
Mobile Robots Gathering Algorithm
with Local Weak Multiplicity in Rings

Tomoko IZUMI1, Taisuke IZUMI2, Sayaka KAMEI3, and Fukuhito OOSHITA4

1 College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, 525-8577 Japan.

izumi-t@fc.ritsumei.ac.jp
2 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.

t-izumi@nitech.ac.jp
3 Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 736-8511, Japan

s-kamei@se.hiroshima-u.ac.jp
4 Graduate School of Information Science and Technology, Osaka University,

Suita, 565-0871, Japan
f-oosita@ist.osaka-u.ac.jp

Abstract. The gathering problem of anonymous and oblivious mobile robots is
one of fundamental problems in the theoretical mobile robotics. We consider the
gathering problem in unoriented and anonymous rings, which requires that all
robots gather at a non-predefined node. Since the gathering problem cannot be
solved without any additional capability to robots, all the previous works assume
some capability of robots, such as accessing the memory on node. In this paper,
we focus on the multiplicity capability. This paper presents a deterministic gath-
ering algorithm withlocal-weakmultiplicity, which provides the robot with the
information about whether its current node has more than one robot or not. This
assumption is strictly weaker than that by previous works. Moreover, we show
that our algorithm is asymptotically time-optimal one, that is, the time complex-
ity of our algorithm isO(n), wheren is the number of nodes. Interestingly, in
spite of assuming the weaker assumption, it achieves significant improvement
compared to the previous algorithm, which takesO(kn) time fork robots.

1 Introduction

1.1 Background and Motivation

Mobile robots are the entities that cooperate with each other by computing, moving and
communicating in a plane or in a network. The computational power of mobile robots
with quite weak capability is attracting much attention of researchers in the field of
distributed computing. In most of the studies, it is assumed that robots are oblivious
(no memory to record past situations), anonymous (no IDs to distinguish two robots)
and uniform (all robots run the same algorithm). In addition, it is also assumed that
each robot has no direct means of communication. Typically, communication among
two robots is done in the implicit way that each robot observes the environment, which
includes the positions of other robots.



We consider the gathering problem of mobile robots, which is one of fundamen-
tal coordination tasks in the mobile robots system. The problem requires all robots to
gather on a non-predefined location. Because of its simplicity, the gathering problem
is actively studied in various settings. While most of previous works consider the gath-
ering problem on two-dimensional Euclidean space [1, 2, 4, 7], a number of researches
deal with it in graphs [3, 5, 6, 8, 9, 11, 10]. In this paper, we focus on unoriented anony-
mous rings. That is, we make all robots moving in a graph of ring topology gather on
a non-predefined node. Unfortunately, regardless of its settings (graph or 2D-plane), it
has been proved that the gathering problem is unsolvable in oblivious and anonymous
robot systems without no additional assumption. All of the possibility results depend on
some additional assumptions for capability of robots, such as distinct identifiers [10],
accessing memory on nodes [3, 6, 11] or memory on robots [5].

The capability of robots considered in this paper is locality ofmultiplicity detec-
tion. The multiplicity detection specifies how each robot observes a node where two or
more robots stay. In most of previous works, three types of multiplicity detection are
considered: No multiplicity (each robot cannot distinguish the node with a single robot
from that with multiple robots), weak multiplicity (each robot can detect whether the
number of robots on a node is only one or more than one), and strong multiplicity (each
robot can know the number of robots on a node). Recently, in addition to the above
types, the notion oflocality for multiplicity detection capability is introduced [7]. The
local multiplicity detection implies that each robot can detect the multiplicity only for
its current node. On the other hand, the global multiplicity allows each robot to detect
the multiplicity of any node. In the original paper about gathering on ring [9] assumes
global-weak multiplicity, and investigate the relationship between its feasibility and
initial configurations: It presents a sufficient class of gatherable initial configurations,
calledrigid configurations, which is the set of configurations excluding one having a
certain kind of symmetricity. It also proposes a gathering algorithm with global-weak
multiplicity for any rigid configuration. However, the strategy of that algorithm strongly
depends on the capability of global multiplicity. Its idea is to obtain exactly one node
occupied by two or more robots and to make the others reach it. It is clear that this idea
does not work correctly if we assume local multiplicity, because any robot on a node
cannot detect the multiplicity of other nodes. In this sense, it is an interesting and non-
trivial problem to reveal the set of initial configurations for which gathering is possible
only with local multiplicity.

1.2 Our Contribution

In this paper, we investigate the feasibility of the gathering with local-weak multiplic-
ity, which is strictly weaker setting than the original works by Klasing et. al. [9]. The
contribution of this paper is that any rigid configuration is gatherable only with local-
weak multiplicity detection. We propose a deterministic gathering algorithm in rings
with k asynchronous robots (2< k ≤ ⌊n/2⌋ − 1, wheren is the number of nodes) that
is applicable to any rigid configuration. Our algorithm assumes that robots are oblivi-
ous, anonymous and uniform, and that they have no device to communicate with others
directly. To make the gathering problem solvable, we assume that robots have the local-
weak multiplicity.



Moreover, the time complexity of our algorithm is also analyzed. In this paper. we
evaluate time complexity based on maximum number ofasynchronous roundsin the
worst case, which is one of well-known model for measuring time complexity in asyn-
chronous systems. The time complexity of our gathering algorithm with local-weak
multiplicity is asymptotically optimal, that is,O(n). Interestingly, it is significant im-
provement compared to the previous algorithm, which takesO(kn) rounds [9]: in the
previous algorithm, the robots first creates a configuration in which exactly one nodev
is occupied by two robots. Then, the robots which have no robot on the paths tov move
to v, and other robots stay their current nodes. Since it takesO(n) rounds to gather two
robots tov, the time complexity of the algorithm isO(kn).

1.3 Roadmap

In Section 2 we present the model of autonomous mobile robots considered in this
paper, and introduce other necessary notations and definitions. The gathering algorithm
with local-weak multiplicity and its time complexity are shown in Section 3. Finally we
conclude this paper in Section 4.

2 Preliminaries

2.1 System Models

The system consists of sets of nodesV and mobile robotsR. The numbers of nodes and
robots are denoted byn = |V| andk = |R| respectively. The nodes construct unoriented
and undirected anonymous ring: Neither nodes nor links of the ring have any identifiers
and labels. Some nodes of the ring are occupied by robots.

The robots areanonymousandoblivious. That is, each robot has no identifiers dis-
tinguishing itself and others, and cannot explicitly remember the history of its execu-
tion. In addition, no device for direct communication is equipped on each robot, such
as marks which can be left on nodes and communication devices for sending mes-
sages. The cooperation of robots is done in an implicit manner: Each robot observes the
configuration (i.e., the nodes occupied by other robots). Each robot executes the same
deterministic algorithm in computational cycles (or briefly cycles). At the beginning of
a cycle, each robot observes the current configuration and determines to stay idle or
to move to one of adjacent nodes based on the algorithm. Then, if the robot decides
to move, it moves to the adjacent node. We assume that the robot reaches the destina-
tion instantaneously. That is, when a robot observes the configuration, it sees all other
robots at nodes and not on links. Cycles are performed asynchronously: The length of
time for performing each operation is finite but unbounded. Due to these delay, when a
robot moves to an adjacent node which is computed based on the last observation, some
robots may stay at different nodes from those observed by the robot.

A configuration is defined by node on which each robot stays. The number of robots
staying on a node is called themultiplicity numberof the node. If the multiplicity num-
ber of nodev is more than one, we sayv is multiple. If v has one robot,v is said to
be single. If there is no robot on a node, the node is calledfree. Thesegment[vp, vq]
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a. a configuration b. a periodic configuration c. a symmetric configuration

Fig. 1.Examples of configurations: In figure a, the configuration is represented by ((4, 3, 1, 2, 2),
(2, 1, 1, 2, 1)) which starts from nodeA. The periodic configuration in figure b is (2, 3, 1, 2, 3, 1),
which is two copies of (2, 3, 1). The configuration in figure c has the axis of symmetry.

is defined by the sequence (vp, vp+1, . . . , vq) of consecutive nodes in the ring, where
nodesvp andvq are single or multiple and the others are free. The distance of segment
[vp, vq] is equal to the number of nodes in [vp, vq] minus 1. ConfigurationCi in which
[v1, v2], [v2, v3] . . . , [vw, v1] are consecutive segments in a direction on the ring is defined
by a pair of sequences ((di

1,d
i
2, . . . , d

i
w), (mi

1,m
i
2, . . . ,m

i
w)), wheredi

h is the distance of
[vh, v(h+1) modw] andmi

h is the multiplicity number ofvh (1 ≤ h ≤ w). We get different
pairs of sequences when different segment is selected as the first segment or when the
distances are listed in the opposite direction in the ring. These sequences represent the
same configuration. In this paper, to simplify notation, we use one of the pairs of se-
quences which represent a configuration to denote the configuration. When no node is
multiple in a configuration, we use only sequence (di

1,d
i
2, . . . ,d

i
w).

A configuration is changed by movements of robots. LetC0 be an initial con-
figuration andMi be a set of movements that occur simultaneously at configuration
Ci . An execution is an alternate sequence of configurations and sets of movements
E = C0,M0,C1,M1, . . ., such that occurrence of movementsMi changes the config-
uration fromCi to Ci+1.

Configurations which have no multiple node are classified into three classes in [9]:
ConfigurationC is calledperiodic if C is represented by a concatenation of at least two
copies of a subsequence. If there is an axis of symmetry of the ring in configurationC,
C is calledsymmetric. The last class is calledrigid, in which the other configurations
are included. Figure 1 shows examples of these configurations.

By observing a configuration, a robot gets a sequence of distances of segments and
information about multiplicity number. ConfigurationCi observed by a robot on node
v is represented by two sequences of distances (di

1, d
i
2, . . . , d

i
w) and (di

wdi
w−1, . . . , d

i
1)

starting fromv: One is the sequence in the opposite direction of the other. Since the
ring is unoriented, each robot cannot know which is clockwise or counterclockwise
one. In this paper, each robot chooses the larger one in lexicographic order: Sequence
(ai ,ai+1, . . . , a j) is larger than (bi ,bi+1, . . . ,b j) if there ish (i ≤ h ≤ j) such thatal = bl

for i ≤ l ≤ h − 1 andah > bh. The capacity ofmultiplicity detectionspecifies how
each robot observes multiple nodes. In this paper, we consider thelocal-weak multi-



plicity: Each robot can detect whether the multiplicity number of its current node is
more than one. Theview of a robot on nodev at configurationCi is represented by
sv(Ci) = (max{(di

1,d
i
2, . . . ,d

i
w), (di

w,d
i
w−1, . . . , d

i
1)},mi), wheremi is true if the multiplic-

ity number of nodev is more than one and false otherwise. Note that the sequences
of distance in views of different robots may be in different direction on the ring. For
example, in Figure 1. a., the view of the robots on nodeA is ((4, 3, 1, 2, 2), true) and
that onB is ((3, 4, 2, 2, 1), false). In [9], it is said that a configuration without multiple
nodes is rigid when the views of all the robots are different.

2.2 Gathering Problem

The goal of the gathering problem is to gather all the robots on one node that is not
predefined and to keep the configuration. For the gathering problem, some impossibility
results are shown in [9].

Theorem 1. The gathering problem is insolvable for the following cases:

1. The number of robots is two.
2. Robots have no multiplicity detection.
3. The initial configuration is any periodic configuration.
4. The initial configuration is any symmetric configuration in which axis of symmetry

goes through two antipodal links.

In this paper, we assume that initial configuration is rigid and that 2< k ≤ ⌊n/2⌋−1.
That is, in an initial configuration, there is no multiple node and each robot has different
view.

The algorithms in this paper are described in some rules. Each rule consists of some
conditions and actions of the robots. The robots observe the current configuration and
execute actions of one of the rules whose condition matches the observing configura-
tion. Notice that some conditions are described nested if-then-else statements.

3 Gathering Algorithm with Local-Weak Multiplicity

In this section, we present a gathering algorithm with the local-weak multiplicity for
any rigid configuration with 2< k ≤ ⌊n/2⌋ − 1 robots.

Before presenting the details of the algorithm, we introduce several definitions and
notation. Themaximum segmentat configurationCi is the segment with the longest
distance inCi . Themaximum nodeatCi is the non-free node on which the view of robot
is themaximum viewat Ci . If only one node is the maximum one inCi , the maximum
node is denoted byvi

1 and each non-free node is labeled in the same order as the distance
sequence in the view onvi

1. That is, for viewsvi
1
(Ci) = ((di

1,d
i
2, . . . , d

i
w),mi), nodevi

h is
the node such that the distance of segment [vi

h, v
i
h+1] is di

h and calledh-th node. In this
case, for simplicity, distancedi

h implies theh-th element of the distance sequence on
the maximum node.

From the definitions, the following lemma is trivial.



Lemma 1. Let Ci be a configuration without multiple nodes. The number of the maxi-
mum nodes at configuration Ci is one if and only if Ci is rigid.

In what follows, we present our algorithm in some subsections. In Section 3.1, the
gathering algorithm for any rigid configurationCi wheredi

1 ≥ 4 anddi
2 ≥ 3 is intro-

duced. If a given initial configuration does not match the above conditions, the robots
try to create the configuration satisfying them: The algorithm presented in Section 3.2
creates a desired configuration from a rigid one wheredi

1 ≥ 4 anddi
2 < 3, and in Section

3.3, we present the algorithm for creation of a rigid configuration wheredi
1 = 4 from

a rigid one wheredi
1 = 3. In this paper, we assume thatk ≤ ⌊n/2⌋ − 1 and that initial

configurationC0 is rigid. That is, the distance of the maximum segment is longer than
2 atC0.

3.1 Gathering from a rigid configuration where di
1
≥ 4 and di

2
≥ 3

In this subsection, we assume that the initial configurationC0 is rigid and satisfiesd0
1 ≥

4 andd0
2 ≥ 3.

To gather only with the local-weak multiplicity, we must lead a configuration where
one node hask− 1 robots and the other has 1 robot when the number of non-free nodes
is 2. The reason is that when two nodes are multiple and the others are free, the robots
on the two nodes take the symmetric movements because they have the same view.
Hence, when the two nodes are neighboring, all the robots keep staying the current
nodes or passing each other. Thus, the robots cannot gather on one node. The idea of
our algorithm is that nodev0

2 is kept single, and that the robots on nodesv0
1 andv0

4, . . . , v
0
w

gather to nodev0
3. The key to achieve this strategy is that nodesv0

2 andv0
3 are kept as the

second and the third nodes respectively during the execution.
The details of our algorithm are as follows

– In the case that the numberw of non-free nodes is more than or equal to 3,
R1 : Whendi

w ≥ 2, robots onvi
1 move tovi

w.
R2 : Whenw , 3, di

w = 1, di
w−1 ≥ 2,

R2-1 : if the maximum segment is only [vi
1, v

i
2] then robots onvi

w move tovi
w−1,

R2-2 : otherwise robots onvi
2 move tovi

3.
R3 : Whenw , 3 anddi

w = 1 anddi
w−1 = 1, robots onvi

1 move tovi
w.

R4 : Whenw = 3 anddi
3 = 1, robots onvi

1 move tovi
3.

– In the case that the numberw of non-free nodes is 2,
R5 : robot on the single node moves to the other node occupied by robots.

First, let consider an initial configuration where the number of the maximum seg-
ments is one. In our algorithm, the robots move so that the first element on the maximum
node is increased, the second element is not changed and the others are decreased. In
addition, the last element is kept shorter than the second element. That is, during the ex-
ecution, the number of the maximum segments is one, and nodev0

2 remains the second
node not the first. Figure 2 illustrates an example of executions of the algorithm. The
robots on nodevi

1 move to the neighboring node of the last node (ruleR1). After that,
the robots onvi

w move to the other neighboring node ofvi
w if the neighbor is free (rule

R2-1). Then, the distance of the last segment becomes 2, and ruleR1 is executed again.
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Fig. 2.An example of executions of the gathering algorithm

That is, the last element of the maximum view is kept shorter than the second element,
which is larger than or equal to 3. Whend j

w−1 becomes 1, the robots onv j
1 join on v j

w

(rule R3). By repeating these actions, the configuration eventually becomes one where
w = 3 anddh

3 = 1, and then, all the robots except one on the second node gather onvh
3

(rule R4). That is, a configuration where one node is single and the other is multiple is
created. Lastly, the robot on the single node moves to the multiple node.

We consider the initial configurationC0 such that more than one the maximum
segments exist. In this case, one of rulesR1, R2-2 andR3 is applied. At the next con-
figurationC1 after executing one of them, the first element on the maximum nodev0

1 is
extended by one. That is, the number of the maximum segments becomes one atC1, and
then the robots gather on one node by the above way. However, only when ruleR2-2 is
applied, the second element ofv0

1 may become less than 3. It does not satisfy the con-
ditions for execution of this algorithm. In this case, the algorithm presented in Section
3.2, in which the second element becomes 3 keeping only the first segment having the
maximum distance, is executed.

Lemma 2. For k(2 < k ≤ ⌊n/2⌋ − 1) robots with the local-weak multiplicity, the algo-
rithm achieves the gathering from a rigid configuration where d0

1 ≥ 4 and d0
2 ≥ 3.

Proof. If the configuration becomes one wherew = 3, di
3 = 1 and the second node is

single, it is clear that rulesR4 andR5 lead to gathering.
In what follows, we explain that the desired configuration is created by rulesR1-

R3. The important fact to show this lemma is that the maximum node is only one and
the second node is not changed during the execution.



First, we show that in any executionE from a given initial configuration, there is a
configurationC j satisfying the following three conditions: 1) exactly one nodev j

1 is the
maximum node, 2) only the first segment onv j

1 is the maximum one and 3)d j
2 ≥ 3. The

initial configurationC0 is rigid. It means that exactly one node is the maximum node
(Lemma 1). We consider each case that each rule is appied.

– When ruleR2-1 is applied atC0, C0 satisfies the above conditions.

– When ruleR1 or R3 is executed atC0, the robot onv0
1 moves to adjacent nodeu and

the others stay on their current node. Segment [u, v0
2], whose distance isd0

1 + 1, is
only the maximum one because there is no segment whose distance is longer than
d0

1 at C0. Thus, the first condition is satisfied. The distance of the other segment
including u is d0

w − 1 or 1, and it holds thatd0
w ≤ d0

2 = d1
2. Thus, nodeu is only

the maximum node andd1
2 ≥ 3 at configurationC1, that is,C1 satisfies the three

conditions.

– When ruleR2-2 is applied atC0, the robot onv0
2 moves to adjacent node and the

robot onv0
1 does not move. At the next configurationC1, since the view onv0

1 is
represented by (d0

1 + 1,d0
2 − 1, . . . ,1), the segment withd0

1 + 1 distance is only the
maximum one andv0

1 is only the maximum node. However,d1
2 may become less

than 3. In this case, the algorithm in Section 3.2 is executed atC1. Lemma 4 and 5
guarantee that the algorithm leads to a configurationC j in which d j

2 = 3 keeping
nodev1

1 and segment [v1
1, v

1
2] being only the maximum one. That is, configuration

C j satisfies the above three conditions, and ruleR2-2 is not executed atC j .

Next, we prove that for any configurationCi( j ≤ i) duringE, the next configuration
Ci+1 satisfies the following three conditions; 1) only the segment including [vi

1, v
i
2] has

the maximum distance, 2)vi+1
2 = vi

2 and 3) 3≤ di+1
2 . This implies that the maximum

node is only one, nodevi
2 remains the second node, and ruleR2-2 is not executed at

Ci+1. By executing one of rulesR1, R2-1 andR3 atCi , some of the robots onvi
1 or vi

w
move to adjacent node. We denote the segment includingvi

1 andvi
2 at Ci+1by [u, vi

2],
whereu is vi

1 or the neighboring node ofvi
1. Due to the movements, the distance of

[u, vi
2] becomesdi

1 + 1 or di
1, and each distance of the other segments is decreased, not

changed, or kept shorter than 3. Sincedi
1 is longer than 3, segment [u, vi

2] is only the
maximum one. Hence, the candidates of the maximum nodes atCi+1 areu or vi

2. Notice
that rulesR1, R2-1 andR3 do not change the distance of [vi

2, v
i
3], and that the other

segment neighboring of [u, vi
2] is shorter than 3 or becomesdi

w − 1. Sincedi
w ≤ di

2 and
3 ≤ di

2, the view onvi
2 is smaller than one onu. Thus, nodevi

2 remains the second node
and 3≤ di+1

2 atCi+1.

At any configuration in the execution until the number of non-free nodes is 2, the
second nodev j

2 is not changed. From the algorithm, since no robot moves tov j
2, node

v j
2 keeps single. When the last element of view on the maximum node is longer than

2, ruleR1 is applied, and then, the last element eventually becomes 1. After that, rules
R2-1 andR1 are alternately applied anddi

w−1 becomes 1. At this configuration, rule
R3 decrements the numberw of nodes occupied by robots. Hence, the configuration
becomes eventually one wherew = 3, di

3 = 1 and the second node is single. �



3.2 Algorithm for a rigid configuration where di
1
≥ 4 and di

2
< 3

In this subsection, we consider the given configuration is rigid and satisfiesdi
1 ≥ 4 and

di
2 < 3. The goal of the algorithm presented here is to make a rigid configuration where

d j
1 ≥ 4 andd j

2 = 3 from the given configuration.
To present the algorithm, we introduce procedureSHIFT. SHIFT is executed to

shift the robots on neighboring nodes in a direction on the ring without creating mul-
tiple nodes. We assume that configurationCi at whichSHIFT is executed satisfies the
following conditions:

1. Ci is rigid wheredi
1 > di

2.
2. There are nodesvi

p andvi
q such that 2≤ di

x < di
1(1 < x < p), di

y = 1(p ≤ y < q) and
di

q ≥ 2.

If SHIFT is called then the next rule is executed. By executingSHIFT continuously,
the robot on nodevi

p can move away fromvi
p−1 without creating multiple node.

SHIFT: robot on nodevi
q moves tovi

q+1.

Lemma 3. Assume that ProcedureSHIFT is called at a rigid configuration Ci satisfy-
ing the two conditions. The configuration Ci+1 caused by executingSHIFT is rigid, and
node vi1 is also the maximum node at Ci+1.

Proof. The execution ofSHIFT does not make any node multiple because the robot on
vi

q gets close tovi
q+1 and anddi

q ≥ 2.

We show that nodevi
1 is only the maximum node atCi+1. Letu be the node to which

the robot onvi
q moves. By executingSHIFT, the (q − 1)-th element of the view onvi

1

is incremented and theq-th element is decremented by one. So, the view onvi
1 is larger

than the previous one. If a node has larger view than or equal tovi
1 at Ci+1 then the

incremented element must beh-th element of the view on the node (h ≤ q − 1). In
addition, except nodeu, the view which is opposite direction to one onvi

1 is smaller
than the previous one because the decremented element is preceding the incremented
element in the view. That is, the other candidates of the maximum nodes arevi

2, . . . , v
i
q−1

andu. For each nodevi
2, . . . , v

i
p−1, if the view on the node is the same direction as one

on vi
1 then the conditions on whichSHIFT is executed imply that its first element is

smaller thandi
1. Similarly, the first element of the view on each nodevi

p, . . . , v
i
q−2 is 1

and one forvi
q−1 is 2. For nodeu, its first element is 2 ordi

q−1. From the fact thatdi
1 ≥ 3

anddi
1 ≥ di

q, these views are smaller than one onvi
1 atCi+1. Hence, nodevi

1 is only the
maximum node atCi+1. From Lemma 1,Ci+1 is a rigid configuration. �

Now, we explain the algorithm for making a configuration wheredi
2 = 3. The algo-

rithm is very simple: Robot on nodevi
3 moves to the neighboring node in order to extend

the distance from nodevi
2. If there is a robot on the neighboring node thenSHIFT is

executed until the robot onvi
3 can move to the neighbor without creating multiple node.

The details of the algorithm are as follows:

– In the case thatdi
1 ≥ 4 anddi

2 < 3 at configurationCi ,



R6: Whendi
3 ≥ 2, robot on nodevi

3 moves away fromvi
2.

R7: Whendi
3 = 1, robot executesSHIFT.

Lemma 4. Assume that Ci is a rigid configuration where di1 ≥ 4 and di
2 < 3. Rules

R6 andR7 make a rigid configuration Cj where dj
1 ≥ 4 and dj

2 = 3 from Ci . And the
maximum node vi1 at Ci remains the maximum one.

Proof. We first show that the next configurationCi+1 is rigid and the maximum nodevi
1

atCi remains the maximum one atCi+1. If rule R7 is applied, Lemma 3 proves this fact.
If rule R6 is applied, the first element of the view onvi

1 is not changed and the second
element is incremented. That is, the view onvi

1 becomes larger than the previous one.
Let u be the node to which the robot onvi

3 moves. The other candidates of the maximum
nodes are nodes whose views contain the incremented element as the first or the second
element. In addition, the direction of the candidate’s view must be the same direction as
one onvi

1 except nodeu. That is, the other candidates are nodesvi
2 andu. For nodevi

2,
if its view is the same direction as one onvi

1 then its first element is incremented but its
value is smaller than 4. Similarly, the first element on nodeu is smaller than 4 ordi

3−1.
Sincedi

1 ≥ 4 anddi
1 ≥ di

3, they cannot be the maximum node. Thus, nodevi
1 remains

only the maximum node, andCi+1 is rigid.
If the configuration satisfies the conditions of ruleR6, the second element ofvi

1 is
incremented. Otherwise, ruleR7 is applied until the third element ofvi

1 becomes longer
than 1, which is a configuration at which ruleR6 is executed. Therefore, the second
element ofvi

1 eventually becomes 3. �

From the proof of Lemma 4, some segments is incremented but its distance is
smaller than 4 during the execution of the algorithm presented in this subsection. Since
the distance of the first segment of the maximum node is longer than or equal to 4. Thus,
the following lemma is proved.

Lemma 5. Let Ci be a rigid configuration where the first segment of the view on vi
1 is

only the maximum one, di
1 ≥ 4 and di

2 < 3. During the execution of rulesR6 andR7
until di

2 becomes 3, the first segment on vi
1 is kept being only the maximum one.

3.3 Algorithm for a rigid configuration where di
1
= 3

In this subsection, we present the algorithm to make a rigid configuration wheredi
1 = 4

from the given configuration wheredi
1 = 3.

The details of the algorithm are as follows:

– In the case thatdi
1 = 3 at the rigid configuration,

R8 : Whendi
w , 1, robot on nodevi

1 moves to nodevi
w.

R9 : When (di
2,d

i
w) = (1,1), robot executesSHIFT.

R10 : When (di
2,d

i
w) = (2,1),

R10-1 : if configuration (4,1,di
3, . . . , d

i
w−1,1) is asymmetric then robot on nodevi

2
moves to nodevi

3,
R10-2 : else ifdi

3 = 1 then robot executesSHIFT,



R10-3 : else if configuration (3,3,di
3−1, . . . , di

w−1,1) is asymmetric then robot on
nodevi

3 moves to nodevi
4,

R10-4 : otherwise robot on nodevi
2 moves to nodevi

1.
R11 : When (di

2,d
i
w) = (3,1), robot on nodevi

2 moves to nodevi
3.

In the algorithm, if the robots on nodevi
2 or vi

w can move to the neighboring node with-
out creating a multiple node or a symmetric configuration, the distancedi

1 is extended
by the movements of these robots (ruleR8 or R11). If both of robots onvi

2 andvi
w can-

not move, that is, nodesvi
2 andvi

w are neighborvi
3 andvi

w−1 respectively, thenSHIFT is
executed to extend distancedi

2 by 2 (ruleR9). The most sensitive case is thatdi
2 = 2

anddi
w = 1 because a movement of the robot onvi

2 may lead a symmetric configuration.
In the above algorithm, to avoid symmetric configurations, the robots behave different
actions in the four cases (rules10-1to 10-4).

Lemma 6. The algorithm makes a rigid configuration Ci where di1 = 4 from a rigid
configuration where di1 = 3.

Proof. We show that when one of the rules is applied at configurationCi wheredi
1 = 3,

the next configurationCi+1 is rigid.

– When the applied rule isR8 or R11, the distance of the segment includingvi
1 and

vi
2 becomes 4. Since there is no other segment whose distance is 4 atCi+1, the can-

didates of the maximum nodes are end nodes of the maximum segment. Compared
the distances of the neighboring segments of the maximum one, one is smaller than
the other. Thus, the maximum node is one of the two end nodes, andCi+1 is rigid.

– When ruleR9 or R10-2 is applied, the next configuration is rigid from Lemma 3.
– When ruleR10-1 is applied, the next configurationCi+1 = (4,1,di

3, . . . , d
i
w−1,1)

is asymmetric from the condition for executingR10-1. Since the segment whose
distance is 4 is only one, the configuration is not periodic. Therefore,Ci+1 is rigid.

– When ruleR10-3 is applied, it holds thatdi
3 ≥ 2. The next configurationCi+1 =

(3,3,di
3 − 1, . . . ,di

w−1,1) has no multiple node and is asymmetric. Sincevi
1 is only

the maximum node atCi , there are no other consecutive segments whose distances
are 3. That is,Ci+1 is not periodic. Thus,Ci+1 is rigid.

– The last case is that ruleR10-4 is executed atCi . RuleR10-4 is executed when the
configuration does not satifsy the conditions of rulesR10-1 andR10-3. It means
that configurations (4,1,di

3, . . . ,d
i
w−1,1) and (3,3,di

3 − 1, . . . , di
w−1,1) are symmet-

ric, wheredi
3 ≥ 2. In this case, since (3,3,di

3 − 1, . . . ,di
w−1,1) is symmetric,di

3 = 2.
Then, since (4, 1,2, . . . ,di

w−1,1) is symmetric,di
w−1 must be 2. By repeating this

way, we know thatdi
h(3 ≤ h ≤ w− 1) is 2 (see Figure 3). Therefore, configuration

Ci+1 after executingR10-4atCi is (2,3,2, . . . , 2,1), which is a rigid configuration.

Next, we show that the first element of the maximum view becomes 4. If ruleR8,
R10-1 or R11 is applied then it is clear thatdi+1

1 = 4. When ruleR9 is applied and
SHIFT is executed repeatedly, the second element eventually becomes 2, in which one
of rulesR10 is applied. In the case of ruleR10-2, by executingSHIFT repeatedly, the
configuration becomes one in whichR10-1 is executed, ord j

3 becomes 2 (j > i). In the
latter case, some robot moves based on one of rulesR10-1, R10-3 andR10-4. When
rule R10-3 is applied, ruleR11 is executed at the next configurationCi+1, and when
ruleR10-4 is applied, ruleR8 is executed atCi+1. �



v1 v2 v3 v4 v5vw-1 vwConfiguration Ci
R10-1
R10-3
R10-4

Fig. 3.Each configuration after each execution ofR10-1, R10-3andR10-4.

From Lemmas 2, 4 and 6, we prove the following theorem.

Theorem 2. The gathering is achieved from a rigid configuration with k(2 < k ≤
⌊n/2⌋ − 1) robots in the system with the local-weak multiplicity.

3.4 Time Complexity

We show that our algorithm for the gathering with the local-weak multiplicity isO(n)-
time algorithm in this subsection. In asynchronous systems, time complexity is usually
measured in terms of maximum number ofasynchronous roundsin the worst case. An
asynchronous round is defined as the shortest fragment of an execution in which each
robot is activated, and moves to the neighboring node or stays the current node at least
once.

At procedureSHIFT, at least one robot, which is one on nodevi
q, moves to the

neighboring node during one round. That is, it takesO(h) time to extend distancedi
p

from a configuration wheredi
p, . . . , d

i
p+h = 1. Since the number of robots isk, value ofh

is at mostk. In each algorithm presented in Section 3.3 and 3.2, consecutive execution
of SHIFT occurs at most 2 times. Thus, in the algorithms, it takesO(k) time to execute
SHIFT. From the proofs of Lemma 4 and 6, the each algorithm in Section 3.3 and 3.2
leads each desired configuration by applying at most 2 rules exceptSHIFT. Therefore,
the algorithms in Section 3.3 and 3.2 takeO(k) time.

In the gathering algorithm in Section 3.1, it takesO(k) time to make a configuration
where only one segment is maximum becauseSHIFT is executed due to ruleR2-2. After
that, the robots on the maximum node take one node toward nodevi

3 at two rounds even
if the robots is activated at the last of the rounds. Thus, the time complexity to gather all
the robots except the robot onvi

2 is O(n). Therefore, the following theorem is proved.

Theorem 3. The algorithm achieves the gathering in O(n) time.



4 Conclusions

This paper presented the deterministic gathering algorithm in asynchronous rings with
oblivious and anonymous robots using the local-weak multiplicity. The time complexity
of our algorithm isO(n), while that of the algorithms with global-weak multiplicity in
the previous works areO(kn). This result implies the our algorithm is asymptotically
time-optimal one.

In this paper, we restrict the number of robots so that 2< k ≤ ⌊n/2⌋−1. When there
are more than⌊n/2⌋ − 1 robots on a ring, the distance between every consecutive robots
may be less than or equal to 2 at a initial configuration. In this case, it is hard that each
robot moves to adjacent node without creating a multiple node or a symmetric config-
uration. Our feature work is to present the algorithm or to prove the impossibility of
the gathering in this situation. Moreover, the gathering with the local-weak multiplicity
from a symmetric configuration is also one of interesting problems.
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