Mobile Robots Gathering Algorithm
with Local Weak Multiplicity in Rings

Tomoko IZUMI, Taisuke 1IZUMP, Sayaka KAME?, and Fukuhito OOSHITA

! College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, 525-8577 Japan.
izumi-t@fc.ritsumei.ac.jp
2 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
t-izumi@nitech.ac. jp
3 Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 736-8511, Japan
s-kamei@se.hiroshima-u.ac. jp
4 Graduate School of Information Science and Technology, Osaka University,
Suita, 565-0871, Japan
f-oosita@ist.osaka-u.ac.jp

Abstract. The gathering problem of anonymous and oblivious mobile robots is
one of fundamental problems in the theoretical mobile robotics. We consider the
gathering problem in unoriented and anonymous rings, which requires that all
robots gather at a non-predefined node. Since the gathering problem cannot be
solved without any additional capability to robots, all the previous works assume
some capability of robots, such as accessing the memory on node. In this paper,
we focus on the multiplicity capability. This paper presents a deterministic gath-
ering algorithm withlocal-weakmultiplicity, which provides the robot with the
information about whether its current node has more than one robot or not. This
assumption is strictly weaker than that by previous works. Moreover, we show
that our algorithm is asymptotically time-optimal one, that is, the time complex-
ity of our algorithm isO(n), wheren is the number of nodes. Interestingly, in
spite of assuming the weaker assumption, it achieves significant improvement
compared to the previous algorithm, which tak¥&n) time for k robots.

1 Introduction

1.1 Background and Motivation

Mobile robots are the entities that cooperate with each other by computing, moving and
communicating in a plane or in a network. The computational power of mobile robots

with quite weak capability is attracting much attention of researchers in the field of

distributed computing. In most of the studies, it is assumed that robots are oblivious
(no memory to record past situations), anonymous (no IDs to distinguish two robots)
and uniform (all robots run the same algorithm). In addition, it is also assumed that
each robot has no direct means of communication. Typically, communication among
two robots is done in the implicit way that each robot observes the environment, which
includes the positions of other robots.

We consider the gathering problem of mobile robots, which is one of fundamen-
tal coordination tasks in the mobile robots system. The problem requires all robots to
gather on a non-predefined location. Because of its simplicity, the gathering problem
is actively studied in various settings. While most of previous works consider the gath-
ering problem on two-dimensional Euclidean space [1, 2, 4, 7], a number of researches
deal with it in graphs [3, 5, 6, 8,9, 11, 10]. In this paper, we focus on unoriented anony-
mous rings. That is, we make all robots moving in a graph of ring topology gather on
a non-predefined node. Unfortunately, regardless of its settings (graph or 2D-plane), it
has been proved that the gathering problem is unsolvable in oblivious and anonymous
robot systems without no additional assumption. All of the possibility results depend on
some additional assumptions for capability of robots, such as distinct identifiers [10],
accessing memory on nodes [3, 6, 11] or memory on robots [5].

The capability of robots considered in this paper is localityrofitiplicity detec-
tion. The multiplicity detection specifies how each robot observes a node where two or
more robots stay. In most of previous works, three types of multiplicity detection are
considered: No multiplicity (each robot cannot distinguish the node with a single robot
from that with multiple robots), weak multiplicity (each robot can detect whether the
number of robots on a node is only one or more than one), and strong multiplicity (each
robot can know the number of robots on a node). Recently, in addition to the above
types, the notion olfocality for multiplicity detection capability is introduced [7]. The
local multiplicity detection implies that each robot can detect the multiplicity only for
its current node. On the other hand, the global multiplicity allows each robot to detect
the multiplicity of any node. In the original paper about gathering on ring [9] assumes
global-weak multiplicity, and investigate the relationship between its feasibility and
initial configurations: It presents affigient class of gatherable initial configurations,
calledrigid configurations which is the set of configurations excluding one having a
certain kind of symmetricity. It also proposes a gathering algorithm with global-weak
multiplicity for any rigid configuration. However, the strategy of that algorithm strongly
depends on the capability of global multiplicity. Its idea is to obtain exactly one node
occupied by two or more robots and to make the others reach it. It is clear that this idea
does not work correctly if we assume local multiplicity, because any robot on a node
cannot detect the multiplicity of other nodes. In this sense, it is an interesting and non-
trivial problem to reveal the set of initial configurations for which gathering is possible
only with local multiplicity.

1.2 Our Contribution

In this paper, we investigate the feasibility of the gathering with local-weak multiplic-
ity, which is strictly weaker setting than the original works by Klasing et. al. [9]. The
contribution of this paper is that any rigid configuration is gatherable only with local-
weak multiplicity detection. We propose a deterministic gathering algorithm in rings
with k asynchronous robots (2 k < |n/2] — 1, wheren is the number of nodes) that

is applicable to any rigid configuration. Our algorithm assumes that robots are oblivi-
ous, anonymous and uniform, and that they have no device to communicate with others
directly. To make the gathering problem solvable, we assume that robots have the local-
weak multiplicity.

Moreover, the time complexity of our algorithm is also analyzed. In this paper. we
evaluate time complexity based on maximum numbeasynchronous rounds the
worst case, which is one of well-known model for measuring time complexity in asyn-
chronous systems. The time complexity of our gathering algorithm with local-weak
multiplicity is asymptotically optimal, that i<Q(n). Interestingly, it is significant im-
provement compared to the previous algorithm, which taBgsn) rounds [9]: in the
previous algorithm, the robots first creates a configuration in which exactly onevnode
is occupied by two robots. Then, the robots which have no robot on the patinsdee
to v, and other robots stay their current nodes. Since it te&asrounds to gather two
robots tov, the time complexity of the algorithm &(kn).

1.3 Roadmap

In Section 2 we present the model of autonomous mobile robots considered in this
paper, and introduce other necessary notations and definitions. The gathering algorithm
with local-weak multiplicity and its time complexity are shown in Section 3. Finally we
conclude this paper in Section 4.

2 Preliminaries

2.1 System Models

The system consists of sets of nodeand mobile robot&. The numbers of nodes and
robots are denoted by= |V| andk = |R| respectively. The nodes construct unoriented
and undirected anonymous ring: Neither nodes nor links of the ring have any identifiers
and labels. Some nodes of the ring are occupied by robots.

The robots arenonymousndoblivious That is, each robot has no identifiers dis-
tinguishing itself and others, and cannot explicitly remember the history of its execu-
tion. In addition, no device for direct communication is equipped on each robot, such
as marks which can be left on nodes and communication devices for sending mes-
sages. The cooperation of robots is done in an implicit manner: Each robot observes the
configuration (i.e., the nodes occupied by other robots). Each robot executes the same
deterministic algorithm in computational cycles (or briefly cycles). At the beginning of
a cycle, each robot observes the current configuration and determines to stay idle or
to move to one of adjacent nodes based on the algorithm. Then, if the robot decides
to move, it moves to the adjacent node. We assume that the robot reaches the destina-
tion instantaneously. That is, when a robot observes the configuration, it sees all other
robots at nodes and not on links. Cycles are performed asynchronously: The length of
time for performing each operation is finite but unbounded. Due to these delay, when a
robot moves to an adjacent node which is computed based on the last observation, some
robots may stay at ffierent nodes from those observed by the robot.

A configuration is defined by node on which each robot stays. The number of robots
staying on a node is called theultiplicity numberof the node. If the multiplicity num-
ber of nodev is more than one, we sayis multiple If v has one roboty is said to
be single If there is no robot on a node, the node is calies: The segmen{v,, vq]

a. a configuration h. a periodic configuration c. a symmetric configuration

Fig. 1. Examples of configurations: In figure a, the configuration is represented by ((4, 3, 1, 2, 2),
(2,1, 1, 2, 1)) which starts from node The periodic configuration in figure bis (2, 3, 1, 2, 3, 1),
which is two copies of (2, 3, 1). The configuration in figure c has the axis of symmetry.

is defined by the sequence,(vy.1,...,Vq) of consecutive nodes in the ring, where
nodesvy, andvy are single or multiple and the others are free. The distance of segment
[Vp, Vgl is equal to the number of nodes [vy] minus 1. Configuratior€; in which

[vi, V2], [V2, V3] ..., [V, V1] @re consecutive segments in a direction on the ring is defined
by a pair of sequencesd(d......d,), (M. m,....m,)), whered, is the distance of

[Vh, V(h+1) moaw] @andmt is the multiplicity number of, (1 < h < w). We get diferent

pairs of sequences whenfiiirent segment is selected as the first segment or when the
distances are listed in the opposite direction in the ring. These sequences represent the
same configuration. In this paper, to simplify notation, we use one of the pairs of se-
quences which represent a configuration to denote the configuration. When no node is
multiple in a configuration, we use only sequendg @, ..., d,).

A configuration is changed by movements of robots. Cgtbe an initial con-
figuration andM; be a set of movements that occur simultaneously at configuration
Ci. An execution is an alternate sequence of configurations and sets of movements
E = Co, Mp,Cy, My, ..., such that occurrence of movements changes the config-
uration fromGC; to Ci, ;.

Configurations which have no multiple node are classified into three classes in [9]:
ConfigurationC is calledperiodicif C is represented by a concatenation of at least two
copies of a subsequence. If there is an axis of symmetry of the ring in configugation
C is calledsymmetric The last class is calledgid, in which the other configurations
are included. Figure 1 shows examples of these configurations.

By observing a configuration, a robot gets a sequence of distances of segments and
information about multiplicity number. Configurati@) observed by a robot on node
v is represented by two sequences of distancegdy, ..., d,) and @id! ,....,d)
starting fromv: One is the sequence in the opposite direction of the other. Since the
ring is unoriented, each robot cannot know which is clockwise or counterclockwise
one. In this paper, each robot chooses the larger one in lexicographic order: Sequence
(&, @11, . ..,d) is larger thanlf, bi,1, ..., b;) if there ish (i < h < j) such thaty = b,
fori <1 < h-1anda, > b,. The capacity ofmultiplicity detectionspecifies how
each robot observes multiple nodes. In this paper, we considéo¢dhkweak multi-

plicity: Each robot can detect whether the multiplicity number of its current node is
more than one. Theiew of a robot on nodes at configurationC; is represented by
s(Ci) = (max(d}, dy,....d}), (dl,d _,.....d\)},m), wherem is true if the multiplic-

ity number of nodev is more than one and false otherwise. Note that the sequences
of distance in views of dierent robots may be in filerent direction on the ring. For
example, in Figure 1. a., the view of the robots on néds ((4, 3, 1, 2, 2), true) and
that onBis ((3, 4, 2, 2, 1), false). In [9], it is said that a configuration without multiple
nodes is rigid when the views of all the robots aréetent.

2.2 Gathering Problem

The goal of the gathering problem is to gather all the robots on one node that is not
predefined and to keep the configuration. For the gathering problem, some impossibility
results are shown in [9].

Theorem 1. The gathering problem is insolvable for the following cases:

1. The number of robots is two.

2. Robots have no multiplicity detection.

3. The initial configuration is any periodic configuration.

4. The initial configuration is any symmetric configuration in which axis of symmetry
goes through two antipodal links.

In this paper, we assume that initial configuration is rigid and thakx |n/2]-1.
That s, in an initial configuration, there is no multiple node and each robot fiasatfit
view.

The algorithms in this paper are described in some rules. Each rule consists of some
conditions and actions of the robots. The robots observe the current configuration and
execute actions of one of the rules whose condition matches the observing configura-
tion. Notice that some conditions are described nested if-then-else statements.

3 Gathering Algorithm with Local-Weak Multiplicity

In this section, we present a gathering algorithm with the local-weak multiplicity for
any rigid configuration with Z k < |n/2| — 1 robots.

Before presenting the details of the algorithm, we introduce several definitions and
notation. Themaximum segmerat configurationC; is the segment with the longest
distance irC;. Themaximum nodatC; is the non-free node on which the view of robot
is themaximum vievat C;. If only one node is the maximum one @, the maximum
node is denoted lmyl and each non-free node is labeled in the same order as the distance
sequence in the view ov). That is, for views\,l(Ci) = ((d},d,,....d,),m), nodey, is
the node such that the distance of segmept,,,] is d, and callech-th node. In this
case, for simplicity, distance, implies theh-th element of the distance sequence on
the maximum node.

From the definitions, the following lemma is trivial.

Lemma 1. Let G be a configuration without multiple nodes. The number of the maxi-
mum nodes at configuration @ one if and only if Cis rigid.

In what follows, we present our algorithm in some subsections. In Section 3.1, the
gathering algorithm for any rigid configurati@® whered, > 4 andd‘2 > 3is intro-
duced. If a given initial configuration does not match the above conditions, the robots
try to create the configuration satisfying them: The algorithm presented in Section 3.2
creates a desired configuration from a rigid one Wlui'erg 4 anddi2 < 3, andin Section
3.3, we present the algorithm for creation of a rigid configuration wilgre 4 from
a rigid one wherel, = 3. In this paper, we assume thak [n/2] - 1 and that initial
configurationCy is rigid. That is, the distance of the maximum segment is longer than
2 atCy.

3.1 Gathering from arigid configuration where d; > 4 and d;, > 3

In this subsection, we assume that the initial configura@igis rigid and satisfieg? >
4 anddj > 3.

To gather only with the local-weak multiplicity, we must lead a configuration where
one node hak - 1 robots and the other has 1 robot when the number of non-free nodes
is 2. The reason is that when two nodes are multiple and the others are free, the robots
on the two nodes take the symmetric movements because they have the same view.
Hence, when the two nodes are neighboring, all the robots keep staying the current
nodes or passing each other. Thus, the robots cannot gather on one node. The idea of
our algorithm is that nod is kept single, and that the robots on n ﬁandvo
gather to nod@zO The key to achieve this strategy is that nouB;and are kept as the
second and the third nodes respectively during the execution.

The details of our algorithm are as follows

— In the case that the numberof non-free nodes is more than or equal to 3,

R1 : Whend}, > 2, robots on/; move tovi,.

R2 : Whenw¢3 d, _1,d'Wl_ . _
R2-1 : if the maximum segment is only'{] then robots orv, move tov,, _,,
R2-2 : otherwise robots om' move tov;.

R3 : Whenw # 3 andd}, = 1 andd' = 1 robots on/' move tov,,.

R4 : Whenw = 3andd' =1, robots on/I move tovI

— In the case that the numbe/rof non- free nodes is 2

R5 : robot on the single node moves to the other node occupied by robots.

First, let consider an initial configuration where the number of the maximum seg-
ments is one. In our algorithm, the robots move so that the first element on the maximum
node is increased, the second element is not changed and the others are decreased. In
addition, the last element is kept shorter than the second element. That is, during the ex-
ecution, the number of the maximum segments is one, and\@(mmains the second
node not the first. Figure 2 illustrates an example of executions of the algorithm. The
robots on nod‘e’/‘1 move to the neighboring node of the last node (RIg. After that,
the robots on,, move to the other neighboring nodejfif the neighbor is free (rule
R2-1). Then, the distance of the last segment becomes 2, anB liteexecuted again.

Fig. 2. An example of executions of the gathering algorithm

That is, the last element of the maximum view is kept shorter than the second element,
which is larger than or equal to 3. Whel)_, becomes 1, the robots a# join on v,

(rule R3). By repeating these actions, the configuration eventually becomes one where
w=3 anddg = 1, and then, all the robots except one on the second node gathgr on
(rule R4). That is, a configuration where one node is single and the other is multiple is
created. Lastly, the robot on the single node moves to the multiple node.

We consider the initial configuratio8, such that more than one the maximum
segments exist. In this case, one of rkds R2-2 andR3 is applied. At the next con-
figurationC, after executing one of them, the first element on the maximum v@)bhe
extended by one. That is, the number of the maximum segments becomeoarat
then the robots gather on one node by the above way. However, only whéR2r2les
applied, the second element\t?fmay become less than 3. It does not satisfy the con-
ditions for execution of this algorithm. In this case, the algorithm presented in Section
3.2, in which the second element becomes 3 keeping only the first segment having the
maximum distance, is executed.

Lemma 2. For k(2 < k < |n/2] — 1) robots with the local-weak multiplicity, the algo-
rithm achieves the gathering from a rigid configuration whefe>d4 and d > 3.

Proof. If the configuration becomes one wheve= 3, di3 = 1 and the second node is
single, it is clear that ruleB4 andR5 lead to gathering.

In what follows, we explain that the desired configuration is created by Riles
R3. The important fact to show this lemma is that the maximum node is only one and
the second node is not changed during the execution.

First, we show that in any executi@from a given initial configuration, there is a
configurationC; satisfying the following three conditions: 1) exactly one noﬂés the
maximum node, 2) only the first segment\qns the maximum one and 311 > 3.The
initial configurationCy is rigid. It means that exactly one node is the maximum node
(Lemma 1). We consider each case that each rule is appied.

— When ruleR2-1is applied atCy, Cy satisfies the above conditions.

— When ruleR1 or R3 is executed &y, the robot on® moves to adjacent nodeand
the others stay on their current node. Segment;], whose distance id? +1,is
only the maximum one because there is no segment whose distance is longer than
d? at Co. Thus, the first condition is satisfied. The distance of the other segment
includingu is dj, — 1 or 1, and it holds thatf, < d9 = d}. Thus, nodeu is only
the maximum node and% > 3 at configuratiorC,, that is,C, satisfies the three
conditions.

— When ruleR2-2is applied aCo, the robot onv moves to adjacent node and the
robot onv? does not move. At the next configurati@h, since the view onf is
represented bydf + 1,dJ - 1,..., 1), the segment with? + 1 distance is only the
maximum one and@ is only the maximum node. Howeved% may become less
than 3. In this case, the algorithm in Section 3.2 is execut&d.dtemma 4 and 5
guarantee that the algorithm leads to a configura@ipim which dé = 3 keeping
nodev; and segment, v3] being only the maximum one. That is, configuration
C; satisfies the above three conditions, and R&e2 is not executed &E;.

Next, we prove that for any configurati@j(j < i) during E, the next configuration
Ci,1 satisfies the following three conditions; 1) only the segment includibg/"ﬂ has
the maximum distance, 2} = V, and 3) 3< dy". This implies that the maximum
node is only one, node, remains the second node, and r&2-2 is not executed at
Ci;1. By executing one of ruleB1, R2-1andR3 atC;, some of the robots ovi or_v'W
move to adjacent node. We denote the segment |ncluq|rag1dv' atCi,1by [u, V)],
whereu is vI or the neighboring node 01‘ Due to the movements, the d|stance of
[u, V5] becomesd' +1 ord' and each dlstance of the other segments is decreased, not
changed or kept shorter than 3. Sind"ieis longer than 3, segmenn,[v"z] is only the
maximum one. Hence, the candidates of the maximum nodés@ireu orV;. Notice
that rulesR1, R2-1 andR3 do not change the distance o@[51, and that the other
segment neighboring otj[v'] is shorter than 3 or become; — 1. Sinced), < d' and
3< d' the view onvI is smaIIer than one on. Thus, node/I remains the second node
and 3< dit atCi,q.

At any configuration in the execution until the number of non-free nodes is 2, the
second nodo' is not changed. From the algorithm, since no robot movaé toode

v2 keeps smgle. When the last element of view on the maximum node is longer than
2, ruleR1is applied, and then, the last element eventually becomes 1. After that, rules
R2-1 andR1 are alternately applied ard}, , becomes 1. At this configuration, rule

R3 decrements the number of nodes occupied by robots. Hence, the configuration
becomes eventually one whexe= 3, di3 = 1 and the second node is single. |

3.2 Algorithm for a rigid configuration where di1 >4and d‘2 <3

In this subsection, we consider the given configuration is rigid and satdﬁfiesﬁl and
d, < 3. The goal of the algorithm presented here is to make a rigid configuration where
di >4 anddé = 3 from the given configuration.

To present the algorithm, we introduce proced8tFT. SHIFT is executed to
shift the robots on neighboring nodes in a direction on the ring without creating mul-
tiple nodes. We assume that configurati@rat whichSHIFT is executed satisfies the
following conditions:

1. G is rigid whered; > d. o ‘
2. There are nodeg, andv, such that < dy < dj(1 < x < p),d, = 1(p <y <) and
d > 2.
=

If SHIFT is called then the next rule is executed. By execu8higFT continuously,
the robot on node|, can move away fron:z'p_1 without creating multiple node.

SHIFT: robot on node/‘q moves tw‘qﬂ.

Lemma 3. Assume that Procedu®HIFT is called at a rigid configuration Csatisfy-
ing the two conditions. The configuration,€caused by executirgHIFT is rigid, and
node Y is also the maximum node at.g.

Proof. The execution oEHIFT does not make any node multiple because the robot on
v, gets close to, , and and; > 2.

We show that nodrz"1 is only the maximum node &;,;. Letu be the node to Whi.Ch
the robot onv; moves. By executingHIFT, the @ — 1)-th element of the view ow;
is incremented and theeth element is decremented by one. So, the view"lda larger
than the previous one. If a node has larger view than or equd| & Ci,, then the
incremented element must Ibeth element of the view on the nodh € g - 1). In
addition, except noda, the view which is opposite direction to one dpis smaller
than the previous one because the decremented element is preceding the incremented
element in the view. That is, the other candidates of the maximum nodes are v"q_1

andu. For each node‘z, ... ,v'pfl, if the view on the node is the same direction as one
on v"l then the conditions on whicBHIFT is executed imply that its first element is

smaller thard;. Similarly, the first element of the view on each nodle. .. ,v"q_z is 1
and one fOlV"q,l is 2. For noday, its first element is 2 od, — 1. From the fact thad > 3

andd; > di, these views are smaller than one\grat Ci,;. Hence, node/, is only the
maximum node a€;,;. From Lemma 1C;, is a rigid configuration.]

Now, we explain the algorithm for making a configuration thilre: 3. The algo-
rithm is very simple: Robot on nodg moves to the neighboring node in order to extend
the distance from node,. If there is a robot on the neighboring node tH&HIFT is
executed until the robot o, can move to the neighbor without creating multiple node.
The details of the algorithm are as follows:

— Inthe case that] > 4 andd, < 3 at configuratiorC;,

R6: Whendj > 2, robot on node’; moves away fronvs,.
R7: Whend, = 1, robot executeSHIFT.

Lemma 4. Assume that Cis a rigid configuratio_n whereiidz_ 4 and d2 < 3. Rules

R6 and R7 make a rigid configuration Cwhere d > 4 and d, = 3 from G. And the
maximum nodevat C; remains the maximum one.

Proof. We first show that the next configurati@j, is rigid and the maximum nodéi
atC; remains the maximum one @t, 1. If rule R7 is applied, Lemma 3 proves this fact.
If rule R6 is applied, the first element of the view ohis not changed and the second
element is incremented. That is, the view\grbecomes larger than the previous one.
Letu be the node to which the robot epmoves. The other candidates of the maximum
nodes are nodes whose views contain the incremented element as the first or the second
element. In addition, the direction of the candidate’s view must be the same direction as
one onv; except nodel. That is, the other candidates are nodgandu. For nodev,
if its view is the same direction as one @nthen its first element is incremented but its
value is smaller than 4. Similarly, the first element on nodesmaller than 4 od; - 1.
Sinced, > 4 andd; > d;, they cannot be the maximum node. Thus, nddeemains
only the maximum node, ar@, 1 is rigid.

If the configuration satisfies the conditions of rité, the second element of is
incremented. Otherwise, ruRY is applied until the third element of becomes longer
than 1, which is a configuration at which ruR6 is executed. Therefore, the second
element 01’\/"1 eventually becomes 3. |

From the proof of Lemma 4, some segments is incremented but its distance is
smaller than 4 during the execution of the algorithm presented in this subsection. Since
the distance of the first segment of the maximum node is longer than or equal to 4. Thus,
the following lemma is proved.

Lemma 5. Let G be a rigid configuration where the first segment of the viewiloils v
only the maximum one, & 4 and d, < 3. During the execution of ruleR6 and R7
until d, becomes 3, the first segment grisskept being only the maximum one.

3.3 Algorithm for a rigid configuration where dil =3

In this subsection, we present the algorithm to make a rigid configuration \dherd
from the given configuration whei = 3.
The details of the algorithm are as follows:

— In the case thadl‘:L = 3 at the rigid configuration,
R8 : Whend}, # 1, robot on node/, moves to node,.
R9 : When ¢, d,) = (1, 1), robot executeSHIFT.
R10 : When @, d,) = (2,1),
R10-1 :if configuration (41,ds,...,d, _,, 1) is asymmetric then robot on nodg
moves to noder,,
R10-2 : else ifdy = 1 then robot executeSHIFT,

R10-3 : else if configuration (33, d' d\‘,H, 1) is asymmetric then robot on
nodevI moves to nod@/'
R10-4 : otherW|se robot on nodei2 moves to nod@/'
R11 : When @), di,) = (3,1), robot on node, moves to nodtwI

In the algorithm, if the robots on nodg or Vi, can move to the neighboring node with-
out creating a multiple node or a symmetric configuration, the dlstdp(seextended
by the movements of these robots (r&8 or R11). If both of robots on/, andy, can-
not move, that is, nodeg andvi, are ne|ghbowI andv L respectively, theISHIFT is
executed to extend d|stand§ by 2 (ruleR9). The most sensitive case is thigt—
andd), = 1 because a movement of the robotgmay lead a symmetric configuration.
In the above algorithm, to avoid symmetric configurations, the robots behfigesdi
actions in the four cases (rulé6-1to 10-4).

Lemma 6. The algorithm makes a rigid configuration @here q = 4 from a rigid
configuration where d= 3.

Proof. We show that when one of the rules is applied at configurﬁimvlheredil =3,
the next configuratiof;, is rigid.

— When the applied rule iR8 or R11, the distance of the segment includivggand
V, becomes 4. Since there is no other segment whose distance@,4,ahe can-
didates of the maximum nodes are end nodes of the maximum segment. Compared
the distances of the neighboring segments of the maximum one, one is smaller than
the other. Thus, the maximum node is one of the two end node&;anis rigid.

— When ruleR9 or R10-2is applied, the next configuration is rigid from Lemma 3.

— When ruleR10-1is applied, the next configuratio®i.; = (4,1, d5,...,d ;. 1)
is asymmetric from the condition for executiRfL0-1 Since the segment whose
distance is 4 is only one, the configuration is not periodic. Therefhre,s rigid.

— When ruleR10- 3is applied, it holds thatﬂi > 2. The next configuratioQi,; =
(3,3, d‘3 -1,...,d,_;,1) has no multiple node and is asymmetric. Sm‘pes only
the maximum node &;, there are no other consecutive segments whose distances
are 3. That isC;i,1 is not periodic. ThusCi, is rigid.

— The last case is that ruR10-4is executed af;. RuleR10-4is executed when the
configuration does not satlfsy the conditions of nﬂm 1andR10-3 It means
that configurations (4L, dh, .. W 1»1) and (33 d' dW_l, 1) are symmet-
ric, Whered' >2.1n '[hIS case since (3, d' S« P 1) is symmetrlcd3 =2.
Then, since (4,2,...,d, 4,1)is symmetncdW , Must be 2. By repeating this
way, we know thatl! (3 <h<w-1)is 2 (see Figure 3). Therefore, configuration
Ci,, after executingQ10-4atCi is(23,2,...,2,1), which is a rigid configuration.

Next, we show that the first element of the maximum view becomes 4. I1R8Je
R10-1or R11is applied then it is clear that™* = 4. When ruleR9 is applied and
SHIFT is executed repeatedly, the second element eventually becomes 2, in which one
of rulesR10is applied. In the case of ruR10-2, by executingSHIFT repeatedly, the
configuration becomes one in whiti0-1is executed, odé becomes 2j(> i). In the
latter case, some robot moves based on one of Ril#&s1, R10-3andR10-4 When
rule R10-3is applied, ruleR11 is executed at the next configurati@y.;, and when
rule R10-4is applied, ruleR8 is executed &t 1. m|

Vw1l Vw V1 V2 V3 \Z! Vs
ConfigurationCi 00—+ |+ @ | @ {0 O
R10-1 —o———8—{+— Q—Q—'—O—l—O—'—
R10-3 —o—1—— @ Q—O—!—O—F
R10-4 —o—1—o—0 Q.‘: ——1——0—1—0

Fig. 3. Each configuration after each executiorRif0-1, R10-3andR10-4.

From Lemmas 2, 4 and 6, we prove the following theorem.

Theorem 2. The gathering is achieved from a rigid configuration witf2 k< k <
Ln/2] — 1) robots in the system with the local-weak multiplicity.

3.4 Time Complexity

We show that our algorithm for the gathering with the local-weak multiplicit(s)-
time algorithm in this subsection. In asynchronous systems, time complexity is usually
measured in terms of maximum numberasfynchronous rounds the worst case. An
asynchronous round is defined as the shortest fragment of an execution in which each
robot is activated, and moves to the neighboring node or stays the current node at least
once.

At procedureSHIFT, at least one robot, which is one on noage moves to the
neighboring node during one round. That is, it tak¥®) time to extend distanceiip
from a configuration wherd., . . ., di . = 1. Since the number of robotsksvalue ofh
is at mostk. In each algorithm presented in Section 3.3 and 3.2, consecutive execution
of SHIFT occurs at most 2 times. Thus, in the algorithms, it taRfg time to execute
SHIFT. From the proofs of Lemma 4 and 6, the each algorithm in Section 3.3 and 3.2
leads each desired configuration by applying at most 2 rules est&pT. Therefore,
the algorithms in Section 3.3 and 3.2 taRék) time.

In the gathering algorithm in Section 3.1, it taka&k) time to make a configuration
where only one segment is maximum becabBidé-T is executed due to ruR2-2. After
that, the robots on the maximum node take one node towardv'gazdewo rounds even
if the robots is activated at the last of the rounds. Thus, the time complexity to gather all
the robots except the robot 09 is O(n). Therefore, the following theorem is proved.

Theorem 3. The algorithm achieves the gathering irffr{ptime.

4 Conclusions

This paper presented the deterministic gathering algorithm in asynchronous rings with
oblivious and anonymous robots using the local-weak multiplicity. The time complexity
of our algorithm isO(n), while that of the algorithms with global-weak multiplicity in
the previous works ar®(kn). This result implies the our algorithm is asymptotically
time-optimal one.

In this paper, we restrict the number of robots so thatkk< |n/2] — 1. When there
are more thaihn/2] — 1 robots on a ring, the distance between every consecutive robots
may be less than or equal to 2 at a initial configuration. In this case, it is hard that each
robot moves to adjacent node without creating a multiple node or a symmetric config-
uration. Our feature work is to present the algorithm or to prove the impossibility of
the gathering in this situation. Moreover, the gathering with the local-weak multiplicity
from a symmetric configuration is also one of interesting problems.

Acknowledgment his work is supported in part by The Telecommunication Advance-
ment Foundation and Grand-in-Aid for Young Scientists ((B)19700075) of JSPS.

References

1. N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for automonous mobile robots.
SIAM Journal of Computing36(1):56—82, 2006.

2. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering prob-
lem. In Proceedings of the 30th International Colloquium on Automata, Languages and
Programming (ICALP’03)pages 1181-1196, 2003.

3. P. Flocchini, E. Kranakis, D. Krizanc, C. Sawchuk, and N. Santoro. Multiple mobile agents
rendezvous in a ring. IfProceedings of the 6th Latin American Theoretical Informat-
ics(LATIN’'04) pages 599-608, 2004.

4. P. Flocchini, G. Prencipe, N. Santoro, and P.Widmayer. Gathering of asynchnorous robots
with limited visibility. Theoretical Computer Sciencg&37(1-3):147-168, 2005.

5. P. Fraigniaud and A. Pelec. Deterministic rendezvous in trees with little memoifroin
ceedings of the 22nd International Symposium on Distributed Computing (DISQ&$s
242-256, 2008.

6. L. Gasieniec, E. Kranakis, D. Krizanc, and X. Zhang. Optimal memory rendezvous of anony-
mous mobile agents in a uni-directional ring.Rroceedings of the 32th International Con-
ference on Current Trends in Theory and Practice of Computer Science (SOFSEMIG63
282-292, 2006.

7. T.lzumi, T. Izumi, S. Kamei, and F. Ooshita. Randomized gathering of mobile robots with
local-multiplicity detection. InProceedings of the 11th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SS$aggs 384-398, 2009.

8. R. Klasing, A. Kosowski, and A. Navarra. Taking advantage of symmetrics: Gathering of
asynchronous oblivious robots on a ring Aroceedings of the 12th International Conference
on Principles of Distributed Systems (OPODIS'(O8ges 446-462, 2008.

9. R. Klasing, E. Markou, and A. Pelc. Gathering asynchnorous pblivious mobile robots in a
ring. Theoretical Computer Sciencg90(1):27-39, 2008.

10. D. Kowalski and A. Pelec. Polynomial deterministic rendezvous in arbtrary graphs. In
Proceedings of the 15th Annual Symposium on Algorithms and Computation (ISAAC'04)
pages 644-656, 2004.

11. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Mobile agent rendezvous in a ring.
In Proceedings of the 23th International Conference on Distributed Computing Systems
(ICDCS’03) pages 592-599, 2003.

