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Semiclassical trace formula for the two-dimensional radial power-law potentials
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The trace formula for the density of single-particle levels in the two-dimensional radial power-law potentials,
which nicely approximate up to a constant shift the radial dependence of the Woods-Saxon potential and its
quantum spectra in a bound region, was derived by the improved stationary phase method. The specific analytical
results are obtained for the powers α = 4 and 6. The enhancement of periodic-orbit contribution to the level density
near the bifurcations are found to be significant for the description of the fine shell structure. The semiclassical
trace formulas for the shell corrections to the level density and the energy of many-fermion systems reproduce the
quantum results with good accuracy through all the bifurcation (symmetry breaking) catastrophe points, where
the standard stationary-phase method breaks down. Various limits (including the harmonic oscillator and the
spherical billiard) are obtained from the same analytical trace formula.
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I. INTRODUCTION

According to the shell-correction method (SCM) [1,2], the
oscillating part of the total energy of a finite fermion system,
the so-called shell-correction energy δU , is associated with an
inhomogeneity of the single-particle energy level distributions
near the Fermi surface. Depending on the level density at
the Fermi energy, and thus the shell-correction energy δU ,
being a maximum or a minimum, the many-fermion system
is particularly unstable or stable, respectively. Therefore, the
stability of this system varies strongly with particle numbers
and parameters of the mean-field potential and external force.

A semiclassical periodic orbit theory (POT) of shell effects
[3–6] was used for a deeper understanding, based on classical
pictures, of the origin of nuclear shell structure and its relation
to a possible chaotic nature of the dynamics of nucleons. This
theory provides us with a nice tool for answering, sometimes
even analytically, the fundamental questions concerning the
exotic physical phenomena in many-fermion systems; for
instance, the origin of the double-humped fission barrier and,
in particular, of the creation of the isomer minimum in the
potential energy surface [7–11]. Some applications of the POT
to nuclear deformation energies were presented and discussed
for the infinitely deep potential wells with sharp edges in
relation to the bifurcations of periodic orbits (POs) with the
pronounced shell effects.

In the way to more realistic semiclassical calculations, it is
important to account for a diffuseness of the nuclear edge. It
is known that the central part of the realistic effective mean-
filed potential for nuclei or metallic clusters are described by
the Woods-Saxon (WS) potential VWS(r) [12]. The idea of
Refs. [13,14] is that the WS potential is nicely approximated
(up to a constant shift) by much a simpler power-law potential
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which is proportional to a power of the radial coordinate rα .
The approximate equality

VWS(r) ≈ VWS(0) + W0r
α (1.1)

holds up to around the Fermi energy with a suitable choice of
the parameters W0 and α. In the case of the spatial dimension
D = 2, one can use Eq. (1.1) for a realistic potential of
electrons in a circular quantum dot [10,11,15]. We shall derive
first the generic trace formula for this radial power-law (RPL)
potential in the case of two dimensions, and then discuss
its well known limits to the harmonic oscillator and cavity
(billiard) potentials [11]. The main focus will be aimed to
the nonlinear dynamics depending on the power parameter
α to show the symmetry-breaking (bifurcation) phenomena.
They lead to the remarkable enhancement of PO amplitudes
of the level density and energy shell corrections which was
found within the improved stationary phase approximation
(improved SPM, or simply ISPM) [9,10,16,17]. The ISPM
means more exact evaluation of the trace formula integrals
with the finite limits over a classically accessible phase-space
volume and with higher-order (if necessary) expansions of
the action phase of the exponent and pre-exponent factors
up to the first nonzero terms with respect to the standard
SPM (SSPM) [3–6]. In this way, one may remove the SSPM
discontinuities and divergences.

The manuscript is organized as follows. In Sec. II the
classical dynamics is specified for the RPL potentials. The
trace formulas for the RPL potentials in two dimensions are
derived in Sec. III. Section IV is devoted to the comparison
of the semiclassical calculations for the oscillating level
density and shell-correction energy with quantum results. The
paper is summarized in Sec. V. Some details of our POT
calculations, in particular full analytical derivations at the
powers α = 4 (see also Ref. [18]) and 6 for all POs and those

062916-11539-3755/2013/87(6)/062916(17) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.062916


A. G. MAGNER, A. A. VLASENKO, AND K. ARITA PHYSICAL REVIEW E 87, 062916 (2013)

at arbitrary α for the diameter and circle orbits, are given in the
Appendixes A–E.

II. CLASSICAL DYNAMICS AND BIFURCATIONS

The radial power-law (RPL) potential model is described
by the Hamiltonian

H = p2

2m
+ E0

(
r

R0

)α

, (2.1)

where m is the mass of the particle; R0 and E0 are introduced
as constants having the dimension of length and energy,
respectively, and are related with W0 in Eq. (1.1) by W0 =
E0/R

α
0 . (In practice, we fix E0 and adjust the WS potential by

varying R0 and α.) This Hamiltonian includes the limits of the
harmonic oscillator (α = 2) and the cavity (α → ∞); realistic
nuclear potentials with steep but smooth surfaces correspond to
values in the range 2 < α < ∞. The advantage of this potential
is that it is a homogeneous function of the coordinates, so that
the classical equations of motion are invariant under the scale
transformations:

r → s1/αr, p → s1/2p, t → s1/α−1/2t with E → sE.

(2.2)

Therefore, one only has to solve the classical dynamics once
at a fixed energy, e.g., E = E0 (s = 1); the results for all other
energies E are then simply given by the scale transformations
(2.2) with s = E/E0 by definition in the last equation of
Eq. (2.2). This highly simplifies the POT analysis [13,19].
Note that the definition (2.1) can also be generalized to include
deformations (see, e.g., Ref. [14,19]).

As we consider the spherical RPL Hamiltonian (2.1), it can
be written explicitly in the two-dimensional (2D) spherical
canonical phase-space variables {r,ϕ; pr,pϕ}, where ϕ is the
azimuthal angle (a cyclic variable), pϕ = L is the angular
momentum, and the radial momentum pr is given by

pr (r,L) =
√

p2(r) − L2

r2
,

(2.3)

p(r) =
√

2m

[
E − E0

(
r

R0

)α]
.

The classical trajectory (CT) r(t) can be easily found by
integrating the radial equation of motion ṙ = pr/m with
Eq. (2.3). Transforming the spherical canonical variables into
the action-angle ones, for the actions Ir ,Iϕ one has

Ir = 1

π

∫ rmax

rmin

pr dr ≡ Ir (E,L), (2.4)

Iϕ = 1

2π

∫ 2π

0
pϕ dϕ ≡ L, (2.5)

where rmin and rmax are the turning points which are the two
real (positive) solutions of the equation p2

r (r,L) = 0.
The definition (2.1) can be used in arbitrary spatial

dimensions, as long as r is the corresponding radial variable.
In practice, we are interested only in the 2D and 3D cases.
The spherical 3D and the circular 2D potential models have
common PO sets; see Fig. 1. For α > 2, POs with the highest
degeneracy [K = 1 (3) in the 2D (3D) cases] are specified
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FIG. 1. Scaled periods τPO of some short POs as functions of
the power parameter α in dimensionless units m = R0 = E0 = 1
(Appendix B). Thin solid curves are the circle orbits MC, dashed
curves are the diameters M(2,1), and thick solid curves are the
polygon-like orbits M(nr,nϕ) (nr > 2nϕ); their bifurcations from the
MC are indicated by open circles.

by three integers and labeled as M(nr,nϕ), where nr and
nϕ are mutually commensurable numbers of oscillations in
the radial direction, and of rotations around the origin, each
for a primitive orbit, respectively; and M is the repetition
number. For the isotropic harmonic oscillator (α = 2), all the
classical orbits are periodic ones with (degenerate) ellipse
shapes. By slightly varying α away from 2, the specific
diameter and circle orbits appear separately, and they remain as
the shortest POs with the corresponding degeneracies K = 1
and 0. With increasing α, the circle orbit and its repetitions
cause successive bifurcations generating various new periodic
orbits {nr,nϕ}, nr > 2nϕ . Figure 1 shows some of the shortest
POs M(nr,nϕ). The shortest PO is the diameter which has
the degeneracy K = 1 in the 2D problem at α > 2. Other
polygon-like orbits have K = 1 at α > αbif , where αbif is a
bifurcation value (see its specific expression below). The circle
orbit having maximum angular momentum is isolated (K = 0)
for the 2D system (except for the bifurcation points).

For the frequencies of the radial and angular motion of
particle, one finds

ωr = ∂H

∂Ir

=
(

∂Ir

∂E

)−1

L

, ωϕ = ∂H

∂L
= − (∂Ir/∂L)E

(∂Ir/∂E)L
, (2.6)

where Ir = Ir (E,L) [Eq. (2.4)] is identical to the energy
surface H (Ir ,L) = E. Thus, the PO condition is written as

f (L) ≡ ωϕ

ωr

= nϕ

nr

, (2.7)

where

f (L) = −
[
∂Ir (E,L)

∂L

]
E

= L

π

∫ rmax

rmin

dr

r2pr (r,L)
. (2.8)

The energy surface Ir = Ir (E,L) is simply considered as a
function of only one variable L [Eq. (2.4)]. The solutions
to the PO equation [see Eq. (2.7)], L∗ = L∗(nr,nϕ), for the
given co-primitive integers nϕ and nr define the one-parametric
families K = 1 of orbits M(nr,nϕ) because L is the single-
valued integral of motion, which is only one (besides the
energy E) in the 2D case [4,7]. The azimuthal angle ϕ can
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be taken, for instance, as a parameter of the orbit of such a
family.

According to the limit f (L) → 1/2 at L → 0, one has the
diameter orbits M(2,1) as the specific one-parametric (K = 1)
families related to the solution L = 0 of Eq. (2.7). The other
specific solutions are the isolated (K = 0) circle orbits MC

by which we represent the M-th repetition of the primitive
circle orbit C. The radius r

C
of the circle orbit is determined

by the system of equations rmin = rmax ≡ r
C
, or equivalently

by Eqs. (A1) (see Appendix A). Thus the angular momentum
of the circle orbit is given by LC = r

C
p(r

C
). As seen obviously

from the condition of the real radial momentum pr [Eq. (2.3)],
this LC is the maximal value of the angular momentum L, i.e.,
0 � |L| � LC .

As shown in Appendix A, for the stability factor FMC of the
circle orbit MC in the radial direction, defined in Refs. [3,11]
through the trace of the PO stability matrix, Tr(MMC), one
obtains

FMC = 2 − Tr(MC)M = 4 sin2

[
πM	C

ω
C

]
= 4 sin2[πM

√
2 + α], (2.9)

where 	C [Eq. (A8)] and ω
C

[Eq. (A3)] are the radial and
angular frequencies of the circle orbit. This factor FMC is zero
at the bifurcation points αbif by the definition of the stability
matrix, Tr(MC)M = 2, for the POs (	C/ω

C
≡ √

2 + α =
nr/nϕ),

αbif = n2
r

n2
ϕ

− 2. (2.10)

The PO family M(nr,nϕ), which corresponds to the solutions
L∗ < LC of the PO equation (2.7), exists for all α > αbif . There
is the specific bifurcation point α = 2 in the spherical harmonic
oscillator (HO) limit with the frequency ωϕ =

√
2E0/(mR2

0),
where one has the two-parametric families at any L within
a continuum 0 � L � E/ωϕ . In the HO limit, the above
specified circle and diameter orbits belong to these families.
In the circular billiard limit α → ∞, the isolated circle orbit
(K = 0) is degenerating into the billiard boundary r

C
→ R0,

LC → √
2mE R0 [see the limit α → ∞ in Eq. (A2) for r

C
].

Another key quantity in the POT is the curvature K of the
energy surface Ir = Ir (E,L) given by

K = ∂2Ir (E,L)

∂L2
= −∂f (L)

∂L
, (2.11)

where f (L) is the ratio of frequencies [Eq. (2.8)]. As shown
below, the curvature (2.11) and Gutzwiller factor (2.9) are the
key quantities for calculations of the magnitude of the PO
contributions into the semiclassical level density.

III. TRACE FORMULAS

The level density g(E) for the Hamiltonian H (r,p) can
be obtained by using the phase-space trace formula (in D

dimensions) [9,16,17,20]:

gscl(E) = 1

(2πh̄)D
Re

∑
CT

∫
dr′

∫
dp′′ δ[E − H (r′′,p′′)]

× |JCT(p′
⊥,p′′

⊥)|1/2 exp

(
i

h̄

CT − i

π

2
μCT

)
.

(3.1)

The sum is taken over all discrete CT manifolds for a particle
moving between the initial r′,p′; and the final r′′,p′′ points with
a given energy E. Any CT can be uniquely specified by fixing,
for instance, the initial condition r′, and the final momentum
p′′ for a given time tCT of the motion along the CT. For the
action phase 
CT in exponent of (3.1), one has


CT ≡ SCT(p′,p′′,tCT ) + (p′′ − p′) · r′

= SCT(r′,r′′,E) − p′′ · (r′′ − r′), (3.2)

where SCT(p′,p′′,tCT ) = − ∫ p′′

p′ dp · r(p) and SCT(r′,r′′,E) =∫ r′′

r′ dr · p(r) are the actions in the momentum and coordinate
representations, respectively. In Eq. (3.1), JCT(p′

⊥,p′′
⊥) is the

Jacobian for the transformation of the initial momentum p′
⊥

to the final one p′′
⊥ in the direction perpendicular to CT. μCT is

the Maslov phase related to the number of conjugate (turning
and caustics) points along the CT [21,22].

One of the terms in Eq. (3.1) is related to the local short zero-
action CT which is the well known Thomas-Fermi (TF) level
density [10,17]. For calculations of the other oscillating terms
of the trace integral (3.1), one may use the ISPM, expanding
the action phase 
CT and pre-exponent factor in both p′′ and r′
variables up to the first nonzero terms with the finite integration
limits over the classically accessible phase-space region
[10,17]. The stationary phase conditions are equivalent to the
periodic-orbit equations, and therefore, the oscillating level
density can be presented as the sum over POs in a potential
well [10,11].

A. One-parametric orbit families (K = 1)

In order to obtain the contribution of the one-parametric
families of the maximal degeneracy K = 1 into the phase-
space trace formula (3.1), it is useful to transform the usual
Cartesian phase-space variables {p; r} to the other canonical
action-angle ones {I; �}, specified in the spherical action-
angle variables as � = {�r,�ϕ ≡ ϕ}; I = {Ir ,Iϕ ≡ L}. The
Hamiltonian H , action phase 
CT, and other related quantities
of the integrand in Eq. (3.1) [e.g. H = H (I) = H (Ir ,Iϕ) ≡
H (Ir ,L)] are independent of the angle variables �. Therefore,
one can easily perform the integration over these angle
variables �, which gives the factor (2π )2. Then, taking the
integral over Ir exactly by using the energy conserving δ

function, for the oscillating terms of the CT sum (3.1), one
obtains

δgscl(E) = 1

2h̄2 Re
∑

M,nr ,nϕ

∫
dL

1

ωr

× exp

{
2πi

h̄
M[nr Ir (E,L) + nϕL] − iπ

2
μ

M,nr ,nϕ

}
.

(3.3)
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Here the phase (3.2) is expressed in terms of the corresponding
action-angle variables through the actions in the considered
mixed representation,


CT = 2πM[nr Ir (E,L) + nϕ L], (3.4)

nr and nϕ are positive co-primitive integers, M is a nonzero
integer, ωr is the radial frequency in Eq. (2.6). We also
omit the upper indexes in I (or {Ir ,L}) variables which
represent initial (prime) and final (double primes) values of
Eq. (3.1), taking explicitly into account that these variables are
constants of motion for the spherical integrable Hamiltonian.
The integration limits in Eq. (3.3) for L are −LC � L � LC ,
where LC is the maximum value corresponding to the circle
orbit. All quantities in the integrand are taken at the energy
surface Ir = Ir (E,L) [Eq. (2.4)]. Thus, Eq. (3.3) is similar
to the oscillating component of the semiclassical Poisson
summation trace formula which can be obtained directly by
using the EBK quantization rules [5,11] for the spherically
symmetric Hamiltonian. Note that, before taking the trace
integral over the angular momentum L by the SPM in Eq. (3.3),
one can formally consider positive and negative M , as those
related to the two opposite directions of motion along a CT
(with different signs of the angular momentum). They give, of
course, equivalent contributions into the trace formula, due to
a time-reversal symmetry of the Hamiltonian, and therefore,
one can write simply the additional factor 2 in Eq. (3.3) but
with a further summation over only positive integers M . It is in
contrast to the standard Poisson summation trace formula [11]
(except for its TF component) because there is no zero values
of the integers in Eq. (3.3), nϕ/nr > 0. The essential point
in the derivations of Eq. (3.3) from Eq. (3.1) is that the
generating function 
CT [Eq. (3.4)] is independent of the angle
variables for families of the maximal degeneracy K = 1 in
the integrable Hamiltonian. Notice that in these derivations,
the SPM conditions were satisfied simultaneously within the
continuum of the stationary points 0 � ϕ, �r � 2π , which
form CTs, but they are not yet POs generally speaking for
arbitrary angular momentum L. (Exceptions are the cases of
the complete degeneracy as the spherical HO; see below.) The
integration range in Eq. (3.3) taken from the minimum, L− =
0, to the maximum, L+, value (for anticlockwise motion, for
instance) covers the contributions of a whole manifold of
closed and unclosed CTs of the tori in the phase space at
the energy surface around the stationary point, L = L∗, which
corresponds to the PO [17]. We shall specify the integration
limits L+ for the contribution of the (K = 1) diameter families
M(nr = 2,nϕ = 1) into Eq. (3.3) in Appendix D.

Then we apply the stationary phase condition with respect
to the variable L for the exponent phase 
CT [Eq. (3.4)] in the
integrand of Eq. (3.3),

(∂
CT/∂L)∗ = 0, (3.5)

which is equivalent to the resonance condition (2.7). This
condition determines the stationary phase point, L = L∗ =
LPO, related to the families of the POs M(nr,nϕ). All these
roots of equation (2.7) for K = 1 families M(nr,nϕ) are
in between the minimum value L = L∗ = 0 for diameters,
and a maximum one L = LC , 0 � LPO � LC (anticlockwise
motion, for example). Expanding now the exponent phase

CT [Eq. (3.4)] in the variable L up to the second order, and

assuming that there is no singularities in the curvature (2.11)
for the contribution of all K = 1 families, one has


CT = SPO(E) + 1
2J

(L)
PO (L − L∗)2 + · · · , (3.6)

where SPO(E) is the action along one of the isolated PO
families determined by Eq. (2.7),

SPO(E) = 2πM[nr Ir (E,L∗) + nϕ L∗]. (3.7)

In this equation, M is the number of repetitions of the primitive
(M = 1) orbit, Ir (E,L) is the energy surface [Eq. (2.4)], L =
L∗(nr,nϕ) is the solution of the PO equations (2.7) or (3.5).
The Jacobian J

(L)
PO in Eq. (3.6) measures the stability of the PO

with respect to the variation of the angular momentum L at
the energy surface,

J
(L)
PO =

(
∂2SCT

∂L2

)
L=L∗

= 2πMnrKPO, (3.8)

KPO =
(

∂2Ir

∂L2

)
L=LPO

, (3.9)

where KPO is the curvature (2.11), (B5) of the energy surface
Ir = Ir (E,L) at L = L∗ = LPO.

For the sake of simplicity, we shall discuss the simplest
leading ISPM taking up to the second order term in the
expansion over (L − L∗) for the action phase [Eq. (3.6)],
and accounting for only the zeroth order component for the
pre-exponential factor in Eq. (3.3). Substituting now these
expansions into Eq. (3.3), one can take the pre-exponential
factor off the integral at L = L∗. Thus, applying Eq. (3.6), we
are left with the integral over L of a Gaussian type integrand
within the finite limits mentioned above for contributions
of the one-parametric polygon-like and diameter families,
including the contribution of boundaries for 0 < nϕ/nr � 1/2.
Taking this integral over L within the finite limits, one obtains
the ISPM trace formula, δg(K)(E), for contributions of the
one-parametric (K = 1) orbits,

δg(1)(E) = Re
∑
PO

A
(1)
PO(E)

× exp

[
i

h̄
SPO(E) − i

π

2
σPO − iφd

]
. (3.10)

The sum is taken over the discrete families of the PO M(nr,nϕ)
with nr � 2 nϕ , M � 1 in the 2D RPL potential, as explained
below Eq. (3.4). SPO(E) is the action (3.7) along these POs.
For the amplitudes A

(1)
PO, one finds

A
(1)
PO = TPO

πh̄3/2
√

Mn3
rKPO

erf(Z−
PO,Z+

PO), (3.11)

just as for K = 1 families in the elliptic billiard [16], and the
integrable Hénon-Heiles (IHH) potentials [17], with the period
TPO = 2πnr/ωr = 2πnϕ/ωϕ along the primitive (nr,nϕ) PO.
In the RPL Hamiltonian under consideration, one has

TPO = dSPO(E)

dE

= π (α + 2)

αE
[nrIr (E,LPO) + nϕLPO] (3.12)

[see Eqs. (3.7) for the action SPO and (B2) with (B1) for the
scaling transformations]. In Eq. (3.11), KPO is the curvature
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of the energy surface Ir = Ir (E,L) [KPO > 0 at α > 2 for
RPL Hamiltonians (2.1); see Eqs. (2.11), (2.7), and (2.8), or
Eqs. (B5) and (2.6)]. The generalized complex error function
in Eq. (3.11) is introduced by erf(u,v) = erf(v) − erf(u) with
the standard error functions, erf(z), of the complex arguments
z. These arguments are specified by

Z±
PO =

√
−iπMnrKPO/h̄ (L± − LPO), (3.13)

L− = 0 and L+ = LC for all K = 1 polygon-like PO families
(besides of the diameters, see below). For simplicity, the finite
integration interval of the angular momenta was split into
two parts, −LC � L � 0 and 0 � L � LC , where LC is the
angular momentum of a circle orbit, as mentioned above.
There are the symmetric stationary points, ±|L∗|, related
to the anticlockwise and clockwise motions of the particle
along the PO in two these phase-space parts. As noted above,
they give equivalent contributions to the amplitude, due to
the independence of the Hamiltonian of time. Thus, we have
reduced the integration region to 0 � L � LC , accounting
for this time-reversibility symmetry simply by the factor 2
in Eq. (3.11) (exceptions are the diameters, for which one
has the single stationary point L∗ = 0, and therefore, the
time-reversibility degeneracy is one, as it is taken into account
automatically by the limits of the error functions). For all
the polygon-like and diameter POs (nr � 2), we also found
L− = 0 for the minimum value of the angular momentum L.

For the Maslov index of the considered K = 1 PO families
and the constant phase φd in Eq. (3.10), one obtains

σ
(1)
PO = 2Mnr, φd = −π/4. (3.14)

The Maslov index σPO is determined in terms of the number
of turning and caustic points by the Maslov&Fedoryuk
catastrophe theory; see Refs. [17,21,22]. Note that for the
potentials with smooth edges, the expression for the Maslov
index σPO differs from that for the circular billiard [11,23].
Note also that the total Maslov phase, defined as a sum of the
asymptotic part (3.14) and the argument of the complex density
amplitude (3.11), depends on the energy E and parameter
α of the RPL potential [Eq. (1.1); see Refs. [9,16]]. This
total Maslov phase is changed through the bifurcation points
smoothly, due to the phase of the complex error function in
the amplitude (3.11) in Eq. (3.10).

For the stationary point L∗ far from the ends of the physical
integration interval, one can extend the integration range to the
infinity from −∞ to ∞ (in the case of diameters from zero
to ∞). We then arrive asymptotically at the Berry and Tabor
result [5] for the contribution of all K = 1 families (3.10) with
the following amplitude:

A
(1)
PO → dPOTPO

πh̄3/2
√

Mn3
rKPO

, (3.15)

where dPO accounts for the discrete degeneracy, dPO = 1 for
diameters M(2,1) (nr = 2nϕ), and 2 for all other (polygon-
like) POs (nr > 2nϕ) [11]. In the circular billiard limit
(α → ∞), the action is given by SPO(E) → pLPO with the
momentum p = √

2mE, and the PO length LPO. For the
curvature KPO [Eqs. (2.11) and (B5)], one can asymptotically
(α → ∞) obtain KPO → 1/[πpR0 sin(πnϕ/nr )]. Substituting
all these quantities, SPO, KPO, σ

(1)
PO [with accounting for the

Maslov-phase contribution of the turning points due to the
pure reflections from the infinite circle walls [23] as compared
to smooth potentials [17] in addition to Eq. (3.14)], and the
asymptotic amplitude (3.15) into Eq. (3.10), one obtains the
well known trace formula for the circular billiard [11,23]. Note
that the amplitude (3.11) of the solution (3.10) is regular at the
bifurcations which are the boundary points L = L∗ = LC of
the action (L) part of the tori as in the elliptic billiard [16].

Our SSPM result (3.15) coincides with the Berry and
Tabor trace formula [5], as adopted to the 2D spherically
symmetric Hamiltonians by using the simplest expansions
of the action phase and amplitude near the stationary point
(see above), instead of a more general but more complicated
mapping procedure; see more comments in Ref. [16]. The
essential difference from the Berry and Tabor theory [5] is
that Eq. (3.10) covers all the solutions of the symmetry-
breaking problem for the highest degenerate orbits, such
as the one-parametric families in the IHH potential, or the
elliptic and hyperbolic orbits in the elliptic billiard [16]
(see also Refs. [10,17]). Within the SPM of the extended
Gutzwiller approach [4,10,17], we have to derive separately
the contributions of the other orbits as the circle K = 0
POs in the RPL potentials beyond the semiclassical Poisson
summation-like trace formula (3.3) (with the restrictions to
the range of the nr and nϕ integer variables). We emphasize
that the ISPM trace formula (3.10) for the one-parametric
families contains the end contributions related to the finite
limits of integrations in the error functions. However, this
trace formula can be only applied to the contribution of such
families, as pointed out above in its derivation from the trace
formula (3.1). Therefore, there is no contributions of the circle
orbits in Eqs. (3.3) and (3.10). As shown below, these orbits
correspond to the separate contribution of the isolated (K = 0)
stationary-phase point L∗ = LC (as for the IHH potential [17],
for example).

B. Circle orbits (K = 0)

In contrast to the derivations of contributions of the orbits
with the highest degeneracy K = 1, we now take into account
the existence of the isolated stationary point of the action
phase 
CT (3.2) in the radial spherical phase-space variables
r ′ ∗ = r ′′ ∗ = r

C
, p′ ∗

r = p′′ ∗
r = 0. After the transformation of

the integration variables in Eq. (3.1) to the spherical phase
space coordinates {r ′,ϕ′; p′′

r ,L}, it is convenient first to perform
the exact integrations over L by using the energy conserving δ

function, and over the cyclic azimuthal angle ϕ′ leading simply
to 2π as above (

∫
dϕ′/ωϕ = Tϕ,CT is the primitive rotation

period). Thus, one finds

gscl(E) = 2

(2πh̄)2
Re

∑
CT

∫
dr ′

∫
dp′′

r Tϕ,CT|JCT(p′
r ,p

′′
r )|1/2

× exp

[
i

h̄

CT − i

π

2
μCT − iφd

]
. (3.16)

The additional factor 2 accounts for the equivalent contribu-
tions of two CTs for the particle motion in the two opposite
directions (with the opposite signs of the angular momentum as
above). The stationary phase condition for the SPM integration
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over the radial momentum p′′
r in Eq. (3.16) is written as(

∂
CT

∂p′′
r

)∗
≡ (r ′ − r ′′)∗ = 0. (3.17)

The solution of this equation is the isolated stationary point
p′′

r = p′′ ∗
r = p∗

r = 0. The phase 
CT [Eq. (3.2)] is expanded
in the momentum p′′

r near this point p′′ ∗
r = 0 in power series,


CT = 
∗
CT + 1

2J
(p)

CT (p′′
r − p∗

r )2 + · · · , (3.18)

where the Jacobian is given by

J (p)
CT =

(
∂2
CT

∂p′′ 2
r

)∗
=

[
2πMnrK

(∂p′′
r /∂L)2

]∗
. (3.19)

The star implies again that the corresponding quantity is taken
at the stationary point, p′′

r = p′′ ∗
r = 0. Using the second-order

expansion of the exponent phase (3.18) and taking the pre-
exponent amplitude factor off the integral at this stationary
point, one gets the internal integral over p′′

r in Eq. (3.16)
in terms of the error function as in the previous section.
According to Eq. (3.2), with the radial-coordinate closing
condition (3.17) for the CTs, the short phase 
∗

CT in Eq. (3.18)
can be written in terms of the corresponding variables as

∗

CT = ∫ r ′′

r ′ pr dr . Taking then into account the CT closing
condition (3.17), r ′ = r ′′ = r , for the stationary phase equation
in the integration over the radial r coordinate perpendicular to
the circle orbit, one results in(

∂
∗
CT

∂r ′′ + ∂
∗
CT

∂r ′

)∗
≡ (p′′

r − p′
r )∗ = 0. (3.20)

Therefore, together with Eq. (3.17), one has the PO conditions
related to the circular orbit r = r∗ = r

C
and L = L∗ = LC (see

Appendix A). As usually within the SPM, we expand now the
phase 
∗

CT in the radial coordinate r near this r∗ = r
C
,


∗
CT = MSC + 1

2J
(r)
MC (r − rC)2 + · · · , (3.21)

where SC is the action along the primitive circle PO (C),

J (r)
MC =

(
−∂p′

r

∂r ′ − 2
∂p′

r

∂r ′′ + ∂p′′
r

∂r ′′

)∗

MC

. (3.22)

Again, using the action phase expansion (3.21) at the second
order as the simplest ISPM approximation, and taking the
pre-exponent amplitude factor at the isolated stationary point
r = rC off the integral, one finally obtains

δg
(0)
{MC}(E) = Re

∞∑
M=1

A
(0)
MC(E)

× exp

[
i

h̄
MSC(E) − i

π

2
σ

(0)
MC − iφ

(0)
d

]
.

(3.23)

The sum runs all repetitions of the circle orbit MC with M =
1,2, . . . being positive integers. The time-reversal symmetry
of the Hamiltonian (equivalence of the contributions of both
angular momenta and repetition numbers with opposite signs)
was taken into account by the factor 2 in Eq. (3.16). The action
SC(E) along the primitive C orbit is given by

SC(E) =
∮

C

pϕ d ϕ = 2π LC (3.24)

with LC shown explicitly in Eq. (A2). In Eq. (3.23), σ (0)
MC is the

Maslov index determined by the number of caustic and turning
points along the circle orbit, according to the Fedoryuk and
Maslov catastrophe theory [17,21,22],

σ
(0)
MC = 4M, φ

(0)
d = 0. (3.25)

For the amplitudes A
(0)
MC(E) in Eq. (3.23), one finds

A
(0)
MC = TC

4πh̄
√

FMC

erf(Z (−)
p,MC,Z (+)

p,MC)

× erf(Z (−)
r,MC,Z (+)

r,MC), (3.26)

where TC is the period of the primitive (M = 1) orbit C,

TC = dSC(E)

dE
= πLC

α + 2

αE
; (3.27)

see Eqs. (3.24), (B2), and (B1). In Eq. (3.26), FMC is the
Gutzwiller stability factor [3] of the circle orbits [Eq. (2.9)].
The arguments of the error functions in Eq. (3.26) can be
transformed to the following invariant form (see Appendix E):

Z (±)
p,MC =

√
− i

h̄
π M

√
α + 2 KC (L± − LC),

L+ = LC, L− = 0,
(3.28)

Z (±)
r,MC =

√
i FMC

4π M h̄ (α + 2)3/2 KC

�(±)
r ,

�(+)
r = 2π, �(−)

r = 0.

Here L± are the maximum and minimum values of the
angular-momentum integration variable for the contribution
of the circle orbits, KC is their curvature (see Appendix E),

KC = (α + 1)(α − 2)

12 (
√

α + 2)3 LC

. (3.29)

The simplest approximation in Eq. (3.28) is L+ = LC , L− =
0, and �−

r = 0, �(+)
r = 2π , which correspond to the total

physical phase space accessible for the classical motion. The
factors

√
α + 2 in front of the curvature KC appear because of

the frequency ratio f (L) = ωϕ/ωr for the circle orbits for any
parameter α � 2; see Eqs. (2.8), (A3), and (A8). For α = 4;
the period TC [Eq. (3.27)], action SC [Eq. (3.24)], curvature
KC [Eq. (3.29)], and stability factor FMC [Eq. (2.9)] for the
circle orbits are identical to those obtained in Ref. [18]. We
used also the properties of the Jacobians for transformations
of the different coordinates, in particular, given by Eq. (E2).
Note that after applying the stationary phase conditions r∗ = r

C

[Eq. (3.17)] and p∗
r = 0 [Eq. (3.20)], the angular momentum

L of the circular orbits as function of the r and pr becomes
the isolated stationary point L∗ = LC at the boundary of
the classically accessible phase space. Notice also that the
asymptotic Maslov phase is defined traditionally in terms of
the Maslov index σ

(0)
MC [Eq. (3.14)]. There is again the two

components of the Maslov phase in the ISPM trace formula
(3.23) for the MC orbits. One of them is the asymptotic
constant part (3.14) independent of the energy. Another part
is the argument of the complex amplitudes A

(0)
MC [Eq. (3.26)],

that changes continuously through the bifurcation points. The
total Maslov phase for the circle POs is given by the sum of
these two contributions, which ensures a smooth transition of
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the trace formula (3.23) for the contribution of the circle POs
through the bifurcation points.

In the asymptotic limit of the nonzero integration bound-
aries, L− → −∞ and �+

r → ∞, i.e., far from any bifurcations
αbif [Eq. (2.10), including the HO symmetry breaking at α =
2], the expression (3.26) tends (through the Fresnel functions
of the corresponding real positive arguments) to the amplitude
of the Gutzwiller trace formula for isolated orbits [3,11],

A
(0)
MC(E) → 1

4π h̄

TC√
FMC

. (3.30)

In this limit, the asymptotic Maslov index σ
(0)
MC and φ

(0)
d in

Eq. (3.23) are given by Eq. (3.25). Notice that the number
coefficient in Eq. (3.30) differs from the SSPM Gutzwiller’s
expression (5.36) of Ref. [11] by factor 1/4. The reason is
that the two stationary-phase points r ′ ∗ = rC and p′′ ∗

r = 0
belong to the boundary of the physical {r ′,p′′

r } phase-space
integration volume in Eq. (3.16); while in Ref. [3], all the
stationary points are assumed to be internal ones which are far
away from the integration boundary. Equation (3.30) can be
derived directly from Eq. (3.16) by using the SSPM. To realize
this within the SSPM, one may extend in Eq. (3.16) the r ′
integration range from {r ′ = 0,r

C
} to {−∞,r

C
}, and similarly,

the p′′
r integration one to {0,∞}, assuming that the lower r ′ and

upper p′′
r integration limits are far away from the corresponding

other (stationary-point) integration boundaries.
For the opposite limit to the bifurcations (FMC → 0, when

α → αbif), one finds that the both arguments of the second error
function in Eq. (3.26) tend to zero as

√|FMC |, see Eq. (3.28).
The Gutzwiller stability factor FMC , going to zero, is exactly
canceled by the same one in the denominator, and we arrive at

A
(0)
MC(E) → TC

4 h̄3/2
√

πM (α + 2)3/2 KC

× erf(Z (−)
p, MC,Z (+)

p, MC) eiπ/4. (3.31)

Thus, in contrast to the SSPM divergences, one obtains the
finite results at the bifurcations within the ISPM. Notice
that the enhancement in order of h̄−1/2 with respect to the
Gutzwiller asymptotic amplitude (3.30) takes place locally
near the bifurcation points. Note also that at the circular billiard
limit, when KC → ∞ (separatrix), one finds a continuous limit
which is zero in the case of the RPL potential.

C. Total trace formula for the oscillating level density

The total semiclassical oscillating (shell) correction to the
level density (3.1) for the RPL potentials in two dimensions is
thus given by

δgscl(E) = δg
(1)
scl (E) + δg

(0)
scl (E), (3.32)

where

δg
(K)
scl (E) = Re

∑
PO

A
(K)
PO (E)

× exp

[
i

h̄
SPO(E) − i

π

2
σ

(K)
PO − iφ

(K)
d

]
. (3.33)

The amplitudes A
(K)
PO [see Eqs. (3.11) for K = 1 and (3.26)

for K = 0], actions SPO, Maslov indexes σ
(K)
PO , and constant

phases φ
(K)
d [Eqs. (3.14) and (3.25)] were specified above.

Using the scale invariance (2.2), one may factorize the
action integral

SPO(E) =
(

E

E0

) 1
2 + 1

α
∮

PO(E=E0)
p · dr ≡ ετPO.

In the last equation, we define the scaled energy ε and scaled
period τPO by

ε =
(

E

E0

) 1
2 + 1

α

, τPO =
∮

PO(E=E0)
p · dr. (3.34)

To realize the advantage of the scaling invariance (2.2), it
is helpful to use the scaled energy (period) in place of the
corresponding original variables. For the HO, one has α =
2, and the scaled energy and period are proportional to the
unscaled quantities. For the cavity potential (α → ∞), they are
proportional to the momentum p and length LPO, respectively.

Using the transformation of the energy E to the scaled
energy ε, one can introduce the dimensionless scaled-energy
level density. The advantage of this transformation is that a
nice plateau condition is always found in the Strutinsky SCM
smoothing procedure by using the scaled spectrum εi (see
Refs. [9,16] for the case of the billiard limit α → ∞). Then,
one can use a simple relation between the original and scaled-
energy level densities,

G(ε) =
∑

i

δ(ε − εi) = g(E)
dE

dε
. (3.35)

For the semiclassical oscillating part of the level density (3.35),
one finds

δG(K)
scl (ε) = dE

dε
δg

(K)
scl (E)

=
∑
PO

δG(K)
PO (ε)

= Re
∑
PO

A(K)
PO (ε) exp

[
i

h̄
ετPO − iπ

2
σ

(K)
PO − iφ

(K)
d

]
,

A(K)
PO (ε) = dE

dε
A

(K)
PO (E). (3.36)

The simple form of the phase function (3.34) enables us also
to make easy use of the Fourier transformation technique.
The Fourier transform of the semiclassical scaled-energy level
density with respect to the scaled period τ is given by

F (τ ) =
∫

dε G(ε)eiετ/h̄

≈ F0(τ ) +
∑
PO

ÃPOδ(τ − τPO ), (3.37)

which exhibits peaks at periodic orbits τ = τPO . F0(τ ) repre-
sents the Fourier transform of the smooth Thomas-Fermi level
density and has a peak at τ = 0 related to the zero-action
trajectory [10]. Thus, from the Fourier transform of the
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scaled-energy quantum-mechanical level density (3.35),

F (τ ) =
∑

i

eiεi τ/h̄, εi =
(

Ei

E0

) 1
2 + 1

α

, (3.38)

one can directly extract the information about classical
PO contributions. The trace formula (3.32) has the correct
asymptotic SSPM limits to the Berry and Tabor results (3.10),
(3.15) for K = 1 polygon-like (including the diameters) and
to the Gutzwiller trace formula (3.23), (3.30) for K = 0 circle
POs. As shown in Secs. III A and III B, one obtains also the
limit of the trace formula [Eqs. (3.32) and (3.33)] to that of
the circular billiard α → ∞ [11,23]. In this limit one has
obviously zero for the circle orbit contributions as for the
potential barrier separatrix in the IHH potential [17].

For comparison with the quantum level densities obtained
by the SCM, we need also to perform a local averaging of the
trace formula (3.32) over the spectrum. As this trace formula is
given through the sum of the individual PO terms everywhere
(including the bifurcation regions), one can approximately take
the folding integrals over energies in terms of the Gaussian
weight factors with a width parameter � 
 EF . As the result,
one obtains the Gaussian-averaged oscillating level density in
the analytical form [4,10,11]:

δg
�
(E) =

∑
PO

δgPO (E) exp[−(tPO�/h̄)2]. (3.39)

Adding the TF smooth component gTF (E) [11] to this oscillat-
ing component, one results in the total trace formula:

g
�
(E) = gTF (E) + δg

�
(E), (3.40)

where

gTF (E) = 1

(2πh̄)2

∫
dr

∫
dp δ

[
E − p2

2m
− V (r)

]
= mr2

max

2h̄2 = 1

2E0

(
E

E0

)2/α

. (3.41)

Here rmax is the maximal turning point [one of solutions of the
equation V (r) = E], which is given by rmax = R0(E/E0)1/α

for the RPL Hamiltonian (2.1), and we put E0 = h̄2/mR2
0 in

the last expression of Eq. (3.41).
Using the scaled-energy transformation (3.35) of the os-

cillating part (3.39) of the Gaussian-averaged level density
[Eq. (3.40)], one finally obtains the semiclassical scaled-
energy trace formula:

δGγ (ε) =
1∑

K=0

δG(K)
γ (ε)

=
1∑

K=0

∑
PO

δG(K)
PO (ε) exp

[
−

(
τPOγ

2h̄

)2]
. (3.42)

Here δG(K)
PO (ε) is given by Eq. (3.36), γ is a dimensionless width

parameter used for the Gaussian averaging over the scaled
spectrum εi . For the scaled-energy Thomas-Fermi density
component, one finds

GTF(ε) = gTF (E)
dE

dε
= α

2 + α
ε. (3.43)

D. The shell correction energies

The semiclassical PO shell correction energies δUscl is
given by [4,9–11,16]

δUscl = 2
∑
PO

h̄2

t2
PO

δgPO (EF ), (3.44)

where tPO = MTPO(EF ) is the period of particle motion along
the PO (taking into account its repetition number M) at the
Fermi energy E = EF . The Fermi energy EF as function of
the particle number N is determined by the particle number
conservation,

N = 2
∑

i

ni = 2
∫ EF

0
dE g(E), (3.45)

where ni = θ (EF − Ei) are the occupation numbers. The
factors 2 in Eqs. (3.44) and (3.45) account for the spin
degeneracy of Fermi particles with spin 1/2.

Note that the shell correction energies δU which are
the observed physical quantities do not contain an arbitrary
averaging parameter �, in contrast to the level density g

�
(E).

The convergence of the PO sum (3.44) to shorter POs (if
they occupy enough large phase-space volume) is ensured
by the additional factor in front of the oscillating density
components δgPO which is inversely proportional to square
of the PO period tPO .

In the quantum SCM calculations, the shell correction
energies are usually obtained by extracting the oscillating part
from a sum of the single-particle energies. Note that the direct
application of the SCM average procedure to the spectra Ei

of RPL potentials (except for the HO limit) does not give
any good plateau condition as for the level density g(E) in
Eq. (3.35). However, one may find rather a good plateau in the
SCM application to a sum of the single-particle scaled energies
εi , U = 2

∑
i niεi . Applying exactly the same derivations of

Eq. (3.44) to the semiclassical trace formula for the oscillating
part of U , one gets

δUscl = 2
∑
PO

h̄2

τ 2
PO

δGPO(ε
F
) . (3.46)

Here the scaled Fermi energy ε
F

is determined by

N = 2
∫ ε

F

0
G(ε)dε. (3.47)

Using now the obvious relations tPO = τPO dε/dE and
δgPO (E) = δGPO(ε) dε/dE in Eq. (3.44), one obtains

δUscl =
(

dE

dε

)
ε
F

δUscl. (3.48)

Thus, we arrive at the simple relation between the original
shell-correction energy δU [Eq. (3.44)] and the scaled one
δU , valid for both semiclassical and quantum (neglecting
the second order terms in the shell fluctuations of the Fermi
energy) calculations:

δU =
(

dE

dε

)
ε
F

δU

= E0
2α

α + 2
ε

(α−2)/(α+2)
F δU . (3.49)
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This relation can be also directly obtained by using the standard
quantum SCM relations of the first-order shell-correction
energy δU to the oscillating part of the level density δg(E) up
to the same second-order terms in the Fermi energy oscillations
[2], and corresponding ones for the scaled quantities,

δU = 2
∑

i

δniεi = 2
∫ ε

F

0
dε (ε − ε

F
) δG(ε). (3.50)

In these derivations, δni = ni − ñi represents the oscillat-
ing part of the occupation number defined by subtracting
the smooth part ñi from the exact one. We applied also
the usual transformations from the Fermi energies to the
particle numbers by using Eqs. (3.45) and (3.47), as well as
the definitions of the averaged Fermi energy ẼF , and the scaled
one ε̃F ,

N = 2
∫ ẼF

0
dE g̃(E) = 2

∫ ε̃F

0
dε G̃(ε). (3.51)

E. Harmonic oscillator limit

In the isotropic harmonic oscillator limit [α → 2 in the
power-law potential (1.1)], the energy surface is simplified to
the linear function in actions,

E = ωr Ir + ωϕ Iϕ = ωϕ (2 Ir + L). (3.52)

Therefore, in this limit the curvature KPO for all POs [including
the maximum value L = LC = E/ωϕ for the circle orbits,
Eq. (3.29), and L = 0 for diameter ones, Eq. (D3)] and stability
factor FMC [Eq. (2.9)] for the MC orbits turn into zero.
However, there is no singularities in the ISPM trace formulas
(3.10) for the contributions of all K = 1 families and (3.23)
for the circle orbits in the limits KPO → 0 and FMC → 0. The
arguments of both error functions, ∝√

KC and ∝√
FMC/KC

in Eq. (3.26), for instance, approach zero and singularities
are canceled with the same ones in the denominators of the
multipliers in front of them, and similarly, in Eq. (3.10) for
one error function; see Eqs. (3.11), (3.13), (3.26), and (3.28)
with the help of Eq. (3.31). Therefore, one has a continuous
limit of the total trace formula (3.32) for α → 2. Moreover,
in this limit, one obtains exactly the same half of the HO
trace formula for the MC orbit contribution (3.23) and the
M(2,1) diameter one [Eq. (3.10)] up to the relatively small
higher-order corrections in h̄ [see also Eq. (3.68) of Sec. 3.2.4
in Ref. [11]],

g
(0)
{MC}(E) → 1

2 δg
(2)
HO(E), g

(1)
{MD}(E) → 1

2 δg
(2)
HO(E).

(3.53)

Here {MC} and {MD} represent sum of all repetitions
of circle and diameter orbits, M = 1,2, . . ., respectively.
Thus, the HO limit of the sum of the circle and diameter
orbit contributions into the (averaged) level density and the
energy shell corrections is exactly analytically given by the
corresponding HO trace formulas. We point out that for α → 2,
the contributions of circle MC and diameter M(2,1) orbits
encounter local increases of the degeneracies K by 2 and 1
units, respectively.

As noted above, in the HO limit α → 2, only the diameter
M(2,1) and the circle MC (both with repetitions) survive, and

they form K = 2 families in the HO potential. Taking into
account also that the angular momentum for the diameters
is always zero, L∗ = 0, and for the circle orbits L∗ = LC ,
we shall assume that the integration over L for the diameters
is performed from L− = 0 to L+ = LC/2 and for the circle
orbits from L− = 0 to L+ = LC , such that they give naturally
equivalent contributions into the HO trace formula, as shown
in Eq. (3.53); see also Ref. [17]. The difference is in the
integration limits for the circle orbits [Eq. (3.28)], in contrast
to Eqs. (3.13) and (D2) for the diameter boundaries. Notice
that the contribution of the polygon-like one-parametric orbits,
δg(1)(E), disappears in the ghost HO limit. Thus, one obtains
the continuous transition of the oscillating part of the ISPM
level density δgscl(E) through all bifurcation points, including
the HO symmetry breaking.

IV. AMPLITUDE ENHANCEMENT AND COMPARISON
WITH QUANTUM RESULTS

A remarkable enhancement of the ISPM amplitudes in PO
sum for the oscillating level density (3.33) and shell correction
energy (3.44) due to the bifurcation (symmetry breaking) is
typically expected for some short periodic orbits. In Fig. 2
the scaled amplitudes |APO|, divided by ε1/2 to normalize the
energy dependence for K = 1 orbits, are presented for several
shortest POs as functions of the power parameter α in order
to show the typical bifurcation enhancement phenomena. In
Fig. 2(a), the enhancement of the primitive diameter (2,1)
amplitudes |A(2,1)| [Eq. (3.11)], and those |AMC | [Eq. (3.26)]
for the primitive circle orbit C are clearly seen in the HO
limit α → 2; see also Eq. (3.36). Figure 2(b) shows the
enhancement of the shortest orbit C around the bifurcation
point α = 7, and the birth of the triangle-like orbit (3,1)
there. Note that the ISPM amplitude |A(3,1)| [Eq. (3.11)] of
the (3,1) orbit keeps its magnitude up to rather a large value
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FIG. 2. Moduli of the scaled ISPM (solid) and SSPM (dashed
curve) amplitudes |APO(ε)| as functions of α for the primitive
(M = 1) circle C [Eq. (3.26)], diameter (2,1), and triangle-like (3,1)
[Eq. (3.11)] POs, in units of ε1/2 at the scaled energy ε = 40. The
panels show (a) the HO limits (α → 2) for the circle C (thin) and
diameter (2,1) (thick curve) orbits (the filled circle denotes one half
of the HO amplitude (3.53) at α = 2); and (b) the circle C (thin) and
triangle-like (3,1) (thick curve) POs.
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FIG. 3. The oscillating part of the level density δGγ (ε) in units of
ε1/2 vs the scaled energy ε for α = 4.0 (a), and α = 6.0 (b), at the
(dimensionless) width parameter γ = 0.1 in the Gaussian averaging
over the scaled energies; the solid and dashed curves are the quantum-
mechanical and semiclassical ISPM results, respectively.

of α above the bifurcation (α > αbif). The ISPM amplitude
for the circle orbit C exhibits a remarkable enhancement
at the bifurcation point α = 7. The divergence of its SSPM
amplitude at the bifurcation point is successfully removed. As
also seen from Fig. 2(b), the ISPM amplitude for the (3,1) PO
is continuously changed through this bifurcation, in contrast to
the discontinuity of the SSPM amplitude. This orbit exists, in
fact, only at α � 7, and the amplitude in the region α < 7 is due
to the formal stationary point which has no direct sense in the
classical dynamics. Therefore, the corresponding PO is called
usually as a ghost orbit [9,11,17]. An oscillatory behavior
of the amplitude |A(3,1)| in the ghost region far from the
bifurcation has no physical significance, since it is washed out
in the Gaussian-averaged level density by an rapidly oscillating
phase of the complex amplitude A(3,1) [9,17]. These ghost
amplitude oscillations are suppressed even more by using
higher order expansions in the phase and amplitudes in a more
precise ISPM [9].

Figures 3–7 show the oscillating part of the semiclassical
scaled-energy level density δGγ (ε) [Eq. (3.42)] in units of
ε1/2 as functions of the scaled energy ε for several values of
the power parameter α and the Gaussian width γ . The ISPM
semiclassical results show good agreement with the quantum
mechanical (QM) ones for a transition from the gross to fine
resolutions of the spectra. The QM calculations are carried out
by the use of the standard Strutinsky averaging over the scaled
energy ε, in which we find a good plateau around the Gaussian
averaging width γ̃ = 2 − 3 with the even curvature correction
polynomials of 4th to 8th powers.

For the powers α = 4.0 and 6.0, one finds a good agreement
with the SSPM asymptotic behavior [Figs. 4(a) and 5(a)]
because they are sufficiently far from the bifurcation points
α = 4.25 and 7.0 which correspond to the birth of the star-like
(5,2) and triangle-like (3,1) POs (Figs. 6 and 7). For the
gross shell structure (γ ≈ 0.2 at α = 4.0), only the shortest
orbits (mainly a few shortest diameters) give the leading
contributions. (This is in contrast to the 3D case where the
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FIG. 4. The same as in Fig. 3 for α = 4.0 but with other width
parameters, γ = 0.03 (a), (b) and γ = 0.2 (c), (d). (a), (c) The solid,
dashed and dotted lines are the QM, ISPM and SSPM [the panel (a)]
results. (b), (d) {MD} (dashed) is the contribution of the diameters
(including their repetitions) and {MP } (thin solid) for other K = 1
polygon-like POs.

circular orbits become also important [11,18].) For instance,
the gross shell structure in terms of the shortest POs for
α = 6.0−7.0 manifests at larger γ � 0.3, unlike for the
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FIG. 6. The same as in Fig. 5 for α = 4.25, but with the width
parameters, γ = 0.1 (a), and γ = 0.2 (b).

powers α = 4.0–4.25. With decreasing γ and increasing α, the
POs for larger scaled periods τ [or actions S, see Eq. (3.34)]
become more significant [cf. Figs. 4(b), 4(d), 7(b), and 7(d)].
In the case of the fine shell structure (e.g., γ ≈ 0.03) the
dominant contributions are due to the bifurcating K = 1 POs
[polygon-like POs denoted by {MP }; see Fig. 4(b)]. (This is
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FIG. 7. The same as in Fig. 4, but for α = 7.0 and other width
parameters, γ = 0.1 (a), (b) and γ = 0.2 (c), (d).

similar to the situations in the elliptic [16] and spheroidal
[9] cavities, and in the IHH potential [17].) However, the
interference of these much longer one-parametric POs [such
as M(7,3) for α = 4.0 or M(5,2) for α = 6.0] with a lot of the
M(2,1) diameters explain some peaks too. For smaller α = 4.0
and 4.25, the circle orbit contributions are not shown because
they are insignificant at these power parameters in the 2D case.
(This is different situation from the 3D case; see Ref. [18]
for the trace formulas based on the uniform approximation
using the classical perturbation approach [11,24].) These
contributions into the trace formula (3.42) are increasing
functions of α, and they become significant at α � 7 even for
the 2D case [Figs. 7(b) and 7(d)]. An intermediate situation
between the gross- and fine-shell structures where all of POs
become significant are shown too at γ = 0.1 in Figs. 3 and
6, and at γ = 0.1 and 0.2 in Figs. 7(b) and 7(d). Our full
analytical expressions (accessible for any long periodic orbits)
for the classical PO characteristics at α = 4 and 6 are quite
useful in the simple ISPM calculations of the oscillating level
density with a good accuracy up to the fine spectrum-structure
resolutions by using, for instance, γ ≈ 0.03 and 0.1. Figures 6
and 7 show a nice agreement of the fine-resolved semiclassical
and quantum level densities δGγ (ε) as functions of the scaled
energy ε at the critical bifurcation points α = 4.25 and 7.0 for
the births of the star-like (5,2) and triangle-like (3,1) orbits,
respectively.

Figures 8 and 9 show the scaled shell correction energies δU
[Eqs. (3.46) for the semiclassical and (3.50) for the quantum
results], normalized by the factor ε

−1/2
F , as functions of the

particle number variable N1/2. A good plateau is realized for
the QM calculations of the scaled shell-correction energies
[see the first equation in Eq. (3.50)] near the same averaging
parameters γ̃ and curvature corrections as mentioned above. In
the semiclassical calculations, the Fermi level ε

F
is determined

by the particle number conservation (3.47) with using the
coarse-grained scaled-energy POT level density,

Gγ, scl(ε) = GTF(ε) +
1∑

K=0

δG(K)
γ, scl(ε). (4.1)

The oscillating ISPM components δG(K)
γ, scl(ε) are given by

Eqs. (3.42) and (3.36). We evaluated the Fermi level ε
F
(N )

by varying the averaging width γ and found that there is
no essential sensitivity within the interval of smaller γ (γ ≈
0.1–0.2). Moreover, even the TF density GTF(ε) [Eq. (3.43)] in
Eq. (3.47) with G(ε) ≈ GTF(ε) provides us a good value of ε

F

in the POT calculations of the shell correction energies (3.46).
The PO sums at α = 7.0 converge for the shell correction
density (3.42) by using the averaging width γ = 0.2 of a
fine shell-structure resolution, and for the shell correction
energies (3.46) with taking into account the same major
simplest POs [up to the fourth repetitions (M � 4) for the
circle and diameter orbits, and a few first simplest other
K = 1 (P ) POs, such as (3,1), (5,2), (7,3) and (8,3); cf.
Figs. 9(c) and 9(d) with 7(c) and 7(d)]. For smaller diffuseness,
4 � α � 6, one has a similar PO convergence relation with
the same γ ≈ 0.2, but with much smaller contributions of the
circular orbits. However, the dominating (K = 1) PO families
(P) are the (5,2),(7,3) and (7,3) POs at α = 4.25–6.0 and 4.0,
respectively [Figs. 8(a), 8(b), 4(c), and 4(d)]. As seen from
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factor ε
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at the values of α, where the full analytical formulas are obtained
for α = 4.0 (a), (b) and α = 6.0 (c), (d). (a), (c) QM (solid curve)
represents the quantum-mechanical results using the Strutinsky SCM,
and ISPM (dashed curve) shows the semiclassical result using the TF
approximation in the calculation of N (εF ) by Eqs. (3.47) and (4.1).
(b), (d) The contributions of several POs into the shell correction
energy δU are shown. Other notations are the same as in Figs. 4 and 7.

Figs. 6, 7, and 9, we obtain a nice agreement between the
semiclassical (ISPM, dashed) and quantum (QM, solid curve)
results exactly at the bifurcations α = 4.25 and 7.0. Notice that
the dominating contributions in these semiclassical results at
the bifurcation point α = 7.0 are coming from the interference
of the bifurcating circle C and newborn (3,1) orbits with the
simplest diameters. As shown typically in Figs. 7(d) and 9(d),
one can see that the circle C and triangle-like (3,1) orbits are
mainly in phase, but the diameter (2,1) is sometimes in phase
to them and sometimes out of phase. Thus, the occurrence of
a characteristic beating pattern in the level density amplitude
at α = 7.0 is due to the interference of the bifurcating orbits
C and (3,1) with the shortest diameter (2,1) having all the
amplitude of the same order in magnitude but different phases.
The bifurcating circle 2C and star-like (5,2) orbits [as expected
from the enhancement of the amplitudes of the circular C and
triangular-like (3,1) POs in Fig. 2] are more important for
α = 4.25, though the primitive diameters become significant
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FIG. 9. The same as in Fig. 8; α = 4.25 for the (5,2) bifurcation,
and α = 7.0 for the (3,1) bifurcation are shown in panels (a), (b) and
(c), (d), respectively.

much compared to the bifurcation case α = 7.0. The POs
(3,1) and (5,2) yield more contributions near their bifurcation
values of α, and even more on the right-hand side (α � αbif)
in a wide region of α as mentioned above. The bifurcation
parent-daughter partner orbits {C, (3,1)} and {2C, (5,2)}, taken
together with the simple diameter (2,1), give essential ISPM
contributions of about the same order of magnitude in Figs. 6,
7, and 9; as seen for example in Figs. 7(b), 7(d), and 9(d)
for the same α = 7.0. The diameter ISPM contributions are
close to the SSPM asymptotic ones near the bifurcation points
α = 7.0 and 4.25 (as for α = 4.0 and 6.0) because they are
sufficiently far from their single symmetry-breaking point at
the harmonic oscillator value α = 2.

Figure 10 shows the Fourier transform of the quantum-
mechanical scaled-energy level density [Eq. (3.38)]. For a
smaller α = 2.1, the diameter (2,1) orbit gives the dominant
contribution to the gross-shell structure as the shortest POs;
see the peak at τ ∼ 5.0. With increasing α, the amplitude
of the circle orbit becomes again larger due to a prominent
enhancement around the bifurcation point (τ ∼ 6.2 at αbif =
7.0). Notice that the newborn POs (3,1), (5,2), (7,3), and (8,3)
give comparable contributions at α = 7.0 [similarly, (5,2) and
(7,3) for the bifurcation α = 4.25] in nice agreement with
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FIG. 10. Moduli of the Fourier transform |F (τ )| of the quantum
scaled-energy level density (3.38) as functions of the dimensionless
variable τ are plotted for several values of α; MC and M(nr,nϕ)
indicate the classical POs corresponding to each peak (see Fig. 1).

the quantum Fourier spectra in Fig. 10. The contributions of
the newborn triangle-like orbit family (3,1) having relatively
a smaller scaled period τ(3,1) and higher degeneracy K = 1
become important and dominating for larger α � αbif = 7.
The newborn (3,1) peak cannot be distinguished from the
parent circle C orbit near the bifurcation point αbif as well
as the diameter and circle orbits at α close to the HO limit,
see Ref. [10]. We emphasize that the shell correction energies
δU are similar to the oscillating parts of the level densities
coarse-grained over the spectrum by using the Gaussian width
γ = 0.2 at α = 4.0 and 4.25, which have mainly the gross-
shell structure due to the shortest diameters. However, for this
γ , the fine-resolved shell structures (due to their interference
with the other polygon-like and circular POs) are pronounced
at larger powers near α = 6.0, and especially, 7.0.

Notice also that we do not show the numerical comparison
of the ISPM [Eqs. (3.42) and (3.46)] vs quantum (Ref. [11])
results for the HO limit α → 2 because they are exactly
coincide, as shown analytically around Eq. (3.53).

V. CONCLUSIONS

We presented a semiclassical theory of quantum oscillations
of the level density and energy shell corrections for a

class of radial power-law potentials which turn out as good
approximations to the realistic Woods-Saxon potential in the
spatial region where the particles are bound. The advantage
of the RPL potentials is that, in spite of its diffuse surface,
the classical dynamics scaling with simple powers of the
energy simplifies greatly the analytical POT calculations. The
quantum Fourier spectra yield directly the contributions of the
leading classical POs with the specific periods and actions into
the trace formulas.

We described the main PO properties of the classical
dynamics in the RPL potentials as the key quantities of the
POT. Taking the simplest two-dimensional RPL Hamiltonian
we developed the semiclassical trace formulas for any its
power α, and studied various limits of α (the harmonic
oscillator potential for α = 2 and the cavity potential for
α → ∞). The completely analytical results were obtained for
the RPL powers α = 4 and 6. This can be applied for both
2D and 3D cases and allow us to far-going fine-resolved shell
structures at γ = 0.03–0.1. This POT is based upon extended
Gutzwiller’s trace formula, that connects the level density of
a quantum system to a sum over POs of the corresponding
classical system. It was applied to express the shell correction
energy δU of a finite fermion system in terms of POs. We
obtained good agreement between the ISPM semiclassical
and quantum-mechanical results for the level densities and
energy shell corrections at several critical powers of the
RPL potentials. For the powers α = 4 and 6, we found also
good agreement of the ISPM trace formulas with the SSPM
ones. The strong amplitude-enhancement phenomena at the
bifurcation points α = 7 and 4.25 in the oscillating (shell)
components of the level density and energy were observed
in the remarkable agreement with the peaks of the Fourier
spectra. We found a significant influence of the PO bifurcations
on the main characteristics (oscillating components of the
level densities and energy-shell corrections) of a fermionic
quantum system. They leave signatures in its energy spectrum
(visualized, e.g., by its Fourier transform), and hence, its shell
structure. We have presented a general method to incorporate
bifurcations in the POT, employing the ISPM based on the
catastrophe theory of Fedoryuk and Maslov, and hereby,
overcoming the divergence of the semiclassical amplitudes of
the Gutzwiller theory and their discontinuity in the Berry and
Tabor approach at bifurcations. The improved semiclassical
amplitudes typically exhibit a clear enhancement near a
bifurcation and on right side of it, where new orbits emerge,
which is of the order h̄−1/2 in the semiclassical parameter h̄.
This, in turn, leads to the enhanced shell structure effects.
Bifurcations are treated, again, in the ISPM leading to the
semiclassical enhancement of the orbit amplitudes. The trace
formulas are presented numerically to show good agreement
with the quantum-mechanical level density oscillations for the
gross- (coarse-grained with larger averaging width γ and a
few shortest POs), and the fine-resolved (with smaller γ and
longer bifurcating POs) shell structures. The PO structure of
the shell-correction energies is similar to that of the coarse-
grained densities for smaller powers α = 4−4.25, and of the
fine-resolved densities for larger α � 6 at the same γ ≈ 0.2.
The fine-resolved and coarse-grained shell structures were
found at the same α in the corresponding averaged oscillating
densities at smaller width parameters γ = 0.03–0.1 and at
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larger ones γ � 0.2–0.3, respectively. The fine-resolved shell
structure for larger powers, α � 6, occurs in a larger interval,
γ = 0.003–0.2, including the essential contributions of the
circle orbits along with the polygon-like and diameter orbits.
Full explicit analytical expressions for the diameters and circle
orbit contributions into the trace formula as functions of the
diffuseness potential parameter α are specified too.

For prospectives, we intend a further study of shell
structures in the 3D RPL potentials, within the ISPM and
uniform approximations to treat the bifurcations, by varying
continuously the power parameter α from 2 (harmonic oscil-
lator) to ∞ (spherical billiards).
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APPENDIX A: THE STABILITY FACTOR, BIFURCATION
POWERS AND FREQUENCIES

Let us consider in more details the nonlinear classical
dynamics in the RPL Hamiltonian (2.1) for any real α � 2.
The critical values of the radial coordinate r = r

C
and angular

momentum L = LC for the circle orbit (C) are determined by
the solutions of the system of the two equations with respect
to r and L:

F(r,L) = 0,
∂F
∂r

= 0, where F(r,L) ≡ p2
r (r,L),

(A1)

see Eq. (2.3). In the internal region where the stable orbits
in the radial direction exist, one has a nonzero F ′′

C =
∂2F(r

C
,LC)/∂r2 < 0. First equation in Eq. (A1) means that

there is no radial velocity, ṙ = 0, and the next equation is that
the radial force is equilibrating by the centrifugal force. For
the Hamiltonian (2.1), the solutions of the two these equations
are the radius r

C
and angular momentum LC [13],

r
C

= R0

[
2E

(2 + α)E0

]1/α

, LC = p(r
C
)r

C
. (A2)

Using Eq. (2.6) at L = LC for the rotational frequency, ω
C

=
ωϕ(L = LC) = LC/(mr2

C
), and (A2) for r

C
and LC , one finds

[13]

ω
C

=
√

αE0

mR2
0

[
2E

(2 + α)E0

]1/2−1/α

. (A3)

Applying now the second order expansion in r − r
C

to
Eq. (2.3), one gets the first-order ordinary differential equation
for the radial CT r(t) locally near the circle PO r = r

C
:

ṙ = ±
√

F ′′
C

2m2
(r − r

C
). (A4)

Integrating the dynamical equation in Eq. (A4), one obtains

r(t) = r
C

+ (r ′ − r
C
) exp

(
±

√
F ′′

C

2 m2
t

)
, (A5)

where r ′ = r(t = t ′ = 0). In the stable case, F ′′
C < 0 in

Eq. (A5) for the CT r(t) locally near the circle orbit r = r
C
,

one writes

r(t) = r
C

+ (r ′ − r
C
) exp(±i	C t), (A6)

where 	C is a positive radial frequency ωr at L = LC

[Eq. (2.6)],

	C =
√

|F ′′
C/(2 m2) | = ωr (L = LC). (A7)

For the Hamiltonian (2.1), this quantity is given by [13]

	C =
√

2αE

mR2
0

[
(2 + α)E0

2E

]1/α

> 0. (A8)

From Eq. (A6) after the period TC along the primitive circle
orbit,

TC = t ′′ − t ′ = t ′′ = 2π

ω
C

, (A9)

one finds

δr ′′ ≡ r ′′ − r
C

= δr ′ exp(±i	C TC), δr ′ = r ′ − r
C
.

(A10)

The eigenvalues of the stability matrix MC for M = 1 in
Eq. (2.9) are given by [11](

∂r ′′

∂r ′

)
p′

r

= exp(i	C TC),

(A11)(
∂p′′

r

∂p′
r

)
r ′

= exp(−i	C TC).

These two eigenvalues of the stability matrix are complex
conjugated in agreement with its general properties. As 	C

is real [	C > 0, according to Eqs. (A7) and (A8)] the circle
orbit is isolated stable PO. Substituting the expressions (A11)
into the first equation in Eq. (2.9) and using Eqs. (A9) for the
period TC , (A3) and (A8) for the C orbit frequencies ω

C
and

	C , relatively, one obtains the last equation in Eq. (2.9) for the
stability factor FMC .

APPENDIX B: SCALING PROPERTIES

For convenience, let us consider the classical dynamics
in terms of the variables in dimensionless units m = R0 =
E0 = 1. Due to the scaling property (2.2) for the classical
dynamics in the Hamiltonian (2.1), the energy dependence of
the action Ir (ε) [Eq. (2.4)], the angular momentum L(ε), the
frequency ωr (ε) [Eq. (2.6)] and the curvature K(ε) [Eq. (2.11)]
can be expressed in terms of the simple powers of the scaled
energy ε,

ε = E1/α+1/2. (B1)

In particular, one can express these classical quantities through
their values at ε = 1 (E = 1),

Ii = Ii(1)ε, L = L(1)ε,
(B2)

ω−1
r = ω−1

r (1)ε(2−α)/(2+α), K = K(1)/ε.

Therefore, due to the scaling properties (2.2) and (B2), we
need to calculate these classical dynamical quantities only at
one value of the energy ε = 1. For simplicity of notations, we
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shall omit the argument ε = 1 everywhere, if it is not lead to
misunderstandings.

The radial action Ir (L,E) [Eq. (2.4)] can be expressed
explicitly in terms of the frequencies ωϕ and ωr [Eq. (2.6)],
and their ratio f (L) [Eq. (2.8)],

Ir = 2α

α + 2
ω−1

r − Lf (L). (B3)

To prove this identity, we express Eq. (2.6) for ω−1
r in terms

of the determinant,

ω−1
r = ∂(Ir ,L)

∂(E,L)
= ∂Ir

∂E
− ∂Ir

∂L

∂L

∂E
. (B4)

Calculating directly the derivatives in this equation by using
Eq. (B2), one obtains the expression for ω−1

r (1). Solving then
this equation with respect to Ir (1), one arrives at Eq. (B3).
Differentiating the identity (B3) term by term over L and using
the definition for the ratio of frequencies f (L) [Eq. (2.8)], for
the curvature (2.11) one finally obtains

K = − 2α

(α + 2)L

∂ω−1
r

∂L

= − α

π (α + 2)L

∂Tr

∂L
, Tr = 2π

ωr

. (B5)

According to Eqs. (2.6) and (2.8) with the help of Ref. [25],
ω−1

r is obviously simpler quantity to differentiate over L than
f (L),

ω−1
r = 1

2π
√

2

∫ xmax

xmin

dx√
Q(x,L,α)

, (B6)

Q(x,L,α) = (1 − xα/2) x − L2/2, (B7)

and x = r2. The turning points xmin(L,α) and xmax(L,α) are
determined by the equation:

Q(x,L,α) = 0. (B8)

Thus, we may calculate ω−1
r and f (L), and then, use Eqs. (B3)

and (B5) for the radial action Ir , and curvature K at the scaled
energy ε = 1. Then, one obtains their energy dependence
through the scaling equations (B1) and (B2), respectively.

APPENDIX C: FULL ANALYTICAL CLASSICAL
DYNAMICS FOR POWERS 4 AND 6

For the powers α = 4 and 6, the roots of function (B7), in
particular, the turning points xmin and xmax can be obtained
explicitly analytically. Therefore, one can find the explicit
analytical expressions for the key quantities of the classical
dynamics for the POT, namely, the radial frequency ωr

[Eq. (2.6)] (or the radial period Tr ), and the frequency ratio
f (L) [Eq. (2.8)] in terms of the elliptic integrals from Ref. [25]
(all in dimensionless units).

For α = 4, one has the cubic polynomial equation
Q(x,L,α) ≡ x − x3 − L2/2 = 0 [Eqs. (B7) and (B8)] for
the three roots xmin, xmax, and x1; given by the Cardano
formulas explicitly as functions of L in the physical region
L � LC , r1 < 0 � rmin � rmax; xq = r2

q . For the radial period
Tr [Eqs. (B5) and (2.6)], one obtains the analytical expression
through these roots in terms of the complete elliptic integral

F(π/2,κ) of the first kind [18,25],

Tr = 2π

ωr

=
√

2√
xmax − x1

F

(
π

2
,κ

)
, (C1)

where κ = [(xmax − xmin)/(xmax − x1)]1/2 . For the ratio fre-
quencies f (L) [Eq. (2.8)], one finds

f (L) = L

π
√

2 xmax
√

xmax − x1

�

(
rmax − rmin

rmax
,κ

)
, (C2)

where �(n,κ) is the complete elliptic integral of the third
kind [25].

For α = 6, one has the polynomial equation of the fourth
power, Q(x,L,6) ≡ x − x4 − L2/2 = 0, having the four roots
[two complex conjugated x1 + ix2 and x1 − ix2, and again,
two real positive roots, xmin and xmax; see Eqs. (B7) and (B8)].
The radial period Tr is determined through these roots by the
expression [similar to Eq. (C1)]; see Refs. [18,25],

Tr =
√

2√
AB(xmax − x1)

F

(
π

2
,κ

)
, (C3)

where κ = {[(xmax − xmin)2 − (A − B)2]/(4 AB)}1/2, A =
[(xmax − x1)2 + x2

2 ]1/2, B = [(xmin − x1)2 + x2
2 ]1/2 . (We re-

duced the four-power polynomial equation to a cubic one and
obtained its four analytically given roots, mentioned above,
in the explicit Cardano’s form as functions of L). For f (L)
[Eq. (2.8)] at α = 6, one obtains [25]

f (L) =
√

2 L (A + B)

π
√

AB(Axmin − Bxmax)

×
[
β F

(
π

2
κ

)
+ β − β1

2(1 − β2)
�

(
π,

β2

1 − β2
,κ

)]
,

(C4)

where �(ϕ,n,κ) is incomplete elliptic integral of the third kind,
β = (Axmin − Bxmax)/(Axmin + Bxmax), β1 = (A − B)/(A +
B) . The curvatures K [Eq. (B5)] for α = 4 and 6 are
determined by taking analytically the derivative of the radial
period Tr [Eqs. (C1) and (C3)] over L through the derivatives
of the roots xmin(L), xmax(L), x1(L) and x2(L) for the derivative
of F(π/2,κ) over κ [25]. The expressions for the curvatures
K at the both powers α = 4 and 6 can be found in the closed
analytical form through a rather bulky formulas, which contain
the complete elliptic integrals of the first and second kind.

APPENDIX D: CLASSICAL DYNAMICS AND
BOUNDARIES FOR THE DIAMETERS

For the primitive diameter D = (2,1), the action SD (all in
this appendix in dimensionless units) is specified analytically
through the scaled period τ

D
and energy ε by

SD = τDε, τ
D

= 4
√

2π

α + 2
�

(
1

α

)
�

(
1

2
+ 1

α

)
, (D1)

where �(x) is the gamma function of a real positive argument
x. For the diameter PO boundaries, one can use the same
L− = 0, but L+ = bDLC , where

bD = 1 − 1

2
exp

[
−

(
LHO

D − LD

2�D

)2]
(D2)
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(see Ref. [17] and more details in relation to the HO limit in
Sec. III E), LD = 0 is the stationary point, LHO

D = LC/2 =
ε/(2

√
2) is the upper angular momentum L+ for the D orbits

in the limit α → 2, in which bD → 1/2. In the semiclassical
limit ε  1, one has bD → 1. �D = (πMnrKD)−1/2 is the
Gaussian width of the transition region between these two
asymptotic limits. The D curvature for α � 2 at L = LD is
given by

KD = �(1 − 1/α)

ε
√

2π �(1/2 − 1/α)
. (D3)

This exact analytical expression for the curvature KD at any
α was derived by using a power expansion in Eqs. (B8) and
(B3) over the variable proportional to L2 near L = 0 up to the
terms linear in L2. The Maslov phase for the diameter orbit
was determined by Eq. (3.14) at nr = 2 and nϕ = 1. Note that
for the limit α → 4, the general expressions for the period τ

D

and action SD [Eq. (D1)], the Maslov index σD [Eq. (3.14)]
with the same asymptotic (SSPM) limit of the constant part of
the phase φ

(D)
d = −π (4bD − 3)/4 → −π/4, and the curvature

KD [Eq. (D3)] for the diameter (2,1) are identical to those
obtained in Ref. [18].

APPENDIX E: THE BOUNDARIES AND CURVATURE
FOR CIRCLE ORBITS

For the arguments Z (±)
p and Z (±)

r of the error functions in
Eq. (3.26), one originally has

Z (±)
p,MC =

√
− i

2h̄
J (p)

MC (p(±)
r − p∗

r ),
(E1)

Z (±)
r,MC =

√
− i

2h̄
J (r)

MC (r (±) − r
C
),

where p∗
r = 0 is the stationary point, p(±)

r and r (±) are maximal
and minimal classically accessible values of pr and r as the
finite integration limits for the corresponding variables. To
express the integration boundaries (E1) in an invariant form
through the curvature KC (3.29), and stability factor FMC (2.9),
one may use now the simple standard Jacobian transforma-
tions, and the definition of the angle variable �′

r as canonically
conjugated one with respect to the radial action variable Ir

by means of the corresponding generating function. In these
transformations, we apply simple linear relations: p′′

r − p∗
r =

(∂p′′
r /∂L)∗ (L − L∗), and r ′ − r∗ = (∂r ′/∂�′

r )∗ (�′
r − �∗

r ),
where we immediately recognize the Jacobian coefficients.
Note that there is no crossing terms due to the isolated station-
ary point I ∗

r = 0, �∗
r = 0 and to equations for the canonical

transformations. At the stationary point for the isolated
circle PO, one has f (LC) = −(∂Ir/∂L)L=LC

= −1/
√

α + 2
[Eqs. (2.8), (A3) and (A8)]. For the transformation of the
derivative ∂r ′′/∂�′

r , one can apply the Liouville conservation
of the phase space volume for the canonical variables to
arrive at ∂r ′′/∂�′

r = (∂Ir/∂L)/(∂p′
r/∂L) and |JCT(p′

r ,p
′′
r )| =

|(∂p′′
r /∂L)/(∂p′

r/∂L)| = 1 at the PO conditions r ′ → r ′′ →
r
C
, p′

r → p′′
r → 0. Using also the Jacobian identity,

FMC = −J (p)
MCJ

(r)
MC

/
JMC(p′

r ,p
′′
r ), (E2)

one obtains Eq. (3.28) for the arguments of the error functions
in Eq. (3.26).

The expression (3.29) for the C curvature KC (in dimen-
sionless units at ε = 1) was obtained from expansion of f (L)
[Eq. (2.8)] as function of L in powers of LC − L = ε2 up
to the second-order terms in ε. For this purpose, by using
standard perturbation theory, we have to solve first Eq. (B8)
for the turning points rmin and rmax, [the integration limits in
Eq. (2.8)] in the following general form (r is taken below in
units of R0),

rmax = rC + c1ε + c2ε
2 + c3ε

3 + c4ε
4 + · · · ,

(E3)
rmin = rC − c1ε + c2ε

2 − c3ε
3 + c4ε

4 + · · · .

Existence of such form of the solutions follows from a
symmetry of the equation (B8) with respect to the change
of the sign of ε. Substituting these solutions into Eq. (B8)
for arbitrarily small ε, one gets the system of the recurrent
equations for the coefficients cn. The solutions of this system
up to the fourth order in a perturbation parameter ε is given by

c1 =
√

LC

α
, c2 = −α + 1

6
c2

1, c3 = (α − 2)(2α + 5)

72
c3

1,

c4 = − (α + 1)(4α2 + 8α + 13)

1080
c4

1, (E4)

and so on. We transform now the integration variable r in the
integral of Eq. (2.8) for f (L) to y, r = r

C
(1 − y), such that

f (L) = −L − ε2

π

∫ ymax

ymin

dy

(1 − y)
√

Q(y,L,α)
. (E5)

Here Q(y,L,α) is given by Eq. (B7),

Q(y,L,α) = 2 r2
C

[
1 − 2

α + 2
(1 − y)α − L2

C + 2LCε2 − ε4

]
≡ (ymax − y)(y − ymin)R(y), (E6)

ymax = c̄1ε − c̄2ε
2 + c̄3ε

3 − c̄4ε
4,

(E7)
ymin = −c̄1ε − c̄2ε

2 − c̄3ε
3 − c̄4ε

4,

where c̄n = cn/r
C
. We use the last representation in Eq. (E6),

introducing a new function R(y) of the new variable y to
separate the singularities of the integrand in Eq. (E5) due to
the turning points. This integrand has to be integrated exactly
by using a smooth function R(y) of y, which can be expanded
in y at y = 0 up to the second order,

R(y) = R(0) + R′(0)y + 1
2R

′′(0)y2 + · · · . (E8)

In order to get analytically the final result, we note that y

in this expansion is of the order of ε, according to Eq. (E7).
Substituting then these expansions (E7) and (E8) into very
right of Eq. (E6), we expand their middle in y at y = 0 up to
the fourth order. After the cancellation of ε2 from both sides,
and simple algebraic transformations, one has

R(0) = 2LC

c2
1

[1 + ε2 c2 (1 − k2)] + O(ε4),

k2 = c2

c2
1

,
R′(0)

R(0)
= 2k2 + O(ε2), (E9)

R′′(0)

R(0)
= 2k2(3k2 + 1) + O(ε2).
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For the calculation of the circle orbit curvature KC , we
obviously need only quadratic terms in ε [linear in (LC − L)].
Therefore, one may neglect the ε2 corrections in the second
and third lines of Eq. (E9) because they are multiplied
by y ∼ ε and y2 ∼ ε2 in the expansion (E8), respectively.
Substituting now expansions (E7) and (E8) into the integral
over y in Eq. (E5), and taking R(0) off the integral, one then
expands to the second order all quantities of the integrand
in y ∼ ε, except for (ymax − y)(y − ymin) under the square
root (in the denominator) which can be integrated exactly.
Taking remaining integrals as

∫
dyyn/

√
(ymax − y)(y − ymin)

from ymin to ymax [Eq. (E7)], and then, expanding finally
f (L) [Eq. (E5)] in ε, we find that the linear terms exactly
disappear. It must be the case because f (L) is an even
function of ε. Thus, the coefficient in front of ε2 with the
expressions for cn (n = 1,2,3) from Eq. (E4) is Eq. (3.29)
for the curvature KC . We can also use this perturbation
method for calculations of the next order curvatures, for
instance, ∂3Ir/∂L3, which appears in expansion of the phase
integral in the exponent up to the third order terms near
the stationary points within a more precise (third-order)
ISPM [9].
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