriate model structures is still essential
problem of speech recognition. Therefore, the authors think
that the idea of using multiple model structures and integra-
tion based on the consistent statistical criterion are useful
and available for various approaches including discrimina-
tive approaches in future work.

4. Experiments

4.1 Experimental Conditions

We conducted speaker independent experiments on continu-
ous phoneme recognition to evaluate the effectiveness of the
proposed method, where training data from 18,823 Japanese
sentences and testing data from 100 sentences were pre-
pared from Japanese Newspaper Article Sentences (JNAS).
Speech signals were sampled at a frequency of 16 kHz
and windowed at 10-ms frame rates using a 25-ms Ham-
ming window. The spectrum parameter vectors consisted
of 12-order MFCC and their delta and delta-delta coeffi-
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cients. Three-state left-to-right HMMs were used to model
triphones consisting of 43 Japanese phonemes and 204 ques-
tions were prepared for context clustering. All state output
probability distributions were modeled by using a Gaussian
distribution with a diagonal covariance matrix. The five al-
gorithms below were compared in this experiment.

• Flat-start : HMMs were initialized by flat-start training
and trained with the EM algorithm (the EM-steps were
iterated 200 times).
• DAEM : HMMs were initialized by flat-start training

and trained with the DAEM algorithm.
• Mtree : HMMs were initialized by flat-start training and

trained with the DAEM algorithm with multiple model
structures.
• Label10 : HMMs were initialized with the segmental

k-means algorithm using phoneme boundary labels and
trained with the EM algorithm (the EM-steps were iter-
ated 10 times).
• Label200 : HMMs were initialized with the segmental

k-means algorithm using phoneme boundary labels and
trained with the EM algorithm (the EM-steps were iter-
ated 200 times).

The ML and Bayes criteria could be applied to all five algo-
rithms, and comparative methods were represented by com-
bining the algorithms and criteria. Mtree(Bayes) is the new
proposed method and Mtree(ML) is the previous method
we proposed using the ML criterion reported in [10]. DAEM
methods using a single model structure DAEM(ML) and
DAEM(Bayes) were also compared with the proposed
method and their details have been reported [14], [19]. Prior
distributions and model selection of the Bayesian meth-
ods are automatically optimized by using the cross valida-
tion [7]. It is desirable to use multiple model structures.
However, when the several model structures are used, we
need to determine many conditions (e.g., the size and struc-
ture of trees, and the number of trees). Although how to de-
termine the number of model structures and how to construct
multiple model structures are essential problems for the pro-
posed method, in this experiment, we only focus on the eval-
uation of the integration part of multiple model structures.
Therefore, this experiment simply used only two kinds of
model structures for the proposed framework. At first, to
prepare a single model structure for the approaches utiliz-
ing a single model structure (Flat-start, DAEM, Label10,
and Label200), two model structures based on the ML and
Bayes criteria are constructed as follows:

• ML : a model structure was selected by using the mini-
mum description length (MDL) criterion. This structure
had 4,021 leaf nodes.
• Bayes : a model structure was selected by using

the Bayesian criterion utilizing 200-folds cross valida-
tion [7]. This structure had 18,099 leaf nodes (CV-
Bayes).

A model structure representing each monophone model is
also prepared for Mtree(ML) and Mtree(Bayes). The

Fig. 2 Schedule of temperature parameter β.

monophone structure had 129 leaf nodes. Since the an-
nealing process is sensitive to the temperature update func-
tion, there are many reports how to determine the anneal-
ing schedule [20], [21]. On the other hand, it is empirically
known that the exponential function works well without pre-
liminary examinations. Therefore, the exponential func-
tion (Eq. (29)) was used in this experiment. The number of
temperature parameter updates was set to 20 (I = 20), and
EM-steps were iterated 10 times at each temperature. The
temperature parameter β was updated by

β(i) =

(
i
I

)n

, i = 0, . . . , I, (29)

where i denotes the number of iterations of temperature up-
dates, and n was varied to n = 2α, (α = −3, . . . , 3). Because
the EM-steps in DAEM were iterated a total of 200 times,
the EM-steps in Flat-start and Label200 were iterated 200
times. Since it is difficult to estimate the accurate poste-
rior probabilities of the model structures in Mtree(ML), we
heuristically assumed that QML(m) would be updated by the
following linear functions:

QML(Monophone) = 0.5
(
1 − i

I

)
, (30)

QML(MDL) = 0.5
(
1 +

i
I

)
. (31)

Figures 2 and 3 show plots of the schedules of the tempera-
ture parameter β and the update schedules of QML(m). Note
that the proposed method does not require pre-determined
posterior probabilities of the model structures such as
Eqs. (30) and (31). Note that Mtree(Bayes) does not require
pre-determined posterior probabilities of the model struc-
tures.

4.2 Experimental Results

4.2.1 Single Mixture Experiment

Figure 4 summarized the upper bounds of the log marginal
likelihood F̄β for the training data. The temperature up-
date schedules were adjusted to obtain the highest marginal
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Fig. 3 Schedule of update QML(m).

Fig. 4 Upper bound of log marginal likelihood F̄β.

likelihood (α = 0). The table indicates that the marginal
likelihood of Flat-start was lowest for the Bayesian meth-
ods. This is because HMMs were initialized by inappropri-
ate initial posterior distributions using no phoneme bound-
aries. Although DAEM also used no phoneme boundaries,
the marginal likelihood of DAEM was improved from that
of Flat-start. This indicates the DAEM algorithm effec-
tively solved the local maxima problem. Mtree obtained
the highest marginal likelihood of the Bayesian methods.
Moreover, Mtree could achieve a higher marginal likeli-
hood than the methods using label information (Label10
and Label200). This demonstrates that the method using
multiple model structures could estimate more reliable pos-
terior distributions than the conventional Bayesian methods.

Figure 5 shows the phoneme accuracy for each method.
The temperature schedules were adjusted to obtain the best
phoneme accuracy (DAEM(ML): α = 0, Mtree(ML):
α = 1, DAEM(Bayes): α = 0, Mtree(Bayes): α =
0). Comparing the ML-based methods with the Bayesian
methods, all Bayesian methods were more accurate than
those that were ML-based. This confirmed the effec-
tiveness of the Bayesian approach for speech recognition.
Similar to the comparison of marginal likelihoods, Mtree
achieved the highest accuracy of methods using no phoneme
boundaries (Flat-start, DAEM and Mtree) in both crite-
ria. Moreover, the improvement for Mtree was higher
than that for DAEM by comparing the improvements from

Fig. 5 Phoneme accuracy.

Fig. 6 Posterior distributions of model structures.

the ML criterion to the Bayesian criterion between DAEM
and Mtree methods. This means that consistently opti-
mizing the model parameters and model structures based
on the Bayesian criterion effectively improved recogni-
tion. While Mtree(Bayes) yielded higher accuracy than La-
bel10(Bayes), Mtree(Bayes) could not achieve the accuracy
of Label200(Bayes). Since Label200 obtained higher accu-
racy than Label10 in both criteria, Mtree(Bayes) might be
able to obtain higher accuracy when we adjust the number
of iterations or the schedule for temperature updates.

The posterior probabilities of the model structures in
Mtree(ML) were in proportion to the likelihoods obtained
by the ML estimates in all model structures. Since a larger
model structure obtained a higher likelihood in the ML crite-
rion, the largest model structure was always selected. How-
ever, this was inappropriate in most cases due to the over-
fitting problem. A heuristic approach to control the poste-
rior probabilities of model structures is required to avoid this
problem. However, when the number of model structures in-
creases, it is difficult to use such heuristics to obtain an ap-
propriate posterior distribution. In contrast, Mtree(Bayes)
could automatically estimate accurate posterior distributions
of model structures. Figure 6 plots the posterior distribution
of model structures with all temperature schedules during
the training process. It can be seen that the posterior prob-
ability of the larger model structure (CV-Bayes) gradually
increased begin dependent on the temperature parameter to
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estimate the posterior distributions of the model parameters
and state sequences in the early stages. Since the poste-
rior distribution of the model structures was automatically
estimated based on the Bayesian criterion, we could easily
increase the number of model structures without heuristics,
and we intend to investigate the effectiveness of using more
than two model structures in future work.

5. Conclusions

This paper proposed a Bayesian framework using multiple
model structures for speech recognition. For integrating the
multiple model structures, the proposed method treated not
only the state sequences and the model parameters but also
the model structures as latent variables. Furthermore, for es-
timating the appropriate acoustic models, the DAEM algo-
rithm was applied to the proposed framework. The speech
recognition experiment showed the optimal posterior distri-
butions of the model structures can be estimated automati-
cally and a higher performance can be obtained.

As future work, we will investigate the effect of in-
creasing the number of model structures and consider the
optimization of the annealing schedules. We will also per-
form the word recognition experiments and using Gaussian
mixture models.
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Appendix: The concrete forms of the posterior distri-
butions and the normalization terms

A.1 The Concrete Form of Q̃

Q̃(π) = Cπ exp
{ N∑

i=1

〈
Zi

1

〉
log πi

}
(A· 1)

Q̃(Λ(a)) = Q̃(αi)

= Cαi P
β(αi) exp

{ N∑
j=1

T−1∑
t=1

〈
Zi

tZ
j
t+1

〉
logαβi j

}
(A· 2)

Q̃(Λ(b)
m | m) = Q̃(μim,Sim) =

Cμim,Sim Pβ(μim,Sim) exp
{ T∑

t=1

〈
Zi

t

〉
logNβ(ot | μim,S

−1
im )

}

(A· 3)
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Q̃(Z) = CZ

N∏
i=1

exp
{
zi

1
〈
log πi

〉
Q̃(π)

〉}

×
T−1∏
t=1

N∏
i=1

N∏
j=1

exp
{
zi

tz
j
t+1

〈
log ai j

〉
Q̃(ai)

}

×
T∏

t=1

N∏
i=1

exp
{
zi

t
〈
logN(ot | μim,S

−1
im )

〉
Q̃(μim,S

−1
im )

}

(A· 4)

Q̃(m) = CmPβ(m)

× exp
{∑

Z

∫
Q̃(Z)Q̃(Λ(b)

m | m)

× log Pβ(O | Z,m,Λ(b)
m )dΛ(b)

m

+

∫
Q̃(Λ(b)

m | m) log Pβ(Λ(b)
m | m)dΛ(b)

m

−
∫

Q̃(Λ(b)
m | m) log Q̃(Λ(b)

m | m)dΛ(b)
m

}
. (A· 5)

∫
Q̃(Λ(b)

m | m) log Pβ(Λ(b)
m | m)dΛ(b)

m

=β
〈
logN(μim | νim, (ξimSim)−1)

〉
Q(μim,Sim)

+ β
〈
logW(Sim | ηim, Bim)

〉
Q(μim,Sim)

(A· 6)

〈
logN(μim | νim, (ξimSim)−1)

〉
Q(μim,Sim)

+
〈
logW(Sim | ηim, Bim)

〉
Q(μim,Sim)

=
d
2

log |ξim| −
d2 + d

2
log 2 − d2 + d

4
log π

+
ηim − d

2
log |B̄im|

+
ηim

2
log |Bim| −

d∑
j=1

log Γ

(
ηim + 1 − j

2

)

− 1
2

Tr
(
η̄imB̄−1

im ξim(ν̄im − νim)(ν̄im − νim)T + ξimξ̄
−1
im I

)

+
1
2

(ηim−d)
d∑

j=1

Ψ

(
η̄im + 1 − j

2

)
− 1

2
Tr

(
Bimη̄imB̄−1

im

)

(A· 7)

∫
Q̃(Λ(b)

m | m) log Q̃(Λ(b)
m | m)dΛ(b)

m

=
〈
logN(μim | ν̄im, (ξ̄imSim)−1)

〉
Q(μim,Sim)

+
〈
logW(Sim | η̄im, B̄im)

〉
Q(μim,Sim)

(A· 8)

〈
logN(μim | ν̄im, (ξ̄imSim)−1)

〉
Q(μim,Sim)

+
〈
logW(Sim | η̄im, B̄im)

〉
Q(μim,Sim)

=
d
2

log |ξ̄im|−
d2 + d

2
log 2− d2 + d

4
log π+

d
2

log |B̄im|

−
d∑

j=1

logΓ

(
η̄im + 1 − j

2

)

+
1
2

(η̄im − d)
d∑

j=1

Ψ

(
η̄im + 1 − j

2

)

− 1
2
− 1

2
Tr

(
η̄imI

)
(A· 9)

A.2 Prior Distribution

In the Bayesian approach, a conjugate prior distribution is
widely used as a prior distribu- tion. Prior distributions are
respectively represented as follows.

P(π) = D({πi}Ni=1 | {φi}Ni=1), (A· 10)

P(αi) = D({ai j}Nj=1 | {αi j}Nj=1), (A· 11)

P(μim,Sim) = N(μim | νi(ξiSim)−1)W(Sim | ηi, Bi),
(A· 12)

P(m) =
1
m

(A· 13)

where D()̇ is a Dirichlet distribution, and N()̇W()̇ is a
Gauss-Wishart distribution. {φi, αi j, ξi, ηi, νi, Bi}Ni, j=1 is a set
of hyper-parameters.

A.3 Update of Posterior Distribution

The posterior distribution of model parameters Q̃(Λ) can be
updated by sufficient statis- tics of the training data as fol-
lows.

φ̄i = φi +
〈
Zi

1

〉
(A· 14)

ᾱi j = αi j + T̄i j (A· 15)

ξ̄im = ξim + T̄i (A· 16)

η̄im = ηim + T̄i (A· 17)

ν̄im =
T̄iōi + ξimνim

T̄i + ξim
(A· 18)

B̄im= T̄iC̄i+Bim+
T̄iξim

T̄i+ξim
(ōi−νim)(ōi−νim)T , (A· 19)

where the sufficient statistics T̄i, T̄i j, ōi and C̄i are repre-
sented as follows:

T̄i =

T∑
t=1

〈
Zi

t

〉
(A· 20)

T̄i j =

T−1∑
t=1

〈
Zi

tZ
j
t+1

〉
(A· 21)

ōi =
1

T̄i

T∑
t=1

〈
Zi

t

〉
ot (A· 22)

C̄i =
1

T̄i

T∑
t=1

〈
Zi

t

〉
(ot − ōi)(ot − ōi)

T (A· 23)
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A.4 Normalization Terms

CΛ = Cπ
N∏

i=1

Cai

N∏
i=1

Cμim,Sim (A· 24)

Cπ =
C̄Dπ
CDπ
, C̄Dπ =

Γβ(
∑N

i=1 φ̄i)∏N
i=1 Γ

β(φ̄i)
(A· 25)

Cαi =
C̄Di

CDi

, C̄Di =
Γβ(

∑N
j=1 ᾱi j)∏N

j=1 Γ
β(ᾱi j)

(A· 26)

Cμi,S i =
C̄NC̄Wi

CNCWi

(2π)
βN̄D

2 (A· 27)

CNi = (2π)−
βD
2 ξ

βD
2

im (A· 28)

CWi =
|Bim|

ηim
2

2
βηim D

2 π
βD(D−1)

4
∏D

j=1 Γ
β( ηim+1− j

2 )
(A· 29)

The normalization term Cm can be defined by using∑
m Q̃(m) = 1,

Cm =
1∑

m Q̃(m)
(A· 30)
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