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Introduction

A graph is a pair of a set of vertices and a set of edges, and forms a 1-dimensional

CW -complex. From geometrical point of view, we can consider graphs as discrete

models of surfaces and more generally as discrete models of Riemannian manifolds.

Chains of edges, which are called paths, on a graph are considered to be correspond to

geodesics on a Riemannian manifold. For a graph, we have adjacency and transition

operators acting on the set of all square-summable functions on the set of vertices.

The adjacency operator of a graph shows how edges in this graph are settled between

vertices, hence is the generating operator of paths. The transition operator shows

how cargoes placed at vertices are transfered through edges, hence is the generating

operator of paths attached with probabilities. Thus we can say that properties of these

operators show properties of the underlying graph. Many mathematicians therefore

have studied spectrum of these operators and those of Laplacians corresponding to

them.

In this paper we study Kähler graphs which were introduced by T. Adachi [2].

A Kähler graph is a graph whose set of edges are divided into two subsets. One is

the set of principal edges and the other is the set of auxiliary edges. We may say

that a Kähler graph is a compound of two kinds of graphs having a common set of

vertices. From geometrical point of view, we can explain Kähler graph as discrete

models of Riemannian manifold admitting magnetic fields. We consider paths on the

principal graph of a Kähler graph as geodesics which are motions of electric charged

particles without influence of magnetic fields. Under the influence of a magnetic field,

we consider that each path on the principal graph is bended to directions of edges in

the auxiliary graph. More precisely, we consider a p-step path in the principal graph
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2 Introduction

followed by a q-step path in the auxiliary graph as a trajectory of a charged particle

under the influence of magnetic field of strength q/p.

In this thesis, starting with summarizing some basic notions and properties of

ordinary graphs, we introduce the notion of Kähler graphs following to [2], and study

some basic properties. In §2 we give some examples of Kähler graphs; Kähler graphs of

n-dimensional complex lattice, Cayley Kähler graphs, complement filled Kähler graphs,

Kähler graphs of product types, and some other typical Kähler graphs obtained from

Petersen graphs, Heawood graphs and so on. In §3 we define adjacency and transition

operators on a Kähler graph which are associated with bicolored paths, paths formed

by paths on principal graphs and paths on auxiliary graphs. Roughly speaking, for

paths on principal graphs we attach either adjacency operators or transition operators,

and for paths on auxiliary graphs we attach probabilistic transition operators. Here,

probabilistic transition operators coincide with transition operators when we consider

1-step paths on auxiliary graphs. But they are different from iteration of transition

operators when we consider paths of two and more steps on auxiliary graphs. By our

definition these operators for Kähler graphs are not selfadjoint, in general. In §4 we

study eigenvalues of Laplacians corresponding to these operators. When a graph is

finite, the set of square-summable functions on the set of vertices coincides with the set

of all functions on this set, and spectrum of these operators are the sets of eigenvalues

of corresponding matrices. We mainly study the case that the adjacency operators of

principal and auxiliary graphs are commutative, and show the relationship between

the eigenvalues of Kähler graphs and those of their principal and auxiliary graphs. As

an application we study isospectral problem on Kähler graphs and give some example

of pairs of Kähler graphs which have the same eigenvalues.

The author would like to express his hearty thanks to his supervisor Professor

Toshiaki ADACHI for his continuous encouragement during author’s 6 years stay in

Japan and for his help and advice in preparing this thesis.



CHAPTER 1

Graphs

1. Some fundamental notions and results on graphs

1.1. Vertices and edges. A graph G consists of a set V of vertices and a set E of

edges. A graph is represented as a 1-dimensional CW -complex. For the set of vertices

of a graph G we denote it by V (G) or simply by V . According that the cardinality of

the set V of vertices is finite (see Fig. 1) or infinite (see Fig. 2), we classify graphs into

two “classes”. For a finite graph, we denote the set of vertices as V = {v1, v2, . . . , vnG
},

where nG denotes the cardinality of the set of V , and for an infinite graph, we denote

as V = {vλ}λ∈Λ.
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Fig. 1. finite vertices Fig. 2. infinite vertices

For the set of edges of a graph G each of which joins two vertices, we denote it by

E(G) or E. According that the cardinality of the set E of edges is finite (see Fig. 1)

or infinite (see Fig. 2), we classify graphs into two “classes”. When both of the set of

vertices and the set of edges are finite, we call this a finite graph.

Example 1.1. Fig. 3 shows a finite graph. Its set of vertices is V = {v1, . . . , v5}

and its set of edges is E = {e1, e2, e3, e4, e5}. Fig. 4 shows an infinite graph. It has an

infinite set of vertices V = {vλ}λ∈Λ and an infinite set of edges E = {eµ}µ∈A.
3



4 I. Graphs
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Fig. 3. (finite edges) Fig. 4. (infinite edges)

When we consider graphs, we sometimes give an orientation on each edges. When

we consider orientations on all edges of a graph, we say it is an oriented graph or a

directed graph. In order to make clear that we do not consider orientations of edges,

we call this graph non-oriented or undirected. Given an edge e ∈ E of an oriented

graph, we denote by o(e) its origin and by t(e) its terminus. For an edge e ∈ E of a

non-directed graph, we denote its vertices at its ends by o(e), t(e). In this case we do

not distinguish the origin and the terminus. We say two vertices v, w to be adjacent

to each other if there is an edge joining them. In this case we denote as v ∼ w. An

edge e ∈ E which joins a vertex and itself (i.e. o(e) = t(e)) (see Fig. 5) is called a

loop. When two or more edges are attached to given two vertices (which may coincide

with each other) we call them multiple edges. If a graph has multiple edges but not

loops then it is called a multiple graph (see Fig. 6). If a graph does not have loops and

multiple edges, we call it simple.

From now on, through out this paper we just say a graph for a non-oriented graph.

An edge e of a graph without multiple edges can be expressed by its both ends as

e = {o(e), t(e)}. We express an edge e of a directed graph as e =
(
o(e), t(e)

)
.

Fig. 5. loops

v1

v2

v3v4

v5

Fig. 6. multiple edges

Let G = (V,E) be a graph which may have loops and multiple edges. Given a

vertex v ∈ V we denote by dG(v) the cardinality of the set of edges emanating from v,



§1.1. Some fundamental notions and results 5

and call it the degree at v. We note that when there is a loop e = {v, v} we compute

this edge twice. If the degree at v is d(v) = 0 we call this vertex an isolated point (see

Fig. 1), and if d(v) = 1 we call it a terminal point. If one of the end point of an edge

is a terminal point, we call this edge a hair.

For a finite graphG, we can consider a sequence of degrees (dG(v1), dG(v2), · · · , dG(vn))

at its vertices. At a vertex v of a directed graph G, we set d−G(v) the cardinality of

the set of edges having v as their terminus, and set d+G(v) the cardinality of the set of

edges having v as their origin.

Proposition 1.1. For a simple finite graph G, the degree d(v) at each vertex v

satisfies d(v) ≤ nG − 1.

Proof. We consider at a vertex v ∈ V (G). Since G does not have loops, this

vertex v can be joined at most nG − 1 vertices. As G does not have multiple edges,

if two distinct vertices are adjacent to each other, then there is only one edge joining

then. Therefore we have dG(v) ≤ nG − 1. □

Proposition 1.2 (Hand shaking lemma). Let G = (V,E) be an undirected finite

graph which may have loops and multiple edges. Then the cardinality ♯E of the set of

edges and degrees satisfy the following relation:∑
v∈V

dG(v) = 2♯E

Proof. For each edge e = {v, w}, we can attach two vertices v, w ∈ V . So when

we compute degrees at these vertices, this edge is counted twice. We hence get the

conclusion. □

As a consequence of the above propositions we have the following.

Lemma 1.1. . For a finite simple graph G, the cardinality ♯E(G) of the set of edges

is not greater than
nG(nG − 1)

2
.



6 I. Graphs

A graph G = (V,E) is said to be regular if all the vertices of G have the same degree

(see Fig. 9). When each vertex has the same degree r, we call it a regular graph of

degree r. A regular graph of degree 0 is called an empty graph. By Proposition 1.2 we

have the following.

Corollary 1.1. When G = (V,E) is a regular graph of degree r, the cardinality

of its set of edges is given as ♯E =
1

2
rnG

A complete graph is a simple graph all of whose pairs of vertices are joined by edges.

A complete graph having n vertices is denoted by Kn. Clearly it is a regular graph of

degree (n− 1).

Example 1.2. We take the following three graphs having five vertices

V = {v1, v2, v3, v4, v5}.
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Fig. 7
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Fig. 8
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Fig. 9

(1) In Fig. 7, the vertex v3 is an isolated point, i.e. dG(v3) = 0. Other vertices

have the same degrees.

(2) In Fig. 8, the vertex v3 is a terminal point, i.e. d(v3) = 1. The sum of degrees

is∑
v∈V

d(v) = d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 3 + 4 + 1 + 3 + 3 = 14,

which is the twice of the cardinality 7 of edges.

(3) Fig. 9 shows a complete graph K5. As it is regular of degree 4, we have

♯E =
1

2
r♯V =

1

2
4× 5 = 10.
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1.2. Paths. Two edges e1, e2 are said to be adjacent to each other if they have

a common vertex (e1 ∩ e2 ̸= ∅) and e1 ̸= e2. A sequence γ = (e1, e2, v3, . . . em) of the

adjacent edges, that is, ei and ei+1 are adjacent to each other for i = 1, · · · ,m − 1,

is said to be a road or a path in this graph G. A path is sometimes represented

as γ = (v0, v1, v2, · · · vm) by use of vertices. In this case, we have vi ∼ vi+1 for all

i(0 ≦ i ≦ m− 1). We denote the origin v0 of γ by o(γ), and the terminus vm of γ by

t(γ). We say that the length of this path γ is m and denote as length(γ) = m. We say

a path of length m also a path of m-step. When the origin v0 and the terminus vm of

a path coincide with each other, we call it a closed path.

Example 1.3. We study the following graph having six vertices. In Fig. 10 we

mark vertices and in Fig. 11 we mark edges. We show all paths from v1 to v6 which

does not pass through the same vertex twice by two ways of expression.

5v
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vv
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v
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Fig. 10

e1 e5

e4

e3

e2

e 6

e

e
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Fig. 11

(v1, v2, v5, v6) (e1, e3, e5)

(v1, v3, v4, v6) (e6, e3, e8)

(v1, v2, v3, v4, v6) (e1, e2, e3, e8)

(v1, v3, v2, v5, v6) (e6, e2, e7, e5)

(v1, v2, v3, v4, v5, v6) (e1, e2, e3, e4, e5)

(v1, v3, v2, v5, v4, v6) (e6, e2, e7, e4, e8)

There are six such paths. They are two paths of 3-step, two paths of 4-step and

two paths of 5-step.
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We here give operations of paths. Given two paths γ1, γ2 with t(γ1) = o(γ2),

we define their join γ1 · γ2 as a joined path. That is, if γ1 = (v0, v1, . . . , vm) and

γ2 = (w0, w1, . . . , wn) with vm = w0, we set γ1 · γ2 = (v0, . . . , vmw1, . . . , wn). Hence

when γ1 is ofm-setp and γ2 is of n-step we have γ1 ·γ2 is of (m+n)-step. For a path γ =

(v0, v1, . . . , vn) we define its reversed path γ−1 by γ−1 = (vn, vn−1, . . . , v0). For example,

in Example 1.3 for a path γ1 = (v1, v2, v5, v6) its reverse is γ−1 = (v6, v5, v2, v1).

When a path γ∗ is included in a longer path γ, that is, if γ = (v0, v1, . . . , vn) and

γ∗ = (vi, vi+1, . . . , vk) for some i and k satisfying 0 ≤ i < k ≤ n, we say this path

γ∗ to be a subpath of γ. For a path γ = (v0, v1 . . . vi−2, vi−1, vi, vi+1), we say it has a

backtraking if there is i0 satisfying vi0−1 = vi0+1, and we say it do not have backtraking

if vertices vi−1 and vi+1 does not coincide for all i.

1.3. Connected components. Given two vertices v, w ∈ V of a graph G =

(V,E), we say they are connected by paths if there is a path joining them, that is we

have a path γ with o(γ) = v and t(γ) = w. We call this graph G connected if every

pair of distinct vertices are connected by paths. We denote as v—w either if v = w or

v, w are connected by paths.

We here show that this relation v—w gives an equivalence relation on the set V .

(1) When v = w we have v—w by definition.

(2) Suppose v—w. When v = w, we clearly have w—v. When v ̸= w, there is

a path γ = (v0, v1, . . . , vm−1, vm) from v to w. If we take its reversed path γ−1 =

(vm, vm−1, · · · , v1, v0), then we have o(γ−1) = t(γ) = w, t(γ−1) = o(γ) = v, hence find

w—v.

(3) Suppose u—v and v—w. When either u = v or v = w, we have v—w

When u ̸= v and v ̸= w, there are paths σ = (v0, v1, . . . , vn) from u to v and

γ = (v′0, v
′
1, . . . , v

′
m) from v to w. Since t(σ) = v = o(γ), we can take the joined

path σ · γ = (v0, v1, . . . , vn, v
′
1, v

′
2, . . . , v

′
m) which is a path from u to w. We hence get

u—w.

By these (1), (2), (3) we find that the relation — is an equivalence relation.
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We decompose V into equivalence classes V =
∑
i

Vi. We put Ei the set of edges

one of whose ends belongs to Vi. If we suppose Ei ∩ Ej ̸= ∅, we have an edge e with

o(e) ∈ Vi and t(e) ∈ Vj. Then these two vertices are connected by paths, hence they

belong to the same equivalence class. We therefore have i = j. Thus we have a disjoint

decomposition E =
∑

Ei of E and get connected graphs Gi = (Vi, Ei). We call each

Gi a connected component of G, and call G =
∑

Gi the decomposition of G into

connected components.

1.4. Graph isomorphisms. Let G = (V,E), G
′
= (V

′
, E

′
) be two graphs. A

map f : V → V
′
is said to be an homomorphism of G to G

′
if it satisfies f(v) ∼ f(v

′
)

for arbitrary v, v
′ ∈ V with v ∼ v

′
. A bijection f : V → V

′
is called an isomorphism

of G to G
′
if it and its inverse f−1 : V

′ → V are homomorphisms. When we have an

isomorphism between G and G′, we say these graphs are isomorphic.

Example 1.4. We give two graphs (V,E) and (V ′, E ′) in the following manner:

V = {v1, v2, v3, v4, v5}, E =
{
{v1, v3}, {v3, v5}, {v5, v2}, {v2, v4}, {v4, v1}

}
,

V ′ = {v′1, v′2, v′3, v′4, v′5}, E ′ =
{
{v′1, v′2}, {v′2, v′3}, {v′3, v′4}, {v′4, v′5}, {v′5, v′1}

}
.

We find that a bijection f : V → V ′

v1 7→ v′1, v3 7→ v′2, v5 7→ v′3, v2 7→ v′4, v4 7→ v′5

is an isomorphism between these two graphs.

v
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Proposition 1.3. If two finite complete graphs have the same cardinalities of their

sets of vertices, then they are isomorphic.
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Proof. Let G = (V,E) and G′ = (V ′, E ′) be two complete graphs with ♯V = ♯V ′.

We denote as V = {v1, . . . , vn}, V ′ = {v′1, . . . , v′n} and define a bijection f : V −→ V ′

by f(vi) = v′i. If j ̸= i we see vi ∼ vj and v′i ∼ v′j because G and G′ are complete.

Hence vi ∼ vj shows f(vi) ∼ f(vj) and v
′
i ∼ v′j shows f−1(v′i) ∼ f(v′j). Thus f is an

isomorphism, hence we get the conclusion. □

We call a graph G vertex-transitive if for arbitrary distinct two vertices v, v′ ∈ V

there is an isomorphism (automorphism) f : V → V of G satisfying f(v) = v
′
. It

is trivial that a vertex-transitive graph is regular. A typical example of a vertex of

transitive graph is a Cayle graph. Let G is a group and S is subset of G which does not

contain the identity 1G and that is invariant under the action of the inverse operation.

That is, S = S−1 = {s−1 | s ∈ S}. If we put V = G and define E = E(G;S) as the of

set pairs g, h ∈ G satisfing gh−1 ∈ S, then we obtain a graph G(G;S).

Proposition 1.4. A Cayley graph G(G;S) = (V,E) is vertex-transitive.

Proof. We take arbitrary two elements g1, g2 ∈ G. We have an element x ∈ G

satisfying g2 = g1x. That is x = g1
−1g2. We define a map fg1.g2 : G −→ G by

fg1,g2(g) = gx. We shall show that this map f is an isomorphism.

We suppose two distinct elements g, h ∈ G satisfy g ∼ h. Then we have an element

s ∈ S with gh−1 = s. That is s−1g = h. As we have

s−1f(g) = s−1(gx) = (s−1g)x = f(s−1g) = f(h)

we see f(g)(f(h))−1 = s. Hence f(g) ∼ f(h) and we find that f is an homomorphism.

The inverse map f−1 : G −→ G is given by f−1(g) = gx−1. If g, h ∈ G satisfy g ∼ h,

we have gh−1 = s ∈ S, hence we see

f−1(g){f−1(h)}−1 = gx−1(hx−1)−1 = gx−1xh−1 = gh−1 = s.

Hence f−1(g) ∼ f−1(h) and we find that f−1 is an homomorphism. □
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1.5. Cycle graphs. A cycle graph is a graph consists of a closed path, that is

a connected regular graph of degree 2. When a cycle have N vertices we call it an

N -cycle. It is also called a circuit. Since we suppose graphs are simple, the cardinality

of the set of vertices N of a cycle graph is more than 2.

Proposition 1.5. Cycle graphs of N vertices are is isomorphic to each other.

Proof. Let (V,E) be an N -cycle. We choose an arbitrary vertex v0 ∈ V . Take

v1 ∈ V \ {v0} so that it is adjacent to v0 (i.e. {v0, v1} ∈ E). Because (V,E) is a

regular graph of degree two, we can choose v2 ∈ V \ {v0, v1} so that it is adjacent to

v1. Inductively, for 3 ≤ i ≤ N − 1 we can choose vi ∈ V \ {vi−2, vi−1} so that it is

adjacent to vi−1 for i ≤ N − 1.

Here, we show that vi ̸= v0, . . . , vi−1 by mathematical induction. We suppose this

condition holds for all i with 1 ≤ i ≤ i∗ (≤ N − 2). If we suppose vi∗+1 = vr with

some r with 1 ≤ r ≤ i∗ − 2, then vi∗ is adjacent to vr, hence it is either vr−1 or vr+1,

which is a contradiction to the assumption (see Fig. 12). If we suppose vi∗+1 = v0,

then (v0, . . . , vi∗ , v0) is a closed path (without backtrackings). Since the degree at each

vertex is 2 it is a connected component. As i∗ ≤ N − 2 it is also a contradiction. Thus

the condition holds for i∗ + 1.

By the above operation we get a path (v0, . . . , vN−1) without backtracking all of

whose vertices are distinct. As nG = N we find that v0 and vN−1 are adjacent to each

other. Hence we obtain that an N -cycle is a graph of N -step closed path without

backtracking all of whose vertices are different (see Fig. 13).

v

v2

i*

0

+1v v1=

i*v

Fig. 12. unclosed path

v

v2

0

v1
vn -1

vn - 2

Fig. 13. closed path
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If we have two N -cycles (v0, . . . , vN−1), (w0, . . . , wN−1) which is formed by N -step

closed path without backtracking all of whose vertices are different, then the map f

defined by vi 7→ wi is an isomorphism. □

By the above proposition, we denote by CN an N -cycle graph.



2. Laplacians of graphs

2.1. Adjacency and transition operators of a graph. Given a locally finite

graph G = (V,E) we denote by C(V ;R) the set of all real valued functions of V , that

is, C(V ;R) = {f : V → R}. We define its adjacency operator AG and its transition

operator PG acting on C(V ;R) by

AGf(v) =
∑

e∈E:o(e)=v

f
(
t(e)
)
, PGf(v) =

1

dG(v)

∑
e∈E:o(e)=v

f
(
t(e)
)
,

respectively. When the degree dG(v) at vertex v does not depend on the choice of

vertices, that is, the degree function dG is a constant function, those operators satisfies

the following relation

(2.1) PG =
1

dG
AG.

When G is simple, these operators are expressed as

AGf(v) =
∑

w∈V :w∼v

f(w), PGf(v) =
1

dG(v)

∑
w∈V :w∼v

f(w),

respectively.

We here express the adjacency operator AG by a matrix in the case that G is a

finite graph. When G is a finite graph, for a pair (v, w) of vertices in G, we set

avw = (number of edges which join v and w),

and define a symmetric matrix AG by AG = (avw). We call this the adjacent matrix

of G. When the cardinality of the set of vertices is n, then the adjacency matrix is an

n×n symmetric matrix. When a graph G is simple graph, then we have avw = 1 for two

vertices which are adjacent to each other and avw = 0 for two vertices which are not

adjacent to each other, and moreover we have avv = 0. Therefore, for a simple graph

its adjacency matrix is a symmetric matrix each of whose entries is either 0 or 1 and

whose diagonal complements are 0. This adjacent matrix is a matrix representation

of the adjacency operator. For each vertex v ∈ V we define a function δv : V → R by

δv(w) =

{
1, when w = v,

0, when w ̸= v.
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Then {δv | v ∈ V } forms a basis of C(V ;R). As we have

AGδv(u) =
∑

e∈E:o(e)=u

δv
(
t(e)
)
= ♯{e ∈ E | e joins u and v} = auv,

where for a set S we denote by ♯S its cardinality, we find that

AGδv =
∑
w∈V

avwδw.

Thus AG is the matrix representation of AG with respect to the basis {δv | v ∈ V }.

Example 1.5. We take a graph G = (V,E) which is given by

V = {v1, v2, v3, v4, v5, v6},

E =
{
e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}, e4 = {v4, v5},

e5 = {v5, v6}, e6 = {v1, v3}, e7 = {v2, v5}, e8 = {v4, v6}
}
.

Then its adjacency matrix is as follows:
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Fig. 15

Next we consider vertices and edges adjacency of a finite graph. We denote by n

the cardinality of the set of vertices, and by m that of the set of edges. We define an

n×m-matrix B = (bve) by setting bve = 1 when a vertex v and an edge e are adjacent

to each other and bve = 0 when they are not adjacent to each other. We call it the

incident matrix of this graph (see Fig. 17).

Example 1.6. For the graph in Example 1.5, its incident matrix is given as follows:
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Fig. 17

For two vertices v and w of a finite graph G = (V,E), we define its transition

matrix PG = (pvw) by using adjacency matrix AG = (avw) as

pvw =
avw
dG(v)

=
numbers of the adjacent edges between v and w

degree at vertex v
.

As we have

PGδv(u) =
1

dG(v)

∑
e∈E:o(e)=u

δv
(
t(e)
)
=

auv
dG(v)

= puv,

we see

PGδv =
∑
w∈V

pvwδw.

Hence, PG is the matrix representation of PG with respect to the basis {δv | v ∈ V }.

Transition matrix is used to describe the probabilities of moving from each vertex to

other vertices. That is, when we have baggage of amount k at a vertex v at first, then

next time they are transferred to vertices adjacent to v and the amount at w received

from v is puv × k.

Example 1.7. For the graph in Example 1.5, its transition matrix is given as

follows:
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Proposition 1.6. The sum of components in the each row of the transition matrix

PG = (pvw) of a finite graph G = (V,E) is equal to 1, that is
∑

w pvw = 1 for each

v ∈ V .

Proof. According to the definition of deg(v), we have∑
w∈V

pvw =
∑
w∈V

avw
deg(v)

=
1

deg(v)

∑
w∈V

avw = 1.

□
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2.2. Laplacian of graph. For a locally finite graph G = (V,E), we define its

degree operator DG acting on C(V,R) by

DGf(v) = dG(v)f(v).
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When G is a finite graph, it is represented by a diagonal matrix DG whose diagonal

componetns are dG(v) (v ∈ V ). That is, if we denote as DG = (dvw) we have

dvw =

{
degG(v), if v = w,

0, if v ̸= w.

We define the combinatorial Laplacian ∆AG
and the transitional Laplacian ∆PG

acting

on C(V,R) by ∆AG
= DG −AG and ∆PG

= I −PG, respectively. Here, I denotes the

identity operator. Thus we have

∆AG
f(v) = dG(v)f(v)−AGf(v) and ∆PG

f(v) = f(v)− PGf(v)

for f ∈ C(V,R). When the graph G = (V,E) is regular, that is its degree-function dG

does not depend on the choice of vertices, by (2.1) these Laplacians are related with

each other as

∆AG
= dG∆PG

.

When G is finite, by using the canonical basis {δv | v ∈ V } of C(V,R), we can

represent these Laplacians by matrices. Let DG denote the matrix representation of

DG. By using the matrix representations AG, PG, DG of AG, PG, DG, we find that

the matrix representations ∆AG
, ∆PG

of ∆AG
, ∆PG

are given as ∆AG
= DG −AG and

∆PG
= I − PG, respectively, where I denotes the identity matrix.

Example 1.8. Let G = (V,E) be a graph in Fig. 22. We take a function f ∈

C(V ;R) given by

f(v1) = 1, f(v2) = 3, f(v3) = −7, f(v4) = 4, f(v5) = −13.

Then we have

∆AG
f(v1) = dG(v1)f(v1)− {f(v2) + f(v3) + f(v4) + f(v5)} = 17,

∆AG
f(v2) = 18, ∆AG

f(v3) = −29, ∆AG
f(v4) = 20, ∆AG

f(v5) = −31.

and

∆PG
f(v1) = f(v1)−

1

dG(v1)
{f(v2) + f(v3) + f(v4) + f(v5)} =

17

4
,

∆PG
f(v2) =

18

2
, ∆PG

f(v3) =
−29
3
, ∆PG

f(v4) =
20

3
, ∆PG

f(v5) =
−31
2
.
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If we represent them by matrices with respect to the canonical basis

{δv1 , δv2 , δv3 , δv4 , δv5}, we have

f = δv1 + 3δv2 + (−7)δv3 + 4δv4 + (−13)δv5 ←→


1
3
−7
4
−13


and

∆AG
f ⇔


4 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2




1
3
−7
4
−13

−

0 1 1 1 1
1 0 1 0 0
1 1 0 1 0
1 0 1 0 1
1 0 0 1 0




1
3
−7
4
−13

 =


17
12
−29
31
−31



∆PG
f ⇔


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1
3
−7
4
−13

−

0 1

4
1
4

1
4

1
4

1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
2

0 0 1
2

0




1
3
−7
4
−13

 =



17
4

12
2

−29
3

31
3

−31
2

 .

v
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Fig. 22

In order to show properties of graphs it is a way to study their eigenvalues of

Laplacians. We here briefly recall definitions of eigenvalues and eigenvectors, and

some of their basic properties.

If a square matrix B satisfies Bv = λv with a non-null vector v and a constant λ,

we call λ an eigenvalue of B and call v an eigenvector of B corresponding to λ.

Note 1.1. Let A be a real symmetric matrix.
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(1) All eigenvalues of A are real, hence we can choose a real eigenvector for each

eigenvalue.

(2) For its two distinct eigenvalues λ, µ, we take eigenvectors v, w corresponding

to each of them. Then they are orthogonal to each other.

Proof. Let n denote the size of A, which means that A is an n × n matrix. We

consider a Hermitian inner product on Cn which is defined by

⟨x,y⟩ = txy = x1y1 + x2y2 + · · ·+ xnyn

for x = t(x1, . . . , xn), y = t(y1, . . . , yn) ∈ Cn, where for a complex number z =

a +
√
−1b we set its complex conjugate by z = a −

√
−1b, and for a matrix B we

denote by tB its transposed matrix.

(1) We take an eigenvalue λ and an eigenvector v corresponding to λ. Since A is a

real symmetric matrix, we have

λ∥v∥2 = λ⟨v, v⟩ = ⟨λv, v⟩ = ⟨Av, v⟩ = ⟨v, tAv⟩

= ⟨v, Av⟩ = ⟨v, λv⟩ = λ⟨v, v⟩ = λ∥v∥2,

where A = (aij) for the matrix A = (aij). As v is not a null vector, we find λ = λ,

which shows that λ is real.

We take an eigenvector v ∈ Cn corresponding to λ and denote as v = x +
√
−1y,

where x,y ∈ Rn. As we have

λx+
√
−1λy = λv = Av = Ax+

√
−1Ay

and Ax, Ay ∈ Rn, we see both x and y are eigenvectors corresponding to λ if they are

not null vectors. As v is not a null vector, either x or y is not null.

(2) We have

λ⟨v,w⟩ = ⟨λv,w⟩ = ⟨Av,w⟩ = ⟨v, Aw⟩ = ⟨v, µw⟩ = µ⟨v,w⟩.

As λ ̸= µ we find ⟨v,w⟩ = 0, so that two eigenvectors v,w are orthogonal to each

other. □
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For an eigenvalue λ of a square matrix B, we denote by mB(λ) its multiplicity,

which is the dimension of the eigenspace {v ∈ Cn | Bv = λv}. The following is well

known.

Note 1.2. A symmetric matrix A is diagonalizable by some orthogonal matrix

R, that is tRAR turns to be a diagonal matrix. In particular, the sum
∑
mA(λ) of

multiplicities of all distinct eigenvalues coincides with the size n of A.

This means that there is an orthonormal basis (v1, v2 · · · , vn) which is formed by

eigenvectors.

Note 1.3. Let A,B are symmetric matrices of the same size. If they are commu-

tative (i.e. AB = BA), then they are simultaneously diagonalizable.

Proof. When v is an eigenvector of A associated with an eigenvalue λ, we have

ABv = BAv = λBv.

Thus Bv is also an eigenvector associated with λ.

If mA(λ) = k, we take linearly independent eigenvectors v1, . . . , vk associated with

λ. Then we can represent Bvj as

Bvj = c1jv1 + · · ·+ ckjvk.

If we define a matrix of size k by C = (cij), we have B
(
v1 · · · vk

)
=
(
v1 · · · vk

)
C.

Thus if we take an orthogonal matrix P satisfying that

tPAP =



λ1
. . .

λ1
. . .

λr
. . .

λr


,
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where λ1, . . . , λr are mutually distinct eigenvalues of A, as the low vectors of P are

eigenvectors of A, we have

BP = P

C1

. . .
Cr

 ,

where Cℓ is a square matrix of size mA(λℓ).

Since tPBP is symmetric, we find that each Cℓ is also symmetric. Therefore we

have orthogonal matrices Qℓ satisfying that tQℓCℓQℓ are diagonal matrices by Note

1.2. We set

Q =

Q1

. . .
Qr

 .

Then we have
t(PQ)B(PQ) = tQ(tPBP )Q

=

tQ1

. . .
tQr

C1

. . .
Cr

Q1

. . .
Qr


=

tQ1C1Q1

. . .
tQrCrQr


is a diagonal matrix. On the other hand, if we denote P =

(
p1 · · · pn

)
, we find that

the low vectors obtained by
(
p1 · · · pMA(λ1)

)
Q1 are eigenvectors associated with

λ1, the low vectors obtained by
(
pmA(λ1)+1 · · · pMA(λ1)+mA(λ2)

)
Q2 are eigenvectors

associated with λ2 and so on. Hence we obtain that t(PQ)A(PQ) is a diagonal matirx.

Thus find both t(PQ)A(PQ) and t(PQ)B(PQ) are diagonal matrices, and we get the

conclusion. □

Remark 1.1. If A and B are simultaneously diagonalizable, then there exists a

basis v1, . . . , vn consists of eigenvectors of both of them (i.e. Avi = λivi and Avi = ηivi

for all i).

We now come back to study Laplacians of graphs. Let G = (V,E) be a finite

non-oriented graph. For each edge e ∈ E we give a direction and consider an oriented
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graph (V,E+). For an non-oriented edge e ∈ E we denote by e⃗ ∈ E+ the edge with

considered orientation. Let C(E+) be a set of all (real valued) functions of the set E+

of oriented edges. We define a map ∇ : C(V )→ C(E+) by ∇f
(
(v, w)

)
= f(w)− f(v)

for each f ∈ C(V ), and call it coboundary operator. In order to study the relationship

between Laplacians and the coboundary operator, we define an inner product ⟨ , ⟩

and a weighted inner product ⟨⟨ , ⟩⟩ on C(V ) by

⟨f, g⟩ =
∑
v∈V

f(v)g(v),

⟨⟨f, g⟩⟩ =
∑
v∈V

dG(v)f(v)g(v)

for f, g ∈ C(V ). Also we define an inner product ⟨ , ⟩ on C(E+) by

⟨φ, ψ⟩ =
∑
e⃗∈E+

φ(e⃗ )ψ(e⃗ )

for φ, ψ ∈ C(E+).

For each edge e ∈ E, we give the reversed direction and consider another oriented

graph (V,E−). This means that an oriented edge e⃗ ∈ E+ if and only if its reversed

edge e⃗ −1 ∈ E−. In particular, we have a bijection E+ ∋ e⃗ 7→ e⃗ −1 ∈ E−. We define

an inner product ⟨ , ⟩ on C(E−) by

⟨φ̂, ψ̂⟩ =
∑
ê∈E−

φ̂(ê)ψ̂(ê)

for φ̂, ψ̂ ∈ C(E−). For a function φ ∈ C(E+) we define a function φ̂ ∈ C(E−) by

φ̂(e⃗ −1) = −φ(e⃗ ). We then have

⟨φ, ψ⟩ =
∑
e⃗ ∈E+

φ(e⃗ )ψ(e⃗ ) =
∑
e⃗ ∈E+

(
−φ(e⃗ )

)(
−ψ(e⃗ )

)
=
∑
e⃗ ∈E+

φ̂(e⃗ −1)ψ̂(e⃗ −1)

=
∑
ê∈E−

φ̂(ê)ψ̂(ê) = ⟨φ̂, ψ̂⟩.

By using this duality, we show the following.

Proposition 1.7. For functions f, g ∈ C(V ) we have

⟨∆AG
f, g⟩ = ⟨∇f,∇g⟩ = ⟨f,∆AG

g⟩,

⟨⟨∆PG
f, g⟩⟩ = ⟨∇f,∇g⟩ = ⟨⟨f,∆PG

g⟩⟩.
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Proof. By using the duality we have

2⟨∇f,∇g⟩ =
∑
e⃗∈E+

∇f(e⃗ )∇g(e⃗ ) +
∑
ê∈E−

∇f(ê)∇g(ê)

=
∑
e⃗∈E+

{f
(
t(e⃗ )

)
− f

(
o(e⃗ )

)
}{g
(
t(e⃗ )

)
− g
(
o(e⃗ )

)
}

+
∑
e⃗∈E+

{f
(
o(e⃗ )

)
− f

(
t(e⃗ )

)
}{g
(
o(e⃗ )

)
− g
(
t(e⃗ )

)
}.

On the other hand, by direct computation we see

⟨∆AG
f, g⟩ =

∑
u∈V

{
dG(u)f(u)−

∑
u∼v

f(v)}
}
g(u)

=
∑
u∈V

{
dG(u)f(u)g(u)−

∑
u∼v

f(v)g(u)
}

=
∑
u∈V

∑
v∼u

{
f(u)− f(v)

}
g(u).

If we consider u ∈ V as an origin of a non-oriented edge e, then the vertex v with

v ∼ u is the terminus of this edge, and if we consider u as a terminus of e, then v is

the origin of e. We therefore have∑
u∈V

∑
v∼u

{
f(u)− f(v)

}
g(u)

=
∑
u∈V

∑
e∈E,o(e)=u

{
f
(
o(e)

)
− f

(
t(e)
)}
g
(
o(e)

)
+
∑
u∈V

∑
e∈E,t(e)=u

{
f
(
t(e)
)
− f

(
o(e)

)}
g
(
t(e)
)

=
∑
e∈E

{
f
(
o(e)

)
− f

(
t(e)
)}
g
(
o(e)

)
+
∑
e∈E

{
f
(
t(e)
)
− f

(
o(e)

)}
g
(
t(e)
)

=
∑
e∈E

{
f
(
t(e)
)
− f

(
o(e)

)}{
g
(
t(e)
)
− g
(
o(e)

)}
.

We should note that both E+, E− are bijective to E. As we consider each edge e ∈ E

its (temporary) orientation, we find that ⟨∆AG
f, g⟩ = ⟨∇f,∇g⟩. Next we study ∆PG

.

⟨⟨∆PG
f, g⟩⟩ =

∑
u∈V

dG(u)
{
f(u)− 1

dG(u)

∑
u∼v

f(v)}
}
g(u)

=
∑
u∈V

{
dG(u)f(u)g(u)−

∑
u∼v

f(v)g(u)
}

=
∑
u∈V

∑
u∼v

{
f(u)− f(v)

}
g(u) = ⟨∆AG

f, g⟩.



24 I. Graphs

Hence we have ⟨⟨∆PG
f, g⟩⟩ = ⟨∇f,∇g⟩, and get the conclusion. □

By using this we find the following result.

Proposition 1.8. Let G = (V,E) be a finite graph.

(1) Every eigenvalue of ∆AG
and ∆PG

are nonnegative.

(2) 0 is an eigenvalue of both ∆AG
and ∆PG

.

(3) The multiplicity of 0 coincides with the number kG of connected component of

G. Eigenfunctions associated with 0 are functions which are constant on each

component of G.

Proof. (1) Let f be an eigenfunction of ∆AG
associated with λ. As we have

∆AG
f = λf , we see

λ⟨f, f⟩ = ⟨λf, f⟩ = ⟨∆AG
f, f⟩ = ⟨∇f,∇f⟩.

Since f is not the null function, we have ⟨f, f⟩ ̸= 0. Therefore we have λ = ⟨∇f,∇f⟩
⟨f,f⟩ ≥ 0,

and λ = 0 if and only if ⟨∇f,∇f⟩ = 0, which means ∇f(e) = 0 for all e ∈ E.

Similarly if we take an eigenfunction of ∆PG
associated with λ, we have

λ⟨⟨f, f⟩⟩ = ⟨⟨λf, f⟩⟩ = ⟨⟨∆PG
f, f⟩⟩ = ⟨∇f,∇f⟩.

Hence we obtain λ = ⟨∇f,∇f⟩
⟨⟨f,f⟩⟩ ≥ 0, and λ = 0 if and only if ⟨∇f,∇f⟩ = 0.

(2) We take a function f on V which is constant on each connected component of

G. We decompose V into V1 + · · · + Vk(G) components. Then we see f(v) = ai for all

v ∈ Vi (i = 1, . . . , k(G)). If v ∈ Vi, we have

∆AG
f(v) = dG(v)f(v)−

∑
w∼v

f(w) = ai
(
dG(v)−

∑
w∼v

1
)
= 0,

∆PG
f(v) = f(v)− 1

dG(v)

∑
w∼v

f(w) = ai

(
1− 1

dG(v)

∑
w∼v

1
)
= 0.

Hence 0 is an eigenvalue of both ∆AG
and ∆PG

.

(3) Given two vertices v, w in the same connected component of G, there is a

path γ = (v0, v1, . . . , vn) joining them. That is, v0 = v and vn = w. When f is
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an eigenfunction associated with 0, as ∇f(e) = 0 for all e ∈ E, which means that

f
(
t(e)
)
= f

(
o(e)

)
, we find that

f(v) = f(v1) = · · · = f(vn−1) = f(w).

Therefore every eigenfunction associated with 0 is constant on each connected compo-

nent.

On the other hand, we take functions fi (i = 1, . . . , k(G)) defined by

fi(v) =

{
1, if v ∈ Vi,
0, if v ̸∈ Vi.

Then they are eigenfunctions associated with 0. These functions are linearly indepen-

dent. As a matter of fact, if a1f1L+ · · ·+ak(G)fk(G) is the null function with some real

numbers a1, . . . , ak(G), then by taking a vertex vi ∈ Vi for each i we find

0 = a1f1(vi) + · · ·+ ak(G)fk(G)(vi) = ai.

Since every function g which is constant on each component, say g ≡ bi on Vi for

every i, we have g = b1f1L + · · · + bk(G)fk(G). Hence the dimension of eigenfunctions

associated with 0 is k(G). Thus the multiplicity of 0 is k(G). □





CHAPTER 2

Kähler graphs

1. Definition and Examples of Kähler graphs

　A Kähler graph is a graph which possesses two different kind of adjacencies. We

say a graph G = (V,E) to be Kähler if its set of edge E is divided into two disjoint

subsets E(p) and E(a) and it satisfies the following condition:

At each vertex v ∈ V there are at least four edges emanating from v,

two of them are contained in E(p) and two of them are contained in E(a).

We then get two graphs G(p) = (V,E(p)) and G(a) = (V,E(a)) which share the same

set of vertices V . We call them the principal graph and the auxiliary graph of a

Kähler graph G, respectively. Correspondingly, we call an edge belonging to E(p) to

be principal and that belonging to E(a) to be auxiliary. In order to clarify the structure

of Kähler graph, we usually denote a Kähler graph as G = (V,E(p)∪E(a)). For a vertex

v ∈ V of a Kähler graph G = (V,E(p) ∪ E(a)), we denote by d
(p)
G (v) the degree of the

principal graph G(p) at v, and by d
(a)
G (v) the degree of the auxiliary graph G(a) at v.

We call these d
(p)
G (v) and d

(a)
G (v) the principal and auxiliary degrees at v, respectively.

Clearly we have dG(v) = d
(p)
G (v) + d

(a)
G (v). For distinct two vertices v, w ∈ V , we

denote by v ∼p w their adjacency in the principal graph, and denote by v ∼a w their

adjacency in the auxiliary graph.

In this paper, when we draw figures of Kähler graphs, we draw principal edges

by lines and draw auxiliary edges by dotted lines (see Figs. 1, 3). One may use two

kinds of colors to show these edges. To distinguish Kähler graphs from other graphs

we sometimes call graphs as ordinary graphs.

27
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Example 2.1. We define a Kähler graph G = (V,E(p) ∪ E(a)) as

V =
{
v1, v2, v3, v4, v5

}
,

E(p) =
{
{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v1}

}
E(a) =

{
{v1, v3}, {v3, v5}, {v5, v2}, {v2, v4}, {v4, v5}

}
.

If we draw figures of this Kähler graph and its principal and auxiliary graphs, we have

as follows.

v

v

v
v

v

1

4

5

2

3

Fig. 1

v

v

v
v

v

1

4

5

2
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Fig. 2

v

v

v
v

v

1

4

5

2

3

Fig. 3

This example suggests us a way of constructing Kähler graphs. For an ordinary

finite graph G = (V,E) we take its complement graph Gc = (V,Ec). Here, we define

Ec in the following manner: For distinct two vertices v, w ∈ V we define v ∼ w in Gc

if and only if v ̸∼ w in G. Here, for two vertices v, w we show as v ̸∼ w if they are not

adjacent to each other. By the definition of complement graphs, we see E ∩ Ec = ∅.

Under the condition that 2 ≤ dG(v) ≤ nG − 3, we have 2 ≤ dGc(v) ≤ nGc − 3 because

dG(v)+ dGc(v) = nG− 1, where nG = nGc denote the cardinality of the set of V . Thus

we obtain a Kähler graph GK = (V,E ∪ Ec) which is complete as an ordinary graph.

We call this the complement-filled Kähler graph of G.

We here give some other examples of Kähler graph.

Example 2.2. We denote by Z the set of integers and by R the set of real numbers.

We take the set of lattice points V = Z2 =
{
(a, b)

∣∣ a, b ∈ Z
}
in a Euclidean plane

R2. We set principal edges so that lines which are parallel to the x-axis are formed by

them, and set auxiliary edges so that lines parallel to the y-axis are formed by them.
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That is, we set

E
(p)
1 =

{
{(a, b), (a+ 1, b)}, {(a, b), (a− 1, b)}

∣∣ a, b ∈ Z
}
,

E
(a)
1 =

{
{(a, b), (a, b+ 1)}, {(a, b), (a, b− 1)}

∣∣ a, b ∈ Z
}
.

We then obtain a Kähler graph (V,E
(p)
1 ∪ E

(a)
1 ) (see Fig 4,Fig 5).

)(

)(

a b, )(a b,+1
-

-

a b, +1

)(a b, 1

)(a b,1

Fig. 4 Fig. 5. (V,E
(p)
1 ∪ E

(a)
1 )

If we set

E
(p)
2 =

{
{(a, b), (a+ 1, b)}, {(a, b), (a− 1, b)},
{(a, b), (a, b+ 1)}, {(a, b), (a, b− 1)}

∣∣∣∣ a, b ∈ Z
}
,

E
(a)
2 =

{
{(a, b), (a+ 1, b+ 1)}, {(a, b), (a− 1, b− 1)},
{(a, b), (a− 1, b+ 1)}, {(a, b), (a+ 1, b− 1)}

∣∣∣∣ a, b ∈ Z
}
,

we obtain another Kähler graph (V,E
(p)
2 ∪E

(a)
2 ) (see Figs. 6, 7). Its principal graph is

connected.

)(a b,

-

+ (a b,+1 )+1-(a b,1 )1

--(a b,1 )1 (a b,+1 )1

Fig. 6 Fig. 7. (V,E
(p)
2 ∪ E

(a)
2 )

Similarly if we set

E
(p)
3 =

{
{(a, b), (a+ 1, b)}, {(a, b), (a− 1, b)},

{(a, b), (a+ 1, b+ 1)}, {(a, b), (a− 1, b− 1)}

∣∣∣∣ a, b ∈ Z
}
,

E
(a)
3 =

{
{(a, b), (a, b+ 1)}, {(a, b), (a, b− 1)},

{(a, b), (a− 1, b+ 1)}, {(a, b), (a+ 1, b− 1)}

∣∣∣∣ a, b ∈ Z
}
,

we obtain a Kähler graph (V,E
(p)
3 ∪ E

(a)
3 ) (see Figs 8, 9). Its principal and auxiliary

graphs are connected.



30 II. Kähler graphs

)(a b,

-

+ (a b,+1 )+1-(a b,1 )1

--(a b,1 )1 (a b,+1 )1

)(a b, +1

- )(a b, 1

- )(a b,1 )(a b,+1

Fig. 8 Fig. 9. (V,E
(p)
3 ∪ E

(a)
3 )

We note that V can be identified with the set of lattice points {a +
√
−1b |

a, b ∈ Z} in the field C of complex numbers. We call these Kähler graphs (V,E
(p)
1 ∪

E
(a)
1 ), (V,E

(p)
2 ∪ E

(a)
2 ), (V,E

(p)
3 ∪ E

(a)
3 ) a Kähler graph of complex lattice, a complex

line of Cartesian-tensor product type, and a Cayley complex line, respectively.

We can extend the above examples of Kähler graphs to Kähler graphs of lattice

points in a complex m dimensional Euclidean space Cm.

Example 2.3. We take the set of lattice points

V =
{
(a1 +

√
−1b1, . . . , am +

√
−1bm)

∣∣ ai, bi ∈ Z for all i = 1, . . . ,m
}
.

We define (V,E
(p)
1 ∪ E

(a)
1 ) as follows:

1) Two vertices

z = (a1+
√
−1b1, . . . , am+

√
−1bm), z′ = (a′1+

√
−1b′1, . . . , a′m+

√
−1b′m) ∈ V

are adjacent to each other in the principal graph if and only if there is i0 (1 ≤

i0 ≤ m) satisfying that

i) a′i0 = ai0 + 1 or a′i0 = ai0 − 1,

ii) a′i = ai for i ̸= i0,

iii) b′i = bi for all i;

2) Two z, z′ ∈ V are adjacent to each other in the auxiliary graph if and only if

there is i0 (1 ≤ i0 ≤ m) satisfying that

i) b′i0 = bi0 + 1 or b′i0 = bi0 − 1,

ii) a′i = ai for all i,
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iii) b′i = bi for i ̸= i0.

We call this graph a Kähler graph of m-dimensional complex lattice.

We define (V,E
(p)
2 ∪ E

(a)
2 ) as follows:

1) Two vertices

z = (a1+
√
−1b1, . . . , am+

√
−1bm), z′ = (a′1+

√
−1b′1, . . . , a′m+

√
−1b′m) ∈ V

are adjacent to each other in the principal graph if and only if there is i0 (1 ≤

i0 ≤ m) satisfying either the following i), ii), iii) or i’), ii’), iii’):

i) a′i0 = ai0 + 1 or a′i0 = ai0 − 1, i’) b′i0 = bi0 + 1 or b′i0 = bi0 − 1,

ii) a′i = ai for i ̸= i0, ii’) a′i = ai for all i,

iii) b′i = bi for all i; iii’) b′i = bi for i ̸= i0;

2) Two z, z′ ∈ V are adjacent to each other in the auxiliary graph if and only if

there is i0 (1 ≤ i0 ≤ m) satisfying that

i) one of the following holds:

a) a′i0 = ai0 + 1 and b′i0 = bi0 + 1,

b) a′i0 = ai0 + 1 and b′i0 = bi0 − 1,

c) a′i0 = ai0 − 1 and b′i0 = bi0 + 1,

d) a′i0 = ai0 − 1 and b′i0 = bi0 − 1,

ii) a′i = ai for i ̸= i0,

iii) b′i = bi for i ̸= i0.

We call this a Kähler graph of m-dimensional complex lattice of Cartesian-tensor

product type.

We define (V,E
(p)
3 ∪ E

(a)
3 ) as follows:

1) Two vertices

z = (a1+
√
−1b1, . . . , am+

√
−1bm), z′ = (a′1+

√
−1b′1, . . . , a′m+

√
−1b′m) ∈ V

are adjacent to each other in the principal graph if and only if there is i0 (1 ≤

i0 ≤ m) satisfying either
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i) a′i0 = ai0 + 1 or a′i0 = ai0 − 1,

ii) a′i = ai for i ̸= i0,

iii) b′i = bi for all i,

or

i) either a′i0 = ai0 + 1 and b′i0 = bi0 + 1, or a′i0 = ai0 − 1 and b′i0 = bi0 − 1,

ii) a′i = ai for i ̸= i0,

iii) b′i = bi for i ̸= i0;

2) Two z, z′ ∈ V are adjacent to each other in the auxiliary graph if and only if

there is i0 (1 ≤ i0 ≤ m) satisfying either

i) b′i0 = bi0 + 1 or b′i0 = bi0 − 1,

ii) a′i = ai for all i,

iii) b′i = bi for i ̸= i0.

or

i) either a′i0 = ai0 + 1 and b′i0 = bi0 − 1, or a′i0 = ai0 − 1 and b′i0 = bi0 + 1,

ii) a′i = ai for i ̸= i0,

iii) b′i = bi for i ̸= i0.

We call this graph a Kähler graph of m-dimensional Cayley complex lattice.

We here give concrete examples of Kähler graphs of higher dimensional complex

lattice, of higher dimensional complex lattice of Cartesian-tensor product type and of

higher dimensional Cayley complex lattice in order to help readers to understand.

Example 2.4. We take the set

V =
{
(z1, z2, z3) ∈ C3

∣∣ zi = ai +
√
−1bi, ai, bi ∈ Z

}
of lattice points in C3.

(1) In a Kähler graph of 3-dimensional complex lattice, each point (z1, z2, z3) ∈ V

is principally adjacent to the following six points

(z1 ± 1, z2, z3), (z1, z2 ± 1, z3), (z1, z2, z3 ± 1),
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and is auxiliary adjacent to the following six points(
z1 ±

√
−1, z2, z3

)
,
(
z1, z2 ±

√
−1, z3

)
,
(
z1, z2, z3 ±

√
−1
)
.

(2) In a Kähler graph of 3-dimensional complex lattice of Cartesian-tensor product

type, each point (z1, z2, z3) ∈ V is principally adjacent to the following 12 points(
z1 ± 1, z2, z3

)
,
(
z1, z2 ± 1, z3

)
,
(
z1, z2, z3 ± 1

)
,(

z1 ±
√
−1, z2, z3

)
,
(
z1, z2 ±

√
−1, z3

)
,
(
z1, z2, z3 ±

√
−1
)
.

and is auxillary adjacent to the following 12 points(
z1 ± (1 +

√
−1), z2, z3

)
,
(
z1, z2 ± (1 +

√
−1), z3

)
,
(
z1, z2, z3 ± (1 +

√
−1)

)
,(

z1 ± (1−
√
−1), z2, z3

)
,
(
z1, z2 ± (1−

√
−1), z3

)
,
(
z1, z2, z3 ± (1−

√
−1)

)
.

(3) In a Kähler graph of 3-dimensional Cayley complex lattice, each point z1, z2, z3 ∈

V is principally adjacent to the following 12 points(
z1 ± 1, z2, z3

)
,
(
z1, z2 ± 1, z3

)
,
(
z1, z2, z3 ± 1

)
,(

z1 ± (1 +
√
−1), z2, z3

)
,
(
z1, z2 ± (1 +

√
−1), z3

)
,
(
z1, z2, z3 ± (1 +

√
−1)

)
.

and is auxillary adjacent to the following 12 points(
z1 ±

√
−1, z2, z3

)
,
(
z1, z2 ±

√
−1, z3

)
,
(
z1, z2, z3 ±

√
−1
)

(
z1 ± (1−

√
−1), z2, z3

)
,
(
z1, z2 ± (1−

√
−1), z3

)
,
(
z1, z2, z3 ± (1−

√
−1)

)
.

We can associate graphs to groups. For a group G we take two disjoint nonempty

finite subsets S(p) and S(a) of G which do not contain the identity and that are in-

varint under the action of the inverse operation. Since we get two Cayley graphs(
G, E(G;S(p))

)
and

(
G, E(G;S(a))

)
, where

E(G;S(p)) =
{
{g, h}

∣∣ g−1h ∈ S(p)
}

and E(G;S(a)) =
{
{g, h}

∣∣ g−1h ∈ S(a)
}
,

we obtain a locally finite Kähler graph
(
G, E(G;S(p))∪E(G;S(a))

)
. We call this graph

a Cayley Kähler graph. The Kähler graphs in Example 2.2 are Cayley Kähler graphs.

Example 2.5. We take a dihedral group

D4 =
⟨
a, b

∣∣ a4 = b2 = 1, ab = ba3
⟩

=
⟨
b, c
∣∣ b2 = c2 = 1, bcbc = cbcb

⟩
.
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where c = ab. If we set S(p) = {b, c} and S(a) = {a, a3}, we get a regular Kähler graph

as like Fig. 10. By the construction of this Kähler graph we find that the principal

degree and the auxiliary degree are 2.

1
b

c=ba
3

bc=
3

a

cbc ba
2

=

= =a
2

b bc c c cb b

ba=b bc

ba=c

Fig. 10

A Kähler graph G = (V,E(p) ∪E(a)) is said to be regular if both the principal and

auxiliary graphs are regular. That is, both the principal and the auxiliary degrees do

not depend on the choice of vertex v ∈ V . When we consider Kähler graphs of nG = 5,

we see they are complete by the condition of Kähler graphs. In order to show more

examples on forms of Kähler graph, we here consider Kähler graphs of nG ≥ 6.

Fig. 11 Fig. 12 Fig. 13 Fig. 14

In the Figs. 11, 12, 13 and 14), we give regular Kähler graphs whose sets of vertices

have cardinality nG = 6, 7, 8, 10, respectively. Their principal and auxiliary degrees

are the same d(p)(v) = d(a)(v) = 2 in Figs. 11, 12, 14, and are different d(p)(v) =

2, d(a)(v) = 3 in Fig. 13. We discuss in §2.3 more detail on the relationship between

the cardinality of the set of vertices and principal and auxiliary degrees.

We here note the following:

1) When G is a finite graph then dGc(v) = nG − dG(v)− 1;

2) In particular, when G is a finite graph, G is regular if and only if Gc is regular.
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Therefore if a finite ordinary graph G is regular and satisfies 2 ≤ dG ≤ nG − 3, then

its complement-filled Kähler graph GK is a regular Kähler graph.



2. Kähler graphs of product type

A Kähler graph of complex lattice consists of horizontal lines for the principal

graph and vertical lines for the auxiliary graph. In other words, it is a product of a

principal graph of real lattice and an auxiliary graph of real lattice. In this section we

show some product operations to get Kähler graphs by using ordinary graphs.

It is known that we have four typical ways of product operation of graphs; Cartesian

product, strong product, semi-tensor product and lexicographical product. Given two

ordinary graphs G = (V,E) and H = (W,F ), we define their Cartesian product G□H,

strong product G⊠H, semi-tensor product G⊗H and lexicographical product G ⊢ H

in the following manner:

1) Their sets of vertices are the product V ×W ;

2) Two vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other if they satisfy

the following conditions:

(a) either v ∼ v′ in G and w = w′ or v = v′ and w ∼ w′ in H for G□H

(b) they satisfy one of the conditions in G⊠H;

b-i) v ∼ v′ in G and w = w′,

b-ii) v = v′ and w ∼ w′ in H,

b-iii) v ∼ v′ in G and w ∼ w′ for H;

(c) v ∼ v′ in G and w ∼ w′ in H for G⊗H;

(d) either v ∼ v′ in G and w = w′ or w ∼ w′ in H for G ⊢ H.

Corresponding to these operations and the operations of complement we give some

product operations of ordinary graphs to get Kähler graphs. Through out this section

G = (V,E) and H = (W,F ) are ordinary graphs.

2.1. Kähler graphs of product type whose principal graphs are unions of

copies of original graphs. First we consider product operations satisfying that the

constructed Kählar graphs have principal graphs each of whose connected components

is isomorphic to the original graph.

36
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[1] Kähler graphs of Cartesian product type

Given two ordinary graphs G = (V,E) and H = (W,F ), we define their Kähler

graph of Cartesian product type G□̂H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by an auxiliary

edge if and only if w ∼ w′ in H and v = v′.

Example 2.6. If we take G and H as graphs of real lines, then their Kähler graph

of Cartesian product type is a graph of complex line. If we represent G by a horizontal

line and H by a vertical line, then G□̂H is represented as Fig. 16.

s s s s s
Fig. 15. G = H s s s s ss s s s ss s s s ss s s s ss s s s s

Fig. 16. G□̂H

When G and H are locally finite graphs, their Kählar graph of Cartesian product

type is also locally finite. Its principal and auxiliary degrees are given as

d
(p)

G□̂H
(v, w) = dG(v) and d

(a)

G□̂H
(v, w) = dH(w).

In particular, when G and H are regular, their Kählar graph of Cartesian product

type is also regular.

[2] Kähler graphs of strong product type

Given two ordinary graphs G = (V,E) and H = (W,F ), we define their Kähler

graph of strong product type G⊠̂H as follows:
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i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if they satisfy one of the following conditions;

(a) v ∼ v′ in G and w = w′,

(b) v = v′ and w ∼ w′ in H,

(c) v ∼ v′ in G and w ∼ w′ in H.

Example 2.7. If we take G and H as graphs of real lines, then their Kähler graph

of strong product type is like the following figures.

vw( ) vw( )

'

'

vw( )'vw( )'

Fig. 17. adjacency at a
vertex in G⊠̂H

Fig. 18. G⊠̂H

When G and H are locally finite graphs, their Kählar graph of strong product type

is also locally finite. Its principal and auxiliary degrees are given as

d
(p)

G⊠̂H
(v, w) = dG(v) and d

(a)

G⊠̂H
(v, w) = dH(w){dG(v) + 1}.

In particular, when G and H are regular, their Kählar graph of strong product type

is also regular.

[3] Kähler graphs of semi-tensor product type

For two ordinary graphs G = (V,E) and H = (W,F ), we define their Kähler graph

of semi-tensor product type G⊗̂H as follows;

i) Its set of vertices is the product V ×W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if v ∼ v′ in G and w ∼ w′ in H.

Example 2.8. If we take G and H as graphs of real lines, then their Kähler graph

of semi-tensor product type is like the following figures.

vw( ) vw( )

'

'

vw( )'vw( )'

Fig. 19. adjacency at a
vertex in G⊗̂H

Fig. 20. G⊗̂H

By definitions if we take both the auxiliary edges of the Kähler graph of semi-

tensor product type and those of the Kähler graph of Cartesian product type, we get

the auxiliary edges of the Kähler graph of strong product type.

When G and H are locally finite graphs, their Kählar graph of semi-tensor product

type is also locally finite. Its principal and auxiliary degrees are given as

d
(p)

G⊗̂H
(v, w) = dG(v) and d

(a)

G⊗̂H
(v, w) = dG(v)dH(w).

In particular, when G and H are regular, their Kählar graph of semi-tensor product

type is also regular.

[4] Kähler graphs of lexicographical product type

Given two ordinary graphs G = (V,E) and H = (W,F ), we define their Kähler

graph G▷H of lexicographical product type as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;
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iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if w ∼ w′ in H.

Example 2.9. If we take G and H as graphs of real lines, then their Kähler graph

of lexicographical product type is like the following figures.

vw( ) vw( )'

vw( )'

,

,

,

Fig. 21. adjacency at a
vertex in G▷H

Fig. 22. G▷H

When G is a finite graph and H is locally finite, then their Kähler graph of lexi-

cographical product type is locally finite. Its principal and auxiliary degrees are given

as

d
(p)
G▷H(v, w) = dG(v) and d

(a)
G▷H(v, w) = nGdH(w).

In particular, when G and H are regular, their Kählar graph of lexicographical product

type is also regular. We note that when G is a complete graph then a Kähler graph

G⊠̂H of strong product type coincides with a Kähler graph G▷H of lexicographical

product type.

By the definition of Kähler graphs of lexicographical product type, we see that

each of its vertex (v, w) is completely adjacent to vertices whose second components

are adjacent to w in the graph of second components,

[5] Kähler graphs of co-Cartesian product type

Let G = (V,E) and H = (W,F ) be ordinary graphs. We define their Kähler graph

of co-Cartesian product type G
c

□H as follows:
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i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if v ̸= v′ and w ∼ w′ in H.

Example 2.10. If we take G and H as graphs of real lines, then their Kähler graph

of co-Cartesian product type is like the following figures.

vw( ) vw( )'

vw( )'

,

,

,

Fig. 23. adjacency at a

vertex in G
c

□H

Fig. 24. G
c

□H

When G is finite and H is locally finite, then their Kähler graph of co-Cartesian

product type is locally finite. Its principal and auxiliary degrees are given as

d
(p)

G
c
□H

(v, w) = dG(v) and d
(a)

G
c
□H

(v, w) = (nG − 1)dH(w).

In particular, when G is finite and regular and H is regular, their Kählar graph of

co-Cartesian product type is also regular.

[6] Kähler graphs of co-tensor product type

Let G = (V,E) and H = (W,F ) be ordinary graphs. We define their Kähler graph

of co-tensor product type G
c
⊗ H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;



42 II. Kähler graphs

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if v ̸∼ v′ in G and w ∼ w′ in H.

Example 2.11. If we take G and H as graphs of real lines, then their Kähler graph

of co-tensor product type is like the following figures.

vw( ) vw( )'

vw( )'

,

,

,

Fig. 25. adjacency at a

vertex in G
c
⊗ H

Fig. 26. G
c
⊗ H

When G is finite and H is locally finite, then their Kähler graph of co-tensor

product type is locally finite. Its principal and auxiliary degrees are given as

d
(p)

G
c
⊗H

(v, w) = dG(v) and d
(a)

G
c
⊗H

(v, w) =
(
nG − dG(v)

)
dH(w).

In particular, when G is finite and regular and H is regular, their Kähler graph of

co-tensor product type is also regular.

[7] Kähler graphs of co-strong product type

Let G = (V,E) and H = (W,F ) be ordinary graphs. Suppose that for each vertex

v ∈ V there exists at least one vertex which is different from v and is not adjacent to

v in G. We define their Kähler graph of co-strong product type G
c

⊠ H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if v ̸= v′, v ̸∼ v′ in G and w ∼ w′ in H.

Example 2.12. If we take G and H as graphs of real lines, then their Kähler graph

of co-strong product type is like the following figures.

vw( ) vw( )'

vw( )'

,

,

,

Fig. 27. adjacency at a

vertex in G
c

⊠ H

Fig. 28. G
c

⊠ H

When G is finite and H is locally finite, then their Kähler graph of co-strong

product type is locally finite. Its principal and auxiliary degrees are given as

d
(p)

G
c
⊠H

(v, w) = dG(v) and d
(a)

G
c
⊠H

(v, w) =
(
nG − dG(v)− 1

)
dH(w).

In particular, when G is finite and regular and H is regular, their Kählar graph of

co-strong product type is also regular.

We note that if we define a Kählar graph of “co-lexicographical product” type it

is nothing but a union of copies of G because we can not add auxiliary edges.

We here point out that we can do both the product operation and the complement-

filling operation. Given two ordinary graphs G = (V,E) and H = (W,F ), we define a

Kähler graph G □̂KH as follows:

i) Its set of the vertices is the product V ×W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if v ∼ v′ in G and w = w′;

iii) Two vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by an auxiliary

edge if and only if either w ∼ w′ in H and v = v′, or v ̸= v′, v ̸∼ v′ in G and

w = w′.

We call G □̂KH a Kähler graph of complement-filled Cartesian product type. We can

obtain G □̂KH from G □̂ H by adding auxiliary edges according to the rule that

[rule K]: (v, w) ∼a (v
′, w′) if v ̸= v′, v ̸∼ v′ in G and w = w′.

We note that when G is a complete graph then we have G □̂KH = G □̂ H.

Similarly, by using other Kähler graphs of product type and by adding auxiliary

edges according to [rule K], we get six Kähler graphsG⊠̂K
H, G⊗̂K

H, G▷KH, G
c

□KH,

G
c

⊠ KH and G
c
⊗KH. When G is finite and H is locally finite, these Kähler graphs

are also locally finite. Their principal and auxiliary degrees are given as

d
(p)

G □̂KH
(v, w) = d

(p)

G⊠̂K
H
(v, w) = d

(p)

G⊗̂K
H
(v, w) = d

(p)

G▷KH
(v, w)

= d
(p)

G
c
□KH

(v, w) = d
(p)

G
c
⊗KH

(v, w) = d
(p)

G
c
⊠KH

(v, w) = dG(v),

and

d
(a)

G □̂KH
(v, w) = nG + dH(w)− dG(v)− 1,

d
(a)

G⊠̂K
H
(v, w) = nG + {dH(w)− 1}{dG(v) + 1},

d
(a)

G⊗̂K
H
(v, w) = nG + dG(v){dH(w)− 1} − 1,

d
(a)

G▷KH
(v, w) = nG{dH(w) + 1} − dG(v)− 1,

d
(a)

G
c
□KH

(v, w) = nG{dH(w) + 1} − dH(w)− dG(v)− 1,

d
(a)

G
c
⊗KH

(v, w) = {nG − dG(v)}{dH(w) + 1} − 1,

d
(a)

G
c
⊠KH

(v, w) = {dH(w) + 1}{nG − dG(v)− 1}.

When G and H are finite graphs, if we consider the operation G
c
▷KH, then it is an

nH-copies of the complement-filled Kähler graph GK .
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Example 2.13. If we take G and H as graphs of real lines, then their Kähler

graphs of complement-filled product type is like the following figures.

Fig. 29. G □̂KH Fig. 30. G⊠̂KH Fig. 31. G⊗̂KH

vw( ) vw( )'

vw( )'

,

,

,

Fig.32. adjacency at a vertex in
G▷KH

Fig. 33. G▷KH

vw( ) vw( )'

vw( )'

,

,

,

Fig. 34. adjacency at a vertex in G
c

□KH

Fig. 35. G
c

□KH



46 II. Kähler graphs

vw( ) vw( )'

vw( )'

,

,

,

Fig.36. adjacency at a vertex in

G
c
⊗ KH

Fig. 37. G
c
⊗ KH

vw( ) vw( )'

vw( )'

,

,

,

Fig.38. adjacency at a vertex in

G
c

⊠ KH

Fig. 39. G
c

⊠ KH

We here give an operation of getting Kähler graphs which is related with the

product operation of lexicographic type. Let H = (W,F ) be an ordinary graph which

may have hairs. We express the set W by {wα | α ∈ A}. Let Gα (α ∈ A) be ordinary

graphs. We define their Kähler extension HK(Gα;α ∈ A) in the following manner:

i) Its set of the vertices is the sum
∪

α∈A Vα × {wα};

ii) Two distinct vertices (v, wα), (v
′, wβ) ∈

∪
α∈A Vα × {wα} are adjacent to each

other by a principal edge if and only if α = β and v ∼ v′ in Gα;

iii) Two distinct vertices (v, wα), (v
′, wβ) ∈

∪
α∈A Vα × {vα} are adjacent to each

other by an auxiliary edge if and only if wα ∼ wβ in H.
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When all Gα are finite and H is locally finite, then HK(Gα;α ∈ A) is locally finite

and its principal and auxiliary degrees are

d
(p)

HK(Gα;α∈A)
(v, wα) = dGα(v), d

(a)

HK(Gα;α∈A)
(v, wα) =

∑
β:wβ∼wα

nGβ
.

When all Gα are the same (i.e. Gα = G), we have HK(Gα;α ∈ A) = G▷H. When H

is a complete graph of nH = 2 (hence dH = 1), we denote HK(G1, G2) also by G1+̂G2

and call it the join of G1 and G2.

When H is a finite complete graph, we sometimes write HK(G1, . . . , GnH
) by

G1+̂G2+̂ · · · +̂GnH
. When all G1, . . . , GnH

are complete ordinary graphs, then the

graph HK(G1, . . . , GnH
) is also complete as an ordinary graph.

Example 2.14. If we take a 3-circuit G1 and a 4-circuit G2, then the graph G1+̂G2

is not a complete graph as an ordinary graph.

Fig. 40. G1 ∪G2 Fig. 41. G1+̂G2

Example 2.15. If we take three complete graphs K3, K4 and K5, the graph

K3+̂K4+̂K5 is like Fig. 43. We note
d
(p)

K3+̂K4+̂K5
(v) = 2, d

(a)

K3+̂K4+̂K5
(v) = 9, when v ∈ K3,

d
(p)

K3+̂K4+̂K5
(v) = 3, d

(a)

K3+̂K4+̂K5
(v) = 8, when v ∈ K4,

d
(p)

K3+̂K4+̂K5
(v) = 4, d

(a)

K3+̂K4+̂K5
(v) = 7, when v ∈ K5.

Obviously, we can do both the extending operation and complement-filling opera-

tion. When at least one of Gα (α ∈ A) is not complete, we define HK
c(Gα;α ∈ A) in

the following manner:
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Fig. 42. K3 ∪K4 ∪K5 Fig. 43. K3+̂K4+̂K5

i) Its set of the vertices is the sum
∪

α∈A Vα × {wα};

ii) Two distinct vertices (v, wα), (v
′, wβ) ∈

∪
α∈A Vα × {wα} are adjacent to each

other by a principal edge if and only if α = β and v ∼ v′ in Gα;

iii) Two distinct vertices (v, wα), (v
′, wβ) ∈

∪
α∈A Vα × {vα} are adjacent to each

other by an auxiliary edge if and only if either wα ∼ wβ in H or wα = wβ and

v ̸= v′, v ̸∼ v′.

When all Gα are finite and H is locally finite, then HK
c(Gα;α ∈ A) is locally finite

and its principal and auxiliary degrees are

d
(p)

HK
c(Gα;α∈A)

(v, wα) = dGα(v), d
(p)

HK
c(Gα;α∈A)

(v, wα) = nGα − dGα − 1 +
∑

β:wβ∼wα

nGβ
.

2.2. Product operations which are commutative. In the previous subsec-

tion, we constructed Kähler graphs whose principal graphs are unions of copies of

given ordinary graphs. That is, for given graphs G and H, the principal graphs of

their Kähler graphs of product type given in the previous subsection are unions of

nH-copies of G. We will explain the geometric meaning of Kähler graphs in §3.1, but

if we say a bit on these Kähler graphs of product type, they show motions of charged

particles which are just moving in the horizontal component G.

We should note that those seven Kähler graphs of product types are not connected.

Moreover, those product operations are not commutative in general, that is

G □̂ H ̸= H □̂ G, G⊠̂H ̸= H⊠̂G, G⊗̂H ̸= H⊗̂G, G▷H ̸= H ▷G,

G
c

□ H ̸= H
c

□ G, G
c

⊠H ̸= H
c

⊠G, G
c
⊗H ̸= H

c
⊗G
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In this subsection we give some product operations which are commutative. These

Kähler graphs show motions of charged particles which are moving both in the hori-

zontal component G and in the vertical component H.

[1] Kähler graphs of Cartesian-tensor product type

Given two ordinary graphs G = (V,E) and H = (W,F ) we define their Kähler

graph of Cartesian-tensor product type G⊞H as follows;

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

a principal edge if and only if either v = v′ and w ∼ w′ in H or w = w′ and

v ∼ v′ in G;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if v ∼ v′ in G and w ∼ w′ in H.

Example 2.16. If we take G and H as graphs of real lines, then their Kähler graph

of Cartesian-tensor product type is like the following figures.

Fig.44. adjacency at a vertex in
G⊞H

Fig. 45. G⊞H

When G and H are locally finite graphs, their Kähler graph of Cartesian-tensor

product type is also locally finite. Its principal and auxiliary degrees are given as

d
(p)
G⊞H(v) = dG(v) + dH(w) and d

(a)
G⊞H(v) = dG(v)dH(w).

By definition, the operation of Cartesian-tensor product is commutative (i.e. G⊞H =

H ⊞G).
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[2] Kähler graphs of Cartesain-complement product type

Let G = (V,E) and H = (W,F ) be two ordinary graphs. We suppose the following:

(a) For each vertex v ∈ V , there exists at least one vertex which is different from

v and is not adjacent to v in G;

(b) For each vertex w ∈ W , there exists at least one vertex which is different from

w and is not adjacent to w in H.

We define their Kähler graph of Cartesian-complement product type G⊡H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

a principal edge if and only if either v = v′ and w ∼ w′ in H or w = w′ and

v ∼ v′ in G;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edges if and only if either v ̸= v′, v ̸∼ v′ in G and w ∼ w′ in H,

or w ̸= w′, w ̸∼ w′ in H and v ∼ v′ in G.

We note that if either the condition (a) or the condition (b) holds we can get a new

Kähler graph of product type.

Example 2.17. If we take G and H as graphs of real lines, then their Kähler graph

of Cartesian-complement product type is like the following figures.

Fig.46. adjacency at a vertex in
G⊡H

Fig. 47. G⊡H
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When both G and H are finite, their Kähler graph of Cartesian-complement prod-

uct type is finite. Its principal and auxiliary degrees are given as

d
(p)
G⊡H(v) = dG(v) + dH(w),

d
(a)
G⊡H(v) = dG(v){nH − dH(w)− 1}+ dH(w){nG − dG(v)− 1}.

By definition, the operation of Cartesian-complement product is commutative (i.e.

G⊡H = H ⊡G).

[3] Kähler graphs of Cartesian-lexicographical product type

Given two ordinary graphs G = (V,E) and H = (W,F ), we define their Kähler

graph of Cartesian-lexicographical product type G♢H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

a principal edge if and only if either v = v′ and w ∼ w′ in H or w = w′ and

v ∼ v′ in G;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if either v ̸= v′ and w ∼ w′ in H or w ̸= w′ and

v ∼ v′ in G.

Example 2.18. If we take G and H as graphs of real lines, then their Kähler graph

G♢H of Cartesian-lexicographical product type is like the following figure.

Fig. 48. adjacency at a vertex in G♢H

Fig. 49. G♢H
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When both G and H are finite, their Kähler graph of Cartesian-lexicographical

product type is finite. Its principal and auxiliary degrees are given as

d
(p)
G♢H(v) = dG(v) + dH(w) and d

(a)
G♢H(v) = dH(w){nG − 1}+ dG(v){nH − 1}.

By definition we see the operation of Cartesian-lexicographical product is commutative

(i.e. G♢H = H♢G).

[4] Kähler graphs of strong-complement product type

Let G = (V,E) and H = (W,F ) be two ordinary graphs. We suppose the fol-

lowing conditions which are the same as the conditions in the operation of Cartesian-

complement product.

(a) For each vertex v ∈ V , there exists at least one vertex which is different from

v and is not adjacent to v in G;

(b) For each vertex w ∈ W , there exists at least one vertex which is different from

w and is not adjacent to w in H.

We define their Kähler graph of strong-complement product type G⋇H as follows:

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if they satisfy one of the following conditions;

ii-a) w = w′ and v ∼ v′ in G,

ii-b) v = v′ and w ∼ w′ in H,

ii-c) v ∼ v′ in G and w ∼ w′ in H;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if

ii-a) v ̸= v′, v ̸∼ v′ in G and w ∼ w′ in H,

ii-b) w ̸= w′, w ̸∼ w′ in H and v ∼ v′ in G.

Example 2.19. If we take G and H as graphs of real lines, then their Kähler graph

of strong-complement product type is like the following figure.
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Fig.50. adjacency at a vertex in
G⋇H

Fig. 51. G⋇H

When G and H are finite, then G ⋇ H is also finite. Its principal and auxiliary

degrees are given as

d
(p)
H⋇G = dG(v) + dH(w) + dG(v)dH(w),

d
(a)
H⋇G = dG(v){nH − dH(w)− 1}+ dH(w){nG − dG(v)− 1}.

By definition we see that this strong-complement product operation is commutative

(i.e. G⋇H = H ⋇G).

[5] Kähler graphs of complement-tensor product type

Let G = (V,E) and H = (W,F ) be two ordinary graphs. We suppose the follow-

ing conditions which are the same as the conditions in the operations of Cartesian-

complement product and of strong-complement product.

(a) For each vertex v ∈ V , there exists at least one vertex which is different from

v and is not adjacent to v in G;

(b) For each vertex w ∈ W , there exists at least one vertex which is different from

w and is not adjacent to w in H.

We define their Kähler graph of complement-tensor product type G♠H as follows;

i) Its set of vertices is the product V ×W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by a

principal edge if and only if either v ∼ v′ in G and w ̸∼ w′ in H, or v ̸∼ v′ in

G and w ∼ w′ in H;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edges if and only if v ∼ v′ in G and w ∼ w′ in H.

Example 2.20. If we take G and H as the graphs of real lines, then their Kähler

graph of complement-tensor product type is like the following figure.

Fig. 52. adjacency at a vertex in G♠H

Fig. 53. G♠H

When G and H are finite graphs, then their Kähler graph G♠H of complement-

tensor product type is also finite. Its principal and auxiliary degrees are given as

d
(p)
H♠G = dG(v){nH − dH(w)}+ dH(w){nG − dG(v)} and d

(a)
H♠G = dG(v)dH(w).

By definition we see that the complement-tensor product operation is commutative

(i.e. G♠H = H♠G).

[6] Kähler graphs of tensor-complement product type

Let G = (V,E) and H = (W,F ) be two ordinary graphs. We suppose the following

conditions as usual.

(a) For each vertex v ∈ V , there exists at least one vertex which is different from

v and is not adjacent to v in G;
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(b) For each vertex w ∈ W , there exists at least one vertex which is different from

w and is not adjacent to w in H.

We define their Kähler graph of tensor-complement product type G♣H as follows;

i) Its set of vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an principal edge if and only if v ∼ v′ in G and w ∼ w′ in H;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if either w ̸= w′, w ̸∼ w′ in H and v ∼ v′ in G,

or v ̸= v′, v ̸∼ v′ in G and w ∼ w′ in H.

Example 2.21. If we take G and H as graphs of real lines, then their Kähler graph

of tensor-complement product type is like the following figure.

Fig. 54. adjacency at a vertex in G♣H

Fig. 55. G♣H

WhenG andH are finite graphs, then their Kähler graphG♣H of tensor-complement

product type is also finite. Its principal and auxiliary degrees are given as

d
(p)
H♣G = dG(v)dH(w) and d

(a)
H♣G = dG(v){nH−dH(w)−1}+dH(w){nG−dG(v)−1}.

By definition we see that the complement-tensor product operation is commutative

(i.e. G♣H = H♣G).
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For a Kähler graph G = (V,E(p) ∪ E(a)) we set F (p) = E(a), F (a) = E(p) and

G∗ = (V, F (p) ∪ F (a)). We call G∗ the dual Kähler graph of G. By taking the duals of

G⊞H, G⊡H, G♢H, G⋇H and G♣H we get other Kähler graphs of product type

by commutative operations.

Proposition 2.1. If G and H are connected, then the principal graphs of their

Kähler graphs of product type G⊞H, G⊡H, G♢H, G⋇H are also connected.

Proof. We take two distinct vertices (v, w) and (v′, w′) in the Kähler graph of

product type in the assertion. Since G is connected, if v ̸= v′ we have a path γ joining

v and v′ (o(γ) = v and t(γ) = v′). Similarly as H is connected, if w ̸= w′ we have

a path σ joining w and w′ (o(σ) = w and t(σ) = w′). If we denote γ = (v0, . . . , vn

and σ = (w0, . . . , wm), then the curve γ̂ · σ̂ with γ̂ =
(
(v0, w), . . . , (vn, w)

)
and σ̂ =(

(v′, w0), . . . , (v
′, wm)

)
joins (v, w) and (v′, w′). When either v = v′ or w = w′, the

curve σ̂ or the curve γ̂ joins (v, w) and (v′, w′). □

Here, we note that we can do the product operations and the complement-filling

operation in the same time. Given two ordinary graphs G = (V,E) and H = (W,F )

we define a Kähler graph G⊞⃝KH as follows;

i) Its set of the vertices is the product V ×W of their sets of vertices;

ii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

a principal edge if and only if either v = v′ and w ∼ w′ in H or w = w′ and

v ∼ v′ in G;

iii) Two distinct vertices (v, w), (v′, w′) ∈ V ×W are adjacent to each other by

an auxiliary edge if and only if they satisfy one of the following conditions;

iii-a) v ∼ v′ in G and w ∼ w′ in H,

iii-b) v = v′, w ̸= w′ and w ̸∼ w′ in H,

iii-c) w = w′, v ̸= v′ and v ̸∼ v′ in G.

We call this graph a Kähler graph of commutatively complement-filled Cartesian-

tensor product type. We note that both G and H are complete graphs we have
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G ⊞⃝KH = G ⊞H. We can obtain G ⊞⃝KH from G ⊞H by adding auxiliary edges

according to the rule that

[rule ⃝K]: (v, w) ∼a (v
′, w′) if either v ̸= v′, v ̸∼ v′ in G and w = w′,

or v = v′, w ̸= w′ and w ̸∼ w′ in H.

Similarly, by using other Kähler graphs of product type and by adding auxiliary edges

according to [rule ⃝K], we get five Kähler graphs G ⊡⃝KH, G♢⃝KH, G ⋇⃝KH, G♠⃝KH

and G♣⃝KH. When G and H are finite graphs, then these six Kähler graphs are finite.

Their principal and the auxiliary degrees are given as

d
(p)

G⊞⃝KH
(v, w) = d

(p)

G⊡⃝KH
(v, w) = d

(p)

G♢⃝KH
(v, w) = dG(v) + dH(w),

d
(p)

G⋇⃝KH
(v, w) = dG(v) + dH(w) + dG(v)dH(w),

d
(p)

G♠⃝KH
(v, w) = dG(v){nH − dH(w)}+ dH(w){nG − dG(v)},

d
(p)

G♣⃝KH
(v, w) = dG(v)dH(w)

and

d
(a)

G⊞⃝KH
(v, w) = dG(v)dH(w) + nG + nH − dG(v)− dH(w)− 2,

d
(a)

G⊡⃝KH
(v, w) = (dG(v) + 1){nH − dH(w)− 1}+ (dH(w) + 1){nG − dG(v)− 1},

d
(a)

G♢⃝KH
(v, w) = nG(dH(w) + 1) + nH(dG(v) + 1)− 2{dG(v) + dH(w) + 1},

d
(a)

G⋇⃝KH
(v, w) = (dG(v) + 1){nH − dH(w)− 1}+ (dH(w) + 1){nG − dG(v)− 1},

d
(a)

G♠⃝KH
(v, w) = nG + nH + dG(v)dH(w)− dG(v)− dH(w)− 2,

d
(a)

G♣⃝KH
(v, w) = nG(dH + 1) + nH(dG + 1)− 2(dG + 1)(dH + 1).

By definition, it is clear that these operations are commutative:

G⊡⃝KH = H ⊡⃝KG, G♢⃝KH = H♢⃝KG, G⋇⃝KH = H ⋇⃝KG,

G♠⃝KH = H♠⃝KG, G♣⃝KH = H♣⃝KG



3. Vertex-transitive Kähler graphs

　 In this section we give a condition that we can construct a “symmetric” Kähler

graph of given cardinality of the set of vertices. Here, the word “symmetric” is vague.

We shall explain this later, and at first we study regular Kähler graphs.

3.1. A condition on regular Kähler graphs. We shall start by considering

experimentally the situation of small cardinality of the set of vertices. Let G =

(V,E(p) ∪ E(a)) be a Kähler graph.

(1) If nG = 1, as we suppose it does not have loops, it is a graph of an isolated

point and does not have edges, hence it is not a Kähler graph.

(2) If nG = 2, as we suppose it does not have loops and multiple edges (i.e.

simple), it is either a graph of two isolated points or a graph of an edge and

its end points, hence it is not a Kähler graph.

(3) If nG = 3, as it is a simple graph, the degree at each vertex is less than

three. Thus we can not construct a Kähler graph of nG = 3 by the condition

d(p)(v) ≥ 2, d(a)(v) ≥ 2. Even if we weaken the condition on degrees to

d(p)(v) ≥ 1, d(a)(v) ≥ 1, we need at least one pair of multiple edges. (see

Fig. 56)

(4) When nG = 4, we can not construct Kähler graphs by the condition on degrees.

If we weaken the condition on degrees to d(p)(v) ≥ 1, d(a)(v) ≥ 1, we get a

graph of constant degrees d
(p)
G = d

(a)
G = 1 (see Fig. 57).

If we allow us to use loops an multiple edges, we have “extended” Kähler

graphs like Figs. 58, 59 .

Fig.
56

Fig.
57

Fig.
58

Fig.
59

58
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Under the above study we give a condition on the cardinality of the set of vertices

and the principal and the auxiliary degrees of a regular Kähler graph.

Proposition 2.2. If G = (V,E(p) ∪ E(a)) is a finite Kähler graph, then its car-

dinality nG of the set of vertices, its principal degree d
(p)
G and its auxiliary degree d

(a)
G

satisfy the following conditions:

1) nG ≥ 5;

2) d
(p)
G (v) ≥ 2, d

(a)
G (v) ≥ 2, d

(p)
G (v) + d

(a)
G (v) ≤ nG − 1;

Moreover, if G is regular, they additionally satisfy the following condition:

(3) When nG is odd, both d
(p)
G and d

(a)
G are even.

Proof. Since G is simple, the total degree dG(v) = d
(p)
G (v)+d

(a)
G (v) is less than nG.

Hence the second condition comes from the definition of Kähler graphs. In particular,

we have nG ≥ d
(p)
G (v) + d

(a)
G (v) + 1 ≥ 5.

When G is regular, by hand shaking lemma (Proposition 1.2), the cardinalities of

the sets of principal and auxiliary edges satisfy 2♯E(p) = nGd
(p)
G and 2♯E(a) = nGd

(a)
G .

We hence get the third condition. □

In this section we show the converse of this proposition.

3.2. Kähler graph isomorphisms. Though the regularity condition shows some

“symmetric” property of a Kähler graph, it is a very weak condition. We hence in-

troduce another notion which shows more on “symmetry” of Kähler graphs. Let

G1 = (V1, E
(p)
1 ∪E

(a)
1 ), G2 = (V2, E

(p)
2 +E

(a)
2 ) be two Kähler graphs. A map f : V1 → V2

is said to be a homomorphism of G1 to G2 if it induces homomorphisms between prin-

cipal graphs and between auxiliary graphs. That is, if two vertices v, w ∈ V satisfy

v ∼p w in G1 then f(v) ∼p f(w) in G2, and if they satisfy v ∼a w in G1 then

f(v) ∼a f(w) in G2. We shall denote a homomorphism between two Kähler graphs

G1 and G2 as f : G1 → G2. When f is a bijective homomorphism and its inverse

f−1 : V2 → V1 is also a homomorphism between Kähler graphs, we call it an isomor-

phism of a Kähler graph.
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Lemma 2.1. Let f : G1 → G2 be an isomorphism between locally finite Kähler

graphs. For each vertex v ∈ V1 we have d
(p)
G2

(
f(v)

)
= d

(p)
G1
(v) and d

(a)
G2

(
f(v)

)
= d

(a)
G1
(v).

Proof. We denote as G1 = (V1, E
(p)
1 ∪ E

(a)
1 ) and G2 = (V2, E

(p)
2 ∪ E

(a)
2 ). For

v ∈ V1 we take all vertices v1, . . . , vd(p)G1
(v)
∈ V1 which are principally adjacent to v (i.e.

vj ∼p v), and all vertices v′1, . . . , v
′
d
(a)
G1

(v)
∈ V1 which are auxiliary adjacent to v (i.e.

v′ℓ ∼a v). Since f is a homomorphism, we have f(vj) ∼p f(v) and f(v′ℓ) ∼a f(v) in

G2. As f is a bijection these f(v1), . . . , f
(
v
d
(p)
G1

(v)

)
, f(v′1), . . . , f

(
v′
d
(a)
G1

(v)

)
are mutually

different. Hence we have d
(p)
G1
(v) ≤ d

(p)
G2

(
f(v)

)
and d

(a)
G1
(v) ≤ d

(a)
G2

(
f(v)

)
. Since f−1 is

also a bijective homomorphism, by the same argument we have d
(p)
G1
(v) ≥ d

(p)
G2

(
f(v)

)
and d

(a)
G1
(v) ≥ d

(a)
G2

(
f(v)

)
because f−1

(
f(v)

)
= v. Thus we get the conclusion. □

We call a Kähler graph G = (V,E(p)∪E(a)) vertex-transitive if for arbitrary distinct

vertices v, w ∈ V there is an isomorphism (automorphism) f : V → V of G satisfying

f(v) = w. By Lemma 2.1, we find that a vertex-transitive Kähler graph is regular.

We have many vertex-transitive Kähler graphs. But regular graphs are not neces-

sarily vertex-transitive.

Example 2.22. A Kähler graph of m-dimensional complex Euclidean lattice is

vertex-transitive.

As a matter of fact, we take arbitrary distinct vertices z, z′ ∈ Z2m ⊂ R2m ∼= Cm.

We define a bijection φ = φz,z′ as a translation φ(w) = w+ (z′ − z). Clearly, we have

φ(z) = z′. Suppose w ∼p w
′. We denote as

z = (a1 +
√
−1b1, . . . , am +

√
−1bm), z′ = (a′1 +

√
−1b′1, . . . , a′m +

√
−1b′m),

w = (c1 +
√
−1d1, . . . , cm +

√
−1dm), w′ = (c′1 +

√
−1d′1, . . . , c′m +

√
−1d′m).

Then, there is i0 satisfying that c′i0 = ci0 ± 1, c′i = ci for i ̸= i0 and d
′
i = di for all i. As

we have

φ(w) =
(
(c1+a

′
1−a1) +

√
−1(d1+b′1−b1), . . . , (cm+a′m−am) +

√
−1(dm+b′m−bm)

)
,

φ(w′) =
(
(c′1+a

′
1−a1) +

√
−1(d′1+b′1−b1), . . . , (c′m+a′m−am) +

√
−1(d′m+b′m−bm)

)
,
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we see φ(w) ∼p φ(w
′). Similarly, if w ∼a w′, there is i1 satisfying that d′i1 = di1 ± 1,

d′i = di for i ̸= i1 and c′i = ci for all i. Hence we have φ(w) ∼a φ(w
′), and find that φ

is a homomorphism.

Since φ−1 is given by φ−1(w) = w+ (z− z′), this also is a homomorphism. Hence

φ is an isomorphism. Thus we find the vertex-transitivity of a Kähler graph of m-

dimensional complex lattice.

Proposition 2.3. Every Cayley Kähler graph is vertex-transitive.

Proof. Let G =
(
G, E(G;S(p)) ∪ E(G;S(a))

)
be a Cayley Kähler graph. We take

distinct two vertices g, g′ ∈ G and define a map φg,g′ : G → G by φg,g′(x) = g′g−1x. As

we have

φg,g′(x)
−1φg,g′(y) =

(
g′g−1x

)−1(
g′g−1y

)
= x−1g(g′)−1g′g−1y = x−1y,

we find that x−1y ∈ S(p) if and only if
(
φg,g′(x)

)−1
φg,g′(y) ∈ S(p) and that x−1y ∈ S(a)

if and only if
(
φg,g′(x)

)−1
φg,g′(y) ∈ S(a). Therefore φg,g′ is an isomorphism. Since

φg,g′(g) = g′ we find that G is vertex-transitive. □

Example 2.23. We consider a Kähler graph G = (V,E) given in Fig. 60. That is,

V = {v0, . . . , v6} and

E(p) =
{
{v0, v1}, {v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v6, v0}

}
,

E(a) =
{
{v0, v4}, {v4, v6}, {v6, v1}, {v1, v3}, {v3, v5}, {v5, v2}, {v2, v0}

}
.

v

3 4

5

6

2

1

0

v

v

v v

v

v

Fig. 60

Since both its principal and auxiliary graphs are 7-circuits, they are vertex tran-

sitive as ordinary graphs, in particular it is a regular Kähler graph. As isomorphisms
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of its principal graph are rotations f0 = Id, f1, . . . , f6 which are given by vi 7→ vi+j, we

study how they map auxiliary edges. At a vertex v0 we have auxiliary edges {v0, v2}

and {v0, v4}. Their differences between indices of vertices are 2 and 4. If we calculate

in the same way we have

v1 7→ 2, 5, v2 7→ 3, 5, v3 7→ 2, 5, v4 7→ 2, 3, v5 7→ 4, 5, v5 7→ 2, 5.

Hence we find that rotations do not preserves auxiliary edges. Therefore G is not

vertex-transitive.

We here show the converse of Proposition 2.2.

Theorem 2.1. Let N, d(p), d(a) be positeve integers satisfying N ≥ 5, d(p) ≥

2, d(a) ≥ 2 and d(p) + d(a) ≤ N − 1. Then there exists a vertex-transitive finite

Kähler graph G satisfying nG = N, d
(p)
G = d(p) and d

(a)
G = d(a) if and only if one of the

following conditions holds:

1) N is odd and both d(p), d(a) are even,

2) N in even.

Proof. We shall show the assertion step by step. We take V = {v0, v1, · · · , vN−1}

We shall give principal and auxiliary edges by considering the indices of vertices by

modulo N .

(1) The case that N is odd and both d(p), d(a) are even.

We denote d(p), d(a) as d(p) = 2d1 and d(a) = 2d2 with positive integers d1, d2. We

define principal edges so that each vertex vi is principally adjacent to vertices vi+j

with j = ±1,±2, · · · ,±d1, and define auxiliary edges so that it is auxiliary adjacent

to vertices vi+j with j = ±(d1+1),±(d1+2), · · · ,±(d1+d2). Since d(p)+d(a) ≤ N−1,

this graph does not have multiple edges.

We consider rotations fk : V → V (k = 1, 2, · · · , N − 1) which are given by

fk(vi) = vi+k. Then they are automorphisms of our Kähler graph (V,E(p) ∪ E(a)). It

is clear that fk is a bijection. When vi ∼p vℓ then |i − ℓ| ≤ d1. As fk(vs) = vs+k and
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f−1
k (vs) = vs−k, and |(i+k)−(ℓ+k)| = |i−ℓ| = |(i−k)−(ℓ−k)|, we find that fk(vi) ∼p

fk(vℓ) and f
−1
k (vi) ∼p f

−1
k (vℓ). Similarly, when vi ∼a vℓ then d1 < |i− ℓ| ≤ d1+ d2. As

fk(vs) = vs+k and f−1
k (vs) = vs−k, and |(i+ k)− (ℓ+ k)| = |i− ℓ| = |(i− k)− (ℓ− k)|,

we find that fk(vi) ∼a fk(vℓ) and f−1
k (vi) ∼a f−1

k (vℓ). Thus we find that fk is an

isomorphism(see Fig. 61). Therefore our Kähler graph is vertex-transitive.

Fig. 61

(2) The case that N and d(p) are even and d(a) is odd.

We denote N, d(p), d(a) as N = 2m, d(p) = 2d1 and d(a) = 2d2 + 1 with positive

integers m, d1, d2. We define principal edges so that each vertex vi is principally adja-

cent to vi+j for j = ±1,±2, · · · ,±d1, and define auxiliary edges so that it is auxiliary

adjacent to vi+j for j = ±(d1 + 1),±(d1 + 2), · · · ,±(d1 + d2). By these, we have 2d1

principal edges and 2d2 auxiliary edges at each vertex. Since N − 1 is odd we see

2(d1 + d2) ≤ N − 2 = 2m − 2, we can join vi and its antipodal point vi+m by an

auxiliary edge (see Fig. 62). We then have d
(p)
G = 2d1 and d

(a)
G = 2d2 + 1 and G does

not have multiple edges.

We take the rotations fk : V → V (k = 1, 2, · · · , N−1). As vi ∼p vℓ if and only if

|i− ℓ| ≤ d1, and as |(i+k)− (ℓ+k)| = |i− ℓ| = |(i−k)− (ℓ−k)|, we find that vi ∼p vℓ

if and only if fk(vi) ∼p fk(vℓ). Similarly, as vi ∼a vℓ if and only if d1 < |i− ℓ| ≤ d2 or

|i− ℓ| = m, we find that vi ∼a vℓ if and only if fk(vi) ∼a fk(vℓ). Thus these rotations

fk (k = 1, 2, · · · , N − 1) are automorphisms of our Kähler graph. We hence find that

it is vertex-transitive.

(3) The case that N and d(a) are even and d(p) is odd.
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Fig. 62

If we change the roles of the principal and the auxiliary edges in the argument in

the case of (2), we can obtain a desirable vertex-transitive Kähler graph. We here

give our Kähler graph explicitly. We denote N, d(p), d(a) as N = 2m, d(p) = 2d1 + 1

and d(a) = 2d2 with positive integers m, d1, d2. We define principal edges so that each

vertex vi is principally adjacent to vi+j for j = ±1,±2, . . . ,±d1 and is principally

adjacent to vi+m, and define auxiliary edges so that each vertex vi is auxiliary adjacent

to vi+j for j = ±(d1 + 1),±(d1 + 2), . . . ,±(d1 + d2). We then have d
(p)
G = 2d1 + 1 and

d
(a)
G = 2d2 and G does not have multiple edges because 2(d1 + d2) ≤ N − 2 = 2m− 2.

(see Fig. 63).

We take the rotations fk : V → V (k = 1, 2, · · · , N − 1). As vi ∼p vℓ if and only

if |i− ℓ| ≤ d1 or |i− ℓ| = m, and as |(i + k)− (ℓ + k)| = |i− ℓ| = |(i− k)− (ℓ− k)|,

we find that vi ∼p vℓ if and only if fk(vi) ∼p fk(vℓ). Similarly, as vi ∼a vℓ if and only

if d1 < |i − ℓ| ≤ d2, we find that vi ∼a vℓ if and only if fk(vi) ∼a fk(vℓ). Thus these

rotations fk (k = 1, 2, · · · , N − 1) are automorphisms of our Kähler graph. We hence

find that it is vertex-transitive.

Fig. 63
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(4) The case that N is even and both d(p), d(a) are odd.

We denote N, d(p), d(a) as N = 2m, d(p) = 2d1 + 1 and d(a) = 2d2 + 1 with positive

integers m, d1, d2. First, we define principal edges so that v2ℓ−2 and v2ℓ−1 with ℓ =

1, 2, · · · ,m are principally adjacent to each other, and define auxiliary edges so that

v2ℓ−1 and v2ℓ are auxiliary adjacent to each other. Next we define principal edges so

that each vertex vi is principally adjacent to vertex vi+j for j = ±2,±3, . . . ,±(d1+1),

and define auxiliary edges so that it is auxiliary adjacent to vertex vi+j for j = ±(d1+

2),±(d1+3), . . . ,±(d1+d2+1). By these we have d
(p)
G = 2d1+1 and d

(a)
G = 2d2+1. We

note that the condition d(p)+d(a) ≤ N − 1 guarantees that 2d1+1+2d2+1 ≤ 2m−1.

This shows 2(d1 + d2) ≤ 2(m− 1)− 1, hence leads us to d1 + d2 ≤ m− 2. Therefore,

G does not have multiple edges (see Fig. 64). Moreover, there are no edges joining vi

and vi+m.

We shall show that this Kähler graph is vertex transitive. First, we study transi-

tivity for even k = 2k̂. We take the rotation fk : V → V . As we have fk(v2ℓ−2) =

v2(ℓ+k̂)−2, fk(v2ℓ−1) = v2(ℓ+k̂)−1, fk(v2ℓ) = v2(ℓ+k̂), we see fk(v2ℓ−2) ∼p fk(v2ℓ−1) and

fk(v2ℓ−1) ∼a fk(v2ℓ). By a similar argument as in other cases we find that fk is an

isomorphism. (see Fig. 64)

Fig. 64

Next we study transitivity for odd k = 2k̂ − 1. We define a map gk : V → V

by gk(vi) = v−i+k which is a composition of a reflection given by vi 7→ v−i and a

rotation fk. As we have gk(v2ℓ−2) = v2(k̂−ℓ+1)−1, gk(v(2ℓ−1)) = v2(k̂−ℓ+1)−2 = v2(k̂−ℓ) and

gk(v2ℓ) = v2(k̂−ℓ)−1, we see gk(v2ℓ−2) ∼p gk(v2ℓ−1) and gk(v2ℓ−1) ∼a gk(v2ℓ). Since the

sets of principal and auxiliary edges which we secondary took are invariant under the
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action of reflection vi 7→ v−i, we find that gk is an isomorphism of our Kähler graph.

We hence find that it is vertex-transitive. This completes the proof. □

Fig. 65

3.3. Examples of vertex-transitive Kähler graphs. By Theorem 2.1, we see

that there are many vertex-transitive Kähler graphs. We here give some more exam-

ples. A Petersen graph (V,E) is a graph of 10 vertices which is given as follows: We

take a set V = {v1,0, v1,1, v1,2, v1,3, v1,4, v2,0, v2,1, v2,2, v2,3, v2,4} of vertices, and set

E =


{v1,0, v1,1}, {v1,1, v1,2}, {v1,2, v1,3}, {v1,3, v1,4}, {v1,4, v1,0},

{v2,0, v2,2}, {v2,2, v2,4}, {v2,4, v2,1}, {v2,1, v2,3}, {v2,3, v2,0},

{v1,0, v2,0}, {v1,1, v2,1}, {v1,2, v2,2}, {v1,3, v2,3}, {v1,4, v2,4}

 .

12

3

4

01

,

,

,

,

,

11 1

1

2

3

,

,

, ,

,12

2 2

2

0

2

4

Fig. 66. Petersen graph
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Fig. 67. 3-dim. representation

It is known that a Petersen graph is not a Cayly graph. For j = 1, 2, 3, 4 we define a

map fj : V → V by fj(v1,i) = v1,i+j, fj(v2,i) = v2,i+j, where we consider the second

index by modulo 5. We define g : V → V by

g :
v1,0 7→ v2,0, v1,1 7→ v2,3, v1,2 7→ v2,1, v1,3 7→ v2,4, v1,4 7→ v2,2,
v2,0 7→ v1,0, v2,2 7→ v1,1, v2,4 7→ v1,2, v2,1 7→ v1,3, v2,3 7→ v1,4

.
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The maps f1, . . . , f4 are rotations, and the map g is a reversing of upper and lower

in the Fig. 67. Thus these 5 maps are isomorphisms of G = (V,E) as an ordinary

graph. Considering fj, g ◦ fj (j = 1, 2, 3, 4) and g we find that a Petersen graph is a

vertex-transitive graph.

Example 2.24. Let (V,E) be a Petersen graph. We put E(p) = E. We define

seven sets E
(a)
j (j = 1, . . . , 7) as

E
(a)
1 =

{ {v1,0, v1,2}, {v1,2, v1,4}, {v1,4, v1,1}, {v1,1, v1,3}, {v1,3, v1,0},
{v2,0, v2,1}, {v2,1, v2,2}, {v2,2, v2,3}, {v2,3, v2,4}, {v2,4, v2,0}

}
,

E
(a)
2 =



{v1,0, v2,1}, {v1,0, v2,2}, {v1,0, v2,3}, {v1,0, v2,4},

{v1,1, v2,0}, {v1,1, v2,2}, {v1,1, v2,3}, {v1,1, v2,4},

{v1,2, v2,0}, {v1,2, v2,1}, {v1,2, v2,3}, {v1,2, v2,4},

{v1,3, v2,0}, {v1,3, v2,1}, {v1,3, v2,2}, {v1,3, v2,4},

{v1,4, v2,0}, {v1,4, v2,1}, {v1,4, v2,2}, {v1,4, v2,3}


,

E
(a)
3 =


{v1,0, v1,2}, {v1,2, v1,4}, {v1,4, v1,1}, {v1,1, v1,3}, {v1,3, v1,0},

{v2,0, v2,1}, {v2,1, v2,2}, {v2,2, v2,3}, {v2,3, v2,4}, {v2,4, v2,0},

{v1,0, v2,1}, {v1,1, v2,2}, {v1,2, v2,3}, {v1,3, v2,4}, {v1,4, v2,0}

 ,

E
(a)
4 =

{
{v1,j, v2,j+1}, {v1,j, v2,j+2}

∣∣ j = 0, 1, 2, 3, 4
}
,

E
(a)
5 =

{
{v1,j, v2,j+1}, {v1,j, v2,j−1}

∣∣ j = 0, 1, 2, 3, 4
}
,

E
(a)
6 =

{
{v1,j, v2,j+1}, {v1,j, v2,j−1}.{v1,j, v2,j+2}

∣∣ j = 0, 1, 2, 3, 4
}
,

E
(a)
7 =

{
{v1,j, v2,j+1}, {v1,j, v2,j+2}.{v1,j, v2,j−2}

∣∣ j = 0, 1, 2, 3, 4
}
,

where in the last four sets the second indices of edges are considered by modulo 5. We

then get thirteen Kähler graphs

G1 = (V,E ∪ E(a)
1 ) (see Figs. 68, 80), G2 = (V,E ∪ E(a)

2 ) (see Figs. 69, 81),

G3 = (V,E ∪ E(a)
3 ) (see Figs. 71, 83), G4 = (V,E ∪ E(a)

5 ) (see Fig. 72),

G5 = (V,E ∪ E(a)
6 ) (see Figs. 73, 85), G6 = (V,E ∪ E(a)

7 ) (see Fig. 74),
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G7 = (V,E ∪ E(a)
8 ) (see Fig. 75), G8 = (V,E ∪ E(a)

1 ∪ E
(a)
5 ) (see Figs. 76, 84),

G9 = (V,E ∪ E(a)
1 ∪ E

(a)
6 ) (see Fig. 77), G10 = (V,E ∪ E(a)

1 ∪ E
(a)
7 ) (see Fig. 78),

G11 = (V,E ∪ E(a)
1 ∪ E

(a)
8 ) (see Fig. 79),

and the complement-filled Kähler graph

G12 =
(
V,E(p) ∪ (E

(a)
1 ∪ E

(a)
2 )
)

(see Figs. 70, 82).
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Fig. 69. G2
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Fig. 70. G12
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Fig. 71. G3
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Fig. 72. G4
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Fig. 73. G5
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Fig. 74. G6
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Fig. 75. G7
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Fig. 76. G8
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Fig. 77. G9
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Fig. 78. G10
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Fig. 79. G11

Fig. 80. G1 Fig. 81. G2 Fig. 82 Fig. 83. G3 Fig. 84. G8

Fig. 85. G5
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Fig. 86. G′
3
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Fig. 87. G′
8
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Fig. 88. G′
10

These graphs are regular and have

d
(p)
Gj

= 3 (j = 1, . . . , 12)

d
(a)
G1

= d
(a)
G4

= d
(a)
G5

= 2, d
(a)
G3

= d
(a)
G6

= d
(a)
G7

= 3,

d
(a)
G2

= d
(a)
G8

= d
(a)
G9

= 4, d
(a)
G10

= d
(a)
G11

= 5, d
(a)
G12

= 6.

In particular, if these Kähler graphs have different auxiliary degrees they are not

isomorphic to each other.
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By Figs, 68, 69, 70, we find that G1, G2 hence G12 are vertex-transitive by the

isomorphisms fj, g ◦ fj (j = 1, 2, 3, 4) and g. But G3, G5 and G9 are not vertex-

transitive because g is not an isomorphism between Kähler graphs. As a matter of fact,

v1,0 ∼a v2,1 but g(v1,0) = v2,0 ̸∼a v1,3 = g(v2,1). Similarly, G4, G7, G8 and G11 are not

vertex-transitive because v1,0 ∼a v2,2 but g(v1,0) = v2,0 ̸∼a v1,1 = g(v2,2). Also G6 and

G10 are not vertex-transitive because v1,0 ∼a v2,4 but g(v1,0) = v2,0 ̸∼a v1,2 = g(v2,4).

In, particular we find that G1 is not isomorphic to G4, G5, and G2 is not to G8, G9.

Since g is not an isomorphism between G4 and G5, we find they are not isomorphic.

Similarly G6 and G7 are not isomorphic to each other. By the same reason we see non

two of G8, G9 are not isomorphic to each other, and nore are G10, G11 are.

We note that if we set

Ê
(a)
3 =

{
{v1,j, v2,j−2}

∣∣ j = 0, 1, 2, 3, 4
}
,

Ê
(a)
5 =

{
{v1,j, v2,j+2}, {v1,j, v2,j−2}

∣∣ j = 0, 1, 2, 3, 4
}
,

Ê
(a)
7 =

{
{v1,j, v2,j+1}, {v1,j, v2,j−1}, {v1,j, v2,j−2}

∣∣ j = 0, 1, 2, 3, 4
}
,

we have five Kähler graphs

G′
3 = (V,E ∪ E(a)

1 ∪ Ê
(a)
3 ) (see Figs. 86),

G′
5 = (V,E ∪ Ê(a)

5 ), G′
8 = (V,E ∪ E(a)

1 ∪ Ê
(a)
5 ) (see Fig. 87),

G′
7 = (V,E ∪ Ê(a)

7 ), G′
10 = (V,E ∪ E(a)

1 ∪ Ê
(a)
7 ) (see Fig. 88),

but they are isomorphic to G3, G5, G8, G7, G10, respectively.

We call G1 a Kähler Petersen graph. We call G3 (or G
′
3) Petersen Kähler graphs of

first kind, G8, G9 Petersen Kähler graphs of second kind, and G10, G11 Petersen Kähler

graphs of third kind.

Of course, we have more Kähler graphs obtained from a Petersen graph which

are not “symmetric” (in particular which are not regular) by modifying our ways of

constructing auxiliary edges. For example, we can set

E
(a)
21 =


{v1,0, v1,2}, {v1,2, v1,4}, {v1,4, v1,1}, {v1,1, v1,3}, {v1,3, v1,0},

{v1,0, v2,1}, {v1,1, v2,2}, {v1,2, v2,3}, {v1,3, v2,4}, {v1,4, v2,0},

{v1,0, v2,2}, {v1,1, v2,3}, {v1,2, v2,4}, {v1,3, v2,0}, {v1,4, v2,1}

 ,
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E
(a)
22 =


{v2,0, v2,1}, {v2,1, v2,2}, {v2,2, v2,3}, {v2,3, v2,4}, {v2,4, v2,0},

{v1,0, v2,1}, {v1,1, v2,2}, {v1,2, v2,3}, {v1,3, v2,4}, {v1,4, v2,0},

{v1,0, v2,2}, {v1,1, v2,3}, {v1,2, v2,4}, {v1,3, v2,0}, {v1,4, v2,1}

 .

A Heawood graph is (V,E) is a graph of 14 vertices which is given as follows: We

take a set V = {v0, v1, · · · , v13} of vertices, and set

E =

{ {vi, vi+1} (0 ≤ i ≤ 13),

{v0, v5}, {v2, v7}, {v4, v9}, {v6, v11}, {v8, v13}, {v10, v1}, {v12, v3}

}
,

where we consider the index of vertices by modulo 14 (see Fig. 89). We define fj :

V → V by f2k(vi) = vi+2k and f2k−1(vi) = v2k−1−i. That is, f2k is a rotation and f2k−1

is a composition of a rotation and reversing ι : V → V given by ι(vi) = v−i. Then we

see they are isomorphisms as an ordinary graph.

Example 2.25. Let (V,E) be a Heawood graph. We set E(p) = E. If we define

the sets of auxiliary edges by

E
(a)
1 =

{
{vi, vi+2}

∣∣ 0 ≤ i ≤ 13
}
, E

(a)
2 =

{
{vi, vi+3}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
3 =

{
{vi, vi+4}

∣∣ 0 ≤ i ≤ 13
}
, E

(a)
4 =

{
{vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
5 =

{ {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
6 =

{ {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

we obtain 6 vertex-transitive Kähler graphs H1, . . . , H6 of auxiliary degree d(a) = 2

(see Figs. 90, 91, 92, 93, 94, 95). As a matter of fact, it is clear by definitions of these

Kähler graphs that f2k (k = 1, 2, 3, 4, 5, 6) are isomorphisms of Kähler graphs. By the

map ι we have ι(vi) = v−i and ι(vi+a) = v−i−a, Hence by putting i′ = −i − a we see

−i = i′ + a. Thus we find that f2k−1 are also isomorphisms.
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.

Fig. 89. original
Heawood graph

Fig. 90. H1 Fig. 91. H2

Fig. 92. H3 Fig. 93. H4 Fig. 94. H5 Fig. 95. H6

Example 2.26. Let (V,E) be a Heawood graph. We set E(p) = E. If we define

the sets of auxiliary edges by

E
(a)
21 =

{ {vi, vi+2} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
22 =

{ {vi, vi+3} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
23 =

{ {vi, vi+4} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
24 =


{
{vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

 ,

E
(a)
25 =

{
{vi, vi+2} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6)

}
,

E
(a)
26 =

{
{vi, vi+3} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6)

}
,

E
(a)
27 =

{
{vi, vi+4} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6)

}
,

E
(a)
28 =

{
{vi, vi+6} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6)

}
,
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E
(a)
31 =

{ {vi, vi+2} (0 ≤ i ≤ 13),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

E
(a)
32 =

{ {vi, vi+4} (0 ≤ i ≤ 13),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

E
(a)
33 =


{
{vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

 ,

E
(a)
34 =


{vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4},

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

 ,

we get 12 kinds of Kähler graphs H21, . . . , H28, H31, . . . , H34 of auxiliary degree d(a) = 3

(see Figs. 96, . . . , 107). In view of their construction we find they are vertex-transitive

by fj (j = 1, . . . , 13). We shall call H22 = (V,E ∪ E(a)
22 ) a Heawood Kähler graph, and

H21 = (V,E ∪E(a)
21 ), H23 = (V,E ∪E(a)

23 ), H24 = (V,E ∪E(a)
24 ) Kähler Heawood graphs.

Fig. 96. H21 Fig. 97. H22 Fig. 98. H23 Fig. 99. H24

Fig. 100. H25 Fig. 101. H26 Fig. 102. H27 Fig. 103. H28
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Fig. 104. H31 Fig. 105. H32 Fig. 106. H33 Fig. 107. H34

Example 2.27. Let (V,E) be a Heawood graph. We take a Kähler graph given

by Fig. 90. If we add it auxiliary edges in the following way

E
(a)
41 =

{
{vi, vi+2}, {vi, vi+3}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
42 =

{
{vi, vi+2}, {vi, vi+4}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
43 =

{
{vi, vi+2}, {vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
44 =

{ {vi, vi+2} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
45 =

{ {vi, vi+2} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

E
(a)
46 =


{vi, vi+2} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4},

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

 ,

then we get 6 kinds of Kähler graphs whose auxiliary degree is 4 (see Figs. 108, . . . ,

113).

Fig. 108. H41 Fig. 109. H42 Fig. 110. H43
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Fig. 111. H44 Fig. 112. H45 Fig. 113. H46

Similarly, by taking a Kähler graph given by Fig. 91 and adding auxiliary edges as

E
(a)
51 =

{
{vi, vi+3}, {vi, vi+4}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
52 =

{
{vi, vi+3}, {vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
53 =

{ {vi, vi+3} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

or by taking a Kähler graph given by Fig. 92 and adding auxiliary edges as

E
(a)
54 =

{
{vi, vi+4}, {vi, vi+6}

∣∣ 0 ≤ i ≤ 13
}
,

E
(a)
55 =

{ {vi, vi+4} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,

E
(a)
56 =

{ {vi, vi+4} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

E
(a)
57 =


{vi, vi+4} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4},

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

 ,

or by taking a Kähler graph given by Fig. 93 and adding auxiliary edges as

E
(a)
58 =

{ {vi, vi+6} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4}

}
,
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E
(a)
59 =

{ {vi, vi+6} (0 ≤ i ≤ 13), {vi, vi+7} (0 ≤ i ≤ 6),

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

}
,

E
(a)
60 =


{vi, vi+6} (0 ≤ i ≤ 13),

{v1, v6}, {v3, v8}, {v5, v10}, {v7, v12}, {v9, v0}, {v11, v2}, {v13, v4},

{v1, v4}, {v3, v6}, {v5, v8}, {v7, v10}, {v9, v12}, {v11, v0}, {v13, v2}

 ,

we get 10 other kinds of Kähler graphs whose auxiliary degree is 4. By definition, it is

clear that all these Kähler graphs are vertex-transitive. We have many other regular

Kähler graphs obtained by a Heawood graph.

Fig. 114. complement-filled Heawood graph

Example 2.28. We set Qk =
{
(a1, a2, . . . , ak)

∣∣ ai ∈ {0, 1}} for an integer k ≥ 3.

We define that two vertices v = (a1, . . . , ak), w = (b1, . . . , bk) ∈ Qk are adjacent to

each other in the principal graph if and only if there is i0 (1 ≤ i0 ≤ k) satisfying that

ai0 ̸= bi0 and ai = bi for i ̸= i0, and define that they are adjacent to each other in

the auxiliary graph if and only if there are i1, i2 (1 ≤ i1 < i2 ≤ k) satisfying that

ai1 ̸= bi1 , ai2 ̸= bi2 and ai = bi for i ̸= i1, i2, Since the graph (Qk, E
(p)) is called a

k-cube, we shall call the graph G = (Qk, E
(p) ∪ E(a)) a Kähler k-cube. By definition

we have d
(p)
G = k and d

(a)
G = k(k − 1)/2.

Example 2.29. For the sake of explanation, we here consider a Kähler 3-cube

G = (Q3, E
(p) ∪ E(a)). Six vertices

O = (0, 0, 0), A = (1, 0, 0), B = (1, 1, 0), C = (0, 1, 0),

D = (0, 0, 1), E = (1, 0, 1), F = (1, 1, 1), G = (0, 1, 1)
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and principal edges

{O,A}, {A,B}, {B,C}, {C,O}, {D,E}, {E,F}, {F,G}, {G,D},

{O,D}, {A,E}, {B,F}, {C,G}
form a cube in R3. Auxiliary edges are diagonal lines on six faces:

{O,B}, {A,C}, {O,E}, {A,D}, {A,F}, {B,E},

{B,G}, {C,F}, {C,D}, {O,G}, {D,F}, {E,G}.

Thus Q3 have 12 principal edges and 12 auxiliary edges, and d
(p)
G = d

(a)
Q3

= 3. We note

that the auxiliary graph is not connected.

We take a rotation f and reversing upper and lower g which are given as

f : O 7→ A, A 7→ B, B 7→ C, C 7→ O; D 7→ E, E 7→ F, F 7→ G, G 7→ D,

g : O 7→ D, A 7→ E, B 7→ F, C 7→ G; D 7→ O, E 7→ A, F 7→ B, G 7→ C.

Then they are isomorphisms. By using f, f 2, f 3, g, g ◦ f, g ◦ f 2, g ◦ f 3 we see G is

vertex-transitive.

1
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Fig. 115. 3-cube
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Fig. 116. auxiliary graph
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Fig. 117. Kähler 3-cube

Proposition 2.4. A Kähler k-cube is vertex-transitive.

Proof. We prove the assertion by induction with respect to k. When k = 3,

we see in the above that a Kähler 3-cube is vertex-transitive. We suppose a Kähler

k-cube is vertex-transitive. We study a Kähler (k + 1)-cube. Let f : Qk → Qk be an

isomorphism of a Kähler 3-cube. We define f̃ : Qk+1 → Qk+1 as

f̃
(
(a1, . . . , ak, ak+1)

)
=
(
f
(
(a1, . . . , ak)

)
, ak+1

)
.

In oder to show that f̃ is an isomorphism, we only need to check edges of the form (a , b)

with a = (a1, . . . , ak, 0) and b = (b1, . . . , bk, 1). When a∼pb, we have (a1, . . . , ak) =
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(b1, . . . , bk). Hence we see f̃(a) ∼p f̃(b). When a∼ab, we have (a1, . . . , ak) ∼p

(b1, . . . , bk) in a Kähler k-cube. Hence f
(
(a1, . . . , ak)

)
∼p f

(
(b1, . . . , bk)

)
in this Kähler

k-cube, in particular their difference is only one coordinate. Thus we see f̃(a) ∼a f̃(b).

We define g : Qk+1 → Qk+1 by

g
(
(a1, . . . , ak, 0)

)
=
(
a1, . . . , ak, 1

)
and g

(
(a1, . . . , ak, 1)

)
=
(
a1, . . . , ak, 0

)
.

This is also an isomorphism. Thus considering f̃ , f̃ ◦ g for all isomorphisms f of a

Kähler k-cube, we find that a Kähler (k + 1)-cube is vertex-transitive. □



4. Complete Kähler graphs

We say a Kähler graph to be a complete Kähler graph if it is a complete graph as

an ordinary graph and is regular as a Kähler graph. Thus each pair of vertices of a

complete Kähler graph is joined by either a principal edge or an auxiliary edge.

One of the most typical way to construct complete Kähler graphs is to take

complement-filled Kähler graphs (see §2.1). We take an ordinary regular finite graph

G = (V,E) of degree 2 ≤ dG ≤ nG − 3, and consider its complement-filled Kähler

graph GK = (V,E ∪ Ec). Since the complement graph Gc = (V,Ec) is regular of de-

gree dGc = nG− dG− 1, this Kähler graph is a complete Kähler graph whose principal

degree is dG and whose auxiliary degree is nG − dG − 1.

Fig. 118. G Fig. 119. Gc Fig. 120. GK

We here give a condition that we can construct a complete Kähler graph.

Proposition 2.5. Let N, d(p), d(a) be positive integers satisfying N ≥ 5, d(p) ≥

2, d(a) ≥ 2 and d(p) + d(a) = N − 1. Then there exists a vertex-transitive complete

Kähler graph G satisfying nG = N and d
(p)
G = d(p), d

(a)
G = d(a) if and only if one of the

following conditions holds:

i) N is odd and both d(p), d(a) are even,

ii) N is even, and one of d(p), d(a) is even and the other is odd.

Proof. Since d(p) + d(a) = N − 1, when N is even then N − 1 is old, hence one of

d(p), d(a) is even and the other is odd. Thus we find by Theorem 2.1 that the condition

on N, d(p), d(a) is necessary. On the other hand, we can construct a vertex-transitive
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Kähler graph G satisfying nG = N and d
(p)
G = d(p), d

(a)
G = d(a) by Theorem 2.1, Since

the condition d(p) + d(a) = N − 1 shows that G is complete, we get the conclusion. □

Corollary 2.1. Let N ≥ 5 be a positive integer. There exists a vertex-transitive

complete Kähler graph G satisfying nG = N and d
(p)
G = d

(a)
G if and only if N ≡

1 (mod 4).

Proof. If we have a complete Kähler graph whose cardinality of the set of vertices

is N and whose principal and auxiliary degrees are d, we have N − 1 = 2d. Therefore

N is odd. By Proposition 2.5 we find d is even, hence find that N − 1 is divided by

4. On the other hand, if N satisfies the condition, Proposition 2.5 shows that we have

such a complete Kähler graph. □

The above results show that we have many vertex-transitive complete Kähler

graphs. We here study whether they are isomorphic. Though complete ordinary graphs

of given cardinality of the sets of vertices are isomorphic to each other (Proposition

1.3), as we have two kinds of edges for Kähler graphs, even if we fix the cardinality of

the set of vertices there exist non-isomorphic Kähler graphs.

When N = 5, as we have d(p) = d(a) = 2, we find that the principal and the

auxiliary graphs are circuits. Hence we find that complete Kähler graphs of nG = 5

are isomorphic to each other by Proposition 1.5.

Example 2.30. Figs. 121, 122 show complete vertex-transitive Kähler graphs with

nG = 9, d
(p)
G = d

(a)
G = 4 which are not isomorphic and whose principal and whose

auxiliary graphs are connected. For the set of vertices V = {v0, v1, v2, . . . , v8}, we

define their sets of principal edges by

E
(p)
1 =

{
{vi, vi+1}, {vi, vi+2}

∣∣ 0 ≤ i ≤ 8
}
,

E
(p)
2 =

{
{vi, vi+1}, {vi, vi+3}

∣∣ 0 ≤ i ≤ 8
}
.

By definition, two graphs G1 = (V,E
(p)
1 ) and G2 = (V,E

(p)
2 ) are vertex-transitive by

rotations fk : V → V defined by vi 7→ vi+k for k = 1, . . . , 8. Hence their complement-

filled Kähler graphsGK
1 , G

K
2 are. We can see that they are not isomorphic by observing
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3-step closed principal paths. In the Kähler graph in Fig. 121 we have three 3-step

closed principal paths emanating from each vertex. On the other hand, in the Kähler

graph in Fig. 122 we have only one 3-step closed principal path emanating from each

vertex.

Fig. 121. nG = 9, d
(p)
G = d

(a)
G = 4 Fig. 122. nG = 9, d

(p)
G = d

(a)
G = 4

Example 2.31. Figs. 123, and 124 show complete vertex-transitive Kähler graphs

with nG = 6, d
(p)
G = 2, d

(a)
G = 3 which are not isomorphic. The former has a connected

principal graph but the latter does not. Their auxiliary graphs, which are principal

graphs of their dual Kähler graphs, are connected.

Fig. 123. nG = 6, d
(p)
G = 2, d

(a)
G = 3

(principally connected)
Fig. 124. nG = 6, d

(p)
G = 2, d

(a)
G = 3

(principally inconnected)

Since a complete Kähler graph is a complement-filled Kähler graph of its principal

graph, we obtain the following.

Proposition 2.6. (1) Two complete Kähler graphs are isomorphic to each

other if and only if their principal graphs are congruent to each other.

(2) Two complete Kähler graphs are isomorphic to each other if and only if their

auxiliary graphs are congruent to each other.
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We now classify complete Kähler graphs whose principal graphs are regular graphs

of degree 2 by using Propositions 1.5 and 2.6. We denote by p : N→ N the partition

function. This function is defined as follows. For a positive integer n, we consider its

representation as a sum of positive integers. Here, we are allowed to use same integers

in the representation, but the order of summing is irrelevant. The (integer) partition

p(n) is the number of such representations of n. For example, we have

p(1) = 1,

p(2) = 2, because 2 = 1 + 1,

p(3) = 3, because 3 = 2 + 1 = 1 + 1 + 1,

p(4) = 5, because 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1,

p(5) = 7, because 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1,

p(6) = 11, because 6 = 5 + 1 = 4 + 2 = 3 + 3

= 4 + 1 + 1 = 3 + 2 + 1 = 2 + 2 + 2

= 3 + 1 + 1 + 1 = 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1,

p(7) = 15, because 7 = 6 + 1 = 5 + 2 = 4 + 3

= 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2

= 4 + 1 + 1 + 1 = 3 + 2 + 1 + 1 = 2 + 2 + 2 + 1

= 3 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 + 1

= 2 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

For more detail, see §19 of [6].

Proposition 2.7. For each positive number n (≥ 5) the number of isomorphic

classes of complete Kähler graphs whose sets of vertices have the cardinality n and

whose auxiliary degrees are 2 is p(n)− p(n− 1)− p(n− 2) + p(n− 3).
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Proof. Let G = (V,E(p) ∪ E(a)) be a complete finite Kähler graph with nG = n

and d
(a)
G = 2. If we consider its auxiliary graph, each of its component is a circuit,

which is a circle as a 1-dimensional CW-complex. Since G is obtained by considering

the complement graph of (V,E(a)), we are enough to consider the number of congruence

classes of ordinary regular graphs of degree 2 and of nG = n.

By Proposition 1.5, two circuit graphs are isomorphic to each other if and only if

they have the same cardinality of their sets of vertices. As our graph does not have

multiple edges and loops, each of these circuits has at least three vertices. Thus the

number of congruence classes coincides with the number of partition of n using only

integers greater than 2.

LetR(n) denote the set of all partitions of n. That is,R(3) =
{
(3), (2, 1), (1, 1, 1)

}
,

for example. If r = (a1, a2, . . . , ak−1, 1) ∈ R(n), then we have r′ = (a1, . . . , ak−1) ∈

R(n−1). On the other hand, for each r′ ∈ R(n−1) we can construct r by adding 1 at

last. Thus we find that
{
(a1, . . . , ak−1, 1) ∈ R(n)

}
corresponds to R(n−1) bijectively.

If s = (b1, . . . , bℓ−1, 2) ∈ R(n), then we have s′ = (b1, . . . , bℓ−1) ∈ R(n − 2). On the

other hand, if s′ = (b1, . . . , bℓ−1) ∈ R(n − 2) satisfies bℓ−1 ≥ 2, we can construct s by

adding 2 at last. Since the set
{
(b1, . . . , bℓ−2, 1) ∈ R(n− 2)

}
corresponds to R(n− 3)

bijectively, We see the cardinality of the set
{
(a1, . . . , ak) ∈ R(n)

∣∣ ak ≥ 3
}
coincides

with p(n)− p(n− 1)−
{
p(n− 2)− p(n− 3)

}
. Hence we get the conclusion. □

By considering dual Kähler graphs we have

Corollary 2.2. For each positive n (≥ 5) the number of isomorphic classes of

complete Kähler graphs whose sets of vertices have the cardinality n and whose principal

degree is 2 is p(n)− p(n− 1)− p(n− 2) + p(n− 3).

Also, if we add a condition of connectivity we get a congruence results.

Corollary 2.3. (1) Two finite complete Kähler graphs whose auxiliary graphs

are connected and are of degree 2 are isomorphic to each other if and only if

cardinalities of their sets of vertices coincide.
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(2) Two finite complete Kähler graphs whose principal graphs are connected and

are of degree 2 are isomorphic to each other if and only if cardinalities of their

sets of vertices coincide.

Proposition 2.8. For a positive integer n (≥ 5), the number of isomorphic classes

of complete vertex-transitive Kähler graphs whose sets of vertices have the cardinality

n and whose auxiliary degree is 2 coincides with the number of divisors of n which are

greater than 2.

Proof. We are enough to consider the auxiliary graph. If we have such a vertex-

transitive Kähler graph, as a component of the auxiliary graph is transferred to a

component, we see every component have the same cardinality of the set of vertices.

Thus we get a divisor of n which is greater than 2 as this cardinality.

We construct a Kähler graph corresponding to a given divisor of n. Suppose n =

n1n2 with some positive integers n1, n2 satisfying n2 ≥ 3. We prepare n1 circuit graphs

having n2 vertices. By making them an auxiliary graph we have a complete Kähler

graph (V,E(p) ∪ E(a)) satisfying ♯V = n and d
(a)
G = 2. Since all the components

of (V,E(a)) are circuits having the same numbers of vertices, for arbitrary distinct

v, v′ ∈ V we have an isomorphism of (V,E(a)) which maps v to v′ and maps the

component containing v to the component containing v′. It is clear that this induces

an isomorphism of (V,E(p) ∪ E(a)). Thus, we find that this Kähler graph is vertex-

transitive, and get the conclusion. □

Corollary 2.4. Let n (≥ 5) be a positive prime integer. Two complete vertex-

transitive Kähler graphs whose sets of vertices have the cardinality n and whose aux-

iliary degrees are 2 are isomorphic to each other.



CHAPTER 3

Discrete models of trajectories for magnetic fields

1. Trajectories for magnetic fields

A static magnetic field on R3 is a vector-valued function B = (B1, B2, B3) : R3 →

R3 satisfying Gauss formula div(B) = ∂B1

∂x1
+ ∂B2

∂x2
+ ∂B3

∂x3
= 0. This gives the Lorentz

force v×B = ΩBv on a unit charged particle when its velocity vector is υ. Here ΩB is

a skew-symmetric matrix given by 0 B3 −B2

−B3 0 B1

B2 −B1 0

 .

If we define a 2-form B on R3 by B(u, v) = ⟨u,ΩBv⟩ with the standard inner product

⟨ , ⟩ on R3, then this form is represented as

B = B1dx2 ∧ dx3 +B2dx3 ∧ dx1 +B3dx1 ∧ dx2.

Since we have

dB = (
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
)dx1 ∧ dx2 ∧ dx3,

we find that the Gauss formula div(B) = 0 is equivalent to dB = 0, which means that

B is a closed 2-form.

Under this consideration, we call a closed 2-form B on a Riemannian manifoldM a

magnetic field. For a magnetic field B on M , we define a bundle map ΩB : TM → TM

on the tangent bundle TM of M by B(u, v) = ⟨u,ΩB(v)⟩ for every u, v ∈ TxM at an

arbitrary point x ∈ M with Riemannian metric ⟨ , ⟩ on M . We then find that ΩB is

skew symmetric, that is ⟨u,ΩB(v)⟩ = −⟨ΩB(u), v⟩.

When ΩB is parallel, that is ∇ΩB = 0, we say that B is an uniform magnetic field.

Here, ∇ denotes the Riemannian connection on M . For example, we take a Kähler

manifold M with complex structure J . Then its Kähler form BJ which is defined
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by BJ(u, v) = ⟨u, Jv⟩ is a closed 2-form and ΩBJ
= J is parallel. Therefore every

constant multiple Bκ = κBJ (κ ∈ R) is an uniform magnetic field. This magnetic field

is called a Kähler magnetic field (for more detail see [1]).

It is needless to say that we have many magnetic fields which are not uniform. Let

M be a real hypersurface of a Kähler manifold M̃ . That is, when M̃ is of complex

dimension n then M is a real submanifold of real dimension 2n− 1. For a unit normal

vector field NM of M in M̃ , we define a vector field ξ on M by ξ = −JNM , and

define a (1, 1)-tensor ϕ : TM → TM by ϕ(v) = Jv − ⟨v, ξ⟩NM . They are called

the characteristic vector field and the characteristic tensor of M . If we define Fϕ by

Fϕ(u, v) = ⟨u, ϕ(v)⟩, then it is a closed 2-form and ΩFϕ
= ϕ (see [4]). Generally, it

is not uniform. We call a constant multiple Fκ = κFϕ (κ ∈ R) a Sasakian magnetic

field.

Under the influence of a static magnetic field, the equation of motions of a unit

charged particle of mass m is given as m
dv

dt
= v×B. As we have

d

dt
∥v∥2 = 2⟨v, dv

dt
⟩ =

2⟨v,ΩBv⟩ = 0, this particle has constant speed. We shall call a smooth curve on M

satisfying the differential equation ∇γ′γ′ = ΩB(γ
′) a trajectory for B. Here, γ′ =

dγ

dt
,

and ∇γ′ denotes the covariant differentiation along γ with respect to the Riemannian

connection ∇ on M . Since we have

γ′(∥γ′∥2) = γ′⟨γ′, γ′⟩ = ⟨∇γ′γ′, γ′⟩+ ⟨γ′,∇γ′γ′⟩ = ⟨ΩB(γ̇), γ̇⟩+ ⟨γ̇, ΩB(γ̇)⟩,

and ΩB is skew symmetric, we find γ′(∥γ′∥2) = 0. This shows that γ has constant

speed. We usually call treat trajectories of unit speed.

In the field of geometry, ordinary graphs are considered as discretizations of Rie-

mannian manifolds and paths are considered as correspondences of geodesics. In his

paper [2] Adachi introduced Kähler graphs as discritizations of Riemannian manifolds

admitting uniform magnetic fields. In the next section, following to [2] we introduce

correspondences of trajectories on Kähler graphs and show why Kähler graphs can be

considered as discritizations of Riemannian manifolds with magnetic fields.



2. Bicolored path

Let G = (V,E(p) ∪ E(a)) be a Kähler graph. For a pair (p, q) of relatively prime

positive integers, we say a (p+ q)-step path γ = (v0, v1, · · · , vp+q) ∈ V × · · · · · · × V to

be a (p, q)-primitive bicolored path if it satisfies the following conditions;

i) vi−1 ̸= vi+1 for 1 ≤ i ≤ p+ q − 1,

ii) vi−1 ∼p vi for 1 ≤ i ≤ p,

iii) vi−1 ∼a vi for p+ 1 ≤ i ≤ p+ q.

The first condition shows that this path does not have backtracking, the second shows

that the first p-step path is a path in the principal graph and the third shows that the

last q-step path is a path in the auxiliary graph. When an m(p+ q)-step path γ is of

the form γ = γ1 · γ2 · · · γm with (p + q)-primitive bicolored paths γi (i = 1, . . . ,m), it

is called a (p, q)-bicolored path.

Example 3.1. On a Heawood Kähler graph of d(p) = 3, d(a) = 2 given as Fig. 1,

the paths γ1 = (0, 1, 2, 5), γ2 = (5, 6, 7, 10) are (2, 1)-primitive bicolored paths (see

Fig. 2), and the paths γ3 = (0, 1, 4), γ4 = (4, 5, 8), γ5 = (8, 9, 12), γ6 = (12, 13, 2), γ7 =

(2, 3, 6), γ8 = (6, 7, 10) are (1, 1)-primitive bicolored path (see Fig. 3). Hence γ3 ·γ4, γ4 ·

γ5, γ5 · γ6, γ6 · γ7, γ7 · γ8 are 4-step (1, 1)-bicolored paths, and γ3 · γ4 · γ5 · γ6 · γ7 · γ8 is

a 12-step (1, 1)-bicolred path.
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Fig. 3

Since we pose a condition on Kähler graphs that their principal and auxiliary

graphs do not have hairs, we have a (p, q)-bicolored path passing through an arbitrary
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vertex for each pair (p, q). Therefore, if we only study (1, 1)-paths we can weaken the

condition to the condition that there is at least one principal edge and one auxiliary

edge emanating from each vertex, that is, to the condition that there are no isolated

vertices in both principal and auxiliary graphs.

Ordinary graphs are usually regarded as discrete models of Riemannian manifolds

and paths on graphs are considered as correspondences of geodesics. We therefore

regard paths on the principal graph of a Kähler graph as geodesics which are motions of

charged particles without the influence of magnetic fields. Considering Kähler graphs

as discrete models of complex manifolds, we regard (p, q)-bicolored paths as trajectories

for a magnetic field of strength q/p on these graphs. This means that a p-step path on

the principal graph of a Kähler graph is bended under the action of a magnetic field

and its terminus turns to the terminus of a (p, q)-primitive bicolored path whose first

p-step coincides with the given path.

Fig. 4. path on principal edge
Fig. 5. bicolored path on a
Kähler graph

In order to consider correspondences of trajectories for a magnetic field of strength

q/p, we define (p, q)-primitive bicolored paths for a pair (p, q) of relatively prime posi-

tive integers. But for the sake of interpretation it is easier to extend this notion to all

pairs of positive integers. So, if a (p + q)-step path satisfies the conditions for (p, q)-

primitive bicolored paths, we sometimes call it a (p, q)-bicolored path even if p, q have

common divisor. Moreover, we sometimes call a p-step path in the principal graph a

(p, 0)-primitive bicolored path, and call a q-step path in the auxiliary graph a (0, q)-

primitive bicolored path. We note that we only use the terminology (p, q)-bicolored

paths only for a pair of relatively prime positive integers.
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As graphs do not have 2-dimensional objects, we can not show the direction of

the action of the magnetic field. Therefore, if there are two and more (p, q)-primitive

bicolored paths whose first p-step paths coincide with the given p-step path, we can not

determine the terminus of trajectories. In order to get rid of bifurcations of motions

of charged particles, we shall consider (p, q)-bicolored paths probabilistically. For a

(p, q)-primitive bicolored path γ = (v0, · · · , vp+q), we define its probabilistic weight

ω(γ) by

ω(γ) =
1

d
(a)
G (vp)

∏p+q−1
i=p+1

{
d
(a)
G (vi)− 1

} .
For a (p, q)-bicolored path γ = (γ1, γ2 · · · , γn) with (p, q)-primitive bicolored paths

γi (i = 1, . . . ,m), we difine its probabilistic weight by ω(γ) =
m∏
i=1

ω(γi).

Example 3.2. Let G = (V,E(p) ∪ E(a)) be a Kähler graph. A part of it is shown

in Fig. 6. We take a (3, 4)-bicolored path γ = (v0, v1, v2, v3, v4, v5, v6, v7) in this graph.

We find that auxiliary degrees at vertices v3, v4, v5, v6 ∈ V are

d(a)(v3) = 3, d(a)(v4) = 6, d(a)(v5) = 4, d(a)(v6) = 2.

Thus we have the probabilistic weight of γ is

1

d
(a)
G (v3){d(a)G (v4)− 1}{d(a)G (v5)− 1}{d(a)G (v6)− 1}

=
1

45
.

v v
v

v

v

1

4

5

2

3

v

v

6

7

Fig. 6. a part of a Kähler graph G

For a p-step path σ in the principal graph of a Kähler graph G, we denote by Pq(σ)

the set of all (p, q)-primitive bicolored paths whose first p-step coincide with σ. That
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is, if σ = (v0, . . . , vp) then each (p, q)-primitive bicolored path γ ∈ Pq(σ) is of the form

γ = (v0, . . . , vp, w1, . . . , wq).

Lemma 3.1. For each p-step path σ in the principal graph of a Kähler graph G, we

have ∑
γ∈Pq(σ)

ω(γ) = 1.

Proof. Let τ = (v0, . . . , vp, w1, . . . , wj) with j ≥ 1 be a (p, j)-primitive bicolored

path. Then γ = τ · (wj, w) is a (p, j+1)-primitive bicolored path if and only if w ∼ wj

and w ̸= wj−1. Here, we consider wj−1 = vp when j = 1. Therefore we have d
(a)
G (wj)−1

(p, j + 1)-primitive bicolored paths whose first p+ j coincide with τ . We hence have

ω(τ) =
1

d
(a)
G (vp)

∏j
i=1

{
d
(a)
G (wi)− 1

} =
∑

w : w ̸= wj−1,

w ∼ wj in G(a)

ω
(
τ · (wj, w)

)
.

As we have d
(a)
G (vp) (p, 1)-primitive bicolored paths whose first p coincide with σ, we

get the conclusion. □

Remark 3.1. For γ ∈ Pq(σ), its probabilistic weight does not coincides with

1/♯
(
Pq(σ)

)
, in general. If the auxiliary graph of G is regular, then they coincide with

each other.



3. Derived graph of Kähler graphs

In this section we explain how to construct new graphs from a Kähler graph by

using paths without backtracking.

3.1. Derived graph. We shall start by using ordinary graphs. Let G = (V,E)

be an ordinary (non-oriented) graph. For a positive integer n, we denote by Pn(G)

the set of all n-step paths without backtracking on V . We shall call the oriented

graph G[n] =
(
V,Pn(G)

)
the n-step derived graph of G. This means that if we have

γ ∈ Pn(G) with o(γ) = v and t(γ) = w then we regard it as an oriented edge from v

to w on G[n]. Therefore, the oriented graph G[n] may have loops and multiple edges.

As G is non-oriented, for a path γ ∈ Pn(G) we can consider its reversed path

γ−1 ∈ Pn(G). For two paths γ1, γ2 ∈ Pn(G), we set γ1 ≈ γ2 if either γ1 = γ2 or

γ1 = γ−1
2 holds. Then it is clear that ≈ is an equivalence relation on Pn(G). We denote

by Pn(G)/≈ the set of all equivalence classes of n-step paths without backtracking

on G. We shall call the non-oriented graph Ĝ[n] =
(
V,Pn(G)/≈

)
the n-step derived

non-oriented graph of G. This means that if we have γ ∈ Pn(G) with o(γ) = v and

t(γ) = w then we regard its equivalence class [γ] as a non-oriented edge between v and

w on G̃[n].

We set Pn(v) = Pn(v;G) =
{
γ ∈ Pn(G)

∣∣ o(γ) = v
}
. Then we see that dG[n]

(v)

is the cardinality of this set and satisfies dG[n]
(v) ≤ (nG − 1)(nG − 2)n−1 when G is

finite. We call the adjacency and the transition operators of G[n], which are the same

as those of Ĝ[n] the n-step adjacency and the n-step transition operators, respectively.

They are given as

AG[n]
f(v) =

∑
γ∈Pn(v)

f
(
t(γ)

)
, PG[n]

f(v) =
1

dG[n]
(v)

∑
γ∈Pn(v)

f
(
t(γ)

)
.

Derived graphs and derived non-oriented graphs are generally complicated. Even

the original graph is connected, its derived graphs are not necessarily connected. To

get rid of complexity, we shall reduce edges of derived graphs. We define a non-oriented

graph G̃[n] = (V,E[n]) so that two vertices v, v′ ∈ V are adjacent to each other in this

91
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graph if and only if there is γ ∈ Pn(G) with o(γ) = v, t(γ) = v′. Even if there are two

and more paths joining them, we only attach an edge between them. Thus this graph

may have loops but does not have multiple edges. For a pair (v, v′) of vertices we set

Pn(v, v
′) =

{
γ ∈ Pn(v)

∣∣ t(γ) = v′
}
. When G is locally finite, we define a function

m : E[n] → Z so that m
(
(v, v′)

)
shows the cardinality of the set Pn(v, v

′). We shall

call the “weight graph”
(
G̃[n],m) the reduced n-step derived graph of G.

When n = 1, it is clear by definition that G = Ĝ[1] = G̃[1] and m only takes the

value 1. We note that these terminologies of derived graphs may not be general. But

for the sake of extending these notions to Kähler graphs we use these terminologies.

3.2. Derived graphs of Kähler graphs. Next we construct derived graphs cor-

responding (p, q)-primitive bicolored paths on Kähler graphs. Let G = (V,E(p) ∪E(a))

be a Kähler graph. For a pair (p, q) of relatively prime positive integers, we denote

the set of all (p, q)-primitive bicolored paths on G by P[p,q](G). We call the oriented

ordinary graph G[p,q] =
(
V,Pp,q(G)

)
the (p, q)-derived graph of G. This oriented graph

may have loops and multiple edges. But it does not have hairs by the condition of

Kähler graphs. If we set Pp,q(v) = Pp,q(v;G) =
{
γ ∈ Pp,q(G)

∣∣ o(γ) = v
}
for a vertex

v ∈ V , then the adjacency operator of G[p,q](G) is given as

AG[p,q]
f(v) =

∑
γ∈G[p,q](G)

f
(
t(γ)

)
.

Considering probabilistic weights of (p, q)-primitive bicolored paths, we have a function

ω : Pp,q(G)→ R. Hence we get a “weighted graph”
(
G[p,q], ω

)
.

Lemma 3.2. For a pair (p, q) of relatively prime positive integers, we have

dG[p]
(v) =

∑
γ∈Pp,q(v)

ω(γ)

for each vertex v ∈ V .
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Proof. This is a direct consequence of Lemma 3.1. We decompose the setPp,q(v;G)

into a disjoint union of paths as

Pp,q(v;G) =
∪

σ∈Pp(v;G(p))

Pq(σ).

We then have∑
γ∈Pp,q(v)

ω(γ) =
∑

σ∈Pp(v;G(p))

∑
γ∈Pq(σ)

ω(γ) =
∑

σ∈Pp(v;G(p))

1 = ♯
(
Pp(v;G

(p))
)
= dG[p]

(v).

□

For vertices v, v′ ∈ V (which may coincide with each other), we set Pp,q(v, v
′) ={

γ ∈ Pp,q(v)
∣∣ t(γ) = v′

}
. Since the inverse path γ−1 of a (p, q)-bicolored path is not

a (p, q)-bicolored path, we see Pp,q(v, v
′) ̸= Pp,q(v

′, v), except the case that both of

these sets are empty. We here suppose that

i) G is a finite Kähler graph;

ii) for each pair (v, v′) of vertices, there is a bijection ιv,v′ : Pp,q(v, v
′)→ Pp,q(v

′, v)

satisfying ω(γ) = ω
(
ιv,v′(γ)

)
.

Here, we take the bijections in the above conditions as ιv′,v = ι−1
v,v′ for each pair (v, v′).

For two primitive bicolored paths γ1, γ2 ∈ Pp,q(G), we set γ1 ≈ γ2 if either γ1 = γ2

or γ1 = ιo(γ2),t(γ2)(γ2) holds. Then it is an equivalence relation on Pp,q(G). We can

define an non-oriented graph Ĝ[p,q] =
(
V,Pp,q(G)/≈

)
. Under the above assumption

we define a non-oriented graph G̃[p,q] = (V,E[p,q]) so that two vertices v, v′ ∈ V are

adjacent to each other if there is γ ∈ Pp,q(G) satisfying o(γ) = v and t(γ) = v′. We

define a function m : E[p,q] → R by m
(
(v, v′)

)
=
∑

γ∈Pp,q(v,v′)
ω(γ). We shall call the

“weighted graph”
(
G̃[p,q],m) the reduced (p, q)-derived graph of G.

Example 3.3. We take a complete Kähler graph G of nG = 5 whose principal and

auxiliary degrees are d
(p)
G = d

(a)
G = 2 (see Fig. 7). On this graph (1, 1)-bicolored paths

and (2, 1)-bicolored paths of origin v1 are

P1,1(v1) =
{
(v1, v2, v4), (v1, v2, v5), (v1, v5, v2), (v1, v5, v3)

}
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and

P2,1(v1) =
{
(v1, v2, v3, v1), (v1, v2, v3, v5), (v1, v5, v4, v1), (v1, v5, v4, v2)

}
.

Thus, the directed edges in G[1,1] and G[2,1] at v1 are like Figs. 8, 9. Since G is vertex-

transitive by rotations, we find that G[1,1] and G[2,1] are like Figs. 10, 11. Therefore

G̃[1,1] is a complete graph (see Fig. 12) and G̃[2,1] are like Fig. 13.
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Fig. 7. G
(2,2)
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Fig. 8. E[1,1] at v1
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Fig. 9. E[2,1] at v1
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Fig. 10. G[1,1] Fig. 11. G[2,1]
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Fig. 12. G̃[1,1]
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Fig. 13. G̃[2,1]

We study derived graphs for some Kähler graphs of product types.

Example 3.4. When G and H are graphs of real lattice, we consider their Kähler

graph of Cartesian product type. Then the edges in its reduced (1, 1)-derived graph
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˜
(G□̂H)[1,1] and in the reduced (2, 1)-derived graph

˜
(G□̂H)[2,1] at a vertex are like the

following figures. They do not have multiple edges.

Fig. 14. edges in
˜
(G□̂H)[1,1] at a vertex Fig. 15. edges in

˜
(G□̂H)[2,1] at a vertex

Example 3.5. When G and H be graphs of real lattice, we consider their Kähler

graphs of strong product type, of semi-tensor product type and of lexicographical

product type. Edges in their reduced (1, 1)-derived graphs
˜
(G⊠̂H)[1,1],

˜(G⊗̂H)[1,1] and

˜(G ▷ H)[1,1] at a vertex are like the following figures. They have multiple edges.

Fig. 16.
˜
(G⊠̂H)[1,1]

Fig. 17. ˜(G⊗̂H)[1,1] Fig. 18. ˜(G ▷ H)[1,1]

Example 3.6. When G and H are graphs of real lattice, edges in the reduced

(1, 0)-derived graph and in the reduced (1, 1)-derived graph of G⊞H at a vertex are

like the following figures.

Fig. 19. ˜(G⊞H)[1,0](v) Fig. 20. ˜(G⊞H)[1,1](v)





CHAPTER 4

Eigenvalues of (1, 1)-Laplacians for Kähler graphs

In this chapter we define Laplacians corresponding to bicolored paths on finite

Kähler graphs and study their eigenvalues.

1. Definitions of Laplacians for Kähler graphs

Let G = (V,E(p) ∪E(a)) be a finite Kähler graph. We denote by C(V,C) the space

of all complex valued function on V . As in Chapter 3, for a pair (p, q) of relatively

prime positive integers and v ∈ V , we denote by Pp,q(v) the set of all (p, q)-primitive

bicolored paths on G whose origins are v. We define the (p, q)-adjacency operator

A(p,q) = AG(p,q) and the (p, q)-probabilistic transition operator Q(p,q) = QG(p,q) acting

on C(V,C) are defined as follows:

AG(p,q)f(v) =
∑

γ∈Pp,q(v)

ω(γ)f
(
t(γ)

)
,

QG(p,q)f(v) =
1∑

γ∈Pp,q(v)

ω(γ)

∑
γ∈Pp,q(v)

ω(γ)f
(
t(γ)

)
,

for each f ∈ C(V,C). Here, ω(γ) denotes the probabilistic weight of γ (see §3.2).

When G is a locally finite Kähler graph, we denote by L2(V,C) the space of all square

summable complex valued function on V . That is,

L2(V,C) =
{
f ∈ C(V,C)

∣∣∣ ∑
v∈V

|f(v)|2 <∞
}
.

We can then define AG(p,q) and QG(p,q) acting on L2(V,C) by the same way. But in

this paper, we only treat the case of finite Kähler graphs.

For a positive p, we denote by Pp,0(v) the set of all p-step paths on the principal

graph G(p) = (V,E(p)) whose origins are v and that do not have backtracking. That is

97
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we setPp,0(v) = Pp(v;G
(p)). We denote the cardinality of this setPp,0(v) by dG(p,0)(v),

and define the degree operator DG(p,0) acting on C(V,C) by

DG(p,0)f(v) = dG(p,0)(v)f(v)

for each f ∈ C(V,C). By use of the notation in Chapter 3, we have DG(p,0) = DG[p]
.

By using these operators we define the (p, q)-combinatorial Laplacian ∆A(p,q)
and the

(p, q)-probabilistic transitional Laplacian ∆Q(p,q)
of G acting on C(V,C) by

∆A(p,q)
= DG(p,0) −AG(p,q) and ∆Q(p,q)

= I − QG(p,q),

where I denotes the identity operator. We sometimes just call them (p, q)-Laplacians.

Just like we used matrix representations of adjacency and transition operators in

§1.2, by using characteristic functions δv : V → R (⊂ C) we use matrix representa-

tions AG(p,q) and QG(p,q) of (p, q)-adjacency and (p, q)-probabilistic transition opera-

tors with respect to the basis
{
δv
∣∣ v ∈ V }. Similarly, we use matrix representations

∆A(p,q)
, ∆Q(p,q)

of ∆A(p,q)
and ∆Q(p,q)

with respect to this basis.

1.1. (1, 1)-Laplacians. First we study the case (p, q) = (1, 1). A (1, 1)-bicolored

path is a path where principal and auxiliary edges appear alternatively. Just like the

fundamental 2-forms on Kähler manifolds and on their real hypersurfaces, which are

fundamental magnetic fields of Kähler magnetic fields and Sasakian magnetic fields,

(1, 1)-bicolored paths show a “fundamental” magnetic structure on a Kähler graphs.

We therefore specialize (1, 1)-Laplacians of a Kähler graph G = (V,E(p) ∪ E(a)).

We put A(p)
G = AG(p) , P(p)

G = PG(p) , which are the adjacency and the transition

operators of the principal graph G(p) = (V,E(p)), and put P(a)
G = PG(a) , which is the

transition operator of the auxiliary graph G(a) = (V,E(a)). Though in §1.2 we define

adjacency and transition operators of an ordinary graph as operators acting on the

space C(V,R) of real valued functions, we extend them and consider that they act on
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the space C(V,C). Therefore, we define these three operators as

A(p)
G f(v) =

∑
v′:v′∼pv

f(v′), P(p)
G f(v) =

1

d
(p)
G (v)

∑
v′:v′∼pv

f(v′),

P(a)
G f(v) =

1

d
(a)
G (v)

∑
v′:v′∼av

f(v′).

First we consider the relationship between (1, 1)-adjacency and (1, 1)-probabilistic

transition operators and these operators.

Lemma 4.1. We have AG(1,1) = A
(p)
G P

(a)
G and QG(1,1) = P

(p)
G P

(a)
G .

Proof. A (1, 1)-bicolored path γ ∈ P1,1(v) of origin v is expressed as γ = (v, v′, w)

with vertices v′, w ∈ V satisfying v ∼p v
′ and v′ ∼a w. On contrary if we take such

vertices then they form a (1, 1)-bicolored path, because we do not have multiple edges

(i.e. v ̸= w). As we have ω(γ) = 1/d
(a)
G (v′), we have

A(1,1)f(v) =
∑

(v, v′, w)
v ∼p v

′ ∼a w

1

d
(a)
G (v′)

f(w)

=
∑

v′:v′∼pv

∑
w:w∼av′

1

d
(a)
G (v′)

f(w) = A(p)
G P

(a)
G f(v).

Q(1,1)f(v) =
1

d
(p)
G (v)

∑
(v, v′, w)

v ∼p v
′ ∼a w

1

d
(a)
G (v′)

f(w)

=
1

d
(p)
G (v)

∑
v′:v′∼pv

∑
w:w∼av′

1

d
(a)
G (v′)

f(w) = P(p)
G P

(a)
G f(v).

Hence we get the conclusion. □

By this Lemma, when the principal graph of a Kähler graph is regular as an

ordinary graph, we find AG(1,1) = d
(p)
G PG(1,1). Since dG(p,0)

(v) = dG(p)(v), if we denote

by D(p)
G = DG(p) the degree operator acting on C(V,C) of the principal graph G(p) of

G, we have ∆A(1,1)
= D(p)

G −A(1,1). Hence, if the principal graph of a Kähler graph is

regular, we have ∆A(1,1)
= d

(p)
G ∆P(1,1)

.
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Example 4.1. We take a complete Kähler graph G = (V,E(p) ∪E(a)) of principal

and auxiliary degrees d(p) = d(a) = 2 and of cardinality of the set of vertices nG = 5.

(see Fig. 1). We set V = {v1, v2, v3, v4, v5} and

E(p) =
{
(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6)

}
,

E(a) =
{
(v1, v3), (v3, v5), (v5, v2), (v2, v4), (v4, v1)

}
.

Its (1, 1)-adjacency matrix and (1, 1)-probabilistic transition matrix are

AG(1,1)
= AG(p)PG(a) =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0

 =


0 1

2
1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0

 ,

QG(1,1)
= PG(p)PG(a) =


0 1

2
0 0 1

2
1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

1
2

0 0 1
2

0




0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0

 =


0 1

4
1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0

 .

Therefore, its matrix representations of (1, 1)-combinatorial and (1, 1)-probabilistic

transitional Laplacians are

∆A(1,1)
=


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

−

0 1

2
1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

0

 = −


−2 1

2
1
2

1
2

1
2

1
2
−2 1

2
1
2

1
2

1
2

1
2
−2 1

2
1
2

1
2

1
2

1
2
−2 1

2
1
2

1
2

1
2

1
2
−2

 ,

∆Q(1,1)
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−

0 1

4
1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
4

0

 = −


−1 1

4
1
4

1
4

1
4

1
4
−1 1

4
1
4

1
4

1
4

1
4
−1 1

4
1
4

1
4

1
4

1
4
−1 1

4
1
4

1
4

1
4

1
4
−1

 .

We note that G is a regular Kähler graph. As we can see, these matrices satisfy

AG(1,1) = 2QG(1,1) and ∆A(1,1)
= 2∆Q(1,1)

.
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Fig. 1. G
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Fig. 2. G6

Example 4.2. We take a Kähler graph G = (V,E(p) ∪ E(a)) of nG = 6 which

is complete as a graph and that is not regular (see Fig. 2). That is, we set V =

{v1, v2, v3, v4, v5, v6} and

E(p) =
{
(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v1), (v1, v4), (v3, v6),

}
,

E(a) =
{
(v1, v3), (v3, v5), (v5, v1), (v2, v4), (v4, v6), (v6, v2), (v2, v5)

}
.

Its (1, 1)-adjacency matrix and (1, 1)-probabilistic transition matrix are

AG(1,1) = AG(p)PG(a)

=


0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
2

0 0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
2

0 1
2

0 0


=



0 1 0 5
6

1
3

5
6

1
2

0 1
2

0 1 0

0 1 0 5
6

1
3

1
5
6

1
3

5
6

0 1 0

0 1 0 1
2

0 1
2

5
6

1
3

5
6

0 1 0


,

QG(1,1) = PG(p)PG(a)

=


0 1

3
0 1

3
0 1

3
1
2

0 1
2

0 0 0
0 1

3
0 1

3
0 1

3
1
3

0 1
3

0 1
3

0
0 0 0 1

2
0 1

2
1
3

0 1
3

0 1
3

0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
2

0 0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
2

0 1
2

0 0


=



0 1
3

0 5
18

1
9

5
18

1
4

0 1
2

0 1
2

0

0 1
3

0 5
18

1
9

5
18

5
18

1
9

5
18

0 1
3

0

0 1
2

0 1
4

0 1
4

5
18

1
9

5
18

0 1
3

0


.
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Therefore, its matrix representations of (1, 1)-combinatorial and (1, 1)-probabilistic

transitional Laplacians are

∆A(1,1)

=


3 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 3

−


0 1 0 5
6

1
3

5
6

1
2

0 1
2

0 1 0

0 1 0 5
6

1
3

1
5
6

1
3

5
6

0 1 0

0 1 0 1
2

0 1
2

5
6

1
3

5
6

0 1 0


= −



−3 1 0 5
6

1
3

5
6

1
2
−2 1

2
0 1 0

0 1 −3 5
6

1
3

1
5
6

1
3

5
6
−3 1 0

0 1 0 1
2
−2 1

2
5
6

1
3

5
6

0 1 −3


,

∆Q(1,1)

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−


0 1
3

0 5
18

1
9

5
18

1
4

0 1
2

0 1
2

0

0 1
3

0 5
18

1
9

5
18

5
18

1
9

5
18

0 1
3

0

0 1
2

0 1
4

0 1
4

5
18

1
9

5
18

0 1
3

0


= −



−1 1
3

0 5
18

1
9

5
18

1
4
−1 1

2
0 1

2
0

0 1
3
−1 5

18
1
9

5
18

5
18

1
9

5
18
−1 1

3
0

0 1
2

0 1
4
−1 1

4
5
18

1
9

5
18

0 1
3
−1


.

1.2. (p, q)-step Laplacian. Next we study general (p, q). For a finite Kähler

graph G = (V,E(p)∪E(a)), we denote by A(p)
(p,0) and P

(p)
(p,0) the p-step adjacency operator

and the p-step transition operator of the principal graph G(p) = (V,E(p)) which act on

C(V,C), respectively. That is, we define these operators as

A(p)
(p,0)f(v) =

∑
σ∈Pp,0(v)

f
(
t(σ)

)
, P(p)

(p,0)f(v) =
1

d
(p)
(p,0)(v)

∑
σ∈Pp,0(v)

f
(
t(σ)

)
.

In other words, we set A(p)
(p,0) = AG

(p)
[p]

and P(p)
(p,0) = PG

(p)
[p]

. We denote by P0,q(v) the set

of all q-step paths on the auxiliary graph G(a) = (V,E(a)) without backtracking whose

origins are v. That is, we set P0,q(v) = Pq(v;G
(a)). For each ρ ∈ P0,q(v) we define its

probabilistic weight ω(ρ) by regarding it as (0, q)-primitive bicolored path. That is,

when ρ = (w0, w1, . . . , wq) we set

ω(ρ) =
1

d
(a)
G (w0)

(
d
(a)
G (w1)− 1

)
· · ·
(
d
(a)
G (wq−1)− 1

) .
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We define q-step probabilistic transition operator Q(a)
(0,q) of G

(a) acting on C(V,C) by

Q(a)
(0,q)f(v) =

∑
ρ∈P0,q(v)

ω(ρ)f
(
t(ρ)

)
.

Here, we define P(a)
(0,q) acting on C(V,C) by

P(a)
(0,q)f(v) =

1

d
(a)
(0,q)(v)

∑
ρ∈P0,q(v)

f
(
t(ρ)

)

with the cardinality dG(0,q)(v) of the set of P0,q(v). That is, we set P(a)
(0,q) = PG

(a)
[q]

. We

should note that Q(a)
(0,q) ̸= P

(a)
(0,q) in general.

Lemma 4.2. When G(a) is regular, we have Q(a)
(0,q) = P

(a)
(0,q).

Proof. When G(a) is regular, we have

ω(ρ) =
1

d
(a)
G (d

(a)
G − 1)q−1

= dG(0,q)

(
o(ρ)

)
.

Hence we get the conclusion. □

By using these operators we can decompose the (p, q)-adjacency and (p, q)-probabilistic

transition operators as follows.

Lemma 4.3. We have A(p,q) = A(p)
(p,0)Q

(a)
(0,q) and Q(p,q) = P(p)

(p,0)Q
(a)
(0,q).

Proof. As we can decompose Pp,q(v) as Pp,q(v) =
∪

σ∈Pp,0(v)
Pq(σ), by direct

computation we have

A(p,q)f(v) =
∑

γ∈Pp,q(v)

ω(γ)f(t(γ)) =
∑

σ∈Pp,0(v)

∑
ρ∈Pq(σ)

ω(ρ)f(t(ρ))

=
∑

σ∈Pp,0(v)

(
Q(a)

(0,q)f
)
(t(σ)) = A(p)

(p,0)Q
(a)
(0,q)f(v),



104 IV. Eigenvalues of (1, 1)-Laplacians for Kähler graphs

PG(p,q)f(v) =
1∑

γ∈Pp,q(v)

ω(γ)

∑
γ∈Pp,q(v)

ω(γ)f(t(γ))

=
1

dG(p,0)

∑
σ∈Pp,0(v)

∑
ρ∈Pq(σ)

ω(ρ)f(t(ρ))

=
1

dG(p,0)

∑
σ∈Pp,0(v)

(
Q(a)

q f
)
(t(σ))

= P(p)
(p,0)Q

(a)
(0,q)f(v)

with Lemma 3.2. We hence get the conclusion. □

Example 4.3. For the Kähler graph G in Example 4.1, the (1, 2)-adjacency matrix

and (1, 2)-probabilistic transition matrix are

AG(1,2)
= AG(p)P

(a)
(0,2) =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



0 1

2
0 0 1

2
1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

1
2

0 0 1
2

0

 =


1 0 1

2
1
2

0

0 1 0 1
2

1
2

1
2

0 1 0 1
2

1
2

1
2

0 1 0

0 1
2

1
2

0 1

 ,

QG(1,2)
= PG(p)P

(a)
(0,2) =


0 1

2
0 0 1

2
1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

1
2

0 0 1
2

0




0 1

2
0 0 1

2
1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

1
2

0 0 1
2

0

 =


1
2

0 1
4

1
4

0

0 1
2

0 1
4

1
4

1
4

0 1
2

0 1
4

1
4

1
4

0 1
2

0

0 1
4

1
4

0 1
2

 .

Its (2, 1)-adjacency matrix and (1, 2)-probabilistic transition matrix are

AG(2,1)
= A

(p)
(2,0)PG(a) =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0



0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0

 =


1 1

2
0 0 1

2
1
2

1 1
2

0 0

0 1
2

1 1
2

0

0 0 1
2

1 1
2

1
2

0 0 1
2

1

 ,

QG(2,1)
= P

(p)
(2,0)PG(a) =


0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0




0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0

 =


1
2

1
4

0 0 1
4

1
4

1
2

1
4

0 0

0 1
4

1
2

1
4

0

0 0 1
4

1
2

1
4

1
4

0 0 1
4

1
2

 .
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Therefore, its matrix representations of (1, 2)-combinatorial and (1, 2)-probabilistic

transitional Laplacians are

∆A(1,2)
=


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

−

1 0 1

2
1
2

0

0 1 0 1
2

1
2

1
2

0 1 0 1
2

1
2

1
2

0 1 0

0 1
2

1
2

0 1

 = −


−1 0 1

2
1
2

0

0 −1 0 1
2

1
2

1
2

0 −1 0 1
2

1
2

1
2

0 −1 0

0 1
2

1
2

0 −1

 ,

∆Q(1,2)
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−


1
2

0 1
4

1
4

0

0 1
2

0 1
4

1
4

1
4

0 1
2

0 1
4

1
4

1
4

0 1
2

0

0 1
4

1
4

0 1
2

 = −


−1

2
0 1

4
1
4

0

0 −1
2

0 1
4

1
4

1
4

0 −1
2

0 1
4

1
4

1
4

0 −1
2

0

0 1
4

1
4

0 −1
2

 .

Its matrix representations of (2, 1)-combinatorial and (2, 1)-probabilistic transitional

Laplacians are given as

∆A(2,1)
=


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

−

1 1

2
0 0 1

2
1
2

1 1
2

0 0

0 1
2

1 1
2

0

0 0 1
2

1 1
2

1
2

0 0 1
2

1

 = −


−1 1

2
0 0 1

2
1
2
−1 1

2
0 0

0 1
2
−1 1

2
0

0 0 1
2
−1 1

2
1
2

0 0 1
2
−1

 ,

∆Q(2,1)
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−


1
2

0 1
4

1
4

0

0 1
2

0 1
4

1
4

1
4

0 1
2

0 1
4

1
4

1
4

0 1
2

0

0 1
4

1
4

0 1
2

 = −


−1

2
0 1

4
1
4

0

0 −1
2

0 1
4

1
4

1
4

0 −1
2

0 1
4

1
4

1
4

0 −1
2

0

0 1
4

1
4

0 −1
2

 .

Example 4.4. For the Kähler graph G in Example 4.2, the (1, 2)-adjacency matrix

and (1, 2)-probabilistic transition matrix are

AG(1,2)
=


0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0





0 1
4

1
4

0 1
2

0

0 0 0 1
2

0 1
2

1
4

1
4

0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

0 1
3

1
6

0 1
6

0 1
2

0 1
2

0 0


=



0 1 0 1 0 1
1
4

1
2

1
4

0 1 0

0 1 0 1 0 1
7
12

1
2

7
12

1
6

1 1
6

0 1 0 1
2

0 1
2

7
12

1
2

7
12

1
6

1 1
6


,
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QG(1,2)
=


0 1

3
0 1

3
0 1

3
1
2

0 1
2

0 0 0
0 1

3
0 1

3
0 1

3
1
3

0 1
3

0 1
3

0
0 0 0 1

2
0 1

2
1
3

0 1
3

0 1
3

0





0 1
4

1
4

0 1
2

0

0 0 0 1
2

0 1
2

1
4

1
4

0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

0 1
3

1
6

0 1
6

0 1
2

0 1
2

0 0


=



0 1
3

0 1
3

0 1
3

1
8

1
4

1
8

0 1
2

0

0 1
3

0 1
3

0 1
3

7
36

1
6

7
36

1
18

1
3

1
18

0 1
2

0 1
4

0 1
4

7
36

1
6

7
36

1
18

1
3

1
18


.

Its (2, 1)-adjacency matrix and (1, 2)-probabilistic transition matrix are

AG(2,1)
=


0 0 3 0 2 0
0 0 0 2 0 2
2 0 0 0 2 0
0 2 0 0 0 3
2 0 2 0 0 0
0 2 0 3 0 0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
2

0 0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
2

0 1
2

0 0


=



13
6

2
3

2
3

0 3
2

0

0 2 0 1 0 1
2
3

2
3

5
3

0 1 0

0 3
2

0 13
6

2
3

2
3

1 0 1 0 2 0
0 3

2
0 3

2
3
2

13
6


,

QG(2,1)
=


0 0 3

5
0 2

5
0

0 0 0 1
2

0 1
2

1
2

0 0 0 1
2

0
0 2

5
0 0 0 3

5
1
2

0 1
2

0 0 0
0 2

5
0 3

5
0 0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
2

0 0 0 1
2

0

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
2

0 1
2

0 0


=



13
30

2
15

2
15

0 3
10

0

0 1
2

0 1
4

0 1
4

1
6

1
6

5
12

0 1
4

0

0 3
10

0 13
30

2
15

2
15

1
4

0 1
4

0 1
2

0

0 3
10

0 2
15

2
15

13
30


.



2. (1, 1)-Laplacians of complement-filled Kähler graphs

In this section and the following four sections, we study eigenvalues of (1, 1)-

Laplacians for typical series of Kähler graphs.

2.1. Eigenvaleus of (1, 1)-Laplacians of complement-filled Kähler graphs.

First we study complement-filled Kähler graphs. For an ordinary graph G = (V,E)

we define operatorsM and N acting on C(V,R) by

Mf(v) =
∑
w∈V

f(w) and N =M−I.

The matrix representation M ofM with respect to the canonical basis {δv | v ∈ V }

is a square matrix of degree nG all of whose components are 1, that is

M =

1 · · · 1
...

. . .
...

1 · · · 1

 ,

and the matrix representation of N is N = M − I with an identity matrix I. Hence

we have

N =


1 · · · · · · 1
... 1

. . .
...

...
. . . . . .

...
1 · · · · · · 1

−

1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 =


0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0

 .

Theorem 4.1. Let G = (V,E) be a connected regular finite ordinary graph whose

degree satisfies 2 ≤ dG ≤ nG− 3. We denote the eigenvalues of ∆AG
of G as 0 = λ1 <

λ2 ≤ · · · ≤ λnG
. Then the eigenvalues of the (1, 1)-adjacency Laplacian ∆A(1,1)

of its

complement-filled Kähler graph GK are

λ̂1 = 0, λ̂i = {λ2i − λi(2dG + 1) + nGdG}(nG − dG − 1)−1 (i = 2, · · · , nG).

Moreover if fi : V → R is an eigenfunction corresponding to λi, then it is an eigen-

function corresponding to λ̂i.

Proof. The adjacency matrix AGc of the complement graph Gc of G is given by

Ac
G = N −AG =M − I −AG. In particular, we have dGc(v) = nG− 1− dG(v) at each

v ∈ V .

107



108 IV. Eigenvalues of Laplacians for Kähler graphs

We take an eigenfunction fi : V → R corresponding to the eigenvalue λi. We then

have

λifi = ∆AG
fi = (DG − AG)fi = dGfi − AGfi,

hence get AGfi = (dG − λi)fi. Since our graph G = (V,E) is regular, its complement

graph Gc is also regular. We hence have

AGK (1,1) = AG
1

dcG
Ac

G =
1

dGc

AGAGc =
1

dGc

AG

(
M−I −AG

)
.

Since G is connected regular, the multiplicity of null eigenvalues is one and correspond-

ing eigenfunctions are constant (see Proposition 1.8).

1) For λ1 = 0, we take a corresponding eigenfunction f1 which is non-zero constant.

We then have

AGcf1 = N f1 − AGf1 = (nG − 1− dG)f1.

Therefore, we find that

∆A
GK (1,1)

f1 = (DG −AGK (1,1))f1 = dGf1 −
1

nG − dG − 1
AGAGcf1

= dGf1 −AGf1 = dGf1 − dGf1 = 0.

2) For λi (i ≥ 2), as G is connected, we have λi ̸= 0. Thus by Note 1.1, fi is

orthogonal to f1. That is, as f1 is a constant function, we have

0 = ⟨f1, fi⟩ =
∑
v∈V

f1(v)fi(v) = f1(∗)
∑
v∈V

fi(v),

where ∗ denotes an arbitrary vertex, we hence have
∑

v∈V fi(v) = 0. Therefore we get

AGcfi(v) = (M−I−AG)fi(v) =
∑
w∈V

fi(w)−fi(v)−(dG−λi)fi(v) = (λi−dG−1))fi(v).

So that we have

∆A
GK
(1,1)

fi = (DG −
1

dcG
AGAGc)fi = dGfi −

1

(nG − dG − 1)
(λi − dG − 1)AGfi

=

(
dG −

(dG − λi)(λi − dG − 1)

nG − 1− dG

)
fi =

λ2i − λi(2dG + 1) + nGdG
nG − dG − 1

fi.

This completes the proof. □

Remark 4.1. Since we have ∆Q
GK
(1,1)

= 1
dG
∆A

GK
(1,1)

for a regular graph G, we have
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1) When λ1 = 0,

∆P
GK (1,1)

f1 = f1 −
1

dG
AG

1

dcG
Ac

Gf1 = f1 − f1 = 0.

2) When λi (i ≥ 2),

∆P
GK (1,1)

fi =
λ2i − λi(2dG + 1) + nGdG

dG(nG − dG − 1)
, (i = 2, · · · , nG).

Let G be a finite Kähler graph. If the eigenvalues of ∆A(1,1)
are λ1, λ2, . . . , λnG

, we

denote as Spec(∆A(1,1)
) =

{
λ1, λ2, . . . , λnG

}
according to convention. Though we use

the notation of sets, we write the same eigenvalues according to their multiplicities.

Similarly, we use Spec(∆P(1,1)
) for the eigenvalues of ∆P(1,1)

.

Example 4.5. We take a 5-circuit G (see Fig. 3) and consider its complement-filled

Kähler graph GK . It is a regular Kähler graph (see Fig. 4).

v

v

v
v

v

1

4

5

2

3

Fig. 3. 5-circuit

v

v

v
v

v

1

4

5

2

3

Fig. 4. GK

The adjacency Laplacian of 5-circuit is represented as

∆AG
=


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

−

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 = −


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 ,

hence its eigenvalues are

Spec(∆AG
) =

{
0,

1

2
(5−

√
5),

1

2
(5−

√
5),

1

2
(5 +

√
5),

1

2
(5 +

√
5)
}
.

Since we have

AGK
(1,1)

=


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



0 0 1

2
1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

0 0 0

0 1
2

1
2

0 0

 =
1

2


0 1 1 1 1
1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 ,
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the eigenvalues of (1, 1)-adjacency Laplacian and of (1, 1)-probabilistic transition Lapla-

cian of GK are

Spec(∆A
GK
(1,1)

) =
{
0,

5

2
,
5

2
,
5

2
,
5

2

}
and Spec(∆Q

GK
(1,1)

) =
{
0,

5

4
,
5

4
,
5

4
,
5

4

}
.

When an ordinary graph is not regular, the eigenvalues of its complement-filled

Kähler graph are not necessarily real in general.

Proposition 4.1. Let G be a non-regular ordinary graph. Then AG and PGc are

not simultaneously diagonalizable.

Proof. Since we have AGc =M−I −AG, we find that AG ◦ AGc = AGc ◦ AG if

and only if AG ◦M =M◦AG.

For an arbitrary f ∈ C(V,C) we have

MGAGf(v) =
∑
w∈V

∑
w′:w′∼w

f(w′) =
∑
w′∈V

∑
w:w∼w′

f(w′) =
∑
w′∈V

dG(w
′)f(w′).

HenceMAGf is a constant function. On the other hand, we have

AGMf(v) = dG(v)
∑
w∈V

f(w),

which is not constant, because G is not regular. Thus we get the conclusion. □

Example 4.6. We take a complement-filled Kähler graph G of nG = 6 like Fig. 5.

Its (1, 1)-adjacency matrix AG(1,1)
is given as

AG(1,1)
=


0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
3

0 0 0 1
3

1
3

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
3

1
3

1
3

0 0


=



0 5
6

1
3

2
3

1
3

5
6

1
3

0 1
2

0 5
6

1
3

0 1
2

0 1
3

1
3

5
6

2
3

1
3

5
6

0 5
6

1
3

0 5
6

1
3

1
3

0 1
2

1
3

1
3

5
6

0 1
2

0


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and its (1, 1)-probabilistic transition matrix QG(1,1)
is given as

QG(1,1)
=


0 1

3
0 1

3
0 1

3
1
2

0 1
2

0 0 0
0 1

2
0 1

2
0 0

1
3

0 1
3

0 1
3

0
0 0 0 1

2
0 1

2
1
2

0 0 0 1
2

0





0 0 1
2

0 1
2

0

0 0 0 1
3

1
3

1
3

1
3

0 0 0 1
3

1
3

0 1
2

0 0 0 1
2

1
3

1
3

1
3

0 0 0

0 1
3

1
3

1
3

0 0


=



0 5
18

1
9

2
9

1
9

5
18

1
6

0 1
4

0 5
12

1
6

0 1
4

0 1
6

1
6

5
12

2
9

1
9

5
18

0 5
18

1
9

0 5
12

1
6

1
6

0 1
4

1
6

1
6

5
12

0 1
4

0


.

The eigenvalues of the combinatorial Laplacian of the principal graph and those of

(1, 1)-combinatorial and (1, 1)-probabilistic transitional Laplacians are as follows;

Spec(∆A
G(p)

) =
{
0, 1, 2, 3, 3, 5

}
,

Spec(∆AG(1,1)
) =

{
0, 2, 4,

8

3
,
8

3
,
8

3

}
,

Spec(∆QG(1,1)
) =

{
0, 1,

4

3
,
17

18
,
(49 +

√
97)

36
,
(49−

√
97)

36

}
.

Those eigenvalues do not satisfy Theorem 4.1 because G(p) is not regular.

v

v

v

v

v
1

4

5

2

3

v6

Fig. 5

v

v

v

v

v
1

4

5

2

3

v6

Fig. 6

We note the difference of the principal degree and the auxiliary degree of a regular

Kähler graph does not give influence in Theorem 4.1.

Example 4.7. We take a complement-filled Kähler graph of an ordinary regular

graph of degree 3 (see Fig. 6). Its (1, 1)-adjacency matrix is given as

AG(1,1)
=


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0





0 0 1
2

0 1
2

0

0 0 0 1
2

0 1
2

1
2

0 0 0 1
2

0

0 1
2

0 0 0 1
2

1
2

0 1
2

0 0 0

0 1
2

0 1
2

0 0


=


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


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and QG(1,1)
= 1

3
AG(1,1)

. Eigenvalues of (1, 1)-combinatorial and (1, 1)-probabilistic tran-

sitional Laplacians are

Spec(∆AG(1,1)
) =

{
0, 3, 3, 3, 3, 6

}
and Spec(∆QG(1,1)

) =
{
0, 1, 1, 1, 1, 2

}
.

Next we extend the previous result to non-connected regular graphs.

Theorem 4.2. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected regular

ordinary graphs. We denote the eigenvalues ∆AG1
by 0 = λ1 < λ2 ≤ · · · ≤ λnG1

and

those of ∆AG2
by 0 = η1 < η2 ≤ · · · ≤ ηnG2

. We set G = (V1+V2, E1+E2) the disjoint

union of G1 and G2. Then the eigenvalues of ∆A(1,1)
of GK are

0, dG1 −
(dG1 − λj)(λj − dG1 − 1)

d̂G1

,

dG2 −
(dG2 − ηk)(ηk − dG1 − 1)

d̂G2

,
dG1nG2

d̂G1

+
dG2nG1

d̂G2

j = 2, . . . , nG1 , k = 2, . . . , nG2 ,

where d̂Gi
= nG1 + nG2 − dGi

− 1 for i = 1, 2.

Proof. We denote by Miℓ a nGi
× nGℓ

-matrix all of whose components are 1. By

using the adjacency matrices AGj
, AGc

j
of Gj and its complement graph Gc

j, we can

express the adjacency matrix A
(p)

GK and the transition matrix P
(a)

GK as

A
(p)

GK =

AG1

... O
· · · · · ·
O

... AG2

 , P
(a)

GK =


1

d̂G1

AGc
1

...
1

d̂G1

M12

· · · · · ·
1

d̂G2

M21
...

1

d̂G2

AGc
2

 .

We take an eigenfunction fj : V1 → R corresponding to the eigenvalue λj and an

eigenfunction gk : V2 → R associated with ηk. We define f̂j, ĝk : V → R by

f̂j(v) =

{
fj(v), when v ∈ V1,
0, when v ∈ V2,

ĝk(v) =

{
0, when v ∈ V1,
gk(v), when v ∈ V2.

Since G1, G2 are connected, we have∑
v∈V

f̂j(v) =
∑
v∈V1

fj(v) = 0,
∑
v∈V

ĝk(v) =
∑
v∈V2

gk(v) = 0
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for j ≥ 2 and k ≥ 2. We define ÂGi
acting on C(V,C) by

ÂGi
h(v) =

{
AGi

h|Vi
(v), when v ∈ Vi,

0, when v ̸∈ Vi,

where h|Vi
denotes the restriction of h onto Vi. Then, as AG1fj = (dG1 − λj)fj and

AG2gk = (dG2 − ηk)gk, we have ÂG1 f̂j = (dG1 − λj)f̂j and ÂG2 ĝk = (dG2 − ηk)ĝk. if

f : V1 → R and g : V2 → R correspond to

f ↔

 ζ1
...

ζnG1

 , g ↔

 ξ1
...

ξnG2

 ,

then f̂ , ĝ : V → R correspond to

f̂ ↔



ζ1
...

ζnG1

0
...
0


, ĝ ↔



0
...
0
ξ1
...

ξnG2


.

Since AGc
i
=MnGi

nGi
− I − AGi

, we find for j ≥ 2 and k ≥ 2 that

A(p)

GKP(a)

GK f̂j =
1

d̂G1

A(p)

GK (M11 − I − ÂG1)f̂j =
λj − dG1 − 1

d̂G1

A(p)

GK f̂j

=
1

d̂G1

(dG1 − λj)(λj − dG1 − 1)f̂j,

A(p)

GKP(a)

GK ĝk =
1

d̂G2

A(p)

GK (M22 − I − ÂG2)ĝk =
ηk − dG2 − 1

d̂G2

A(p)

GK ĝk

=
1

d̂G2

(dG2 − ηk)(ηk − dG2 − 1)ĝk.

Hence we have

∆A(1,1)
f̂j =

(
dG1 −

1

d̂G1

(dG1 − λj)(λj − dG1 − 1)
)
f̂j,

∆A(1,1)
ĝk =

(
dG2 −

1

d̂G2

(dG2 − ηk)(ηk − dG2 − 1)
)
ĝk.

Next we consider a function ϕ[α] : V → R for a constant α defined by

ϕ[α](v) =

{
1, when v ∈ V1,
α, when v ∈ V2.
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This function corresponds to

ϕ[α]↔



1
...
1
α
...
α


.

We express this vector as

(
1
α

)
. Then we have

A
(p)

GKP
(a)

GK

(
1
α

)
=

AG1

... O
· · · · · ·
O

... AG2




1

d̂G1

{dGc
1
+ nG2α}

1

d̂G2

{nG1 + dGc
2
α}



=


dG1

d̂G1

{nG1 − dG1 − 1 + nG2α}

dG2

d̂G2

{nG1 + (nG2 − dG2 − 1)α}

 .

Therefore, in order that ϕ[α] is an eigenfunction associated with an eigenvalue Λ, as

(DG − A(p)

GKP
(a)

GK )

(
1
α

)
= Λ

(
1
α

)
shows A(p)P (a)

(
1
α

)
=

(
dG1 − Λ

(dG2 − Λ)α

)
,

the following system of equations holds:
dG1

d̂G1

{nG1 − dG1 − 1 + nG2α} = dG1 − Λ,

dG2

d̂G2

{nG1 + (nG2 − dG2 − 1)α} = (dG2 − Λ)α.

By the first equality we have

Λ =
nG2dG1

d̂G1

(1− α).

Substituting this into the second equality, we have

dG2

d̂G2

{nG1 + (nG2 − dG2 − 1)α} =
(
dG2 +

nG2dG1

d̂G1

(α− 1)
)
α.

Thus
nG2dG1

d̂G1

α2 +
(nG1dG2

d̂G2

− nG2dG1

d̂G1

)
α− nG1dG2

d̂G2

= 0,

hence

(α− 1)
(nG2dG1

d̂G1

α +
nG1dG2

d̂G2

)
= 0.
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Therefore we have α = 1 and Λ = 0, or α = −dG2 d̂G1nG1

dG1 d̂G2nG2

and

Λ =
dG1nG2

d̂G1

(1 +
dG2 d̂G1nG1

dG1 d̂G2nG2

) =
dG1nG2

d̂G1

+
dG2nG1

d̂G2

.

Thus we get the conclusion. □

Theorem 4.3. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected regular

ordinary graphs. We denote the eigenvalues ∆AG1
by 0 = λ1 < λ2 ≤ · · · ≤ λnG1 and

those of ∆AG2
by 0 = η1 < η2 ≤ · · · ≤ ηnG2

. We set G = (V1+V2, E1+E2) the disjoint

union of G1 and G2. Then the eigenvalues of ∆Q(1,1)
of GK are

0, 1− (dG1 − λj)(λj − dG1 − 1)

dG1 d̂G1

, 1− (dG2 − ηk)(ηk − dG1 − 1)

dG2 d̂G2

,
nG2

d̂G1

+
nG1

d̂G2

,

j = 2, . . . , nG1 , k = 2, . . . , nG2 ,

where d̂Gi
= nG1 + nG2 − dGi

− 1 for i = 1, 2.

Proof. We use the same notations as in the proof of Theorem 4.2. By using the

adjacency matrices AGj
, AGc

j
of Gj and its complement graph Gc

j, we can express the

transition matrices A
(p)

GK and P
(a)

GK as

P
(p)

GK =


1

dG1

AG1

... O

· · · · · ·
O

...
1

dG2

AG2

 , P
(a)

GK =


1

d̂G1

AGc
1

...
1

d̂G1

M12

· · · · · ·
1

d̂G2

M21
...

1

d̂G2

AGc
2

 .

We take an eigenfunction fj : V1 → R corresponding to the eigenvalue λj and an

eigenfunction gk : V2 → R associated with ηk. We define f̂j, ĝk : V → R by

f̂j(v) =

{
fj(v), when v ∈ V1,
0, when v ∈ V2,

ĝk(v) =

{
0, when v ∈ V1,
gk(v), when v ∈ V2.
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Since AGc
i
=MnGi

nGi
− I − AGi

, we find for j ≥ 2 and k ≥ 2 that

P(p)

GKP(a)

GK f̂j =
1

d̂G1

P(p)

GK (M11 − I − ÂG1)f̂j =
λj − dG1 − 1

d̂G1

P(p)

GK f̂j

=
1

dG1 d̂G1

(dG1 − λj)(λj − dG1 − 1)f̂j,

P(p)

GKP(a)

GK ĝk =
1

d̂G2

A(p)

GK (M22 − I − ÂG2)ĝk =
ηk − dG2 − 1

d̂G2

P(p)

GK ĝk

=
1

dG2 d̂G2

(dG2 − ηk)(ηk − dG2 − 1)ĝk.

Hence we have

∆Q(1,1)
f̂j =

(
1− 1

dG1 d̂G1

(dG1 − λj)(λj − dG1 − 1)
)
f̂j,

∆Q(1,1)
ĝk =

(
1− 1

dG2 d̂G2

(dG2 − ηk)(ηk − dG2 − 1)
)
ĝk.

Next we consider a function ϕ[α] : V → R for a constant α defined by

ϕ[α](v) =

{
1, when v ∈ V1,
α, when v ∈ V2.

This function corresponds to a vector

(
1
α

)
. Thus we have

P
(p)

GKP
(a)

GK

(
1
α

)
=


1

dG1

AG1

... O

· · · · · ·
O

...
1

dG2

AG2




1

d̂G1

{dGc
1
+ nG2α}

1

d̂G2

{nG1 + dGc
2
α}



=


1

d̂G1

{nG1 − dG1 − 1 + nG2α}

1

d̂G2

{nG1 + (nG2 − dG2 − 1)α}

 .

Therefore, in order that ϕ[α] is an eigenfunction associated with an eigenvalue Θ, as

(I − P (p)

GKP
(a)

GK )

(
1
α

)
= Θ

(
1
α

)
shows P (p)P (a)

(
1
α

)
=

(
1−Θ

(1−Θ)α

)
,

the following system of equations holds:
1

d̂G1

{nG1 − dG1 − 1 + nG2α} = 1−Θ,

1

d̂G2

{nG1 + (nG2 − dG2 − 1)α} = (1−Θ)α.
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By the first equality we have

Θ =
nG2

d̂G1

(1− α).

Substituting this into the second equality, we have

nG2

d̂G1

α2 +
(nG1 − dG1 − 1

d̂G1

− nG2 − dG2 − 1

d̂G2

)
α− nG1

d̂G2

= 0,

which is equivalent to

nG2

d̂G1

α2 +
(nG1

d̂G2

− nG2

d̂G1

)
α− nG1

d̂G2

= 0.

Hence

(α− 1)
(nG2

d̂G1

α +
nG1

d̂G2

)
= 0.

Therefore we have α = 1 and Θ = 0, or α = − d̂G1nG1

d̂G2nG2

and

Θ =
nG2

d̂G1

(1 +
d̂G1nG1

d̂G2nG2

) =
nG2

d̂G1

+
nG1

d̂G2

.

Thus we get the conclusion. □

Example 4.8. We take a 3-circuit G1 = (V1, E1) and a 4-circuit G2 = (V2, E2)

which are regular of degree 2. We consider the union G = (V1 + V2, E1 +E2) and take

its complement-filled Kähler graph GK (see Fig. 7).

Fig. 7
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The adjacency matrix of G and (1, 1)-adjacency matrix and (1, 1)-probabilistic

transition matrix are given as

AG =

(
AG1 O

O AG2

)
=



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0


,

AGK
(1,1)

=

(
AG1 O

O AG2

)(
O 1

4
M12

1
4
M21

1
4
AGc

2

)
=



0 0 0 1
2

1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1
4

0 1
4

1
2

1
2

1
2

1
4

0 1
4

0
1
2

1
2

1
2

0 1
4

0 1
4

1
2

1
2

1
2

1
4

0 1
4

0


,

QGK
(1,1)

=



0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 1
8

0 1
8

1
4

1
4

1
4

1
8

0 1
8

0
1
4

1
4

1
4

0 1
8

0 1
8

1
4

1
4

1
4

1
8

0 1
8

0


The eigenvalues of the combinatorial Laplacian of the principal graph and those of

(1, 1)-combinatorial and (1, 1)-probabilistic transitional Laplacians are as follows;

Spec(∆AG
) =

{
0, 0, 2, 2, 3, 3, 4

}
,

Spec(∆A
GK
(1,1)

) =
{
0, 2, 2, 2, 2,

7

2
,
7

2

}
,

Spec(∆Q
GK
(1,1)

) =
{
0, 1, 1, 1,

5

4
,
7

4

}
.

2.2. Isospectral Kähler graphs. Two ordinary finite graph G1 = (V1, E1) and

G2 = (V2, E2) are said to be combinatorically isospectral if they are not isomorphic

to each other and if their combinatorial Laplacians have the same eigenvalues by

taking account of their multiplicities. Also, we say that two ordinary finite graph
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G1 = (V1, E1) and G2 = (V2, E2) are transitionally isospectral if they are not isomorphic

to each other and if their transitional Laplacian have the same eigenvalues by taking

account of their multiplicities. When these graphs are regular, as their combinatorial

and transitional Laplacians are related to each other by multiplying their degrees,

those notions on isospectrality are equivalent. So in this case, we just say that these

graphs are isospectral. It is known that there exist many pairs of isospectral graphs

(see [5]).

We extend the notion of isospectrality to Kähler graphs. We say that two Kähler

graphs G1 = (V1, E
(p)
1 ∪E

(a)
1 ) and G1 = (V1, E

(p)
2 ∪E

(a)
1 ) are (1, 1)-combinatorial isospec-

tral if they satisfy the following conditions:

i) their principal graphsG
(p)
1 = (V,E(p)) andG

(p)
2 = (V,E

(p)
2 ) are combinatorially

isospectral;

ii) their (1, 1)-combinatorial Laplacians have the same eigenvalues by taking ac-

count of their multiplicities.

Also, we say that those Kähler graphs G1 and G2 are (1, 1)-probabilistic transitional

isospectral if they satisfy the following conditions:

i) their principal graphs G
(p)
1 = (V,E(p)) and G

(p)
2 = (V,E

(p)
2 ) are transitionally

isospectral;

ii) their (1, 1)-transitional Laplacians have the same eigenvalues by taking ac-

count of their multiplicities.

When the principal graphs of these two Kähler graphs are regular, they are (1, 1)-

combinatorial isospectral if and only if they are (1, 1)-probabilistic transitional isospec-

tral. Hence in this case we just call them (1, 1)-isospectral.

As a direct consequence of Theorem 4.1, we have the following.

Proposition 4.2. If two finite connected regular ordinary graphs G1, G2 have the

same degree with 2 ≤ dG1 = dG2 ≤ nG1 − 3 (= nG2 − 3) and are isospectral, then their

complement-filled Kähler graphs GK
1 , G

K
2 are (1, 1)-isospectral.
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Example 4.9. We take two ordinary regular graphs G1, G2 having ten vertices as

in Figs. 8, 9. It in known that they are isospectral. We take their complement-filled

Kähler graphs GK
1 , G

K
2 . We show their principal and auxiliary graphs separately in

figures to get their feature clearly. They are (1, 1)-isospectral Kähler graphs. The

adjacency matrices of G1 and G2 are

AG1 =



0 1 0 0 0 1 1 1 0 0
1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 1 1
1 0 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 0 0
0 1 1 0 1 0 0 0 0 1
0 0 0 1 1 1 0 0 1 0


, AG2 =



0 1 0 0 0 1 1 0 1 0
1 0 1 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1
0 0 0 1 1 1 0 0 1 0


.

Eigenvalues of combinatorial Laplacians of their principal graphs and those of (1, 1)-

combinatorial Laplacians are

Spec(∆A
G(p)

) =
{
0, 3, 5, 5, 5, 5, 4−

√
5, 4 +

√
5, (9−

√
17)/2, (9 +

√
17)/2

}
,

Spec(∆A
GK (1,1)

) =
{
0, 4, 4, 4, 4, 22/5, 24/5, 24/5, (25−

√
5)/5, (25 +

√
5)/5

}
.

Fig. 8 Fig. 9

We note that their (1, 1)-adjacency matrices are different:

AG1
K
(1,1)

=
1

5



0 2 2 3 3 2 0 2 3 3
2 0 2 3 3 2 2 1 2 3
2 2 0 2 2 4 2 2 2 2
3 3 2 0 2 2 3 2 1 2
3 3 2 2 0 2 3 3 2 0
2 2 4 2 2 0 2 2 2 2
0 2 2 3 3 2 0 2 3 3
2 1 2 2 3 2 2 0 3 3
3 2 2 1 2 2 3 3 0 2
3 3 2 2 0 2 3 3 2 0


, AG2

K
(1,1)

=
1

5



0 2 2 3 3 2 1 2 3 2
2 0 2 3 3 2 1 1 2 4
2 2 0 2 2 4 2 2 2 2
3 3 2 0 2 2 4 2 1 1
3 3 2 2 0 2 2 3 2 1
2 2 4 2 2 0 2 2 2 2
1 1 2 4 2 2 0 2 3 3
2 1 2 2 3 2 2 0 3 3
3 2 2 1 2 2 3 3 0 2
2 4 2 1 1 2 3 3 2 0


.
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We here recall eigenvalues of complement graphs.

Lemma 4.4. We denote the eigenvalues of ∆AG
of a connected regular ordinary

graph G by 0 = λ1 < λ2 ≤ · · · ≤ λnG
. Then the eigenvalues of ∆AGc of the complement

graph Gc of G are 0 and nG − λj (j = 2, . . . , nG).

Proof. Let f be an eigenfunction associated with an eigenvalue λ of ∆AG
. We

have AGf = (dG − λ)f . Since G = (V,E) is connected regular graph, when λ = 0

we have f is a constant function and
∑

v∈V f(v) = nGf(v), and when λ ̸= 0 we have∑
v∈V f(v) = 0. Thus we see

AGcf = (M−I −AG)f =

{
(nG − 1− dG)f, when λ = 0,

(−1− dG + λ)f, when λ ̸= 0.

As dGc = nG − 1− dG we have

∆AGcf =

{
{(nG − 1− dG)− (nG − 1− dG)}f = 0 when λ = 0,

{(nG − 1− dG)− (−1− dG + λ)}f = (nG − λ)f, when λ ̸= 0.

Hence we get the conclusion. □

As a consequence of this Lemma, we have the following.

Corollary 4.1. If two connected regular ordinary graphs G1, G2 are isospectral,

then their complement graphs Gc
1, G

c
2 are also isospectral.

For a Kähler graph G = (V,E(p) ∪ E(a)), we define a new Kähler graph G∗ =

(V, F (p) ∪ F (a)) by putting F (p) = E(a) and F (a) = E(p). We call this the dual Kähler

graph of G. By Corollary 4.1 and by Proposition 4.2 we have the following.

Corollary 4.2. If two finite connected regular ordinary graphs G1, G2 have the

same degree with 2 ≤ dG1 = dG2 ≤ nG1 − 3 (= nG2 − 3) and are isospectral, then the

dual Kähler graphs (GK
1 )

∗, (GK
2 )

∗ of their complement-filled Kähler graphs GK
1 , G

K
2

are (1, 1)-isospectral.

Example 4.10. The dual Kähler graphs (GK
1 )

∗, (GK
2 )

∗ of the complement-filled

Kähler graphs in Example 4.9 are also (1, 1)- isospectral. Their eigenvalues of principal
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graphs and of (1, 1)-combinatorial Laplacians are as follows:

Spec(∆AG∗ ) =
{
0, 5, 5, 5, 5, 7, 6−

√
5, 6 +

√
5,

(11−
√
17)

2
,
(11 +

√
17)

2

}
,

Spec(∆A
(GK )∗

(1,1)

) =
{
0, 5, 5, 5, 5,

11

2
, 6, 6,

(25−
√
5)

4
,
(25 +

√
5)

4

}
.

If we give their (1, 1)-adjacency matrices, they are

A(GK
1 )∗

(1,1)
=

1

4



0 2 2 3 3 2 0 2 3 3
2 0 2 3 3 2 2 1 2 3
2 2 0 2 2 4 2 2 2 2
3 3 2 0 2 2 3 2 1 2
3 3 2 2 0 2 3 3 2 0
2 2 4 2 2 0 2 2 2 2
0 2 2 3 3 2 0 2 3 3
2 1 2 2 3 2 2 0 3 3
3 2 2 1 2 2 3 3 0 2
3 3 2 2 0 2 3 3 2 0


,

A(GK
2 )∗

(1,1)
=

1

4



0 2 2 3 3 2 1 2 3 2
2 0 2 3 3 2 1 1 2 4
2 2 0 2 2 4 2 2 2 2
3 3 2 0 2 2 4 2 1 1
3 3 2 2 0 2 2 3 2 1
2 2 4 2 2 0 2 2 2 2
1 1 2 4 2 2 0 2 3 3
2 1 2 2 3 2 2 0 3 3
3 2 2 1 2 2 3 3 0 2
2 4 2 1 1 2 3 3 2 0


.

Thus we can verify that Q(GK
j )∗

(1,1)
= Q(GK

j )(1,1)
(j = 1, 2).

Example 4.11. We take another pair of isospectral ordinary regular graphs G1, G2

having ten vertices like Figs. 10, 11. Then their complement filled Kähler graphs are

(1, 1)-isospectral. The adjacency matrices of G1 and G2 are

AG1 =



0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 1 0 0 0 1
1 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1
0 0 1 1 0 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0
0 0 0 0 1 1 0 1 1 0
1 0 0 0 0 0 1 0 1 1
1 0 0 0 0 0 1 1 0 1
0 1 0 1 0 0 0 1 1 0


, AG2 =



0 1 1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 1
1 1 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0
0 0 0 1 0 1 0 1 0 1
0 0 0 0 1 0 1 0 1 1
0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 0 0 0
1 0 0 0 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 0


.
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Since we have

AGK
1(1,1)

=
1

5



0 2 2 3 3 3 2 2 2 1
2 0 2 1 2 3 3 2 2 3
2 2 0 2 2 1 3 3 3 2
3 1 2 0 1 2 2 3 3 3
3 2 2 1 0 1 2 3 3 3
3 3 1 2 1 0 2 3 3 2
2 3 3 2 2 2 0 2 2 2
2 2 3 3 3 3 2 0 0 2
2 2 3 3 3 3 2 0 0 2
1 3 2 3 3 2 2 2 2 0


, AGK

2(1,1)
=

1

5



0 2 1 2 3 3 2 2 3 2
2 0 2 2 3 2 3 2 1 3
1 2 0 1 2 4 2 2 3 3
2 2 1 0 2 3 3 1 3 3
3 3 2 2 0 2 2 2 2 2
3 2 4 3 2 0 2 2 1 1
2 3 2 3 2 2 0 3 2 1
2 2 2 1 2 2 3 0 3 3
3 1 3 3 2 1 2 3 0 2
2 3 3 3 2 1 1 3 2 0


,

their eigenvalues of principal graphs and of (1, 1)-combinatorial Laplacians are as fol-

lows:

Spec(∆AG∗ )

=

 0, 5, 5,
9−
√
5

2
,
9 +
√
5

2
,

solutions of the equation t5 − 21t4 + 167t3 − 624t2 + 1092t− 716 = 0

 ,

Spec(∆A
(GK )∗

(1,1)

)

=


0, 4, 4,

21

5
,
21

5
,

solutions of the equation

55t5 − 54 · 118t4 + 53 · 5557t3 − 52 · 130552t2 + 5 · 1530052t− 7156316 = 0

 .

Fig. 10 Fig. 11

Their dual Kähler graphs (GK
1 )

∗, (GK
2 )

∗ are also (1, 1)-isospectral.

Spec(∆A
G(p)

)

=

 0, 5, 5,
11−

√
5

2
,
11 +

√
5

2
,

solutions of the equation t5 − 29t4 + 327t3 − 1786t2 + 4712t− 4804 = 0

 ,
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Spec(∆AG(1,1)
)

=


0, 5, 5,

21

4
,
21

4
,

solutions of the equation

45t5 − 44 · 118t4 + 43 · 5557t3 − 42 · 130552t2 + 4 · 1530052t− 7156316 = 0

 .

It is known that there do not exist pairs of regular graphs whose cardinalities of

the set of vertices are less than ten, and that those pairs in Examples 4.9, 4.11 are

the only examples of isospectral pairs whose cardinalities of the set of vertices are ten.

Therefore the above examples are the examples of (1, 1)-isospectral pairs of Kähler

graphs whose cardinalities of the set of vertices are the smallest.

When we study isospectral pairs of Kähler graphs, the condition on their principal

graphs is important. If we drop the condition, we include pairs of Kähler graphs which

are not isomorphic but their (1, 1)-derived graphs are isomorphic.

Example 4.12. We take two vertex-transitive Kähler graphs having nine vertices

like Figs. 12, 13. By observing 3-step closed paths, we find that they are not isomorphic

but thier (1, 1)-derived graphs are isomorphic. Their adjacency matrices are given as

AG1 =



0 1 1 0 0 0 0 1 1
1 0 1 1 0 0 0 0 1
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 1 0 1 1 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1
1 0 0 0 0 1 1 0 1
1 1 0 0 0 0 1 1 0


, AG2 =



0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0


.

As we have

AGK
1(1,1)

=
1

4



0 1 2 2 3 3 2 2 1
1 0 1 2 2 3 3 2 2
2 1 0 1 2 2 3 3 2
2 2 1 0 1 2 2 3 3
3 2 2 1 0 1 2 2 3
3 3 2 2 1 0 1 2 2
2 3 3 2 2 1 0 1 2
2 2 3 3 2 2 1 0 1
1 2 2 3 3 2 2 1 0


, AGK

2(1,1)
=

1

4



0 3 1 2 2 2 2 1 3
3 0 3 1 2 2 2 2 1
1 3 0 3 1 2 2 2 2
2 1 3 0 3 1 2 2 2
2 2 1 3 0 3 1 2 2
2 2 2 1 3 0 3 1 2
2 2 2 2 1 3 0 3 1
1 2 2 2 2 1 3 0 3
3 1 2 2 2 2 1 3 0


.



§4.2. Eigenvaleus of (1, 1)-Laplacians of complement-filled Kähler graphs 125

the eigenvalues of their (1, 1)-combinatorial Laplacians are as follows:

Spec(∆A
GK
(1,1)

) =



0,
9

2
,
9

2
,
(9 +

√
3 cos π

18
)

2
,
(9 +

√
3 cos π

18
)

2
,

(9−
√
3 cos 5

18
π)

2
,
(9−

√
3 cos 5

18
π)

2
,

(9−
√
3 cos 7

18
π)

2
,
(9−

√
3 cos 7

18
π)

2


.

0

1

2

3

4 5

6

7

8

Fig. 12. K1(9; 4, 4)

0

1

2

3

4 5

6

7

8

Fig. 13. K2(9; 4, 4)

We note that the eigenvalues of these G1, G2 are

Spec(∆AG1
) =


0, 6, 6

solutions of t3 − 12t2 + 45t− 51 = 0

(multiplicity of each solution is 2)

 ,

Spec(∆AG2
) =


0, 3, 3

solutions of t3 − 15t2 + 72t−111 = 0

(multiplicity of each solution is 2)

 .



3. (1, 1)-Laplacians of Kähler graphs of product type whose principal

graphs are unions of copies of original graphs

In this section and following three sections, we study eigenvalues of (1, 1)-Laplacians

for finite Kähler graphs of product type given in §2.2.

First we study (1, 1)-Laplacians of Kähler graphs of Cartesian, strong, semi-tensor,

lexicographical product types and their related graphs. For functions f : V → R and

g : W → R, we define a function φf,g : V ×W → R by φf,g(v, w) = f(v)g(w).

3.1. (1, 1)-Laplacians of Kähler graphs of Cartesian product type.

Theorem 4.4. Let G = (V,E), H = (W,F ) be finite ordinary graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of ∆PH

.

Then the eigenvalues of ∆Q(1,1)
for their Kähler graph G□̂H of Cartesian product type

are

µi + να − µiνα (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction associated with µi +

να − µiνα.

Proof. We denote by AG = (aGij) the adjacency matrix of the graph G and by

PH = (pHαβ) the transition matrix of the graph H. Then by definition of G□̂H we have

A
(p)

G□̂H
=


0 aG12I · · · aG1nG

I

aG21I 0
. . .

...
...

. . . . . . aGnG−1nG
I

aGnG1I · · · aGnGnG−1I 0

 , P
(a)

G□̂H
=


PH 0 · · · 0

0 PH
. . .

...
...

. . . . . . 0
0 · · · 0 PH

 ,

where I denotes the unit matrix (identify) and the components aG of A(p) and P (a)

are expressed according to lexicographical order. In other way of expressions, the

adjacency matrix A(p) = (a
(p)
(i,α),(j,β)) of the principal graph of G□̂H and the transition

matrix P (a) = (p
(a)
(i,α),(j,β)) of the auxiliary graph of G□̂H are given as

a
(p)
(i,α),(j,β) = aGijδαβ, p

(a)
(i,α),(j,β) = δijp

H
αβ

126
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with Kronecker delta.

For functions f : V → R, g : W → R we express them by canonical basis of

C(V,R) and C(W,R) as

f ↔ ζ =

 ζ1
...
ζnG

 , g ↔ η =

 η1
...
ηnH


Then φf,g is expressed by the canonical basis

{
φδv ,δw

∣∣ v ∈ V,w ∈ W} of C(V ×W,R)
as

φf,g ↔



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnH


.

If functions f and g satisfy ∆PG
f = µf and ∆PH

g = νg, then we have PGf = (1−µ)f

and PHg = (1− ν)g. These mean that PGζ = (1−µ)ζ and PHη = (1− ν)η. Therefore

we obtain

A
(p)

G□̂H
P

(a)

G□̂H

 ζ1η1
...

ζnG
ηnH

 = A
(p)

G□̂H



ζ1PH

 η1
...
ηnH


...

ζnG
PH

 η1
...
ηnH




=


∑m

j=1 a
G
1jζjPHη
...∑m

j=1 a
G
mjζjPHη



=


∑m

j=1 a
G
1jζj(1− ν)η
...∑m

j=1 a
G
mjζj(1− ν)η

 = (1− ν)

 dG(v1)(1− µ)ζ1η
...

dG(vnG
)(1− µ)ζnG

η

 .

Thus we have

∆Q(1,1)
φf,g = (I − P(p)

G□̂H
P(a)

G□̂H
)φf,g = {1− (1− µ)(1− ν)}φf,g = (µ+ ν − µν)φf,g.

This completes the proof. □
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Theorem 4.5. Let G be a regular finite graph and H be a finite graph. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of ∆PH

.

Then the eigenvalues of ∆A(1,1)
for their Kähler graph G□̂H of Cartesian product type

are

dG(µi + να − µiνα) (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction associated with dG(µi+

να − µiνα).

Proof. Since G is regular graph, by the proof of Theorem 4.4 we have

A
(p)

G□̂H
P

(a)

G□̂H

 ζ1η1
...

ζnG
ηnH

 = (1− µ)(1− ν)dG

 ζ1η1
...

ζnG
ηnH

 .

Thus we have

∆A(1,1)
φf,g = (D −A(p)

G□̂H
P(a)

G□̂H
)φf,g

= dG{1− (1− µ)(1− ν)}φf,g = dG(v)(µ+ ν − µν)φf,g.

We get the conclusion. □

Example 4.13. Let G and H be non-regular ordinary graphs given in Figs. 14 and

15, respectively. Their transition matrices are given as

PG =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 and PH =


0 1

4
1
4

1
4

1
4

1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
2

0 0 1
2

0

 ,

and the eigenvalues of ∆PG
and ∆PH

are

{
0, 1,

4

3
,
5

3

}
,

{
0,

7−
√
7

6
,
7

6
,
3

2
,
7 +
√
7

6

}
.
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The (1, 1)-probabilistic transition matrix Q(G□̂H)(1,1)
is given as

Q(G□̂H)(1,1)
=


O 1

2
I O 1

2
I

1
3
I O 1

3
I 1

3
I

O 1
2
I O 1

2
I

1
3
I 1

3
I 1

3
I O



PH O O O
O PH O O
O O PH O
O O O PH

 =


O 1

2
PH O 1

2
PH

1
3
PH O 1

3
PH

1
3
PH

O 1
2
PH O 1

2
PH

1
3
PH

1
3
PH

1
3
PH O



=



0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 1
4

0 1
4

0 0

0 0 0 0 0 1
6

1
6

0 1
6

0

0 0 0 0 0 1
6

0 1
6

0 1
6

0 0 0 0 0 1
4

0 0 1
4

0

0 1
12

1
12

1
12

1
12

0 0 0 0 0
1
6

0 1
6

0 0 0 0 0 0 0
1
9

1
9

0 1
9

0 0 0 0 0 0
1
9

0 1
9

0 1
9

0 0 0 0 0
1
6

0 0 1
6

0 0 0 0 0 0

0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 1
4

0 1
4

0 0

0 0 0 0 0 1
6

1
6

0 1
6

0

0 0 0 0 0 1
6

0 1
6

0 1
6

0 0 0 0 0 1
4

0 0 1
4

0

0 1
12

1
12

1
12

1
12

0 1
12

1
12

1
12

1
12

1
6

0 1
6

0 0 1
6

0 1
6

0 0
1
9

1
9

0 1
9

0 1
9

1
9

0 1
9

0
1
9

0 1
9

0 1
9

1
9

0 1
9

0 1
9

1
6

0 0 1
6

0 1
6

0 0 1
6

0

0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 1
4

0 1
4

0 0

0 0 0 0 0 1
6

1
6

0 1
6

0

0 0 0 0 0 1
6

0 1
6

0 1
6

0 0 0 0 0 1
4

0 0 1
4

0

0 1
12

1
12

1
12

1
12

0 1
12

1
12

1
12

1
12

1
6

0 1
6

0 0 1
6

0 1
6

0 0
1
9

1
9

0 1
9

0 1
9

1
9

0 1
9

0
1
9

0 1
9

0 1
9

1
9

0 1
9

0 1
9

1
6

0 0 1
6

0 1
6

0 1
6

0 0

0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 1
4

0 1
4

0 0

0 0 0 0 0 1
6

1
6

0 1
6

0

0 0 0 0 0 1
6

0 1
6

0 1
6

0 0 0 0 0 1
4

0 0 1
4

0

0 1
12

1
12

1
12

1
12

0 0 0 0 0
1
6

0 1
6

0 0 0 0 0 0 0
1
9

1
9

0 1
9

0 0 0 0 0 0
1
9

0 1
9

0 1
9

0 0 0 0 0
1
6

0 0 1
6

0 0 0 0 0 0



.

The eigenvalues of ∆Q
(G□̂H)(1,1)

are
0,

1

9

(
8−
√
7
)
,
2

3
,
1

6

(
7−
√
7
)
,

1

18

(
17−

√
7
)
,
5

6
,
8

9
,
17

18
,

1, 1, 1, 1, 1,
1

18

(
17 +

√
7
)
,
7

6
,
1

9

(
8 +
√
7
)
,
4

3
,
3

2
,
1

6

(
7 +
√
7
)
,
5

3

 .
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The (1, 1)-adjacency matrix A(G□̂H)(1,1)
is given as

A(G□̂H)(1,1)
=


O I O I
I O I I
O I O I
I I I O



PH O O O
O PH O O
O O PH O
O O O PH

 =


O PH O PH

PH O PH PH

O PH O PH

PH PH PH O



=



0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 1
3

1
3

0 1
3

0

0 0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 0 1
2

0

0 1
4

1
4

1
4

1
4

0 0 0 0 0
1
2

0 1
2

0 0 0 0 0 0 0
1
3

1
3

0 1
3

0 0 0 0 0 0
1
3

0 1
3

0 1
3

0 0 0 0 0
1
2

0 0 1
2

0 0 0 0 0 0

0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 1
3

1
3

0 1
3

0

0 0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 0 1
2

0

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
2

0 1
2

0 0 1
2

0 1
2

0 0
1
3

1
3

0 1
3

0 1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
3

0 1
3

0 1
3

1
2

0 0 1
2

0 1
2

0 0 1
2

0

0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 1
3

1
3

0 1
3

0

0 0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 0 1
2

0

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
2

0 1
2

0 0 1
2

0 1
2

0 0
1
3

1
3

0 1
3

0 1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
3

0 1
3

0 1
3

1
2

0 0 1
2

0 1
2

0 0 1
2

0

0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 1
2

0 1
2

0 0

0 0 0 0 0 1
3

1
3

0 1
3

0

0 0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 0 1
2

0

0 1
4

1
4

1
4

1
4

0 0 0 0 0
1
2

0 1
2

0 0 0 0 0 0 0
1
3

1
3

0 1
3

0 0 0 0 0 0
1
3

0 1
3

0 1
3

0 0 0 0 0
1
2

0 0 1
2

0 0 0 0 0 0



.

The eigenvalues of ∆A
(G□̂H)(1,1)

are



0,
1

12

(
31+
√
7−
√
23−
√
161
)
,
1

4

(
11−
√
23
)
,

1

12

(
31−
√
7+
√
23−
√
161
)
,

1

12

(
31−
√
65
)
, 2, 2, 2, 2, 2,

1

6

(
17−
√
7
)
,
5

2
,
17

6
,

1

12

(
31−
√
7−
√
23+
√
161
)
,

1

12

(
31+
√
65
)
,
1

6

(
17+
√
7
)
,

1

4

(
11+
√
23
)
, 4, 4,

1

12

(
31+
√
7+
√
23+
√
161
)


.
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１

2 3

4

Fig. 14

１

2

3 4

5

Fig. 15

１

2 3

Fig. 16

１

2 3

4

Fig. 17

Example 4.14. Let G be a 3-circuit (Fig. 16) and H be the graph given in Fig. 14.

The adjacency matrix AG of G and the transition matrix PH of H are given as

AG =

0 1 1
1 0 1
1 1 0

 , and PH =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0,

3

2
,
3

2

}
and

{
0, 1,

4

3
,
5

3

}
. The (1, 1)-adjacency

matrix A(G□̂H)(1,1)
is given as

A(G□̂H)(1,1)
=

O I I
I O I
I I O

PH O O
O PH O
O O PH

 =

 O PH PH

PH O PH

PH PH O



=



0 0 0 0 0 1
2

0 1
2

0 1
2

0 0 0 0 1
3

0 1
3

1
3

1
3

0

0 0 0 0 0 1
2

0 1
2

0 1
2

0 0 0 0 1
3

1
3

1
3

0 1
3

1
3

0 1
2

0 1
2

0 0 0 0 0 1
2

1
3

0 1
3

1
3

0 0 0 0 1
3

0

0 1
2

0 1
2

0 0 0 0 0 1
2

1
3

1
3

1
3

0 0 0 0 0 1
3

1
3

0 1
2

0 1
2

0 1
2

0 1
2

0 0
1
3

0 1
3

1
3

1
3

0 1
3

1
3

0 0

0 1
2

0 1
2

0 1
2

0 1
2

0 0
1
3

1
3

1
3

0 1
3

1
3

1
3

0 0 0

0 1
2

1
3

1
3

0 1
2

1
3

0

0 1
2

1
3

1
3

0 1
2

1
3

0

0 0

0 0

0 0

0 0



.

The eigenvalues of ∆A
(G□̂H)(1,1)

are{
0,

4

3
,
4

3
,
5

3
,
5

3
, 2, 2, 2,

8

3
, 3, 3,

10

3

}
.
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3.2. (1, 1)-Laplacians of Kähler graphs of strong product type.

Theorem 4.6. Let G be a regular finite graph and H be a finite graph. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of

∆PH
. Then the eigenvalues of ∆Q(1,1)

for their Kähler graph G⊠̂H of strong product

type are

1

dG + 1
{(1 + dG − dGµi)(µi + να − µiνα) + dGµi} (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively, then

the function φfi,gα on the sets V ×W is an eigenfunction associated with {(1 + dG −

dGµi)(µi + να − µiνα) + dGµi}/(dG + 1).

Proof. We use the same notations as in the proof of Theorem 4.4. Since the

principal graph of G⊠̂H and that of G□̂H are the same, we have

A
(p)

G⊠̂H
= (a

(p)
(i,α),(j,β)) = (aGijδαβ).

The transition patrix P
(a)

G⊠̂H
of the auxiliary graph of G⊠̂H (for general G) is given by

P
(a)

G⊠̂H
=



1

(dG(v1)+1)
PH

aG12
(dG(v1)+1)

PH · · ·
aG1nG

(dG(v1)+1)
PH

aG21
(dG(v2)+1)

PH
1

(dG(v1)+1)
PH

. . .
...

...
. . . . . .

aGnG−1nG

(dG(vnG−1)+1)
PH

aGnG1

(dG(vnG
)+1)

PH · · ·
aGnGnG−1

(dG(vnG
)+1)

PH
1

(dG(vnG
)+1)

PH


,

hence we have

P
(a)

G⊠̂H
= (p

(a)
(i,α),(j,β)) =

(
pHαβ(δij + aGij)

dG(v) + 1

)
.

We therefore obtain

A
(p)

G⊠̂H
P

(a)

G⊠̂H
=

(
1

dG(vi) + 1
{pHαβ(aGij +

nG∑
k=1

aGika
G
kj)}

)
.
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When G is regular, we have

A
(p)

G⊠̂H
P

(a)

G⊠̂H

 ζ1η1
...

ζnG
ηnH

 =

(
1

dG + 1

{( nH∑
β=1

pHαβηβ

)( nG∑
j=1

aGijζj +

nG∑
j=1

nG∑
k=1

aGika
G
kjζj

)})

=

(
dG(1− µ)(1− ν)

dG + 1

{
ηα

(
ζi +

nG∑
k=1

aGikζk

)})

=
dG(1− µ)(1− ν){1 + dG(1− µ)}

dG + 1

 ζ1η1
...

ζnG
ηnH


We therefore get

∆P(1,1)
φfi,gα = (I − P (p)

G⊠̂H
P(a)

G⊠̂H
)φfi,gα = φfi,gα −

1

dG
A(p)

G⊠̂H
P(a)

G⊠̂H
φfi,gα

= φfi,gα −
(1− µi)(1− να){1 + dG(1− µi)}

dG + 1
φfi,gα

=
1

dG + 1
{(1 + dG − dGµi)(µi + να − µiνα) + dGµi}φfi,gα

This completes the proof. □

Proposition 4.3. Let G be a regular finite graph and H be a finite graph. We

denote by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that

of ∆PH
. Then the eigenvalues of ∆A(1,1)

for their Kähler graph G⊠̂H of strong product

type are

dG
dG + 1

{(1 + dG − dGµi)(µi + να − µiνα) + dGµi} (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively, then

the function φfi,gα on the sets V ×W is an eigenfunction associated with dG{(1+dG−

dGµi)(µi + να − µiνα) + dGµi}/(dG + 1).

Proof. Since G is regular, we obtain our conclusion directly by Theorem 4.6. □
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Example 4.15. Let G be a 3-circuit (Fig. 16) and H be the graph given in Fig. 14.

The adjacency matrix AG of G and the transition matrix PH of H are given as

PG =

0 1 1
1 0 1
1 1 0

 and PH =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 3

2
, 3
2

}
and

{
0, 1, 4

3
, 5

3

}
, respectively. The

(1, 1)-adjacency matrix A(G⊠̂H)(1,1)
is given as

A(G⊠̂H)(1,1)
=

O I I
I O I
I I O

 · 1
3

PH PH PH

PH PH PH

PH PH PH

 =
2

3

PH PH PH

PH PH PH

PH PH PH



=



0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

0 2
9

2
9

2
9

0 2
9

2
9

2
9

0

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

2
9

2
9

0 2
9

2
9

2
9

0 2
9

2
9

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

0 2
9

2
9

2
9

0 2
9

2
9

2
9

0

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

2
9

2
9

0 2
9

2
9

2
9

0 2
9

2
9

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

0 2
9

2
9

2
9

0 2
9

2
9

2
9

0

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

2
9

2
9

2
9

0 2
9

2
9

2
9

0 2
9

2
9

0 1
3

2
9

2
9

0 1
3

2
9

0

0 1
3

2
9

2
9

0 1
3

2
9

0

0 1
3

2
9

2
9

0 1
3

2
9

0



.

The eigenvalues of ∆A
(G⊠̂H)(1,1)

are

{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,

8

3
,
10

3

}
,

and the eigenvalues of ∆Q
(G⊠̂H)(1,1)

are

{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

4

3
,
5

3

}
.
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Example 4.16. Let G be a 4-circuit (Fig. 17) and H be the graph given in Fig. 14.

The adjacency matrix AG of G and the transition matrix PH are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and PH =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 1, 4

3
, 5
3

}
, respectively. The

(1, 1)-adjacency matrix A(G⊠̂H)(1,1)
is given as

A(G⊠̂H)(1,1)
=


O I O I
I O I O
O I O I
I O I O

 · 13

PH PH O PH

PH PH PH O
O PH PH PH

PH O PH PH

 =
1

3


2PH PH 2PH PH

PH 2PH PH 2PH

2PH PH 2PH PH

PH 2PH PH 2PH



=



0 1
3

0 1
3

0 1
6

0 1
6

0 1
3

2
9

0 2
9

2
9

1
9

0 1
9

1
9

2
9

0

0 1
3

0 1
3

0 1
6

0 1
6

0 1
3

2
9

2
9

2
9

0 1
9

1
9

1
9

0 2
9

2
9

0 1
6

0 1
6

0 1
3

0 1
3

0 1
6

1
9

0 1
9

1
9

2
9

0 2
9

2
9

1
9

0

0 1
6

0 1
6

0 1
3

0 1
3

0 1
6

1
9

1
9

1
9

0 2
9

2
9

2
9

0 1
9

1
9

0 1
3

0 1
3

0 1
6

0 1
6

0 1
3

2
9

0 2
9

2
9

1
9

0 1
9

1
9

2
9

0

0 1
3

0 1
3

0 1
6

0 1
6

0 1
3

2
9

2
9

2
9

0 1
9

1
9

1
9

0 2
9

2
9

0 1
6

0 1
6

0 1
3

0 1
3

0 1
6

1
9

0 1
9

1
9

2
9

0 2
9

2
9

1
9

0

0 1
6

0 1
6

0 1
3

0 1
3

0 1
6

1
9

1
9

1
9

0 2
9

2
9

2
9

0 1
9

1
9

0 1
3

0 1
6

0 1
6

2
9

2
9

1
9

0 1
9

1
9

0 1
3

0 1
6

0 1
6

2
9

0 1
9

1
9

1
9

0

0 1
6

0 1
3

0 1
3

1
9

1
9

2
9

0 2
9

2
9

0 1
6

0 1
3

0 1
3

1
9

0 2
9

0 2
9

2
9

0 1
3

0 1
6

0 1
6

2
9

2
9

1
9

0 1
9

1
9

0 1
3

0 1
6

0 1
6

2
9

0 1
9

1
9

1
9

0

0 1
6

0 1
3

0 1
3

1
9

1
9

2
9

0 2
9

2
9

0 1
6

0 1
3

0 1
3

1
9

0 2
9

2
9

2
9

0



.

The eigenvalues of ∆A
(G⊠̂H)(1,1)

are

{
0,

4

3
, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

20

9
,
22

9
,
8

3
,
10

3

}
.

For comparison we here give an example of the case that G is not regular.
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Example 4.17. Let G be a non-regular graph given in Fig. 14 and H be a 3-circuit.

The adjacency matrix AG of G and the transition matrix PH of H are given as

AG =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 and PH =

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 .

The eigenvalues of∆AG
, ∆PG

and∆PH
are
{
0, 1, 1

2

(√
17−1

)
, 1

2

(√
17−1

)}
,
{
0, 1, 4

3
, 5

3

}
and

{
0, 3

2
, 3

2

}
, respectively. The (1, 1)-adjacency matrix A(G⊠̂H)(1,1)

is given as

A(G⊠̂H)(1,1)
=


O I O I
I O I I
O I O I
I I I O

 ·


1
3
PH

1
3
PH O 1

3
PH

1
4
PH

1
4
PH

1
4
PH

1
4
PH

O 1
3
PH

1
3
PH

1
3
PH

1
4
PH

1
4
PH

1
4
PH

1
4
PH



=
1

12


6PH 6PH 6PH 6PH

7PH 11PH 7PH 11PH

6PH 6PH 6PH 6PH

7PH 11PH 7PH 11PH



=



0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0

0 7
24

7
24

0 11
24

11
24

7
24

0 7
24

11
24

0 11
24

7
24

7
24

0 11
24

11
24

0

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0

0 7
24

7
24

0 11
24

11
24

7
24

0 7
24

11
24

0 11
24

7
24

7
24

0 11
24

11
24

0

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0

0 7
24

7
24

0 11
24

11
24

7
24

0 7
24

11
24

0 11
24

7
24

7
24

0 11
24

11
24

0

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0 1
4

1
4

1
4

0 1
4

1
4

0

0 7
24

7
24

0 11
24

11
24

7
24

0 7
24

11
24

0 11
24

7
24

7
24

0 11
24

11
24

0



.

The eigenvalues of ∆A
(G⊠̂H)(1,1)

are


0, 2, 2, 2,

13

6
,

1

24

(
77−

√
457
)
,

1

24

(
77−

√
457
)
,

3, 3, 3,
1

24

(
77 +

√
457
)
,

1

24

(
77 +

√
457
)

 .
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The (1, 1)-probabilistic transition matrix Q(G⊠̂H)(1,1)
is given as

Q(G⊠̂H)(1,1)
=


O 1

2
I O 1

2
I

1
3
I O 1

3
I 1

3
I

O 1
2
I O 1

2
I

1
3
I 1

3
I 1

3
I O

 ·


1
3
PH

1
3
PH O 1

3
PH

1
4
PH

1
4
PH

1
4
PH

1
4
PH

O 1
3
PH

1
3
PH

1
3
PH

1
4
PH

1
4
PH

1
4
PH

1
4
PH



=
1

36


9PH 9PH 9PH 9PH

7PH 11PH 7PH 11PH

9PH 9PH 9PH 9PH

7PH 11PH 7PH 11PH



=



0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0

0 7
24

7
24

0 11
24

11
24

7
72

0 7
72

11
72

0 11
72

7
72

7
72

0 11
72

11
72

0

0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0 1
8

1
8

1
4

0 1
8

1
8

0

0 7
72

7
72

0 11
72

11
72

7
72

0 7
72

11
72

0 11
72

7
72

7
72

0 11
72

11
72

0

0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0

0 7
24

7
24

0 11
24

11
24

7
72

0 7
72

11
72

0 11
72

7
72

7
72

0 11
72

11
72

0

0 1
8

1
8

0 1
8

1
8

1
8

0 1
8

1
8

0 1
8

1
8

1
4

0 1
8

1
8

0

0 7
72

7
72

0 11
72

11
72

7
72

0 7
72

11
72

0 11
72

7
72

7
72

0 11
72

11
72

0



.

The eigenvalues of ∆Q
(G⊠̂H)(1,1)

are{
0,

8

9
, 1, 1, 1, 1, 1, 1,

19

18
,
19

18
,
3

2
,
3

2

}
.
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3.3. (1, 1)-Laplacians of Kähler graphs of semi-tensor product type.

Theorem 4.7. Let G = (V,E), H = (W,F ) be finite ordinary graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of ∆PH

.

Then the eigenvalues of ∆Q(1,1)
for their Kähler graph G⊗̂H of semi-tensor product

type are

1− (1− να)(1− µi)
2 (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively, then

the function φfi,gα on the sets V × W is an eigenfunction associated with 1 − (1 −

να)(1− µi)
2.

Proof. We use the same notations as in the proof of Theorem 4.4. The adjacency

matrix A
(p)

G⊗̂H
of the principal graph of G⊗̂H is the same as the adjacency matrix of

G□̂H. Thus we have

A
(p)

G⊗̂H
= (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

The transition matrix P
(a)

G⊗̂H
of the auxiliary graph of G⊗̂H is given as

P
(a)

G⊗̂H
=



0
aG12

dG(v1)
PH · · ·

aG1nG

dG(v1)
PH

aG21
dG(v2)

PH 0
. . .

...

...
. . . . . .

aGnG−1nG

dG(vnG−1)
PH

aGnG1

dG(vnG
)
PH · · ·

aGnGnG−1

dG(vnG
)
PH 0


,

hence we have

P
(a)

G⊗̂H
= (p

(a)
(i,α),(j,β)) =

(
aGijp

H
αβ

dG(vi)

)
.

We denote by PG = (pGij) the transition matrix of G. Then we have pGij = aGij/dG(vi).

Thus we have

A
(p)

G⊗̂H
P

(a)

G⊗̂H
=

(
pHαβ

nG∑
k=1

aGikp
G
kj

)
.
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We hence get

A
(p)

G⊗̂H
P

(a)

G⊗̂H

 ζ1η1
...

ζnG
ηnH

 =

(( nH∑
α=1

pHαβηβ

)( nG∑
j=1

nG∑
k=1

aGikp
G
kjζj

))

=

(
(1− ν)ηα

(
(1− µ)

nG∑
k=1

aGikζk

))
=
(
(1− µ)2(1− ν)dG(vi)ζiηα

)
.

Therefore we get

∆Q(1,1)
φfi,gα = (I − P(p)

G⊗̂H
P(a)

G⊗̂H
)φfi,gα = φfi,gα − (1− να)(1− µi)

2}φfi,gα

= {1− (1− να)(1− µi)
2}φfi,gα .

Hence the eigenvalues are

1− (1− να)(1− µi)
2 = µi(µi − 2)(να − 1) + να,

and we get the conclusion. □

Theorem 4.8. Let G be a regular finite graph and H be a finite graph. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of ∆PH

.

Then the eigenvalues of ∆A(1,1)
for their Kähler graph G⊗̂H of semi-tensor product

type are

dG{1− (1− να)(1− µi)
2} {(1 ≤ i ≤ nG, 1 ≤ α ≤ nH)}.

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively, then

the function φfi,gα on the sets V ×W is an eigenfunction associated with dG{1− (1−

να)(1− µi)
2}.

Proof. Since G is regular, we obtain our conclusion directly by Theorem 4.7. □

Example 4.18. Let G be a 3-circuit (Fig. 16) and H be the graph given in Fig. 14.

The adjacency matrix AG of G and the transition matrix PH of H are given as

AG =

0 1 1
1 0 1
1 1 0

 and PH =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 .
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The eigenvalues of ∆PG
and ∆PH

are
{
0, 3

2
, 3
2

}
and

{
0, 1, 4

3
, 5

3

}
, respectively. The

(1, 1)-adjacency matrix A(G⊗̂H)(1,1)
is given as

A(G⊗̂H)(1,1)
=

O I I
I O I
I I O

 · 1
2

 O PH PH

PH O PH

PH PH O

 =
1

2

2PH PH PH

PH 2PH PH

PH PH 2PH



=



0 1
2

0 1
2

0 1
4

0 1
4

0 1
4

1
3

0 1
3

1
3

1
6

0 1
6

1
6

1
6

0

0 1
2

0 1
2

0 1
4

0 1
4

0 1
4

1
3

1
3

1
3

0 1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
2

0 1
2

0 1
4

1
6

0 1
6

1
6

1
3

0 1
3

1
3

1
6

0

0 1
4

0 1
4

0 1
2

0 1
2

0 1
4

1
6

1
6

1
6

0 1
3

1
3

1
3

0 1
6

1
6

0 1
4

0 1
4

0 1
4

0 1
4

0 1
2

1
6

0 1
6

1
6

1
6

0 1
6

1
6

1
3

0

0 1
4

0 1
4

0 1
4

0 1
4

0 1
2

1
6

1
6

1
6

0 1
6

1
6

1
6

0 1
3

1
3

0 1
4

1
6

1
6

0 1
4

1
6

0

0 1
4

1
6

1
6

0 1
4

1
6

0

0 1
2

1
3

1
3

0 1
2

1
3

0



.

The eigenvalues of ∆A(G⊗̂H)(1,1)
are

{
0,

3

2
,
3

2
, 2, 2, 2,

13

6
,
13

6
,
7

3
,
7

3
,
8

3
,
10

3

}
.

Example 4.19. Let G and H be non-regular ordinary graphs given in Figs. 14 and

15, respectively. Their transition matrices are given as

PG =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 , PH =


0 1

4
1
4

1
4

1
4

1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
2

0 0 1
2

0

 ,

and the eigenvalues of ∆PG
and ∆PH

are

{
0, 1,

4

3
,
5

3

}
and

{
0,

7−
√
7

6
,
7

6
,
3

2
,
7 +
√
7

6

}
.
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The (1, 1)-probabilistic transition matrix Q(G⊗̂H)(1,1)
is given as

Q(G⊗̂H)(1,1)
=


O 1

2
I O 1

2
I

1
3
I O 1

3
I 1

3
I

O 1
2
I O 1

2
I

1
3
I 1

3
I 1

3
I O

 ·


O 1
2
PH O 1

2
PH

1
3
PH O 1

3
PH

1
3
PH

O 1
2
PH O 1

2
PH

1
3
PH

1
3
PH

1
3
PH O



=
1

18


6PH 3PH 6PH 3PH

2PH 8PH 2PH 6PH

6PH 3PH 6PH 3PH

2PH 6PH 2PH 8PH



=



0 1
12

1
12

1
12

1
12

0 1
24

1
24

1
24

1
24

1
6

0 1
6

0 0 1
12

0 1
12

0 0
1
9

1
9

0 1
9

0 1
18

1
18

0 1
18

0
1
9

0 1
9

0 1
9

1
18

0 1
18

0 1
18

1
6

0 0 1
6

0 1
12

0 0 1
12

0

0 1
36

1
36

1
36

1
36

0 1
9

1
9

1
9

1
9

1
18

0 1
18

0 0 2
9

0 2
9

0 0
1
27

1
27

0 1
27

0 4
27

4
27

0 4
27

0
1
27

0 1
27

0 1
27

4
27

0 4
27

0 4
27

1
18

0 0 1
18

0 2
9

0 0 2
9

0

0 1
12

1
12

1
12

1
12

0 1
24

1
24

1
24

1
24

1
6

0 1
6

0 0 1
12

0 1
12

0 0
1
9

1
9

0 1
9

0 1
18

1
18

0 1
18

0
1
9

0 1
9

0 1
9

1
18

0 1
18

0 1
18

1
6

0 0 1
6

0 1
12

0 0 1
12

0

0 1
36

1
36

1
36

1
36

0 1
12

1
12

1
12

1
12

1
18

0 1
18

0 0 1
6

0 1
6

0 0
1
27

1
27

0 1
27

0 1
9

1
9

0 1
9

0
1
27

0 1
27

0 1
27

1
9

0 1
9

0 1
9

1
18

0 0 1
18

0 1
6

0 0 1
6

0

0 1
12

1
12

1
12

1
12

0 1
24

1
24

1
24

1
24

1
6

0 1
6

0 0 1
12

0 1
12

0 0
1
9

1
9

0 1
9

0 1
18

1
18

0 1
18

0
1
9

0 1
9

0 1
9

1
18

0 1
18

0 1
18

1
6

0 0 1
6

0 1
12

0 0 1
12

0

0 1
36

1
36

1
36

1
36

0 1
12

1
12

1
12

1
12

1
18

0 1
18

0 0 1
6

0 1
6

0 0
1
27

1
27

0 1
27

0 1
9

1
9

0 1
9

0
1
27

0 1
27

0 1
27

1
9

0 1
9

0 1
9

1
18

0 0 1
18

0 1
6

0 0 1
6

0

0 1
12

1
12

1
12

1
12

0 1
24

1
24

1
24

1
24

1
6

0 1
6

0 0 1
12

0 1
12

0 0
1
9

1
9

0 1
9

0 1
18

1
18

0 1
18

0
1
9

0 1
9

0 1
9

1
18

0 1
18

0 1
18

1
6

0 0 1
6

0 1
12

0 0 1
12

0

0 1
36

1
36

1
36

1
36

0 1
9

1
9

1
9

1
9

1
18

0 1
18

0 0 2
9

0 2
9

0 0
1
27

1
27

0 1
27

0 4
27

4
27

0 4
27

0
1
27

0 1
27

0 1
27

4
27

0 4
27

0 4
27

1
18

0 0 1
18

0 2
9

0 0 2
9

0



.

The eigenvalues of ∆Q(G⊗̂H)(1,1)
are

0,
5

9
,
1

6

(
7−
√
7
)
,

1

27
(29− 2

√
7
)
,
8

9
,

1

54

(
55−

√
7
)
, 1, 1, 1, 1, 1,

55

56
,
19

18
,

1

54

(
55 +

√
7
)
,
29

27
,
7

6
,
11

9
,

1

27
(29 + 2

√
7
)
,
3

2
,
1

6

(
7 +
√
7
)
 .



142 IV. Eigenvalues of Laplacians for Kähler graphs

3.4. (1, 1)-Laplacians of Kähler graphs of lexicographical product type.

In order to study eigenvalues of a Kähler graph G▷H of lexicographical product type

obtained by G = (V,E) and H = (W,F ), we use the operator M acting on C(V,R)

given by Mf(v) =
∑

u∈V f(u) given in §4.2. The eigenvalues of M are 0, · · · , 0, nG.

We define a function ϵ1 : V → R by e1(u) = 1 for all u ∈ V , and define a function

ϵ2, · · · , ϵnG
by ϵk = δv1 − δvk with characteristic functions δv (v ∈ V ).

Theorem 4.9. Let G = (V,E), H = (W,F ) be finite ordinary graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that of

∆PH
. Then the eigenvalues of ∆Q(1,1)

for their Kähler graph G▷H of lexicographical

product type are 0, 1, · · · , 1, ν2, · · · , νnH
, where 1 appears (nG − 1)nH times.

Moreover, if gα is an eigenfunction associated with να, then the function φϵ1,gα is

an eigenfunction for ∆Q(1,1)
associated with να and the function φϵk,gα (k = 2, . . . , nG)

are eigenfunctions for ∆Q(1,1)
associated with 1.

Proof. We use the same notations as in the proof of Theorem 4.4. The adjacency

matrix A
(p)
G▷H for the principal graph of G▷H is the same as that of G□̂H. Hence we

have

A
(p)
G▷H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

The transition matrix P
(a)
G▷H of the auxiliary graph of G▷H is given as

P
(a)
G▷H =


1

nG

PH · · · 1

nG

PH

...
...

1

nG

PH · · · 1

nG

PH

 ,

hence we have

P
(a)
G▷H =

(
p
(a)
(i,α),(j,β)

)
=
( 1

nG

pHαβ

)
.

Thus we have

A
(p)
G▷HP

(a)
G▷H =

(
1

nG

pHαβ

nG∑
k=1

aGik

)
=

(
1

nG

pHαβdG(vi)

)
.
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This shows that

A
(p)
G▷HP

(a)
G▷H

 ζ1η1
...

ζnG
ηnH

 =

(
dG(vi)

nG

( nH∑
β=1

pHαβηβ

)( nG∑
j=1

ζj

))

=

(
dG(vi)(1− ν)

nG

ηβ

( nG∑
j=1

ζj

))
.

When k = 1, we have

∆Q(1,1)
φϵ1,gα = φϵ1,gα −

1− να
nG

nGφϵ1,gα = ναφϵ1,gα ,

and when k ̸= 1, we have

∆Q(1,1)
φϵk,gα = φϵk,gα ,

because
∑nG

j=1 ϵk(vj) = 0. This completes the proof. □

Proposition 4.4. Let G be a regular finite graph and H be a finite graph. We

denote by 0 = ν1 ≤ · · · ≤ νnH
that of ∆PH

. Then the eigenvalues of ∆A(1,1)
for their

Kähler graph G ▷ H of lexicographical product type are 0, dG, . . . , dG, dGν2, . . . , dGνnH

where dG appears (nG − 1)nH times.

Moreover, if gα is an eigenfunction associated with να, then the function φϵ1,gα is an

eigenfunction for ∆A(1,1)
associated with dGνα and the function φϵk,gα (k = 2, . . . , nG)

are eigenfunctions for ∆A(1,1)
associated with dG.

Example 4.20. Let G be a 4-circuit and H be the graph given in Fig. 14. The

adjacency matrix AG of G and the transition matrix PH of H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and PH =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 .
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The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 1, 4

3
, 5
3

}
, respectively. The

(1, 1)-adjacency matrix A(G▷H)(1,1) is given as

A(G▷H)(1,1) =


O I O I
I O I O
O I O I
I O I O

 · 14

PH PH PH PH

PH PH PH PH

PH PH PH PH

PH PH PH PH

 =
1

2


PH PH PH PH

PH PH PH PH

PH PH PH PH

PH PH PH PH



=



0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0 1
6

1
6

1
6

0

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
6

1
6

1
6

0 1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0 1
6

1
6

1
6

0

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
6

1
6

1
6

0 1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0 1
6

1
6

1
6

0

0 1
3

0 1
3

0 1
3

0 1
3

0 1
3

1
6

1
6

1
6

0 1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0

0 1
4

0 1
4

0 1
4

1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0

0 1
4

0 1
4

0 1
4

1
6

1
6

1
6

0 1
6

1
6

0 1
4

0 1
4

0 1
4

1
6

0 1
6

1
6

1
6

0



.

The eigenvalues of ∆A(G▷H)(1,1)
are

{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

8

3
,
10

3

}
.

Example 4.21. Let G and H be non-regular ordinary graphs given in Figs. 14 and

15, respectively. Their transition matrices are given as

PG =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 and PH =


0 1

4
1
4

1
4

1
4

1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
2

0 0 1
2

0

 ,

and the eigenvalues of ∆PG
and ∆PH

are

{
0, 1,

4

3
,
5

3

}
and

{
0,

7−
√
7

6
,
7

6
,
3

2
,
7 +
√
7

6

}
.
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The (1, 1)-probabilistic transition matrix Q(G▷H)(1,1) is given as

Q(G▷H)(1,1) =


O 1

2
I O 1

2
I

1
3
I O 1

3
I 1

3
I

O 1
2
I O 1

2
I

1
3
I 1

3
I 1

3
I O

 · 14

PH PH PH PH

PH PH PH PH

PH PH PH PH

PH PH PH PH

 =
1

4


PH PH PH PH

PH PH PH PH

PH PH PH PH

PH PH PH PH

 .

The eigenvalues of ∆Q(G▷H)(1,1)
are{

0,
1

6

(
7−
√
7
)
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

7

6
,
3

2
,
1

6

(
7 +
√
7
)}
.

The (1, 1)-adjacency matrix A(G▷H)(1,1) is given as

A(G▷H)(1,1) =


O I O I
I O I I
O I O I
I I I O

 · 14

PH PH PH PH

PH PH PH PH

PH PH PH PH

PH PH PH PH

 =
1

4


2PH 2PH 2PH 2PH

3PH 3PH 3PH 3PH

2PH 2PH 2PH 2PH

3PH 3PH 3PH 3PH

 .

The eigenvalues of ∆A(G▷H)(1,1)
are

0,
1

6

(
65− 5

√
7−

√
368− 74

√
7
)
, 2, 2, 2, 2, 2,

1

6

(
65−

√
193

)
,
9

4
,

1

6

(
65− 5

√
7 +

√
368− 74

√
7
)
,
5

2
,
1

6

(
65 + 5

√
7−

√
368 + 74

√
7
)
,

3, 3, 3, 3, 3,
1

6

(
65−

√
193

)
, 4,

1

6

(
65 + 5

√
7 +

√
368 + 74

√
7
)
,


.

The above example shows that when G is not regular even for Kähler graphs of

lexicographical product type the eigenvalues of their (1, 1)-combinatorial Laplacian are

complicated.

Example 4.22. Let G be a union of two 3-circuit and H be a 4-circuit. The

eigenvalues of ∆PH
are {0, 1, 1, 2}. The adjacency matrices of the principal and the

auxiliary graphs of G▷H are given as

A(G▷H)(p) =


O I I O O O
I O I O O O
I I O O O O
O O O O I I
O O O I O I
O O O I I O

 , A(G▷H)(a) =


PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

 ,
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with

PH =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Hence we have

A(G▷H)(1,1) = A(G▷H)(p) ·
1

12
A(G▷H)(a) =

1

6


PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

PH PH PH PH PH PH

 .

Thus the eigenvalues of the (1, 1)-probabilistic transition Laplacian and those of the

(1, 1)-adjacency Laplacian are

Spec
(
∆Q(G▷H)(1,1)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2},

Spec
(
∆Q(G▷H)(1,1)

)
= {0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4}.

Example 4.23. LetG be a union of a 3-circuit and a 4-circuit, andH be a 4-circuit.

The eigenvalues of ∆PH
are {0, 1, 1, 2}. The adjacency matrices of the principal and

the auxiliary graphs of G▷H are given as

A(G▷H)(p) =



O I I O O O O
I O I O O O O
I I O O O O O
O O O O I O I
O O O I O I O
O O O O I I O
O O O I O I O


,

A(G▷H)(a) =



PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH


with PH =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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Hence we have

A(G▷H)(1,1) = A(G▷H)(p) ·
1

14
A(G▷H)(a) =

1

7



PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH

PH PH PH PH PH PH PH


.

Thus the eigenvalues of the (1, 1)-probabilistic transition Laplacian are

Spec
(
∆Q(G▷H)(1,1)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.



4. Eigenvalues of (1, 1)-Laplacians of Kähler graphs of product type added

complement-filling operations

Next we calculate eigenvalues of (1, 1)-Laplacians of Kähler graph of product type

with complement-filling operations step by step, which are G □̂KH, G ⊠̂KH, G⊗̂KH

and G▷K H. In this section also, for functions f : V → C and g : W → C we denote

by φf,g : V ×W → C the function defined by φf,g(v, w) = f(v)g(w).

4.1. (1, 1)-Laplacians of Kähler graphs of complement-filling Cartesian

product type.

Theorem 4.10. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

suppose G is connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the eigenvalues of

∆PG
, and by 0 = ν1 ≤ · · · ≤ νnH

that of ∆PH
. We put D = nG−dG−1+dH . Then the

eigenvalues of ∆Q(1,1)
for their Kähler graph G □̂KH of complement-filling Cartesian

product type are

1

D
dHνα, 1− 1

D
(1− µi)(dGµi − dHνα − dG + dH − 1) (2 ≤ i ≤ nG, 1 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G □̂KH are

1

D
dGdHνα, dG−

dG
D

(1−µi)(dGµi−dHνα−dG+dH−1) (2 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
.

Proof. We use the same notations as in the proof of Theorem 4.4. Since the

principal graph of G □̂KH is the same as that of G □̂H, the adjacency matrix A
(p)

G □̂KH

for the principal graph G □̂KH is given by

A
(p)

G □̂KH
= (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

We denote by AGc = (aG
c

ij ) the adjacency matrix of the complement graph Gc. We

then have aG
c

ij = 1− aGij − δij. Since G and H are regular, the Kähler graph G □̂KH is

148
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also regular, and its auxiliary degree is dH + dGc = dH + nG − dG − 1 = D. Therefore

we find that the transition matrix P
(a)

G □̂KH
of G □̂KH is

P
(a)

G □̂KH
=



1

D
AH

aG
c

12

D
I · · ·

aG
c

1nG

D
I

aG
c

21

D
I

1

D
AH

. . .
...

...
. . . . . .

aG
c

nG−1nG

D
I

aG
c

nG1

D
I · · ·

aG
c

nGnG−1

D
I

1

D
AH


.

That is,

P
(a)

G □̂KH
= (p

(a)
(i,α),(j,β)) =

( 1

D
(δija

H
αβ + aG

c

ij δαβ)
)
.

Therefore, we have

A
(p)

G □̂KH
P

(a)

G □̂KH
=
( 1

D

{
aGija

H
αβ +

nG∑
k=1

aGika
Gc

kj δαβ

})
.

For functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg, we have AGf =

dG(1− µ)f, AHg = dH(1− ν)g and

AGcf = (M−I −AG)f =

{
(nG − 1− dG)f, when µ = 0,

{dG(µ− 1)− 1)}f, when µ ̸= 0.

We take φf,g. Then we have

A
(p)

G □̂KH
P

(a)

G □̂KH

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− ν)ζiηα + (nG − 1− dG)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG
D
{dH(1− ν) + nG − 1− dG}ζiηα

)
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when µ = 0, and have

A
(p)

G □̂KH
P

(a)

G □̂KH

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− µ)(1− ν)ζiηα + (dGµ− dG − 1)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG(1− µ)

D
{dH(1− ν) + dGµ− dG − 1}ζiηα

)
when µ ̸= 0. Thus we obtain

∆P(1,1)
φf,g = (I − 1

dG
A(p)

G □̂KH
P(a)

G □̂KH
)φf,g

=

{(
1− (1−µ)

D
{dH(1− ν) + dGµ− dG − 1}

)
φf,g, when µ ̸= 0,(

1− 1
D
{dH − dHν + nG − 1− dG}

)
φf,g, when µ = 0.

We hence get the conclusion. □

Example 4.24. Let G be a 4-circuit and H be a 3-circuit. The adjacency matrices

of G and H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =

0 1 1
1 0 1
1 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 3

2
, 3

2

}
. We have D = 3. The

(1, 1)-probabilistic transition matrix P(G □̂KH)(1,1)
is given as

P(G □̂KH)(1,1)
=

1

2


O I O I
I O I O
O I O I
I O I O

 · 13

AH O I O
O AH O I
I O AH O
O I O AH



=
1

6

 O AH+I O AH+I
AH+I O AH+I O
O AH+I O AH+I

AH+I O AH+I O


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=
1

6



0 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0
0 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0

1 1
1 1
1 1
0 0
0 0
0 0
1 1
1 1
1 1
0 0
0 0
0 0



.

The eigenvalues of ∆P
(G □̂KH)(1,1)

are
{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2

}
.

4.2. (1, 1)-Laplacians of Kähler graphs of compliment-filling strong prod-

uct type.

Theorem 4.11. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

suppose G is connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the eigenvalues of

∆PG
, and by 0 = ν1 ≤ · · · ≤ νnH

that of ∆PH
. We put D = nG + dGdH − dG + dH − 1.

Then the eigenvalues of ∆Q(1,1)
for their Kähler graph G ⊠̂KH of compliment-filling

strong product type are

1

D
dGνα, 1− 1

D
(1− µi)(dGµi − dHνα − dG + dH − 1) (2 ≤ i ≤ nG, 1 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G ⊠̂KH are

1

D
d2Gνα, dG −

dG
D

(1− µi)(dGµi − dHνα − dG + dH − 1) (2 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
.

Proof. We use the same notations as in the proof of Theorems 4.4 and 4.10. The

adjacency matrix A
(p)

G ⊠̂KH
for the principal graph of G ⊠̂KH is the same as that of



152 IV. Eigenvalues of Laplacians for Kähler graphs

G⊠̂H. Hence we have

A
(p)

G ⊠̂KH
= (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

The auxiliary degree of G ⊠̂KH is dGc + dH(dG + 1) = nG + dGdH − dG + dH − 1 = D.

Therefore the transition matrix P
(a)

G ⊠̂KH
of the auxiliary graph of G ⊠̂KH is

P
(a)

G ⊠̂KH

=
1

D


AH aG12AH+aG

c

12 I · · · aG1nG
AH + aG

c

1nG
I

aG21AH + aG
c

21 I AH
. . .

...
...

. . . . . . aGnG−1nG
AH+aG

c

nG−1nG
I

aGnG1AH+aG
c

nG1I · · · aGnGnG−1AH+aG
c

nGnG−1I AH

 .

Hence we have

P
(a)

G ⊠̂KH
= (p

(a)
(i,a),(j,b)) =

(
(aGij + δij)a

H
αβ + δαβa

Gc

ij

dH(dG + 1) + dG
c

)
.

Therefore, we have

A
(p)

G ⊠̂KH
P

(a)

G ⊠̂KH
=

1

D

((
aGij +

nG∑
k=1

aGika
G
ik

)
aHαβ +

( nG∑
k=1

aGika
Gc

kj

)
δαβ)

)
.

For functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg, we take φf,g. Then

we have

A
(p)

G ⊠̂KH
P

(a)

G ⊠̂KH

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− ν)ζiηα + dGdH(1− ν)ηα

( nG∑
k=1

aGikζk

)
+ (nG − 1− dG)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG
D
{dH(1− ν) + dGdH(1− ν) + nG − 1− dG}ζiηα

)
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when µ = 0, and have

A
(p)

G ⊠̂K
H
P

(a)

G ⊠̂K
H

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− µ)(1− ν)ζiηα + dGdH(1− µ)(1− ν)ηα

( nG∑
k=1

aGikζk

)
+ (dGµ− dG − 1)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG(1− µ)

D
{dH(1− ν) + dGdH(1− µ)(1− ν) + dGµ− dG − 1}ζiηα

)
when µ ̸= 0. Thus we obtain

∆P(1,1)
φf,g =

(
I − 1

dG
A(p)

G ⊠̂K
H
P(a)

G ⊠̂K
H

)
φf,g

=



(
1− 1−µ

D
{dH(1− ν) + dGdH(1− µ)(1− ν) + dGµ− dG − 1}

)
φf,g,

when µ ̸= 0,(
1− 1

D
{dH(1− ν) + dGdH(1− ν) + nG − 1− dG}

)
φf,g,

when µ = 0.

We hence get the conclusion. □

Example 4.25. Let G be a 4-circuit and H be a 3-circuit. The adjacency matrices

of G and H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =

0 1 1
1 0 1
1 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 3

2
, 3

2

}
. We have D = 7. The

(1, 1)-probabilistic transition matrix P(G ⊠̂KH)(1,1)
is given as

P(G ⊠̂KH)(1,1)
=

1

2


O I O I
I O I O
O I O I
I O I O

 · 17

AH AH I AH

AH AH AH I
I AH AH AH

AH I AH AH


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=
1

14

 2A AH+I 2AH AH+I
AH+I 2A AH+I 2AH

2A AH+I 2AH AH+I
AH+I 2A AH+I 2AH



=
1

14



0 2 2 1 1 1 0 2 2 1
2 0 2 1 1 1 2 0 2 1
2 2 0 1 1 1 2 2 0 1
1 1 1 0 2 2 1 1 1 0
1 1 1 2 0 2 1 1 1 2
1 1 1 2 2 0 1 1 1 2
0 2 2 1 1 1 0 2 2 1
2 0 2 1 1 1 2 0 2 1
2 2 0 1 1 1 2 2 0 1
1 1 1 0 2 2 1 1 1 0
1 1 1 2 0 2 1 1 1 2
1 1 1 2 2 0 1 1 1 2

1 1
1 1
1 1
2 2
0 2
2 0
1 1
1 1
1 1
2 2
0 2
2 0



.

The eigenvalues of ∆P
(G ⊠̂KH)(1,1)

are
{
0,

6

7
, 1, 1, 1, 1, 1, 1,

9

7
,
9

7
,
9

7
,
9

7

}
.

4.3. (1, 1)-Laplacians of Kähler graphs of compliment-filling semi-tensor

product type.

Theorem 4.12. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

suppose G is connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the eigenvalues of

∆PG
, and by 0 = ν1 ≤ · · · ≤ νnH

that of ∆PH
. We put D = nG + dGdH − dG − 1.

Then the eigenvalues of ∆Q(1,1)
for their Kähler graph G ⊗̂K

H of compliment-filling

semi-tensor product type are

dGdH
D

να, 1− 1

D
(1− µi){dGdH(1− µi)(1− να) + dGµi − dG − 1}

(2 ≤ i ≤ nG, 1 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G ⊗̂KH are

1

D
d2GdHνα, dG −

dG
D

(1− µi){dGdH(1− µi)(1− ναdGµi − dG − 1}

(2 ≤ i ≤ nG, 1 ≤ α ≤ nH).
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Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
.

Proof. We use the same notations as in the proof of Theorems 4.4 and 4.10. The

adjacency matrix A
(p)

G⊗̂K
H

for the principal graph of G⊗̂K
H is the same as that of

G⊗̂H. Hence we have

A
(p)

G ⊗̂KH
= (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

The auxiliary degree of G⊗̂K
H is dGc + dHdG = nG + dGdH − dG − 1 = D. Therefore

the transition matrix P
(a)

G ⊗̂KH
of the auxiliary graph of G ⊗̂KH is

P
(a)

G ⊗̂KH

=
1

D


O aG12AH+aG

c

12 I · · · aG1nG
AH+aG

c

1nG
I

aG21AH+aG
c

21 I O
. . .

...
...

. . . . . . aGnG−1nG
AH+aG

c

nG−1nG
I

aGnG1AH+aG
c

nG1I · · · aGnGnG−1AH+aG
c

nGnG−1I O

 .

That is, we have

P
(a)

G ⊗̂KH
= (p

(a)
(i,α),(j,β)) =

1

D

(
aGija

H
αβ + aG

c

ij δαβ

)
.

Therefore, we find

A
(p)

G ⊗̂KH
P

(a)

G ⊗̂KH
=

1

D

(( nG∑
k=1

aGika
G
kj

)
aHαβ +

( nG∑
k=1

aGika
Gc

kj

)
δαβ

)
.

For functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg, we take φf,g. Then

we have

A
(p)

G⊗̂K
H
P

(a)

G⊗̂K
H

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− ν)ηα

( nG∑
k=1

aGikζk

)
+ (nG − 1− dG)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG
D
{dGdH(1− ν) + nG − 1− dG}ζiηα

)
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when µ = 0, and have

A
(p)

G ⊗̂K
H
P

(a)

G ⊗̂K
H

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
dGdH(1− µ)(1− ν)ηα

( nG∑
k=1

aGikζk

)
+ (dGµ− dG − 1)ηα

( nG∑
k=1

aGikζk

)})
=

(
dG(1− µ)

D
{dGdH(1− µ)(1− ν) + dGµ− dG − 1}ζiηα

)
when µ ̸= 0. Thus we have

∆Q(1,1)
φf,g = (I − 1

dG
A(p)

G ⊗̂K
H
P(a)

G ⊗̂K
H
)φf,g

=


(
1− 1−µ

D
{dGdH(1− µ)(1− ν) + dGµ− dG − 1}

)
φf,g, when µ ̸= 0,(

1− 1
D
{dGdH(1− ν) + nG − 1− dG}

)
φf,g, when µ = 0.

We hence get the conclusion. □

Example 4.26. Let G be a 4-circuit and H be a 3-circuit. The adjacency matrices

of G and H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =

0 1 1
1 0 1
1 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 3

2
, 3

2

}
. We have D = 5. The

(1, 1)-probabilistic transition matrix P
(G ⊗̂K

H)(1,1)
is given as

P
(G ⊗̂K

H)(1,1)
=

1

2


O I O I
I O I O
O I O I
I O I O

 · 15

O AH I AH

AH O AH I
I AH O AH

AH I AH O



=
1

10


2AH I 2AH I
I 2AH I 2AH

2AH I 2AH I
I 2AH I 2AH


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=
1

10



0 2 2 1 0 0 0 2 2 1
2 0 2 0 1 0 2 0 2 0
2 2 0 0 0 1 2 2 0 0
1 0 0 0 2 2 1 0 0 0
0 1 0 2 0 2 0 1 0 2
0 0 1 2 2 0 0 0 1 2
0 2 2 1 0 0 0 2 2 1
2 0 2 0 1 0 2 0 2 0
2 2 0 0 0 1 2 2 0 0
1 0 0 0 2 2 1 0 0 0
0 1 0 2 0 2 0 1 0 2
0 0 1 2 2 0 0 0 1 2

0 0
1 0
0 1
2 2
0 2
2 0
0 0
1 0
0 1
2 2
0 2
2 0



.

The eigenvalues of ∆P
(G ⊗̂K

H)(1,1)

are
{
0,

2

5
, 1, 1, 1, 1, 1, 1,

6

5
,
6

5
,
8

5
,
8

5

}
.

4.4. (1, 1)-Laplacians of Kähler graphs of compliment-filling lexicograph-

ical product type.

Theorem 4.13. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

suppose G is connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the eigenvalues of

∆PG
, and by 0 = ν1 ≤ · · · ≤ νnH

that of ∆PH
. We put D = nG(dH + 1) − dG − 1.

Then the eigenvalues of ∆Q(1,1)
for their Kähler graph G ▷K H of compliment-filling

lexicographical product type are

nGdH
D

να, 1− 1

D
{nG − 1− dG + nGdH(1− ν)} (2 ≤ i ≤ nG, 1 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G▷K H are

nGdGdH
D

να, dG −
dG
D
{nG − 1− dG + nGdH(1− ν)} (2 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
.

Proof. We use the same notations as in the proof of Theorems 4.4 and 4.10. The

adjacency matrix A
(p)

G▷KH
for the principal graph G▷KH is the same as that of G▷H.
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Hence we have

A
(p)

G▷KH
= (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
.

The auxiliary degree of G▷K H is nGdH + dGc = nGdH +nG− 1− dG = D. Therefore

the transition matrix P
(a)

G▷KH
of the auxiliary graph of G▷K H is

P
(a)

G▷KH
=

1

D


AH AH+aG

c

12 I · · · AH+aG
c

1nG
I

AH+aG
c

21 I AH
. . .

...
...

. . . . . . AH+aG
c

nGnG−1I

AH+aG
c

nG1I · · · AH+aG
c

nGnG−1I AH

 ,

That is, we have

P
(a)

G▷KH
= (p

(a)
(i,α),(j,β)) =

1

D

(
aG

c

ij δαβ + aHαβ

)
.

Therefore, we have

A
(p)

G▷KH
P

(a)

G▷KH
=

1

D

(( nG∑
k=1

aGika
Gc

kj

)
δHαβ +

( nG∑
k=1

aGik

)
aHαβ

)

=
1

D

(( nG∑
k=1

aGika
Gc

kj

)
δHαβ + dGa

H
αβ

)
.

For functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg, we take φf,g. Then

we have

A
(p)

G▷KH
P

(a)

G▷KH

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
(nG − dG − 1)

( nG∑
k=1

aGikζk

)
ηα + dGdH(1− ν)

( nG∑
j=1

ζj

)
ηα

})
=

(
dG
D
{nG − 1− dG + nGdH(1− ν)}ζiηα

)
when µ = 0, and have

A
(p)

G▷KH
P

(a)

G▷KH

 ζ1η1
...

ζnG
ηnH


=

(
1

D

{
(dGµ− dG − 1)

( nG∑
k=1

aGikζk

)
ηα + dH(1− ν)

( nG∑
k=1

ζj

)
ηα

})
=

(
dG(1− µ)(dGµ− dG − 1)

D
ζiηα

)
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when µ ̸= 0. Thus we have

∆Q(1,1)
φf,g = (I − 1

dG
A(p)

G▷KH
P(a)

G▷KH
)φf,g

=

{(
1− 1

D
{nGdH(1− ν) + nG − 1− dG}

)
φf,g, when µ = 0,(

1− 1
D
(1− µ)(dGµ− dG − 1)

)
φf,g, when µ ̸= 0.

We get the conclusion. □

Example 4.27. Let G be a 4-circuit and H be a 3-circuit. The adjacency matrices

of G and H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =

0 1 1
1 0 1
1 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 3

2
, 3

2

}
. We have D = 9. The

(1, 1)-probabilistic transition matrix P(G▷KH)(1,1) is given as

P(G▷KH)(1,1) =
1

2


O I O I
I O I O
O I O I
I O I O

 · 19


AH AH AH+I AH

AH AH AH AH+I
AH+I AH AH AH

AH AH+I AH AH



=
1

18


2AH 2AH+I 2AH 2AH+I

2AH+I 2AH 2AH+I 2AH

2AH 2AH+I 2AH 2AH+I
2AH+I 2AH 2AH+I 2AH



=
1

18



0 2 2 1 2 2 0 2 2 1
2 0 2 2 1 2 2 0 2 2
2 2 0 2 2 1 2 2 0 2
1 2 2 0 2 2 1 2 2 0
2 1 2 2 0 2 2 1 2 2
2 2 1 2 2 0 2 2 1 2
0 2 2 1 2 2 0 2 2 1
2 0 2 2 1 2 2 0 2 2
2 2 0 2 2 1 2 2 0 2
1 2 2 0 2 2 1 2 2 0
2 1 2 2 0 2 2 1 2 2
2 2 1 2 2 0 2 2 1 2

2 2
1 2
2 1
2 2
0 2
2 0
2 2
1 2
2 1
2 2
0 2
2 0



.

The eigenvalues of ∆P
(G▷KH)(1,1)

are
{
0, 1, 1, 1, 1, 1, 1,

10

9
,
10

9
,
10

9
,
4

3
,
4

3

}
.



5. Eigenvalues of (1, 1)-Laplacians of joined Kähler graphs

In this section we study eigenvalues of (1, 1)-Laplacians of joined Kähler graphs.

Though we defined joined Kähler graphs in §2.2 as examples of Kähler extensions, we

here give their definitions more explicitly. Let G1 = (V1, E1) and G2 = (V2, E2) be two

ordinary graphs. We set V = V1 ∪ V2 and E(p) = E1 ∪ E2 which are disjoint unions.

We define E(a) so that arbitrary v ∈ V1 and w ∈ V2 are auxiliary adjacent to each

other but any two vertices in V1 are not auxiliary adjacent to each other, and nor are

two vertices in V2. We denote this Kähler graph (V,E(p) ∪ E(a)) by G+̂G2 and call it

the joined Kähler graph of G1 and G2.

Theorem 4.14. Let G1 = (V1, E1) and G2 = (V2, E2) are ordinary finite graphs.

The eigenvalues of ∆Q(1,1)
of the joined Kähler graph G1+̂G2 are 0, 1 . . . , 1, 2, where

the multiplicity of 1 is nG1 + nG2 − 2.

Proof. We denote byMij a nGi
×nGj

-matrix all of whose complements are 1. The

adjacency matrix A
(p)

G1+̂G2
for the principal graph and the transition matrix P

(a)

G1+̂G2
for

the auxiliary graph of the Kähler graph G1+̂G2 are

A
(p)

G1+̂G2
=

AG1

... O
· · · · · ·
O

... AG1

 , P
(a)

G1+̂G2
=


O

...
1

nG2

M12

· · · · · ·
1

nG1

M21
... O

 .

We denote as V1 =
{
v1, . . . , vnG1

}
and V2 =

{
w1, . . . , wnG2

}
. We take functions ϕ, ψ :

V1 ∪ V2 → R defined by ϕ ≡ 1, and ψ(v) = 1 for v ∈ V1 and ψ(w) = −1 for w ∈ V2.

With canonical basis
{
δv1 , . . . , δvnG1

, δw1 , . . . , δwnG2

}
these correspond to

ϕ↔



1
...
1
· · ·
1
...
1


, ψ ↔



1
...
1
· · ·
−1
...
−1


.

160
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For these functions we have

A
(p)

G1+̂G2
P

(a)

G1+̂G2

 1
· · ·
1

 =

AG1

... O
· · · · · ·
O

... AG2


 1
· · ·
1

 =



dG1(v1)
...

dG1(vnG1
)

· · ·
dG2(w1)

...
dG2(wnG2

)


,

A
(p)

G1+̂G2
P

(a)

G1+̂G2

 1
· · ·
−1

 =

AG1

... O
· · · · · ·
O

... AG2


−1· · ·

1

 =



−dG1(v1)
...

−dG1(vnG1
)

· · ·
dG2(w1)

...
dG2(wnG2

)


.

If we take δv1 − δvi (i = 2, . . . , nG1) and δw1 − δwj
(j = 2, . . . , nG2), which correspond

to

δv1 − δvi ↔ xi =



1
0
...
0
−1
0
...
0
· · ·
0
...
0



⟨i

, δw1 − δwj
↔ yj =



0
...
0
· · ·
1
0
...
0
−1
0
...
0


⟨nG1+j

.

For these functions we have

A
(p)

G1+̂G2
P

(a)

G1+̂G2
xi =

AG1

... O
· · · · · ·
O

... AG2


 0
· · ·
0

 =

 0
· · ·
0

 ,

A
(p)

G1+̂G2
P

(a)

G1+̂G2
yj =

AG1

... O
· · · · · ·
O

... AG2


 0
· · ·
0

 =

 0
· · ·
0

 .
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Therefore we obtain that

∆Q(1,1)
ϕ = ϕ− ϕ = 0, ∆Q(1,1)

ψ = ψ − (−ψ) = 2ψ,

∆Q(1,1)
(δv1 − δvi) = (δv1 − δvi)− 0 = (δv1 − δvi),

∆Q(1,1)
(δw1 − δwj

) = (δw1 − δwj
)− 0 = (δw1 − δwj

).

We hence get the conclusion. □

Theorem 4.15. Let G1 = (V1, E1) and G2 = (V2, E2) be ordinary finite regular

graphs. The eigenvalues of ∆A(1,1)
of the joined Kähler graph G1+̂G2 are

0, dG1 , . . . , dG1 , dG2 , . . . , dG2 , dG1 + dG2 ,

where the multiplicity of dGi
is nGi

− 1 for i = 1, 2.

Proof. We use the same notations as in the proof of Theorem 4.14. We take a

function ψ̃ : V → R given by ψ̃(v) = dG1 for v ∈ V1 and ψ̃(w) = −dG2 for w ∈ V2,

which corresponds to

ψ̃ ↔



dG1

...
dG1

· · ·
−dG2

...
−dG2


.

We have

A
(p)

G1+̂G2
P

(a)

G1+̂G2

 dG1

· · ·
−dG2

 =

AG1

... O
· · · · · ·
O

... AG2


−dG2

· · ·
dG1

 =

−dG1dG2

· · ·
dG1dG2

 .
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Therefore we obtain that

(D − A(p)

G1+̂G2
P

(a)

G1+̂G2
)

 1
· · ·
1

 =



dG1(v1)
...

dG1(vnG1
)

· · ·
dG2(w1)

...
dG2(wnG2

)


−



dG1(v1)
...

dG1(vnG1
)

· · ·
dG2(w1)

...
dG2(wnG2

)


= 0,

(D − A(p)

G1+̂G2
P

(a)

G1+̂G2
)

 dG1

· · ·
−dG2

 =

 d2G1

· · ·
−d2G2

−
−dG1dG2

· · ·
dG1dG2

 = (dG1 + dG2)

 dG1

· · ·
−dG2

 .

These lead us to

∆A(1,1)
ϕ = 0, ∆A(1,1)

ψ̃ = (dG1 + dG2)ψ̃,

∆A(1,1)
(δv1 − δvi) = dG1(δv1 − δvi)− 0 = dG1(δv1 − δvi),

∆A(1,1)
(δw1 − δwj

) = dG2(δw1 − δwj
)− 0 = dG2(δw1 − δwj

),

which show the conclusion. □

Example 4.28. Let G and H be non-regular ordinary graphs given in Fig. 14 and

15, respectively. The transition and adjacency matrices of G and H are given as

PG =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 and PH =


0 1

4
1
4

1
4

1
4

1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
1
3

0 1
3

0 1
3

1
2

0 0 1
2

0

 ,

AG =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 and PH =


0 1 1 1 1
1 0 1 0 0
1 1 0 1 0
1 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 4

3
, 5

3

}
and

{
0, 7−

√
7

6
, 7

6
, 3

2
, 7+

√
7

6

}
. The

eigenvalues of ∆AG
and ∆AH

are
{
0, 2, 4, 4

}
and

{
0, 3 −

√
2, 3, 3 +

√
2, 5

}
. The

(1, 1)-probabilistic transition matrix Q(G+̂H)(1,1)
is given as



164 IV. Eigenvalues of Laplacians for Kähler graphs

Q(G+̂H)(1,1)
=

(
PG O
O PH

)(
O 1

5
M12

1
4
M21 O

)
=



0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 1
5

1
5

1
5

1
5

1
5

1
4

1
4

1
4

1
4

0 0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0 0


.

The eigenvalues of ∆Q(G+̂H)(1,1)
are

{
0, 1, 1, 1, 1, 1, 1, 1, 2

}
. The (1, 1)-adjacency matrix

A(G+̂H)(1,1)
is given as

A(G+̂H)(1,1)
=

(
AG O
O AH

)(
O 1

5
M12

1
4
M21 O

)
=



0 0 0 0 2
5

2
5

2
5

2
5

2
5

0 0 0 0 3
5

3
5

3
5

3
5

3
5

0 0 0 0 2
5

2
5

2
5

2
5

2
5

0 0 0 0 3
5

3
5

3
5

3
5

3
5

1 1 1 1 0 0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0 0
3
4

3
4

3
4

3
4

0 0 0 0 0
3
4

3
4

3
4

3
4

0 0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0 0


The eigenvalues of ∆Q(G+̂H)(1,1)

are

{
0, 2, 2, 3, 3,

solutions of 5t4−70t3+350t2−746t+576 = 0

}
.

Example 4.29. LetG be a 3-circuit andH be a 4-circuit. Their adjacency matrices

are given as

AG =

0 1 1
1 0 1
1 1 0

 and AH =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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The eigenvalues of ∆PG
and ∆PH

are
{
0, 1, 1, 2

}
and

{
0, 3

2
, 3

2

}
. The (1, 1)-adjacency

matrix A(G+̂H)(1,1)
is given as

A(G+̂H)(1,1)
=

(
AG O
O AH

)(
O 1

4
M12

1
3
M21 O

)
=



0 0 0 1
2

1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

1
2

0 0 0 1
2

1
2

1
2

1
2

2
3

2
3

2
3

0 0 0 0
2
3

2
3

2
3

0 0 0 0
2
3

2
3

2
3

0 0 0 0
2
3

2
3

2
3

0 0 0 0


.

The eigenvalues of ∆Q(G+̂H)(1,1)
are

{
0, 2, 2, 2, 2, 2, 4

}
.



6. Eigenvalues of (1, 1)-Laplacians of Kähler graphs of product type

obtained by commutative operations

In this section we study eigenvalues of (1, 1)-Laplacians of Kähler graphs of product

type obtained by commutative operations which are G ⊞ H, G ⊡ H, G♢H, G ⋇

H, G♠H and G♣H. In this section also, for functions f : V → C and g : W → C we

denote by φf,g : V ×W → C the function defined by φf,g(v, w) = f(v)g(w).

6.1. (1, 1)-Laplacians of Kähler graphs of Cartesian-tensor product type.

Theorem 4.16. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

denote by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that

of ∆PH
. Then the eigenvalues of ∆Q(1,1)

for their Kähler graph G ⊞ H of Cartesian-

tensor product type are

1− (1− µi)(1− να){dG(1− µi) + dH(1− να)}
dG + dH

(1 ≤ i ≤ nG, 1 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G⊞H are

dG + dH − (1− µi)(1− να){dG(1− µi) + dH(1− να)} (1 ≤ i ≤ nG, 1 ≤ α ≤ nH).

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
.

Proof. We denote by AG = (aGij) and AH = (aHαβ) the adjacency matrices of the

graphs G and H, respectively. By definition of G⊞H, the adjacency matrices of the

principal and the auxiliary graphs of G⊞H are given as

A
(p)
G⊞H =


AH aG12I · · · aG1nG

I

aG21I AH
. . .

...
...

. . . . . . aGnG−1nG
I

aGnG1I · · · aGnGnG−1 AH

 ,

166
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A
(a)
G⊞H =


O aG12AH · · · aG1nG

AH

aG21AH O
. . .

...
...

. . . . . . aGnG−1nG
AH

aGnG1AH · · · aGnGnG−1AH O

 ,

where I denotes the unit matrix (identify) and the components are expressed according

to lexicographical order. That is, the adjacency matrices A
(p)
G⊞H = (a

(p)
(i,α),(j,β)) and

A
(a)
G⊞H = (p

(a)
(i,α),(j,β)) of the principal and the auxiliary graphs of G⊞H are given as

a
(p)
(i,α),(j,β) = aGijδαβ + δija

H
αβ, a

(a)
(i,α),(j,β) = aGija

H
αβ.

Hence we have

A
(p)
G⊞HP

(a)
G⊞H =

1

dGdH
A

(p)
G⊞HA

(a)
G⊞H =

1

dGdH

(( nG∑
k=1

aGika
G
kj

)
aHαβ + aGij

( nH∑
γ=1

aHαγa
H
γβ

))
.

For functions f : V → R, g : W → R we express them by canonical basis of

C(V,R) and C(W,R) as

f ↔ ζ =

 ζ1
...
ζnG

 , g ↔ η =

 η1
...
ηnH


Then φf,g is expressed by the canonical basis

{
φδv ,δw

∣∣ v ∈ V,w ∈ W} of C(V ×W,R)
as

φf,g ↔



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnH


.

If functions f and g satisfy ∆PG
f = µf and ∆PH

g = νg, then we have AGf =

dG(1− µ)f and AHg = dH(1− ν)g because G and H are regular. Therefore we get

A
(p)
G⊞HP

(a)
G⊞H

 ζ1η1
...

ζnG
ηnH

 = (1− µ)(1− ν)
(( nG∑

k=1

aGijζk

)
ηα + ζi

( nH∑
γ=1

aHαγηγ

)
= (1− µ)(1− ν){dG(1− µ) + dH(1− ν)}

(
ζiηα

)
,

and obtain the conclusion. □
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Example 4.30. Let G be a 4-circuit and H be a 5-circuit. The adjacency matrices

of G and H are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.

As d
(p)
G⊞H = 2 + 2 = 4, d

(a)
G⊞H = 2/2 = 4, the (1, 1)-probabilistic transition matrix

QP(G⊞H)(1,1) is given as

Q(G⊞H)(1,1) =
1

4


AH I O I
I AH I O
O I AH I
I O I AH

 · 14

O AH O AH

AH O AH O
O AH O AH

AH O AH O



=
1

16


2AH A2

H 2AH A2
H

A2
H 2AH A2

H 2AH

2AH A2
H 2AH A2

H

A2
H 2AH A2

H 2AH



=
1

16



0 2 0 0 2 2 0 1 1 0
2 0 2 0 0 0 2 0 1 1
0 2 0 2 0 1 0 2 0 1
0 0 2 0 2 1 1 0 2 0
2 0 0 2 0 0 1 1 0 2
2 0 1 1 0 0 2 0 0 2
0 2 0 1 1 2 0 2 0 0
1 0 2 0 1 0 2 0 2 0
1 1 0 2 0 0 0 2 0 2
0 1 1 0 2 2 0 0 2 0
0 2 0 0 2 2 0 1 1 0
2 0 2 0 0 0 2 0 1 1
0 2 0 2 0 1 0 2 0 1
0 0 2 0 2 1 1 0 2 0
2 0 0 2 0 0 1 1 0 2
2 0 1 1 0 0 2 0 0 2
0 2 0 1 1 2 0 2 0 0
1 0 2 0 1 0 2 0 2 0
1 1 0 2 0 0 0 2 0 2
0 1 1 0 2 2 0 0 2 0

0 2 0 0 2 2 0 1 1 0
2 0 2 0 0 0 2 0 1 1
0 2 0 2 0 1 0 2 0 1
0 0 2 0 2 1 1 0 2 0
2 0 0 2 0 0 1 1 0 2
2 0 1 1 0 0 2 0 0 2
0 2 0 1 1 2 0 2 0 0
1 0 2 0 1 0 2 0 2 0
1 1 0 2 0 0 0 2 0 2
0 1 1 0 2 2 0 0 2 0
0 2 0 0 2 2 0 1 1 0
2 0 2 0 0 0 2 0 1 1
0 2 0 2 0 1 0 2 0 1
0 0 2 0 2 1 1 0 2 0
2 0 0 2 0 0 1 1 0 2
2 0 1 1 0 0 2 0 0 2
0 2 0 1 1 2 0 2 0 0
1 0 2 0 1 0 2 0 2 0
1 1 0 2 0 0 0 2 0 2
0 1 1 0 2 2 0 0 2 0



.
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The eigenvalues of ∆Q(G⊞H)(1,1)
are

0,
1

16

(
15−
√
5
)
,

1

16

(
15−
√
5
)
,

3

16

(
7−
√
5
)
,

3

16

(
7−
√
5
)
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1

16

(
15+
√
5
)
,

1

16

(
15+
√
5
)
,

3

16

(
7+
√
5
)
,

3

16

(
7+
√
5
)
,

 .

6.2. (1, 1)-Laplacians of Kähler graphs of Cartesian-complement product

type.

Theorem 4.17. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(1,1)
for their Kähler graph G⊡H of Cartesian-complement product type are

0, 1− {dG + dH(1− να)}{dH(1− να)(nG − 1− 2dG)− dG}
(dG + dH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

1− {dG(1− µi) + dH}{dG(1− µi)(nH − 1− 2dH)− dH}
(dG + dH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

1− {dG(1−µi) + dH(1−να)}{−2dGdH(1−µi)(1−να)− dG(1−µi)− dH(1−να)}
(dG + dH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G⊡H are

0, dG + dH −
{dG + dH(1− να)}{dH(1− να)(nG − 1− 2dG)− dG}

dG(nH − dH − 1) + dH(nG − dG − 1)
,

dG + dH −
{dG(1− µi) + dH}{dG(1− µi)(nH − 1− 2dH)− dH}

dG(nH − dH − 1) + dH(nG − dG − 1)
,

dG+dH −
{dG(1−µi) + dH(1−να)}{−2dGdH(1−µi)(1−να)− dG(1−µi)− dH(1−να)}

dG(nH − dH − 1) + dH(nG − dG − 1)
,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
corresponding to these eigenvalues.
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Proof. We use the same notations as in the proof of Theorem 4.16. We denote

by AGc = (aG
c

ij ) and AHc = (aH
c

αβ ) the adjacency matrices of the complement graphs

Gc and Hc, respectively. The adjacency matrix A
(p)
G⊡H of the principal graph of G⊡H

is the same as that of G⊞H. Hence we have

A
(p)
G⊡H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ

)
.

The adjacency matrix A
(a)
G⊡H of the auxiliary graph of G⊡H is given as

A
(a)
G⊡H = (a

(a)
(i,α),(j,β)) =

(
aGija

Hc

αβ + aHαβa
Gc

ij

)
.

That is,

A
(a)
G⊡H

=


O aG12AHc+aG

c

12 AH · · · aG1nG
AHc+aG

c

1nG
AH

aG21AHc+aG
c

21 AH O
. . .

...
...

. . .
. . . aGnG−1nG

AHc+aG
c

nG−1nG
AH

aGnG1AHc+aG
c

nG1AH · · · aGnGnG−1AHc+aG
c

nGnG−1AH O

.

(We note that either aGij = 0 or aG
c

ij = 0 holds.) We hence have

A
(p)
G⊡HP

(a)
G⊡H =

1

dG(nH − dH − 1) + dH(nG − dG − 1)(( nG∑
k=1

aGika
G
kj

)
aH

c

αβ + aGij

( nH∑
γ=1

aHαγa
Hc

γβ

)
+
( nG∑

k=1

aGika
Gc

kj

)
aHαβ + aG

c

ij

( nH∑
γ=1

aHαγa
H
γβ

))
.

We take functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg. As we have

AGc =M − I − AG and AHc =M − I − AH and as G,H are connected, we see

AGcf =

{
(nG − 1− dG)f, when µ = 0,

(dGµ− dG − 1)f, when µ ̸= 0,

AHcg =

{
(nH − 1− dH)g, when ν = 0,

(dHν − dH − 1)g, when ν ̸= 0.
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Therefore we obtain

A(p)
G⊡HP

(a)
G⊡Hφf.g

=



(dG + dH)φf.g, when µ = ν = 0,

{dG + dH(1− ν)}{dG(dHν − dH − 1) + dH(1− ν)(nG − 1− dG)}
dG(nH − dH − 1) + dH(nG − dG − 1)

φf.g,

when µ = 0, ν ̸= 0,
{dG(1− µ) + dH}{dG(1− µ)(nH − 1− dH) + dH(dGµ− dG − 1)}

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g,

when µ ̸= 0, ν = 0,
{dG(1−µ) + dH(1−ν)}{dG(1−µ)(dHν−dH−1) + dH(1−ν)(dGµ−dG−1)}

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g,

when µ ̸= 0, ν ̸= 0.

Since

dG(dHν − dH − 1) + dH(1− ν)(nG − 1− dG) = dH(1− ν)(nG − 1− 2dG)− dG

dG(1− µ)(nH − 1− dH) + dH(dGµ− dG − 1) = dG(1− µ)(nH − 1− 2dH)− dH ,

dG(1−µ)(dHν−dH−1) + dH(1−ν)(dGµ−dG−1)

= −2dGdH(1− µ)(1− ν)− dG(1− µ)− dH(1− ν),

we get the conclusion. □

Example 4.31. LetG be a 4-circuit andH be a 5-circuit. Their adjacency matrices

are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are

{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.
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Since d
(p)
G⊡H = 4 and d

(a)
G⊡H = 6, the (1, 1)-probabilistic transition matrix Q(G⊡H)(1,1) is

given as

Q(G⊡H)(1,1) =
1

4


AH I O I
I AH I O
O I AH I
I O I AH

 · 16


O AHc AH AHc

AHc O AHc AH

AH AHc O AHc

AHc AH AHc O



=
1

24


2AHc AHAHc+AH A2

H+2AHc AHAHc+AH

AHAHc+AH 2AH AHAHc+AH A2
H+2AHc

A2
H+2AHc AHAHc+AH 2AH AHAHc+AH

AHAHc+AH A2
H+2AHc AHAHc+AH 2AH



=
1

24



0 0 2 2 0 0 2 1 1 2
0 0 0 2 2 2 0 2 1 1
2 0 0 0 2 1 2 0 2 1
2 2 0 0 0 1 1 2 0 2
0 2 2 0 0 2 1 1 2 0
0 2 1 1 2 0 0 2 2 0
2 0 2 1 1 0 0 0 2 2
1 2 0 2 1 2 0 0 0 2
1 1 2 0 2 2 2 0 0 0
2 1 1 2 0 0 2 2 0 0
2 0 3 3 0 0 2 1 1 2
0 2 0 3 3 2 0 2 1 1
3 0 2 0 3 1 2 0 2 1
3 3 0 2 0 1 1 2 0 2
0 3 3 0 2 2 1 1 2 0
2 0 2 2 0 0 3 1 1 3
0 2 0 2 2 3 0 3 1 1
2 0 2 0 2 1 3 0 3 1
2 2 0 2 0 1 1 3 0 3
0 2 2 0 2 3 1 1 3 0

2 0 3 3 0 0 2 1 1 2
0 2 0 3 3 2 0 2 1 1
3 0 2 0 3 1 2 0 2 1
3 3 0 2 0 1 1 2 0 2
0 3 3 0 2 2 1 1 2 0
0 2 1 1 2 2 0 3 3 0
2 0 2 1 1 0 2 0 3 3
1 2 0 2 1 3 0 2 0 3
1 1 2 0 2 3 3 0 2 0
2 1 1 2 0 0 3 3 0 2
0 0 2 2 0 0 2 1 1 2
0 0 0 2 2 2 0 2 1 1
0 0 0 0 2 1 2 0 2 1
2 2 0 0 0 1 1 2 0 2
0 2 2 0 0 2 1 1 2 0
0 2 1 1 2 0 0 2 2 0
2 0 2 1 1 0 0 0 2 2
1 2 0 2 1 0 0 0 0 2
1 1 2 0 2 2 2 0 0 0
2 1 1 2 0 0 2 2 0 0



.

The eigenvalues of ∆Q(G⊡H)(1,1)
are

0,
1

48

(
43−7

√
5
)
,

1

48

(
43−7

√
5
)
, 1,

1

48

(
55−3

√
5
)
,

1

48

(
55−3

√
5
)
,

1

48

(
51−
√
5
)
,

1

48

(
51−
√
5
)
,

1

48

(
51−
√
5
)
,

1

48

(
51−
√
5
)
,

1

48

(
51+
√
5
)
,

1

48

(
51+
√
5
)
,

1

48

(
51+
√
5
)
,

1

48

(
51+
√
5
)
,

1

48

(
51+
√
5
)
,

7

6
,
7

6
,

1

48

(
43+7

√
5
)
,

1

48

(
43+7

√
5
)
,

1

48

(
55+3

√
5
)
,

1

48

(
55+3

√
5
)


.
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6.3. (1, 1)-Laplacians of Kähler graphs of Cartesian-lexicographic prod-

uct type.

Theorem 4.18. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(1,1)
for their Kähler graph G♢H of Cartesian-lexicographic product type are

0, 1− {dG + dH(1− να)}{dH(1− να)(nG − 1)− dG}
(dG + dH){dG(nH − 1) + dH(nG − 1)}

,

1− {dG(1− µi) + dH}{dG(1− µi)(nH − 1)− dH}
(dG + dH){dG(nH − 1) + dH(nG − 1)}

,

1 +
{dG(1−µi) + dH(1−να)}2

(dG + dH){dG(nH − 1) + dH(nG − 1)}
, (2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G♢H are

0, dG + dH −
{dG + dH(1− να)}{dH(1− να)(nG − 1)− dG}

dG(nH − 1) + dH(nG − 1)
,

dG + dH −
{dG(1− µi) + dH}{dG(1− µi)(nH − 1)− dH}

dG(nH − 1) + dH(nG − 1)
,

dG + dH +
{dG(1−µi) + dH(1−να)}2

dG(nH − 1) + dH(nG − 1)
, (2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
corresponding to these eigenvalues.

Proof. We use the same notations as in the proof of Theorem 4.16. The adjacency

matrix A
(p)
G♢H of the principal graph of G♢H is the same as that of G⊞H. Hence we

have

A
(p)
G♢H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ

)
.

The adjacency matrix A
(a)
G♢H of the auxiliary graph of G♢H is given as

A
(a)
G♢H = (a

(a)
(i,α),(j,β)) =

(
aGij(1− δαβ) + aHαβ(1− δij)

)
.
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That is,

A
(a)
G♢H =


O AH+aG12(M−I) · · · AH+aG1nG

(M−I)

AH+aG21(M−I)
. . . . . .

...
...

. . . . . . AH+aGnG−1nG
(M−I)

AH+aGnG1(M−I) · · · AH+aGnGnG−1(M−I) O

 .

with an nH × nH matrix M all of whose entries are 1. We hence have

A
(p)
G♢HP

(a)
G♢H

=
1

dH(nG − 1) + dG(nH − 1)(( nG∑
k=1

aGika
G
kj

)(∑
γ ̸=β

δαγ

)
+
(∑

k ̸=j

δik

)( nH∑
γ=1

aHαγa
H
γβ

)
+aHαβ

( nG∑
k ̸=j

aGik

)
+aGij

( nH∑
γ ̸=β

aHαγ

))
=

1

dH(nG − 1) + dG(nH − 1)(( nG∑
k=1

aGika
G
kj

)
(1−δαβ) + (1−δij)

( nH∑
γ=1

aHαγa
H
γβ

)
+ (dG−aGij)aHαβ + aGij(dH−aHαβ)

)
.

We take functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg. We then obtain

A
(p)
G♢HP

(a)
G♢Hφf.g =

d2G(nH−1) + (nH−1)d2H + (dGnG−dG)dH + dG(dHnH−dH)
dH(nG − 1) + dG(nH − 1)

φf.g

= (dG + dH)φf.g

when µ = ν = 0,

A
(p)
G♢HP

(a)
G♢Hφf.g =

−d2G + (nG−1)d2H(1−ν)2 + dG(nG−1)dH(1−ν)− dGdH(1−ν)
dH(nG − 1) + dG(nH − 1)

φf.g

=
{dG + dH(1−ν)}{dH(nG−1)(1−ν)− dG}

dH(nG − 1) + dG(nH − 1)
φf.g

when µ = 0 and ν ̸= 0,

A
(p)
G♢HP

(a)
G♢Hφf.g =

{dG(1−µ) + dH}{dG(nH−1)(1−µ)− dH}
dH(nG − 1) + dG(nH − 1)

φf.g

when µ ̸= 0 and ν = 0, and

A
(p)
G♢HP

(a)
G♢Hφf.g =

−d2G(1−µ)2 − d2H(1−ν)2 − 2dGdH(1−µ)(1−ν)
dH(nG − 1) + dG(nH − 1)

φf.g

= − {dG(1−µ) + dH(1−ν)}2

dH(nG − 1) + dG(nH − 1)
φf.g

when µ ̸= 0 and ν ̸= 0. We hence get the conclusion. □
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Example 4.32. LetG be a 4-circuit andH be a 5-circuit. Their adjacency matrices

are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.

Since d
(p)
G♢H = 4, d

(a)
G♢H = 14 and AHM = 2M , the (1, 1)-probabilistic transition matrix

Q(G♢H)(1,1) is given as

Q(G♢H)(1,1)

=
1

4

AH I O I
I AH I O
O I AH I
I O I AH

 · 1
14

 O AH+M−I AH AH+M−I
AH+M−I O AH+M−I AH

AH AH+M−I O AH+M−I
AH+M−I AH AH+M−I O



=
1

56


2(AH+M−I) A2

H+2M A2
H+2(AH+M−I) A2

H+2M

A2
H+2M 2(AH+M−I) A2

H+2M A2
H+2(AH+M−I)

A2
H+2(AH+M−I) A2

H+2M 2(AH+M−I) A2
H+2M

A2
H+2M A2

H+2(AH+M−I) A2
H+2M 2(AH+M−I)


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=
1

56



0 4 2 2 4 4 2 3 3 2
4 0 4 2 2 2 4 2 3 3
2 4 0 4 2 3 2 4 2 3
2 2 4 0 4 3 3 2 4 2
4 2 2 4 0 2 3 3 2 4
4 2 3 3 2 0 4 2 2 4
2 4 2 3 3 4 0 4 2 2
3 2 4 2 3 2 4 0 4 2
3 3 2 4 2 2 2 4 0 4
2 3 3 2 4 4 2 2 4 0
2 4 3 3 4 4 2 3 3 2
4 2 4 3 3 2 4 2 3 3
3 4 2 4 3 3 2 4 2 3
3 3 4 2 4 3 3 2 4 2
4 3 3 4 2 2 3 3 2 4
4 2 3 3 2 2 4 3 3 4
2 4 2 3 3 4 2 4 3 3
3 2 4 2 3 3 4 2 4 3
3 3 2 4 2 3 3 4 2 4
2 3 3 2 4 4 3 3 4 2

2 4 3 3 4 4 2 3 3 2
4 2 4 3 3 2 4 2 3 3
3 4 2 4 3 3 2 4 2 3
3 3 4 2 4 3 3 2 4 2
4 3 3 4 2 2 3 3 2 4
4 2 3 3 2 2 4 3 3 4
2 4 2 3 3 4 2 4 3 3
3 2 4 2 3 3 4 2 4 3
3 3 2 4 2 3 3 4 2 4
2 3 3 2 4 4 3 3 4 2
0 4 2 2 4 4 2 3 3 2
4 0 4 2 2 2 4 2 3 3
2 4 0 4 2 3 2 4 2 3
2 2 4 0 4 3 3 2 4 2
4 2 2 4 0 2 3 3 2 4
4 2 3 3 2 0 4 2 2 4
2 4 2 3 3 4 0 4 2 2
3 2 4 2 3 2 4 0 4 2
3 3 2 4 2 2 2 4 0 4
2 3 3 2 4 4 2 2 4 0



.

The eigenvalues of ∆P(G♢H)(1,1)
are

0, 1,
1

112

(
115−

√
5
)
,

1

112

(
115−

√
5
)
,

1

112

(
115−

√
5
)
,

1

112

(
115−

√
5
)
,

1

112

(
115−

√
5
)
,

1

112

(
115−

√
5
)
,

1

112

(
127−5

√
5
)
,

1

112

(
127−5

√
5
)
,

1

112

(
115+

√
5
)
,

1

112

(
127+5

√
5
)
,

1

112

(
127+5

√
5
)
,

1

112

(
127+5

√
5
)
,

1

112

(
127+5

√
5
)
,

1

112

(
127+5

√
5
)
,

1

48

(
51+
√
5
)
,
15

14
,
15

14
,

1

112

(
127+5

√
5
)
,

1

112

(
127+5

√
5
)



.

6.4. (1, 1)-Laplacians of Kähler graphs of strong-complement product

type.

Theorem 4.19. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues
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of ∆Q(1,1)
for their Kähler graph G⋇H of strong-complement product type are

0, 1− {dG + dH(dG + 1)(1− να)}{dH(1− να)(nG − 2dG − 1)− dG}
(dG + dH + dGdH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

1− {dG(dH + 1)(1− µi) + dH}{dG(1− µi)(nH − 2dH − 1)− dH}
(dG + dH + dGdH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

1− {dG(1−µ)+dH(1−ν)+dGdH(1−µ)(1−ν)}{dG(1−µ)(dHν−dH−1)+dH(1−ν)(dGµ−dG−1)}
(dG + dH + dGdH){dG(nH − dH − 1) + dH(nG − dG − 1)}

,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G⋇H are

0, dG + dH + dGdH −
{dG + dH(dG + 1)(1− να)}{dH(1− να)(nG − 2dG − 1)− dG}

dG(nH − dH − 1) + dH(nG − dG − 1)
,

dG + dH + dGdH −
{dG(dH + 1)(1− µi) + dH}{dG(1− µi)(nH − 2dH − 1)− dH}

dG(nH − dH − 1) + dH(nG − dG − 1)
,

dG + dH + dGdH

− {dG(1−µ)+dH(1−ν)+dGdH(1−µ)(1−ν)}{dG(1−µ)(dHν−dH−1)+dH(1−ν)(dGµ−dG−1)}
dG(nH − dH − 1) + dH(nG − dG − 1)

,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
corresponding to these eigenvalues.

Proof. We use the same notations as in the proofs of Theorems 4.16 and 4.17. By

definition the adjacency matrices A
(p)
G⋇H and A

(a)
G⋇H of the principal and the auxiliary

graphs of G⋇H are

A
(p)
G⋇H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ + aGija

H
αβ

)
,

A
(a)
G⋇H = (a

(a)
(i,α),(j,β)) =

(
aGija

Hc

αβ + aG
c

ij a
H
αβ

)
.
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That is,

A
(p)
G⋇H =


AH aG12(AH+I) · · · aG1nG

(AH+I)

aG21(AH+I) AH
. . .

...
...

. . . . . . aGnG−1nG
(AH+I)

aGnG1(AH+I) · · · aGnGnG−1(AH+I) AH


and A

(a)
G⋇H = A

(a)
G⊡H . Hence we have

A
(p)
G⋇HP

(a)
G⋇H

=
1

dG(nH − dH − 1) + dH(nG − dG − 1){( nG∑
k=1

aGika
G
kj

)
aH

c

αβ + aGij

( nH∑
γ=1

aHαγa
Hc

γβ

)
+
( nG∑

k=1

aGika
G
kj

)( nH∑
γ=1

aHαγa
Hc

γβ

)
+
( nG∑

k=1

aG
c

ik a
G
kj

)
aHαβ + aG

c

ij

( nH∑
γ=1

aHαγa
H
γβ

)
+
( nG∑

k=1

aG
c

ik a
G
kj

)( nH∑
γ=1

aHαγa
H
γβ

)}
.

We take functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg and consider φf.g.

We then find that

A(p)
G⋇HP

(a)
G⋇Hφf.g

=
(d2G+dGdH+d2GdH)(nH−1−dH) + (dGdH+d2H+dGd

2
H)(nG−1−dG)

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g

= (dG + dH + dGdH)φf.g

when µ = ν = 0,

A(p)
G⋇HP

(a)
G⋇Hφf.g

=

{{
d2G+dGdH(1− ν)+d2GdH(1− ν)

}
(nH−1−dH)

dG(nH − dH − 1) + dH(nG − dG − 1)

+

{
dGdH(1− ν)+d2H(1− ν)2+dGd2H(1− ν)

}
(nG−1−dG)

dG(nH − dH − 1) + dH(nG − dG − 1)

}
φf.g

=
{dG + dH(1− ν) + dGdH(1− ν)}{dG(dHν − dH − 1) + dH(1− ν)(nG − 1− dG)}

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g
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when µ = 0, ν ̸= 0,

A(p)
G⋇HP

(a)
G⋇Hφf.g

=

{{
d2G(1− µ)2+dGdH(1− µ)+d2G(1− µ)2dH

}
(nH−1−dH)

dG(nH − dH − 1) + dH(nG − dG − 1)

+

{
dGdH(1− µ)+d2H+dG(1− µ)d2H

}
(nG−1−dG)

dG(nH − dH − 1) + dH(nG − dG − 1)

}
φf.g

=
{dG(1− µ) + dH + dGdH(1− µ)}{dG(1− µ)(nH − 1− dH) + dH(dGµ− dG − 1)}

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g

when µ ̸= 0, ν = 0, and

A(p)
G⋇HP

(a)
G⋇Hφf.g

=

{{
d2G(1− µ)2+dGdH(1− µ)(1− ν)+d2G(1− µ)2dH(1− ν)

}
(nH−1−dH)

dG(nH − dH − 1) + dH(nG − dG − 1)

+

{
dGdH(1− µ)(1− ν)+d2H(1− ν)2+dG(1− µ)d2H(1− ν)2

}
(nG−1−dG)

dG(nH − dH − 1) + dH(nG − dG − 1)

}
φf.g

=
{dG(1−µ)+dH(1−ν)+dGdH(1−µ)(1−ν)}{dG(1−µ)(dHν−dH−1) + dH(1−ν)(dGµ−dG−1)}

dG(nH − dH − 1) + dH(nG − dG − 1)
φf.g

when µ ̸= 0, ν ̸= 0. Thus we get the conclusion. □

Example 4.33. LetG be a 4-circuit andH be a 5-circuit. Their adjacency matrices

are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are

{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.
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Since d
(p)
G⋇H = 8 and d

(a)
G⋇H = 6, the (1, 1)-probabilistic transition matrix Q(G⋇H)(1,1) is

given as

Q(G⋇H)(1,1) =
1

8

 AH AH+I O AH+I
AH+I AH AH+I O

O AH+I AH AH+I
AH+I O AH+I AH

 · 1
6

 O AHc AH AHc

AHc O AHc AH

AH AHc O AHc

AHc AH AHc O



=
1

48


2(AHAHc+AHc) A2

H+AH+AHAHc A2
H+2(AHAHc+AHc) A2

H+AH+AHAHc

A2
H+AH+AHAHc 2(AHAHc+AHc) A2

H+AH+AHAHc A2
H+2(AHAHc+AHc)

A2
H+2(AHAHc+AHc) A2

H+AH+AHAHc 2(AHAHc+AHc) A2
H+AH+AHAHc

A2
H+AH+AHAHc A2

H+2(AHAHc+AHc) A2
H+AH+AHAHc 2(AHAHc+AHc)



=
1

48



0 2 4 4 2 2 2 2 2 2
2 0 2 4 4 2 2 2 2 2
4 2 0 2 4 2 2 2 2 2
4 4 2 0 2 2 2 2 2 2
2 4 4 2 0 2 2 2 2 2
2 2 2 2 2 0 2 4 4 2
2 2 2 2 2 2 0 2 4 4
2 2 2 2 2 4 2 0 2 4
2 2 2 2 2 4 4 2 0 2
2 2 2 2 2 2 4 4 2 0
2 2 5 5 2 2 2 2 2 2
2 2 2 5 5 2 2 2 2 2
5 2 2 2 5 2 2 2 2 2
5 5 2 2 2 2 2 2 2 2
2 5 5 2 2 2 2 2 2 2
2 2 2 2 2 2 2 5 5 2
2 2 2 2 2 2 2 2 5 5
2 2 2 2 2 5 2 2 2 5
2 2 2 2 2 5 5 2 2 2
2 2 2 2 2 2 5 5 2 2

2 2 5 5 2 2 2 2 2 2
2 2 2 5 5 2 2 2 2 2
5 2 2 2 5 2 2 2 2 2
5 5 2 2 2 2 2 2 2 2
2 5 5 2 2 2 2 2 2 2
2 2 2 2 2 2 2 5 5 2
2 2 2 2 2 2 2 2 5 5
2 2 2 2 2 5 2 2 2 5
2 2 2 2 2 5 5 2 2 2
2 2 2 2 2 2 5 5 2 2
0 2 4 4 2 2 2 2 2 2
2 0 2 4 4 2 2 2 2 2
4 2 0 2 4 2 2 2 2 2
4 4 2 0 2 2 2 2 2 2
2 4 4 2 0 2 2 2 2 2
2 2 2 2 2 0 2 4 4 2
2 2 2 2 2 2 0 2 4 4
2 2 2 2 2 4 2 0 2 4
2 2 2 2 2 4 4 2 0 2
2 2 2 2 2 2 4 4 2 0



.

The eigenvalues of ∆Q(G⋇H)(1,1)
are

0,
6

5
,
5

96

(
21−
√
5
)
,

5

96

(
21−
√
5
)
,

5

96

(
21−
√
5
)
,

5

96

(
21−
√
5
)
,

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)
,

1

96

(
99−
√
5
)
,

13

12
,
13

12
,

5

96

(
21+
√
5
)
,

5

96

(
21+
√
5
)
,

5

96

(
21+
√
5
)
,

5

96

(
21+
√
5
)


.
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6.5. (1, 1)-Laplacians of Kähler graphs of complement-tensor product

type.

Theorem 4.20. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(1,1)
for their Kähler graph G♠H of complement-tensor product type are

0, 1− dH(1− να)2(nG − 2dG)

dG(nH − dH) + dH(nG − dG)
,

1− dG(1− µi)
2(nH − 2dH)

dG(nH − dH) + dH(nG − dG)
, 1 +

2dGdH(1− µi)
2(1− να)2

dG(nH − dH) + dH(nG − dG)
,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G♠H are

0, dG(nH − dH) + dH(nG − dG)− dH(1− να)2(nG − 2dG),

dG(nH − dH) + dH(nG − dG)− dG(1− µi)
2(nH − 2dH),

dG(nH − dH) + dH(nG − dG) + 2dGdH(1− µi)
2(1− να)2,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
corresponding to these eigenvalues.

Proof. We use the same notations as in the proof of Theorems 4.16 and 4.17. By

definition the adjacency matrices A
(p)
G♠H and A

(a)
G♠H of the principal and the auxiliary

graphs of G♠H are

A
(p)
G♠H = (a

(p)
(i,α)(j,β)) =

(
aGij(a

Hc

αβ + δαβ) + (aG
c

ij + δij)a
H
αβ

)
=
(
aGij(1− aHαβ) + (1− aGij)aHαβ

)
,

A
(a)
G♠H = (a

(a)
(i,α)(j,β)) =

(
aGija

H
αβ

)
.



182 IV. Eigenvalues of Laplacians for Kähler graphs

That is,

A
(p)
G♠H

=


AH aG12(AH+I)+a

Gc

12 AH · · · aG1nG
(AH+I)+aG

c

1nG
AH

aG21(AH+I)+aG
c

21 AH AH
. . .

...
...

. . .
. . . aGnG−1nG

(AH+I)+a
Gc

nG−1nG
AH

aGnG1(AH+I)+a
Gc

nG1AH · · · aGnGnG−1(AH+I)+a
Gc

nGnG−1AH AH


and A

(a)
G♠H = A

(a)
G⊞H . We hence have

A
(p)
G♠HP

(a)
G♠H =

1

dGdH

(( nG∑
k=1

aGika
G
kj

)( nH∑
γ=1

aH
c

αγ a
H
γβ + aHαβ

)
+
( nG∑

k=1

aG
c

ik a
G
kj + aGij

)( nH∑
γ=1

aHαγa
H
γβ

))
.

We take functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg and consider φf.g.

We then find that

A(p)
G♠HP

(a)
G♠Hφf.g =

d2G(nH−dH)dH + dG(nG−dG)d2H
dGdH

φf.g

= {dG(nH−dH) + (nG−dG)dH}φf.g

when µ = ν = 0,

A(p)
G♠HP

(a)
G♠Hφf.g =

d2G(dHν−dH)dH(1− ν) + dG(nG−dG)d2H(1− ν)2

dGdH
φf.g

= dH(1− ν)2(nG − 2dG)φf.g

when µ = 0, ν ̸= 0,

A(p)
G♠HP

(a)
G♠Hφf.g =

d2G(1− µ)2(nH−dH)dH + dG(1− µ)(dGµ−dG)d2H
dGdH

φf.g

= dG(1− µ)2(nH − 2dH)φf.g

when µ ̸= 0, ν = 0, and

A(p)
G♠HP

(a)
G♠Hφf.g

=
d2G(1− µ)2(dHν−dH)dH(1− ν) + dG(1− µ)(dGµ−dG)d2H(1− ν)2

dGdH
φf.g

= −2dGdH(1− µ)2(1− ν)2φf.g

when µ ̸= 0, ν ̸= 0. These show the conclusion. □
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Example 4.34. LetG be a 4-circuit andH be a 5-circuit. Their adjacency matrices

are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.

Since d
(p)
G⋇H = 10 and d

(a)
G♠H = 4, the (1, 1)-probabilistic transition matrix Q(G♠H)(1,1)

is given as

Q(G♠H)(1,1) =
1

10

 AH AAc+I AH AAc+I
AAc+I AH AAc+I AH

AH AAc+I AH AAc+I
AAc+I AH AAc+I AH

 · 1
4

 O AH O AH

AH O AH O
O AH O AH

AH O AH O



=
1

40


2(AHcAH+AH) 2A2

H 2(AHcAH+AH) 2A2
H

2A2
H 2(AHcAH+AH) 2A2

H 2(AHcAH+AH)

2(AHcAH+AH) 2A2
H 2(AHcAH+AH) 2A2

H

2A2
H 2(AHcAH+AH) 2A2

H 2(AHcAH+AH)



=
1

40



0 4 2 2 4 4 0 2 2 0
4 0 4 2 2 0 4 0 2 2
2 4 0 4 2 2 0 4 0 2
2 2 4 0 4 2 2 0 4 0
4 2 2 4 0 0 2 2 0 4
4 0 2 2 0 0 4 2 2 4
0 4 0 2 2 4 0 4 2 2
2 0 4 0 2 2 4 0 4 2
2 2 0 4 0 2 2 4 0 4
0 2 2 0 4 4 2 2 4 0
0 4 2 2 4 4 0 2 2 0
4 0 4 2 2 0 4 0 2 2
2 4 0 4 2 2 0 4 0 2
2 2 4 0 4 2 2 0 4 0
4 2 2 4 0 0 2 2 0 4
4 0 2 2 0 0 4 2 2 4
0 4 0 2 2 4 0 4 2 2
2 0 4 0 2 2 4 0 4 2
2 2 0 4 0 2 2 4 0 4
0 2 2 0 4 4 2 2 4 0

0 4 2 2 4 4 0 2 2 0
4 0 4 2 2 0 4 0 2 2
2 4 0 4 2 2 0 4 0 2
2 2 4 0 4 2 2 0 4 0
4 2 2 4 0 0 2 2 0 4
4 0 2 2 0 0 4 2 2 4
0 4 0 2 2 4 0 4 2 2
2 0 4 0 2 2 4 0 4 2
2 2 0 4 0 2 2 4 0 4
0 2 2 0 4 4 2 2 4 0
0 4 2 2 4 4 0 2 2 0
4 0 4 2 2 0 4 0 2 2
2 4 0 4 2 2 0 4 0 2
2 2 4 0 4 2 2 0 4 0
4 2 2 4 0 0 2 2 0 4
4 0 2 2 0 0 4 2 2 4
0 4 0 2 2 4 0 4 2 2
2 0 4 0 2 2 4 0 4 2
2 2 0 4 0 2 2 4 0 4
0 2 2 0 4 4 2 2 4 0



.
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The eigenvalues of ∆Q(G⋇H)(1,1)
are

0,
4

5
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1

10

(
13−
√
5
)
,

1

10

(
13−
√
5
)
,

1

10

(
13+
√
5
)
,

1

10

(
13;
√
5
)
 .

6.6. (1, 1)-Laplacians of Kähler graphs of tensor-complement product

type.

Theorem 4.21. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(1,1)
for their Kähler graph G♣H of complement-tensor product type are

0, ν − (1−ν){dG(dHν−nH)− dHν(nG−1−dG)}
dH(nG − 1− dG) + dG(nH − 1− dH)

,

µ− (1−µ){−dGµ((nH−1−dH) + dH(dGµ−nG)}
dH(nG − 1− dG) + dG(nH − 1− dH)

,

µ+ ν − µν − (1−µ)(1−ν){2dGdH(µ+ν−µν) + dG(µ−nH) + dH(ν−nG)}
dH(nG − 1− dG) + dG(nH − 1− dH)

,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

and the eigenvalues of ∆A(1,1)
for G♣H are

0, dGdHν −
dGdH(1−ν){dG(dHν−nH)− dHν(nG−1−dG)}

dH(nG − 1− dG) + dG(nH − 1− dH)
,

dGdHµ−
dGdH(1−µ){−dGµ((nH−1−dH) + dH(dGµ−nG)}

dH(nG − 1− dG) + dG(nH − 1− dH)
,

dGdH(µ+ν−µν)−
dGdH(1−µ)(1−ν){2dGdH(µ+ν−µν) + dG(µ−nH) + dH(ν−nG)}

dH(nG − 1− dG) + dG(nH − 1− dH)
,

(2 ≤ i ≤ nG, 2 ≤ α ≤ nH),

Moreover, if fi and gα are eigenfunctions associated with µi and να, respectively,

then the function φfi,gα on the sets V ×W is an eigenfunction for both ∆Q(1,1)
and

∆A(1,1)
corresponding to these eigenvalues.
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Proof. We use the same notations as in the proofs of Theorems 4.16 and 4.17. By

definition the adjacency matrices A
(p)
G♣H and A

(a)
G♣H of the principal and the auxiliary

graphs of G♣H are

A
(p)
G♣H = (a

(a)
(i,α)(j,β)) =

(
aGija

H
αβ

)
,

A
(a)
G♣H = (a

(p)
(i,α)(j,β)) =

(
aGija

Hc

αβ + aG
c

ij a
H
αβ

)
.

That is, A
(p)
G♣H = A

(a)
G⊞H and A

(a)
G♣H = A

(a)
G⊡H . We hence have

A
(p)
G♣HP

(a)
G♣H =

1

dH(nG − 1− dG) + dG(nH − 1− dH)(( nG∑
k=1

aGika
G
kj

)( nH∑
γ=1

aHαγa
Hc

γβ

)
+
( nG∑

k=1

aGika
Gc

kj

)( nH∑
γ=1

aHαγa
H
γβ

))
.

We take functions f and g satisfying ∆PG
f = µf and ∆PH

g = νg and consider φf.g.

We then find that

A
(p)
G♣HP

(a)
G♣Hφf,g =

d2GdH(nH − 1− dH) + dG(nG − 1− dG)d2H
dH(nG − 1− dG) + dG(nH − 1− dH)

φf,g = dGdHφf,g

when µ = ν = 0,

A
(p)
G♣HP

(a)
G♣Hφf,g =

d2GdH(1−ν)(dHν−dH−1) + dG(nG−1−dG)d2H(1−ν)2

dH(nG − 1− dG) + dG(nH − 1− dH)
φf,g

= dGdH(1−ν)
{
1 +

dG(dHν−nH)− dHν(nG−1−dG)
dH(nG − 1− dG) + dG(nH − 1− dH)

}
φf,g

when µ = 0 and ν ̸= 0,

A
(p)
G♣HP

(a)
G♣Hφf,g =

d2G(1−µ)2dH(nH−1−dH) + dG(1−µ)(dGµ−dG−1)d2H
dH(nG − 1− dG) + dG(nH − 1− dH)

φf,g

= dGdH(1−µ)
{
1 +
−dGµ((nH−1−dH) + dH(dGµ−nG)

dH(nG − 1− dG) + dG(nH − 1− dH)

}
φf,g

when µ ̸= 0 and ν = 0, and

A
(p)
G♣HP

(a)
G♣Hφf,g

=
d2G(1−µ)2dH(1−ν)(dHν−dH−1) + dG(1−µ)(dGµ−dG−1)d2H(1−ν)2

dH(nG − 1− dG) + dG(nH − 1− dH)
φf,g

= dGdH(1−µ)(1−ν)
{
1 +

2dGdH(µ+ν−µν) + dG(µ−nH) + dH(ν−nG)

dH(nG − 1− dG) + dG(nH − 1− dH)

}
φf,g

when µ ̸= 0 and ν ̸= 0. Hence we get the conclusion. □
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Example 4.35. LetG be a 4-circuit andH be a 5-circuit. Their adjacency matrices

are given as

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and AH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

The eigenvalues of ∆PG
and ∆PH

are{
0, 1, 1, 2

}
and

{
0,

1

4

(
5−
√
5
)
,
1

4

(
5−
√
5
)
,
1

4

(
5 +
√
5
)
,
1

4

(
5 +
√
5
)}
.

Since d
(p)
G♣H = 10 and d

(a)
G♣H = 4, the (1, 1)-probabilistic transition matrix Q(G♣H)(1,1)

is given as

Q(G♠H)(1,1) =
1

10

 O AH O AH

AH O AH O
O AH O AH

AH O AH O

 · 1
4

 O AHc AH AHc

AHc O AHc AH

AH AHc O AHc

AHc AH AHc O



=
1

40


2AHAHc A2

H 2AHAHc A2
H

A2
H 2AHAHc A2

H 2AHAHc

2AHAHc A2
H 2AHAHc A2

H

A2
H 2AHAHc A2

H 2AHAHc



=
1

40



0 2 2 2 2 2 0 1 1 0
2 0 2 2 2 0 2 0 1 1
2 2 0 2 2 1 0 2 0 1
2 2 2 0 2 1 1 0 2 0
2 2 2 2 0 0 1 1 0 2
2 0 1 1 0 0 2 2 2 2
0 2 0 1 1 2 0 2 2 2
1 0 2 0 1 2 2 0 2 2
1 1 0 2 0 2 2 2 0 2
0 1 1 0 2 2 2 2 2 0
0 2 2 2 2 2 0 1 1 0
2 0 2 2 2 0 2 0 1 1
2 2 0 2 2 1 0 2 0 1
2 2 2 0 2 1 1 0 2 0
2 2 2 2 0 0 1 1 0 2
2 0 1 1 0 0 2 2 2 2
0 2 0 1 1 2 0 2 2 2
1 0 2 0 1 2 2 0 2 2
1 1 0 2 0 2 2 2 0 2
0 1 1 0 2 2 2 2 2 0

0 2 2 2 2 2 0 1 1 0
2 0 2 2 2 0 2 0 1 1
2 2 0 2 2 1 0 2 0 1
2 2 2 0 2 1 1 0 2 0
2 2 2 2 0 0 1 1 0 2
2 0 1 1 0 0 2 2 2 2
0 2 0 1 1 2 0 2 2 2
1 0 2 0 1 2 2 0 2 2
1 1 0 2 0 2 2 2 0 2
0 1 1 0 2 2 2 2 2 0
0 2 2 2 2 2 0 1 1 0
2 0 2 2 2 0 2 0 1 1
2 2 0 2 2 1 0 2 0 1
2 2 2 0 2 1 1 0 2 0
2 2 2 2 0 0 1 1 0 2
2 0 1 1 0 0 2 2 2 2
0 2 0 1 1 2 0 2 2 2
1 0 2 0 1 2 2 0 2 2
1 1 0 2 0 2 2 2 0 2
0 1 1 0 2 2 2 2 2 0



.
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The eigenvalues of ∆Q(G⋇H)(1,1)
are

0,
2

3
,

1

24

(
25−
√
5
)
,

1

24

(
25−
√
5
)
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1

24

(
25+
√
5
)
,

1

24

(
25+
√
5
)
,

1

24

(
31−
√
5
)
,

1

24

(
31−
√
5
)
,

1

24

(
31+
√
5
)
,

1

24

(
31+
√
5
)
 .



7. (1, 1)-Isospectral Kähler graphs of product type

In this section we study conditions that two Kähler graphs obtained by product

operations are isospectral.

7.1. Isospectral Kähler graphs of product type whose principal graphs

are unions of copies of original graphs. When two ordinary graphs G1, G2 are not

isomorphic to each other, then their Kähler graphs of product types studied in §4.3

and §4.4 with ordinary graphs H1, H2 are not isomorphic to each other, because their

principal graphs are disjoint unions of nHi
-copies of Gi. Moreover, this property shows

that the eigenvalues of principal graphs are nHi
-copies of those of the eigenvalues of

Gi. Thus our product operations provide many isospectral pairs of Kähler graphs.

[1] Kähler graphs of Cartesian product type

By Theorems 4.4 and 4.5, we have the following.

Proposition 4.5. Let G1, G2 and H1, H2 be two pairs of transitionary isospectral

ordinary graphs. Then their Kähler graphs G1□̂H1, G2□̂H2 of Cartesian product type

are (1, 1)-probabilistically transitionary isospectral.

Proposition 4.6. Let G1, G2 be a pair of isospectral regular ordinary graphs sat-

isfying dG1 = dG2, and H1, H2 be a pair of transitionary isospectral ordinary graphs.

Then their Kähler graphs G1□̂H1, G2□̂H2 of Cartesian product type are (1, 1)-isospectral.

Example 4.36. Let G1, G2 be the pair of isospectral regular graphs of nG1 = nG2 =

10 given in Example 4.9 (Figs. 18, 19). Let H be a 3-circuit. Then G1□̂H, G2□̂H

are (1, 1)-isospectral. The eigenvalues of their principal graphs and those of (1, 1)-

combinatorial Laplacians are

Spec(∆A
(Gi□̂H)(p)

) =



0, 0, 0, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

4−
√
5, 4−

√
5, 4−

√
5, 4 +

√
5, 4 +

√
5, 4 +

√
5,

(9−
√
17)/2, (9−

√
17)/2, (9−

√
17)/2,

(9 +
√
17)/2, (9 +

√
17)/2, (9 +

√
17)/2


,

188
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Spec(∆A
Gi□̂H(1,1)

) =



0, 6, 6, 3,
9

2
,
9

2
, 5, 5, 5, 5,

7

2
,
7

2
,
7

2
,
7

2
,
7

2
,
7

2
,
7

2
,
7

2
,

4−
√
5,

1

2
(8+
√
5),

1

2
(8+
√
5), 4+

√
5,

1

2
(8−
√
5),

1

2
(8−
√
5),

1

2
(9−
√
17),

1

4
(15+

√
17),

1

4
(15+

√
17),

1

2
(9+
√
17),

1

4
(15−

√
17),

1

4
(15−

√
17)


.

Fig. 18 Fig. 19

[2] Kähler graphs of strong product type

By Theorem 4.6 and Proposition 4.3

Proposition 4.7. Let G1, G2 be a pair of isospectral regular ordinary graphs sat-

isfying dG1 = dG2, and H1, H2 be a pair of transitionary isospectral ordinary graphs.

Then their Kähler graphs G1⊠̂H1, G2⊠̂H2 of strong product type are (1, 1)-isospectral.

Example 4.37. Let G1, G2 be the pair of isospectral regular graphs of nG1 =

nG2 = 10 given in Example 4.9 (Figs. 18, 19). Let H be a complete graph of nH = 2

(Fig. 20). Then G1⊠̂H, G2⊠̂H are (1, 1)-isospectral. The eigenvalues of PH are {0, 1}.

The eigenvalues of their principal graphs and those of (1, 1)-combinatorial Laplacians

are

Spec(∆A
(Gi⊠̂H)(p)

) =

 0, 0, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 4−
√
5, 4−

√
5, 4+

√
5,

4+
√
5, (9−

√
17)/2, (9−

√
17)/2, (9+

√
17)/2, (9+

√
17)/2

 ,

Spec(∆A
Gi⊠̂H(1,1)

) =


0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

66

5
,
68

5
,
1

5
(15−

√
5),

1

5
(15 + 7

√
5)

33

10
,

1

10
(23−

√
17),

1

10
(5− 3

√
17),

1

10
(13− 3

√
17)

 .
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s s
Fig. 20

As a pair of Kähler graphs of product type whose principal graphs are unions

of original graphs, this pair consists of graphs having least cardinality of the set of

vertices. We should note that when H is a complete graph of nH = 2 then G□̂H does

not satisfies the condition of Kähler graphs because its auxiliary degree is 1.

[3] Kähler graphs of semi-tensor product type

By Theorems 4.7 and 4.8, we have the following.

Proposition 4.8. Let G1, G2 and H1, H2 be two pairs of transitionary isospectral

ordinary graphs. Then their Kähler graphs G1⊗̂H1, G2⊗̂H2 of semi-tensor product

type are (1, 1)-probabilistically transitionary isospectral.

Proposition 4.9. Let G1, G2 be a pair of isospectral regular ordinary graphs and

H1, H2 be a pair of transitionary isospectral ordinary graphs. Then their Kähler graphs

G1⊗̂H1, G2⊗̂H2 of semi-tensor product type are (1, 1)-isospectral.

Example 4.38. We take the same G1, G2 and H as in Example 4.37. Then G1⊗̂H

and G2⊗̂H are (1, 1)-isospectral. Since their principal graphs are the same as of graphs

in Example 4.37, we here give the eigenvalues of (1, 1)-combinatorial Laplacians

Spec(∆AGi⊗̂H(1,1)
) =


0, 1,

15

4
,
15

4
,
15

4
,
15

4
,
15

4
,
15

4
, 4, 4, 4, 4, 4, 4, 4, 4, 4,

11

4
,
1

8
(23−

√
17),

1

8
(23 +

√
17)

 .

[4] Kähler graphs of lexicographical product type

By Theorem 4.9 we have the following.

Proposition 4.10. Let G1, G2 and H1, H2 be pairs of transitionary isospectral

ordinary graphs. Then their Kähler graphs G1▷H1, G2▷H2 of lexicographical product

type are (1, 1)-probabilistically transitionary isospectral.
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Remark 4.2. Let G1, G2 be a pair of ordinary graphs satisfying nG1 = nG2 ,and

H1, H2 be a pair of transitionary isospectral ordinary graphs. Then their Kähler graphs

G1 ▷H1, G2 ▷H2 of lexicographical product type have the same eigenvalues of (1, 1)-

probabilistically transition Laplacians. But if their principal graphs are not combi-

natorial isospectral (resp. transitional isospectral), they are not (1, 1)-combinatorial

isospectral (resp. (1, 1)-probabilistic transitional isospectral).

By Proposition 4.4 we have the following.

Proposition 4.11. Let G1, G2 be a pair of isospectral ordinary regular graphs

satisfying dG1 = dG2, and H1, H2 be a pair of transitionary isospectral ordinary graphs.

Then their Kähler graphs G1 ▷H1, G2 ▷H2 of lexicographical product type are (1, 1)-

isospectral.

Remark 4.3. Let G1, G2 be a pair of ordinary regular graphs satisfying nG1 =

nG2 , dG1 = dG2 , and H1, H2 be a pair of transitionary isospectral ordinary graphs.

Then their Kähler graphs G1 ▷H1, G2 ▷H2 of lexicographical product type have the

same eigenvalues of (1, 1)-adjacency Laplacians and of (1, 1)-probabilistic transition

Laplacians.

Example 4.39. We take the same G1, G2 and H as in Example 4.37. Then G1▷H

and G2▷H are (1, 1)-isospectral. Since their principal graphs are the same as of graphs

in Example 4.37, we here give the eigenvalues of (1, 1)-combinatorial Laplacians:

Spec(∆AGi▷H(1,1)
) =

{
0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8

}
.

Example 4.40. Let G1 be a 4-circuit, G2 be a non-regular graph of nG2 = 4 given

in Fig. 21, and H be a 3-circuit. Then G1 ▷H and G2 ▷H have the same eigenvalues

of (1, 1)-probabilistic transition Laplacians:

Spec(∆AGi▷H(1,1)
) =

{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

3

2
,
3

2

}
.

We note that G1 and G2 are not combinatorially and transitionally isospectral.
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１

2 3

4

Fig. 21 Fig. 22 Fig. 23

Example 4.41. Let G1 and G2 be a regular graph of nGi
= 8 given in Figs. 22

and 23, respectively, and H be a 3-circuit. Then G1 ▷H and G2 ▷H have the same

eigenvalues of (1, 1)-combinatorial Laplacians:

Spec(∆AGi▷H(1,1)
) =

{
0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12

}
.

We note that G1 and G2 are not isospectral.

[5] Kähler graphs of product type added complement-filling operations

Proposition 4.12. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If G1, G2 are connected, then their

Kähler graphs G1□̂KH1, G2□̂KH2 of complement-filling Cartesian product type are

(1, 1)-isospectral.

Proposition 4.13. Let G1, G2 and H1, H2 be two pairs of isospectral regular or-

dinary graphs satisfying dG1 = dG2 and dH1 = dH2. If G1, G2 are connected, then

their Kähler graphs G1⊠̂
K
H1, G2⊠̂

K
H2 of complement-filling strong product type are

(1, 1)-isospectral.

Proposition 4.14. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If G1, G2 are connected, then their

Kähler graphs G1⊗̂
K
H1, G2⊗̂

K
H2 of complement-filling semi-tensor product type are

(1, 1)-isospectral.



§4.7. (1, 1)-Isospectral Kähler graphs of product type 193

Proposition 4.15. Let G1, G2 and H1, H2 be pairs of isospectral ordinary regular

graphs satisfying dG1 = dG2 and dH1 = dH2. Then their Kähler graphs G1▷KH1, G2▷K

H2 of complement-filling lexicographical product type are (1, 1)-isospectral.

Remark 4.4. Let G1, G2 be a pair of ordinary regular graphs satisfying nG1 =

nG2 , dG1 = dG2 , and H1, H2 be a pair of isospectral regular ordinary graphs satisfying

dH1 = dH2 . If G1and G2 are connected, then their Kähler graphs G1▷KH1, G2▷KH2

of complement-filling lexicographical product type have the same eigenvalues of (1, 1)-

adjacency Laplacians and of (1, 1)-probabilistic transition Laplacians.

7.2. Isospectral joined Kähler graphs. We note that (1, 1)-probabilistic tran-

sition operators of joined Kähler graphs do not inherit the structures of original graphs,

and that (1, 1)-adjacency operators only inherit property of degrees on original graphs.

Therefore eigenvalues of (1, 1)-Laplacians do not show the structure of original graphs.

The eigenvalues of the principal graph of a joined Kähler graph G+̂H of graphs G,H

are given as

Spec(∆A
(G+̂H)

(p)
) = Spec(∆AG

) ∪ Spec(∆AH
),

Spec(∆P
(G+̂H)

(p)
) = Spec(∆PG

) ∪ Spec(∆PH
).

Therefore, if we take two pairs of combinatorially (resp. transitionally) isospectral

graphs, then their principal graph of their joined Kähler graphs are trivially combina-

torially (resp. transitionally) isospectral. By Theorem 4.14 we have the following.

Proposition 4.16. Let G1, G2 and H1, H2 be pairs of isospectral ordinary graphs.

We suppose that one of these pairs are not isomorphic, and suppose that G1 is not

isomorphic to H2 and G2 is not isomorphic to H1. Then their joined Kähler graphs

G1+̂H1, G2+̂H2 are (1, 1)-probabilistic transitionary isospectral.

Remark 4.5. Let G1, G2 and H1, H2 be two pairs of ordinary graphs satisfying

nG1 = nG2 and nH1 = nH2 . Then their joined Kähler graphs G1+̂H1, G2+̂H2 have the

same eigenvalues of (1, 1)-probabilistic transition Laplacians.
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Proposition 4.17. Let G1, G2 and H1, H2 be pairs of isospectral ordinary regular

graphs satisfying dG1 = dG2 and dH1 = dH2. We suppose that one of these pairs are not

isomorphic, and suppose that G1 is not isomorphic to H2 and G2 is not isomorphic to

H1. Then their joined Kähler graphs G1+̂H1, G2+̂H2 are (1, 1)-isospectral.

Remark 4.6. Let G1, G2 and H1, H2 be two pairs of ordinary regular graphs sat-

isfying nG1 = nG2 , nH1 = nH2 and dG1 = dG2 , dH1 = dH2 . Then their joined Kähler

graphs G1+̂H1, G2+̂H2 have the same eigenvalues of (1, 1)-adjacency Laplacians and

of (1, 1)-probabilistic transition Laplacians.

Example 4.42. Let G1, G2 be the pair of isospectral regular graphs of nG1 =

nG2 = 10 given in Example 4.9. Let H be a 3-circuit. Then G1+̂H, G2+̂H are (1, 1)-

isospectral. The eigenvalues of their principal graphs and those of (1, 1)-combinatorial

Laplacians are

Spec(∆A
(Gi+̂H)(p)

) =
{
0, 0, 3, 3, 3, 5, 5, 5, 5, 4−

√
5, 4 +

√
5, (9−

√
17)/2, (9 +

√
17)/2

}
,

Spec(∆AGi+̂H(1,1)
) =

{
0, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6

}
,

Spec(∆QGi+̂H(1,1)
) =

{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2

}
.

Example 4.43. Let G1 be a 4-circuit, G2 be the graph in Fig. 24, and H be a

3-circuit. Their transition matrices are given as

PG1 =


0 1

2
0 1

2
1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 1
2

0

 , PG2 =


0 1

2
0 1

2
1
3

0 1
3

1
3

0 1
2

0 1
2

1
3

1
3

1
3

0

 , PH =

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 .

The eigenvalues of ∆PG1
, ∆PG2

and ∆PH
are

{
0, 1, 1, 2

}
,
{
0, 1, 4

3
, 5

3

}
, and

{
0, 3

2
, 3

2

}
.

Their (1, 1)-probabilistic transition matrices are the same and are given as

QGi+̂H(1,1)
=

(
PGi

O
O PH

)(
O 1

3
M12

1
4
M21 O

)
=



0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

1
4

1
4

1
4

1
4

0 0 0
1
4

1
4

1
4

1
4

0 0 0
1
4

1
4

1
4

1
4

0 0 0


.
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The eigenvalues of (1, 1)-probabilistic transition Laplacians of their joined Kähler

graphs G1+̂H, G2+̂H are {0, 1, 1, 1, 1, 1, 2}. We should note that they are not (1, 1)-

probabilistic transitionary isospectral because their principal graphs are not transi-

tionary isospectral.

１

2 3

4

Fig. 24 Fig. 25 Fig. 26

Example 4.44. Let H be a 3-circuit, and G1, G2 be graphs of nG1 = nG2 = 8 and

dG1 = dG2 = 3 given in Figs. 25 and 26. Their adjacency operators are

AG1=



0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0


, AG2=



0 1 1 0 0 0 0 1
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
1 0 0 0 0 1 1 0


, AH=

0 1 1
1 0 1
1 1 0

 .

The eigenvalues of ∆AG1
, ∆AG2

and ∆AH
are

Spec
(
∆AG1

)
=
{
0, 2, 2, 4−

√
2, 4−

√
2, 4+

√
2, 4+

√
2
}
,

Spec
(
∆AG2

)
=
{
0, 3−

√
5, 2, 4, 4, 4, 4, 3 +

√
5
} ,

and Spec
(
∆AH

)
=
{
0, 3, 3

}
. We take joined Kähler graphs G1+̂H and G2+̂H. Their

(1, 1)-adjacency matrices are the same and are given as
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AGi+̂H(1,1)
=

(
AGi

O
O AH

)(
O 1

3
M12

1
8
M21 O

)
=



0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0

1
1
1
1
1
1
1
1
0

0

0


.

Their (1, 1)-probabilistic transition matrices are the same and are given as The eigen-

values of (1, 1)-combinatorial Laplacians of their joined Kähler graphs G1+̂H, G2+̂H

are {0, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5}. We should note that these are not (1, 1)-combinatorially

isospectral.

7.3. Isospectrality of Kähler graphs of commutative product type. At the

end of this section we study isospectral condition on Kähler graphs of commutative

product type.

Proposition 4.18. Let G1, G2 and H1, H2 be two pairs of isospectral regular or-

dinary graphs satisfying dG1 = dG2 and dH1 = dH2. Then their Kähler graphs G1 ⊞

H1, G2 ⊞H2 of Cartesian-tensor product type are (1, 1)-isospectral.

Proof. For eigenvalues µ of ∆PG
and ν of ∆PH

, we take functions f, g satisfying

∆PG
f = µf and ∆PH

g = νg. Then we have AGf = dG(1−µ)f and AHg = dH(1−ν)g.

As the adjacency matrix of the principal graph is given as A
(p)
G⊞H =

(
aGijδαβ + δija

H
αβ

)
by use of the adjacency matrices AG = (aGij and AH = (aHαβ), we find

AG⊞H(1,1)
φf,g =

{
dG(1− µ) + dH(1− ν)

}
φf,g,

where φf,g is a function defined by φf,g(v, w) = f(v)g(w). Hence the eigenvalues of

the combinatorial Laplacian of the principal graph are

Spec
(
∆A

G⊞H(p)

)
=
{
dG(1− µ) + dH(1− ν)

∣∣ µ ∈ Spec
(
∆PG

)
, ν ∈ Spec

(
∆PH

)}
.
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Therefore we get the conclusion directly from Theorem 4.16. □

Proposition 4.19. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If these four graphs are connected,

then their Kähler graphs G1 ⊡H1, G2 ⊡H2 of Cartesian-complement product type are

(1, 1)-isospectral.

Proof. Since the principal graph of G⊡H is the same as that of G⊞H, we get

the conclusion by Theorem 4.17. □

Proposition 4.20. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If these four graphs are connected,

then their Kähler graphs G1♢H1, G2♢H2 of Cartesian-lexicographic product type are

(1, 1)-isospectral.

Proof. Since the principal graph of G♢H is the same as that of G ⊞ H, we get

the conclusion by Theorem 4.18. □

Proposition 4.21. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If these four graphs are connected,

then their Kähler graphs G1 ⋇ H1, G2 ⋇ H2 of strong-complement product type are

(1, 1)-isospectral.

Proof. For eigenvalues µ of ∆PG
and ν of ∆PH

, we take functions f, g satisfying

∆PG
f = µf and ∆PH

g = νg. Then we have AGf = dG(1−µ)f and AHg = dH(1−ν)g.

As the adjacency matrix of the principal graph is given as A
(p)
G⋇H =

(
aGijδαβ + δija

H
αβ +

aGija
H
αβ

)
by use of the adjacency matrices AG = (aGij and AH = (aHαβ), we find

AG⋇H(1,1)
φf,g =

{
dG(1− µ) + dH(1− ν) + dGdH(1− µ)(1− ν)

}
φf,g,

where φf,g is a function defined by φf,g(v, w) = f(v)g(w). Hence the eigenvalues of

the combinatorial Laplacian of the principal graph are

Spec
(
∆A

G⋇H(p)

)
=
{
dG(1− µ) + dH(1− ν) + dGdH(1− µ)(1− ν)

∣∣ µ ∈ Spec
(
∆PG

)
, ν ∈ Spec

(
∆PH

)}
.
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Therefore we get the conclusion directly from Theorem 4.19. □

Proposition 4.22. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If these four graphs are connected,

then their Kähler graphs G1♠H1, G2♠H2 of complement-tensor product type are (1, 1)-

isospectral.

Proof. For eigenvalues µ of ∆PG
and ν of ∆PH

, we take functions f, g satisfying

∆PG
f = µf and ∆PH

g = νg. Then we have AGf = dG(1−µ)f and AHg = dH(1−ν)g.

As the adjacency matrix of the principal graph is given as A
(p)
G♠H =

(
aGij(1 − aHαβ) +

(1− aGij)aHαβ
)
by use of the adjacency matrices AG = (aGij and AH = (aHαβ), we find

AG♠H(1,1)
φf,g =

{
dG(1− µ)(nH − dG + dGν) + (nG − dG + dGµ)dH(1− ν)

}
φf,g,

where φf,g is a function defined by φf,g(v, w) = f(v)g(w). Hence the eigenvalues of

the combinatorial Laplacian of the principal graph are

Spec
(
∆A

G♠H(p)

)
=

{
dG(1− µ)(nH − dG + dGν) + dH(nG − dG + dGµ)(1− ν)

∣∣∣∣ µ ∈ Spec
(
∆PG

)
,

ν ∈ Spec
(
∆PH

)} .
Therefore we get the conclusion directly from Theorem 4.20. □

Proposition 4.23. Let G1, G2 and H1, H2 be two pairs of isospectral regular ordi-

nary graphs satisfying dG1 = dG2 and dH1 = dH2. If these four graphs are connected,

then their Kähler graphs G1♣H1, G2♣H2 of tensor-complement product type are (1, 1)-

isospectral.

Proof. For eigenvalues µ of ∆PG
and ν of ∆PH

, we take functions f, g satisfying

∆PG
f = µf and ∆PH

g = νg. Then we have AGf = dG(1−µ)f and AHg = dH(1−ν)g.

As the adjacency matrix of the principal graph is given as A
(p)
G♣H =

(
aGija

H
αβ

)
by use of

the adjacency matrices AG = (aGij and AH = (aHαβ), we find

AG♣H(1,1)
φf,g =

{
dGdH(1− µ)(1− ν)

}
φf,g,
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where φf,g is a function defined by φf,g(v, w) = f(v)g(w). Hence the eigenvalues of

the combinatorial Laplacian of the principal graph are

Spec
(
∆A

G♣H(p)

)
=
{
dGdH(1− µ)(1− ν)

∣∣ µ ∈ Spec
(
∆PG

)
, ν ∈ Spec

(
∆PH

)}
.

Therefore we get the conclusion directly from Theorem 4.21. □





CHAPTER 5

Eigenvalues of (p, q)-Laplacians for Kähler graphs

In this chapter we study eigenvalues of (p, q)-Laplacians mainly for finite regular

Kähler graphs.

1. Polynomial representations of eigenvalues of (p, q)-Laplacians

Given a positive integer d, we define a sequence {Fn(t; d)}∞n=0 of monic polynomials

by the relations {
Fn+1(t; d) = tFn(t; d)− (d− 1)Fn−1(t; d) (n ≥ 2),

F0(t; d) = 1, F1(t; d) = t, F2(t; d) = t2 − d.
For example, we have

F3(t; d) = t3 − (2d− 1)t, F4(t; d) = t4 − (3d− 2)t2 + d(d− 1),

F5(t; d) = t5 − (4d− 3)t3 + (d− 1)(3d− 1)t,

F6(t; d) = t6 − (5d− 4)t4 + 3(d− 1)(2d− 1)t2 − d(d− 1),

F7(t; d) = t7 − (6d− 5)t5 + 2(d− 1)(5d− 3)t3 − (4d− 1)(d− 1)2t.

Lemma 5.1. The polynomials Fn(t; d) (n ≥ 1) satisfy the following properties:

(1) Fn(d; d) = d(d− 1)n−1;

(2) F2k−1(0; d) = 0 and F2k(0; d) = (−1)kd(d− 1)k−1;

(3) F2k−1(t; d) contains only terms of odd degrees, and F2k(t; d) contains only

terms of even degrees.

Proof. We show our assertion by induction.

(1) By definition we have F1(d; d) = d, F2(d; d) = d2− d = d(d− 1). If we suppose

Fn(d; d) = d(d− 1)n−1, Fn+1(d; d) = d(d− 1)n, then we have

Fn+2(d; d) = dFn+1(d; d)−(d−1)Fn(d; d) = d2(d−1)n−(d−1)d(d−1)n−1 = d(d−1)n+1

201
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hence get the first assertion.

(2) By definition we have F1(0; d) = 0, F2(0; d) = −d. If we suppose F2k−1(0; d) = 0

and F2k(0; d) = (−1)kd(d− 1)k−1, we have

F2k+1(0; d) = 0F2k(0; d)− (d− 1)F2k−1(0; d) = 0,

F2k+2(0; d) = 0F2k+1(0; d)− (d− 1)F2k(0; d) = (−1)k+1d(d− 1)k.

(3) It is clear that the third assertion holds for k = 1, 2. If we suppose the assertion

holds for 2k − 1 and 2k, we have

F2k+1(t; d) = t (terms of odd degrees)− (d− 1)(terms of even degrees)

contains only terms of even degrees, and

F2k+2(t; d) = t (terms of even degrees)− (d− 1)(terms of odd degrees)

contains only terms of odd degrees. □

The n-step adjacency and transition operators of regular ordinary graphs are ex-

pressed by use of these polynomials. Given an ordinary graph G we denote by G[n] its

n-step derived graph (see §3.3).

Proposition 5.1. Let G = (V,E) be a regular ordinary graph of degree dG.

(1) The adjacency operator AG[n]
by n-step paths on G without backtracking is

given as Fn(AG; dG).

(2) The transition operator QG[n] by n-step paths on G without backtracking is

given as
1

dG(dG − 1)
Fn(AG; dG).

Here, for a positive k the operator Ak
G means the kth-composition

k︷ ︸︸ ︷
AG ◦ · · · ◦ AG and

A0
G = I. Thus for a polynomial F (t) = ant

n + a1t
n−1 + · · · + an−1t + an the operator

F (A) means anAn + · · ·+ an−1A+ anI.

Proof. (1) Since F1(AG; dG) = AG and the 1-step adjacency operator is the

ordinary adjacency operator, we have AG[1]
= F1(AG; dG). We study the case n = 2.

A 2-step path on G with backtracking is of the form (v0, v1, v0) with v0 ∼ v1. As G
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is regular of degree dG, we have dG 2-step paths with backtracking emanating from

a given vertex. Since AG ◦ AG shows adjacency by 2-step paths with or without

backtracking, we see the adjacency operator by 2-step paths without backtracking is

express by the operator A2
G − dGI.

We now study general case by induction. We suppose the assertion holds in the

case n− 1 and n. We consider the case n+ 1. We take an n-step path (v0, v1, · · · , vn)

without backtracking. When we consider a sequence (v0, v1, · · · , vn, v) of vertices, we

see that this is an (n+1)-step path if and only if v adjacent to vn (i.e. vn ∼ v). Thus, we

find that the adjacency by (n+1)-step paths whose first n-step subpaths do not contain

backtracking is expressed by Fn(AG; dG) ◦ AG. When this sequence (v0, v1, · · · , vn, v)

is a path, it does not have backtracking if and only if vn−1 ̸= v. Therefore, we find that

there is one (n+1)-step path containing backtracking whose first n step coincide with

the given n-step path (v0, . . . , vn). It is (v0, . . . , vn, vn−1). We hence get a bijective

correspondence of the set of (n + 1)-step paths whose first n-step subpaths coincide

with (v0, . . . , vn) and that contain backtracking to {(v0, . . . , vn−1)}. Since vn ̸= vn−2,

we see that given an (n − 1)-step path (v0, . . . , vn−1) we can construct dG(vn−1) − 1

n-step paths (v0, . . . , vn) without backtracking. Since G is regular, we hence find that

(n + 1)-step adjacency is expressed by AG[n+1]
= AG[n]

AG − (dG − 1)AG[n−1]
. As AG

and Fn(AG; dG) are commutative, we get the first assertion.

Since G is regular, we see QG[n]
=

1

d
(p)
G(p)(d

(p)
G(p) − 1)

AG[n]
. Hence we get the second

assertion. □

Example 5.1. We take a 4-circuit G. Its adjacency matrix is given by

AG =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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We here study adjacency matrices by 2, 3 and 4-step paths on G, and A2
G, A

3
G, A

4
G.

They are expressed as

AG[2]
=


0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

 , A2
G =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 ,

AG[3]
=


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = AG, A3
G =


0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0

 = 4AG,

AG[4]
=


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 = 2I, A4
G = 4A2

G.

Thus we see AG[2]
= A2

G − 2I, AG[3]
= A3

G − 2AG −AG and AG[4]
= A4

G − 3A2
G −AG[2]

.

１

2 3

4

Fig. 1

１

2 3

4

Fig. 2

When the graph is not regular, the situation is not simple.

Example 5.2. We take a graph G in Fig. 2. Its adjacency matrix is given by

AG =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 .

The adjacency matrices by 2 and 3-step paths on G are given as

AG[2]
=


0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

 , AG[3]
=


2 1 2 1
1 4 1 0
2 1 2 1
1 0 1 4

 .
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On the other hand, A2
G and A3

G are given as

A2
G =


2 1 2 1
1 3 1 2
2 1 2 1
1 2 1 3

 , A3
G =


2 5 2 5
5 4 5 5
2 5 2 5
5 5 5 4

 .

We now study (p, q)-Laplacians for Kähler graphs. By Lemma 4.3, we know that the

(p, q)-adjacency operator and the (p, q)-probabilistic transition operator of a Kähler

graph is decomposed to operators concerning its principal graph and its auxiliary

graph, hence their properties are important.

Theorem 5.1. Let G = (V,E(p) ∪ E(a)) be a finite regular Kähler graph. Suppose

that its adjacency operators AG(p) ,AG(a) of the principal and the auxiliary graphs are

commutative (AG(p) ◦ AG(a) = AG(a) ◦ AG(p)), We denote the eigenvalues of AG(p) by

λi (i = 1, . . . , nG), and denote the eigenvalues of AG(a) by ηi (i = 1, . . . , nG), where

we attach the indices so that for each i both λi and ηi have the same eigenfunctions.

Then eigenvalues of the (p, q)-combinatorial Laplacian ∆A(p,q)
are

(1.1) dG(p)(dG(p) − 1)p−1 − Fp(λi; dG(p))Fq(ηi; dG(a))

dG(a)(dG(a) − 1)q−1
(i = 1, . . . , nG),

and the eigenvalues of the (p, q)-probabilistic transition Laplacian ∆Q(p,q)
are

(1.2) 1− Fp(λi; dG(p))Fq(ηi; dG(a))

dG(p)(dG(p) − 1)p−1dG(a)(dG(a) − 1)q−1
(i = 1, . . . , nG).

Proof. We take an eigenfunction fi satisfying AG(p)fi = λifi and AG(a)fi = ηifi.

We note that by the condition of simultaneously diagonalizable (AG(p) ◦AG(a) = A(a) ◦

AG(p)) of symmetric operators, we have such an eigenfunction (see Note 1.3). Thus for

positive integer k we have

Ak
G(p)fi = Ak−1

G(p)λifi = λiAk−1
G(p)fi = · · · = λki fi.

Similarly we have Ak
G(a)fi = ηki fi. Therefore we find that

F (AG(p) ; dG(p))fi = F (λi; dG(p))fi and F (AG(q) ; dG(q))fi = F (ηi; dG(a))fi.
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Since G(a) is regular, we see Q(0,q) coincides with q-step transition operator P
G

(a)
[q]

(see Lemma 4.2). We note P
G

(a)
[q]

=
1

dG(a)(dG(a) − 1)q−1
A

G
(a)
[q]

. Thus we have by Lemma

4.3 and Proposition 5.1 that

A(p,q)fi = A(p,0)Q(0,q)fi =
1

dG(a)(dG(a) − 1)q−1
Fp(AG(p) ; dG(p))Fq(AG(a) ; dG(a))fi

=
Fp(λi; dG(p))Fq(ηi; dG(a))

dG(a)(dG(a) − 1)q−1
fi.

We hence get the conclusion. □

Proposition 5.2. If the adjacency operators AG(p) ,AG(a) of a regular Kähler graph

G are commutative, then its (p, q)-adjacency operator A(p,q) and its (p, q)-probabilistic

transition operator Q(p,q) are symmetric.

Proof. SinceAG(p) andAG(a) are symmetric, we seeAk
G(p) andAk

G(a) are symmetric

for an arbitrary nonnegative integer k, hence both Fp

(
AG(p) ; dG(p)

)
and Fq

(
AG(a) ; dG(a)

)
are symmetric. Moreover, as AG(p) ◦ AG(a) = AG(a) ◦ AG(p) we have Ak

G(p) ◦ Aℓ
G(a) =

Aℓ
G(a) ◦ Ak

G(p) for arbitrary nonnegative integers k, ℓ, hence have

Fp

(
AG(p) ; dG(p)

)
◦ Fq

(
AG(a) ; dG(a)

)
= Fq

(
AG(a) ; dG(a)

)
◦ Fp

(
AG(p) ; dG(p)

)
.

We take arbitrary functions f, g ∈ C(V,C). We then have

⟨A(p,q)f, g⟩ =
⟨

1

dG(a)(dG(a) − 1)q−1
Fp

(
AG(p) ; dG(p)

)
Fq

(
AG(a) ; dG(a)

)
f, g

⟩
=

1

dG(a)(dG(a) − 1)q−1

⟨
Fp

(
AG(p) ; dG(p)

)
Fq

(
AG(a) ; dG(a)

)
f, g
⟩

=
1

dG(a)(dG(a) − 1)q−1

⟨
Fq

(
AG(a) ; dG(a)

)
f, Fp

(
AG(p) ; dG(p)

)
g
⟩

=
1

dG(a)(dG(a) − 1)q−1

⟨
f, Fq

(
AG(a) ; dG(a)

)
Fp

(
AG(p) ; dG(p)

)
g
⟩

= ⟨f,A(p,q)g⟩.

Hence we find that A(p,q) is symmetric. As we have Q(p,q) =
1

dG(p)(dG(p) − 1)p−1
A(p,q),

it is also symmetric.

Though our proof is completed, we here give a proof by matrix representations in

the case that G is finite. We denote by AG(p) , AG(a) the adjacency matrices of the
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principal and the auxiliary graphs of G. Then they satisfy tAG(p) = AG(p) , tAG(a) =

AG(a) , and satisfy AG(p)AG(a) = AG(a)AG(p) by the assumption. Generally we have

t(AB) = tBtA for arbitrary matrices A,B. Thus for arbitrary positive integer k we

have

t(Ak
G(p)) =

tAG(p) · · · tAG(p) = AG(p) · · ·AG(p) = Ak
G(p) and t(Ak

G(a)) = Ak
G(a) ,

hence have

t
{
Fp

(
AG(p) ; dG(p)

)}
= Fp

(
AG(p) ; dG(p)

)
and t

{
Fq

(
AG(a) ; dG(a)

)}
= Fq

(
AG(a) ; dG(a)

)
.

Also, by the property AG(p)AG(a) = AG(a)AG(p) , we have

Fp

(
AG(p) ; dG(p)

)
Fq

(
AG(a) ; dG(a)

)
= Fq

(
AG(a) ; dG(a)

)
Fp

(
AG(p) ; dG(p)

)
.

Since we have

A(p,q) =
1

dG(a)(dG(a) − 1)q−1
A

G
(p)
[p]

A
G

(a)
[q]

=
1

dG(a)(dG(a) − 1)q−1
Fp

(
AG(p) ; dG(p)

)
Fq

(
AG(a) ; dG(a)

)
,

we find

tA(p,q) =
1

dG(a)(dG(a) − 1)q−1
t
{
Fq

(
AG(a) ; dG(a)

)}
t
{
Fp

(
AG(p) ; dG(p)

)}
=

1

dG(a)(dG(a) − 1)q−1
Fq

(
AG(a) ; dG(a)

)
Fp

(
AG(p); dG(p)

)
=

1

dG(a)(dG(a) − 1)q−1
Fp

(
AG(p) ; dG(p)

)
Fq

(
AG(a) ; dG(a)

)
= A(p,q).

As we have Q(p,q) =
1

dG(p)(dG(p) − 1)p−1
A(p,q), we get the conclusion. □

Corollary 5.1. If the adjacency operators AG(p) ,AG(a) of a regular Kähler graph

G are commutative, then all eigenvalues of the (p, q)-adjacency Laplacian ∆A(p,q)
and

those of the (p, q)-probabilistic transition Laplacian ∆Q(p,q)
are real for an arbitrary

pair (p, q) of relatively prime positive integers.

The condition that the adjacency operators of the principal and the auxiliary graphs

are commutative is a strong condition, but we have many Kähler graphs satisfying this
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condition, complement-filled Kähler graphs, Kähler graphs of Cartesian product type,

of strong product type, and so on, for example. For more study on commutativity of

the adjacency operators, see [3].



2. (p, q)-Laplacians of complement-filled Kähler graphs

We now apply Theorem 5.1 to some typical examples of Kähler graphs.

2.1. Eigenvalues of (p, q)-Laplacians of complement-filled Kähler graphs.

.

First we study complement-filled Kähler graphs.

Theorem 5.2. Let G = (V,E) be a connected regular finite graph of degree 2 ≤

dG(p) ≤ nG − 3. We denote the eigenvalues of ∆AG
by 0 = λ1 < λ2 ≤ · · · ≤ λnG

. Then

the eigenvalues of (p.q)-combinatorial Laplacian ∆Ap,q of the complement-filled Kähler

graph GK are

0 and d
(p)
G (d

(p)
G − 1)p−1 − Fp(d

(p)
G − λi; d

(p)
G )Fq(λi − d(p)G − 1;nG − d(p)G − 1)

(nG − d(p)G − 1)(nG − d(p)G − 2)q−1

for i = 2, · · · , nG.

Proof. We use the same notations as in §4.2.1. Since G is regular, we have

(AG ◦M)f(v) = AG

∑
w∈V

f(w) =
(∑
w∈V

f(w)
)
AG1 = dG

∑
w∈V

f(w),

(M◦AG)f(v) =
∑
v∈V

∑
w:w∼v

f(w) =
∑
w∈V

dGf(w) = dG
∑
w∈V

f(w),

hence AG ◦ M = M ◦ AG. As AGc = M− I − AG, we find that AG and AGc are

commutative.

We recall the argument in the proof of Theorem 4.1. We take an eigenfunction

fi;V → R corresponding to λi. We have AGfi = (dG − λi)fi. When i = 1, we

see λ1 = 0 and the eigenfunction f1 is a non-zero constant function. Hence we have

AGf1 = dGf1 and

AGcf1 = (Mf1 − f1 −AGf1) = (nG − dG − 1)f1.

Therefore by Theorem 5.1 and Lemma 5.1 we obtain

∆Ap,qf1 = dG(dG − 1)p−1f1 −
Fp(dG; dG)Fq(nG − dG − 1;nG − dG − 1)

(nG − dG − 1)(nG − dG − 2)q−1
f1

= dG(dG − 1)p−1f1 − dG(p)(dG(p) − 1)p−1f1 = 0.

209
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When i = 2, · · · , nG, as the graph G is connected, we find that fi is orthogonal to f1

(Note 1.1) hence satisfies
∑

v∈V fi = 0. Therefore we have

AGcfi = (Mfi − fi −AGfi) = (−1− dG + λi)fi.

Hence we obtain

∆Ap,qfi = {dG(p)(dG(p) − 1)p−1fi −
Fp(dG − λi; dG)Fq(λi − dG(p) − 1;nG − dG − 1)

(nG − dG − 1)(nG − dG − 2)q−1
fi,

and get the conclusion. □

Corollary 5.2. Let G = (V,E) be a connected regular finite graph of degree

2 ≤ dG(p) ≤ nG − 3. We denote the eigenvalues of ∆PG
by 0 = µ1 < µ2 ≤ · · · ≤ µnG

.

Then the eigenvalues of (p.q)-combinatorial Laplacian ∆Qp,q of the complement-filled

Kähler graph GK are

0 and 1− Fp(d
(p)
G (1− µi); d

(p)
G )Fq(dGµi − d(p)G − 1;nG − d(p)G − 1)

d
(p)
G (d

(p)
G − 1)p−1(nG − d(p)G − 1)(nG − d(p)G − 2)q−1

for i = 2, · · · , nG.

Proof. We take an eigenfunction fi;V → R corresponding to µi. We have AGfi =

dG(1− µi)fi. We hence have

AGcfi =

{
(nG − dG − 1)fi, when i = 1,

(−1− dG − dGµi)fi, when i ̸= 1.

Thus we get the assertion by Theorem 5.1. □

2.2. (p, q)-isospectral Kähler graphs. Given a pair of Kähler graphs we say

that they are (p, q)-combinatorially isospectral (resp. (p, q)-probabilistic transitionally

isospectral) if they satisfy the following conditions:

i) Their combinatorial (p, q)-Laplacians (resp. probabilistic transitional (p, q)-

Laplacians) have the same eigenvalues by taking account of their multiplicities;

ii) Their principal graphs are combinatorially (resp. transitionary) isospectral.

Clearly, two Kähler graphs are (p, q)-combinatorially isospectral if and only if they are

(p, q)-probabilistic transitionally isospectral when their principal graphs are regular.

In this case we just say that they are (p, q)-isospectral.
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As a direct consequence of Theorem 5.1 we have the following.

Theorem 5.3. Let G1 = (V1, E
(p)
1 ∪E

(a)
1 ) and G2 = (V2, E

(p)
2 ∪E

(a)
2 ) be two regular

Kähler graphs satisfying d
(p)
G1

= d
(p)
G2

and d
(a)
G1

= d
(a)
G2
. We suppose that their adjacency

operators of their principal and auxiliary graphs are simultaneously diagonalizable, that

is, A
G

(p)
i
◦A

G
(a)
i

= A
G

(a)
i
◦A

G
(p)
i

for i = 1, 2. If their principal graphs (V1, E
(p)
1 ), (V2, E

(p)
2 )

are isospectral and if their auxiliary graphs (V1, E
(a)
1 ), (V2, E

(a)
2 ) are isospectral, then

they are (p, q)-isospectral for an arbitrary pair (p, q) of relatively prime positive inte-

gers.

Applying this result to complement-filled Kähler graphs we obtain the following.

Corollary 5.3. If two finite regular graphs G1, G2 are isospectral and have the

same degrees, then their compliment-filled Kähler graphs are (p, q)-isospectral for an

arbitrary pair (p, q) of relatively prime positive integers.

We here study the example given in §4.2.

Example 5.3. Let G1, G2 be the pair of isospectral regular graphs of nG1 = nG2 =

10 given in Example 4.9. Their complement-filled Kähler graphs GK
1 , G

K
2 are (p, q)-

isospectral. We here list eigenvalues of some (p, q)-combinatorial Laplacians:

Spec(∆A
GK
(2,1)

) =
{
0,

54

5
,
56

5
,
56

5
,
1

5

(
61−
√
5
)
, 12, 12, 12, 12,

1

5

(
61+
√
5
)}
,

Spec(∆A
GK
(3,1)

) =


0,

2

5

(
85−
√
17
)
,
2

5

(
85−
√
5
)
,
168

5
,
2

5

(
85+
√
5
)
,

2

5

(
85−
√
17
)
, 36, 36, 36, 36

 ,

Spec(∆A
GK
(1,2)

) =


0,

1

20

(
70−
√
5
)
,

1

20

(
70+
√
5
)
,

1

40

(
151−

√
17
)
,

15

4
,
15

4
,
15

4
,
15

4
,

1

40

(
151+

√
17
)
,
81

20

 ,

Spec(∆A
GK
(1,3)

) =


0,

1

40

(
151−

√
17
)
,

7

80

(
45−
√
5
)
,
31

8
,

1

40

(
151+

√
17
)
, 4, 4, 4, 4,

7

80

(
45+
√
5
)
,
81

20

 ,
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Spec(∆A
GK
(3,2)

) =


0,

357

10
,

1

20

(
727−

√
17
)
,

1

20

(
717+

√
17
)
,

1

10

(
370−

√
5
)
,

1

10

(
370+

√
5
)
,
75

2
,
75

2
,
75

2
,
75

2

 ,

Spec(∆A
GK
(2,3)

) =


0, 12, 12, 12, 12,

1

80

(
967−

√
5
)
,

1

80

(
967+

√
5
)
,

1

40

(
489−

√
17
)
,

1

40

(
489+

√
17
)
,
99

8

 .

As we have

AG1[2]
=



0 1 2 1 1 1 3 1 1 1
1 0 1 1 1 2 1 3 1 1
2 1 0 1 2 0 2 1 1 2
1 1 1 0 1 2 1 1 3 1
1 1 2 1 0 1 1 1 1 3
1 2 0 2 1 0 1 2 2 1
3 1 2 1 1 1 0 1 1 1
1 3 1 1 1 2 1 0 1 1
1 1 1 3 1 2 1 1 0 1
1 1 2 1 3 1 1 1 1 0


, AG2[2]

=



0 1 2 1 1 1 2 2 0 2
1 0 1 1 1 2 2 2 2 0
2 1 0 1 2 0 2 1 1 2
1 1 1 0 1 2 0 2 2 2
1 1 2 1 0 1 2 0 2 2
1 2 0 2 1 0 1 2 2 1
2 2 2 0 2 1 0 1 1 1
2 2 1 2 0 2 1 0 1 1
0 2 1 2 2 2 1 1 0 1
2 0 2 2 2 1 1 1 1 0


,

AG1[3]
=



6 3 4 5 4 2 0 3 5 4
3 4 2 6 5 4 3 4 0 5
4 2 4 2 4 8 4 2 2 4
5 6 2 4 3 4 5 0 4 3
4 5 4 3 6 2 4 5 3 0
2 4 8 4 2 4 2 4 4 2
0 3 4 5 4 2 6 3 5 4
3 4 2 0 5 4 3 4 6 5
5 0 2 4 0 2 4 5 3 6


, AG2[3]

=



4 3 4 5 6 2 1 6 2 3
3 6 2 4 5 4 2 1 3 6
4 2 4 2 4 8 4 2 2 4
5 4 2 6 3 4 6 3 1 2
6 5 4 3 4 2 3 2 6 1
2 4 8 4 2 4 2 4 4 2
1 2 4 6 3 2 6 3 5 4
6 1 2 3 2 4 3 4 6 5
2 3 2 1 6 4 5 6 4 3
3 6 4 2 1 2 4 5 3 6


,

AGc
1[2]
=



0 3 2 1 1 3 5 3 1 1
3 0 3 1 1 2 3 3 3 1
2 3 0 3 2 0 2 3 3 2
1 1 3 0 3 2 1 3 3 3
1 1 2 3 0 3 1 1 3 5
3 2 0 2 3 0 3 2 2 3
5 3 2 1 1 3 0 3 1 1
3 3 3 3 1 2 3 0 1 1
1 3 3 3 3 2 1 1 0 3
1 1 2 3 5 3 1 1 3 0


, AGc

2[2]
=



0 3 2 1 1 3 4 2 2 2
3 0 3 1 1 2 4 4 2 0
2 3 0 3 2 0 2 3 3 2
1 1 3 0 3 2 0 2 4 4
1 1 2 3 0 3 2 2 2 4
3 2 0 2 3 0 3 2 2 3
4 4 2 0 2 3 0 3 1 1
2 4 3 2 2 2 3 0 1 1
2 2 3 4 2 2 1 1 0 3
2 0 2 4 4 3 1 1 3 0


,
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AGc
1[3]
=



6 9 6 8 9 10 6 9 8 9
9 8 10 7 8 6 9 3 12 8
6 10 8 10 6 8 6 10 10 6
8 7 10 8 9 6 8 12 3 9
9 8 6 9 6 10 9 8 9 6
10 6 8 6 10 8 10 6 6 10
6 9 6 8 9 10 6 9 8 9
9 3 10 12 8 6 9 8 7 8
8 12 10 3 9 6 8 7 8 9
9 8 6 9 6 10 9 8 9 6


, AGc

2[3]
=



8 9 6 8 7 10 8 4 13 7
9 6 10 9 8 6 7 8 7 10
6 10 8 10 6 8 6 10 10 6
8 9 10 6 9 6 10 7 8 7
7 8 6 9 8 10 7 13 4 8
10 6 8 6 10 8 10 6 6 10
8 7 6 10 7 10 6 9 8 9
4 8 10 7 13 6 9 8 7 8
13 7 10 8 4 6 8 7 8 9
7 10 6 7 8 10 9 8 9 6


,

we have

AGK
1(2,1)

=
1

5



6 5 6 6 7 6 6 5 6 7
5 8 6 5 6 6 5 5 8 6
6 6 8 6 6 4 6 6 6 6
6 5 6 8 5 6 6 8 5 5
7 6 6 5 6 6 7 6 5 6
6 6 4 6 6 8 6 6 6 6
6 5 6 6 7 6 6 5 6 7
5 5 6 8 6 6 5 8 5 6
6 8 6 5 5 6 6 5 8 5
7 6 6 5 6 6 7 6 5 6


, AGK

2(2,1)
=
1

5



8 5 6 6 5 6 6 4 7 7
5 6 6 7 6 6 5 6 7 6
6 6 8 6 6 4 6 6 6 6
6 7 6 6 5 6 6 7 6 5
5 6 6 5 8 6 7 7 4 6
6 6 4 6 6 8 6 6 6 6
6 5 6 6 7 6 6 5 6 7
4 6 6 7 7 6 5 8 5 6
7 7 6 6 4 6 6 5 8 5
7 6 6 5 6 6 7 6 5 6


,

AGK
1(3,1)

=
1

5



22 18 16 16 16 20 22 18 16 16
18 24 20 14 16 16 18 18 20 16
16 20 24 20 16 12 16 20 20 16
16 14 20 24 18 16 16 20 18 18
16 16 16 18 22 20 16 16 18 22
20 16 12 16 20 24 20 16 16 20
22 18 16 16 16 20 22 18 16 16
18 18 20 20 16 16 18 24 14 16
16 20 20 18 18 16 16 14 24 18
16 16 16 18 22 20 16 16 18 22


,

AGK
2(3,1)

=
1

5



24 18 16 16 14 20 20 16 18 18
18 22 20 16 16 16 20 20 18 14
16 20 24 20 16 12 16 20 20 16
16 16 20 22 18 16 14 18 20 20
14 16 16 18 24 20 18 18 16 20
20 16 12 16 20 24 20 16 16 20
20 20 16 14 18 20 22 18 16 16
16 20 20 18 18 16 18 24 14 16
18 18 20 20 16 16 16 14 24 18
18 14 16 20 20 20 16 16 18 22


,
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AGK
1(1,2)

=
1

20



14 8 8 7 6 7 9 8 7 6
8 12 7 8 7 8 8 10 5 7
8 7 12 7 8 8 8 7 7 8
7 8 7 12 8 8 7 5 10 8
6 7 8 8 14 7 6 7 8 9
7 8 8 8 7 12 7 8 8 7
9 8 8 7 6 7 14 8 7 6
8 10 7 5 7 8 8 12 8 7
7 5 7 10 8 8 7 8 12 8
6 7 8 8 9 7 6 7 8 14


,

AGK
2(1,2)

=
1

20



12 8 8 7 8 7 8 10 5 7
8 14 7 6 7 8 9 8 7 6
8 7 12 7 8 8 8 7 7 8
7 6 7 14 8 8 6 7 8 9
8 7 8 8 12 7 7 5 10 8
7 8 8 8 7 12 7 8 8 7
8 9 8 6 7 7 14 8 7 6
10 8 7 7 5 8 8 12 8 7
5 7 7 8 10 8 7 8 12 8
7 6 8 9 8 7 6 7 8 14


,

AGK
1(1,3)

=
1

80



34 26 34 33 35 30 34 26 33 35
26 40 30 29 33 34 26 35 34 33
34 30 40 30 34 24 34 30 30 34
33 29 30 40 26 34 33 34 35 26
35 33 34 26 34 30 35 33 26 34
30 34 24 34 30 40 30 34 34 30
34 26 34 33 35 30 34 26 33 35
26 35 30 34 33 34 26 40 29 33
33 34 30 35 26 34 33 29 40 26
35 33 34 26 34 30 35 33 26 34


,

AGK
2(1,3)

=
1

80



40 26 34 33 29 30 31 30 29 38
26 34 30 35 33 34 29 31 38 30
34 30 40 30 34 24 34 30 30 34
33 35 30 34 26 34 30 38 31 29
29 33 34 26 40 30 38 29 30 31
30 34 24 34 30 40 30 34 34 30
31 29 34 30 38 30 34 26 33 35
30 31 30 38 29 34 26 40 29 33
29 38 30 31 30 34 33 29 40 26
38 30 34 29 31 30 35 33 26 34


,
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AGK
1(2,3)

=
1

80



92 99 94 98 95 98 92 99 98 95
99 84 98 103 98 94 99 99 88 98
94 98 88 98 94 104 94 98 98 94
98 103 98 84 99 94 98 88 99 99
95 98 94 99 92 98 95 98 99 92
98 94 104 94 98 88 98 94 94 98
92 99 94 98 95 98 92 99 98 95
99 99 98 88 98 94 99 84 103 98
98 88 98 99 99 94 98 103 84 99
95 98 94 99 92 98 95 98 99 92


,

AGK
2(2,3)

=
1

80



84 99 94 98 103 98 94 104 93 93
99 92 98 95 98 94 97 94 93 100
94 98 88 98 94 104 94 98 98 94
98 95 98 92 99 94 100 93 94 97
103 98 94 99 84 98 93 93 104 94
98 94 104 94 98 88 98 94 94 98
94 97 94 100 93 94 99 84 103 98
93 93 98 94 104 94 98 103 84 99
93 100 94 97 94 98 95 98 99 92


,

AGK
1(3,2)

=
1

20



50 71 76 73 76 74 80 71 73 76
71 60 74 66 73 76 71 72 84 73
76 74 56 74 76 64 76 74 74 76
73 66 74 60 71 76 73 84 72 71
76 73 76 71 50 74 76 73 71 80
74 76 64 76 74 56 74 76 76 74
80 71 76 73 76 74 50 71 73 76
71 72 74 84 73 76 71 60 66 73
73 84 74 72 71 76 73 66 60 71
76 73 76 71 80 74 76 73 71 50


,

AGK
2(3,2)

=
1

20



60 71 76 73 66 74 77 66 78 79
71 50 74 76 73 76 74 77 79 70
76 74 56 74 76 64 76 74 74 76
73 76 74 50 71 76 70 79 77 74
66 73 76 71 60 74 79 78 66 77
74 76 64 76 74 56 74 76 76 74
77 74 76 70 79 74 50 71 73 76
66 77 74 79 78 76 71 60 66 73
78 79 74 77 66 76 73 66 60 71
79 70 76 74 77 74 76 73 71 50


.



3. (p, q)-Laplacians of Kähler graphs of product type whose principal

graphs are unions of original graphs

In this section, we study (p, q)-step combinatorial and transitional Laplacians for

those four Kähler graphs of product types G□̂H,G⊠̂H,G⊗̂H,G▷H.

3.1. (p, q)-Laplacians of Kähler graphs of Cartesian product type.

Theorem 5.4. Let G = (V,E), H = (W,F ) be regular finite graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of the transitional Laplacian ∆PG

of G, and by

0 = ν1 ≤ · · · ≤ νnH
the eigenvalues of the transitional Laplacian ∆PH

of H. Then the

eigenvalues of the (p, q)-probabilistic transition Laplacian ∆Q(p,q)
of G□̂H are

1−
Fp

(
dG(1− µi); dG)Fq

(
dH(1− να); dH)

dGdH(dG − 1)p−1(dH − 1)q−1

for i = 1, . . . , nG and α = 1, . . . , nH . The eigenvalues of the (p, q)-combinatorial

Laplacian ∆A(p,q)
of G□̂H are

dG(dG − 1)p−1 −
Fp

(
dG(1− µi); dG)Fq

(
dH(1− να); dH)

dH(dH − 1)q−1

for i = 1, . . . , nG and α = 1, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)

G□̂H
= dG, d

(a)

G□̂H
= dH .

By using the same notations as in Theorem 4.4, the adjacency matrices of the principal

and the auxiliary graphs of G□̂H are expressed as

A
(p)

G□̂H
= (a

(p)
(i,α),(j,β)) =

(
aGijδα,β

)
, A

(a)

G□̂H
= (a

(a)
(i,α),(j,β)) =

(
δija

H
α,β

)
by use of the adjacency matrices AG = (aGij) and AH = (aHαβ) of G and H (c.f. §4.3.1).

By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1 − µ)f and AHg = dH(1 − ν)g. We take a function φf,g : V ×W → R
216
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defined by φf,g(v, w) = f(v)g(w). By using canonical basis, we can correspond to

these functions f, g and φf,g to vectors as

f ↔

 ζ1
...
ζnG

 , g ↔

 η1
...
ηnG

 , φf,g ↔



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnG


.

As we have

AG

 ζ1
...
ζnG

 = dG(1− µ)

 ζ1
...
ζnG

 and AH

 η1
...
ηnG

 = dH(1− ν)

 η1
...
ηnG

 ,

we find

A
(p)

G□̂H



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnG


= dG(1− µ)



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnG


,

A
(a)

G□̂H



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnG


= dH(1− ν)



ζ1η1
...

ζ1ηnH

...
ζnG

η1
...

ζnG
ηnG


.

This means that

A(p)

G□̂H
φf,g = dG(1− µ)φf,g and A(a)

G□̂H
φf,g = dH(1− ν)φf,g.

Since G□̂H is regular, we get the conclusion by Theorem 5.1. □
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3.2. (p, q)-Laplacians of Kähler graphs of strong product type.

Theorem 5.5. Let G = (V,E), H = (W,F ) be finite regular graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of the transitional Laplacian ∆PG

of G, and by

0 = ν1 ≤ · · · ≤ νnH
the eigenvalues of the transitional Laplacian ∆PH

of H. Then the

eigenvalues of the transitional (p, q) Laplacian∆P(p,q)
of G⊠̂H are

1−
Fp

(
dG(1− µi); dG

)
Fq

(
dH(dG − dGµi + 1)(1− να); dH(dG + 1)

)
dGdH(dG + 1)(dG − 1)p−1(dGdH + dH − 1)q−1

.

The eigenvalues of the (p, q)-combinatorial Laplacian ∆A(p,q)
of G⊠̂H are

dG(dG − 1)p−1 −
Fp

(
dG(1− µi); dG

)
Fq

(
dH(dG − dGµj + 1)(1− να); dH(dG + 1)

)
dH(dG + 1)(dGdH + dH − 1)q−1

.

Proof. As we see in §2.2.2, we have

d
(p)

G⊠̂H
= dG, d

(a)

G⊠̂H
= dH(dG + 1).

By using the same notations as in Theorem 4.4, the adjacency matrices of the principal

and the auxiliary graphs of G⊠̂H are expressed as

A
(p)

G⊠̂H
= (a

(p)
(i,α),(j,β)) =

(
aGijδα,β

)
, A

(a)

G⊠̂H
= (a

(a)
(i,α),(j,β)) =

(
(aGij + δij)a

H
α,β

)
by use of the adjacency matrices AG = (aGij) and AH = (aHαβ) of G and H (c.f. §4.3.2).

By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1 − µ)f and AHg = dH(1 − ν)g. We take a function φf,g : V ×W → R

defined by φf,g(v, w) = f(v)g(w). By a similar computation as in the proof of Theorem

5.4, we have

A(p)

G⊠̂H
φf,g = dG(1− µ)φf,g and A(a)

G⊠̂H
φf,g = dH(1− ν){dG(1− µ) + 1}φf,g.

Since G⊠̂H is regular, we get the conclusion by Theorem 5.1. □
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3.3. (p, q)-Laplacians of Kähler graphs of semi-tensor product type.

Theorem 5.6. Let G = (V,E), H = (W,F ) be finite regular graphs. We denote

by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of the transition Laplacian ∆PG

of G, and by

0 = ν1 ≤ · · · ≤ νnH
the eigenvalues of the transitional Laplacian ∆PH

of H. Then the

eigenvalues of the (p, q)-probabilistic transitional Laplacian ∆P(p,q)
of G⊗̂H are

1−
Fp

(
dG(1− µi); dG)Fq

(
dGdH(1− µi)(1− να); dHdG

)
d2GdH(dG − 1)p−1(dGdH − 1)q−1

.

The eigenvalues of the combinatorial (p, q) Laplacian∆A(p,q)
of G⊗̂H are

dG(dG − 1)p−1 −
Fp

(
dG(1− µi); dG

)
Fq

(
dGdH(1− µi)(1− να); dHdG

)
dGdH(dGdH − 1)q−1

.

Proof. As we see in §2.2.2, we have

d
(p)

G⊗̂H
= dG, d

(a)

G⊗̂H
= dGdH .

By using the same notations as in Theorem 4.4, the adjacency matrices of the principal

and the auxiliary graphs of G⊗̂H are expressed as

A
(p)

G⊗̂H
= (a

(p)
(i,α),(j,β)) =

(
aGijδα,β

)
, A

(a)

G⊗̂H
= (a

(a)
(i,α),(j,β)) =

(
aGija

H
α,β

)
by use of the adjacency matrices AG = (aGij) and AH = (aHαβ) of G and H (c.f. §4.3.3).

By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1 − µ)f and AHg = dH(1 − ν)g. We take a function φf,g : V ×W → R

defined by φf,g(v, w) = f(v)g(w). By a similar computation as in the proof of Theorem

5.4, we have

A(p)

G⊗̂H
φf,g = dG(1− µ)φf,g and A(a)

G⊗̂H
φf,g = dGdH(1− µ)(1− ν)φf,g.

Since G⊗̂H is regular, we get the conclusion by Theorem 5.1. □
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3.4. (p, q)-Laplacians of Kähler graphs of lexicographical product type.

Proposition 5.3. Let G = (V,E), H = (W,F ) be finite regular graphs. Suppose

G is connected. We denote by 0 = µ1 < · · · ≤ µnG
the eigenvalues of the transition

Laplacian ∆PG
of G, by 0 = ν1 ≤ · · · ≤ νnH

the eigenvalues of the transitional Lapla-

cian ∆PH
of H. Also we denote by kH the numbers of connected components of H.

Then the eigenvalues of the (p, q)-probabilistic transitional Laplacian ∆P(p,q)
of their

Kähler graph G▷H of lexicographical product type are as follows:

(1) When q is odd, they are 0, 1 and

1−
Fq

(
nGdH(1− να);nGdH

)
nGdH(nGdH − 1)q−1

, (α = kH + 1, . . . , nH)

where the first 0 appears kH times, the second 1 appears (nG − 1)nH times.

(2) When q is even, they are 0 and

1−
Fq

(
nGdH(1− να);nGdH

)
nGdH(nGdH − 1)q−1

, (α = kH + 1, . . . , nH),

1−
(−1)q/2Fp

(
dH(1− µi); dH

)
dG(dG − 1)p−1(nGdH − 1)q/2

, (i = 2, . . . , nG),

where the first 0 appears kH times, and each of the last form appears nH times.

Proof. As we see in §2.2.2, we have

d
(p)
G▷H = dG, d

(a)
G▷H = nGdH .

By using the same notations as in Theorem 4.4, the adjacency matrices of the principal

and the auxiliary graphs of G▷H are expressed as

A
(p)
G▷H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ

)
, A

(a)
G▷H = (a

(a)
(i,α),(j,β)) =

(
aHαβ

)
by use of the adjacency matrices AG = (aGij) and AH = (aHαβ) of G and H (c.f. §4.3.4).

Since G is regular, we have

A
(p)
G▷HA

(a)
G▷H =

( nG∑
k=1

nH∑
γ=1

aGikδαγa
H
γβ

)
=
(
dGa

H
αβ

)
,

A
(a)
G▷HA

(p)
G▷H =

( nG∑
k=1

nH∑
γ=1

aHαγa
G
kjδγβ

)
=
(
dGa

H
αβ

)
,
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hence find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1 − µ)f and AHg = dH(1 − ν)g. We take a function φf,g : V ×W → R

defined by φf,g(v, w) = f(v)g(w). We then have A(p)
G▷Hφf,g = dG(1− µ)φf,g and

A(a)
G▷Hφf,g =

{
nGdH(1− ν)φf,g, when µ = 0,

0, when µ ̸= 0,

because f is constant when µ = 0 and
∑

v∈V f(v) = 0 when µ ̸= 0 by the property that

G is connected. By Theorem 5.1, we find that the eigenvalues of (p, q)-probabilistic

transition Laplacian ∆Q(p,q)
are

1−
Fp(dG; dG)Fq

(
nGdH(1− να);nGdH

)
dG(dG − 1)p−1nGdH(nGdH − 1)q−1

, (α = 1, . . . , nH),

1−
Fp(dG(1− µi); dG)Fq

(
0;nGdH

)
dG(dG − 1)p−1nGdH(nGdH − 1)q−1

, (i = 2, . . . , nG),

where each of the former form appears kG times and each of the latter form appears

nH time. Here, we have Fp(dG; dG) = dG(dG−1)p−1, Fq(nGdH ;nGdH) = nGdH(nGdH−

1)q−1 and F2ℓ−1(0;nGdH) = 0, F2ℓ(0;nGdH) = (−1)ℓnGdH(nGdH − 1)ℓ−1. Since µ2 > 0

and ν1 = · · · = νkH = 0, we get the conclusion. □

We can extend the above result to the case that the former component is not

regular. When q is odd, we can show that the same assertions as in Proposition 5.3

hold.

Theorem 5.7. Let G = (V,E), H = (W,F ) be finite graphs. We suppose H

is regular. We denote by 0 = ν1 ≤ · · · ≤ νnH
the eigenvalues of the transitional

Laplacian ∆PH
of H, and by kH the number of connected components of H. If q is

odd, the eigenvalues of the (p, q)-probabilistic transitional Laplacian ∆P(p,q)
of their

Kähler graph G▷H of lexicographical product type are 0, 1 and

1−
Fq

(
nGdH(1− να);nGdH

)
nGdH(nGdH − 1)q−1

, (α = kH + 1, . . . , nH)

where the first 0 appears kH times, the second 1 appears (nG − 1)nH times.
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Proof. First we study the q-step adjacency operator A
(G▷H)

(a)
[q]

of the auxiliary

graph of G▷H. The adjacency matrix of the auxiliary graph is given as

A
(a)
G▷H =

AH · · · AH
...

...
AH · · · AH

 ,

hence we have

(A
(a)
G▷H)

k =

n
k−1
G Ak

H · · · nk−1
G Ak

H
...

...
nk−1
G Ak

H · · · nk−1
G Ak

H

 .

As a matter of fact, this holds when k = 1. If this holds for k, we have

(A
(a)
G▷H)

k+1 = (A
(a)
G▷H)

kA
(a)
G▷H

=

n
k−1
G Ak

H · · · nk−1
G Ak

H
...

...
nk−1
G Ak

H · · · nk−1
G Ak

H


AH · · · AH

...
...

AH · · · AH

 =

nk
GA

k+1
H · · · nk

GA
k+1
H

...
...

nk
GA

k+1
H · · · nk

GA
k+1
H

 .

Thus by mathematical induction we find that (A
(a)
G▷H)

k is of the form.

We now study the q-step probabilistic transition matrix

Q
(G▷H)

(a)
[q]

= {nGdH(dGdH − 1)q−1}−1Fq(A
(a)
G▷H ;nGdH)

of the auxiliary graph. We here show

Fq(A
(a)
G▷H ;nGdH)

=



Nq · · · Nq

...
...

Nq · · · Nq

 , when q is odd,

Nq · · · Nq

...
...

Nq · · · Nq

+ (−1)q/2nGdH(nGdH − 1)(q/2)−1I, when q is even,

where

Nq =

{
n−1
G Fq(nGAH ;nGdH), when q is odd,

n−1
G Fq(nGAH ;nGdH)− (−1)q/2dH(nGdH − 1)(q/2)−1I, when q is even,

by mathematical induction. Since we have

F1(A
(a)
G▷H ;nGdH) = A

(a)
G▷H ,
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F2(A
(a)
G▷H ;nGdH) = (A

(a)
G▷H)

2 − nGdHI

=

n
−1
G (nGAH)

2 · · · n−1
G (nGAH)

2

...
...

n−1
G (nGAH)

2 · · · n−1
G (nGAH)

2

− nGdHI

=

n
−1
G {F2(nGAH ;nGdH)+nGdHI} · · · n−1

G {F2(nGAH ;nGdH)+nGdHI}
...

...
n−1
G {F2(nGAH ;nGdH)+nGdHI} · · · n−1

G {F2(nGAH ;nGdH)+nGdHI}

− nGdHI,

the above expressions hold for q = 1, 2. We here suppose that the above expression

holds for 1 ≤ q ≤ 2ℓ (ℓ ≥ 1). As we have

Fq+1(A
(a)
G▷H ;nGdH) = Fq(A

(a)
G▷H ;nGdH)A

(a)
G▷H − (nGdH − 1)Fq−1(A

(a)
G▷H ;nGdH),

we find that

F2ℓ+1(A
(a)
G▷H ;nGdH)

=

N2ℓ · · · N2ℓ
...

...
N2ℓ · · · N2ℓ

AH · · · AH
...

...
AH · · · AH

+ (−1)ℓnGdH(nGdH − 1)ℓ−1A
(a)
G▷H

− (nGdH − 1)

N2ℓ−1 · · · N2ℓ−1
...

...
N2ℓ−1 · · · N2ℓ−1



=

nGN2ℓAH · · · nGN2ℓAH
...

...
nGN2ℓAH · · · nGN2ℓAH

+ (−1)ℓnGdH(nGdH − 1)ℓ−1A
(a)
G▷H

− (nGdH − 1)

N2ℓ−1 · · · N2ℓ−1
...

...
N2ℓ−1 · · · N2ℓ−1

 .

As we have

nGN2ℓAH + (−1)ℓnGdH(nGdH − 1)ℓ−1AH − (nGdH − 1)N2ℓ−1

= n−1
G

{
F2ℓ(nGAH ;nGdH)nGAH − (nGdH − 1)F2ℓ−1(nGAH ;nGdH)

}
= n−1

G F2ℓ+1(nGAH ;nGdH),
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we find that the expression of Fq(A
(a);nGdH) holds for q = 2ℓ+ 1. We therefore have

F2ℓ+2(A
(a);ngdH)

=

nGN2ℓ+1AH · · · nGN2ℓ+1AH
...

...
nGN2ℓ+1AH · · · nGN2ℓ+1AH


− (nGdH − 1)

N2ℓ · · · N2ℓ
...

...
N2ℓ · · · N2ℓ

− (−1)ℓnGdH(nGdH − 1)ℓInH
.

As we have

nGN2ℓ+1AH − (nGdH − 1)N2ℓ

= n−1
G

{
F2ℓ+1(nGAH ;nGdH)nGAH − (nGdH − 1)F2ℓ(nGAH ;nGdH)

}
− (−1)ℓ+1nGdH(nGdH − 1)ℓInH

= n−1
G F2ℓ+2(nGAH ;nGdH)− (−1)ℓ+1nGdH(nGdH − 1)ℓInH

,

we find that the expression of Fq(A
(a);nGdH) holds for q = 2ℓ + 2. Thus we get the

form of Fq(A
(a);nGdH) by induction.

We set Nq = (bαβ;q). Then Q(G▷H)
(a)
[q]

is expressed as{
(cαβ;q), when q is odd,

(cαβ;q) + (−1)q/2(nGdH − 1)−q/2(δijδαβ), when q is even,

where cαβ;q = bαβ;q/{nGdH(nGdH − 1)q−1}. We denote by AG[p]
= (aGij;p) the p-step

adjacency matrix of G. Then denoting by dG:p(v) cardinality of the set of all p-step

paths without backtracking emanating from v, we have dG:p(vi) =
∑

j a
G
ij;p. Since the

principal graph of G ▷ H is isomorphic to a disjoint union of nH-copies of G, the p-

step adjacency matrix of the principal graph of G ▷ H is expressed as A
(G▷H)

(p)
[p]

=

(a
(p)
(i,α),(j,β);p) = (aGij;pδαβ).

When q is odd, the (p, q)-probabilistic transition matrix QG▷H(p,q)
is given as

QG▷H(p,q)
= Q

(G▷H)
(p)
[p]

Q
(G▷H)

(a)
[q]

=
(
dG;p(i)

−1aGij;pδαβ
)
(cαβ;q) =

(
dG;p(i)

−1
(∑

j

aGij;p
)
cαβ;q

)
= (cαβ;q),

where dG;p(i) denotes the cardinality of p-step paths on G without backtracking em-

anating from vi. We define functions ϵk (k = 1, . . . , nG) on V by ϵ1 ≡ 1, and by
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ϵk = δv1 − δvi for 2 ≤ k ≤ nG. For a function gα on W satisfying ∆PH
g = νγgγ we

define a function φϵk,gγ on V ×W by φϵk,gγ (v, w) = ϵi(v)gγ(w). If we represent φϵk,gγ

by vectors (ζ
(k)
i η

(γ)
α ), we have

QG▷H(p,q)
(ζ

(k)
j η

(γ)
β ) =

( nG∑
j=1

nH∑
β=1

cαβ;qζ
(k)
j η

(γ)
β

)

=


(
nG

nH∑
β=1

cαβ;qη
(γ)
β

)
, when k = 1,

0, when k ̸= 1.

Hence we have

Qp,qψ1,α =
Fq(nGdH(1− νγ);nGdH)

nGdH(nGdH − 1)q−1
φϵ1,gγ , Qp,qφϵk,gγ = 0 (k = 2, . . . , nG),

and get the conclusion. □

Example 5.4. Let G be a 3-circuit and H be a 4-circuit. The eigenvalues of ∆PG

and ∆PH
are {0, 3

2
, 3
2
} and {0, 1, 1, 2}, respectively. We take their Kähler graph G▷H

of lexicographical product type. The eigenvalues of some (p, q)-probabilistic transition

Laplacian are as follows:

Spec
(
∆Q(G▷H)(1,1)

)
= Spec

(
∆Q(G▷H)(1,3)

)
= Spec

(
∆Q(G▷H)(2,1)

)
= Spec

(
∆Q(G▷H)(2,3)

)
= Spec

(
∆Q(G▷H)(3,1)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2},

Spec
(
∆Q(G▷H)(1,2)

)
=

{
0, 0,

9

10
,
9

10
,
9

10
,
9

10
,
9

10
,
9

10
,
9

10
,
9

10
,
6

5
,
6

5

}
,

Spec
(
∆Q(G▷H)(3,2)

)
=

{
0, 0,

6

5
,
6

5
,
6

5
,
6

5
,
6

5
,
6

5
,
6

5
,
6

5
,
6

5
,
6

5

}
,

Spec
(
∆Q(G▷H)(3,4)

)
=

{
0, 0,

24

25
,
24

25
,
24

25
,
24

25
,
24

25
,
24

25
,
24

25
,
24

25
,
24

25
,
24

25

}
Since G is a 3-circuit and H is a 4-circuit, we have Q

(G▷H)
(p)
[3ℓ+1]

= Q
(G▷H)

(p)
[3ℓ+1]

=

Q(G▷H)(p) and Q(G▷H)
(p)
[3ℓ]

= Q
(G▷H)

(p)
[3]

. We therefore have

Spec
(
∆Q(G▷H)(3ℓ+1,q)

)
= Spec

(
∆Q(G▷H)(3ℓ+2,q)

)
= Spec

(
∆Q(G▷H)(1,q)

)
,

Spec
(
∆Q(G▷H)(3ℓ,q)

)
= Spec

(
∆Q(G▷H)(3,q)

)
.



226 V. Eigenvalues of (p, q)-Laplacians for Kähler graphs

We note F2(t; 6) = t2 − 6, F3(t; 6) = t3 − 11t, F4(t; 6) = t4 − 16t2 + 30.

Example 5.5. Let G be a non-regular graph with nG = 4 and H be a 4-circuit.

The eigenvalues of ∆PG
and ∆PH

are {0, 1, 4
3
, 5
3
} and {0, 1, 1, 2}, respectively. We take

their Kähler graph G ▷ H of lexicographical product type. The eigenvalues of some

(p, q)-probabilistic transition Laplacian are as follows:

Spec
(
∆Q(G▷H)(1,1)

)
= Spec

(
∆Q(G▷H)(1,3)

)
= Spec

(
∆Q(G▷H)(1,5)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2},

Spec
(
∆Q(G▷H)(1,2)

)
=

{
0, 0,

19

21
,
19

21
,
19

21
,
19

21
,
20

21
,
20

21
,
20

21
,
20

21
, 1, 1, 1, 1,

8

7
,
8

7

}
,

Spec
(
∆Q(G▷H)(1,4)

)
=

{
0, 0,

48

49
,
48

49
, 1, 1, 1, 1,

148

147
,
148

147
,
148

147
,
148

147
,
149

147
,
149

147
,
149

147
,
149

147

}
,

Spec
(
∆Q(G▷H)(1,6)

)
=

{
0, 0,

1027

1029
,
1027

1029
,
1027

1029
,
1027

1029
,
1028

1029
,
1028

1029
,
344

343
,
344

343

}
.

Example 5.6. Let G be a union of two 3-circuit and H be a 4-circuit. The

eigenvalues of∆PH
are {0, 1, 1, 2}. We take their Kähler graph G▷H of lexicographical

product type (see Example 4.22 in §4.3). The eigenvalues of some (p, q)-probabilistic

transition Laplacian are as follows:

Spec
(
∆Q(G▷H)(1,3)

)
= Spec

(
∆Q(G▷H)(1,5)

)
= Spec

(
∆Q(G▷H)(2,1)

)
= Spec

(
∆Q(G▷H)(3,1)

)
= Spec

(
∆Q(G▷H)(4,1)

)
= Spec

(
∆Q(G▷H)(5,1)

)
= Spec

(
∆Q(G▷H)(2,3)

)
= Spec

(
∆Q(G▷H)(4,3)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2},

Spec
(
∆Q(G▷H)(1,2)

)
= Spec

(
∆Q(G▷H)(5,2)

)
=


0, 0,

21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,
21

22
,

21

22
,
21

22
,
21

22
,
21

22
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11

 ,

Spec
(
∆Q(G▷H)(3,2)

)
=


0, 0,

12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,

12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11
,
12

11

 ,
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Spec
(
∆Q(G▷H)(1,4)

)
= Spec

(
∆Q(G▷H)(5,4)

)

=



0, 0,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,

243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242
,

243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242
,
243

242


,

Spec
(
∆Q(G▷H)(3,4)

)
=


0, 0,

120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,

120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,
120

121
,

 .

SinceG is a union of two 3-circuits, we note thatQ
(G▷H)

(p)
[3ℓ+1]

= Q
(G▷H)

(p)
[3ℓ+1]

= Q(G▷H)(p)

and Q
(G▷H)

(p)
[3ℓ]

= Q
(G▷H)

(p)
[3]

. We therefore have

Spec
(
∆Q(G▷H)(3ℓ+1,q)

)
= Spec

(
∆Q(G▷H)(3ℓ+2,q)

)
= Spec

(
∆Q(G▷H)(1,q)

)
,

Spec
(
∆Q(G▷H)(3ℓ,q)

)
= Spec

(
∆Q(G▷H)(3,q)

)
,

for an arbitrary positive integer q.

Example 5.7. Let G be a union of a 3-circuit and a 4-circuit, and H be a 4-circuit.

The eigenvalues of∆PG
and∆PH

are {0, 0, 1, 1, 3
2
, 3
2
, 2} and {0, 1, 1, 2}, respectively. We

take their Kähler graph G ▷ H of lexicographical product type (see Example 5.7 in

§4.3). The eigenvalues of some (p, q)-probabilistic transition Laplacian are as follows:

Spec
(
∆Q(G▷H)(1,3)

)
= Spec

(
∆Q(G▷H)(1,5)

)
= Spec

(
∆Q(G▷H)(2,1)

)
= Spec

(
∆Q(G▷H)(3,1)

)
= Spec

(
∆Q(G▷H)(4,1)

)
= Spec

(
∆Q(G▷H)(5,1)

)
= Spec

(
∆Q(G▷H)(2,3)

)
= Spec

(
∆Q(G▷H)(4,3)

)
= {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2},

Spec
(
∆Q(G▷H)(1,2)

)
= Spec

(
∆Q(G▷H)(5,2)

)
=


0, 0,

12

13
,
12

13
,
12

13
,
12

13
,
25

26
,
25

26
,
25

26
,
25

26
,
25

26
,
25

26
,
25

26
,
25

26
,

1, 1, 1, 1, 1, 1, 1, 1,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13

 ,
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Spec
(
∆Q(G▷H)(1,4)

)
= Spec

(
∆Q(G▷H)(5,4)

)
=


0, 0,

168

169
,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
, 1, 1, 1, 1, 1, 1, 1, 1,

338

339
,
338

339
,
338

339
,
338

339
,
338

339
,
338

339
,
338

339
,
338

339
,
170

169
,
170

169
,
170

169
,
170

169

 ,

Spec
(
∆Q(G▷H)(3,2)

)
=


0, 0,

12

13
,
12

13
,
12

13
,
12

13
, 1, 1, 1, 1, 1, 1, 1, 1,

14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,
14

13
,

 ,

Spec
(
∆Q(G▷H)(3,4)

)
=



0, 0,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
,

168

169
,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
,
168

169
,

1, 1, 1, 1, 1, 1, 1, 1,
170

169
,
170

169
,
170

169
,
170

169


.

3.5. (p, q)-isospectrality of Kähler graphs of product types whose prin-

cipal graphs are union of original graphs. We here summarize conditions for

isospectral Kähler graphs of product types discussed in this section.

Corollary 5.4. Let G1, G2 and H1, H2 be two pairs of isospectral regular fi-

nite graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1□̂H1, G2□̂H2 of Cartesian product type are (p, q)-isospectral for an arbitrary pair

(p, q) of relatively prime positive integers.

Corollary 5.5. Let G1, G2 and H1, H2 be two pairs of isospectral regular fi-

nite graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1⊠̂H1, G2⊠̂H2 of strong product type are (p, q)-isospectral for an arbitrary pair (p, q)

of relatively prime positive integers.

Corollary 5.6. Let G1, G2 and H1, H2 be two pairs of isospectral regular fi-

nite graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1⊗̂H1, G2⊗̂H2 of semi-tensor product type are (p, q)-isospectral for an arbitrary pair

(p, q) of relatively prime positive integers.
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Corollary 5.7. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

graphs. We suppose that G1, G2 are connected and that dG1 = dG2 and dH1 = dH2

hold. Then their Kähler graphs G1 ▷H1, G2 ▷H2 of lexicographical product type are

(p, q)-isospectral for an arbitrary pair (p, q) of relatively prime positive integers.

Proposition 5.4. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

graphs. We suppose that G1, G2 have the same numbers of connected components (i.e.

kG1 = kG2) and that dG1 = dG2 and dH1 = dH2 hold. Then their Kähler graphs

G1 ▷H1, G2 ▷H2 of lexicographical product type are (p, q)-isospectral for an arbitrary

pair (p, q) of relatively prime positive integers with odd q.



4. (p,q)-Laplacians of Kähler graphs of product type obtained by

commutative operations

In this section we treat Kähler graph of product type made by regular graphs. By

making use of Theorem 5.1, we calculated eigenvalues of the following Kähler graphs

produce type; G⊞H, G⊡H, G♢H, G⋇H,G♠H and G♣H.

4.1. (p, q)-Laplacians of Kähler graphs of Cartesian-tensor product type.

Theorem 5.8. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs. We

denote by 0 = µ1 ≤ · · · ≤ µnG
the eigenvalues of ∆PG

, and by 0 = ν1 ≤ · · · ≤ νnH
that

of ∆PH
. Then the eigenvalues of ∆Q(p,q)

for their Kähler graph G⊞H are

1−
Fp

(
dG(1− µi) + dH(1− να); dG + dH

)
Fq

(
dGdH(1− µi)(1− να); dGdH

)
dGdH(dG + dH)(dG + dH − 1)p−1(dGdH − 1)q−1

for i = 1, · · · , nG and α = 1, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)
G⊞H = dG + dH , d

(a)
G⊞H = dGdH .

By using the same notations as in Theorem 4.16, the adjacency matrices of the principal

and the auxiliary graphs of G⊞H are expressed as

A
(p)
G⊞H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ

)
, A

(a)
G⊞H = (a

(a)
(i,α),(j,β)) =

(
aGija

H
αβ

)
by use of the adjacency matrices AG = (aGij) and AH = (aHαβ) of G and H (see §4.6.1).

By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1 − µ)f and AHg = dH(1 − ν)g. We take a function φf,g : V ×W → R

defined by φf,g(v, w) = f(v)g(w). By the same computation as in the proof of Theorem

230
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4.16, we obtain

A(p)
G⊞Hφf,g = {dG(1− µ) + dH(1− ν)}φf,g,

A(a)
G⊞Hφf,g = dG(1− µ)dH(1− ν)φf,g.

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.8. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs G1⊞H1, G2⊞

H2 of Cartesian-tensor product type are (p, q)-isospectral for an arbitrary pair (p, q) of

relatively prime positive integers.

4.2. (p, q)-Laplacians of Kähler graphs of Cartesian-complement product

type.

Theorem 5.9. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(p,q)
for their Kähler graph G⊡H are

0,

1−
Fp

(
dG + dH(1− να) ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
dH(1−να)(nG−2dG−1)− dG ; dG(nH−dH−1) + dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
dG(1−µi)(nH−2dH−1)− dH ; dG(nH−dH−1) + dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH(1− να) ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
−2dGdH(1−µi)(1−να)−dG(1−µi)−dH(1−να) ; dG(nH−dH−1)+dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

.

for i = 2, · · · , nG and α = 2, . . . , nH .
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Proof. As we see in §2.2.2, we have

d
(p)
G⊡H = dG + dH , d

(a)
G⊡H = dG(nH − dH − 1) + dH(nG − dG − 1).

By using the same notations as in Theorem 4.17, the adjacency matrices of the principal

and the auxiliary graphs of G⊡H are expressed as

A
(p)
G⊡H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ

)
, A

(a)
G⊡H = (a

(a)
(i,α),(j,β)) =

(
aGija

Hc

αβ + aG
c

ij a
H
αβ

)
by use of the adjacency matrices AG = (aGij), AH = (aHαβ), AGc = (aG

c

ij ), AHc = (aH
c

αβ ) of

G,H and their complement graphs Gc, Hc (see §4.6.2). Since aG
c

ij = 1 − δij − aGij and

aH
c

αβ = 1− δαβ − aHαβ, by these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
. Then we have

AGf = dG(1− µ)f, AHg = dH(1− ν)g and

AGcf =

{
(nG − dG − 1)f, when µ = 0,

{−1− dG(1− µ)}f, when µ ̸= 0,

AHcg =

{
(nH − dH − 1)g, when ν = 0,

{−1− dH(1− ν)}g, when ν ̸= 0.

We consider the function φf,g : V ×W → R defined by φf,g(v, w) = f(v)g(w). By

the expressions of adjacency matrices of principal and the auxiliary graphs, doing the

same computation as in the proof of Theorem 4.17, we have

A(p)
G⊡Hφf,g = {dG(1− µ) + dH(1− ν)}φf,g,

A(a)
G⊡Hφf,g =


{dG(nH−dH−1) + dH(nG−dG−1)}φf,g, µ = ν = 0,

{dG(dHν−dH−1) + dH(1−ν)(nG−dG−1)}φf,g, µ = 0, ν ̸= 0,

{dG(1−µ)(nH−dH−1) + dH(dGµ−dG−1)}φf,g, µ ̸= 0, ν = 0,

{dG(1−µ)(nH−dH−1) + dH(1−ν)(nG−dG−1)}φf,g, µ ̸= 0, ν ̸= 0.

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.9. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

connected graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1 ⊡ H1, G2 ⊡ H2 of Cartesian-complement product type are (p, q)-isospectral for an

arbitrary pair (p, q) of relatively prime positive integers.
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4.3. (p, q)-Laplacians of Kähler graphs of Cartesian-lexicographical prod-

uct type.

Theorem 5.10. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues

of ∆Q(p,q)
for their Kähler graph G♢H are

0,

1−
Fp

(
dG + dH(1− να) ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
dH(1−να)(nG−1)− dG ; dG(nH−1) + dH(nG−1)

)
{dG(nH−1) + dH(nG−1)}{dG(nH−1) + dH(nG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
dG(1−µi)(nH−1)− dH ; dG(nH−1) + dH(nG−1)

)
{dG(nH−1) + dH(nG−1)}{dG(nH−1) + dH(nG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH(1− να) ; dG + dH

)
(dG + dH)(dG + dH − 1)p−1

×
Fq

(
−dG(1−µi)− dH(1−να) ; dG(nH−1) + dH(nG−1)

)
{dG(nH−1) + dH(nG−1)}{dG(nH−1) + dH(nG−1)− 1}q−1

.

for i = 2, · · · , nG and α = 2, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)
G♢H = dG + dH , d

(a)
G♢H = dH(nG − 1) + dG(nH − 1).

By using the same notations as in Theorem 4.18, the adjacency matrices of the principal

and the auxiliary graphs of G♢H are expressed as

A
(p)
G♢H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ

)
,

A
(a)
G♢H = (a

(a)
(i,α),(j,β)) =

(
aGij(1− δαβ) + aHαβ(1− δij)

)
by use of the adjacency matrices AG = (aGij), AH = (aHαβ) of G and H (see §4.6.3).

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
, and consider
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the function φf,g : V × W → R defined by φf,g(v, w) = f(v)g(w). Then we have

AGf = dG(1− µ)f and AHg = dH(1− ν)g. Since we have

∑
v∈V

f(v) =

{
nGf(∗), when µ = 0,

0, when µ ̸= 0,

∑
w∈W

g(w) =

{
nHg(∗), when ν = 0,

0, when ν ̸= 0,

by the expressions of adjacency matrices of principal and the auxiliary graphs, doing

the same computation as in the proof of Theorem 4.18, we have

A(p)
G♢Hφf,g = {dG(1− µ) + dH(1− ν)}φf,g,

A(a)
G♢Hφf,g =


{dG(nH−1) + dH(nG−1)}φf,g, µ = ν = 0,

{−dG + dH(1−ν)(nG−1)}φf,g, µ = 0, ν ̸= 0,

{dG(1−µ)(nH−1)− dH}φf,g, µ ̸= 0, ν = 0,

{−dG(1−µ)− dH(1−ν)}φf,g, µ ̸= 0, ν ̸= 0.

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.10. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

connected graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1♢H1, G2♢H2 of Cartesian-lexicographical product type are (p, q)-isospectral for an

arbitrary pair (p, q) of relatively prime positive integers.

4.4. (p, q)-Laplacians of Kähler graphs of strong-complement product

type.

Theorem 5.11. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues
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of ∆Q(p,q)
for their Kähler graph G⋇H of strong-complement product type are

0,

1−
Fp

(
dG + dH(1− να) ; dG + dH + dGdH

)
(dG+dH+dGdH)(dG+dH+dGdH−1)p−1

×
Fq

(
dH(1−να)(nG−2dG−1)− dG ; dG(nH−dH−1) + dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH ; dG + dH + dGdH

)
(dG+dH+dGdH)(dG+dH+dGdH−1)p−1

×
Fq

(
dG(1−µi)(nH−2dH−1)− dH ; dG(nH−dH−1) + dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

,

1−
Fp

(
dG(1− µi) + dH(1− να) ; dG + dH + dGdH

)
(dG+dH+dGdH)(dG+dH+dGdH−1)p−1

×
Fq

(
−2dGdH(1−µi)(1−να)−dG(1−µi)−dH(1−να) ; dG(nH−dH−1)+dH(nG−dG−1)

)
{dG(nH−dH−1) + dH(nG−dG−1)}{dG(nH−dH−1) + dH(nG−dG−1)− 1}q−1

.

for i = 2, · · · , nG and α = 2, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)
G⋇H = dG + dH + dGdH , d

(a)
G⋇H = dG(nG − dH − 1) + dH(nG − dG − 1).

We use the same notations as in the proof of Theorem 5.9 (or in the proof of Theorem

4.19). The adjacency matrices of the principal and the auxiliary graphs of G⋇H are

expressed as

A
(p)
G⋇H = (a

(p)
(i,α),(j,β)) =

(
aGijδαβ + δija

H
αβ + aGija

H
αβ

)
,

A
(a)
G⋇H = (a

(a)
(i,α),(j,β)) =

(
aGija

Hc

αβ + aG
c

ij a
H
αβ

)
(see §4.6.4). By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG
and

an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
, and consider

the function φf,g : V × W → R defined by φf,g(v, w) = f(v)g(w). Since we have
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AGf = dG(1− µ)f, AHg = dH(1− ν)g and

AGcf =

{
(nG − dG − 1)f, when µ = 0,

{−1− dG(1− µ)}f, when µ ̸= 0,

AHcg =

{
(nH − dH − 1)g, when ν = 0,

{−1− dH(1− ν)}g, when ν ̸= 0,

by the expressions of adjacency matrices of principal and the auxiliary graphs, by the

expressions of adjacency matrices of principal and the auxiliary graphs, doing the same

computation as in the proof of Theorem 4.19, we have

A(p)
G⋇Hφf,g = {dG(1− µ) + dH(1− ν) + dGdH(1− µ)(1− ν)}φf,g,

A(a)
G⋇Hφf,g =


{dG(nH−dH−1) + dH(nG−dG−1)}φf,g, µ = ν = 0,

{dG(dHν−dH−1) + dH(1−ν)(nG−dG−1)}φf,g, µ = 0, ν ̸= 0,

{dG(1−µ)(nH−dH−1) + dH(dGµ−dG−1)}φf,g, µ ̸= 0, ν = 0,

{dG(1−µ)(dHν−dH−1) + dH(1−ν)(dGµ−dG−1)}φf,g, µ ̸= 0, ν ̸= 0.

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.11. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

connected graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1 ⋇H1, G2 ⋇H2 of strong-complement product type are (p, q)-isospectral for an arbi-

trary pair (p, q) of relatively prime positive integers.

4.5. (p, q)-Laplacians of Kähler graphs of complement-tensor product

type.

Theorem 5.12. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues
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of ∆Q(p,q)
for their Kähler graph G♠H of complement-tensor product type are

0,

1−
Fp

(
dH(1− να)(nG − 2dG) ; dG(nG−dH) + dH(nG−dG)

)
{dG(nG−dH) + dH(nG−dG)}{dG(nG−dH) + dH(nG−dG)−1}p−1

×
Fq

(
dGdH(1−να) ; dGdH

)
dGdH(dGdH−1)q−1

,

1−
Fp

(
dG(1− µi)(nH − 2dH) ; dG(nG−dH) + dH(nG−dG)

)
{dG(nG−dH) + dH(nG−dG)}{dG(nG−dH) + dH(nG−dG)−1}p−1

×
Fq

(
dGdH(1−µi) ; dGdH

)
dGdH(dGdH−1)q−1

,

1−
Fp

(
−(dG+dH)(1−µi)(1−να) ; dG(nG−dH) + dH(nG−dG)

)
{dG(nG−dH) + dH(nG−dG)}{dG(nG−dH) + dH(nG−dG)−1}p−1

×
Fq

(
dGdH(1−µi)(1−να) ; dGdH

)
dGdH(dGdH−1)q−1

.

for i = 2, · · · , nG and α = 2, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)
G♠H = dG(nG − dH) + dH(nG − dG) d

(a)
G♠H = dGdH .

We use the same notations as in the proof of Theorem 5.9 (or in the proof of Theorem

4.20). The adjacency matrices of the principal and the auxiliary graphs of G♠H are

expressed as

A
(p)
G♠H = (a

(p)
(i,α),(j,β)) =

(
aGij(a

Hc

αβ + δαβ) + (aG
c

ij + δij)a
H
αβ

)
=
(
aGij(1− aHαβ) + (1− aGc

ij )a
H
αβ

)
,

A
(a)
G♠H = (a

(a)
(i,α),(j,β)) =

(
aGija

H
αβ

)
.

(see §4.6.5). By these expressions we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG

and an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
, and

consider the function φf,g : V ×W → R defined by φf,g(v, w) = f(v)g(w). We have
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AGf = dG(1− µ)f, AHg = dH(1− ν)g and

∑
v∈V

f(v) =

{
nGf(∗), when µ = 0,

0, when µ ̸= 0,

∑
w∈W

g(w) =

{
nHg(∗), when ν = 0,

0, when ν ̸= 0.

By the expressions of adjacency matrices of principal and the auxiliary graphs, doing

the same computation as in the proof of Theorem 4.20, we have

A(p)
G♠Hφf,g =


{dG(nH−dH) + dH(nG−dG)}φf,g, µ = ν = 0,

{dGdH(ν−1) + dH(1−ν)(nG−dG)}φf,g, µ = 0, ν ̸= 0,

{dG(1−µ)(nH−dH) + dGdH(µ−1)}φf,g, µ ̸= 0, ν = 0,

{dG(1−µ)(ν−1) + dH(1−ν)(µ−1)}φf,g, µ ̸= 0, ν ̸= 0.

A(a)
G♠Hφf,g = dGdH(1− µ)(1− ν)φf,g,

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.12. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

connected graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1♠H1, G2♠H2 of complement-tensor product type are (p, q)-isospectral for an arbi-

trary pair (p, q) of relatively prime positive integers.

4.6. (p, q)-Laplacians of Kähler graphs of tensor-complement product

type.

Theorem 5.13. Let G = (V,E), H = (W,F ) be finite regular ordinary graphs.

Suppose G and H are connected. We denote by 0 = µ1 < µ2 ≤ · · · ≤ µnG
the

eigenvalues of ∆PG
, and by 0 = ν1 < ν2 ≤ · · · ≤ νnH

that of ∆PH
. Then the eigenvalues
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of ∆Q(p,q)
for their Kähler graph G♣H of tensor-complement product type are

0,

1−
Fp

(
dGdH(1−να) ; dGdH

)
dGdH(dGdH−1)p−1

×
Fq

(
dH(1−να)(nG−2dG−1)− dG ; dG(nG−dH−1) + dH(nG−dG−1)

)
{dG(nG−dH−1)+dH(nG−dG−1)}{dG(nG−dH−1)+dH(nG−dG−1)−1}q−1

,

1−
Fp

(
dGdH(1−µi) ; dGdH

)
dGdH(dGdH−1)p−1

×
Fq

(
dG(1−µi)(nH−2dH−1)− dH ; dG(nG−dH−1) + dH(nG−dG−1)

)
{dG(nG−dH−1)+dH(nG−dG−1)}{dG(nG−dH−1)+dH(nG−dG−1)−1}q−1

,

1−
Fp

(
dGdH(1−µi)(1−να) ; dGdH

)
dGdH(dGdH−1)p−1

×
Fq

(
−2dGdH(1−µi)(1−να)
+dG(1−µi)+dH(1−να)

; dG(nG−dH−1) + dH(nG−dG−1)
)

{dG(nG−dH−1)+dH(nG−dG−1)}{dG(nG−dH−1)+dH(nG−dG−1)−1}q−1
.

for i = 2, · · · , nG and α = 2, . . . , nH .

Proof. As we see in §2.2.2, we have

d
(p)
G♣H = dGdH , d

(a)
G♣H = dG(nG − dH − 1) + dH(nG − dG − 1).

We use the same notations as in the proof of Theorem 5.9 (or in the proof of Theorem

4.21). The adjacency matrices of the principal and the auxiliary graphs of G♣H are

expressed as

A
(p)
G♣H = (a

(p)
(i,α),(j,β)) =

(
aGija

H
αβ

)
, A

(a)
G♣H = (a

(a)
(i,α),(j,β)) =

(
aGija

Hc

αβ + aG
c

ij a
H
αβ

)
.

(see §4.6.6). Since aG
c

ij = 1 − δij − aGij and aH
c

αβ = 1 − δαβ − aHαβ, by these expressions

we find that they are commutative.

We take an eigenfunction f : V → R corresponding to an eigenvalue µ of ∆PG

and an eigenfunction g : W → R corresponding to an eigenvalue ν of ∆PH
, and

consider the function φf,g : V ×W → R defined by φf,g(v, w) = f(v)g(w). We have
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AGf = dG(1− µ)f, AHg = dH(1− ν)g and

AGcf =

{
(nG − dG − 1)f, when µ = 0,

{−1− dG(1− µ)}f, when µ ̸= 0,

AHcg =

{
(nH − dH − 1)g, when ν = 0,

{−1− dH(1− ν)}g, when ν ̸= 0.

By the expressions of adjacency matrices of principal and the auxiliary graphs, doing

the same computation as in the proof of Theorem 4.21, we have

A(p)
G♣Hφf,g = dGdH(1− µ)(1− ν)φf,g,

A(a)
G♣Hφf,g =


{dG(nH−dH−1) + dH(nG−dG−1)}φf,g, µ = ν = 0,

{−dG
(
dH(1−ν)+1

)
+ dH(1−ν)(nG−dG−1)}φf,g, µ = 0, ν ̸= 0,

{dG(1−µ)(nH−dH−1)− dH
(
dG(1−µ)+1

)
}φf,g, µ ̸= 0, ν = 0,

{−dG(1−µ)
(
dH(1−ν)+1

)
− dH(1−ν)

(
dG(1−µ)+1

)
}φf,g, µ ̸= 0, ν ̸= 0.

Hence we get the conclusion by Theorem 5.1. □

Corollary 5.13. Let G1, G2 and H1, H2 be two pairs of isospectral regular finite

connected graphs. We suppose dG1 = dG2 and dH1 = dH2. Then their Kähler graphs

G1♣H1, G2♣H2 of complement-tensor product type are (p, q)-isospectral for an arbi-

trary pair (p, q) of relatively prime positive integers.



5. Eigenvalues of other typical Kähler graphs

In this section, we study some other typical examples of Kähler graphs.

5.1. Kähler 3-cubes. First we study Kähler k-cubes.

Example 5.8. We take a Kähler 3-cubeG = (Q3, E
(p)∪E(a)) withQ3 =

{
(a1, a2, a3)} |

ai ∈ {0, 1}
}
(see Example 2.29 in §2.3). This is a regular Kähler graph of d

(p)
G = d

(a)
G =

3. The adjacency matrices of the principal and the auxiliary graphs are given as

AG(p) =



0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0


, AG(a) =



0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0


.

They are commutative.

AG(p)AG(a) =



0 2 0 2 0 3 0 2
2 0 2 0 3 0 2 0
0 2 0 2 0 2 0 3
2 0 2 0 2 0 3 0
0 3 0 2 0 2 0 2
3 0 2 0 2 0 2 0
0 2 0 3 0 2 0 2
2 0 3 0 2 0 2 0


= AG(a)AG(p) .

Thus we can apply Theorem 5.1. The eigenvalues of adjacency operators of the prin-

cipal and the auxiliary graphs are

Spec(AG(p)) =
{
−3,−1,−1,−1, 1, 1, 1, 3

}
,

Spec(AG(a)) =
{
−1,−1,−1,−1,−1,−1, 3, 3

}
.

The eigenvalues of combinatorial Laplacians of the principal and the auxiliary graphs

are

Spec(∆A
G(p)

) =
{
0, 2, 2, 2, 4, 4, 4, 6

}
, Spec(∆A

G(a)
) =

{
0, 0, 4, 4, 4, 4, 4, 4

}
.

241
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We note that the auxiliary graph of G is not connected. If we compute directly

eigenvalues of some combinatorial Laplacians, as we have

AG(1,1)
=

1

3
AG(p)AG(a) ,

AG(2,1)
=

1

3

(
A2

G(p) − 3I)AG(a) , AG(1,2)
=

1

6
AG(p)

(
A2

G(a) − 3I),

AG(3,1)
=

1

3

(
A2

G(p) − 5I
)
AG(p)AG(a) , AG(3,2)

=
1

6

(
A2

G(p) − 5I
)
AG(p)(A2

G(a) − 3I),

AG(1,3)
=

1

12
AG(p)AG(a)

(
A2

G(a) − 5I
)
, AG(2,3)

=
1

12
(A2

G(p) − 3I)AG(a)

(
A2

G(a) − 5I
)
,

that is,

AG(2,1)
=

1

3



6 0 4 0 4 0 4 0
0 6 0 4 0 4 0 4
4 0 6 0 4 0 4 0
0 4 0 6 0 4 0 4
4 0 4 0 6 0 4 0
0 4 0 4 0 6 0 4
4 0 4 0 4 0 6 0
0 4 0 4 0 4 0 6


, AG(1,2)

=
1

6



0 4 0 4 0 6 0 4
4 0 4 0 6 0 4 0
0 4 0 4 0 4 0 6
4 0 4 0 4 0 6 0
0 6 0 4 0 4 0 4
6 0 4 0 4 0 4 0
0 4 0 6 0 4 0 4
4 0 6 0 4 0 4 0


,

AG(3,1)
=

1

3



0 10 0 10 0 6 0 10
10 0 10 0 6 0 10 0
0 10 0 10 0 10 0 6
10 0 10 0 10 0 6 0
0 6 0 10 0 10 0 10
6 0 10 0 10 0 10 0
0 10 0 6 0 10 0 10
10 0 6 0 10 0 10 0


,

AG(3,2)
=

1

6



0 20 0 20 0 12 0 20
20 0 20 0 12 0 20 0
0 20 0 20 0 20 0 12
20 0 20 0 20 0 12 0
0 12 0 20 0 20 0 20
12 0 20 0 20 0 20 0
0 20 0 12 0 20 0 20
20 0 12 0 20 0 20 0


,



§5.5. Eigenvalues of other typical examples of Kähler graphs 243

AG(1,3)
=

1

12



0 10 0 10 0 6 0 10
10 0 10 0 6 0 10 0
0 10 0 10 0 10 0 6
10 0 10 0 10 0 6 0
0 6 0 10 0 10 0 10
6 0 10 0 10 0 10 0
0 10 0 6 0 10 0 10
10 0 6 0 10 0 10 0


,

AG(2,3)
=

1

12



12 0 20 0 20 0 20 0
0 12 0 20 0 20 0 20
20 0 12 0 20 0 20 0
0 20 0 12 0 20 0 20
20 0 20 0 12 0 20 0
0 20 0 20 0 12 0 20
20 0 20 0 20 0 12 0
0 20 0 20 0 20 0 12


,

we have

Spec(∆AG(1,1)
) =

{
0,

8

3
,
8

3
,
8

3
,
10

3
,
10

3
,
10

3
, 6
}
,

Spec(∆AG(2,1)
) =

{
0, 0,

16

3
,
16

3
,
16

3
,
16

3
,
16

3
,
16

3
,
16

3

}
,

Spec(∆AG(1,2)
) =

{
0,

8

3
,
8

3
,
8

3
,
10

3
,
10

3
,
10

3
, 6
}
,

Spec(∆AG(3,1)
) =

{
0,

32

3
,
32

3
,
32

3
,
40

3
,
40

3
,
40

3
, 24

}
,

Spec(∆AG(3,2)
) =

{
0,

32

3
,
32

3
,
32

3
,
40

3
,
40

3
,
40

3
, 24

}
,

Spec(∆AG(1,3)
) =

{
0,

8

3
,
8

3
,
8

3
,
10

3
,
10

3
,
10

3
, 6
}
,

Spec(∆AG(2,3)
) =

{
0, 0,

20

3
,
20

3
,
20

3
,
20

3
,
20

3
,
20

3

}
.

We can hence see that Spec(∆AG(1,1)
) = Spec(∆AG(1,2)

) = Spec(∆AG(1,3)
), and that

Spec(∆AG(2,1)
) and Spec(∆AG(2,3)

) contain two null eigenvalues and others are same.

1
2

3

4

5
6

7

8

Fig. 3. principal graph Fig. 4. 3-Kähler cube Fig. 5. auxiliary graph
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We here study general Kähler cubes.

Proposition 5.5. The adjacency operators for the principal and the auxiliary

graphs of a Kähler k-cube are commutative.

Proof. We take a vertex v = (0, . . . , 0) ∈ Qk. It is principally adjacent to

(0, . . . , 0,
i

1, 0, . . . , 0) (i = 1, . . . , k),

hence is (1, 1)-adjacent to

(0, . . . , 0,
j

1, 0, . . . , 0,
i

1, 0, . . . , 0,
ℓ

1, 0, . . . , 0) (i, j, ℓ = 1, . . . , k, i ̸= j, ℓ, j < ℓ),

(0, . . . , 0,
j

1, 0, . . . , 0) (j = 1, . . . , k),

where each of the second type appears k − 1 times. This is because the second type

occurs when either i = j or i = ℓ and when we choose one other coordinate for ℓ or

for j. On the other hand, as v is auxiliary adjacent to

(0, . . . , 0,
j

1, 0, . . . , 0,
ℓ

1, 0, . . . , 0) (j, ℓ = 1, . . . , k, j < ℓ),

we find adjacent to the above vertices by 2-step paths formed by auxiliary edges

followed by principal edges. Since Kähler cubes are vertex transitive, this shows the

assertion. □

5.2. The Cayley Kähler graph of D4. Next we study The Cayley Kähler graph

obtained by a dihedral group D4

Example 5.9. A dihedral group D4 is generated by two elements in two ways:

D4 =
⟨
a, b

∣∣ a4 = b2 = 1, ab = ba3
⟩
=
⟨
b, c
∣∣ b2 = c2 = 1, bcbc = cbcb

⟩
where c = ab. Putting S(p) = {b, c} and S(a) = {a, a3}, we get a regular Kähler graph

G with d
(p)
G = d

(a)
G = 2 given in Example 2.5 in §2.1 which is like Fig. 6. The adjacency
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matrices of its principal and auxiliary graphs are given as

AG(p) =



0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


, AG(a) =



0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0


.

We then see the adjacency operators of the principal and the auxiliary graphs are

commutative

AG(p)AG(a) =



0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0


= AG(a)AG(p) .

Thus we can apply Theorem 5.1. The eigenvalues of adjacency operators of the prin-

cipal and the auxiliary graphs are

Spec(AG(p)) =
{
−2,−

√
2,−
√
2, 0, 0,

√
2,
√
2, 2
}
,

Spec(AG(a)) =
{
−2,−2, 0, 0, 0, 0, 2, 2

}
.

The eigenvalues of combinatorial Laplacians of its principal and auxiliary graphs and

those of some combinatorial Laplacians are as follows:

Spec(∆A
G(p)

) =
{
0, 2, 2, 2 +

√
2, 2 +

√
2, 2 +

√
2, 2 +

√
2, 4
}
,

Spec(∆A
G(a)

) =
{
0, 0, 2, 2, 2, 2, 4, 4

}
,

Spec(∆AG(1,1)
) =

{
0, 2, 2, 2, 2, 2, 2, 4

}
,

Spec(∆AG(2,1)
) =

{
0, 0, 0, 0, 2, 2, 2, 2

}
,

Spec(∆AG(1,2)
) =

{
0, 2−

√
2, 2−

√
2, 2, 2, 2 +

√
2, 2 +

√
2, 4

}
.
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We note that AG(1,1)
= 1

2
AG(p)AG(a) ,

AG(2,1)
=

1

2

(
A2

G(p) − 2I
)
AG(a) =

1

2



2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2
2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2


,

AG(1,2)
=

1

2
AG(p)

(
A2

G(a) − 2I
)
=

1

2



0 0 0 2 0 2 0 0
0 0 0 0 2 0 2 0
0 0 0 0 0 2 0 2
2 0 0 0 0 0 2 0
0 2 0 0 0 0 0 2
2 0 2 0 0 0 0 0
0 2 0 2 0 0 0 0
0 0 2 0 2 0 0 0


.

Fig. 6

Here, for the sake of readers’ convenience we briefly explain dihedral groups. We

take a regular k-polygon (k ≥ 3). A dihedral group Dk is the group formed by motions

of R2 which preserve this k-polygon. This group is formed by k kinds of rotations and

k kinds of reflections. Rotations are the identity, the 2π/k-rotation, the 4π/k-rotation,

. . . , the 2(k − 1)π/k-rotation. Reflections are the following. When k is odd, we take

lines which join a vertex and the mid point of its antipodal edge. We have k such

lines. Reflection with respect to these lines preserves the regular k-polygon. When k

is even, we take lines which join a vertex and its antipodal vertex. We have k/2 such

lines. Also we take lines which joins the mid point of an edge and the mid point of
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its antipodal edge. Also we have k/2 such lines. Reflection with respect to these lines

preserves the regular k-polygon. Thus a dihedral group Dk have 2k elements.

5.3. Eigenvalues of Kähler Petersen graphs and the Petersen Kähler

graph. In the third we study Kähler graphs obtained from a Petersen graph.

Example 5.10. We take a Kähler Petersen graph G given in Example 2.24 in §2.3

which is like Fig. 7. It is a regular Kähler graph of d
(p)
G = 3 and d

(a)
G = 2. The adjacency

matrices of its principal graph and its auxiliary graph are given as

AG(p) =

(
A I
I B

)
, AG(a) =

(
B O
O A

)
,

where

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , B =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 = A2 − 2I.

As AB = BA = A+B, we have

AG(p)AG(a) =

(
AB A
B AB

)
= t{AG(a)AG(p)}.

But this shows that the adjacency operators of its principal and auxiliary graphs are

not commutative. As we have AG(1,1)
= 1

2
AG(p)AG(a) , the eigenvalues of combinatorial

Laplacians of its principal graph and those of (1, 1)-combinatorial Laplacians are as

follows:

Spec(∆A
G(p)

) =
{
0, 2, 2, 2, 2, 2, 5, 5, 5, 5

}
,

Spec(∆AG(1,1)
) =


0, 2,

7+
√
−1

2
,
7+
√
−1

2
,
7+
√
−1

2
,
7+
√
−1

2
,

7−
√
−1

2
,
7−
√
−1

2
,
7−
√
−1

2
,
7−
√
−1

2

 .

As we have A = B2 − 2I, we see

AG(2,1)
=

1

2

(
A2−2I A+B
A+B B2−2I

)(
B O
O A

)
=

1

2

(
A+2I A+2B+2I

2A+B+2I B+2I

)
.
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Hence we find that

Spec(∆AG(2,1)
) =

{
0, 5, 5, 5, 5,

11

2
,
11

2
,
11

2
,
11

2
, 8
}
,

Spec(∆QG(2,1)
) =

{
0,

5

6
,
5

6
,
5

6
,
5

6
,
11

12
,
11

12
,
11

12
,
11

12
,
4

3

}
.

Similarly, we have

AG(3,1)
=

(
B A+B

A+B A

)(
B O
O A

)
=

(
A+2I A+2B+2I

2A+B+2I B+2I

)
,

and find

Spec(∆AG(3,1)
) =

{
0, 10, 10, 10, 10, 11, 11, 11, 11, 16

}
,

Spec(∆QG(3,1)
) =

{
0,

5

6
,
5

6
,
5

6
,
5

6
,
11

12
,
11

12
,
11

12
,
11

12
,
4

3

}
.

We therefore have

Spec(∆AG(3,1)
) = 2× Spec(∆AG(2,1)

), Spec(∆QG(3,1)
) = Spec(∆QG(2,1)

),

where 2× S means that we multiple 2 on each element of S.

Since we have

A
G

(p)
[4]

=

(
4A+9B+15I 9A+9B+4I
9A+9B+4I 9A+4B+15I

)
− 7

(
B+3I A+B
A+B A+3I

)
+ 6

(
I O
O I

)
=

(
4A+2B 2A+2B+4I

2A+2B+4I 2A+4B

)
,

we find

AG(4,1)
=

(
2A+B A+B+2I
A+B+2I A+2B

)(
B O
O A

)
=

(
3A+2B+2I 3A+2B+2I
2A+3B+2I 2A+3B+2I

)
.

Therefore we have

Spec(∆AG(4,1)
) =

{
0, 24, 24, 24, 24, 24, 25, 25, 25, 25

}
,

Spec(∆QG(4,1)
) =

{
0, 1, 1, 1, 1, 1,

25

12
,
25

12
,
25

12
,
25

12

}
.

Similarly, we have

Spec(∆AG(5,1)
) =

 0, 40, 2
(
25−
√
5
)
, 2
(
25−
√
5
)
, 2
(
25−
√
5
)
, 2
(
25−
√
5
)
,

2
(
25+
√
5
)
, 2
(
25+
√
5
)
, 2
(
25+
√
5
)
, 2
(
25+
√
5
)

 ,

Spec(∆QG(5,1)
) =


0,

5

6
,
25−
√
5

24
,
25−
√
5

24
,
25−
√
5

24
,
25−
√
5

24
,

25+
√
5

24
,
25+
√
5

24
,
25+
√
5

24
,
25+
√
5

24

 .
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We note that P
G

(p)
[2]

= P
G

(p)
[3]

, therefore we find that

Spec(∆QG(2,q)
) = Spec(∆QG(3,q)

)

for an arbitrary positive integer q.

As we have

AG(1,2)
=

1

2

(
A I
I B

)(
A O
O B

)
=

1

2

(
B+2I B
A A+2I

)
,

AG(1,3)
=

1

2

(
A I
I B

)(
A O
O B

)
=

1

2

(
B+2I B
A A+2I

)
,

AG(1,4)
=

1

2

(
A I
I B

)(
B O
O A

)
=

1

2

(
A+B A
B A+B

)
= AG(1,1)

,

AG(1,5)
=

1

2

(
A I
I B

)(
2I O
O 2I

)
= AG(p) ,

we find

Spec(∆AG(1,2)
) = Spec(∆AG(1,3)

) =
{
0, 2, 2, 2, 2, 2,

5

2
,
5

2
,
5

2
,
5

2

}
,

Spec(∆AG(1,4)
) =


0, 2,

7+
√
−1

2
,
7+
√
−1

2
,
7+
√
−1

2
,
7+
√
−1

2
,

7−
√
−1

2
,
7−
√
−1

2
,
7−
√
−1

2
,
7−
√
−1

2

 ,

Spec(∆AG(1,5)
) =

{
0, 2, 2, 2, 2, 2, 5, 5, 5, 5

}
.

Since the auxiliary graph is a disjoint union of two 5-circuits, we have

P
G

(a)
[5ℓ+1]

= P
G

(a)
[5ℓ+4]

= PG(a) , P
G

(a)
[5ℓ+2]

= P
G

(a)
[5ℓ+3]

= P
G

(a)
[2]

, P
G

(a)
[5ℓ]

= I

for an arbitrary nonnegative integer ℓ. Hence we find

Spec(∆AG(p,5ℓ+1)
) = Spec(∆AG(p,5ℓ+4)

) = Spec(∆AG(p,1)
),

Spec(∆AG(p,5ℓ+2)
) = Spec(∆AG(p,5ℓ+3)

) = Spec(∆AG(p,2)
),

Spec(∆AG(p,5ℓ)
) = Spec(∆A

G
(p)
[p]

)

for an arbitrary positive integer p.

Example 5.11. We take a Petersen Kähler graph of first kind given in Example

2.24 in §2.3 which is like Fig. 8. It is a regular Kähler graph of d(p) = d(a) = 3. The
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adjacency matrices of its principal graph and its auxiliary graphs are given as

AG(p) =



0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


, AG(a) =



0 0 1 1 0 0 1 0 0 0
0 0 0 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 1
1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 1 0


,

and they are not commutative:

AG(p)AG(a)=



0 1 1 1 2 1 1 1 0 1
2 0 1 1 1 1 1 1 1 0
1 2 0 1 1 0 1 1 1 1
1 1 2 0 1 1 0 1 1 1
1 1 1 2 0 1 1 0 1 1
0 1 2 1 0 0 2 1 1 1
0 0 1 2 1 1 0 2 1 1
1 0 0 1 2 1 1 0 2 1
2 1 0 0 1 1 1 1 0 2
1 2 1 0 0 2 1 1 1 0


, AG(a)AG(p)=



0 2 1 1 1 0 0 1 2 1
1 0 2 1 1 1 0 0 1 2
1 1 0 2 1 2 1 0 0 1
1 1 1 0 2 1 2 1 0 0
2 1 1 1 0 0 1 2 1 0
1 1 0 1 1 0 1 0 1 2
1 1 1 0 1 2 0 1 1 1
1 1 1 1 0 1 2 0 1 1
0 1 1 1 1 1 1 2 0 1
1 0 1 1 1 1 1 1 2 0


,

The eigenvalues of combinatorial Laplacians of its principal graph and those of (1, 1)-

combinatorial and (1, 1)-probabilistic transition Laplacians are as follows:

Spec(∆A
G(p)

) =
{
0, 2, 2, 2, 2, 2, 5, 5, 5, 5

}
,

Spec(∆AG(1,1)
) =

{
0,

8

3
, ϵ, ϵ, ρ, ρ, ϱ, ϱ, ς, ς

}
,

Spec(∆QG(1,1)
) =

{
0,

8

9
,
ϵ

3
,
ϵ

3
,
ρ

3
,
ρ

3
,
ϱ

3
,
ϱ

3
,
ς

3
,
ς

3

}
,
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where
ϵ =

41+
√
5

12
−
√
−1
12

√
34−10

√
5,

ρ =
41 +

√
5

12
+

√
−1
12

√
34− 10

√
5


ϱ =

41−
√
5

12
−
√
−1
12

√
34+10

√
5,

ς =
41−
√
5

12
+

√
−1
12

√
34+10

√
5.

As A
G

(p)
[2]

= A2
G(p) − 3I we have

A
G

(p)
[2]

=



0 0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 0 1 1 1
1 0 0 0 1 1 1 0 1 1
1 1 0 0 0 1 1 1 0 1
0 1 1 0 0 1 1 1 1 0
0 1 1 1 1 0 1 0 0 1
1 0 1 1 1 1 0 1 0 0
1 1 0 1 1 0 1 0 1 0
1 1 1 0 1 0 0 1 0 1
1 1 1 1 0 1 0 0 1 0


, AG(2,1)

=
1

3



3 2 1 1 1 2 1 2 3 2
1 3 2 1 1 2 2 1 2 3
1 1 3 2 1 3 2 2 1 2
1 1 1 3 2 2 3 2 2 1
2 1 1 1 3 1 2 3 2 2
3 2 1 2 2 3 0 2 2 1
2 3 2 1 2 1 3 0 2 2
2 2 3 2 1 2 1 3 0 2
1 2 2 3 2 2 2 1 3 0
2 1 2 2 3 0 2 2 1 3


,

hence we find

Spec(∆AG(2,1)
) =

{
0,

20

3
, ϵ′, ϵ′, ρ′, ρ′, ϱ′, ϱ′, ς ′, ς ′

}
,

Spec(∆QG(2,1)
) =

{
0,

10

9
,
ϵ′

6
,
ϵ′

6
,
ρ′

6
,
ρ′

6
,
ϱ′

6
,
ϱ′

6
,
ς ′

6
,
ς ′

6

}
,

where
ϵ′ =

65−
√
5

12
+

1

12

√
−10+14

√
5,

ρ′ =
65−
√
5

12
− 1

12

√
−10+14

√
5,


ϱ′ =

65+
√
5

12
+

√
−1
12

√
10+14

√
5,

ς ′ =
65+
√
5

12
−
√
−1
12

√
10+14

√
5,

Similarly, as A
G

(p)
[3]

= A3
G(p) − 5AG(p) we have

A
G

(p)
[3]

=



0 0 2 2 0 0 2 2 2 2
0 0 0 2 2 2 0 2 2 2
2 0 0 0 2 2 2 0 2 2
2 2 0 0 0 2 2 2 0 2
0 2 2 0 0 2 2 2 2 0
0 2 2 2 2 0 2 0 0 2
2 0 2 2 2 2 0 2 0 0
2 2 0 2 2 0 2 0 2 0
2 2 2 0 2 0 0 2 0 2
2 2 2 2 0 2 0 0 2 0


, AG(3,1)

=
1

3



6 4 2 2 2 4 2 4 6 4
2 6 4 2 2 4 4 2 4 4
2 2 6 4 2 6 4 4 2 4
2 2 2 6 4 4 6 4 4 2
4 2 2 2 6 2 4 6 4 4
6 4 2 4 4 6 0 4 4 2
4 6 4 2 4 2 6 0 4 4
4 4 6 4 2 4 2 6 0 4
2 4 4 6 4 4 4 2 6 0
4 2 4 4 6 0 4 4 2 6


,
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hence we get

Spec(∆AG(3,1)
) =

{
0,

40

3
, 2ϵ′, 2ϵ′, 2ρ′, 2ρ′, 2ϱ′, 2ϱ′, 2ς ′, 2ς ′

}
,

Spec(∆QG(3,1)
) =

{
0,

20

18
,
ϵ′

6
,
ϵ′

6
,
ρ′

6
,
ρ′

6
,
ϱ′

6
,
ϱ′

6
,
ς ′

6
,
ς ′

6

}
,

where ϵ′, ρ′, ϱ′, ς ′ are the same as above. We therefore have

Spec(∆AG(3,1)
) = 2× Spec(∆AG(2,1)

), Spec(∆QG(3,1)
) = Spec(∆QG(2,1)

).

As A
G

(p)
[4]

= A4
G(p) − 7A2

G(p) + 6I we have

A
G

(p)
[4]

=



0 4 2 2 4 4 2 2 2 2
4 0 4 2 2 2 4 2 2 2
2 4 0 4 2 2 2 4 2 2
2 2 4 0 4 2 2 2 4 2
4 2 2 4 0 2 2 2 2 4
4 2 2 2 2 0 2 4 4 2
2 4 2 2 2 2 0 2 4 4
2 2 4 2 2 4 2 0 2 4
2 2 2 4 2 4 4 2 0 2
2 2 2 2 4 2 4 4 2 0


, AG(4,1)

=
1

3



6 8 6 6 10 8 6 8 6 8
10 6 8 6 6 8 8 6 8 6
6 10 6 8 6 6 8 8 6 8
6 6 10 6 8 8 6 8 8 6
8 6 6 10 6 6 8 6 8 8
6 8 10 8 4 6 8 8 8 6
4 6 8 10 8 6 6 8 8 8
8 4 6 8 10 8 6 6 8 8
10 8 4 6 8 8 8 6 6 8
8 10 8 4 6 8 8 8 6 6


,

hence we find

Spec(∆AG(4,1)
) =

{
0, 24, 24, 24, 24, 24,

75−
√
5

3
,
75−
√
5

3
,
75+
√
5

3
,
75−
√
5

3

}
,

Spec(∆QG(4,1)
) =

{
0, 1, 1, 1, 1, 1,

75−
√
5

72
,
75−
√
5

72
,
75+
√
5

72
,
75−
√
5

72

}
.

Since A
G

(p)
[5]

= A5
G(p) − 9A3

G(p) + 16AG(p) we have

A
G

(p)
[5]

=



12 4 4 4 4 4 4 4 4 4
4 12 4 4 4 4 4 4 4 4
4 4 12 4 4 4 4 4 4 4
4 4 4 12 4 4 4 4 4 4
4 4 4 4 12 4 4 4 4 4
4 4 4 4 4 12 4 4 4 4
4 4 4 4 4 4 12 4 4 4
4 4 4 4 4 4 4 12 4 4
4 4 4 4 4 4 4 4 12 4
4 4 4 4 4 4 4 4 4 12


, AG(5,1)

=
4

3



3 3 5 5 3 3 5 3 3 3
3 3 3 5 5 3 3 5 3 3
5 3 3 3 5 3 3 3 5 3
5 5 3 3 3 3 3 3 3 5
3 5 5 3 3 5 3 3 3 3
3 3 3 3 5 3 5 3 3 5
5 3 3 3 3 5 3 5 3 3
3 5 3 3 3 3 5 3 5 3
3 3 5 3 3 3 3 5 3 5
3 3 3 5 3 5 3 3 5 3


,

we have

Spec(∆AG(5,1)
) =

{
0,

136

3
,
136

3
,
136

3
,
136

3
,
136

3
,
160

3
,
160

3
,
160

3
,
160

3

}
,

Spec(∆QG(5,1)
) =

{
0,

17

18
,
17

18
,
17

18
,
17

18
,
17

18
,
10

9
,
10

9
,
10

9
,
10

9

}
.
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By the same reason as in Example 5.10 that P
G

(p)
[2]

= P
G

(p)
[3]

, we find that

Spec(∆QG(2,q)
) = Spec(∆QG(3,q)

)

for an arbitrary positive integer q.

As

P
G

(a)
[2]

=
1

6
(A2

G(a) − 3I), P
G

(a)
[3]

=
1

12
(A3

G(a) − 5AG(a)),

P
G

(a)
[4]

=
1

24
(A4

G(a) − 7A2
G(a) + 6I), P

G
(a)
[5]

=
1

48
(A5

G(a) − 9A3
G(a) + 16AG(a)),

we have

P
G

(a)
[2]

=
1

6



0 1 0 0 1 1 0 1 1 1
1 0 1 0 0 1 1 0 1 1
0 1 0 1 0 1 1 1 0 1
0 0 1 0 1 1 1 1 1 0
1 0 0 1 0 0 1 1 1 1
1 1 1 1 0 0 0 1 1 0
0 1 1 1 1 0 0 0 1 1
1 0 1 1 1 1 0 0 0 1
1 1 0 1 1 1 1 0 0 0
1 1 1 0 1 0 1 1 0 0


, P

G
(a)
[3]

=
1

12



0 2 0 0 2 2 0 2 2 2
2 0 2 0 0 2 2 0 2 2
0 2 0 2 0 2 2 2 0 2
0 0 2 0 2 2 2 2 2 0
2 0 0 2 0 0 2 2 2 2
2 2 2 2 0 0 0 2 2 0
0 2 2 2 2 0 0 0 2 2
2 0 2 2 2 2 0 0 0 2
2 2 0 2 2 2 2 0 0 0
2 2 2 0 2 0 2 2 0 0


,

P
G

(a)
[4]

=
1

24



0 2 4 4 2 2 4 2 2 2
2 0 2 4 4 2 2 4 2 2
4 2 0 2 4 2 2 2 4 2
4 4 2 0 2 2 2 2 2 4
2 4 4 2 0 4 2 2 2 2
2 2 2 2 4 0 4 2 2 4
4 2 2 2 2 4 0 4 2 2
2 4 2 2 2 2 4 0 4 2
2 2 4 2 2 2 2 4 0 4
2 2 2 4 2 4 2 2 4 0


, P

G
(a)
[5]

=
1

48



12 4 4 4 4 4 4 4 4 4
4 12 4 4 4 4 4 4 4 4
4 4 12 4 4 4 4 4 4 4
4 4 4 12 4 4 4 4 4 4
4 4 4 4 12 4 4 4 4 4
4 4 4 4 4 12 4 4 4 4
4 4 4 4 4 4 12 4 4 4
4 4 4 4 4 4 4 12 4 4
4 4 4 4 4 4 4 4 12 4
4 4 4 4 4 4 4 4 4 12


,

in particular, we have P
G

(a)
[3]

= P
G

(a)
[2]

and P
G

(a)
[5]

= 1
12
(M + 2I). Thus we see

AG(1,2)
= AG(1,3)

=
1

6



3 1 2 2 0 1 2 2 3 2
0 3 1 2 2 2 1 2 2 3
2 0 3 1 2 3 2 1 2 2
2 2 0 3 1 2 3 2 1 2
1 2 2 0 3 2 2 3 2 1
2 2 1 2 3 3 1 1 1 2
3 2 2 1 2 2 3 1 1 1
2 3 2 2 1 1 2 3 1 1
1 2 3 2 2 1 1 2 3 1
2 1 2 3 2 1 1 1 2 3


,
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AG(1,4)
=

1

24



6 6 8 8 8 6 8 8 6 8
8 6 6 8 8 8 6 8 8 6
8 8 6 6 8 6 8 6 8 8
8 8 8 6 6 8 6 8 6 8
6 8 8 8 6 8 8 6 8 6
4 8 10 8 6 6 10 6 6 8
6 4 8 10 8 8 6 10 6 6
8 6 4 8 10 6 8 6 10 6
10 8 6 4 8 6 6 8 6 10
8 10 8 6 4 10 6 6 8 6


, AG(1,4)

=
1

12

(
3M + 2AG(p)

)
.

Hence we obtain

Spec(∆AG(1,2)
) = Spec(∆AG(1,3)

) =
{
0,

10

3
,
ϵ′

2
,
ϵ′

2
,
ρ′

2
,
ρ′

2
,
ϱ′

2
,
ϱ′

2
,
ς ′

2
,
ς ′

2

}
,

Spec(∆AG(1,4)
) =

{
0, 3, 3, 3, 3, 3,

75−
√
5

24
,
75−
√
5

24
,
75+
√
5

24
,
75−
√
5

24

}
,

Spec(∆AG(1,5)
) =

{
0,

17

6
,
17

6
,
17

6
,
17

6
,
17

6
,
10

3
,
10

3
,
10

3
,
10

3

}
,

and find that this Kähler graph has a quite interesting property.

Spec(∆QG(1,2)
) = Spec(∆QG(2,1)

) = Spec(∆QG(1,3)
) = Spec(∆QG(3,1)

),

Spec(∆QG(1,4)
) = Spec(∆QG(4,1)

), Spec(∆QG(1,5)
) = Spec(∆QG(5,1)

).

If we study more, as we have

AG(2,3)
=

1

12



6 8 8 8 10 8 8 6 4 6
10 6 8 8 8 6 8 8 6 4
8 10 6 8 8 4 6 8 8 6
8 8 10 6 8 6 4 6 8 8
8 8 8 10 6 8 6 4 6 8
6 6 8 6 6 6 10 8 8 8
6 6 6 8 6 8 6 10 8 8
6 6 6 6 8 8 8 6 10 8
8 6 6 6 6 8 8 8 6 10
6 8 6 6 6 10 8 8 8 6


, AG(2,3)

=
1

6



6 8 8 8 10 8 8 6 4 6
10 6 8 8 8 6 8 8 6 4
8 10 6 8 8 4 6 8 8 6
8 8 10 6 8 6 4 6 8 8
8 8 8 10 6 8 6 4 6 8
6 6 8 6 6 6 10 8 8 8
6 6 6 8 6 8 6 10 8 8
6 6 6 6 8 8 8 6 10 8
8 6 6 6 6 8 8 8 6 10
6 8 6 6 6 10 8 8 8 6


,

AG(4,3)
=
1

3



9 6 8 8 5 6 8 7 8 7
5 9 6 8 8 7 6 8 7 8
8 5 9 6 8 8 7 6 8 7
8 8 5 9 6 7 8 7 6 8
6 8 8 5 9 8 7 8 7 6
7 7 6 7 9 9 7 6 6 8
9 7 7 6 7 8 9 7 6 6
7 9 7 7 6 6 8 9 7 6
6 7 9 7 7 6 6 8 9 7
7 6 7 9 7 7 6 6 8 9


,

AG(2,5)
=
1

6

(
3M + A

G
(p)
[2]

)
,

AG(4,5)
=
1

6

(
12M + A

G
(p)
[4]

)
,

AG(5,2)
=
2

3

(
3M + A

G
(a)
[2]

)
= 2AG(5,3)

,

AG(5,4)
=

1

12

(
12M + A

G
(a)
[4]

)
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we find

Spec(∆AG(2,3)
) =

{
0,

16

3
, ϵ′′, ϵ′′, ρ′′, ρ′′, ϱ′′, ϱ′′, ς ′′, ς ′′

}
,

Spec(∆AG(2,5)
) =

{
0,

35

6
,
35

6
,
35

6
,
35

6
,
19

6
,
19

6
,
19

6
,
19

6
,
19

6

}
,

Spec(∆AG(3,2)
) =

{
0,

32

3
, 2ϵ′′, 2ϵ′′, 2ρ′′, 2ρ′′, 2ϱ′′, 2ϱ′′, 2ς ′′, 2ς ′′

}
,

Spec(∆AG(3,4)
) =

{
0,

135−
√
5

12
,
135−

√
5

12
,
135+

√
5

12
,
135+

√
5

12
, 12, 12, 12, 12, 12

}
Spec(∆AG(3,5)

) =
{
0,

35

3
,
35

3
,
35

3
,
35

3
,
38

3
,
38

3
,
38

3
,
38

3
,
38

3

}
,

Spec(∆AG(4,3)
) =

{
0,

135−
√
5

6
,
135−

√
5

6
,
135+

√
5

6
,
135+

√
5

6
, 24, 24, 24, 24, 24

}
Spec(∆AG(4,5)

) =
{
0, 24, 24, 24, 24, 24, 25, 25, 25, 25

}
,

Spec(∆AG(5,2)
) = Spec(∆AG(5,3)

) =
{
0,

140

3
,
140

3
,
140

3
,
140

3
,
152

3
,
152

3
,
152

3
,
152

3
,
152

3

}
,

Spec(∆AG(5,4)
) =

{
0, 48, 48, 48, 48, 48, 50, 50, 50, 50

}
,

where

ϵ′′ =
1

24

(
149−

√
5−
√
−1
√

34− 10
√
5
)
, ρ′′ =

1

24

(
149−

√
5 +
√
−1
√

34− 10
√
5
)
,

ϱ′′ =
1

24

(
149 +

√
5−
√
−1
√

34− 10
√
5
)
, ς ′′ =

1

24

(
149 +

√
5 +
√
−1
√

34− 10
√
5
)
.

Hence find
Spec(∆QG(2,3)

) = Spec(∆QG(3,2)
), Spec(∆QG(2,5)

) = Spec(∆QG(5,2)
)

Spec(∆QG(3,5)
) = Spec(∆QG(5,3)

), Spec(∆QG(4,5)
) = Spec(∆QG(5,4)

).

Example 5.12. We take a Petersen Kähler graph of second kind given in Example

2.24 in §2.3 which is like Fig. 9. It is a regular Kähler graph of d(p) = 3, d(a) = 4. The

adjacency matrix of its auxiliary graph is given as The adjacency matrix of auxiliary

graph is given as
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AG(a) =



0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 0 1 1
1 1 0 0 0 1 0 0 0 1
0 1 1 0 0 1 1 0 0 0
0 0 0 1 1 0 1 0 0 1
1 0 0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0 1 0
0 1 1 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1 0


.

As the principal graph is a Petersen graph, we find that the adjacency matrices of the

principal and the auxiliary graphs are not commutative:

AG(p)AG(a)=



0 1 1 2 2 1 2 1 1 1
2 0 1 1 2 1 1 2 1 1
2 2 0 1 1 1 1 1 2 1
1 2 2 0 1 1 1 1 1 2
1 1 2 2 0 2 1 1 1 1
1 2 2 1 0 0 2 2 1 1
0 1 2 2 1 1 0 2 2 1
1 0 1 2 2 1 1 0 2 2
2 1 0 1 2 2 1 1 0 2
2 2 1 0 1 2 2 1 1 0


, AG(a)AG(p)=



0 2 2 1 1 1 0 1 2 2
1 0 2 2 1 2 1 0 1 2
1 1 0 2 2 2 2 1 0 1
2 1 1 0 2 1 2 2 1 0
2 2 1 1 0 0 1 2 2 1
1 1 1 1 2 0 1 1 2 2
2 1 1 1 1 2 0 1 1 2
1 2 1 1 1 2 2 0 1 1
1 1 2 1 1 1 2 2 0 1
1 1 1 2 1 1 1 2 2 0


.

We here compute k-step adjacency. As we have

P
G

(a)
[2]

=
1

12
(A2

G(a) − 4I), P
G

(a)
[3]

=
1

36
(A3

G(a) − 9AG(a)),

P
G

(a)
[4]

=
1

108
(A4

G(a) − 10A2
G(a) + 12I), P

G
(a)
[5]

=
1

324

(
A5

G(a) − 13(A3
G(a) + 33(AG(a)

)
,

we see

P
G

(a)
[2]

=
1

12



0 2 0 0 2 2 1 1 2 2
2 0 2 0 0 2 2 1 1 2
0 2 0 2 0 2 2 2 1 1
0 0 2 0 2 1 2 2 2 1
2 0 0 2 0 1 1 2 2 2
2 2 2 1 1 0 1 1 1 1
1 2 2 2 1 1 0 1 1 1
1 1 2 2 2 1 1 0 1 1
2 1 1 2 2 1 1 1 0 1
2 2 1 1 2 1 1 1 1 0


, P

G
(a)
[3]

=
1

36



2 5 3 3 5 5 2 2 5 4
5 2 5 3 3 4 5 2 2 5
3 5 2 5 3 5 4 5 2 2
3 3 5 2 5 2 5 4 5 2
5 3 3 5 2 2 2 5 4 5
5 4 5 2 2 4 1 6 6 1
2 5 4 5 2 1 4 1 6 6
2 2 5 4 5 6 1 4 1 6
5 2 2 5 4 6 6 1 4 1
4 5 2 2 5 1 6 6 1 4


,
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P
G

(a)
[4]

=
1

108



10 9 16 16 9 8 11 11 8 10
9 10 9 16 16 10 8 11 11 8
16 9 10 9 16 8 10 8 11 11
16 16 9 10 9 11 8 10 8 11
9 16 16 9 10 11 11 8 10 8
8 10 8 11 11 6 14 13 13 14
11 8 10 8 11 14 6 14 13 13
11 11 8 10 8 13 14 6 14 13
8 11 11 8 10 13 13 14 6 14
10 8 11 11 8 14 13 13 14 6


,

P
G

(a)
[5]

=
1

324



48 29 28 28 29 31 32 32 31 36
29 48 29 28 28 36 31 32 32 31
28 29 48 29 28 31 36 31 32 32
28 28 29 48 29 32 31 36 31 32
29 28 28 29 48 32 32 31 36 31
31 36 31 32 32 38 35 27 27 35
32 31 36 31 32 35 38 35 27 27
32 32 31 36 31 27 35 38 35 27
31 32 32 31 36 27 27 35 38 35
36 31 32 32 31 35 27 27 35 38


.

Thus we have

AG(2,1)
=
1

4



4 3 2 1 2 3 1 2 3 3
2 4 3 2 1 3 3 1 2 3
1 2 4 3 2 3 3 3 1 2
2 1 2 4 3 2 3 3 3 1
3 2 1 2 4 1 2 3 3 3
3 2 2 2 3 4 1 2 3 2
3 3 2 2 2 2 4 1 2 3
2 3 3 2 2 3 2 4 1 2
2 2 3 3 2 2 3 2 4 1
2 2 2 3 3 1 2 3 2 4


, AG(4,1)

=
1

2



4 5 4 5 6 5 5 4 5 5
6 4 5 4 5 5 5 5 4 5
5 6 4 5 4 5 5 5 5 4
4 5 6 4 5 4 5 5 5 5
5 4 5 6 4 5 4 5 5 5
5 6 6 4 3 4 5 6 5 4
3 5 6 6 4 4 4 5 6 5
4 3 5 6 6 5 4 4 5 6
6 4 3 5 6 6 5 4 4 5
6 6 4 3 5 5 6 5 4 4


,

AG(5,1)
= 4M + 2AG(a) ,

AG(1,2)
=

1

12



6 2 4 3 1 3 4 4 4 5
1 6 2 4 3 5 3 4 4 4
3 1 6 2 4 4 5 3 4 4
4 3 1 6 2 4 4 5 3 4
2 4 3 1 6 4 4 4 5 3
3 4 3 4 6 4 3 2 3 4
6 3 4 3 4 4 4 3 2 3
4 6 3 4 3 3 4 4 3 2
3 4 6 3 4 2 3 4 4 3
4 3 4 6 3 3 2 3 4 4


, AG(1,3)

=
1

36



15 9 13 10 7 10 8 13 12 11
7 15 9 13 10 11 10 8 13 12
10 7 15 9 13 12 11 10 8 13
13 10 7 15 9 13 12 11 10 8
9 13 10 7 15 8 13 12 11 10
9 9 10 12 14 17 9 7 10 11
14 9 9 10 12 11 17 9 7 10
12 14 9 9 10 10 11 17 9 7
10 12 14 9 9 7 10 11 17 9
9 10 12 14 9 9 7 10 11 17


,
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AG(1,4)
=

1

108



26 36 33 36 37 27 33 32 34 30
37 26 36 33 36 30 27 33 32 34
36 37 26 36 33 34 30 27 33 32
33 36 37 26 36 32 34 30 27 33
36 33 36 37 26 33 32 34 30 27
29 31 35 34 27 34 38 31 28 37
27 29 31 35 34 37 34 38 31 28
34 27 29 31 35 28 37 34 38 31
35 34 27 29 31 31 28 37 34 38
31 35 34 27 29 38 31 28 37 34


,

AG(1,5)
=

1

324



89 112 88 89 108 106 98 90 95 97
108 89 112 88 89 97 106 98 90 95
89 108 89 112 88 95 97 106 98 90
88 89 108 89 112 90 95 97 106 98
112 88 89 108 89 98 90 95 97 106
111 93 91 95 96 85 94 105 104 98
96 111 93 91 95 98 85 94 105 104
95 96 111 93 91 104 98 85 94 105
91 95 96 111 93 105 104 98 85 94
93 91 95 96 111 94 105 104 98 85


,

Computing the eigenvalues of ∆AG(p,q)
we have

Spec(∆AG(1,1)
) =

{
0, 3, ϵ1, ϵ1, ρ1, ρ1, ϱ1, ϱ1, ς1, ς1

}
,

Spec(∆AG(2,1)
) =

{
0, 6, ϵ2, ϵ2, ρ2, ρ2, ϱ2, ϱ2, ς2, ς2

}
,

Spec(∆AG(4,1)
) =

{
0, 24, 24, 24, 24, 24, 25, 25, 25, 25

}
,

Spec(∆AG(5,1)
) =

{
0, 48, ϵ3, ϵ3, ρ3, ρ3, ϱ3, ϱ3, ς3, ς3

}
,

Spec(∆AG(1,2)
) =

{
0, 10/3, ϵ4, ϵ4, ρ4, ρ4, ϱ4, ϱ4, ς4, ς4

}
,

Spec(∆AG(1,3)
) =

{
0, 3, ϵ5, ϵ5, ρ5, ρ5, ϱ5, ϱ5, ς5, ς5

}
,

Spec(∆AG(1,4)
) =

{
0, 26/9, ϵ6, ϵ6, ρ6, ρ6, ϱ6, ϱ6, ς6, ς6

}
,

Spec(∆AG(1,5)
) =

{
0, 3, ϵ7, ϵ7, ρ7, ρ7, ϱ7, ϱ7, ς7, ς7

}
,

where
ϵ1 =

1

8

(
27 +

√
−1
√
11− 4

√
5
)
,

ρ1 =
1

8

(
27−

√
−1
√

11− 4
√
5
)
,


ϱ1 =

1

8

(
27 +

√
−1
√
11 + 4

√
5
)
,

ς1 =
1

8

(
27−

√
−1
√

11 + 4
√
5
)
,
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
ϵ2 =

1

4

(
22−

√√
5− 1

)
,

ρ2 =
1

4

(
22 +

√√
5− 1

)
,


ϱ2 =

1

4

(
22 +

√
−1
√

1 +
√
5
)
,

ς2 =
1

4

(
22−

√
−1
√

1 +
√
5
)
,

ϵ3 = 49−
√
11+2

√
5, ρ3 = 49−

√
11−2

√
5, ϱ3 = 49+

√
11−2

√
5, ς3 = 49+

√
11+2

√
5,

ϵ4 =
1

48

(
135−

√
5+

√
70+66

√
5
)
,

ρ4 =
1

48

(
135−

√
5−
√

70+66
√
5
)
,


ϱ4 =

1

48

(
135+

√
5+
√
−1
√
66
√
5−70

)
,

ς4 =
1

48

(
135+

√
5−
√
−1
√

66
√
5−70

)
,

ϵ5 =
1

72

(
203+

√
5+
√
−1
√
26−6

√
5
)
,

ρ5 =
1

72

(
203+

√
5−
√
−1
√

26−6
√
5
)
,


ϱ5 =

1

72

(
203−

√
5+
√
−1
√
26+6

√
5
)
,

ς5 =
1

72

(
203−

√
5−
√
−1
√
26+6

√
5
)
,

ϵ6=
1

216

(
657−5

√
5+

√
194+122

√
5
)
,

ρ6=
1

216

(
657−5

√
5−
√
194+122

√
5
)
,


ϱ6=

1

216

(
657+5

√
5+
√
−1
√
122
√
5−194

)
,

ς6=
1

216

(
657+5

√
5−
√
−1
√

122
√
5−194

)
,

ϵ7=
1

1296

(
3939+13

√
5+

√
7446−1426

√
5
)
,

ρ7=
1

1296

(
3939+13

√
5−
√

7446−1426
√
5
)
,

ϱ7=
1

1296

(
3939−13

√
5+

√
7446+1426

√
5
)
,

ς7=
1

1296

(
3939−13

√
5+

√
7446+1426

√
5
)
.
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Example 5.13. We take a Kähler graph G obtained from Petersen Kähler graph

of second kind given in Example 2.24 in §2.3 which is like Fig. 10. It is a regular

Kähler graph of d
(p)
G = 3 and d

(a)
G = 4. The adjacency matrix of its auxiliary graph is

given as

AG(a) =



0 0 1 1 0 0 1 0 0 1
0 0 0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1 0 1
0 1 1 0 0 1 0 0 1 0
0 1 0 0 1 0 1 0 0 1
1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 0 1 0


.

We note that they are not commutative:

AG(p)AG(a)=



0 2 1 1 2 2 1 1 1 1
2 0 2 1 1 1 2 1 1 1
1 2 0 2 1 1 1 2 1 1
1 1 2 0 2 1 1 1 2 1
2 1 1 2 0 1 1 1 1 2
0 1 2 2 1 0 2 1 1 2
1 0 1 2 2 2 0 2 1 1
2 1 0 1 2 1 2 0 2 1
2 2 1 0 1 1 1 2 0 2
1 2 2 1 0 2 1 1 2 0


, AG(a)AG(p)=



0 2 1 1 2 0 1 2 2 1
2 0 2 1 1 1 0 1 2 2
1 2 0 2 1 2 1 0 1 2
1 1 2 0 2 2 2 1 0 1
2 1 1 2 0 1 2 2 1 0
2 1 1 1 1 0 2 1 1 2
1 2 1 1 1 2 0 2 1 1
1 1 2 1 1 1 2 0 2 1
1 1 1 2 1 1 1 2 0 2
1 1 1 1 2 2 1 1 2 0


.

The eigenvalues of combinatorial Laplacians of its principal graph and those of (1, 1)-

combinatorial Laplacians are as follows:

Spec(∆A
G(p)

) =
{
0, 2, 2, 2, 2, 2, 5, 5, 5, 5

}
,

Spec(∆AG(1,1)
) =

{
0, 3, ϵ, ϵ, ρ, ρ, ϱ, ϱ, ς, ς

}
,

where 
ϵ =

27 +
√
5

8
+

√
−1
8

(
√
5− 1),

ρ =
27 +

√
5

8
−
√
−1
8

(
√
5− 1)


ϱ =

27−
√
5

8
+

√
−1
8

(
√
5 + 1),

ς =
27−

√
5

8
−
√
−1
8

(
√
5 + 1).

Like the Petersen Kähler graph of second kind in Example 5.12, it seem that this

Kähler graph does not have good properties.
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5.4. Eigenvalues of Kähler graphs obtained from a Heawood graph. Next

we study Kähler graphs obtained from a Heawood graph.

Example 5.14. We take a regular Kähler graph G of d
(p)
G = 3 and d

(a)
G = 2 like in

Fig. 11. The adjacency matrices of its principal and auxiliary graphs are given as

A
(p)
G =



0 1 0 0 0 1 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
1 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0



,

A
(a)
G =



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



.
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These matrices are commutative:

A
(p)
G A

(a)
G = A

(a)
G A

(p)
G =



0 1 0 1 0 1 0
1 0 0 0 1 0 2
0 0 0 1 0 1 0
1 0 1 0 0 0 1
0 1 0 0 0 1 0
1 0 1 0 1 0 0
0 2 0 1 0 0 0
0 0 1 0 1 0 1
0 0 0 2 0 1 0
2 0 0 0 1 0 1
0 1 0 0 0 2 0
1 0 2 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 2 0 0

0 0 2 0 1 0 0
0 0 0 1 0 1 0
1 0 0 0 2 0 1
0 2 0 0 0 1 0
1 0 1 0 0 0 2
0 1 0 2 0 0 0
1 0 1 0 1 0 0
0 0 0 1 0 2 0
0 0 1 0 1 0 1
0 1 0 0 0 1 0
1 0 0 0 1 0 1
0 1 0 1 0 0 0
2 0 1 0 0 0 1
0 1 0 1 0 1 0



.

Thus Theorem 5.1 is applicable. The eigenvalues for these adjacency matrices are

Spec(A(p)
G ) =

{
−3,−

√
2,−
√
2,−
√
2,−
√
2,−
√
2,−
√
2,
√
2,
√
2,
√
2,
√
2,
√
2,
√
2, 3
}
,

Spec(A(a)
G ) = {2, 2, η1, η1, η1, η1, η2, η2, η2, η2, η3, η3, η3, η3

}
,

where

η1 =
1

3

(
−7 + 2

√
7 cos θ

)
, η2 = −

1

3

(
7 +
√
7 cos θ +

√
21 sin θ

)
,

η3 = −
1

3

(
7 +
√
7 cos θ −

√
21 sin θ

)
,

with cos 3θ = 1/(2
√
7), sin 3θ = (3

√
3)/(2

√
7). Here, ±3 correspond to 2 and ±

√
2

correspond doubly to ηi.

The eigenvalues of combinatorial Laplacians are

Spec
(
∆A

G(a)

)
=
{
0, 3±

√
2, 3±

√
2, 3±

√
2, 3±

√
2, 3±

√
2, 3±

√
2
}
,

Spec
(
∆AG(1,1)

)
= {0, 6, 3±ϵ1, 3±ϵ1, 3±ϵ2, 3±ϵ2, 3±ϵ3, 3±ϵ3}

= Spec
(
∆AG(1,2)

)
= Spec

(
∆AG(1,3)

)
= Spec

(
∆AG(1,4)

)
,

Spec
(
∆AG(2,1)

)
= {ϵ′1, ϵ′1, ϵ′1, ϵ′1, ϵ′2, ϵ′2, ϵ′2, ϵ′2, ϵ′3, ϵ′3, ϵ′3, ϵ′3}

= Spec
(
∆AG(2,3)

)
= Spec

(
∆AG(2,5)

)
,
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where

ϵ1 =
1

6

√
30+12

√
7 cos θ, ϵ2 =

1

6

√
30−6

√
7 cos θ−6

√
21 sin θ,

ϵ3 =
1

6

√
30−6

√
7 cos θ+6

√
21 sin θ,

ϵ′1 =
35+2

√
7 cos θ

6
, ϵ′2 =

35−
√
7 cos θ−

√
21 sin θ

6
, ϵ′3 =

35−
√
7 cos θ+

√
21 sin θ

6
,

Since the auxiliary graph is a union of two 7-circuits and 7 is prime, we find

Spec
(
∆AG(p,q)

)
=

Spec
(
∆A

G
(a)
[p]

)
, when q ≡ 0 (mod 7),

Spec
(
∆AG(p,1)

)
, otherwise.

.

Fig. 11 Fig. 12 Fig. 13

Example 5.15. We take a regular Kähler graph G of d
(p)
G = 3 and d

(a)
G = 2 like in

Fig. 12. The adjacency matrix of its auxiliary graph is given as

A
(a)
G =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0



.
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The adjacency matrices of the principal ant the auxiliary graphs are commutative:

A
(p)
G A

(a)
G = A

(a)
G A

(p)
G =



0 1 0 2 0 0 0
1 0 1 0 1 0 0
0 1 0 1 0 2 0
2 0 1 0 1 0 1
0 1 0 1 0 1 0
0 0 2 0 1 0 1
0 0 0 1 0 1 0
1 0 0 0 2 0 1
0 1 0 0 0 1 0
0 0 1 0 0 0 2
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 2 0 0 0 1 0
1 0 1 0 0 0 1

1 0 0 0 1 0 1
0 1 0 0 0 2 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
2 0 0 0 1 0 0
0 1 0 0 0 1 0
1 0 2 0 0 0 1
0 1 0 1 0 0 0
1 0 1 0 2 0 0
0 1 0 1 0 1 0
1 0 1 0 1 0 2
0 2 0 1 0 1 0
0 0 1 0 1 0 1
0 0 0 2 0 1 0



.

This Kähler graph has the same eigenvalues of (p, q)-combinatorial Laplacian as those

for the Kähler graph in Example 5.14 for arbitrary pair of (p, q). We note that the

auxiliary graphs of the graph and the graph in Example 5.14 are isomorphic and that

the adjacency matrices of their auxiliary graphs are commutative. As a mater of fact,

the adjacency matrix of the auxiliary graph of the Kähler graph in Example 5.14 is

given as (A
(a)
G )2 − 2I by the adjacency matrix of the auxiliary graph in this example.

Example 5.16. We take a regular Kähler graph G of d
(p)
G = 3 and d

(a)
G = 2 like in

Fig. 11. The adjacency matrix of its auxiliary graph is given as

A
(a)
G =



0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0



.
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The adjacency matrices of the principal ant the auxiliary graphs are commutative:

A
(p)
G A

(a)
G = A

(a)
G A

(p)
G =



0 0 0 2 0 1 0
0 0 1 0 1 0 1
0 1 0 0 0 2 0
0 0 0 0 1 0 1
0 1 0 1 0 0 0
1 0 0 0 0 0 1
0 1 0 1 0 1 0
2 0 1 0 0 0 0
0 2 0 1 0 1 0
1 0 2 0 1 0 0
0 1 0 2 0 1 0
1 0 1 0 2 0 1
0 0 0 1 0 2 0
1 0 1 0 1 0 2

2 0 1 0 1 0 1
0 2 0 1 0 0 0
1 0 2 0 1 0 1
0 1 0 2 0 1 0
0 0 1 0 2 0 1
0 1 0 1 0 2 0
0 0 0 0 1 0 2
0 1 0 1 0 1 0
1 0 0 0 0 0 1
0 0 0 1 0 1 0
1 0 1 0 0 0 0
0 0 0 0 0 1 0
1 0 1 0 1 0 0
0 1 0 0 0 0 0



.

This Kähler graph has the same eigenvalues of (p, q)-combinatorial Laplacian as those

for the Kähler graph in Example 5.14 for an arbitrary pair (p, q). We note that the

auxiliary graphs of the graph and the graph in Example 5.14 are isomorphic and that

the adjacency matrices of their auxiliary graphs are commutative. As a mater of fact,

the adjacency matrix of the auxiliary graph in this example is given as (A
(a)
G )3− 3A

(a)
G

by the adjacency matrix of the auxiliary graph of the Kähler graph in Example 5.15 .

5.5. Eigenvalues of Kähler flower snark. Let n (≥ 3) be an odd integer. A

flower snark Jn = (V,E) is a graph given with n copies of star graphs of 4 vertices as

V = {vi,1, vi,2, vi,3, vi,4 | i = 0, 1, . . . , n− 1},

E =
{
{vi,1, vi,2}, {vi,2, vi,3}, {vi,2, vi,4}, {vi,1, vi+1,1}

∣∣ i = 0, . . . , n− 1
}

∪{
{vi,3, vi+1,3}, {vi,4, vi+1,4}

∣∣ i ̸= (n− 1)/2
}

∪{
{v(n−1)/2,3, v(n+1)/2,4}, {v(n−1)/2,4, v(n+1)/2,3}

}
.

where the former index is considered by modulo n (see Fig. 15). It is a regular graph

of dJn = 3. We can express Jn in another way as

V ′ =
{
v′1,j, v

′
2,k

∣∣ j = 0, . . . , 3n− 1, k = 0, . . . , n− 1
}
,

E ′ =

{ {v′1,j, v′1,j+1}, {v′1,3k+1, v
′
1,3k−4}

{v′1,3k−1, v
′
1,3k+4}, {v′1,3k, v′2,k}, {v′2,k, v′2,k+1}

∣∣∣∣∣ j = 0, . . . , 3n− 1,

k = 0, . . . , n− 1

}
,
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where the latter index for vertices whose former index is 1 is considered by modulo 3n,

and that for vertices whose former index is 2 is considered by modulo n (see Fig. 16).

An isomorphism of (V,E) to (V ′, E ′) is given as

vi,1 7→ v′2,i, v2j,2 7→ v′1,6j, v2j,3 7→ v′1,6j+1, v2j,4 7→ v′1,6j−1,

v2ℓ+1,2 7→ v′1,6ℓ+3, v2ℓ+1,3 7→ v′1,6ℓ+2, v2ℓ+1,4 7→ v′1,6ℓ+4,

where 1 − m ≤ j ≤ m − 1, −m ≤ ℓ ≤ m − 1 when n = 4m − 1 and −m ≤ j ≤

m, −m ≤ ℓ ≤ m− 1 when n = 4m+ 1.

1

2

3 4

Fig. 14. 4-star

Fig. 15. J5 original

2

Fig. 16. J5

By the former representation the adjacency matrix of Jn is given as

AJn =



A B O · · · · · · · · · · · · O B

B A
. . .

. . . O

O
. . .

. . . B
. . .

...
...

. . . B A C O
...

O O C A B O O
... O B A

. . .
. . .

...
...

. . .
. . .

. . .
. . . O

O
. . .

. . .
. . . B

B O · · · · · · · · · · · · O B A



⟨n−1
2

with

A =

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

, B =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

, C =

1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

,
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where vertices are putted by lexicographical order. We set

E
(a)
1 = {{vi,1, vi,3}, {vi,1, vi,4}, {vi,3, vi+1,2}, {vi,4, vi−1,2} | i = 0, . . . , n− 1} ,

E
(a)
2 = {{vi,1, vi+1,4}, {vi,2, vi+1,4}, {vi,3, vi+1,1}, {vi,3, vi+1,2} | i = 0, . . . , n− 1} ,

E
(a)
3 =

{
{vi,3, vi,4}

∣∣ i = 0, . . . , n− 1
}

∪{
{vi,3, vi+1,4}, {vi,1, vi+1,2}, {vi,2, vi+1,1}

∣∣ i ̸= n− 1

2

}
∪{
{v(n−1)/2,1, v(n+1)/2,4}, {v(n−1)/2,2, v(n+1)/2,2}, {v(n−1)/2,3, v(n+1)/2,1}

}
,

and consider three Kähler graphs KJ1
n = (V,E ∪ E(a)

1 ), KJ2
n = (V,E ∪ E(a)

2 ), KJ3
n =

(V,E ∪ E(a)
3 ) and KJ4

n =
(
V,E ∪ (E

(a)
1 ∪ E

(a)
3 )
)
. We shall call KJ1

n, KJ
2
n, KJ

3
n Kähler

flower snarks of first kind and call KJ4
n Kähler flower snark of second kind. They are

regular Kähler graph with d
(a)

KJ1
n
= d

(a)

KJ2
n
= d

(a)

KJ3
n
= 2 and d

(a)

KJ4
n
= 4. By definition the

adjacency matrices of auxiliary graphs of KJ1
n, KJ

2
n, KJ

3
n are given as

A
(a)

KJj
n
=



Kj Lj O · · · O tLj

tLj Kj Lj
. . . O

O tLj
. . . . . . . . .

...
...

. . . . . . . . . . . . L

O
. . . tLj Kj Lj

Lj O · · · O tLj Kj


with

K1 =

0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

, K3 = O, L1 =

0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

, L2 =

0 0 0 1
0 0 0 1
1 1 0 0
0 0 0 0

,
and

A
(a)

KJ3
n
=



C D O · · · · · · · · · · · · O tD

tD C
. . .

. . . O

O
. . .

. . . D
. . .

...
...

. . . tD C F O
...

O O tF C D O O
... O tD C

. . .
. . .

...
...

. . .
. . .

. . .
. . . O

O
. . .

. . .
. . . D

D O · · · · · · · · · · · · O tD C



⟨n−1
2
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with

C =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

, D =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

, F =

0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 0

.
Since BtL ̸= LB and BtD ̸= DB, we find that A(p)

KJ1
n
, A(a)

KJ1
n
are not commutative nor

A(p)

KJ2
n
, A(a)

KJ2
n
are. As A

(a)

KJ4
n
= A

(a)

KJ1
n
+ A

(a)

KJ3
n
and B(tL + tD) ̸= (L + D)B, we find that

A(p)

KJ4
n
, A(p)

KJ4
n
are not commutative.

We here show figures of Kähler flower snarks.

Fig. 17. J3 Fig. 18. KJ1
3 Fig. 19. KJ2

3

Fig. 20. KJ3
3 Fig. 21. KJ4

3

Example 5.17. We take a Kähler flower snark KJ1
3 of first kind. We have

A
(p)

KJ1
3
=



0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0


, A

(a)

KJ1
3
=



0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0


,
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hence have

A
(p)

KJ1
3
P

(a)

KJ1
3
=

1

2



0 0 0 0 0 0 1 2
2 0 1 1 0 1 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 1 0 1
0 0 2 1 0 0 0 0
0 1 0 0 2 0 1 1
1 0 1 0 0 2 0 0
1 1 1 0 0 0 0 0
0 0 1 2 0 0 2 1
0 1 0 0 0 1 0 0
1 1 0 1 1 1 1 0
1 0 0 1 1 0 1 0

0 0 2 1
0 1 0 0
1 1 1 0
1 0 1 0
0 0 1 2
0 1 0 0
1 0 0 1
1 1 0 1
0 0 0 0
2 0 1 1
0 0 0 0
0 2 0 0



and

Spec
(
∆AJ3

)
=
{
0, 1,

7−
√
13

2
,
7−
√
13

2
, 2, 2, 4, 4, 4, 5,

7 +
√
13

2
,
7 +
√
13

2

}
,

Spec
(
∆A

(KJ1
3 )(1,1)

)
=


0, 3, 3, 4,

solutions of 24t4 − 23 · 26t3 + 22 · 249t2 − 2 · 1054t+ 1665 = 0

solutions of 24t4 − 23 · 26t3 + 22 · 249t2 − 2 · 1038t+ 1593 = 0

 .

Example 5.18. We take a Kähler flower snark KJ2
3 of first kind. We have

A
(a)

KJ2
3
=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0

0 0 1 0
0 0 1 0
0 0 0 0
1 1 0 0
0 0 0 1
0 0 0 1
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


,
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hence get

A
(p)

KJ2
3
P

(a)

KJ2
3
=

1

2



0 0 1 1 0 0 1 1
0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 1
1 1 0 0 1 1 0 1
0 0 1 1 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 0 2 2 0 0
1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 1 1 1 1 0
1 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0

0 0 1 1
1 1 1 0
1 1 1 0
0 0 1 0
0 0 1 1
1 1 0 1
0 0 0 1
1 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0
2 2 0 0


.

The eigenvalues of Laplacians are

Spec
(
∆A

(KJ2
3 )(1,1)

)
= Spec

(
∆A

(KJ2
3 )(1,3)

)
=

{
0, 3, 3, 3, 3, 3, 3, 3, 4, 4,

7+
√
−3

2
,
7−
√
−3

2

}
,

Spec
(
∆A

(KJ2
3 )(2,1)

)
= Spec

(
∆A

(KJ2
3 )(2,3)

)
=

{
0,

9

2
, 6, 6, 6, 6, 6, 6, 6,

15

2
,
12+
√
−3

2
,
12−
√
−3

2

}

Spec
(
∆A

(KJ2
3 )(3,1)

)
=

{
0,

7−
√
2

2
, 12, 12, 12, 12, 12, 12, 12,

7−
√
2

2
,
21+
√
−6

2
,
21−
√
−6

2

}
Spec

(
∆A

(KJ2
3 )(4,1)

)
= Spec

(
∆A

(KJ2
3 )(4,3)

)
=

{
0, 20,

41

2
,
45

2
, 24, 24, 24, 24, 24, 24, 24,

49

2
,
53

2

}

Spec
(
∆A

(KJ2
3 )(1,2)

)
=


0,

5+
√
−7

2
,
5−
√
−7

2
,

solutions of t5 − 14t4 + 76t3 − 198t2 + 242t− 99 = 0

solutions of t4 − 9t3 + 31t2 − 47t+ 27 = 0


Spec

(
∆A

(KJ2
3 )(1,4)

)
=

{
0, 1,

7−
√
13

2
,
7−
√
13

2
, 2, 2, 4, 4, 4, 5,

7+
√
13

2
,
7+
√
13

2

}
,

Spec
(
∆A

(KJ2
3 )(3,2)

)
=


0, 13+

√
−7, 13−

√
−7,

solutions of t5 − 58t4 + 351t3 − 15754t2 + 91808t− 213696 = 0

solutions of t4 − 52t3 + 1023t2 − 9040t+ 30240 = 0

 ,
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Spec
(
∆A

(KJ2
3 )(3,4)

)
=

{
0, 8, 8, 8, 10,

29−
√
13

2
,
29−
√
13

2
, 14, 16, 16,

29+
√
13

2
,
29+
√
13

2

}
.

We here list the adjacency matrices:

AKJ2
3 (2,1)

=
1

2



0 0 2 2 1 1 2 0
2 2 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 2 0 0 2 2
1 1 0 1 2 2 1 1
2 2 1 1 0 0 1 1
0 0 1 1 2 2 1 1
1 1 2 0 1 1 0 2
1 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1
2 2 1 1 1 1 1 1

1 1 0 2
1 1 0 1
1 1 1 1
1 1 1 1
1 1 2 0
1 1 1 0
1 1 1 1
1 1 1 1
0 0 2 2
2 2 1 1
2 2 1 1
0 0 1 1


,

AKJ2
3 (3,1)

=
1

2



4 4 1 1 2 2 1 2
2 2 4 4 1 1 4 0
2 2 3 3 2 2 3 0
2 2 3 3 2 2 3 0
2 2 2 1 4 4 1 1
1 1 0 4 2 2 4 4
4 4 0 3 0 0 3 3
0 0 0 3 4 4 3 3
2 2 1 2 2 2 2 1
1 1 4 0 1 1 0 4
0 0 3 0 2 2 0 3
4 4 3 0 2 2 0 3

2 2 2 1
1 1 0 4
2 2 0 3
2 2 0 3
2 2 1 2
1 1 4 0
2 2 3 0
2 2 3 0
4 4 1 1
2 2 4 4
4 4 3 3
0 0 3 3


,

AKJ2
3 (4,1)

=
1

2



6 6 3 3 5 5 3 2
4 4 5 5 4 4 5 2
4 4 5 5 1 1 5 4
4 4 5 5 5 5 5 4
5 5 2 3 6 6 3 3
4 4 2 5 4 4 5 5
3 3 4 5 6 6 5 5
3 3 4 5 2 2 5 5
5 5 3 2 5 5 2 3
4 4 5 2 4 4 2 5
3 3 5 4 5 5 4 5
3 3 5 4 1 1 4 5

5 5 2 3
4 4 2 5
5 5 4 5
1 1 4 5
5 5 3 2
4 4 5 2
1 1 5 4
5 5 5 4
6 6 3 3
4 4 5 5
2 2 5 5
6 6 5 5


,



272 V. Eigenvalues of (p, q)-Laplacians for Kähler graphs

AKJ2
3 (1,2)

=
1

2



2 0 0 0 0 2 0 0
0 2 0 0 0 0 2 0
2 0 0 2 0 0 0 2
2 0 2 0 0 0 0 0
0 2 0 0 2 0 0 0
0 0 0 2 0 2 0 0
0 0 2 0 2 0 0 0
0 0 0 0 2 0 2 2
0 2 0 0 0 2 0 0
0 0 2 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 2 0 0 2 0

0 2 0 0
0 0 0 2
0 0 0 0
0 0 2 0
0 2 0 0
0 0 2 0
0 0 0 2
0 0 0 0
2 0 0 0
0 2 0 0
2 0 2 2
2 0 0 0


,

AKJ2
3 (1,3)

=
1

2



0 0 1 1 0 0 1 1
0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 1
1 1 0 0 1 1 0 1
0 0 1 1 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 0 2 2 0 0
1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 1 1 1 1 0
1 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0

0 0 1 1
1 1 1 0
1 1 1 0
0 0 1 0
0 0 1 1
1 1 0 1
0 0 0 1
1 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0
2 2 0 0


,

AKJ2
3 (1,4)

=
1

2



6 0 2 2 2 2 0 0
0 6 0 0 2 0 2 2
2 0 6 2 0 2 0 2
2 0 2 6 0 2 2 0
2 2 0 0 6 0 2 2
2 0 2 2 0 6 0 0
0 2 0 2 2 0 6 2
0 2 2 0 2 0 2 6
2 2 0 0 2 2 0 0
2 0 2 2 2 0 2 2
0 2 0 2 0 2 2 0
0 2 2 0 0 2 0 2

2 2 0 0
2 0 2 2
0 2 0 2
0 2 2 0
2 2 0 0
2 0 2 2
0 2 2 0
0 2 0 2
6 0 2 2
0 6 0 0
2 0 6 2
2 0 2 6


,

AKJ2
3 (2,3)

=
1

2



0 0 2 2 1 1 2 0
2 2 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 2 0 0 2 2
1 1 0 1 2 2 1 1
2 2 1 1 0 0 1 1
0 0 1 1 2 2 1 1
1 1 2 0 1 1 0 2
1 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1
2 2 1 1 1 1 1 1

1 1 0 2
1 1 0 1
1 1 1 1
1 1 1 1
1 1 2 0
1 1 1 0
1 1 1 1
1 1 1 1
0 0 2 2
2 2 1 1
2 2 1 1
0 0 1 1


,
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AKJ2
3 (3,2)

=
1

2



0 4 4 4 2 0 0 4
0 0 2 2 6 2 0 2
0 0 4 0 2 4 4 0
0 0 0 4 2 4 0 4
2 0 4 0 0 4 4 4
6 2 2 0 0 0 2 2
2 4 0 0 0 0 4 4
2 4 4 4 0 0 0 0
2 0 0 4 2 0 4 0
6 2 0 2 6 2 2 0
2 4 4 4 2 4 4 0
2 4 0 0 2 4 0 4

2 0 4 0
6 2 2 0
2 4 4 0
2 4 0 4
2 0 0 4
6 2 0 2
2 4 4 0
2 4 0 4
0 4 4 4
0 0 2 2
0 0 0 0
0 0 4 4


,

AKJ2
3 (3,4)

=
1

2



4 0 0 0 0 2 4 4
0 0 0 0 2 6 2 2
0 0 0 4 4 2 0 4
0 0 4 0 4 2 4 0
0 2 4 4 4 0 0 0
2 6 2 2 0 0 0 0
4 2 0 4 0 0 0 4
4 2 4 0 0 0 4 0
0 2 4 4 0 2 4 4
2 6 2 2 2 6 2 2
4 2 0 4 4 2 4 0
4 2 4 0 4 2 0 4

0 2 4 4
2 6 2 2
4 2 0 4
4 2 4 0
0 2 4 4
2 6 2 2
4 2 4 0
4 2 0 4
4 0 0 0
0 0 0 0
0 0 0 4
0 0 4 0


,

AKJ2
3 (4,3)

=
1

2



6 6 3 3 5 5 3 2
4 4 5 5 4 4 5 2
4 4 5 5 1 1 5 4
4 4 5 5 5 5 5 4
5 5 2 3 6 6 3 3
4 4 2 5 4 4 5 5
3 3 4 5 6 6 5 5
3 3 4 5 2 2 5 5
5 5 3 2 5 5 2 3
4 4 5 2 4 4 2 5
3 3 5 4 5 5 4 5
3 3 5 4 1 1 4 5

5 5 2 3
4 4 2 5
5 5 4 5
1 1 4 5
5 5 3 2
4 4 5 2
1 1 5 4
5 5 5 4
6 6 3 3
4 4 5 5
2 2 5 5
6 6 5 5


.
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Example 5.19. We take a Kähler flower snark KJ3
3 of first kind. We have

A
(a)

KJ3
3
=



0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 1 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



,

A
(p)

KJ3
3
P

(a)

KJ3
3
=

1

2



0 2 0 0 1 0 1 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 1
0 0 1 0 2 0 1 0
1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 1
1 0 0 1 1 0 0 1
1 0 1 1 0 0 0 0
1 1 0 0 0 2 0 0
0 1 0 1 1 0 1 0
1 0 1 1 0 1 1 1
1 0 1 0 0 1 0 1

1 0 0 1
0 1 1 0
2 0 0 1
1 0 1 0
0 2 0 0
1 0 0 1
0 1 1 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0
1 0 1 0



.

The eigenvalues of (1, 1)-Laplacian are

Spec
(
∆A

(KJ3
3 )(1,1)

)
=


0, 7/2,

solutions of 23t4 − 22 · 25t3 + 22 · 232t2 − 941t+ 646 = 0

solutions of
24t6 − 23 · 40t5 + 22 · 667t4 − 2 · 5945t3

+29923t2 − 40382t+ 22860 = 0

 .

We here make mention of the case that n is even. When n is even we shall call the

graph Fn = (V,E) defined by

V = {vi,1, vi,2, vi,3, vi,4 | i = 0, . . . , n− 1},

E =


{vi,1, vi,2}, {vi,2, vi,3}, {vi,2, vi,4},

{vi,1, vi+1,1}, {vi,3, vi+1,3}, {vi,4, vi+1,4}

∣∣∣∣∣∣ i = 0, . . . , n− 1

 ,
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a flower. It is also represented as

V ′ =
{
v′1,j, v

′
2,k

∣∣ j = 0, . . . , 3n− 1, k = 0, . . . , n− 1
}
,

E ′ =

{ {v′1,j, v′1,j+1}, {v′1,3k+1, v
′
1,3k−4}

{v′1,3k, v′2,k}, {v′2,k, v′2,k+1}

∣∣∣∣∣ j = 0, . . . , 3n− 1,

k = 0, . . . , n− 1

}
,

An isomorphism of (V,E) to (V ′, E ′) is given as

vi,1 7→ v′2,i, v2j,2 7→ v′1,6j, v2j,3 7→ v′1,6j+1, v2j,4 7→ v′1,6j−1,

v2j+1,2 7→ v′1,6j+3, v2j+1,3 7→ v′1,6j+2, v2j+1,4 7→ v′1,6j+4

(
0 ≤ j ≤ n− 2

2

)
.

Fig. 22. F4 Fig. 23. F4

The adjacency matrix of Fn is given as

AFn =



A B O · · · O B

B A B
. . . O

O B
. . . . . . . . .

...
...

. . . . . . . . . . . . O
O O B A B
B O · · · O B A


with

A =

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

,

B =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

,
By setting

E
(a)
1 =

{
{vi,1, vi,3}, {vi,1, vi,4}, {vi,3, vi+1,2}, {vi,4, vi−1,2}

∣∣∣ i = 0, . . . , n− 1
}
,

E
(a)
2 =

{
{vi,2, vi+1,1}, {vi,2, vi−1,1}, {vi,3, vi,4}, {vi,3, vi+1,4}

∣∣∣ i = 0, . . . , n− 1
}
,

E
(a)
3 =

{
{vi,1, vi,3}, {vi,1, vi,4}, {vi,3, vi+1,4}, {vi,2, vi+1,2}

∣∣∣ i = 0, . . . , n− 1
}
,

E
(a)
4 =

{
{vi,1, vi+1,4}, {vi,2, vi+1,2} {vi,3, vi+1,1}, {vi,3, vi+1,4},

∣∣∣ i = 0, . . . , n− 1
}
,

E
(a)
5 =

{
{vi,1, vi+1,4}, {vi,2, vi+1,4} {vi,3, vi+1,1}, {vi,3, vi+1,2},

∣∣∣ i = 0, . . . , n− 1
}
,

E
(a)
6 =

{ {vi,1, vi,3}, {vi,1, vi,4}, {vi,3, vi,4},
{vi,1, vi+1,2}, {vi,2, vi+1,2}, {vi,3, vi+1,4}

∣∣∣∣∣ i = 0, . . . , n− 1

}
,
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we obtain five flower like Kähler graphs KF j
n = (V,E ∪ E(a)

j ) (j = 1, 2, 3, 4, 5) of

auxiliary degree 2, a flower like Kähler graph KF 6
n = (V,E ∪ E(a)

6 ) of auxiliary degree

3, and four flower like Kähler graphs

KF 7
n =

(
V,E ∪ (E

(a)
1 ∪ E

(a)
2 )
)
, KF 8

n =
(
V,E ∪ (E

(a)
1 ∪ E

(a)
4 )
)
,

KF 9
n =

(
V,E ∪ (E

(a)
2 ∪ E

(a)
5 )
)
, KF 10

n =
(
V,E ∪ (E

(a)
3 ∪ E

(a)
5 )
)

of auxiliary degree 4.

Fig. 24. KF 1
4 Fig. 25. KF 2

4 Fig. 26. KF 3
4

Fig. 27. KF 4
4 Fig. 28. KF 5

4 Fig. 29. KF 6
4

Fig. 30. KF 7
4 Fig. 31. KF 8

4
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Fig. 32. KF 9
4 Fig. 33. KF 10

4

The adjacency matrices of their auxiliary graphs are given as

A
(a)

KF j
n
=



Kj Lj O · · · O tLj

tLj Kj Lj
. . . O

O tLj
. . . . . . . . .

...
...

. . . . . . . . . . . . Lj

O
. . . tLj Kj Lj

Lj O · · · O tLj Kj


with

K1 = K3 =

0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

, K2 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

, K4 = K5 = O, K6 =

0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

,

L1 =

0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

, L2 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

, L3 =

0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

,

L4 =

0 0 0 1
0 1 0 0
1 0 0 1
0 0 0 0

, L5 =

0 0 0 1
0 0 0 1
1 1 0 0
0 0 0 0

, L6 =

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 0

.

As we can see AKj + BtLj + BLj ̸= KjA + LjB + tLjB, the adjacency operators of

the principal and the auxiliary graphs of KF j
n are not commutative.

Since these Kähler graphs are more “symmetric” than Kähler flower snarks, their

eigenvalues are tamer.
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Fig. 34. KF 1
4 Fig. 35. KF 2

4

Example 5.20. We take a Kähler flower KF 1
4 . We have

A
(p)

KF 1
4
=



0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0



,

A
(a)

KF 1
4
=



0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0



,
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hence get

A
(p)

KF 1
4
P

(a)

KF 1
4
=

1

2



0 0 0 0 0 0 1 2
2 0 1 1 0 1 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
0 0 2 1 0 0 0 0
0 1 0 0 2 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 2 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0

0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 2 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 2
2 0 1 1 0 1 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
0 0 2 1 0 0 0 0
0 1 0 0 2 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0



.

The eigenvalues of Laplacians are

Spec
(
∆AF4

)
=
{
0, 1, 1, 3−

√
3, 3−

√
3, 2, 3, 3, 3, 3, 4, 3+

√
3, 3+

√
3, 5, 5, 6

}
,

Spec
(
∆A

(KF1
4 )(1,1)

)
= Spec

(
∆A

(KF1
4 )(1,3)

)
=
{
0, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 6

}
,

Spec
(
∆A

(KF1
4 )(2,1)

)
=
{
0, 0, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

}
,

Spec
(
∆A

(KF1
4 )(3,1)

)
=
{
0, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24

}
,

Spec
(
∆A

(KF1
4 )(1,2)

)
=


0, 1,

5+
√
−7

2
,
5−
√
−7

2
, 3, 3, 3, 3, 3, 3, 3, 3,

7+
√
−7

2
,
5−
√
−7

2
, 5, 6

 ,

Spec
(
∆A

(KF1
4 )(3,2)

)
=

 0, 10, 11+
√
−7, 11−

√
−7, 12, 12, 12, 12,

12, 12, 12, 12, 13+
√
−7, 13−

√
−7, 14, 24

 ,

Spec
(
∆A

(KF1
4 )(2,3)

)
=
{
0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8

}
.
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We here list adjacency matrices:

A(KF 1
4 )(2,1)

=
1

2



2 0 1 1 0 1 0 0
0 2 0 0 2 0 1 1
1 0 2 2 0 0 0 0
1 0 2 2 0 3 0 0
0 1 0 0 2 0 1 1
2 0 1 1 0 2 0 0
0 3 0 0 1 0 2 2
0 0 0 0 1 0 2 2
0 0 3 3 0 1 0 0
0 2 0 0 2 0 1 1
2 0 1 1 0 3 0 0
2 0 1 1 0 0 0 0
0 1 0 0 0 0 3 3
2 0 1 1 0 2 0 0
0 0 0 0 2 0 1 1
0 3 0 0 2 0 1 1

0 0 3 3 0 1 0 0
0 2 0 0 2 0 1 1
2 0 1 1 0 3 0 0
2 0 1 1 0 0 0 0
0 1 0 0 0 0 3 3
2 0 1 1 0 2 0 0
0 0 0 0 2 0 1 1
0 3 0 0 2 0 1 1
2 0 1 1 0 1 0 0
0 2 0 0 2 0 1 1
1 0 2 2 0 0 0 0
1 0 2 2 0 3 0 0
0 1 0 0 2 0 1 1
2 0 1 1 0 2 0 0
0 3 0 0 1 0 2 2
0 0 0 0 1 0 2 2



,

A(KF 1
4 )(3,1)

=
1

2



0 4 0 0 4 0 3 1
0 0 3 3 0 2 0 0
0 3 0 0 3 0 4 2
0 3 0 0 3 0 4 2
4 0 1 3 0 4 0 0
0 2 0 0 0 0 3 3
3 0 2 4 0 3 0 0
3 0 2 4 0 3 0 0
0 4 0 0 4 0 1 3
4 0 5 5 0 2 0 0
0 3 0 0 3 0 2 4
0 3 0 0 3 0 2 4
4 0 3 1 0 4 0 0
0 2 0 0 4 0 5 5
3 0 4 2 0 3 0 0
3 0 4 2 0 3 0 0

0 4 0 0 4 0 1 3
4 0 5 5 0 2 0 0
0 3 0 0 3 0 2 4
0 3 0 0 3 0 2 4
4 0 3 1 0 4 0 0
0 2 0 0 4 0 5 5
3 0 4 2 0 3 0 0
3 0 4 2 0 3 0 0
0 4 0 0 4 0 3 1
0 0 3 3 0 2 0 0
0 3 0 0 3 0 4 2
0 3 0 0 3 0 4 2
4 0 1 3 0 4 0 0
0 2 0 0 0 0 3 3
3 0 2 4 0 3 0 0
3 0 2 4 0 3 0 0



,

A(KF 1
4 )(1,2)

=
1

2



0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 0 1 0 2 0
1 0 0 0 0 2 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
1 0 2 0 0 0 0 0
0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 0 1 0 2 0
1 0 0 0 0 2 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
1 0 2 0 0 0 0 0

0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 0 1 0 2 0
1 0 0 0 0 2 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
1 0 2 0 0 0 0 0
0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 0 1 0 2 0
1 0 0 0 0 2 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
1 0 2 0 0 0 0 0



,
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A(KF 1
4 )(1,3)

=
1

2



0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 2 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 2
2 0 1 1 0 1 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
0 0 2 1 0 0 0 0
0 1 0 0 2 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0

0 0 0 0 0 0 1 2
2 0 1 1 0 1 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
0 0 2 1 0 0 0 0
0 1 0 0 2 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 2 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0



,

A(KF 1
4 )(2,3)

=
1

2



0 0 3 3 0 1 0 0
0 2 0 0 2 0 1 1
2 0 1 1 0 3 0 0
2 0 1 1 0 0 0 0
0 1 0 0 0 0 3 3
2 0 1 1 0 2 0 0
0 0 0 0 2 0 1 1
0 3 0 0 2 0 1 1
2 0 1 1 0 1 0 0
0 2 0 0 2 0 1 1
1 0 2 2 0 0 0 0
1 0 2 2 0 3 0 0
0 1 0 0 2 0 1 1
2 0 1 1 0 2 0 0
0 3 0 0 1 0 2 2
0 0 0 0 1 0 2 2

2 0 1 1 0 1 0 0
0 2 0 0 2 0 1 1
1 0 2 2 0 0 0 0
1 0 2 2 0 3 0 0
0 1 0 0 2 0 1 1
2 0 1 1 0 2 0 0
0 3 0 0 1 0 2 2
0 0 0 0 1 0 2 2
0 0 3 3 0 1 0 0
0 2 0 0 2 0 1 1
2 0 1 1 0 3 0 0
2 0 1 1 0 0 0 0
0 1 0 0 0 0 3 3
2 0 1 1 0 2 0 0
0 0 0 0 2 0 1 1
0 3 0 0 2 0 1 1



,

A(KF 1
4 )(3,2)

=
1

2



0 2 0 0 2 0 4 4
6 0 2 2 0 2 0 0
0 4 0 0 2 0 4 2
0 4 0 0 2 0 2 4
2 0 4 4 0 2 0 0
0 2 0 0 6 0 2 2
2 0 4 2 0 4 0 0
2 0 2 4 0 4 0 0
0 2 0 0 2 0 4 4
6 0 2 2 0 2 0 0
0 4 0 0 2 0 4 2
0 4 0 0 2 0 2 4
2 0 4 4 0 2 0 0
0 2 0 0 6 0 2 2
2 0 4 2 0 4 0 0
2 0 2 4 0 4 0 0

0 2 0 0 2 0 4 4
6 0 2 2 0 2 0 0
0 4 0 0 2 0 4 2
0 4 0 0 2 0 2 4
2 0 4 4 0 2 0 0
0 2 0 0 6 0 2 2
2 0 4 2 0 4 0 0
2 0 2 4 0 4 0 0
0 2 0 0 2 0 4 4
6 0 2 2 0 2 0 0
0 4 0 0 2 0 4 2
0 4 0 0 2 0 2 4
2 0 4 4 0 2 0 0
0 2 0 0 6 0 2 2
2 0 4 2 0 4 0 0
2 0 2 4 0 4 0 0



.
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Example 5.21. We take a Kähler flower KF 2
4 . The adjacency matrix of its auxil-

iary graph is given as

A
(a)

KF 2
4
=



0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0



,

hence get

A
(p)

KF 2
4
P

(a)

KF 2
4
=

1

2



0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 2 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0

0 2 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0



.
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The eigenvalues of Laplacians are

Spec
(
∆A

(KF2
4 )(1,1)

)
= Spec

(
∆A

(KF2
4 )(1,3)

)
=
{
0,

5−
√
−7

2
,
5+
√
−7

2
, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5

}
,

Spec
(
∆A

(KF2
4 )(2,1)

)
=


0, 4, 4,

11−
√
7

2
,
11−
√
7

2
,
11−
√
−7

2
,
11+
√
−7

2
,

6, 6, 6, 6, 6, 6,
11+
√
7

2
,
11+
√
7

2
, 7

 ,

Spec
(
∆A

(KF2
4 )(3,1)

)
=

 0, 5, 2(7−
√
3), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,

2(7+
√
3), 13−

√
−7, 13+

√
−7

 ,

Spec
(
∆A

(KF2
4 )(1,2)

)
=

{
0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4,

solutions of t3 − 9t2 + 24t− 24 = 0

}
,

Spec
(
∆A

(KF2
4 )(2,3)

)
=


0, 4, 4,

13−
√
7

2
,
13−
√
7

2
, 6, 6, 6, 6, 6, 6,

13+
√
7

2
,
13−
√
7

2
,
11−
√
−7

2
,
11+
√
−7

2

 ,

Spec
(
∆A

(KF2
4 )(3,2)

)
=

{
0, 4, 5, 5, 12, 12, 12, 12, 14, 14, 14, 14, 14,

solutions of t3 − 38t2 + 480t− 2112 = 0

}
.

We here list adjacency matrices:

A(KF 2
4 )(2,1)

=
1

2



2 0 1 1 0 2 0 1
0 2 1 1 0 0 1 1
2 0 1 0 0 1 0 0
2 0 0 1 0 1 2 1
0 2 1 0 2 0 1 1
0 0 1 1 0 2 1 1
0 1 1 2 2 0 1 0
0 1 0 0 2 0 0 1
2 0 0 0 0 2 1 0
0 2 1 1 0 0 1 1
2 0 0 2 0 1 1 2
2 0 2 0 0 1 0 0
0 2 0 1 2 0 0 0
0 0 1 1 0 2 1 1
0 1 0 0 2 0 0 2
0 1 2 1 2 0 2 0

2 0 0 0 0 2 1 0
0 2 1 1 0 0 1 1
2 0 0 2 0 1 1 2
2 0 2 0 0 1 0 0
0 2 0 1 2 0 0 0
0 0 1 1 0 2 1 1
0 1 0 0 2 0 0 2
0 1 2 1 2 0 2 0
2 0 1 1 0 2 0 1
0 2 1 1 0 0 1 1
2 0 1 0 0 1 0 0
2 0 0 1 0 1 2 1
0 2 1 0 2 0 1 1
0 0 1 1 0 2 1 1
0 1 1 2 2 0 1 0
0 1 0 0 2 0 0 1



,
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A(KF 2
4 )(3,1)

=
1

2



0 2 2 2 2 0 2 2
6 0 0 0 0 2 2 0
0 4 2 1 2 0 2 1
0 4 1 2 2 0 1 2
2 0 2 2 0 2 2 2
0 2 0 2 6 0 0 0
2 0 2 1 0 4 2 1
2 0 1 2 0 4 1 2
0 2 2 2 2 0 2 2
6 0 2 2 0 2 0 2
0 4 2 1 2 0 2 1
0 4 1 2 2 0 1 2
2 0 2 2 0 2 2 2
0 2 2 0 6 0 2 2
2 0 2 1 0 4 2 1
2 0 1 2 0 4 1 2

0 2 2 2 2 0 2 2
6 0 2 2 0 2 0 2
0 4 2 1 2 0 2 1
0 4 1 2 2 0 1 2
2 0 2 2 0 2 2 2
0 2 2 0 6 0 2 2
2 0 2 1 0 4 2 1
2 0 1 2 0 4 1 2
0 2 2 2 2 0 2 2
6 0 0 0 0 2 2 0
0 4 2 1 2 0 2 1
0 4 1 2 2 0 1 2
2 0 2 2 0 2 2 2
0 2 0 2 6 0 0 0
2 0 2 1 0 4 2 1
2 0 1 2 0 4 1 2



,

A(KF 2
4 )(1,2)

=
1

2



0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 1
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
2 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 2 0 0 2 0 0 0
2 0 0 0 0 0 1 1
0 2 2 0 0 0 0 0
0 2 0 2 0 0 0 0
2 0 0 0 0 2 0 0
0 0 1 1 2 0 0 0
0 0 0 0 0 2 2 0
0 0 0 0 0 2 0 2

0 2 0 0 2 0 0 0
2 0 0 0 0 0 1 1
0 2 2 0 0 0 0 0
0 2 0 2 0 0 0 0
2 0 0 0 0 2 0 0
0 0 1 1 2 0 0 0
0 0 0 0 0 2 2 0
0 0 0 0 0 2 0 2
0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 1
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
2 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2



,

A(KF 2
4 )(1,3)

=
1

2



0 2 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0

0 2 0 0 1 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 2 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
1 0 0 0 0 2 0 0
0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0



,



§5.5. Eigenvalues of other typical examples of Kähler graphs 285

A(KF 2
4 )(2,3)

=
1

2



2 0 0 0 0 2 1 0
0 2 1 1 0 0 1 1
2 0 0 2 0 1 1 2
2 0 2 0 0 1 0 0
0 2 0 1 2 0 0 0
0 0 1 1 0 2 1 1
0 1 0 0 2 0 0 2
0 1 2 1 2 0 2 0
2 0 1 1 0 2 0 1
0 2 1 1 0 0 1 1
2 0 1 0 0 1 0 0
2 0 0 1 0 1 2 1
0 2 1 0 2 0 1 1
0 0 1 1 0 2 1 1
0 1 1 2 2 0 1 0
0 1 0 0 2 0 0 1

2 0 1 1 0 2 0 1
0 2 1 1 0 0 1 1
2 0 1 0 0 1 0 0
2 0 0 1 0 1 2 1
0 2 1 0 2 0 1 1
0 0 1 1 0 2 1 1
0 1 1 2 2 0 1 0
0 1 0 0 2 0 0 1
2 0 0 0 0 2 1 0
0 2 1 1 0 0 1 1
2 0 0 2 0 1 1 2
2 0 2 0 0 1 0 0
0 2 0 1 2 0 0 0
0 0 1 1 0 2 1 1
0 1 0 0 2 0 0 2
0 1 2 1 2 0 2 0



,

A(KF 2
4 )(3,2)

=
1

2



0 4 4 4 2 0 0 0
4 0 0 0 0 6 2 2
0 4 2 4 4 0 0 0
0 4 4 2 4 0 0 0
2 0 0 0 0 4 4 4
0 6 2 2 4 0 0 0
4 0 0 0 0 4 2 4
4 0 0 0 0 4 4 2
0 0 4 4 2 0 0 0
0 0 0 0 0 6 2 2
0 0 2 4 4 0 0 0
0 0 4 2 4 0 0 0
2 0 0 0 0 0 4 4
0 6 2 2 0 0 0 0
4 0 0 0 0 0 2 4
4 0 0 0 0 0 4 2

0 0 4 4 2 0 0 0
0 0 0 0 0 6 2 2
0 0 2 4 4 0 0 0
0 0 4 2 4 0 0 0
2 0 0 0 0 0 4 4
0 6 2 2 0 0 0 0
4 0 0 0 0 0 2 4
4 0 0 0 0 0 4 2
0 4 4 4 2 0 0 0
4 0 0 0 0 6 2 2
0 4 2 4 4 0 0 0
0 4 4 2 4 0 0 0
2 0 0 0 0 4 4 4
0 6 2 2 4 0 0 0
4 0 0 0 0 4 2 4
4 0 0 0 0 4 4 2



.

Fig. 36. KF 3
4 Fig. 37. KF 4

4
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Example 5.22. We take a Kähler flower KF 3
4 . We have

A
(a)

KF 3
4
=



0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0



,

hence get

A
(p)

KF 3
4
P

(a)

KF 3
4
=

1

2



0 0 0 0 0 1 1 1
2 0 1 1 0 0 0 1
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 1 0 2 0 1 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0

0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0
0 0 0 0 0 1 1 1
2 0 1 1 0 0 0 1
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 1 0 2 0 1 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0



.

The eigenvalues of Laplacians are

Spec
(
∆A

(KF3
4 )(1,1)

)
=

{
0, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,

solutions of t3 − 8t2 + 20t− 12 = 0

}
,

Spec
(
∆A

(KF3
4 )(2,1)

)
=

 0,
10−
√
7

2
,
10−
√
7

2
,
11

2
, 6, 6, 6, 6,

10+
√
7

2
,
10+
√
7

2
, 8

solutions of 2t3 − 35t2 + 208t− 432 = 0

 ,
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Spec
(
∆A

(KF3
4 )(3,1)

)
=

{
0, 8, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12,

solutions of t3 − 35t2 + 392t− 1344 = 0

}
,

Spec
(
∆A

(KF3
4 )(1,2)

)
=

 0, 2, 3, 3, 3, 3, 3+
√
−1, 3+

√
−1, 3−

√
−1, 3−

√
−1, 4, 4, 4,

solutions of t3 − 10t2 + 32t− 36 = 0

 ,

Spec
(
∆A

(KF3
4 )(1,3)

)
=
{
0, 0, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4

}
,

Spec
(
∆A

(KF2
4 )(2,3)

)
=
{
0, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 12

}
,

Spec
(
∆A

(KF3
4 )(3,2)

)
=


0, 8, 11, 11, 12, 12, 12, 12, 13,

12+2
√
−1, 12+2

√
−1, 12−2

√
−1, 12−2

√
−1,

solutions of t3 − 37t2 + 440t− 1728 = 0

 ,

Spec
(
∆A

(KF3
4 )(4,1)

)
=

 0, 21, 21, 24, 24, 24, 24, 24, 24, 27,
43+
√
−71

2
,
43−
√
−71

2
,

28+
√
−5, 28+

√
−5, 28−

√
−5, 28−

√
−5

 ,

Spec
(
∆A

(KF3
4 )(4,3)

)
=
{
0, 18, 18, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 30, 30, 48

}
,

Spec
(
∆A

(KF3
4 )(5,1)

)
=

{
0, 44, 44, 44, 48, 48, 48, 48, 48, 48, 48, 48, 56, 56,

2
(
25+
√
−47

)
, 2
(
25−
√
−47

) }
,

Spec
(
∆A

(KF3
4 )(5,2)

)
= Spec

(
∆A

(KF3
4 )(5,4)

)
=

 0, 40, 44, 44, 48, 48, 48, 48, 52, 56, 2
(
23+
√
−47

)
, 2
(
23−
√
−47

)
,

48+2
√
−1, 48+2

√
−1, 48−2

√
−1, 48−2

√
−1

 ,

Spec
(
∆A

(KF3
4 )(5,3)

)
=
{
0, 0, 48, 48, 48, 48, 48, 48, 48, 48, 56, 56, 56, 56, 56, 56

}
,

Spec
(
∆A

(KF3
4 )(7,3)

)
=

{
0, 0, 184, 184, 184, 184, 184, 184,

192, 192, 192, 192, 192, 192, 192, 192

}
.

We find KF 3
4 has an interesting property on (p, 3)-Laplacians. At least for p =

1, 2, 4, 5, 7 we find that (p, 3)-adjacency matrices are symmetric. We here list adja-

cency matrices:
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A(KF 3
4 )(2,1)

=
1

2



2 2 0 0 0 0 0 1
0 0 1 1 2 0 1 1
1 2 1 1 0 0 0 0
1 2 1 1 0 0 2 1
0 0 1 0 2 2 0 0
2 0 1 1 0 0 1 1
0 0 1 2 1 2 1 1
0 0 0 0 1 2 1 1
0 2 2 2 0 0 1 0
0 0 1 1 2 0 1 1
2 2 0 0 0 0 1 2
2 2 0 0 0 0 0 0
0 0 0 1 0 2 2 2
2 0 1 1 0 0 1 1
0 0 0 0 2 2 0 0
0 0 2 1 2 2 0 0

0 2 2 2 0 0 1 0
0 0 1 1 2 0 1 1
2 2 0 0 0 0 1 2
2 2 0 0 0 0 0 0
0 0 0 1 0 2 2 2
2 0 1 1 0 0 1 1
0 0 0 0 2 2 0 0
0 0 2 1 2 2 0 0
2 2 0 0 0 0 0 1
0 0 1 1 2 0 1 1
1 2 1 1 0 0 0 0
1 2 1 1 0 0 2 1
0 0 1 0 2 2 0 0
2 0 1 1 0 0 1 1
0 0 1 2 1 2 1 1
0 0 0 0 1 2 1 1



,

A(KF 3
4 )(3,1)

=
1

2



0 0 2 2 4 2 1 1
0 6 0 0 0 0 2 0
0 0 2 1 3 2 2 2
0 0 1 2 3 2 2 2
4 2 1 1 0 0 2 2
0 0 0 2 0 6 0 0
3 2 2 2 0 0 2 1
3 2 2 2 0 0 1 2
0 0 2 2 4 2 1 1
4 6 2 2 0 0 0 2
0 0 2 1 3 2 2 2
0 0 1 2 3 2 2 2
4 2 1 1 0 0 2 2
0 0 2 0 4 6 2 2
3 2 2 2 0 0 2 1
3 2 2 2 0 0 1 2

0 0 2 2 4 2 1 1
4 6 2 2 0 0 0 2
0 0 2 1 3 2 2 2
0 0 1 2 3 2 2 2
4 2 1 1 0 0 2 2
0 0 2 0 4 6 2 2
3 2 2 2 0 0 2 1
3 2 2 2 0 0 1 2
0 0 2 2 4 2 1 1
0 6 0 0 0 0 2 0
0 0 2 1 3 2 2 2
0 0 1 2 3 2 2 2
4 2 1 1 0 0 2 2
0 0 0 2 0 6 0 0
3 2 2 2 0 0 2 1
3 2 2 2 0 0 1 2



,

A(KF 3
4 )(1,2)

=
1

2



0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 2 1 1 0 0 0 0
0 0 0 0 1 0 1 0
1 2 0 0 0 0 0 1
1 2 0 0 0 0 1 0
0 0 0 0 0 2 1 1
1 0 0 1 0 0 0 0
0 0 0 1 1 2 0 0
0 0 1 0 1 2 0 0

0 2 1 1 0 0 0 0
0 0 0 0 1 0 1 0
1 2 0 0 0 0 0 1
1 2 0 0 0 0 0 1
0 0 0 0 0 2 1 1
1 0 0 1 0 0 0 0
0 0 0 1 1 2 0 0
0 0 1 0 1 2 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0



,
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A(KF 3
4 )(1,3)

=
1

2



2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2
2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2

2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2
2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2



,

A(KF 3
4 )(2,3)

=
1

2



0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0
0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0

0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0
0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0



,

A(KF 3
4 )(3,2)

=
1

2



4 4 1 1 0 0 2 2
0 0 0 0 2 6 2 0
3 4 2 2 0 0 2 1
3 4 2 2 0 0 1 2
0 0 2 2 4 4 1 1
2 6 0 2 0 0 0 0
0 0 2 1 3 4 2 2
0 0 1 2 3 4 2 2
4 0 1 1 0 0 2 2
0 0 2 2 2 6 0 2
3 0 2 2 0 0 2 1
3 0 2 2 0 0 1 2
0 0 2 2 4 0 1 1
2 6 2 0 0 0 2 2
0 0 2 1 3 0 2 2
0 0 1 2 3 0 2 2

4 0 1 1 0 0 2 2
0 0 2 2 2 6 0 2
3 0 2 2 0 0 2 1
3 0 2 2 0 0 1 2
0 0 2 2 4 0 1 1
2 6 2 0 0 0 2 2
0 0 2 1 3 0 2 2
0 0 1 2 3 0 2 2
4 4 1 1 0 0 2 2
0 0 0 0 2 6 2 0
3 4 2 2 0 0 2 1
3 4 2 2 0 0 1 2
0 0 2 2 4 4 1 1
2 6 0 2 0 0 0 0
0 0 2 1 3 4 2 2
0 0 1 2 3 4 2 2


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A(KF 3
4 )(4,3)

=
1

2



0 6 0 0 2 0 8 8
6 0 6 6 0 6 0 0
0 6 0 0 8 0 2 8
0 6 0 0 8 0 8 2
2 0 8 8 0 6 0 0
0 6 0 0 6 0 6 6
8 0 2 8 0 6 0 0
8 0 8 2 0 6 0 0
0 6 0 0 2 0 8 8
6 0 6 6 0 6 0 0
0 6 0 0 8 0 2 8
0 6 0 0 8 0 8 2
2 0 8 8 0 6 0 0
0 6 0 0 6 0 6 6
8 0 2 8 0 6 0 0
8 0 8 2 0 6 0 0

0 6 0 0 2 0 8 8
6 0 6 6 0 6 0 0
0 6 0 0 8 0 2 8
0 6 0 0 8 0 8 2
2 0 8 8 0 6 0 0
0 6 0 0 6 0 6 6
8 0 2 8 0 6 0 0
8 0 8 2 0 6 0 0
0 6 0 0 2 0 8 8
6 0 6 6 0 6 0 0
0 6 0 0 8 0 2 8
0 6 0 0 8 0 8 2
2 0 8 8 0 6 0 0
0 6 0 0 6 0 6 6
8 0 2 8 0 6 0 0
8 0 8 2 0 6 0 0



,

A(KF 3
4 )(5,3)

=



3 0 7 7 0 7 0 0
0 3 0 0 7 0 7 7
7 0 3 7 0 7 0 0
7 0 7 3 0 7 0 0
0 7 0 0 3 0 7 7
7 0 7 7 0 3 0 0
0 7 0 0 7 0 3 7
0 7 0 0 7 0 7 3
3 0 7 7 0 7 0 0
0 3 0 0 7 0 7 7
7 0 3 7 0 7 0 0
7 0 7 3 0 7 0 0
0 7 0 0 3 0 7 7
7 0 7 7 0 3 0 0
0 7 0 0 7 0 3 7
0 7 0 0 7 0 7 3

3 0 7 7 0 7 0 0
0 3 0 0 7 0 7 7
7 0 3 7 0 7 0 0
7 0 7 3 0 7 0 0
0 7 0 0 3 0 7 7
7 0 7 7 0 3 0 0
0 7 0 0 7 0 3 7
0 7 0 0 7 0 7 3
3 0 7 7 0 7 0 0
0 3 0 0 7 0 7 7
7 0 3 7 0 7 0 0
7 0 7 3 0 7 0 0
0 7 0 0 3 0 7 7
7 0 7 7 0 3 0 0
0 7 0 0 7 0 3 7
0 7 0 0 7 0 7 3



,

A(KF 3
4 )(5,3)

=



27 0 23 23 0 23 0 0
0 27 0 0 23 0 23 23
23 0 27 23 0 23 0 0
23 0 23 27 0 23 0 0
0 23 0 0 27 0 23 23
23 0 23 23 0 27 0 0
0 23 0 0 23 0 27 23
0 23 0 0 23 0 23 27
27 0 23 23 0 23 0 0
0 27 0 0 23 0 23 23
23 0 27 23 0 23 0 0
23 0 23 27 0 23 0 0
0 23 0 0 27 0 23 23
23 0 23 23 0 27 0 0
0 23 0 0 23 0 27 23
0 23 0 0 23 0 23 27

27 0 23 23 0 23 0 0
0 27 0 0 23 0 23 23
23 0 27 23 0 23 0 0
23 0 23 27 0 23 0 0
0 23 0 0 27 0 23 23
23 0 23 23 0 27 0 0
0 23 0 0 23 0 27 23
0 23 0 0 23 0 23 27
27 0 23 23 0 23 0 0
0 27 0 0 23 0 23 23
23 0 27 23 0 23 0 0
23 0 23 27 0 23 0 0
0 23 0 0 27 0 23 23
23 0 23 23 0 27 0 0
0 23 0 0 23 0 27 23
0 23 0 0 23 0 23 27



.
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Example 5.23. We take a Kähler flower KF 4
4 . The adjacency matrix of its auxil-

iary graph is given as

A
(a)

KF 4
4
=



0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0



,

hence we have

A
(p)

KF 4
4
P

(a)

KF 4
4
=

1

2



0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 2 0 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 2 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0

0 0 1 1 0 1 0 0
0 0 0 0 1 0 2 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 2 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 2
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 2 0 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0



.

The eigenvalues of Laplacians are

Spec
(
∆A

(KF4
4 )(1,1)

)
=
{
0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4

}
,

Spec
(
∆A

(KF4
4 )(2,1)

)
=


0, 4,

12−
√
3

2
,
12−
√
3

2
,
11

2
,
11

2
, 6, 6, 6, 6,

13

2
,
13

2
,
12+
√
3

2
,
12+
√
3

2
, 8, 12

 ,

Spec
(
∆A

(KF4
4 )(3,1)

)
=
{
0, 0, 8, 8, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12

}
,



292 V. Eigenvalues of (p, q)-Laplacians for Kähler graphs

Spec
(
∆A

(KF4
4 )(1,2)

)
=

{
0, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 6,

3+
√
−1, 3+

√
−1, 3−

√
−1, 3−

√
−1,

}
,

Spec
(
∆A

(KF4
4 )(1,3)

)
=
{
0, 0, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4

}
,

Spec
(
∆A

(KF4
4 )(2,3)

)
=
{
0, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 12

}
,

Spec
(
∆A

(KF4
4 )(3,2)

)
=

{
0, 8, 11, 11, 12, 12, 12, 12, 13, 13, 16, 24,

12+2
√
−1, 12+2

√
−1, 12−2

√
−1, 12−2

√
−1,

}
.

We here list adjacency matrices:

A(KF 4
4 )(2,1)

=
1

2



0 2 0 0 1 0 2 1
2 0 2 2 0 0 0 0
0 2 0 0 0 0 0 1
0 2 0 0 3 0 2 2
1 0 1 2 0 2 0 0
0 0 0 0 2 0 2 2
3 0 2 2 0 2 0 0
0 0 1 0 0 2 0 0
0 2 0 0 1 0 1 2
2 0 2 2 0 0 0 0
0 2 0 0 3 0 2 2
0 2 0 0 0 0 1 0
1 0 2 1 0 2 0 0
0 0 0 0 2 0 2 2
0 0 0 1 0 2 0 0
3 0 2 2 0 2 0 0

0 2 0 0 1 0 1 2
2 0 2 2 0 0 0 0
0 2 0 0 3 0 2 2
0 2 0 0 0 0 1 0
1 0 2 1 0 2 0 0
0 0 0 0 2 0 2 2
0 0 0 1 0 2 0 0
3 0 2 2 0 2 0 0
0 2 0 0 1 0 2 1
2 0 2 2 0 0 0 0
0 2 0 0 0 0 0 1
0 2 0 0 3 0 2 2
1 0 1 2 0 2 0 0
0 0 0 0 2 0 2 2
3 0 2 2 0 2 0 0
0 0 1 0 0 2 0 0



,

A(KF 4
4 )(3,1)

=
1

2



4 0 3 3 0 2 0 0
0 6 0 0 2 0 4 0
3 0 4 3 0 2 0 0
3 0 3 4 0 2 0 0
0 2 0 0 4 0 3 3
2 0 0 4 0 6 0 0
0 2 0 0 3 0 4 3
0 2 0 0 3 0 3 4
4 0 3 3 0 2 0 0
0 6 0 0 2 0 0 4
3 0 4 3 0 2 0 0
3 0 3 4 0 2 0 0
0 2 0 0 4 0 3 3
2 0 4 0 0 6 0 0
0 2 0 0 3 0 4 3
0 2 0 0 3 0 3 4

4 0 3 3 0 2 0 0
0 6 0 0 2 0 0 4
3 0 4 3 0 2 0 0
3 0 3 4 0 2 0 0
0 2 0 0 4 0 3 3
2 0 4 0 0 6 0 0
0 2 0 0 3 0 4 3
0 2 0 0 3 0 3 4
4 0 3 3 0 2 0 0
0 6 0 0 2 0 4 0
3 0 4 3 0 2 0 0
3 0 3 4 0 2 0 0
0 2 0 0 4 0 3 3
2 0 0 4 0 6 0 0
0 2 0 0 3 0 4 3
0 2 0 0 3 0 3 4



,
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A(KF 4
4 )(1,2)

=
1

2



0 0 0 0 0 0 1 1
2 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 2 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 2 0 0 0 0 1 1
0 0 1 1 0 0 0 0
0 2 0 0 1 0 0 1
0 2 0 0 1 0 1 0
0 0 1 1 0 2 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 2 0 0
1 0 1 0 0 2 0 0

0 2 0 0 0 0 1 1
0 0 1 1 0 0 0 0
0 2 0 0 1 0 0 1
0 2 0 0 1 0 1 0
0 0 1 1 0 2 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 2 0 0
1 0 1 0 0 2 0 0
0 0 0 0 0 0 1 1
2 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 2 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0



,

A(KF 4
4 )(1,3)

=
1

2



2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2
2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2

2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2
2 0 0 0 0 1 0 0
0 0 0 0 1 0 1 1
0 0 2 0 0 1 0 0
0 0 0 2 0 1 0 0
0 1 0 0 2 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 2 0
0 1 0 0 0 0 0 2



,

A(KF 4
4 )(2,3)

=
1

2



0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0
0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0

0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0
0 2 0 0 2 0 1 1
2 0 2 2 0 0 0 0
0 2 0 0 1 0 2 1
0 2 0 0 1 0 1 2
2 0 1 1 0 2 0 0
0 0 0 0 2 0 2 2
1 0 2 1 0 2 0 0
1 0 1 2 0 2 0 0



,
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A(KF 4
4 )(3,2)

=
1

2



0 4 0 0 4 0 3 3
0 0 2 2 0 6 0 0
0 4 0 0 3 0 4 3
0 4 0 0 3 0 3 4
4 0 3 3 0 4 0 0
0 6 0 0 0 0 2 2
3 0 4 3 0 4 0 0
3 0 3 4 0 4 0 0
0 0 0 0 4 0 3 3
4 0 2 2 0 6 0 0
0 0 0 0 3 0 4 3
0 0 0 0 3 0 3 4
4 0 3 3 0 0 0 0
0 6 0 0 4 0 2 2
3 0 4 3 0 0 0 0
3 0 3 4 0 0 0 0

0 0 0 0 4 0 3 3
4 0 2 2 0 6 0 0
0 0 0 0 3 0 4 3
0 0 0 0 3 0 3 4
4 0 3 3 0 0 0 0
0 6 0 0 4 0 2 2
3 0 4 3 0 0 0 0
3 0 3 4 0 0 0 0
0 4 0 0 4 0 3 3
0 0 2 2 0 6 0 0
0 4 0 0 3 0 4 3
0 4 0 0 3 0 3 4
4 0 3 3 0 4 0 0
0 6 0 0 0 0 2 2
3 0 4 3 0 4 0 0
3 0 3 4 0 4 0 0



.

Example 5.24. We take a Kähler flower KF 5
4 . The adjacency matrix of its auxil-

iary graph is given as

A
(a)

KF 5
4
=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0



,
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hence we have

A
(p)

KF 5
4
P

(a)

KF 5
4
=

1

2



0 0 1 1 0 0 0 1
0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1
0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0
0 0 1 0 1 1 0 0
0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 0
0 0 0 1 0 0 1 1
1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0

0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 0
0 0 0 1 0 0 1 1
1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 1
0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1
0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0
0 0 1 0 1 1 0 0



.

Since the auxiliary graph is a union of 4-circuits, the eigenvalues of Laplacians are

Spec
(
∆A

(KF5
4 )(1,4ℓ+1)

)
= Spec

(
∆A

(KF5
4 )(1,4ℓ+3)

)
=
{
0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4

}
,

Spec
(
∆A

(KF5
4 )(1,4ℓ+2)

)
=

 0, 1, 2, 2, 2, 2, 3, 3, 3, 5,
5−
√
−7

2
,
5+
√
−7

2
,

solutions of t3 − 9t2 + 24t− 24 = 0

 ,

Spec
(
∆A

(KF5
4 )(1,4ℓ)

)
= Spec

(
∆AF4

)
=
{
0, 1, 1, 3−

√
3, 3−

√
3, 2, 3, 3, 3, 3, 4, 3+

√
3, 3+

√
3, 5, 5, 6

}
,

Spec
(
∆A

(KF5
4 )(2,4ℓ+1)

)
= Spec

(
∆A

(KF5
4 )(2,4ℓ+3)

)
=

 0, 6−
√
3, 6−

√
3, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6+
√
3, 6+

√
3, 5−

√
−3, 5+

√
−3,

 ,

Spec
(
∆A

(KF5
4 )(3,4ℓ+1)

)
= Spec

(
∆A

(KF5
4 )(3,4ℓ+3)

)
=

 0, 2
(
5−
√
3
)
, 12, 12, 12, 12, 12, 12,

12, 12, 12, 12, 12, 12, 12, 12, 2
(
5+
√
3
)
 ,

Spec
(
∆A

(KF5
4 )(3,4ℓ+2)

)
=

 0, 10, 12, 12, 12, 12, 14, 14, 14, 14, 14, 13−
√
−7, 13+

√
−7,

solutions of t3 − 38t2 + 480t− 2112 = 0

 ,

Spec
(
∆A

(KF5
4 )(3,4ℓ)

)
= Spec

(
∆A

(KF5
4 )[3]

)
=

 0, 8, 2
(
6−
√
3
)
, 2
(
6−
√
3
)
, 10, 10, 12, 12, 12, 12,

14, 14, 2
(
6+
√
3
)
, 2
(
6+
√
3
)
, 16, 24

 .
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We here list adjacency matrices:

A(KF 5
4 )(1,2)

=
1

2



2 0 0 0 0 2 0 0
0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 2
2 0 0 0 0 0 2 0
0 2 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 2 2 0 0 0
0 0 2 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 2 2 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 2
0 0 0 2 0 0 0 0
0 0 2 0 0 0 0 0

0 0 0 0 0 2 0 0
0 0 2 2 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 2
0 0 0 2 0 0 0 0
0 0 2 0 0 0 0 0
2 0 0 0 0 2 0 0
0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 2
2 0 0 0 0 0 2 0
0 2 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 2 2 0 0 0
0 0 2 0 2 0 0 0



,

A(KF 5
4 )(2,1)

=
1

2



0 0 1 1 1 1 2 0
2 2 1 1 0 0 0 0
0 0 1 1 0 0 0 1
0 0 1 1 3 3 0 1
1 1 0 2 0 0 1 1
0 0 0 0 2 2 1 1
3 3 1 0 0 0 1 1
0 0 1 0 0 0 1 1
0 0 1 1 1 1 0 2
2 2 1 1 0 0 0 0
0 0 1 1 3 3 1 0
0 0 1 1 0 0 1 0
1 1 2 0 0 0 1 1
0 0 0 0 2 2 1 1
0 0 0 1 0 0 1 1
3 3 0 1 0 0 1 1

0 0 1 1 1 1 0 2
2 2 1 1 0 0 0 0
0 0 1 1 3 3 1 0
0 0 1 1 0 0 1 0
1 1 2 0 0 0 1 1
0 0 0 0 2 2 1 1
0 0 0 1 0 0 1 1
3 3 0 1 0 0 1 1
0 0 1 1 1 1 2 0
2 2 1 1 0 0 0 0
0 0 1 1 0 0 0 1
0 0 1 1 3 3 0 1
1 1 0 2 0 0 1 1
0 0 0 0 2 2 1 1
3 3 1 0 0 0 1 1
0 0 1 0 0 0 1 1



,

A(KF 5
4 )(3,1)

=
1

2



4 4 1 1 0 0 2 0
0 0 3 3 2 2 2 0
3 3 2 2 0 0 2 0
3 3 2 2 0 0 2 0
0 0 0 2 4 4 1 1
2 2 0 2 0 0 3 3
0 0 0 2 3 3 2 2
0 0 0 2 3 3 2 2
4 4 1 1 0 0 0 2
0 0 3 3 2 2 0 2
3 3 2 2 0 0 0 2
3 3 2 2 0 0 0 2
0 0 2 0 4 4 1 1
2 2 2 0 0 0 3 3
0 0 2 0 3 3 2 2
0 0 2 0 3 3 2 2

4 4 1 1 0 0 0 2
0 0 3 3 2 2 0 2
3 3 2 2 0 0 0 2
3 3 2 2 0 0 0 2
0 0 2 0 4 4 1 1
2 2 2 0 0 0 3 3
0 0 2 0 3 3 2 2
0 0 2 0 3 3 2 2
4 4 1 1 0 0 2 0
0 0 3 3 2 2 2 0
3 3 2 2 0 0 2 0
3 3 2 2 0 0 2 0
0 0 0 2 4 4 1 1
2 2 0 2 0 0 3 3
0 0 0 2 3 3 2 2
0 0 0 2 3 3 2 2



,
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A(KF 5
4 )(3,2)

=
1

2



0 0 0 0 0 2 4 4
0 0 4 4 6 0 0 0
0 0 0 0 0 4 4 2
0 0 0 0 0 4 2 4
0 2 4 4 0 0 0 0
6 0 0 0 0 0 4 4
0 4 4 2 0 0 0 0
0 4 2 4 0 0 0 0
4 0 0 0 0 2 4 4
0 4 0 0 6 0 0 0
4 0 0 0 0 4 4 2
4 0 0 0 0 4 2 4
0 2 4 4 4 0 0 0
6 0 0 0 0 4 0 0
0 4 4 2 4 0 0 0
0 4 2 4 4 0 0 0

4 0 0 0 0 2 4 4
0 4 0 0 6 0 0 0
4 0 0 0 0 4 4 2
4 0 0 0 0 4 2 4
0 2 4 4 4 0 0 0
6 0 0 0 0 4 0 0
0 4 4 2 4 0 0 0
0 4 2 4 4 0 0 0
0 0 0 0 0 2 4 4
0 0 4 4 6 0 0 0
0 0 0 0 0 4 4 2
0 0 0 0 0 4 2 4
0 2 4 4 0 0 0 0
6 0 0 0 0 0 4 4
0 4 4 2 0 0 0 0
0 4 2 4 0 0 0 0



,

A(KF 5
4 )[3]

=



0 0 0 0 1 0 2 2
0 0 0 0 0 3 0 0
0 0 0 0 2 0 1 2
0 0 0 0 2 0 2 1
1 0 2 2 0 0 0 0
0 3 0 0 0 0 0 0
2 0 1 2 0 0 0 0
2 0 2 1 0 0 0 0
0 2 0 0 1 0 2 2
2 0 2 2 0 3 0 0
0 2 0 0 2 0 1 2
0 2 0 0 2 0 2 1
1 0 2 2 0 2 0 0
0 3 0 0 2 0 2 2
2 0 1 2 0 2 0 0
2 0 2 1 0 2 0 0

0 2 0 0 1 0 2 2
2 0 2 2 0 3 0 0
0 2 0 0 2 0 1 2
0 2 0 0 2 0 2 1
1 0 2 2 0 2 0 0
0 3 0 0 2 0 2 2
2 0 1 2 0 2 0 0
2 0 2 1 0 2 0 0
0 0 0 0 1 0 2 2
0 0 0 0 0 3 0 0
0 0 0 0 2 0 1 2
0 0 0 0 2 0 2 1
1 0 2 2 0 0 0 0
0 3 0 0 0 0 0 0
2 0 1 2 0 0 0 0
2 0 2 1 0 0 0 0



.
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