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Abstract

We revisit Stephen P. Humphries’ results indicating some connections
between Chebyshev polynomials and twin primes, by using Chebyshev poly-
nomials of the third and fourth kinds and cyclotomic polynomials. We then
give counterexamples to a conjecture of Humphries’. We also remark an-
other characterization of twin primes in terms of Chebyshev polynomials of
the second kind.
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1 Introduction

In a series of papers [3, 4, 5, 6], Stephen P. Humphries defined and investigated
certain operators to determine the geometric and algebraic intersection number
functions associated to a simple closed curve on a surface. A prominent role was
played by Chebyshev polynomials.

In this note, we are particularly interested in number theoretical aspects of his
results. Specifically, he indicated some connections between Chebyshev polyno-
mials and twin primes in [6]. In section 3 we give short proofs of some key results
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in [6] by using Chebyshev polynomials of the third and fourth kinds and cyclo-
tomic polynomials. Our proofs are essentially the same as the original ones, but an
effective use of such polynomials makes the discussion more transparent and the
computation easier. We point out two facts (Propositions 3.1 and 3.2) which seem
to have been overlooked, though the result of combining them has been noticed,
in [6].

In section 4 we give counterexamples to [6, Conjecture 1.21].
In the final section we remark another characterization of twin primes in terms

of Chebyshev polynomials of the second kind.

2 Chebyshev polynomials and cyclotomic polynomi-
als

We refer the reader to [7, 8] for Chebyshev polynomials.
For each integer n, the Chebyshev polynomials Tn(x), Un(x), Vn(x) and Wn(x)

of the first, second, third and fourth kinds, respectively, are characterized by

Tn(cos θ) = cos nθ, Un(cos θ) =
sin(n + 1)θ

sin θ
,

Vn(cos θ) =
cos(n + 1/2)θ

cos θ/2
, Wn(cos θ) =

sin(n + 1/2)θ

sin θ/2
.

They all satisfy the same recurrence relation

fn+2(x) = 2xfn+1(x) − fn(x),

with different initial terms

T0(x) = U0(x) = V0(x) = W0(x) = 1,

T1(x) = x, U1(x) = 2x, V1(x) = 2x − 1, W1(x) = 2x + 1.

It follows that they have integral coefficients and the indices, when non-negative,
represent the degrees of the polynomials. Schur’s notation Un(x) = Un−1(x) is
sometimes useful.

One can easily prove the following identities. Some of them will not be used
in this note, but are here for aesthetic reasons.
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Lemma 2.1. (i) T−n(x) = Tn(x),U−n(x) = −Un(x), V−n(x) = Vn−1(x),W−n(x) =

−Wn−1(x).

(ii) Tn(−x) = (−1)nTn(x), Un(−x) = (−1)nUn(x), Vn(−x) = (−1)nWn(x).

(iii) Vn(x) = Un(x) − Un−1(x),Wn(x) = Un(x) + Un−1(x).

(iv) Tn(1) = 1, Un(1) = n.

(v) Un(0) = (−1)(n−1)/2 if n is odd, Un(0) = 0 if n is even.

(vi) U ′
n(0) = 0 if n is odd, U ′

n(0) = −(−1)n/2n if n is even.

(vii)
∫ 1

−1
Un(x)dx = 2/n if n is odd,

∫ 1

−1
Un(x)dx = 0 if n is even.

Lemma 2.2.

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x),

2(x2 − 1)Um(x)Un(x) = Tm+n(x) − Tm−n(x),

(x + 1)Vm(x)Vn(x) = Tm+n+1(x) + Tm−n(x),

(x − 1)Wm(x)Wn(x) = Tm+n+1(x) − Tm−n(x),

2Tm(x)Un(x) = Um+n(x) − Um−n(x),

Vm(x)Wn(x) = Um+n+1(x) − Um−n(x),

2Tm(x)Vn(x) = Vm+n(x) + Vm−n−1(x) = Vm+n(x) + Vn−m(x),

2Tm(x)Wn(x) = Wm+n(x) − Wm−n−1(x) = Wm+n(x) + Wn−m(x),

2(x + 1)Um(x)Vn(x) = Wm+n(x) + Wm−n−1(x) = Wm+n(x) − Wn−m(x),

2(x − 1)Um(x)Wn(x) = Vm+n(x) − Vm−n−1(x) = Vm+n(x) − Vn−m(x).
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Lemma 2.3.

2Ud(x)
∑n

j=0Ta+2dj(x) =Ua+d+2dn(x) − Ua−d(x),

2(x2 − 1)Ud(x)
∑n

j=0Ua+2dj(x) =Ta+d+2dn(x) − Ta−d(x),

2(x + 1)Ud(x)
∑n

j=0Va+2dj(x) =Wa+d+2dn(x) − Wa−d(x),

2(x − 1)Ud(x)
∑n

j=0Wa+2dj(x) =Va+d+2dn(x) − Va−d(x),

2Wd(x)
∑n

j=0Ta+(2d+1)j(x) =Wa+d+(2d+1)n(x) − Wa−d−1(x),

2(x − 1)Wd(x)
∑n

j=0Ua+(2d+1)j(x)=Va+d+(2d+1)n(x) − Va−d−1(x),

Wd(x)
∑n

j=0Va+(2d+1)j(x) =Ua+d+1+(2d+1)n(x) − Ua−d(x),

(x − 1)Wd(x)
∑n

j=0Wa+(2d+1)j(x)=Ta+d+1+(2d+1)n(x) − Ta−d(x).

Let
Φn(x) =

∏
d|n

(xd − 1)µ(n/d) (1)

be the nth cyclotomic polynomial, where d ranges over all positive divisors of
n and µ is the Möbius function. For n ≥ 3, there exists a unique polynomial
Ψn(x) ∈ Z[x] such that

Ψn(x + x−1) = x−φ(n)/2Φn(x),

where φ is the Euler function. As Φn(x) is irreducible (in this note, we consider
irreducibility over Z), so is Ψn(x). These polynomials appear in the factorization
of Chebyshev polynomials as follows.

Proposition 2.4. (i) 2Tn(x/2) =
∏

d|n,

n/d:odd
Ψ4d(x).

(ii) Un(x/2) =
∏

2<d|2n Ψd(x).

(iii) Vn(x/2) =
∏

1<d|2n+1 Ψ2d(x).

(iv) Wn(x/2) =
∏

1<d|2n+1 Ψd(x).

Proof. See [8, section 5.2] for (i) and (ii). One can prove the remaining similarly,
i.e., by comparing the zeros of both sides.

By the inversion formula, one obtains the following expression.
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Proposition 2.5 (Cf. [1]).

Ψn(x) =


∏

d|n W(d−1)/2(x/2)µ(n/d) (n ≡ 1 (mod 2))∏
d|n/2 V(d−1)/2(x/2)µ(n/2d) (n ≡ 2 (mod 4))∏
d|n/2 Ud(x/2)µ(n/2d) (n ≡ 0 (mod 4)).

3 Humphries’ results, revisited

For n ≥ 1 we define Θn ∈ Z[x, y] by

Θn =

W(n−1)/2(x/2) (n : odd)

y Un/2(x/2) (n : even).

By Lemma 2.3 (the first identity with (a, d) = (0, 1) and the fifth identity with
(a, d) = (0, 0)), this definition is equivalent to Humphries’ in [6, Theorem 1.7],
where x and y are written as −r and −s, respectively. We also define

Γn =
∏
d|n

Θ
µ(n/d)
d .

For example, Γ1 = 1, Γ2 = y.

Proposition 3.1. Γn = Ψn(x) (n ≥ 3).

Proof. The claim follows from Proposition 2.5 and the definition of Γn. This is
clear if n is odd. Suppose n ≡ 2 (mod 4). Treating odd and even divisors of n

separately and using the sixth identity of Lemma 2.2, we compute

Γn =
∏
d|n/2

W(d−1)/2(x/2)µ(n/d)
∏
d|n/2

(y Ud(x/2))µ(n/2d)

=
∏
d|n/2

(
W(d−1)/2(x/2)−1Ud(x/2)

)µ(n/2d)

=
∏
d|n/2

V(d−1)/2(x/2)µ(n/2d)

= Ψn(x).

In the case n ≡ 0 (mod 4), we have only to note that µ(n/d) = 0 for odd divisors
d of n.
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As a corollary, we see that Γn is irreducible for n ≥ 1, and Γn ∈ Z[x],
deg(Γn) = φ(n)/2 for n ≥ 3. By the inversion formula, we have

Θn =
∏
d|n

Γd. (2)

These facts together with Proposition 3.2 below imply Theorems 1.10 and 1.11 of
[6].

We define qn,i ∈ Z[x] by the identity

2n+1∑
i=0

qn,it
i = (t + 1)

n∏
j=1

(t2 + 2Tj(x/2)t + 1). (3)

Our definition of qn,i differs from Humphries’ by a factor of (−1)i+1 (recall also
that x = −r). We further define

γn = gcd({qn,i; 1 ≤ i ≤ 2n}).

Proposition 3.2. γn = Γ2n+1.

Proof. It is proved in [6, Theorem 1.7] that

qn,i =
Θ2n+1!

Θi!Θ2n+1−i!
, (4)

where Θk! is defined to be Θ1Θ2 . . . Θk. Substituting (2) into (4), we obtain

qn,i =
2n+1∏
d=1

Γ
m(n,i,d)
d

so that

γn =
2n+1∏
d=1

Γ
min{m(n,i,d);1≤i≤2n}
d ,

where
m(n, i, d) =

⌊2n + 1

d

⌋
−

⌊ i

d

⌋
−

⌊2n + 1 − i

d

⌋
.

Since m(n, i, 2n + 1) = 1 for 1 ≤ i ≤ 2n and m(n, d, d) = 0 for 1 ≤ d ≤ 2n, we
complete the proof.

Remark 3.3. The result of combining Propositions 3.1 and 3.2 is nothing but [6,
Theorem 1.18(iii)]. However, it seems that these two facts have not been noticed
separately.
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The following is the key to the proof of the main result in [6]. It should be
noted that Γkm is mistyped as γkm in [6].

Proposition 3.4 ([6, Proposition 6.2]). We define

Σn,m,s =
∑

i≡s (mod m)

(−1)iqn,i,

γn,m = gcd({Σn,m,s ; 1 ≤ s ≤ m}).

Then we have:

(i) (x + 2) | γn,2.

(ii) If n,m, k are integers such that 3 ≤ km ≤ n, then Γkm | γn,m.

Proof. (i) Upon substituting x = −2 in (3), we have

2n+1∑
i=0

qn,it
i = (t2 − 1)n(t + (−1)n).

Substituting t = ±1 into this equality and taking the difference (resp. sum),
we obtain 2Σn,2,1 = 0 (resp. 2Σn,2,2 = 0).

(ii) We may suppose m ≥ 2 since Σn,1,s = 0. Multiplying (3) by t−s, substitut-
ing t = −ζ l where ζ = exp(2π

√
−1/m) and summing over 0 ≤ l ≤ m−1,

we obtain

mΣn,m,s =
m−1∑
l=0

ζ−ls(−ζ l + 1)
n∏

j=1

(ζ2l − 2Tj(x/2)ζ l + 1).

On the other hand, we have

Γkm =
∏

1≤a≤km/2

gcd(a,km)=1

(
x − 2 cos

2aπ

km

)

by Proposition 3.1. Let a be an arbitrary integer such that 1 ≤ a ≤
km/2, gcd(a, km) = 1. It suffices to show that, for each l, there exists
an integer j in the range 1 ≤ j ≤ n such that ζ2l − 2Tj(x/2)ζ l + 1

vanishes for x = 2 cos(2aπ/km). This last condition is equivalent to
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cos(2lπ/m) = cos(2ajπ/km), that is, kl ≡ ±aj (mod km). By the as-
sumptions on n,m, k and a, the set {±aj ; 1 ≤ j ≤ n} modulo km exhausts
the residue classes modulo km. This completes the proof.

Now we turn to some connections with twin primes. Let ν2 : Z[x, y] → Z
denote the ring homomorphism obtained by evaluation at (x, y) = (2, 2).

Proposition 3.5 ([6, Theorem 1.12]). (i) ν2(Θn) = n.

(ii) If n = pk where p is a prime and k ≥ 1, then ν2(Γn) = p. Otherwise,
ν2(Γn) = 1.

Proof. (i) ν2(Θ2k+1) = Wk(1) = Uk(1) + Uk−1(1) = 2k + 1, and ν2(Θ2k) =

2Uk(1) = 2k.

(ii) ν2(Γn) = Ψn(2) = Φn(1). The claim follows from this and the definition
(1) of Φn(x).

From the last property, Humphries noticed the following connection with twin
primes. For positive integers n1, n2, . . . , nr, we define

Λn1,n2,...,nr =
r∑

j=1

(Γnj
− nj).

Corollary 3.6 ([6, Theorems 1.13 and 1.14]). (i) Suppose n > m > 1. Then
ν2(Γn)− ν2(Γm) = 2 if and only if there exist twin primes p, p+2 such that
n and m are powers of p + 2 and p, respectively.

(ii) If p, p + k are primes, then gcd(Λp, Λp+k) 6= 1.

(iii) Suppose n1, n2, . . . , nr are odd positive integers. Then ν2(Λn1,n2,...,nr) = 0

if and only if n1, n2, . . . , nr are primes.

Proof. These are immediate from Proposition 3.5.

Another connection that Humphries noticed is the following.

Proposition 3.7 ([6, Proposition 7.2]). If p, p + 2k are primes, then Γp+k | Γp +

Γp+2k.
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Proof. Define Θ′
n ∈ Z[x] by Θ′

n = Θn if n is odd, Θ′
n = y−1Θn if n is even.

It suffices to show that Θ′
n | Θ′

n−k + Θ′
n+k for n > k ≥ 1. By Lemma 2.2, the

quotient (Θ′
n−k + Θ′

n+k)/Θ
′
n is as follows:

• If n = 2a + 1, k = 2b + 1, it is (Ua−b + Ua+b+1)/Wa = Vb.

• If n = 2a + 1, k = 2b , it is (Wa−b + Wa+b)/Wa = 2Tb.

• If n = 2a, k = 2b + 1, it is (Wa−b−1 + Wa+b)/Ua = 2(x + 1)Vb.

• If n = 2a, k = 2b, it is (Ua−b + Ua+b)/Ua = 2Tb.

Here we abbreviate Wa = Wa(x/2) and so on. This completes the proof.

4 Humphries’ conjectures

Humphries made two sets of conjectures in [6].

Conjecture 4.1 ([6, Conjecture 1.20]). In the following, all numbers are supposed
to be positive integers.

(i) gcd(Λn, Λn+k) 6= 1 if and only if n, n + k are primes.

(ii) Suppose n > 8. Then Λn,n+2 is reducible if and only if n, n + 2 are primes.

(iii) Suppose n1, n2, . . . , nr are distinct odd integers greater than 8. Then Λn1,n2,...,nr

is reducible if and only if n1, n2, . . . , nr are primes.

(iv) Suppose n is odd. Then Γn+k | Γn + Γn+2k if and only if n, n + 2k are
primes.

(v) Γn is irreducible.

The “if” part is true in each case as we have seen above. One can not drop the
condition n 6= 8 in (ii) since Λ8,10 = (x − 3)(2x + 7). We note that (v) is true by
Proposition 3.1.

Now we define, changing the sign of those defined in [6],

∆n(x) =
∑
d|n

Ud(x/2), dn(x) = ∆n(x) + n.
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Conjecture 4.2 ([6, Conjecture 1.21]). The following conditions are equivalent
for odd n > 1:

(i) n, n + 2 are primes.

(ii) dn+2(x) − dn(x) has a multiple root.

(iii) dn+2(x) ≥ dn(x) for all real numbers x.

(iv) dn+2(2) − dn(2) = 4.

(v)
∫ 2

−2
(dn+2(x) − dn(x)) dx = 8 − 8/n(n + 2).

(vi) dn+2(x) − dn(x) is a perfect square.

By the identity Un+2(x) − Un(x) + 2 = 4T(n+1)/2(x)2, the implication (i)
⇒ (vi) holds true. The implications (vi) ⇒ (ii) and (vi) ⇒ (iii) are clear. Let
σk(n) =

∑
d-n dk denote the divisor function. If n, n + 2 are primes, we have

clearly
σk(n + 2) − (n + 2)k = σk(n) − nk. (5)

The conditions (iv) and (v) are special cases of (5) since ∆n(2) = σ1(n) and∫ 2

−2
∆n(x)dx = 4σ−1(n) by Lemma 2.1. More generally, one might ask, for each

k 6= 0, whether (5) implies the primality of n and n + 2.
We give counterexamples to Conjecture 4.2. First, there exist infinitely many

counterexamples to the implication (ii) ⇒ (i) as the next theorem shows.

Theorem 4.3. Let n > 1 be odd. Then x = 0 is a multiple root of dn+2(x) −
dn(x) if and only if n is of the form p0(p1p2 . . . pr)

2, where p0, p1, . . . , pr are (not
necessarily distinct) primes such that p0 ≡ 1 (mod 4) and p1 ≡ · · · ≡ pr ≡ 3

(mod 4).

Proof. Let χ denote the non-trivial Dirichlet character modulo 4. It follows from
Lemma 2.1 that ∆n(0) =

∑
d|n χ(d), which we will write as σχ(n). By the mul-

tiplicativity of χ, we have σχ(n1n2) = σχ(n1)σχ(n2) if gcd(n1, n2) = 1. If p is a
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prime and e ≥ 1, we have

σχ(pe) =


1 (p = 2)

e + 1 (p ≡ 1 (mod 4))

0 (p ≡ 3 (mod 4), e : odd)

1 (p ≡ 3 (mod 4)), e : even).

A general formula of σχ(n) follows from these facts. In particular, the condition
on n in the statement of the theorem is equivalent to σχ(n) = 2. Now let n > 1

be odd and put g(x) = dn+2(x) − dn(x). Since σχ(k) = 0 if k ≡ 3 (mod 4), we
have g(0) = 2 + σχ(n + 2)− σχ(n) = 0 if and only if σχ(n) = 2. This completes
the proof since g′(0) = 0 holds by Lemma 2.1.

Except for these cases, we have found no counterexamples to (ii) ⇒ (i) in the
range n < 104. Maybe (ii) should be replaced by the following:

(ii)’ dn+2(x) − dn(x) has a multiple root except possibly x = 0.

Second, as a result of computer search, we have found two counterexamples to
the implication (iv) ⇒ (i) in the range n < 1010; they are n = 8575 and n = 8825.
If we allow n to be even, we have one more counterexample n = 434 in the same
range.

We finally remark that if n is a counterexample to (v) ⇒ (i), we must have
σ1(n + 2) ≡ 1 (mod n + 2) and σ1(n) ≡ 1 (mod n). First candidates would be
positive integers n satisfying σ1(n) = 2n + 1, the so called quasiperfect numbers.
However, no quasiperfect numbers have been found so far, and it is known that if
there are any they must be odd squares with at least seven distinct prime factors
and must exceed 1035 (cf. [2]).

5 Another characterization of twin primes

Here is another characterization of twin primes.

Proposition 5.1. Let n > 1 be odd. The following conditions are equivalent:

(i) n, n + 2 are primes.
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(ii) Un+1(x/2) + 1 has exactly two irreducible factors.

(iii) Un+1(x/2) − 1 has exactly two irreducible factors.

Proof. By the sixth identity of Lemma 2.2, we have

Un+1(x/2) − 1 = V(n+1)/2(x/2)W(n−1)/2(x/2).

By Proposition 2.4, W(n−1)/2(x/2) is irreducible if and only if n is a prime, and
V(n+1)/2(x/2) = (−1)(n+1)/2W(n+1)/2(−x/2) is irreducible if and only if n + 2

is a prime. This shows (i) ⇐⇒ (iii). Replacing x by −x, we have (i) ⇐⇒
(ii).
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