
Doubly-Expedited One-Step Byzantine Consensus

Nazreen Banu, Taisuke Izumi, Koichi Wada

Graduate school of Engineering,
Nagoya Institute of Technology, Gokisho-cho,
Showa-ku, Nagoya, Aichi, 466-8555, Japan.

Phone: +81-52-735-5408, Fax: +81-52-735-5408
nazreentech@phaser.elcom.nitech.ac.jp,{t-izumi,wada}@nitech.ac.jp

April 9, 2010

Abstract

It is known that Byzantine consensus algorithms guarantee one-step decision only in favorable
situations (e.g. when all processes propose the same value) and no one-step algorithm can support two-
step decision. This paper presents DEX, a novel one-step Byzantine algorithm that circumvents these
impossibilities using the condition-based approach. Algorithm DEX has two distinguished features:
Adaptiveness and Double-expedition property. Adaptiveness makes it sensitive to only actual number
of failures so that it provides fast termination for more number of inputs when there are fewer failures (a
common case in practice). The double-expedition property facilitates two-step decision in addition to
one-step decision by running two condition-based mechanisms in parallel. To the best of our knowledge,
double-expedition property is the new concept introduced by this paper, and DEX is the first algorithm
having such a feature. Although DEX takes four steps at worst in well-behaved runs while existing
one-step algorithms take only three, it is expected to work efficiently because the worst-case does not
occur so often in practice.

1 Introduction

1.1 Background

The consensus problem is central for the construction of fault-tolerant distributed systems. In the consen-
sus problem, each process proposes a value, and all non-faulty processes have to agree on a common value
which is one of the proposed values. Several practical agreement problems (such as atomic broadcast,
view synchrony, state-machine replication, etc.) can be implemented using a solution to the consensus
problem, and hence solving consensus is crucial in designing distributed systems.

The consensus problem has been studied with various failure models and different synchrony as-
sumptions. This paper studies the consensus in asynchronous systems subject to Byzantine failures, i.e.,
faulty processes can behave in an arbitrary way, and there are assumptions neither about relative speed
of processes nor about timely delivery of messages.

To converge on a single decision value, consensus protocols need to exchange messages. Each message
exchange constitutes a communication step. The number of communication steps taken for reaching
agreement is an important measure to evaluate the efficiency of the consensus algorithms. A previous
work has proved that any consensus algorithm requires at least two communication steps for decision
even in failure-free executions [9]. This lower bound often becomes a dominant part of the performance
overhead imposed to consensus-based applications. However, this fact does not imply that the two-
step lower bound is incurred for every input (an input to consensus algorithms is defined as a n-tuple
consisting of all proposed values). For example, it does not hold for the case where all processes propose

the same value. Furthermore, in typical runs of consensus-based applications, the consensus algorithm
often receives such “good” inputs. For instance, consider a replicated state machine: The replicated
servers need to agree on the processing order of the update requests. If a client broadcasts its request to
all servers and there is no contention, then all servers propose the same request as the candidate they
will handle next. Practically, it is not so often that two or more concurrent update-requests arise for the
same data object.

This observation induces an interest in one-step decision for good inputs. The attempts to circumvent
two-step lower bound are initiated by Brasileiro et al.[2]. They propose a general framework to convert any
crash-tolerant algorithm into the one that solves the consensus for any input, and especially terminates in
one step when all processes propose the same value. In the following results [3, 4], the notion of one-step
decision is considered in combination with other schemes such as randomization and failure detectors.

An interesting aspect of one-step decision schemes is to characterize the situations where one-step
decision is possible. The first investigation in that aspect is considered by Mostefaoui et.al.[11], which
applies the condition-based approach for obtaining a good one-step decision scheme. In general, the
condition-based approach defines a set of inputs, called condition, for which the condition-based algorithm
guarantees a certain kind of good property. The first result with this approach[11] gives a sufficient class
of conditions such that we can construct the condition-based algorithm guaranteeing one-step decision
for any input belongs to the condition. This result is extended by Izumi and Masuzawa[8]. It gives the
complete characterization of conditions that makes one-step decision possible.

While all of the above results are considered on crash-failure model, a recent work (BOSCO)[12]
has devised one-step consensus algorithms on Byzantine failure model. It has shown two variants of
one-step Byzantine consensus problem, weak and strong ones. The weakly one-step guarantees one-step
decision only when all processes propose the same value and no process is faulty, but the strongly one-
step must guarantee it in any situation only with a common proposed value, regardless of the number
of faulty processes. In addition, this result also proposed an algorithm for each variant and proved that
the assumptions n > 5t and n > 7t are necessary for weakly and strongly one-step Byzantine consensus
respectively, where n is the number of processes and t is the maximum number of faulty processes.

1.2 Our Contribution

As seen above, the research challenge centered in one-step consensus is to enhance and clarify the sit-
uations favoring one-step decision. In the same research direction, this paper also explores Byzantine
consensus problems with better one-step decision schemes. In particular, we focus on two features for
one-step decision schemes shown as follows:

Adaptive Condition-Based Approach Most of the one-step algorithms are designed with the aim
that they never violate agreement even if the number of failures is at the maximum. However, such
a design works as a pessimistic approach when actual number of faulty processes is small, which is
the usual case in real systems. An interesting way to circumvent this drawback is the use of adaptive
condition-based approach. Informally, the adaptive condition-based approach handles the condition that
dynamically changes according to the actual number of faulty processes (typically, fewer faults allow the
condition with more number of inputs). In the context of one-step consensus, it means that the algorithm
can terminate in one-step for more number of inputs when fewer processes are faulty. The notion of the
adaptive condition-based approach is first introduced by Izumi and Masuzawa[7] and applied to one-step
consensus problem in crash-failure model[8]. However, there is no result to apply it in Byzantine-failure
model.

Double Expedition of One-Step Consensus One of the serious drawbacks in one-step decision
schemes is the impossibility of zero-degradation[6, 3]. Informally, the zero-degradation is an important
feature of consensus algorithms based on failure detectors, which always guarantees the best complexity
(i.e., two steps) in stable runs where the failure detector does not make any mistakes and its output is
stable. This impossibility result says that, to achieve one-step decision, any algorithm must sacrifice the

2

Table 1: Performance comparison of DEX with the existing works.

System Failure Number of Feasibility for Feasibility for
Model Type Processes One-step Decision Two-step Decision

Brasileiro et.al.[2] Asyn. Crash 3t+1 Agreed proposals –
Izumi et.al.[8] Asyn. Crash 3t+1 Condition-Based –
Mostefaoui et.al.[11] Syn. Crash t+1 Condition-Based –
Friedman et.al.[5] Asyn. Byzan. 7t+ 1 Agreed proposals –

5t+1 Agreed proposals –
Yee et.al. [12] Asyn. Byzan. (Weak)
(Bosco) 7t+ 1 Agreed proposals of correct –

(Strong) processes
DEX Asyn. Byzan. 6t+1 Condition-Based Condition-Based

decision at the end of the second step. It is also shown that achieving both one-step decision and zero-
degradation needs more stronger assumption about failure detections such as the existence of eventually
perfect failure detector ¦P . However, similar to the impossibility result of one-step decision [9], this
result does not necessarily imply the impossibility of two-step decision for any inputs. Thus, it yields an
interest to realize a doubly-expedited consensus algorithm, which equips a “conditional” two-step decision
scheme combined with one-step decision.

This paper contributes a doubly-expedited Byzantine consensus algorithm based on the adaptive condition-
based approach. The distinguished features of the proposed algorithm can be summarized as follows:

• In our construction, we first show a generic framework of the algorithm based on the notion of
adaptive condition-based approach. Generally, in condition-based approach, adaptiveness property
can be characterized by a condition sequence, which is defined as a sequence of t + 1 conditions
such that the k-th (0 ≤ k ≤ t) condition is valid when the actual number of faulty processes is k.
To attain the double-expedition property in adaptive manner, the framework is instantiated with
a pair of condition sequences, each of which corresponds to the situations of one-step and two-step
decisions respectively. We also show sufficient criteria, say legality, for the condition-sequence pair
such that the doubly-expedited algorithms can be instantiated using any condition-sequence pair
satisfying them.

• Two examples of legal condition-sequence pair, called frequency-based pair and privileged-value-
based pair, are proposed. They have distinct advantages in the sense that the expedited situations
corresponding to each pair is complementary. Interestingly, the algorithm instantiated by the
frequency-based pair has more chances to decide in one or two steps compared to the existing
one-step Byzantine consensus algorithms.Table 1 compares this result with the previous results.

• One drawback of the proposed framework is that it trades the decision scheme at third step for
double-expedition property. This drawback causes a performance degradation in consensus-based
applications when we consider pessimistic runs (that is, the given input is out of the conditions).
However, standing on its optimistic counterpart, we make more inputs belong to the conditions so
that our algorithm decides in one or two steps for many cases and achieves better performance in
average.

To the best of our knowledge, double expedition property is the concept newly introduced in this
paper. Hence, this paper is the first result showing the feasibility for taking both one- and two-step
decision schemes simultaneously with no help of additional stronger assumptions.

3

1.3 Roadmap

The paper is organized as follows: Section 2 presents the system model, the definitions of Byzantine
consensus problem and other necessary formalizations. Section 3 provides the legality criteria for doubly-
expedited condition-sequence pair and two examples for it. Section 4 describes the generic framework of
doubly-expedited one-step consensus algorithms. Section 5 provides the final remarks.

2 Preliminaries

2.1 System model

We assume an asynchronous distributed system model subject to Byzantine failures. It consists of a
set

∏
= {p1, p2, . . . , pn} of n processes. Each process communicates with each other process by sending

messages over a reliable link where neither message loss, duplication nor corruption occurs. Besides,
there is no assumption about relative speed of processes or about the timely delivery of messages.

As we consider Byzantine failure model, a faulty process can behave arbitrarily, which means that it
is allowed even not to follow the deployed algorithm. A process that is not faulty is said to be correct.
We assume an upper bound, denoted by t, on the number of faulty processes. Each process knows the
value of t in advance. Throughout this paper, we assume 5t < n, which is the necessary assumption to
make one-step decision possible. We also denote by f , the actual number of failures during executions.
Notice that, no process can be aware of the value of f .

2.2 Byzantine Consensus and Underlying Consensus Primitive

The Byzantine consensus problem has been informally stated in the introduction: Each process proposes
a value, and all correct processes have to decide a common value which is proposed by at least one
process. Formally, the Byzantine consensus can be defined by the following requirements.

Termination Each correct process eventually decides a value.

Agreement If two correct processes decide, they must decide the same value.

Unanimity If all correct processes propose the same value v, then no correct process decides the value
different from v.

In general, the consensus problem can not be solved in asynchronous system with no additional
assumption. Hence, we need some assumptions to guarantee correct termination for arbitrary inputs.
Many kinds of assumptions, such as partial synchrony, failure detectors, etc., are considered in past
literatures. As our research direction is finding the feasibility of one-step decision, we simply assume
an abstraction of them. More precisely, the system is assumed to be equipped with the underlying
consensus primitive that ensures agreement, termination and unanimity, but provides no guarantees
about its running time.

2.3 Condition-Based Approach

In the condition-based approach, an input vector is a n- dimensional vector, whose i-th entry contains
the value proposed by a process pi. Note that, since a faulty process can propose different values to
distinct processes, the entries correspond to Byzantine processes are regarded to contain meaningless
values. A condition defined for n processes is a subset of all possible input vectors. Adaptiveness in
the condition-based approach is a property that allows a condition to change dynamically according to
the actual number of faulty processes. That is, the fewer number of failures allow the condition with
more number of input vectors. Thus, adaptiveness is defined by a condition sequence (C0, C1, ...Ck...Ct)
satisfying Ck ⊇ Ck+1 for any k(0 ≤ k ≤ t− 1), where the k-th condition corresponds to the set of input
vectors that is valid when actual number of faults is equal to k.

4

2.4 Doubly-Expedited Consensus

In this subsection, we introduce a novel feature of consensus algorithms, called double-expedition property.
In the execution of doubly-expedited algorithms, each process has two chances for fast decision by running
both one-step and two-step decision schemes concurrently. Since both decision schemes guarantee fast
decision only for good inputs, we characterize their property using a pair of condition sequences. We intro-
duce the condition-sequence pair as follows: (S1, S2) = ((C1

0 , C1
1 , · · ·C1

k , · · ·C1
t), (C2

0 , C2
1 , · · ·C2

k , · · ·C2
t)),

where S1 and S2 correspond to the condition sequences that identify the situations guaranteeing one-step
and two-step decisions respectively. For example, consider the input vector I such that I 6∈ C1

k , I ∈ C1
k−1

and I ∈ C2
k hold. Then, if I is given to the consensus algorithm and the actual number of faulty processes

is less than k, all processes decide in one step because I ∈ C1
k−1. If (exactly) k processes are faulty, then

one-step decision is no more guaranteed, but all processes necessarily decide in two steps because of
I ∈ C2

k .

3 Legality for Double Expedition

It is clear that we cannot design the doubly-expedited consensus algorithm for any pair of condition
sequences. In this section, we propose sufficient criteria such that we can construct the doubly-expedited
algorithm characterized by any condition-sequence pair satisfying them. In addition, we show two exam-
ples of condition-sequence pair that satisfy these criteria.

3.1 Notations

Let V be an ordered set of all possible proposal values. We introduce the default value ⊥ not in V.
Letting I be an input vector in Vn, we define a view J of I to be a vector in (V ∪ {⊥})n which is
obtained by replacing at most t entries in I by ⊥ and denote J [k] as the k-th element of J . As well
as, we define ⊥n be a vector with all entries equal to ⊥. The number of occurrences of value v in a
view J is denoted by #v(J). For two views J1 and J2, the containment relation J1 ≤ J2 is defined as
∀k(1 ≤ k ≤ n) : J1[k] 6=⊥⇒ J1[k] = J2[k]. Also, for two views J1 and J2, let dist(J1, J2) be the Hamming
distance between J1 and J2 (that is, dist(J1, J2) = |{k ∈ {1, 2, ..n}|J1[k] 6= J2[k]}|). As well as Vn

k denotes
the set of all views where ⊥ values appears at most k times. The number of non-default values in J is
denoted by |J |.

3.2 Legality Criteria

Given a pair of condition sequences (S1
, S2), we consider two predicates P1, P2 : Vn

t → {True,False}1

and a function F : Vn
t → V. Then, (S1, S2) is said to be legal if we can define P1, P2 and F satisfying

the following five properties:

• LT1 : ∀J ∈ Vn
t : ∃I : I ∈ C1

k ∧ dist(J, I) ≤ k ⇒ P1(J).

• LT2 : ∀J ∈ Vn
t : ∃I : I ∈ C2

k ∧ dist(J, I) ≤ k ⇒ P2(J).

• LA3 : ∀J, J ′ ∈ Vn
t : P1(J) ∧ ∃I, I ′ : J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t ⇒ F (J) = F (J ′).

• LA4 : ∀J, J ′ ∈ Vn
t : P2(J) ∧ ∃I : J ≤ I ∧ J ′ ≤ I ⇒ F (J) = F (J ′).

• LU5 : ∀J ∈ Vn
t ⇒ F (J) = a : #a(J) > t ∨ F (J) = the most common non ⊥ value in J .

These properties are used to enforce the basic requirements of the doubly-expedited Byzantine con-
sensus. Informally, P1 and P2 are the predicates to test whether the current view of a process contains

1In what follows P1(J) = true is abbreviated as P1(J)

5

sufficient information to decide in one or two step(s) respectively, and F is the function to obtain the
decision value from the current view. Thus, the first property LT1 is for imposing one-step termination.
The predicate P1 must allow each correct process to decide in one step if its view has the possibility to
come from an input vector included in the condition C1

k and the actual number of failures is less than or
equal to k. Similarly, the property LT2 corresponds to two-step decision. The property LA3 (or LA4)
enforces the agreement between one-step (or two-step) decision and others. The last property LU5 is the
one to guarantee unanimity.

3.3 Example 1: Frequency-Based Legal Condition-sequence pair

This subsection introduces a legal condition-sequence pair (P freq) that is based on the frequency-based
condition and proves its legality. Let 1st(J) be a non ⊥ value that appears most often in a vector J . If
two or more values appear most often in J , then the largest one is selected. Let Ĵ be a vector obtained
by replacing 1st(J) from J by ⊥, and we define 2nd(J) = 1st(Ĵ). That is, 2nd(J) is the second most
frequent value in J . The frequency-based condition Cfreq

d is defined as follows:

Cfreq
d = {I ∈ Vn|#1st(I)(I)−#2nd(I)(I) > d}

It is known that Cfreq
d belongs to d-legal conditions [10], which are necessary and sufficient to solve the

consensus in failure prone asynchronous systems, where at most d processes can crash.
Using this condition, we can construct the frequency-based condition-sequence pair (P freq) as follows:

P freq = (S1, S2) = ((C1
0 , C1

1 , C1
2 , ...C1

k , ...C1
t), (C2

0 , C2
1 , C2

2 , ...C2
k , ...C2

t))
where

C1
k = Cfreq

4t+2k and C2
k = Cfreq

2t+2k

As well as, the associated parameters P1freq, P2freq and F freq can be defined as below:

• P1freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 4t.

• P2freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 2t.

• F freq(J) = 1st(J).

Notice that, since there are at most t Byzantine processes, the stronger assumption n > 6t is required
to construct P freq.

Theorem 1 The condition-sequence pair P freq is legal.

Proof LT1: We have to show that ∀J ∈ Vn
t : ∃I ∈ C1

k ∧ dist(J, I) ≤ k ⇒ P1(J).
That is #1st(I)(I)−#2nd(I)(I) > 4t + 2k ∧ dist(J, I) ≤ k ⇒ #1st(J)(J)−#2nd(J)(J) > 4t.
Since I ∈ C1

k , we have #1st(I)(I) − #2nd(I)(I) > 4t + 2k. As dist(J, I) ≤ k, we get #1st(I)(J) ≥
#1st(I)(I)−k. Also, for any value x 6= 1st(I), #x(J) ≤ #x(I)+k holds. Since 2nd(I) is the second most
frequent value in I, #x(J) ≤ #2nd(I)(I)+k. Hence, #1st(I)(J)−#x(J) ≥ #1st(I)(I)−k−#2nd(I)(I)−k.
Therefore, we get #1st(I)(J)−#x(J) > 4t. It implies that 1st(I) = 1st(J) and #1st(J)(J)−#2nd(J)(J) >
4t.

LT2: We have to show that ∀J ∈ Vn
t : ∃I ∈ C2

k ∧ dist(J, I) ≤ k ⇒ P2(J).
That is #1st(I)(I)−#2nd(I)(I) > 2t + 2k ∧ dist(J, I) ≤ k ⇒ #1st(J)(J)−#2nd(J)(J) > 2t.
The proof is almost the same as the proof LT1 (with only replacing C1

k and 4t with C2
k and 2t respec-

tively).

6

LA3: Consider J, J ′ ∈ Vn
t . We have to show that if P1freq(J) ∧ ∃I, I ′ : J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t,

then 1st(J) = 1st(J ′).
Suppose 1st(J) 6= 1st(J ′) for contradiction. Since P1freq(J) holds, #1st(J)(J) − #v(J) > 4t also

holds for any value v 6= 1st(J). From the facts J ∈ Vn
t and J ≤ I, it follows that at most t entries

of I, which are occupied by the value ⊥ in J , can contain v. Hence, #1st(J)(I) − #v(I) > 3t holds.
It implies that 1st(I) = 1st(J). Then, since dist(I, I ′) ≤ t, I and I ′ can differ in at most t entries.
Let these entries contain 1st(J) and v respectively in I and I ′. Hence, #1st(J)(I ′) ≥ #1st(J)(I) − t and
#v(I ′) ≤ #v(I)+ t. Therefore, #1st(J)(I ′)−#v(I ′) ≥ #1st(J)(I)− t−#v(I)− t. When simplified, we get
#1st(J)(I ′) −#v(I ′) > t. This implies that 1st(I ′) = 1st(I) = 1st(J). Then, from J ′ ∈ Vn

t and J ′ ≤ I ′,
it follows that at most t entries of J ′, which corresponds to 1st(J) in I ′, can contain ⊥. It implies that
#1st(J)(J ′) ≥ #1st(J)(I ′)− t and #v(J ′) ≤ #v(I ′). It follows that #1st(J)(J ′)−#v(J ′) > 0, and thus we
get 1st(J) = 1st(J ′).

LA4: Consider J, J ′ ∈ Vn
t . It suffices to show that if P2freq(J)∧∃I : J ≤ I∧J ′ ≤ I, then 1st(J) = 1st(J ′).

Since P2freq(J) holds, #1st(J)(J)−#v(J) > 2t also holds for any v 6= 1st(J). As J ≤ I and J ∈ Vn
t ,

at most t entries of I, which are occupied by ⊥ in J , can contain the value v. Hence, #v(I) ≤ #v(J)+ t.
This implies that #1st(J)(I) −#v(I) > t holds. Therefore, 1st(J) = 1st(I). Similarly, since J ′ ≤ I and
J ′ ∈ Vn

t , at most t entries of J ′, which are occupied by the value 1st(J) in I, can contain ⊥. It follows
that #1st(J)(J ′) ≥ #1st(J)(I) − t and #v(J ′) ≤ #v(I). Thus, we get #1st(J)(J ′) − #v(J ′) > 0. This
implies that 1st(J) = 1st(J ′).

LU5: This property is trivially satisfied since 1st(J) is the most frequent non ⊥ value in J . 2

3.4 Example 2: Privileged-Value-Based Condition-Sequence Pair

In this subsection, we present another legal condition-sequence pair (P prv) constructed from a privileged-
value-based condition, and prove its legality. In some practical agreement problems such as atomic
commitment, a single value (e.g., Commit) is often proposed by most of the processes. The previous
results [2, 6] have shown that, if this value is assigned some privilege, it is possible to expedite the
decision. Let us assume that there is a value (say m) that is privileged among the set of all proposal
values. Each process knows the value m a priori. Then, the privileged-value-based condition C

prv(m)
d can

be defined as follows:

C
prv(m)
d = {I ∈ Vn|#m(I) > d}

Note that C
prv(m)
d also belongs to d-legal conditions [10], which are necessary and sufficient to solve the

consensus in failure prone asynchronous systems where at most d processes can crash.
Using this condition, we can construct the privileged-value-based condition-sequence pair P prv as

follows:
P prv = (S1, S2) = ((C1

0 , C1
1 , C1

2 , ...C1
k , ...C1

t), (C2
0 , C2

1 , C2
2 , ...C2

k , ...C2
t))

where
C1

k = C
prv(m)
3t+k and C2

k = C
prv(m)
2t+k

Also, we define the related parameters P1prv, P2prv and F prv as follows:

• P1prv(J) ≡ #m(J) > 3t.

• P2prv(J) ≡ #m(J) > 2t.

7

•

F prv(J) ≡





m if #m(J) > t

the most freq. otherwise
non default val.in J

Notice that, since there are at most t Byzantine processes, the assumption n > 5t is required to make
P prv meaningful.

Theorem 2 The condition-sequence pair P prv is legal.

Proof LT1: We have to show that if #m(I) > 3t + k ∧ dist(J, I) ≤ k, then #m(J) > 3t holds.
Let I satisfies #m(I) > 3t+k. Since dist(J, I) ≤ k, #m(J) ≥ #m(I)−k. Hence, #m(J) > 3t+k−k.

Thus we obtain #m(J) > 3t.

LT2: We have to show that if #m(I) > 2t + k ∧ dist(J, I) ≤ k, then #m(J) > 2t holds.
This proof is almost the same as the proof of LT1 (with only replacing C1

k and 3t with C2
k and 2t

respectively).

LA3: Consider J, J ′ ∈ Vn
t . We have to show that if P1prv(J) ∧ ∃I, I ′ : J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t,

then F prv(J) = F prv(J ′).
Since P1prv(J) holds, #m(J) > 3t and F prv(J) = m also hold. From I ≥ J , it follows that

#m(I) > 3t. Then, since dist(I, I ′) ≤ t, I ′ can differ from I in at most t entries and those differ-
ent entries may contain m in I. Hence, #m(I ′) ≥ #m(I) − t. Thus we obtain #m(I ′) > 2t. From
J ′ ∈ Vn

t and I ′ ≥ J ′, it follows that at most t entries of J ′, which are occupied by value m in I ′, can
contain the default value. Therefore, #m(J ′) ≥ #m(I ′) − t. It implies that #m(J ′) > t, and hence
F prv(J ′) = m = F prv(J).

LA4: Consider J, J ′ ∈ Vn
t . We have to show that if P2prv(J) ∧ ∃I : J ≤ I ∧ J ′ ≤ I, then F prv(J) =

F prv(J ′).
Since P2prv(J), it follows that #m(J) > 2t and F prv(J) = m holds. From I ≥ J , it is implied that

#m(I) > 2t. Then, as J ′ ≤ I and J ′ ∈ Vn
t , at most t entries of J ′, which are occupied by m in I, can

contain the ⊥ value. Therefore, #m(J ′) ≥ #m(I) − t. and we thus obtain #m(J ′) > t. It follows that
F prv(J ′) = m = F prv(J).

LU5: This property is trivially satisfied because F prv(J) is either m (when #m(J) > t) or the most
frequent non default value in J . 2

4 Algorithm DEX

In this section, we present a generic doubly-expedited algorithm DEX for one-step Byzantine consensus
that can be instantiated with any legal condition-sequence pair.

Figure 1 provides the pseudocode of the algorithm. It uses an extra communication mechanism, called
Identical Broadcast, that corresponds to the primitives Id-Send() and Id-Receive(). In contrast, P-Send()
and P-Receive() correspond to the standard send/receive primitives. The underlying consensus is served
by two primitives UC propose(v) and UC decide(v) which correspond to proposal of a value v and decision
by v respectively.

Informally, the identical broadcast guarantees the delivery of the same message to all processes, even
if the message is sent by a faulty process. Figure 2 shows how the Identical broadcast works. Its formal
specification is described as follows:

8

Function Consensus(vi)

init: J1i, J2i ←⊥n , decidedi ← False , proposedi ← False

begin
1 : Upon Propose(vi) do:
2 : J1i[i] ← vi ; J2i[i] ← vi

3 : P-Send(vi) to all processes;
4 : Id-Send(vi) to all processes;

5 : Upon P-Receive(vj) from any process pj do:
6 : J1i[j] ← vj ;
7 : if |J1i| ≥ n− t and P1(J1i) and decidedi = False then
8 : Decidei(F (J1i)); decidedi = True
9 : end if

10 : Upon Id-Receive(vj) from any process pj do:
11 : J2i[j] ← vj ;
12 : if |J2i| ≥ n− t and proposedi = False then
13 : UC propose (F (J2i));
14 : proposedi = True;
15 : end if
16 : if |J2i| ≥ n− t and P2(J2i) and decidedi = False then
17 : Decidei(F (J2i)); decidedi = True
18 : end if

19 : Upon UC decide(v) do:
20 : if decidedi = False then
21 : Decidei(v) ; decidedi = True
22 : end if

end

Figure 1: Algorithm DEX: Doubly-Expedited Adaptive algorithm for Byzantine Consensus

Termination If a correct process invokes Id-Send(m), Id-Receive(m) occurs on all correct processes.

Agreement If two correct processes invoke Id-Receive(m1) and Id-Receive(m2) for the same sender,
m1 = m2 holds.

Validity For any sender pj , a correct process pi invokes Id-Receive(m) exactly once and only if pj invokes
Id-Send(m).

Notice that the use of the identical broadcast does not introduce any additional assumptions to
the system. This identical broadcast can be implemented just by using only the standard send/receive
primitives. The implementation is easily obtained as a weaker form of simulating identical Byzantine
failure model on the top of general Byzantine failure models[1]. The implementation of identical broadcast
is given in the appendix. It should be noted that, in that implementation, a single communication step of
the identical broadcast is realized by two communications steps of standard send/receive primitives. In
our algorithm, the identical broadcast is used to develop the two-step decision scheme. In that sense, our
two-step decision scheme can be regarded as a one-step decision scheme in identical Broadcast system.

In our algorithm, the part made up of lines 5-9 corresponds to one-step decision, and the another one
made up of lines 10-18 corresponds to two-step decision. The algorithm works as follows: Each process

9

┴┴┴┴

P1

P2

P3

P4

1

1

1

0

0 0

1

0

┴┴┴┴

P1

P2

P3

P4

1

1

1

0

0
0

1

1

Standard Broadcast Identical Broadcast

Figure 2: How Identical broadcast works: Let P1, P2, P4 are correct and P3 is faulty; Even if P3 sends
different messages to P1 and P4, they receive the same message.

pi starts a consensus execution with the invocation of Consensus(vi) where vi is its initial proposal value.
The process pi sends vi to other processes by using both P-send() and Id-send() concurrently, and waits
for receiving messages from other processes. By receiving messages, each pi constructs two views J1i and
J2i, which correspond to one- and two-step decisions respectively. The views J1i and J2i are maintained
incrementally. That is, they are updated at the reception of each message. When at least n− t messages
are received at J1i, pi tries to make a decision by evaluating P1(J1i). If P1(J1i) is true, pi immediately
decides F (J1i), that is, it decides in one-step. Otherwise, pi continues to update J1i. Similarly, when pi

receives at least n− t messages at J2i, it activates the underlying consensus with F (J2i). In addition, pi

evaluates P2(J2i) to check whether J2i is sufficient for taking decision. If P2(J2i) is true, pi immediately
decides F (J2i), that is, it decides in two steps. Otherwise, pi repeats the check with each update at J2i.
Also, when the underlying consensus decides, each pi simply borrows the decision of the underlying
consensus unless it has decided already.

Notice that, unlike the existing Byzantine algorithms, DEX allows the processes to collect messages
from all correct processes. This is the real secret of its ability to provide fast termination for more number
of inputs.

4.0.1 Correctness.

We prove the correctness of our algorithm by showing that it provides one-step or two-step decision when
it is instantiated with any legal condition-sequence pair (S1, S2). In the following proofs, let I be the
actual input vector and I1

i , I2
i be vectors obtained respectively from the views J1i, J2i by replacing the

default values with corresponding values in I.

Lemma 1 (Termination) Each correct process pi eventually decides.

Proof Since there are at most t Byzantine processes, each correct process pi receives messages from
at least n − t processes. It implies that, at some point |J2i| ≥ n − t. Hence, pi certainly initiates the
underlying consensus. Since the underlying consensus guarantees termination, pi can decide when the
underlying consensus decides. It follows that each process eventually decides.

Lemma 2 (Agreement) No two correct processes decide different values.

Proof Let two correct processes pi and pj decide vi and vj respectively. Then, we prove that vi = vj .
Consider the following six cases.

• (Case 1:) When both pi and pj decide in one step at line 8.

Since both pi and pj decide in one step, P1(J1i) and P1(J1j) hold. Let us consider two vectors
I1
i , I1

j . From the definition of I1
i , I1

j , it follows that J1i ≤ I1
i and J1j ≤ I1

j hold. Since there are

10

at most t Byzantine processes and only the Byzantine processes send different values to distinct
processes, the vectors I1

i , I2
j can differ in at most t entries . Hence, dist(I1

i , I1
j) ≤ t also holds. From

property LA3, it is clear that vi = F (J1i) = F (J1j) = vj . Thus, we can conclude that pi and pj

decide the same value.

• (Case 2:) When pi decides in one step at line 8 and pj decides in two steps at line 17.

Let pi and pj decide in one and two step(s) using J1i and J2j respectively. This implies that P1(J1i)
and P2(J2j) hold. Similar to Case 1, let us consider two vectors I1

i , I2
j . From the definition of I1

i ,
I2
j , it follows that J1i ≤ I1

i and J2j ≤ I2
j . Since each correct process broadcasts the same value to

all processes using P-send() and Id-send(), the vectors I1
i , I2

j can differ only in Byzantine entries.
As there are at most t Byzantine processes, dist(I1

i , I2
j) ≤ t holds. From property LA3, it is clear

that vi = F (J1i) = F (J2j) = vj . Since pj decides using J2j , its decision value is vi.

• (Case 3:) When both pi and pj decide in two steps at line 17.

Since pi and pj decide in two steps, P2(J2i) and P2(J2j) hold. From the agreement property of
the identical broadcast, it follows that if an entry in J2i(J2j) contains a non-default value v, then
the same entry in J2j(J2i) contains either v or ⊥. Hence, it is possible to have an vector I ′ such
that ∀k(1 ≤ k ≤ n) : (J2i[k] 6=⊥⇒ I ′[k] = J2i[k])∧ (J2j [k] 6=⊥⇒ I ′[k] = J2j [k]). This implies that
J2i ≤ I ′ and J2j ≤ I ′ hold. From property LA4, we thus get vi = F (J2i) = F (J2j) = vj .

• (Case 4:) When pi decides in one step at line 8 and pj decides using underlying consensus at line
21.

Since pj decides using the underlying consensus, and the underlying consensus satisfies unanimity,
it is sufficient to show that every correct process pk proposes vi at line 13. We know that pi

decides using J1i and pk uses J2k to propose a value to the underlying consensus. Consider the
two vectors I1

i , I2
k . By using the same argument in case 2, we can show that J1i ≤ I1

i , J2k ≤ I2
k

and dist(I1
i , I2

k) ≤ t hold. Then, from property LA3, we can get vi = F (J1i) = F (J2k) = vk. It
implies that each process pk proposes vi.

• (Case 5:) When pi decides in two steps at line 17 and pj decides using underlying consensus at
line 21.

Since pj decides by the underlying consensus, similar to Case 4, we have to show that every correct
process pk proposes vi to the underlying consensus at line 13. We know that pi decides using J2i

and pk uses J2k to propose a value to the underlying consensus. By using the same argument in
case 3, we can prove that there exist an vector I ′ such that J2i ≤ I ′ and J2k ≤ I ′. Then, from
property LA4, it is clear that vi = F (J2i) = F (J2k) = vk. Hence, we can conclude that each
process pk proposes vi.

• (Case 6:) When both pi and pj decide at line 21: Since the underlying consensus guarantees
agreement property, we can conclude that vi = vj .

Lemma 3 (Unanimity) If all correct processes propose the same value v, then no correct process
decides a value different from v.

Proof Let f be the actual number of Byzantine processes, and all correct processes propose the same
value v. Since f ≤ t, at each correct process pi, no value except v appears more than t times in J1i and
J2i. If pi decides at line 8 or 17, its decision value is either F (J1i) or F (J2i). From the definition of LU5,
it follows that F (J1i) = F (J2i) = v. Hence, pi decides v. In addition, since each pi proposes F (J2i)(that
is, v) to the underlying consensus and the underlying consensus satisfies unanimity, any correct process
that decides using underlying consensus decides only v. Hence, the unanimity holds.

11

Lemma 4 The algorithm DEX guarantees one-step decision for any input vector I, I ∈ C1
k if at most k

processes exhibit Byzantine behavior.

Proof Since there are at most k Byzantine processes, each correct process pi is guaranteed to receive
messages from n− k correct processes. Hence, eventually dist(J1i, I) ≤ k holds. From property LT1, it
follows that pi decides in one step.

Lemma 5 The algorithm DEX guarantees two-step decision if the input vector I belongs to C2
k and at

most k processes are Byzantine.

Proof As stated in lemma 4, since there are at most k Byzantine processes each correct process pi

receives messages from all (n − k) correct processes. Hence, eventually dist(J2i, I) ≤ k holds. From
property LT2, it is clear that pi decides in two steps.

The above lemmas imply the following theorem:

Theorem 3 For any instantiation with legal condition-sequence pairs, the algorithm DEX is a doubly-
expedited one-step consensus algorithm.

5 Conclusion

Typically, Byzantine consensus algorithms guarantee one-step decision only in favorable situations, and
no one-step algorithm supports two-step decision. In this paper, we proposed a novel one-step Byzantine
algorithm DEX to circumvent these impossibilities. DEX has two distinguished features: Adaptiveness
and double-expedition property. Due to adaptiveness, its conditions are sensitive only to the actual num-
ber of failures, and hence it achieves fast termination for more number of inputs when there are fewer
failures. In addition, the double-expedition property enables it to support two-step decision in addition
to one-step decision. Even though DEX takes four steps at worst in well-behaved runs while existing
algorithms takes only three, it provides fast termination for more number of inputs. Practically, this is
a favorable feature because the worst case does not occur so often in real systems, which makes us to
expect that our algorithm can work efficiently on the average.

References

[1] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics. Wiley,
2004.

[2] V. Brasileiro, F. Greve, A. Mostéfaoui, and M.Raynal. Consensus in one communication step. In Proc. of the
6th International Conference on Parallel Computing Technologies, volume 2127 of LNCS.

[3] D. Dobre and N. Suri. One-step consensus with zero-degradation. In Proc. of the International Conference
on Dependable Systems and Networks(DSN’06), pages 137–146, 2006.

[4] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero degradation. In Proc. of the 4th European
Dependable Computing Conference on Dependable Computing, volume volume 2485 of LNCS, pages 191–208,
London, UK, 2002. Springer-Verlag.

[5] R. Friedman, A. Mostefaoui, and M. Raynal. Simple and efficient oracle-based consensus protocols for asyn-
chronous byzantine systems. IEEE Transactions on Dependable and Secure Computing, 2(1):46–56, 2005.

[6] R. Guerraoui and M. Raynal. The information structure of indulgent consensus. IEEE Transactions on
Computers, 53(4):453–466, 2004.

[7] T. Izumi and T. Masuzawa. Condition adaptation in synchronous consensus. IEEE Transactions on Comput-
ers, 55(7):843–853, 2006.

12

[8] T. Izumi and T. Masuzawa. One-step consensus solvability. In Proc. of the 22nd international symposium on
Distributed Computing(DISC’06), volume 4167 of LNCS, pages 224–237. Springer, 2006.

[9] I. Keider and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no faults. SIGACT News,
32(2):45–63.

[10] A. Mostefaoui, S. Rajsbaum, and M. Raynal. Conditions on input vectors for consensus solvability in asyn-
chronous distributed systems. In Proc. of the thirty-third annual ACM symposium on Theory of computing
(STOC’01), pages 153–162, 2001.

[11] A. Mostéfaoui, S. Rajsbaum, and M. Raynal. Using conditions to expedite consensus in synchronous distributed
systems. In Proc. of the 17th international symposium on Distributed Computing(DISC’03), volume 2848 of
LNCS, pages 249–263, 2003.

[12] Y. Song and R. Renesse. Bosco: One-step byzantine asynchronous consensus. In Proc. of the 22nd international
symposium on Distributed Computing(DISC’08), volume 5218 of LNCS.

A An Implementation of Identical Broadcast

This section presents an implementation of the Identical Broadcast communication system that helps
to build our two-step decision scheme. The basic idea of identical Broadcast is that even if Byzantine
processes send arbitrary messages, all processes that receive a message from a faulty process receive the
same message. In identical broadcast system, to successfully broadcast a message, a process has to obtain
a set of witnesses for this broadcast. Likewise, a correct process accepts a message only when it knows
there are enough witnesses for this broadcast.

The pseudocode appears in Figure 3. As specified in section 4, Id-send() and Id-Receive() are the
communication primitives of identical broadcast, and P-send() and P-receive() correspond to standard
broadcast.

Code for pi:
init: num ← 0

Upon Id-sendi(m) do :
P-sendi(init , m) to all processes.

Upon P-Receivei(init ,m′) from pj do :
if first-echo(j) then

P-sendi(echo,m′, j) to all processes.

Upon P-Receivei (echo,m′, j) do :
num = number of copies of (echo,m′, j)

received so far from distinct processes.
if num ≥ n− 2t and first-echo(j) then

P-sendi(echo,m′, j) to all processes.
if num ≥ n− t and first-accept(j) then

Id-Receivei(m′).

Figure 3: Algorithm IDB: An algorithm for Identical Broadcast.

To broadcast (that is, Id-send()) a message m, each process pi P-Sends(init ,m) to all processes.
When pi P-Receives a first (init ,m′) message from a process pj , it act as a witness for that broadcast
and P-sends its own message (echo,m′, j) to all processes. Also, when it collects at least n − 2t same
echo messages, it becomes a witness for that message and sends its own echo message to all processes.

13

When pi P-Receives at least n− t same echo messages, it accepts that message by invoking Id-receive()
if it has not already accepted a message from pi.

When pi invokes the function first-accept(j), it returns true if and only if pi has not already accepted
a message for pj . Similarly, when the function first-echo(j) is invoked, it returns true if and only if pi has
not sent a echo message for pj . From the code, it directly follows that two rounds of standard broadcast
is required to construct each round of identical broadcast.

We now prove correctness of the algorithm IDB.

Theorem 4 Let n > 4t. Algorithm IDB implements identical broadcast system.

Proof Termination : Let a correct process pi Id-Sends a message m. To do that, pi P-Sends(init, m) to
all processes. Consequently, each correct process pj P-Receives(init,m), and then it P-sends(echo,m, i)
message to all processes. As there are at most t Byzantine processes, each pj eventually P-Receives
at least n− t (echo,m, i) messages. As a result, Id-Receive(m) occurs at all correct processes.

Agreement: Proof by contradiction. Let two correct processes pi, pj invoke Id-receive(m), Id-receive(m’)
for a process ph such that m 6= m′. It implies that pi and pj must have collected n−t echo messages
from distinct processes for m and m′ each. Since n > 4t, these two sets share more than 2t common
senders. Given that there are only t Byzantine processes, more than t of these common senders are
correct processes. The function first-echo() ensures that any correct process P-Sends only a single
echo message for ph to all processes. Hence, m = m′. This is a contradiction.

Validity Assume a correct process pi Id-Receives(m) from a process pj . The function first-accept()
ensures that pi Id-Receives(m) exactly once for pj . Since pi collects at least n − t (echo, m, j)
messages, at least n− 2t of them are from correct processes. A correct process P-sends (echo, m, j)
if it collects at least n− 2t (echo,m, j) messages from distinct processes. Since n− 2t > t, a correct
process, that has sent an echo (echo,m, j) message, must have received (init,m) message from pj .
It implies that pj must have sent m.

Thus, the algorithm IDB implements identical broadcast system. 2

14

