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Abstract: Zeolite-geopolymer hybrid materials have been formed when kaolin was used  

as a starting material. Their characteristics are of interest because they can have a wide 

pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, 

respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using 

four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays 

were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate 

phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different 

amounts and types of zeolite and different compressive strength. This study investigated 

the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant 

geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their 

metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 
29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation 

between the amount of zeolite formed and the compressive strength of the resultant hybrid 

bulk materials, previously reported by other researchers was not positively observed. In the 

studied systems, the effects of Si/Al and crystalline size were observed. When the atomic 

ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the 

hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk 

materials increased with decreasing compressive strength of the hybrid bulk materials. 
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1. Introduction 

When kaolinitic clays are heated at approximately 700 °C, metakaolin with an amorphous phase is 

obtained. The metakaolin is often activated by mixing with alkali hydroxide solution and water-glass, 

as a result of which a polycondensation reaction occurs, leading to the formation of cementitious 

material with high mechanical strength and high durability. This consolidated material is commonly 

known as a geopolymer [1]. Metakaolins derived from kaolinitic clays with different particle size, 

purity and crystallinity yield geopolymers with different properties [2]. Thus, it is important to take 

these factors into account when fabricating geopolymers using metakaolin as a starting material. 

Zeolite is sometimes found in geopolymers, especially when the curing temperature is above  

85 °C [2–4]. The amount of zeolite increases with curing time [4,5]. The fabrication of  

zeolite-geopolymer hybrid bulk materials has already been achieved, and their characteristics are of 

particular interest. Since zeolites have high microporosity and geopolymers have mesopores [6], 

zeolite-geopolymer hybrid bulk materials can have a wide pore size distribution. As such,  

zeolite-geopolymer hybrid materials with arbitrary properties can be used, for example, as building 

materials having the excellent property of humidity control. 

In this study, zeolite-geopolymer hybrid materials were fabricated using four kinds of kaolintinc 

clays (a halloysite and three kinds of kaolin). The crystalline phase of kaolintic clays and the 29Si and 
27Al MAS NMR and specific surface area of matakaolin were investigated. The amounts and species 

of zeolite, compressive strength and pore distribution of the resultant zeolite-geopolymer hybrid bulk 

were investigated. Furthermore, it was discussed, which property of the kaolin or metakaolin affects 

the generation of zeolite and the compressive strength of the resultant hybrid materials. 

2. Experimental 

2.1. Materials Treatment 

Four kinds of kaolinitic clays, viz. a halloysite (K0) and three kinds of kaolinite (K1, K2, and K3), 

were used. The chemical compositions and Si/Al atomic ratios of these kaolinitic clays are tabulated in 

Table 1. These kaolinitic clays were calcined at 700 °C for 3 h to transform the metakaolin  

into amorphous aluminosilicate phases [7]. The metakaolins derived from K0, K1, K2, and K3  

will hereinafter be denoted by MK0, MK1, MK2, and MK3, respectively. The formulation of  

zeolite-geopolymer hybrid bulk materials are shown in Table 2. The samples were fabricated from a 

slurry mixture composed of one of four kinds of metakaolin (MK0, MK1, MK2, and MK3), ground to 

a mean particle size of about 10 μm, a sodium silicate solution (SiO2: 37%; Na2O: 17.5%; Kishida 

Chemical Industries, Ltd., Fukuoka, Japan), sodium hydroxide (99%; Kishida Chemical Industries, 

Ltd., Fukuoka, Japan) and distilled water. Commercial X-type zeolite (Zeorum F9: TOSO Co. 

Ltd.,Tokyo, Japan) was also prepared. The bulk bodies derived from MK0, MK1, MK2, MK3, and 

MK3 with commercial X-type zeolite will be denoted by BK0, BK1, BK2, BK3, and BK3Z, 

respectively. The starting slurry mixture was cast into a cylindrical acrylic mold (Φ15 mm × 30 mm 

high) with one side closed and maintained at 80 C and 50% relative humidity for 72 h inside a 

temperature-humidity control (THC) chamber. 
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Table 1. Chemical compositions of the kaolinitic clays used (mass%). 

Sample SiO2 Al2O3 Fe2O3 TiO2 CaO MgO K2O Na2O Ignition loss Si/Al (mol)

K0 48.12 36.33 0.33 0.16 0.04 - 0.03 0.05 14.80 1.17 
K1 42.66 40.92 1.12 0.45 0.14 0.04 0.09 0.14 14.13 0.92 
K2 40.86 39.87 0.39 0.46 0.12 0.12 0.17 0.01 17.91 0.91 
K3 49.35 36.03 0.20 0.02 0.02 0.02 2.29 0.04 11.94 1.21 

Table 2. The starting mixing ratios of the bulk materials (mass%). 

Sample MK0 MK1 MK2 MK3
Commercial 

X-type zeolite
Sodium silicate 

solution 
NaOH 

Distilled 
water 

BK0 100 - - - - 60 27 60 
BK1 - 100 - - - 60 27 60 
BK2 -  100 - - 60 27 60 
BK3 - - - 100 - 60 27 60 

BK3Z - - - 70 30 60 27 60 

2.2. Analysis 

The micromorphology of the samples was examined using a scanning electron microscope (SEM: 

JSM-6360LVS; JEOL Co., Ltd., Tokyo, Japan). The crystalline phases of the initial kaolinitic clays 

and the final bulk products were determined by powder X-ray diffraction analysis (XRD: XD-D1; 

Shimazu Co., Ltd., Tokyo, Japan). Quantitative analysis of the NaP- or NaX-type zeolite in the final bulk 

products was performed on the basis of master curves obtained by high-precision XRD analysis using a 

NaP-type zeolite derived from an NaA-type zeolite (Zeorum A-4: TOSO Co. Ltd.,Tokyp, Japan) [8] and 

NaX-type zeolite (Zeorum F-9: TOSO Co. Ltd.,Tokyo, Japan). Quantitative analysis was performed 

using an internal standard method. The crystallite sizes of the zeolites were calculated using Scherrer’s 

equation. The specific surface area of each metakaolin and final bulk materials measured by the N2 

adsorption method using a FlowSorb III (Micromeritics Instrument Corp., Norcross, GA, USA).  

Solid-state 27Al and 29Si MAS NMR spectra of metakaolin and final bulk materials were obtained 

using a UNITY Inova 400 plus (Varian Co., Ltd., Palo Alto, CA, USA) spectrophotometer. 27Al and 

29Si NMR magic angle spinning (MAS) spectra were obtained by operating at 104.2 MHz and  

79.6 MHz, respectively. The chemical shifts were calibrated with respect to the zero reference of 

AlCl3•6H2O for 27Al and of tetramethylsilane (TMS) for 29Si. The compressive strength of the samples 

was measured using an INSTRON5582 (INSTRON Co., Ltd., Norwood, MA, USA). The crosshead 

speed used was 10 mm/min. Three to five test pieces were prepared for each condition. The pore 

volume and pore size distribution of the samples were evaluated using N2 sorption isotherm analysis 

(Model: Autosorb-1, Quantachrom Instrument, Boynton Beach, FL, USA). In particular, the porosity 

of the bulk samples were characterized by the BJH [9] method. Table 3 shows the analysis conducted 

for different materials. 
  



Materials 2013, 6 1770 

 

 

Table 3. Analysis conducted for different materials. 

Sample SEM XRD Specific surface area Compressive strength Pore size distribution

Kaolintic clays ■ ■ □ □ □ 
Metakaolin □ □ ■ □ □ 

Bulk materials ■ ■ ■ ■ ■ 

3. Results and Discussion 

3.1. Characterization of Initial Kaolinitic Clays and Their Metakaolins 

Figure 1 shows the micromorphology of the initial kaolinitic clays K0, K1, K2, and K3. K0 showed 

pillar-like particles, whereas K1, K2, and K3 showed plate-like particles. The X-ray diffraction 

patterns of the initial kaolinitic clays, shown in Figure 2, revealed that halloysite had low crystallinity, 

and the kaolinitic clays had varying degrees of crystallinity depending on the composition. K2 had a 

higher-crystallinity kaolinite compared to the other clays. Cristobalite and quartz were observed in K0 

as additional crystalline phases, whereas quartz was the only additional crystalline phase in K2. K3 

contained a sericite and quartz in addition to kaolinite. 

Figure 1. SEM micrographs of the initial kaolinitic clays: (a) K0; (b) K1; (c) K2; and (d) K3. 
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Figure 2. X-ray diffraction patterns of the initial kaolinitic clays K0, K1, K2, and K3. 

 

Figure 3 showed the 29Si and 27Al NMR spectra. In the 29Si NMR spectra of MK0, MK1, MK2, and 

MK3, approximately –100 ppm peaks were detected for all samples. These peaks, often observed in 

metakaolins, were assigned to the three-fold coordination: Q3 [10]. With increasing number of A1 

combine with the peak should shift to higher values i.e., to left in Figure 3 [11]. Thus, Si in MK3 

seemed to be combining with more Al atoms than that in MK1. In the 27Al NMR spectra, the 0, 25–30, 

and 50–60 ppm peaks are assigned to six- [Al(VI)], five- [Al(V)], and four-fold coordination [A1(IV)] 

states, respectively [12,13]. The 27Al NMR spectra of MK0 showed a broad peak from –50 to 50 ppm, 

suggesting that MK0 contained Al(VI), Al(V), and A1(IV) states. The 27Al NMR spectra of MK1 

exhibited a 50 ppm peak indicating that MK1 contained mostly A1(IV). The 27Al NMR spectra of 

MK2 and MK3 showed a 0 ppm peak attributable to the A1(VI) state. Thus, MK2 and MK3 contained 

more A1(VI) states than did MK1. The specific surface areas of MK0, MK1, MK2, and MK3 were 

23.2, 5.3, 15.6, and 12.5 m2·g−1, respectively. 

Figure 3. (a) 29Si; and (b) 27Al NMR spectra of the metakaolins MK0, MK1, MK2,  

and MK3. 
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3.2. Formation of Zeolite and Geopolymer in Bulk Materials 

Figure 4 shows the X-ray diffraction patterns of the bulk materials obtained after alkali activation 

treatment (BK0, BK1, BK2, BK3, and BK3Z). X-type zeolite was detected in the kaolinite-derived 

BK1, BK2, BK3, and BK3Z, showing that X-type zeolite can be produced from kaolinite. In contrast, 

P-type zeolite was detected in BK0, indicating that P-type zeolite can easily be formed from halloysite. 

Generation of different type of zeolite could occur from the difference in crystal structure between 

halloysite and kaolinite. 

Figure 4. X-ray diffraction patterns of the final bulk materials (BK0, BK1, BK2, BK3,  

and BK3Z). 
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Figure 5. Amount of zeolite in the final bulk products. 

 

Figure 6 shows the relationship between the specific surface area of metakaolin and the amount of 

zeolite in the final bulk body. The amount of zeolite increased with increasing specific surface area. 

The higher the specific surface area was, the higher the solubilities of the Al and Si ions were, 

resulting in an increase in zeolite formation. 

Figure 6. Relationship between the specific surface area of metakaolin and the amount of 

zeolite in the final bulk materials. 
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Figure 3b, did not show obvious effects on the progress of geopolymerization and the Al-coordination in 

the products. 
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Figure 7. (a) 29Si; and (b) 27Al NMR spectra of the final bulk bodies BK0, BK1, BK2,  

and BK3. 

 

3.3. Strength and Microstructure of Materials  

The compressive strength values of BK0, BK1, BK2, BK3, and BK3Z were 8.9, 15.8, 9.9, 20.2, and 

16.6 MPa, respectively. Figure 8 shows the relationship between the amount of zeolite and the 

compressive strength of the bulk materials. It has been reported that increasing the amount of zeolite in 

the geopolymer reduces strength [3,5]. However, in the present study, this effect was not very clear for 

the compressive strength of the zeolite-geopolymer hybrid materials.  

Figure 8. Relationship between the compressive strength and the amount of zeolite in the 

final bulk materials. 
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Figure 9. Relationship between the compressive strength and the Si/Al atomic ratio in the 

initial kaolinitic clays. 

 

Figure 10 shows the relationship between the compressive strength and the crystallite size of the 
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Figure 10. Relationship between the compressive strength and the crystallite size of zeolite 

in the final bulk materials. 
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these particles were considered to be zeolite. In (e) BK3Z, these particles were less observable than in 

(d) BK3, and (f) the added commercial X-type zeolite was not observed. Thus, the added commercial 

X-type zeolites disappeared and new zeolite formed during the alkali-activation treatment. According 

to Figure 10, the compressive strength of the bulk materials decreased with increasing crystallite size 

of zeolite. As the zeolite crystals increased in size, it became easier to distinguish them as in the case 

of BK2 shown in Figure 11c. In contrast, smaller zeolite crystals coalesced, as in BK1 and BK3 

(Figure 11(b,d) respectively), resulting in an increase in compressive strength. 

Figure 11. SEM micrographs of final bulk bodies (a) BK0; (b) BK1; (c) BK2; (d) BK3; 

(e) BK3Z; and (f) commercial X-type zeolite. 

 

 

Figure 12 shows the pore distribution of BK0, BK1, BK2, BK3, and BK3Z. BK3Z did not have any 

micropores smaller than 2 nm. The commercial X- type zeolite contained some mesopores smaller than 

3 nm. The BK3Z results suggest that most of the commercial X-type zeolite, added into the starting 

slurry, decomposed because of the strong alkali solution used for the geopolimerisation. In contrast, 

BK2 had some nanoporosity due to the newly formed X-type zeolite. This X-type zeolite can absorb 

organic gas molecules or ionic elements in solution. Especially in BK2, many mesopores larger than 3 nm 

were detected, which may explain relatively lower compressive strength of the product. Tomura et al. 

reported that 3.2–7.4 nm pores can maintain the relative pressure of humidity between 40% and 70% 

which is the preferable range for the living environment for humans [19]. Therefore, BK2 is expected 

to be used as a humidity control material.  
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Figure 12. Pore size distribution of commercial X-type zeolite and final bulk bodies (BK0, 

BK1, BK2, BK3, and BK3Z). 

 

4. Conclusions 

The relationship between the properties of initial kaolinitic clays, their metakaolin, and the final 

zeolite-geopolymer hybrid bulk material products was investigated. The specific surface area of 

metakaolin increased the amount of zeolite in the final products. The amount of zeolite did not show a 

clear correlation with the compressive strength of the zeolite-geopolymer hybrid bulk materials as 

previously reported. The atomic ratio of Si/Al in the kaolinitic clays and the crystallite size of the  

X-type zeolites produced indicated a clear correlation with the compressive strength of the hybrid  

bulk materials. 
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