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Introduction

A graph is a pair of a set of vertices and a set of edges, and forms a 1-dimensional
CW-complex. From geometrical point of view, we can consider graphs as discrete
models of surfaces and more generally as discrete models of Riemannian manifolds.
Chains of edges, which are called paths, on a graph are considered to be correspond to
geodesics on a Riemannian manifold. For a graph, we have adjacency and transition
operators acting on the set of all square-summable functions on the set of vertices.
The adjacency operator of a graph shows how edges in this graph are settled between
vertices, hence is the generating operator of paths. The transition operator shows
how cargoes placed at vertices are transfered through edges, hence is the generating
operator of paths attached with probabilities. Thus we can say that properties of these
operators show properties of the underlying graph. Many mathematicians therefore
have studied spectrum of these operators and those of Laplacians corresponding to
them.

In this paper we study Ké&hler graphs which were introduced by T. Adachi [2].
A Kahler graph is a graph whose set of edges are divided into two subsets. One is
the set of principal edges and the other is the set of auxiliary edges. We may say
that a Kahler graph is a compound of two kinds of graphs having a common set of
vertices. From geometrical point of view, we can explain Kahler graph as discrete
models of Riemannian manifold admitting magnetic fields. We consider paths on the
principal graph of a Kéhler graph as geodesics which are motions of electric charged
particles without influence of magnetic fields. Under the influence of a magnetic field,
we consider that each path on the principal graph is bended to directions of edges in

the auxiliary graph. More precisely, we consider a p-step path in the principal graph
1



2 Introduction

followed by a g-step path in the auxiliary graph as a trajectory of a charged particle
under the influence of magnetic field of strength ¢/p.

In this thesis, starting with summarizing some basic notions and properties of
ordinary graphs, we introduce the notion of Kahler graphs following to [2], and study
some basic properties. In §2 we give some examples of Kahler graphs; Kéahler graphs of
n-dimensional complex lattice, Cayley Kéhler graphs, complement filled Kéhler graphs,
Kahler graphs of product types, and some other typical Kéhler graphs obtained from
Petersen graphs, Heawood graphs and so on. In §3 we define adjacency and transition
operators on a Kahler graph which are associated with bicolored paths, paths formed
by paths on principal graphs and paths on auxiliary graphs. Roughly speaking, for
paths on principal graphs we attach either adjacency operators or transition operators,
and for paths on auxiliary graphs we attach probabilistic transition operators. Here,
probabilistic transition operators coincide with transition operators when we consider
1-step paths on auxiliary graphs. But they are different from iteration of transition
operators when we consider paths of two and more steps on auxiliary graphs. By our
definition these operators for Kahler graphs are not selfadjoint, in general. In §4 we
study eigenvalues of Laplacians corresponding to these operators. When a graph is
finite, the set of square-summable functions on the set of vertices coincides with the set
of all functions on this set, and spectrum of these operators are the sets of eigenvalues
of corresponding matrices. We mainly study the case that the adjacency operators of
principal and auxiliary graphs are commutative, and show the relationship between
the eigenvalues of Kahler graphs and those of their principal and auxiliary graphs. As
an application we study isospectral problem on Kéhler graphs and give some example
of pairs of Kahler graphs which have the same eigenvalues.

The author would like to express his hearty thanks to his supervisor Professor
Toshiaki ADACHI for his continuous encouragement during author’s 6 years stay in

Japan and for his help and advice in preparing this thesis.



CHAPTER 1

Graphs

1. Some fundamental notions and results on graphs

1.1. Vertices and edges. A graph G consists of a set V' of vertices and a set E of
edges. A graph is represented as a 1-dimensional C'W-complex. For the set of vertices
of a graph G we denote it by V(G) or simply by V. According that the cardinality of
the set V' of vertices is finite (see Fig. 1) or infinite (see Fig. 2), we classify graphs into
two “classes”. For a finite graph, we denote the set of vertices as V' = {vy,va, ..., Ung },

where ng denotes the cardinality of the set of V', and for an infinite graph, we denote

as V = {ur}rea.

u“l ® 0oc--
¢ ® ©® oo
ol @ © oo
(!-5. . . @ 0o
o %, ® ©® oo
Uy Q@ © 000
F1G. 1. finite vertices F1G. 2. infinite vertices

For the set of edges of a graph G each of which joins two vertices, we denote it by
E(G) or E. According that the cardinality of the set E of edges is finite (see Fig. 1)
or infinite (see Fig. 2), we classify graphs into two “classes”. When both of the set of

vertices and the set of edges are finite, we call this a finite graph.

ExXAMPLE 1.1. Fig. 3 shows a finite graph. Its set of vertices is V' = {vy,...,v5}
and its set of edges is F = {ey, €9, €3, €4, €5}. Fig. 4 shows an infinite graph. It has an

infinite set of vertices V' = {vy},ea and an infinite set of edges £ = {e,} ca.

3



4 1. Graphs

Fia. 3. (finite edges) F1a. 4. (infinite edges)

When we consider graphs, we sometimes give an orientation on each edges. When
we consider orientations on all edges of a graph, we say it is an oriented graph or a
directed graph. In order to make clear that we do not consider orientations of edges,
we call this graph non-oriented or undirected. Given an edge e € E of an oriented
graph, we denote by o(e) its origin and by t(e) its terminus. For an edge e € E of a
non-directed graph, we denote its vertices at its ends by o(e), t(e). In this case we do
not distinguish the origin and the terminus. We say two vertices v, w to be adjacent
to each other if there is an edge joining them. In this case we denote as v ~ w. An
edge e € E which joins a vertex and itself (i.e. o(e) = t(e)) (see Fig. 5) is called a
loop. When two or more edges are attached to given two vertices (which may coincide
with each other) we call them multiple edges. If a graph has multiple edges but not
loops then it is called a multiple graph (see Fig. 6). If a graph does not have loops and
multiple edges, we call it simple.

From now on, through out this paper we just say a graph for a non-oriented graph.
An edge e of a graph without multiple edges can be expressed by its both ends as
e = {o(e), t(e)}. We express an edge e of a directed graph as e = (o(e), t(e)).

) “

s « > Us U,
0 Q v, u;
Fi1G. 5. loops Fi1G. 6. multiple edges

Let G = (V, E) be a graph which may have loops and multiple edges. Given a

vertex v € V' we denote by dg(v) the cardinality of the set of edges emanating from v,



§1.1. Some fundamental notions and results 5

and call it the degree at v. We note that when there is a loop e = {v,v} we compute
this edge twice. If the degree at v is d(v) = 0 we call this vertex an isolated point (see
Fig. 1), and if d(v) = 1 we call it a terminal point. If one of the end point of an edge
is a terminal point, we call this edge a hair.

For a finite graph G, we can consider a sequence of degrees (dg(v1), dg(v2), -+, dg(v,))
at its vertices. At a vertex v of a directed graph G, we set d;(v) the cardinality of
the set of edges having v as their terminus, and set dj(v) the cardinality of the set of

edges having v as their origin.

PROPOSITION 1.1. For a simple finite graph G, the degree d(v) at each vertex v

satisfies d(v) < ng — 1.

PROOF. We consider at a vertex v € V(G). Since G does not have loops, this
vertex v can be joined at most ng — 1 vertices. As G does not have multiple edges,
if two distinct vertices are adjacent to each other, then there is only one edge joining

then. Therefore we have dg(v) < ng — 1. O

PRrROPOSITION 1.2 (Hand shaking lemma). Let G = (V, E) be an undirected finite
graph which may have loops and multiple edges. Then the cardinality §F of the set of
edges and degrees satisfy the following relation:

> do(v) = 24E

veV

PROOF. For each edge e = {v,w}, we can attach two vertices v,w € V. So when
we compute degrees at these vertices, this edge is counted twice. We hence get the

conclusion. 0

As a consequence of the above propositions we have the following.

LEMMA 1.1. . For a finite simple graph G, the cardinality $E(G) of the set of edges
n(;(TLG — 1)

1s not greater than 5



1. Graphs

A graph G = (V| F) is said to be regularif all the vertices of G have the same degree

(see Fig. 9). When each vertex has the same degree r, we call it a regular graph of

degree r. A regular graph of degree 0 is called an empty graph. By Proposition 1.2 we

have the following.

COROLLARY 1.1. When G = (V| E) is a reqular graph of degree r, the cardinality

of its set of edges is given as tE = SN

A complete graph is a simple graph all of whose pairs of vertices are joined by edges.

A complete graph having n vertices is denoted by K. Clearly it is a regular graph of

degree (n —1).

ExamMpPLE 1.2. We take the following three graphs having five vertices

V = {Ula U2, U3, Uy, U5}'

© 'Y ¢

(123 (123 U,
Us Us U

(&) (£5) (L)
o, (LA (LA

Fic. 7 Fic. 8 Fi1c. 9

(1) In Fig. 7, the vertex vz is an isolated point, i.e. dg(vs) = 0. Other vertices
have the same degrees.

(2) In Fig. 8, the vertex vs is a terminal point, i.e. d(v3) = 1. The sum of degrees
1s

> d(v) = d(v1) + d(vz) + d(vs) + d(vs) + d(vs) =3 +4+1+3+3 =14,

veV

which is the twice of the cardinality 7 of edges.
(3) Fig. 9 shows a complete graph K. As it is regular of degree 4, we have

1 1
tE = JrtV =S4 x 5=10.



§1.1. Some fundamental notions and results 7

1.2. Paths. Two edges e, es are said to be adjacent to each other if they have
a common vertex (e; Ney # () and e; # es. A sequence v = (eq, €2, 03, ... €,) of the
adjacent edges, that is, e; and e;;; are adjacent to each other for ¢ = 1,--- ,m — 1,
is said to be a road or a path in this graph G. A path is sometimes represented
as v = (vg,V1,vs,- V) by use of vertices. In this case, we have v; ~ v;,; for all
i(0 £ 4 < m—1). We denote the origin vy of v by o(y), and the terminus v, of v by
t(y). We say that the length of this path ~ is m and denote as length(v) = m. We say
a path of length m also a path of m-step. When the origin vy and the terminus v,, of

a path coincide with each other, we call it a closed path.

ExaMPLE 1.3. We study the following graph having six vertices. In Fig. 10 we
mark vertices and in Fig. 11 we mark edges. We show all paths from v; to vg which

does not pass through the same vertex twice by two ways of expression.

(%) s e
e es
([ Us P €4
es s
s (s €3
Fic. 10 Fic. 11

Ul,U27U37U4,'U5,'U6) 61762763764765)

(v1, va, V5, Vg) (e1,e3,€5)
(v1, 3,04, 6) (€6, €3, €8)
(v1, V2, V3, vy, Vg) (e1, €2, €3, €8)
(v1,v3, Vo, V5, Vg) (es, €2, €7, €5)
(

(

v17U37U27U57@47/U6) (66762767764768)
There are six such paths. They are two paths of 3-step, two paths of 4-step and
two paths of 5-step.



8 1. Graphs

We here give operations of paths. Given two paths ~q, 72 with t(y1) = o(72),
we define their join v, - 75 as a joined path. That is, if 74 = (vo,v1,...,0,) and
Yo = (wo, wy, ..., wy,) with v, = wy, we set 1 - v2 = (o, ..., UpWi,...,w,). Hence
when 71 is of m-setp and 75 is of n-step we have ;73 is of (m—+n)-step. For a path v =
(vo, V1, - - ., v,) we define its reversed path v~ by v™' = (vn, vp_1, ..., vp). For example,
in Example 1.3 for a path v, = (vy, v2, vs, vg) its reverse is Y1 = (vg, vs, Vo, v1).

When a path +* is included in a longer path =, that is, if v = (vo, vy, ...,v,) and
v* = (vi, Vix1,--.,v;) for some i and k satisfying 0 < i < k < n, we say this path
~v* to be a subpath of 7. For a path v = (v, vy ... V2, V;_1,0;, Vi41), We say it has a
backtraking if there is i¢ satisfying v;,—1 = v;,4+1, and we say it do not have backtraking

if vertices v;_; and v;11 does not coincide for all 7.

1.3. Connected components. Given two vertices v,w € V of a graph G =
(V, E), we say they are connected by paths if there is a path joining them, that is we
have a path v with o(v) = v and t(y) = w. We call this graph G connected if every
pair of distinct vertices are connected by paths. We denote as v—w either if v = w or
v, w are connected by paths.

We here show that this relation v—w gives an equivalence relation on the set V.

(1) When v = w we have v—w by definition.

(2) Suppose v—w. When v = w, we clearly have w—v. When v # w, there is
a path v = (vg,v1,. .., Vm_1,Vn) from v to w. If we take its reversed path v~ =

(Vs Um—1, "+ ,U1,0), then we have o(y™') = t(y) = w, t(y™!) = o(y) = v, hence find

w—u.

(3) Suppose u—v and v—w. When either u = v or v = w, we have v—w
When v # v and v # w, there are paths ¢ = (vg,v1,...,v,) from u to v and
v = (v, v],...,v,) from v to w. Since (o) = v = o(7), we can take the joined
path o - v = (vg,v1,. .., U, V], V5, ..., v ) which is a path from u to w. We hence get
U—w.

By these (1), (2), (3) we find that the relation — is an equivalence relation.
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We decompose V' into equivalence classes V = Z V;. We put E; the set of edges

one of whose ends belongs to V;. If we suppose F; ﬂz E; # (), we have an edge e with
o(e) € V; and t(e) € V;. Then these two vertices are connected by paths, hence they
belong to the same equivalence class. We therefore have ¢ = j. Thus we have a disjoint
decomposition F = Z E; of E and get connected graphs G; = (V;, E;). We call each
G; a connected component of G, and call G = ZGi the decomposition of G into

connected components.

1.4. Graph isomorphisms. Let G = (V,E), G' = (V',E’) be two graphs. A
map f:V — V' is said to be an homomorphism of G to G’ if it satisfies f(v) ~ f(v')
for arbitrary v,v" € V with v ~ v". A bijection f : V — V' is called an isomorphism
of G to G if it and its inverse f~': V' — V are homomorphisms. When we have an

isomorphism between G' and G’, we say these graphs are isomorphic.

ExAaMPLE 1.4. We give two graphs (V, E) and (V', E’) in the following manner:
V — {'Ula V2, U3, V4, 1)5}7 E == {{'Ula U3}7 {U37 U5}7 {U5a UQ}; {UQa U4}a {1)47 Ul}})

V= {Ulla Uév Ui,’w Uﬁla Ué}7 E = {{Ui> Ué}> {Uév Ué}, {Ué7 Uz,l}w {U:h Ué}v {Ugv Ui}}

We find that a bijection f:V — V'
V1 > U], U3 > U, Us > U, Vg = VY, Uy > UL
is an isomorphism between these two graphs.
U [
Us Us

({} . (L2
o, 3 ¢, ®

PROPOSITION 1.3. If two finite complete graphs have the same cardinalities of their

sets of vertices, then they are isomorphic.



10 1. Graphs

PROOF. Let G = (V, E) and G’ = (V', E') be two complete graphs with £V = §V".
We denote as V' = {vy,...,v,}, V' = {v],..., v} and define a bijection f : V — V'
by f(vi) = vj. If j # i we see v; ~ v; and v; ~ v} because G and G’ are complete.
Hence v; ~ v; shows f(v;) ~ f(v;) and v] ~ v} shows f~'(v]) ~ f(v}). Thus f is an

isomorphism, hence we get the conclusion. 0

We call a graph G vertez-transitive if for arbitrary distinct two vertices v,v' € V
there is an isomorphism (automorphism) f : V — V of G satisfying f(v) = v". It
is trivial that a vertex-transitive graph is regular. A typical example of a vertex of
transitive graph is a Cayle graph. Let G is a group and S is subset of G which does not
contain the identity 1g and that is invariant under the action of the inverse operation.
That is, S=8 ' ={s7!|s € S}. If we put V =G and define £ = E(G;S) as the of
set pairs g, h € G satisfing gh™! € S, then we obtain a graph G(G;S).

PROPOSITION 1.4. A Cayley graph G(G;S) = (V, E) is vertez-transitive.

Proor. We take arbitrary two elements ¢;,g2 € G. We have an element x € G
satisfying go = gix. That is © = g1 'go. We define a map f,, 45, : G — G by
fo1.0:(9) = gx. We shall show that this map f is an isomorphism.

We suppose two distinct elements g, h € G satisfy g ~ h. Then we have an element

s € 8 with gh™! = s. That is s71g = h. As we have

s f(g) = s (gz) = (s 'g)x = f(s'g) = f(h)

we see f(g)(f(h))™! = s. Hence f(g) ~ f(h) and we find that f is an homomorphism.
The inverse map f~!: G — G is given by f~1(g) = gz~ !. If g,h € G satisfy g ~ h,

we have gh™! = s € S, hence we see

FH M) =g (ha™) T = gaTlah™ = ghT = s,

Hence f~1(g) ~ f~'(h) and we find that f~! is an homomorphism. O
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1.5. Cycle graphs. A cycle graph is a graph consists of a closed path, that is
a connected regular graph of degree 2. When a cycle have N vertices we call it an
N-cycle. It is also called a circuit. Since we suppose graphs are simple, the cardinality

of the set of vertices NV of a cycle graph is more than 2.
ProrosITION 1.5. Cycle graphs of N wvertices are is isomorphic to each other.

PRrOOF. Let (V, E) be an N-cycle. We choose an arbitrary vertex vy € V. Take
vy € V \ {vo} so that it is adjacent to vy (i.e. {vg,v1} € E). Because (V,E) is a
regular graph of degree two, we can choose vy € V' \ {vg,v1} so that it is adjacent to
v1. Inductively, for 3 < i < N — 1 we can choose v; € V' \ {v;_2,v;_1} so that it is
adjacent to v;_; forv < N — 1.

Here, we show that v; # vy, ..., v;_1 by mathematical induction. We suppose this
condition holds for all ¢ with 1 < i < i, (< N —2). If we suppose v;, 41 = v, with
some r with 1 < r <1, — 2, then v;, is adjacent to v,, hence it is either v,_; or v, 1,
which is a contradiction to the assumption (see Fig. 12). If we suppose v;, 11 = vy,
then (vo,...,v;,,v0) is a closed path (without backtrackings). Since the degree at each
vertex is 2 it is a connected component. As i, < N — 2 it is also a contradiction. Thus
the condition holds for 7, + 1.

By the above operation we get a path (v, ...,vy_1) without backtracking all of
whose vertices are distinct. As ng = N we find that vy and vy_; are adjacent to each
other. Hence we obtain that an N-cycle is a graph of N-step closed path without
backtracking all of whose vertices are different (see Fig. 13).

oo
1=

F1G. 12. unclosed path F1a. 13. closed path
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If we have two N-cycles (v, ...,vn-1), (wo,...,wy_1) which is formed by N-step
closed path without backtracking all of whose vertices are different, then the map f

defined by v; — w; is an isomorphism. O

By the above proposition, we denote by C'y an N-cycle graph.



2. Laplacians of graphs

2.1. Adjacency and transition operators of a graph. Given a locally finite
graph G = (V, E) we denote by C(V;R) the set of all real valued functions of V', that
is, C(V;R) = {f : V. — R}. We define its adjacency operator Ag and its transition
operator Pg acting on C(V;R) by

Af@) = 3 F(0), Pef)=—— S f(t(e).

e€E:o(e)=v dG(U) ecE:o(e)=v

respectively. When the degree dg(v) at vertex v does not depend on the choice of

vertices, that is, the degree function dg is a constant function, those operators satisfies

the following relation
1
(2.1) Po=—Ac.
da

When G is simple, these operators are expressed as

Acf)= Y fw), Paf(v) Z flw

weV iw~v wEV wn~v

respectively.
We here express the adjacency operator Ag by a matrix in the case that G is a

finite graph. When G is a finite graph, for a pair (v, w) of vertices in G, we set
Ay = (number of edges which join v and w),

and define a symmetric matrix Ag by Ag = (au). We call this the adjacent matriz
of G. When the cardinality of the set of vertices is n, then the adjacency matrix is an
nxn symmetric matrix. When a graph G is simple graph, then we have a,,, = 1 for two
vertices which are adjacent to each other and a,, = 0 for two vertices which are not
adjacent to each other, and moreover we have a,, = 0. Therefore, for a simple graph
its adjacency matrix is a symmetric matrix each of whose entries is either 0 or 1 and
whose diagonal complements are 0. This adjacent matrix is a matrix representation

of the adjacency operator. For each vertex v € V' we define a function 9, : V'— R by

5(w) 1, when w = v,
vw\W) =
0, when w # v.
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Then {J, | v € V'} forms a basis of C'(V;R). As we have

Agoy(u) = Z d»(t(e)) = t{e € E | € joins u and v} = ay,,
ecE:o(e)=u
where for a set S we denote by £S5 its cardinality, we find that
.Ag(sv = Z avwéw.

weV

Thus Ag is the matrix representation of Ag with respect to the basis {0, | v € V}.

ExAaMPLE 1.5. We take a graph G = (V, E) which is given by

V= {Ul,’UQ,Ug,U4,'U5,'U6},
E = {e; = {v1, v}, e = {v2, 03}, €5 = {3, 04}, e4 = {4, v5},

€y = {’0577}6}766 = {?}177}3},67 = {U27U5},€8 = {U4,’Uﬁ}}.

Then its adjacency matrix is as follows:

U U Us U U Us
(L2 s w o 1 1 0 0 o0
)1 0 1 0 1 0
(2 Us W 1 1 0 1 0 0
W 0 0 1 11
Wl o 1 0 1 0 1
Us U G/ 0 0 0 1 1 0
Fic. 14

FiG. 15

Next we consider vertices and edges adjacency of a finite graph. We denote by n
the cardinality of the set of vertices, and by m that of the set of edges. We define an
n X m-matrix B = (b,.) by setting b,. = 1 when a vertex v and an edge e are adjacent
to each other and b, = 0 when they are not adjacent to each other. We call it the
incident matrix of this graph (see Fig. 17).

ExXAMPLE 1.6. For the graph in Example 1.5, its incident matrix is given as follows:
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€1 €2 €3 €4 €5 €6 €7 eg

2 e, Us & 1 0o 0o 0 0 1 0 O

€1 €5 ¢ 1 1 1 0 0 0 0 O

i, e e e W0 1 0 0 0 1 1 0
&) ‘. /0 0 0 1 0 0 1 1

: 2 W/ 0 0 0 1 1 0 1 0

3 4 /0 0 0 0 1 0 0 1

Fic. 16
Fiac. 17

For two vertices v and w of a finite graph G = (V, E), we define its transition

matriz P = (pww) by using adjacency matrix Ag = (ayy) as

@y  numbers of the adjacent edges between v and w

Pow = da(v) degree at vertex v

As we have

Pedy(u) = de(v) Z 5v(t(e)) - dzlz:)> = Puv;
ecE:o(e)=u

we see

PGév = va'wéw-
weV
Hence, Pg is the matrix representation of Pg with respect to the basis {0, | v € V'}.

Transition matrix is used to describe the probabilities of moving from each vertex to
other vertices. That is, when we have baggage of amount k at a vertex v at first, then
next time they are transferred to vertices adjacent to v and the amount at w received

from v is Py, X k.

ExAMPLE 1.7. For the graph in Example 1.5, its transition matrix is given as

follows:
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W U U U U Us
(L s wo X+ 2+ o o0 o0
1 1 1
UQ?OT OTO
1 1 1
L8 Us U35 5 0 3 0 0
1 1 1
U 0 0 5 0 3 3
1 1 1
U 0 3 0 3 0 3
s s 11
s/ 0 0 0 5 & 0
Fic. 18
F1G. 19

PROPOSITION 1.6. The sum of components in the each row of the transition matrix
Pe = (pww) of a finite graph G = (V, E) is equal to 1, that is Y, puww = 1 for each
veV.

PROOF. According to the definition of deg(v), we have

Ayw 1
vaw = 1;/ deg(v) = deg(v) Z = 1.

weV weV
0
1 1
/] 0+5+5+0+0+0=1
(L2 Us 1 2 2
- ;’—+O+%+0+1?+0=1
1 1 1
s T+?+0+7+0+0=1
¢ U 1 T 1
s O+O+T+O+?+T=1
s 0+1?+0+%+0+%=1
s (s —
Us 0+0+0+7+7+0=1
F1G. 20
FiG. 21

2.2. Laplacian of graph. For a locally finite graph G = (V, E), we define its
degree operator D¢ acting on C(V,R) by

Da f(v) = da(v) f(v).



§1.2. Laplacians of graphs 17

When G is a finite graph, it is represented by a diagonal matrix D whose diagonal

componetns are dg(v) (v € V). That is, if we denote as Dg = (d,,,) we have

i - degy(v), if v =w,
o, if v # w.

We define the combinatorial Laplacian A 4, and the transitional Laplacian Ap,, acting
on C(V,R) by Ay, = Dg — Ag and Ap, =L — Pg, respectively. Here, Z denotes the

identity operator. Thus we have

Au f(v) =da(v)f(v) — A f(v) and  Ap,f(v) = f(v) —Paf(v)

for f € C(V,R). When the graph G = (V, E) is regular, that is its degree-function dg
does not depend on the choice of vertices, by (2.1) these Laplacians are related with

each other as
Ay, = daAp,.

When G is finite, by using the canonical basis {0, | v € V} of C(V,R), we can
represent these Laplacians by matrices. Let D¢ denote the matrix representation of
D¢. By using the matrix representations Ag, Pg, Dg of Ag, Pa, Dg, we find that
the matrix representations Ay, Ap, of Ay, Ap, are given as Ay, = Dg — A and

Ap, = I — Pg, respectively, where I denotes the identity matrix.

ExAMPLE 1.8. Let G = (V, E) be a graph in Fig. 22. We take a function f €
C(V;R) given by

flv1) =1, f(v2) =3, f(vs) = =7, f(vs) =4, f(vs) = —13.

Then we have

Auef(01) = dg(vr) f(vr) = {f(v2) + flvs) + f(va) + f(vs)} = 17,
AAGf(UQ) = 18, AAGf(Ug) = —29, AAGf(U4> = 207 AAGf(’U5) = —31.

and

17

{F(va) + f(vs) + Fv) + flos)} = —

Apy () = f(01) = = L

a(v1)
Apg f(v2) = ?7 Apg f(vs) = %29, Apg f(va) = ?7 Apg flvs) = _731
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If we represent them by matrices with respect to the canonical basis

{0u15 Ouyy Ougs Ouys Ous }, We have

1

3

f =00, + 30y, + (=7)0y, + 49y, + (—13)0,, «— | =7

4

—-13

and
4 0 0 0 O 1 01111 1 17
02000 3 1 01 00 3 12
Aqsf< 100 3 00 -71—-11 1010 71 =1-29
00030 4 1 01 01 4 31
00 00 2 —13 1 0010 —13 —31
11 1 1 17
10000\ /1 Uaaa a1 4
01000 3 3 0300 3 3
Apgfeloo 100|713 to0offl-7[=]2
00010 4 %0%0% 4 31
3
00 0O01 —-13 %OO%O —-13 ;1
2
uq
Us
(L2}
(£
u,
Fiag. 22

In order to show properties of graphs it is a way to study their eigenvalues of
Laplacians. We here briefly recall definitions of eigenvalues and eigenvectors, and
some of their basic properties.

If a square matrix B satisfies Bv = A\v with a non-null vector v and a constant A,

we call A an eigenvalue of B and call v an eigenvector of B corresponding to A.

NOTE 1.1. Let A be a real symmetric matriz.
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(1) All eigenvalues of A are real, hence we can choose a real eigenvector for each
ergenvalue.
(2) For its two distinct eigenvalues A, j1, we take eigenvectors v,w corresponding

to each of them. Then they are orthogonal to each other.

PROOF. Let n denote the size of A, which means that A is an n x n matrix. We

consider a Hermitian inner product on C" which is defined by
(z,y) = "2y = 217 + 220 + - + 77,

for € = "(z1,...,2,), ¥y = “(y1,...,ys) € C", where for a complex number z =
a + /—1b we set its complex conjugate by Z = a — v/—1b, and for a matrix B we
denote by ‘B its transposed matrix.
(1) We take an eigenvalue A and an eigenvector v corresponding to A. Since A is a
real symmetric matrix, we have
M|v)|? = Mo, v) = (A, v) = (Av, v) = (v, ‘Av)
= (v, Av) = (v, \v) = \v,v) = \||v|)?,
where A = (@;) for the matrix A = (a;;). As v is not a null vector, we find A\ = ),
which shows that A is real.
We take an eigenvector v € C" corresponding to A and denote as v = & + /—1y,

where x, y € R". As we have
A+ V-1 \y= = Av= Ax+ v—1Ay

and Az, Ay € R", we see both @ and y are eigenvectors corresponding to \ if they are

not null vectors. As v is not a null vector, either  or y is not null.

(2) We have
Mo, w) = (A, w) = (Av, w) = (v, Aw) = (v, pw) = (v, w).

As A # p we find (v, w) = 0, so that two eigenvectors v, w are orthogonal to each

other. 0
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For an eigenvalue A\ of a square matrix B, we denote by mpg(\) its multiplicity,
which is the dimension of the eigenspace {v € C" | Bv = Av}. The following is well

known.

NoOTE 1.2. A symmetric matriz A is diagonalizable by some orthogonal matrix
R, that is *'RAR turns to be a diagonal matriz. In particular, the sum > ma(\) of

multiplicities of all distinct eigenvalues coincides with the size n of A.

This means that there is an orthonormal basis (vy, vy -+, v,) which is formed by

eigenvectors.

NOTE 1.3. Let A, B are symmetric matrices of the same size. If they are commu-

tative (i.e. AB = BA), then they are simultaneously diagonalizable.

PRrROOF. When v is an eigenvector of A associated with an eigenvalue A, we have
ABv= BAv = ABw.

Thus Bw is also an eigenvector associated with .
If ma(\) = k, we take linearly independent eigenvectors vy, . .., vy associated with

A. Then we can represent Bv; as
B’Uj = Clj'vl “+ -4 ij’vk.

If we define a matrix of size k by C' = (¢;;), wehave B (v --- ) = (v1 -+ ) C.

Thus if we take an orthogonal matrix P satisfying that

At

A1
tPAP =
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where Aq,..., A, are mutually distinct eigenvalues of A, as the low vectors of P are

eigenvectors of A, we have

Cy
BP=P - :
C,

where Cj is a square matrix of size m4(A,).

Since *PBP is symmetric, we find that each C; is also symmetric. Therefore we
have orthogonal matrices @, satisfying that ‘Q,CyQ, are diagonal matrices by Note
1.2. We set

1
Q=
Qr
Then we have
"(PQ)B(PQ) ="Q("PBP)Q
‘O C Q@1
tQT OT QT
'Q1C10Q1
tQTOTQT
is a diagonal matrix. On the other hand, if we denote P = (p1 e pn), we find that
the low vectors obtained by (p1 o Dy A()\l)) (, are eigenvectors associated with
A1, the low vectors obtained by (pmA(M)H pMA(,\l)+mA(,\2)) ()- are eigenvectors

associated with Ay and so on. Hence we obtain that *(PQ)A(PQ) is a diagonal matirx.
Thus find both *(PQ)A(PQ) and *(PQ)B(PQ) are diagonal matrices, and we get the

conclusion. O

REMARK 1.1. If A and B are simultaneously diagonalizable, then there exists a

basis vy, . . ., v, consists of eigenvectors of both of them (i.e. Av; = \jv; and Av; = nv;

for all 7).

We now come back to study Laplacians of graphs. Let G = (V| E) be a finite

non-oriented graph. For each edge e € E we give a direction and consider an oriented



22 1. Graphs

graph (V, ET). For an non-oriented edge e € F we denote by € € ET the edge with
considered orientation. Let C'(E™) be a set of all (real valued) functions of the set Et
of oriented edges. We define a map V : C(V) — C(E™) by Vf((v,w)) = f(w) — f(v)
for each f € C(V), and call it coboundary operator. In order to study the relationship
between Laplacians and the coboundary operator, we define an inner product ( , )

and a weighted inner product ((, ) on C(V') by
(f,9)=>_ flv)g(v),

veV

(f.9) =D _da(v)f(v)g(v)

veV

for f,g € C(V). Also we define an inner product (, ) on C(E™) by

(o) = > @(@)()

et
for ¢, € C(ET).

For each edge e € E, we give the reversed direction and consider another oriented
graph (V, E7). This means that an oriented edge € € E™T if and only if its reversed
edge € ' € E~. In particular, we have a bijection ET 5 & — & ' € E~. We define
an inner product (, ) on C(E~) by

$.0) = Y @)
écE-
for ¢,9 € C(E~). For a function ¢ € C(ET) we define a function ¢ € C(E~) by
(€71 = —p(¢). We then have

() =Y @@= > (@) (—v@) = > @&E bE™)

ecE+ ecE+ ecE+
=) @@)(e) = (g ).
eckE—

By using this duality, we show the following.

PROPOSITION 1.7. For functions f,g € C(V) we have
(Aacf,9) = (VI Vg) = ([, Auq9),

{Ap.f,9) = (V. Vg) = ([, Ap.g)-
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PRrOOF. By using the duality we have

2(Vf,Vg) = Z V(E)Vg(E) + Z V(@)Vg(e)
—Z{f 1@)) — f(o(@)) Hy(t(&)) — g(0(&))}
+ > {f(0(@) = F(H@)) Hy(o(@)) — g(t(@))}-

On the other hand, by direct computation we see

(Aactf,9) Z{dc - Zf(“)}}g(u)

ueV u~v

=" {de(u) f(u)g(u) = 3~ fv)g(u)
=> > {f)~ f)}g(w).

If we consider u € V as an origin of a non-oriented edge e, then the vertex v with
v ~ u is the terminus of this edge, and if we consider u as a terminus of e, then v is

the origin of e. We therefore have

> D S = f)hg(u)

u€eV v~u

=3 > {rlole)) — £(t(e)) ba(o(e)

ueV ecFE,o(e)=u

+3° 3 {F(te) = f(o(e) ba(tle))

u€V ecE t(e)=u

= _{/(o(e) = f(t(e)) }g(o(e)) + D _{f(t(e (€)) }o(t(e)

= {/(te () }{a(t(e)) = g(o(e) }-

We should note that both £, E~ are bijective to E. As we consider each edge e € F
its (temporary) orientation, we find that (Aa,f,g) = (Vf, Vg). Next we study Ap,.

(Apef.g) =) de(u) U)Zf )} }o(w)

ueV u~v

:Z{d(;(u) u)g(u) —vagu}

ueV u~v

=3 ) {fw) = f()}g(w) = (At 9)-
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Hence we have (Ap. f,g)) = (Vf, Vg), and get the conclusion. O

By using this we find the following result.

PROPOSITION 1.8. Let G = (V, E) be a finite graph.

(1) Every eigenvalue of Aa, and Ap, are nonnegative.

(2) 0 is an eigenvalue of both Ay, and Ap,.

(3) The multiplicity of 0 coincides with the number kg of connected component of
G. FEigenfunctions associated with 0 are functions which are constant on each

component of G.

PRrROOF. (1) Let f be an eigenfunction of Ay, associated with A. As we have

Apf = Af, we see

Since f is not the null function, we have (f, f) # 0. Therefore we have \ = Wé’zf L >0,

and A = 0 if and only if (Vf, Vf) = 0, which means Vf(e) =0 for all e € E.

Similarly if we take an eigenfunction of Ap, associated with A, we have

ML) = 1) = (Bpe f, 1) = (V).

Hence we obtain \ = %?]Y»ﬁ >0, and A =0 if and only if (Vf, Vf) =0.

(2) We take a function f on V which is constant on each connected component of

G. We decompose V into V; + - -+ + V(@) components. Then we see f(v) = a; for all
veV,(i=1,...,k(G)). If v € V;, we have

Duef(0) = daw)f(v) = f(w) = ai(da(v) =Y 1) =0,

Anf0) = F0) = T S ) =ai(1 - o > 1=0

Hence 0 is an eigenvalue of both Ay, and Ap,.
(3) Given two vertices v,w in the same connected component of G, there is a

path v = (vg,v1,...,v,) joining them. That is, v9 = v and v, = w. When f is
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an eigenfunction associated with 0, as Vf(e) = 0 for all e € E, which means that

f(t(e)) = f(o(e)), we find that

f)=flv1) == flona) = flw).
Therefore every eigenfunction associated with 0 is constant on each connected compo-

nent.

On the other hand, we take functions f; (i =1,...,k(G)) defined by

1, ifvelV,
fiv) = {o, itod V.

Then they are eigenfunctions associated with 0. These functions are linearly indepen-
dent. As a matter of fact, if a; fiL+-- -+ awq) fi() is the null function with some real

numbers ay, ..., ayq), then by taking a vertex v; € V; for each i we find
0 =ayfi(vi) + - + ar) frue) (vi) = a;.

Since every function g which is constant on each component, say ¢ = b; on V; for
every i, we have g = by fiL + -+ + by fi(c). Hence the dimension of eigenfunctions

associated with 0 is k£(G). Thus the multiplicity of 0 is k(G). O






CHAPTER 2

Kahler graphs

1. Definition and Examples of Kéahler graphs

A Kaéhler graph is a graph which possesses two different kind of adjacencies. We
say a graph G = (V, E) to be Kdhler if its set of edge F is divided into two disjoint
subsets E® and E® and it satisfies the following condition:

At each vertex v € V there are at least four edges emanating from v,

two of them are contained in E® and two of them are contained in E(®.
We then get two graphs G®) = (V, E®)) and G = (V, E() which share the same
set of vertices V. We call them the principal graph and the auziliary graph of a
Kihler graph G, respectively. Correspondingly, we call an edge belonging to E® to
be principal and that belonging to £(*) to be auxiliary. In order to clarify the structure
of Kihler graph, we usually denote a Kihler graph as G = (V, E® UE@). For a vertex
v € V of a Kihler graph G = (V, E® U E@), we denote by dg) (v) the degree of the
principal graph G® at v, and by d(Ga) (v) the degree of the auxiliary graph G(@ at v.
We call these dg’) (v) and d(Ga ) (v) the principal and auxiliary degrees at v, respectively.
Clearly we have dg(v) = d(Gp)(v) + d(Ga)(v). For distinct two vertices v,w € V, we
denote by v ~, w their adjacency in the principal graph, and denote by v ~, w their
adjacency in the auxiliary graph.

In this paper, when we draw figures of Kahler graphs, we draw principal edges
by lines and draw auxiliary edges by dotted lines (see Figs. 1, 3). One may use two
kinds of colors to show these edges. To distinguish Kéahler graphs from other graphs

we sometimes call graphs as ordinary graphs.

27
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EXAMPLE 2.1. We define a Kihler graph G = (V, E® U E®) as
V= {Ul,Ug,’Ug,U4,U5},
E® — {{Ul,’l)g}, {va,v3}, {vs, v4}, {v4, 05}, {115,1)1}}
E@ = {{Ul,vg,}, {vs,v5}, {vs, v2}, {va,v4}, {04,1)5}}.

If we draw figures of this Kahler graph and its principal and auxiliary graphs, we have

as follows.
(I3 (I3 ({2
®
({5 ({5 ! \\, _l
(Ls (Ls u5.- -+~ s
~ \/ \,
100
({2 ({2 '/ - ) \.LC
«, 3 u, 3 u, 3
Fig. 1 Fig. 2 Fig. 3

This example suggests us a way of constructing Kahler graphs. For an ordinary
finite graph G = (V, E) we take its complement graph G¢ = (V| E°). Here, we define
E* in the following manner: For distinct two vertices v,w € V we define v ~ w in G°
if and only if v o4 w in G. Here, for two vertices v, w we show as v + w if they are not
adjacent to each other. By the definition of complement graphs, we see £ N E¢ = ().
Under the condition that 2 < dg(v) < ng — 3, we have 2 < dge(v) < nge — 3 because
dg(v) +dge(v) = ng — 1, where ng = nge denote the cardinality of the set of V. Thus
we obtain a Kéhler graph GX = (V, E U E¢) which is complete as an ordinary graph.
We call this the complement-filled Kahler graph of G.

We here give some other examples of Kahler graph.

ExaAMPLE 2.2. We denote by Z the set of integers and by R the set of real numbers.
We take the set of lattice points V = Z? = {(a,b) ‘ a,b € Z} in a Euclidean plane
R2. We set principal edges so that lines which are parallel to the z-axis are formed by

them, and set auxiliary edges so that lines parallel to the y-axis are formed by them.
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That is, we set
EP = {{(a,0), (a+1,0)}, {(a,b), (a—1,b)} | a,b e Z},
B = {{(a,b), (a,b+1)}, {(a,b), (a,b—1)} | a,b € Z}.
We then obtain a Kihler graph (V, EP) U E”) (see Fig 4,Fig 5).

®(a,b4+1)
() | o
T e @ T T T T
s MG SR S S o
Fic. 4 Fia.5. (V,EP U E™)
If we set

b), (a+1,b)}, {(a,b), (a—1,b)},
ym:{ﬂm, 0] a.be},

? {(a,0), (a,b+ 1)}, {(a, %(mb—lﬂ

a

@ _ J{(a,b), (a+1,0+1)}, {(a,b), (a— — 1)},
" _{ {(a,0), (a—1,b+ 1)}, ﬂ%),m+1b—1n ‘%bGZ},

we obtain another Kéhler graph (V, B U E{") (see Figs. 6, 7). Its principal graph is

connected.

NN AN AN N s

(a=1:5+1) (a+155+1) VRN VRN VSN VAN 2

L d 7
, 20 NP N N RN BN
R N2 B2 2GR BN )
N , NN 2NN

N 4 7 7 N 7 N 7 N N
N p N A A A

N s NN ZES 2NNy
~tah) T T T

’ N NN N A

N

N 2 N N AN AN BN

N N A I » > /
N LNl N N TN
<
(a-156-1) (a+13—1) A NP I A
Fic. 6 Fic.7. (V, BV U E™)
. . . ) 2 2

Similarly if we set

P {(a,b), (a+1,b)}, {(a,b), (a —1,b)},

i {{W% (a+ 1,0+ D}, {(a,), (a—1,6—1)} “”’GZ}’
o {(a,b), (a,b+ 1)}, {(a,b), (a,b— 1)},

& {Hmw’m_1ﬁ+1ﬂ7ﬂ%®,m+lﬁ—1ﬂ %bGZ},

we obtain a Kahler graph (V, E?()p U E?()a) )

—

see Figs 8, 9). Its principal and auxiliary

graphs are connected.
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(a-1:b+1) (asb+1) (a+1,b+1)
< *

‘e
(a-15-1) (asb-1) (a+1,b-1)

Fia. 8 Fic.9. (V, E¥ U E)

We note that V' can be identified with the set of lattice points {a + v/—1b |
a,b € Z} in the field C of complex numbers. We call these Kéhler graphs (V Efp U
Efl)), (V, Eép U Eéa)), (V, E?()p U E?()a)) a Kahler graph of complex lattice, a complex

line of Cartesian-tensor product type, and a Cayley complex line, respectively.

We can extend the above examples of Kahler graphs to Kahler graphs of lattice

points in a complex m dimensional Euclidean space C™.

ExAMPLE 2.3. We take the set of lattice points
V={(a1+V-1b1,...,am +V=1by) | a;,b; € Zforall i =1,...,m}.

We define (V, E® U E*) as follows:

1) Two vertices
z=(a1+V—=1by,...,am+V—1by), Z = (a{+V-1b},...,a,,+V—1V,) € V

are adjacent to each other in the principal graph if and only if there is ig (1 <
ip < m) satisfying that
i) aj, = a;, +1oraj =a; —1,
i) a, = a; for i # iy,
iii) b} = b; for all 4
2) Two z,Z € V are adjacent to each other in the auxiliary graph if and only if
there is ig (1 < iy < m) satisfying that
i) b, = by, + 1 or b = by, — 1,

ii) a) = a; for all i,
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iii) b, = b; for i # .
We call this graph a Kahler graph of m-dimensional complex lattice.
We define (V, EP U E{”) as follows:
1) Two vertices
2= (a1+V=1b1, ..., am+V—=1by), 2 = (a\+vV/—=1b,,...,d, +vV—1b )€V

are adjacent to each other in the principal graph if and only if there is i (1 <

ip < m) satisfying either the following i), ii), iii) or i’), ii’), iii’):

i) aj, = a;, +1or aj = a;, — 1, i) b, = by, + 1 or b, = b —1,
ii) a; = a; for i # iy, ii") a} = a; for all i,
iii) b, = b; for all i; iii’) O = b; for i # io;

2) Two z,Z € V are adjacent to each other in the auxiliary graph if and only if
there is i (1 < ip < m) satisfying that
i) one of the following holds:
a) aj, = a;, + 1 and b = b;, +1,
b) aj, = a;, +1 and b = by, — 1,
c) aj, = aj, — 1 and b = by, + 1,
d) aj, = a;, — 1 and b, = b, — 1,
ii) a; = a; for i # iy,
i) b, = b; for i # .
We call this a Kahler graph of m-dimensional complex lattice of Cartesian-tensor

product type.
We define (V, B U ES) as follows:
1) Two vertices
z2=(ay+vV—=1by1, ..., am+V—1by,), Z = (| +vV—=1b,,... d, +v/—1b. ) eV

are adjacent to each other in the principal graph if and only if there is iy (1 <

ip < m) satisfying either
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i) a;, = a;, +1 or aj, = a;, — 1,
ii) a; = a; for i # iy,
iii) b} = b; for all 4,
or
i) either aj, = a;, + 1 and b} = by, + 1, or a;, = a;, — 1 and b} = by, — 1,
ii) a} = a; for i # iy,
iii) b, = b; for i # iy;
2) Two z, 2 € V are adjacent to each other in the auxiliary graph if and only if
there is ip (1 < 79 < m) satisfying either
i) b, = b, + 1 or b = by, — 1,
ii) a; = a; for all ¢,
iii) b} = b; for i # 1.
or
i) either aj = a;, +1 and b = b, — 1, or a;, = a;, — 1 and b, = b;, + 1,
ii) a} = a; for i # iy,

We call this graph a Kahler graph of m-dimensional Cayley complex lattice.
We here give concrete examples of Kéahler graphs of higher dimensional complex

lattice, of higher dimensional complex lattice of Cartesian-tensor product type and of

higher dimensional Cayley complex lattice in order to help readers to understand.

ExXaMPLE 2.4. We take the set
V= {(z1,22,23) eC? ‘ zi =a; +V—1b;, a;,b; € Z}

of lattice points in C3.
(1) In a Kéhler graph of 3-dimensional complex lattice, each point (z1, 29, 23) € V

is principally adjacent to the following six points

(21 + 1,22,23), (Zl, Z9 + 1,23), (21,22, zZ3 + 1),
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and is auxiliary adjacent to the following six points
(Zl + \% _17 22, Z3)a (Zla 22 + V _17 2:3)7 (21722, Z3 + \% _1)

(2) In a Kéhler graph of 3-dimensional complex lattice of Cartesian-tensor product
type, each point (z1, 29, 23) € V' is principally adjacent to the following 12 points
(Zl + 17 292, 23)7 (Zla Z2 + 17 23)7 (Zla 22, %3 + 1)7

(Zl + V _1722723)7 (21722 + Vv —1,23), (Zlaz2a23 + V _1)

and is auxillary adjacent to the following 12 points
(Zl + (1 + v —1),22,23), (21,22 + (1 + v —1), 23), (21,22, zZ3 + (1 + v —1>),
(1 £ (1= V=1),29,23), (21,22 = (1 = V=1),23), (21,22, 23+ (1 — V-1)).

(3) In a Kéhler graph of 3-dimensional Cayley complex lattice, each point 21, 2, 23 €

V' is principally adjacent to the following 12 points
(Zl =+ ]-7 22, 23)7 (217 22 + 17 Z3)7 (Zla 22, %3 + 1)7

(21 + (1 + —1), 29, 23), (Zl, Z9 + (1 -+ —1), 23), (Zl, 29, %3 + (1 —+ —1))
and is auxillary adjacent to the following 12 points

(Zlﬂ:\/—_]_,ZQ,Zg), (Zl,ZQZi:\/—_]_,Zg), (Zl,ZQ,Zgi\/—_]_)
(21:]:<].—\/—_1),ZQ723)7 (Zl,ZQZIZ“.—\/—_l),Zg), (Zl,ZQ,Zgi(]_—\/—_l)>.

We can associate graphs to groups. For a group G we take two disjoint nonempty
finite subsets S® and S@ of G which do not contain the identity and that are in-
varint under the action of the inverse operation. Since we get two Cayley graphs

(Q,E(Q;S(p))) and (Q,E(Q;S(“))), where
B(G; 8" = {{g,h} g 'h e SPY and E(G;S"™) = {{g,h} g 'he S@1,
we obtain a locally finite Kéhler graph (g, E(G;SPYUE(G; S(“))). We call this graph

a Cayley Kdhler graph. The Kahler graphs in Example 2.2 are Cayley Kahler graphs.

EXAMPLE 2.5. We take a dihedral group
Dy={a,b|a*=b"=1, ab = ba®)

= (b,c ‘ b* = ¢ =1, bebe = cbeb).
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where ¢ = ab. If we set S®) = {b,c} and S = {a,a’}, we get a regular Kihler graph
as like Fig. 10. By the construction of this Kéhler graph we find that the principal

degree and the auxiliary degree are 2.

b 1

c=bd’

a=cb
be=d

ba:be

, cbc=bd*

a=becbc=cbcb
Fic. 10

A Kihler graph G = (V, E® U E(@) is said to be regular if both the principal and
auxiliary graphs are regular. That is, both the principal and the auxiliary degrees do
not depend on the choice of vertex v € V. When we consider Kahler graphs of ng = 5,
we see they are complete by the condition of Kahler graphs. In order to show more

examples on forms of Kéahler graph, we here consider Kéhler graphs of ng > 6.

Fig. 11 Fig. 12 Fic. 13 Fic. 14

In the Figs. 11, 12, 13 and 14), we give regular Kéhler graphs whose sets of vertices
have cardinality ng = 6,7, 8, 10, respectively. Their principal and auxiliary degrees
are the same d®)(v) = d@(v) = 2 in Figs. 11, 12, 14, and are different d®(v) =
2,d(v) = 3 in Fig. 13. We discuss in §2.3 more detail on the relationship between
the cardinality of the set of vertices and principal and auxiliary degrees.

We here note the following;:

1) When G is a finite graph then dg:(v) = ng — dg(v) — 1;

2) In particular, when G is a finite graph, G is regular if and only if G¢ is regular.
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Therefore if a finite ordinary graph G is regular and satisfies 2 < dg < ng — 3, then

its complement-filled Kihler graph G¥ is a regular Kéhler graph.



2. Kahler graphs of product type

A Kahler graph of complex lattice consists of horizontal lines for the principal
graph and vertical lines for the auxiliary graph. In other words, it is a product of a
principal graph of real lattice and an auxiliary graph of real lattice. In this section we
show some product operations to get Kahler graphs by using ordinary graphs.

It is known that we have four typical ways of product operation of graphs; Cartesian
product, strong product, semi-tensor product and lexicographical product. Given two
ordinary graphs G = (V, E) and H = (W, F'), we define their Cartesian product GOH,
strong product GX H, semi-tensor product G ® H and lexicographical product G - H

in the following manner:

1) Their sets of vertices are the product V' x W
2) Two vertices (v, w), (v/,w') € V x W are adjacent to each other if they satisfy
the following conditions:
(a) either v ~v" in G and w = w' or v =v" and w ~ w' in H for GOH
(b) they satisfy one of the conditions in G X H;
b-i) v ~ " in G and w = w’,
b-ii) v =v" and w ~ w' in H,
b-iii) v ~ v’ in G and w ~ w' for H;
(¢c) v~v"in Gand w ~w' in H for G ® H;
(d) either v ~ v in G and w = w’ or w ~w' in H for G+ H.
Corresponding to these operations and the operations of complement we give some
product operations of ordinary graphs to get Kahler graphs. Through out this section
G = (V,E) and H = (W, F) are ordinary graphs.

2.1. Kahler graphs of product type whose principal graphs are unions of
copies of original graphs. First we consider product operations satisfying that the
constructed Kahlar graphs have principal graphs each of whose connected components
is isomorphic to the original graph.

36
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[1] K&ahler graphs of Cartesian product type
Given two ordinary graphs G = (V, E) and H = (W, F’), we define their Kéhler
graph of Cartesian product type GOH as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v,w), (v/,w’) € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';
iii) Two vertices (v, w), (v/,w") € V xW are adjacent to each other by an auxiliary

edge if and only if w ~w’' in H and v = v'.

EXAMPLE 2.6. If we take G and H as graphs of real lines, then their Kahler graph
of Cartesian product type is a graph of complex line. If we represent G by a horizontal

line and H by a vertical line, then GOH is represented as Fig. 16.

Fic.15. G=H

Fic. 16. GOH

When G and H are locally finite graphs, their Kahlar graph of Cartesian product

type is also locally finite. Its principal and auxiliary degrees are given as

d¥. (v,w) =dg(v) and d% (v,w) = dy(w).
In particular, when G and H are regular, their Kahlar graph of Cartesian product

type is also regular.

[2] K&hler graphs of strong product type
Given two ordinary graphs G = (V, E) and H = (W, F'), we define their Kéhler
graph of strong product type GXH as follows:



38 II. Kéhler graphs

i) Its set of vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v, w), (v',w’) € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
an auxiliary edge if and only if they satisfy one of the following conditions;
(a) v~ in G and w = W/,
(b) v=2"and w ~ w" in H,

(¢)v~v in G and w ~w' in H.

ExXAMPLE 2.7. If we take G and H as graphs of real lines, then their Kéhler graph
of strong product type is like the following figures.

N/ N /NSNS

(cui) (w) NI N DN NN

e L4 NN N N IO
N v

N /&‘ /“\ /“\ /“\ *‘\

Nely @w)

7
7

BN
| N N

N 1
‘/ ‘ \‘ 7N /\\\// \\//\\ solN
\\/‘\\/\\ //\\/\\/
Fiag. 17. adjacency at a NS U NN N
vertex in GKH ~
Fic. 18. GXH

When G and H are locally finite graphs, their Kahlar graph of strong product type

is also locally finite. Its principal and auxiliary degrees are given as

d?. (v,w) =dg(v) and d (v,w) = dy(w){de(v) +1}.

In particular, when G and H are regular, their Kahlar graph of strong product type

is also regular.

[3] Kahler graphs of semi-tensor product type
For two ordinary graphs G = (V, E') and H = (W, F'), we define their Kéhler graph

of semi-tensor product type GRH as follows;

i) Its set of vertices is the product V' x W of their sets of vertices;
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ii) Two distinct vertices (v,w), (v/,w’) € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';

/

iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by

an auxiliary edge if and only if v ~¢' in G and w ~ w’ in H.

ExAMPLE 2.8. If we take G and H as graphs of real lines, then their Kahler graph

of semi-tensor product type is like the following figures.

(ew) (Cw) soON /NN /N 7N

ARG
e bt o SO U U .

N 7 & & e & 4

N s )
New)” (Cw) N ~N 2 N

[ ] [ ] ® TN Ny N

Fic. 19. adjacency at a

vertex in GRH -
F1Gc.20. GQH

By definitions if we take both the auxiliary edges of the Kahler graph of semi-
tensor product type and those of the Kahler graph of Cartesian product type, we get
the auxiliary edges of the Kahler graph of strong product type.

When G and H are locally finite graphs, their Kahlar graph of semi-tensor product

type is also locally finite. Its principal and auxiliary degrees are given as
do (v, w) = dg(v) and di, (v,w) = da(v)dy(w).

In particular, when G and H are regular, their Kahlar graph of semi-tensor product

type is also regular.

[4] K&ahler graphs of lexicographical product type
Given two ordinary graphs G = (V, E) and H = (W, F), we define their Kéhler

graph G > H of lexicographical product type as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;

/

ii) Two distinct vertices (v, w), (v',w’) € V- x W are adjacent to each other by a

principal edge if and only if v ~ ¢ in G and w = w';
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iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by

an auxiliary edge if and only if w ~ v’ in H.

ExXAMPLE 2.9. If we take G and H as graphs of real lines, then their Kéhler graph
of lexicographical product type is like the following figures.
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Fic.22. G H

When G is a finite graph and H is locally finite, then their Kahler graph of lexi-
cographical product type is locally finite. Its principal and auxiliary degrees are given
as

d(GpllH('u,w) =dg(v) and d(GaéH(v,w) = ngdg(w).
In particular, when G and H are regular, their Kahlar graph of lexicographical product
type is also regular. We note that when G is a complete graph then a Kéahler graph
GXH of strong product type coincides with a Kéhler graph G > H of lexicographical
product type.

By the definition of Kéhler graphs of lexicographical product type, we see that
each of its vertex (v, w) is completely adjacent to vertices whose second components

are adjacent to w in the graph of second components,

[5] Kahler graphs of co-Cartesian product type
Let G = (V, E) and H = (W, F) be ordinary graphs. We define their Kéhler graph
of co-Cartesian product type G lfl H as follows:
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i) Its set of vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v, w), (v',w’) € V x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by

an auxiliary edge if and only if v # ¢v' and w ~ w' in H.

ExAMPLE 2.10. If we take GG and H as graphs of real lines, then their Kahler graph

of co-Cartesian product type is like the following figures.
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When G is finite and H is locally finite, then their Kahler graph of co-Cartesian

product type is locally finite. Its principal and auxiliary degrees are given as

d®. —d d d@ = (ne — Ddg(w).
GDH(uw) a(v) an GDH(v,w) (ng — 1)dg(w)

In particular, when G is finite and regular and H is regular, their Kahlar graph of

co-Cartesian product type is also regular.

[6] K&ahler graphs of co-tensor product type
Let G = (V,E) and H = (W, F) be ordinary graphs. We define their Kéhler graph
of co-tensor product type G é) H as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v/,w") € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';
iii) Two distinct vertices (v, w), (v',w') € V' x W are adjacent to each other by

an auxiliary edge if and only if v ¢ ¢v' in G and w ~ w' in H.

ExaMPLE 2.11. If we take G and H as graphs of real lines, then their Kahler graph
of co-tensor product type is like the following figures.

=

\

1/
*
HEN
iy
*
Gy
s
\ ,\
A

YN
(M
A\
(n W
"
\/\/l\
AV

\
/\})(\
!

4
/

\y
®
I\

\
{
N
vV,

VavY;
WA
5
Ay

wA
VA
M
N
-
AVAY

Y
/
/
\ A
Y,
!

(er))

e_ o ° 'Y e o _oo s

¥
\E
m
|
v\f*

%
/.
v
Y
\

V,
/

\/\//§

\ 3

VY

{

/ \/\%

\/\7\
Y

\*F\/\—
"

I

/
M
I
/

I
/
/
\
i
/
A,
/\\\
\

gl\
!
A
>
\%

—W

/\/\\

N

/
/
\
/
/
{
QU
A
e
/AN
Yy 5
A {
A ﬂ;}}
\
/
VA *\

{
N
7

iy
n

\/\\//\

e
\
e
\
°
‘,
°
/
.
o
W
)
g\
Yy
»
\
5
\
h

\
/
\
{

{
4
f
|/
(/ \
4,
f
4

N
\
Y
L
{

/4

A

Y

A
_\y\/

Fia. 25. adjacency at a S >
(&

AR
\/
M
N\
A\

A,

AYA

/
\
v

N/
\ \\V\/

A
AyA\/\

%
VA

)
AN
)
y

>

vertex in G ®@ H S

)
!

When G is finite and H is locally finite, then their Kahler graph of co-tensor

product type is locally finite. Its principal and auxiliary degrees are given as

(p) _ (a) _
deQ%H(v,w) = dg(v) and dGéH(U’w) = (ng — da(v))dg(w).

In particular, when G is finite and regular and H is regular, their Kéahler graph of

co-tensor product type is also regular.

[7] Kahler graphs of co-strong product type
Let G = (V,E) and H = (W, F) be ordinary graphs. Suppose that for each vertex
v € V there exists at least one vertex which is different from v and is not adjacent to

v in G. We define their Kahler graph of co-strong product type G é H as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;
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ii) Two distinct vertices (v,w), (v/,w’) € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by

an auxiliary edge if and only if v # v, v £ ' in G and w ~ w' in H.

ExaMPLE 2.12. If we take G and H as graphs of real lines, then their Kéhler graph

of co-strong product type is like the following figures.
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When G is finite and H is locally finite, then their Kahler graph of co-strong

product type is locally finite. Its principal and auxiliary degrees are given as

d®, (v,w) =dg(v) and d9. (v,w)= (ng — da(v) — 1)dy(w).

G H GXH

In particular, when G is finite and regular and H is regular, their Kahlar graph of
co-strong product type is also regular.
We note that if we define a Kahlar graph of “co-lexicographical product” type it

is nothing but a union of copies of G because we can not add auxiliary edges.

We here point out that we can do both the product operation and the complement-
filling operation. Given two ordinary graphs G = (V, E) and H = (W, F'), we define a
Kahler graph G DK H as follows:

i) Its set of the vertices is the product V' x W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v/,w") € V- x W are adjacent to each other by a
principal edge if and only if v ~ ¢ in G and w = w';

iii) Two vertices (v, w), (v',w") € V xW are adjacent to each other by an auxiliary
edge if and only if either w ~ w’ in H and v =/, or v # v, v ¥ V' in G and

w=w.

We call G OK H a Kihler graph of complement-filled Cartesian product type. We can
obtain G OXH from G O H by adding auxiliary edges according to the rule that
[rule KJ: (v,w) ~, (v/,w') if v# v, v 4 v in G and w =w'.
We note that when G is a complete graph then we have G OfKH =GO H.
Similarly, by using other Kahler graphs of product type and by adding auxiliary
edges according to [rule K], we get six Kéhler graphs G@KH, G@KH, G>FH, GﬁKH,
G RXH and G ©5H. When G is finite and H is locally finite, these Kéhler graphs

are also locally finite. Their principal and auxiliary degrees are given as

d(Gp)@KH(v,w) = dgéKH(v,w) = d(C%KH(U,w) = dg;KH(v,w)
_ d(p)c _ d(p)c _ d(p)c —d
GDKH(v’w) G®KH(U’w> G@KH(v’w) 6();
and
. (0,w0) = ng + dyg(w) — dg(v) — 1,

d) i (v,w) = ng + {du(w) = 1H{da(v) + 1},

d(a)

)y (02 0) = 6 + do(0){di(w) — 1} = 1,

d) ey (v,w) = ne{ds (w) + 1} — de(v) — 1,

4, (v,w) = ne{dg(w) + 1} — dy(w) — de(v) — 1,

A% 0w) = {ng — de(w)Hdn(w) +1} - 1,
dS%KH(U, w) = {dy(w) + 1}{ng — dg(v) — 1}.

When G and H are finite graphs, if we consider the operation G K , then it is an

ng-copies of the complement-filled Kahler graph G¥.
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ExampLE 2.13. If we take G and H as graphs of real lines, then their Kéhler

graphs of complement-filled product type is like the following figures.
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We here give an operation of getting Kahler graphs which is related with the
product operation of lexicographic type. Let H = (W, F') be an ordinary graph which
may have hairs. We express the set W by {w, | « € A}. Let G, (a € A) be ordinary

Kahler graphs
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graphs. We define their Kdihler extension HX(G4;a € A) in the following manner:

i) Its set of the vertices is the sum | J .4 Vo X {wa};

ii) Two distinct vertices (v, wg),

(v, wg) € Upea Vo X {wa} are adjacent to each

other by a principal edge if and only if « = 8 and v ~ v' in Gy;

iii) Two distinct vertices (v, w,),

(v, wg) € Upen Va X {va} are adjacent to each

other by an auxiliary edge if and only if w, ~ wg in H.
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When all G, are finite and H is locally finite, then HX(G,;a € A) is locally finite

and its principal and auxiliary degrees are

dgL(Ga;aeA) (U, wa) = dGa (U)7 dSL(Ga;aeA) (U’ wo‘) - Z NGg-

When all G,, are the same (i.e. G, = G), we have HX(G,;a € A) = Gr> H. When H
is a complete graph of ny = 2 (hence dy = 1), we denote HX (G4, G3) also by G1+G,
and call it the join of G| and Gs.

When H is a finite complete graph, we sometimes write HX(Gy,...,G,,) by
Gl—/i\—GQ:I\—~--thnH. When all Gy,...,G,, are complete ordinary graphs, then the
graph HX(G,...,G,,,) is also complete as an ordinary graph.

EXAMPLE 2.14. If we take a 3-circuit (G; and a 4-circuit (G5, then the graph G+ G,

is not a complete graph as an ordinary graph.

AN

FIG. 40. G U Gy Fic. 41. G, 3Gy

ExAaMpPLE 2.15. If we take three complete graphs K3, K, and Kj, the graph
K3+ K, K5 is like Fig. 43. We note

(») _ (a) .

ng-T—K4-T-K5(U) = 2, dKa-T—KH\-Ks(v) =9 when v € Ks,
(») _ (a) .

dKB;K4;K5(U) =3, dK3;K4;K5(v) =8, when v € Ky,
(») _ (a) -

ng—T—K4-T-K5(U) =4, ng—T—K4—T—K5<U) =1, when v € K.

Obviously, we can do both the extending operation and complement-filling opera-
tion. When at least one of G, (o € A) is not complete, we define HX (G,;a € A) in

the following manner:
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V

Fic.42. K3U K, U K5

F1a. 43. K3+ K4+ Ks

i) Its set of the vertices is the sum | J e Vo X {wa};

ii) Two distinct vertices (v,w,), (v, wg) € Uyeq Vo X {wa} are adjacent to each
other by a principal edge if and only if « = 8 and v ~ v" in G;

iii) Two distinct vertices (v,wy), (v',wg) € Uyea Vo X {va} are adjacent to each
other by an auxiliary edge if and only if either w, ~ wg in H or w, = wg and
v#£EV, VAV

When all G,, are finite and H is locally finite, then H%(G,;a € A) is locally finite
and its principal and auxiliary degrees are
d®

HKc(Ga§aeA)<v’ wa) - dGa (U)’ dg%(Ga;aeA)(va wa) =nNg, — dGa -1+ Z nGg-

Brwg~we

2.2. Product operations which are commutative. In the previous subsec-
tion, we constructed Kahler graphs whose principal graphs are unions of copies of
given ordinary graphs. That is, for given graphs G and H, the principal graphs of
their Kahler graphs of product type given in the previous subsection are unions of
ng-copies of G. We will explain the geometric meaning of Kahler graphs in §3.1, but
if we say a bit on these Kahler graphs of product type, they show motions of charged
particles which are just moving in the horizontal component G.

We should note that those seven Kéahler graphs of product types are not connected.
Moreover, those product operations are not commutative in general, that is

GOH+HOG, GXRH+#HXG, G®H + H®G, G H+H>G,

GOH+HOG GRHAHRG GOHAH®G
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In this subsection we give some product operations which are commutative. These
Kahler graphs show motions of charged particles which are moving both in the hori-

zontal component G and in the vertical component H.

[1] K&hler graphs of Cartesian-tensor product type
Given two ordinary graphs G = (V,E) and H = (W, F) we define their Kéhler
graph of Cartesian-tensor product type G H H as follows;

i) Its set of vertices is the product V' x W of their sets of vertices;

ii) Two distinct vertices (v,w), (v/,w’) € V- x W are adjacent to each other by
a principal edge if and only if either v = v and w ~ w' in H or w = w’ and
v~vin G,

/

iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by

an auxiliary edge if and only if v ~ ¢’ in G and w ~ w’ in H.

ExAMPLE 2.16. If we take G and H as graphs of real lines, then their Kéhler graph

of Cartesian-tensor product type is like the following figures.

N / \*/ \*/ N /N /
* N\
e [ ] L] [ ] [ ]
/ N2 N2 N~ N2 N
A A A A
\\ VRN BN BN PN 4
[ ] [ ]
s /TN /TN ZIN N
N s N N/ N7
N A /N /N N ,
[ ° s N N s NN
2N h /N RS N
<l NGRS
[ 3 Y N N 7N 7N N ,
N / N7 NS N2z
»
s N2 N '~ N
° ° . . . . X o< > x )
/ N
N N~ N N4
. . % N s
F1G.44. adjacency at a vertex in R ANV SN (NS AN

When G and H are locally finite graphs, their Kahler graph of Cartesian-tensor

product type is also locally finite. Its principal and auxiliary degrees are given as

& (v) = dg(v) + dp(w) and  dihy,(v) = de(v)dg(w).

By definition, the operation of Cartesian-tensor product is commutative (i.e. GEHH =

HBG).
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[2] K&hler graphs of Cartesain-complement product type
Let G = (V, E) and H = (W, F') be two ordinary graphs. We suppose the following:

(a) For each vertex v € V, there exists at least one vertex which is different from
v and is not adjacent to v in G
(b) For each vertex w € W, there exists at least one vertex which is different from

w and is not adjacent to w in H.
We define their Kahler graph of Cartesian-complement product type G [1 H as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v,w), (v, w’) € V x W are adjacent to each other by
a principal edge if and only if either v = v and w ~ w’ in H or w = w’ and
v~vin G;
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
an auxiliary edges if and only if either v # v, v ¢ v/ in G and w ~ w' in H,
orw #w', ww in Hand v~ v in G.
We note that if either the condition (a) or the condition (b) holds we can get a new

Kahler graph of product type.

ExaMPLE 2.17. If we take G and H as graphs of real lines, then their Kahler graph

of Cartesian-complement product type is like the following figures.
P 1\ 7Y /}léfj /}\43( /}—\4’3‘\ /

\}%7” \\Nﬁ/ﬁ % 5 ﬁ%// 7

\\\\\ﬁ\ ; \g\ VST

s /I BE- VS ‘M, ERALYS

F1G.46. adjacency at a vertex in
GUH

Fic.47. GO H
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When both G and H are finite, their Kahler graph of Cartesian-complement prod-

uct type is finite. Its principal and auxiliary degrees are given as

L (v) = da(v) + d(w),

dish(v) = da(){ny — du(w) = 1} + du(w){ng — da(v) — 1},
By definition, the operation of Cartesian-complement product is commutative (i.e.

GOH=HOG).

[3] K&ahler graphs of Cartesian-lexicographical product type
Given two ordinary graphs G = (V, E) and H = (W, F'), we define their Kéhler
graph of Cartesian-lexicographical product type GOH as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;

ii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
a principal edge if and only if either v = v and w ~ w’ in H or w = w’ and
v~ in G;

iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
an auxiliary edge if and only if either v # v and w ~ w’ in H or w # w’ and

v~ in G.

ExaMPLE 2.18. If we take G and H as graphs of real lines, then their Kéhler graph
GOH of Cartesian-lexicographical product type is like the following figure.

NG AL T L AN AN LA TN LAN T | £

el o N s X!
S > N\t pee

N4 \%/ﬁ NSy %

S e ey

° ° ° . ° N S & pts: N L2\

ANV VESY ) A AT VAR AL 70

7 Ve -\ VA ¢

R

Fi1c.49. GOH
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When both G and H are finite, their Kahler graph of Cartesian-lexicographical

product type is finite. Its principal and auxiliary degrees are given as
d%) () = do(v) + dg(w) and  dS%) () = du(w){ng — 1} + de(v){ng — 1}.

By definition we see the operation of Cartesian-lexicographical product is commutative

(ie. GOH = HOG).

[4] K&ahler graphs of strong-complement product type
Let G = (V,FE) and H = (W, F) be two ordinary graphs. We suppose the fol-
lowing conditions which are the same as the conditions in the operation of Cartesian-

complement product.

(a) For each vertex v € V, there exists at least one vertex which is different from
v and is not adjacent to v in G}
(b) For each vertex w € W, there exists at least one vertex which is different from

w and is not adjacent to w in H.
We define their Kahler graph of strong-complement product type G % H as follows:

i) Its set of vertices is the product V' x W of their sets of vertices;

ii) Two distinct vertices (v, w), (v',w’') € V x W are adjacent to each other by a
principal edge if and only if they satisfy one of the following conditions;
ii-a) w=w and v ~ v in G,
ii-b) v =v" and w ~ w' in H,
fi-c) v ~ v in G and w ~ w' in H;

iii) Two distinct vertices (v, w), (v,w') € V- x W are adjacent to each other by
an auxiliary edge if and only if
i-a) v £V, vt v in Gand w~w' in H,

ii-b) w # w', w ¢ w' in H and v ~ v in G.

ExaMPLE 2.19. If we take G and H as graphs of real lines, then their Kahler graph

of strong-complement product type is like the following figure.
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When G and H are finite, then G % H is also finite. Its principal and auxiliary
degrees are given as
dP . = de(v) + dg(w) + de(v)dg (w),
diy), ¢ = de(v){ng — d(w) — 1} + dy(w){ng — da(v) — 1}.

By definition we see that this strong-complement product operation is commutative

(ie. Gx H=H % Q).

[5] K&ahler graphs of complement-tensor product type
Let G = (V,E) and H = (W, F') be two ordinary graphs. We suppose the follow-
ing conditions which are the same as the conditions in the operations of Cartesian-

complement product and of strong-complement product.

(a) For each vertex v € V| there exists at least one vertex which is different from
v and is not adjacent to v in G;
(b) For each vertex w € W, there exists at least one vertex which is different from

w and is not adjacent to w in H.
We define their Kéahler graph of complement-tensor product type G8H as follows;

i) Its set of vertices is the product V' x W of their sets of vertices;
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ii) Two distinct vertices (v, w), (v',w’) € V x W are adjacent to each other by a
principal edge if and only if either v ~ v in G and w # w' in H, or v 4 v in
G and w ~ w' in H;

iii) Two distinct vertices (v, w), (v',w') € V- x W are adjacent to each other by

an auxiliary edges if and only if v ~ ' in G and w ~ v’ in H.

ExAMPLE 2.20. If we take G and H as the graphs of real lines, then their Kahler

graph of complement-tensor product type is like the following figure.

A\ TN | F

%%%“‘é@%x m?&’ﬁgﬂ

é ‘,, :, irﬁ% %

j'a ‘% hﬁé‘
*’A"W&é iﬁﬁ
R

F1G. 52. adjacency at a vertex in G&H KT ,\ = ; x /\ =
! \77/ ’ \ \ ~7 \\7‘/ \\\‘
Fic. 53. GAH

When G and H are finite graphs, then their Kéhler graph G#H of complement-
tensor product type is also finite. Its principal and auxiliary degrees are given as

AW = da(W){ng — dg(w)} + du(w){ne — da(v)} and  dip, = da(v)du(w).

By definition we see that the complement-tensor product operation is commutative

(i.,e. GOH = HAG).

[6] Kahler graphs of tensor-complement product type
Let G = (V, FE) and H = (W, F’) be two ordinary graphs. We suppose the following

conditions as usual.

(a) For each vertex v € V, there exists at least one vertex which is different from

v and is not adjacent to v in G}
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(b) For each vertex w € W, there exists at least one vertex which is different from

w and is not adjacent to w in H.
We define their Kahler graph of tensor-complement product type G H as follows;

i) Its set of vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v, w), (v/,w") € V- x W are adjacent to each other by
an principal edge if and only if v ~ ¢’ in G and w ~ w' in H;
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
an auxiliary edge if and only if either w # w’, w % w' in H and v ~ v' in G,

orv#£v,v4v inGand w~w in H.

ExaMPLE 2.21. If we take G and H as graphs of real lines, then their Kéhler graph

of tensor-complement product type is like the following figure.

F1c. 54. adjacency at a vertex in GdH

F1G.55. G&H

When G and H are finite graphs, then their Kahler graph Gé&eH of tensor-complement

product type is also finite. Its principal and auxiliary degrees are given as
APy = da(v)dy(w) and  dy, = do){ng —dg(w) =1} +dg(w){ng —do(v) — 1}.

By definition we see that the complement-tensor product operation is commutative

(i.e. GH = H&G).
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For a Kihler graph G = (V,E® U E@) we set F?) = E@ F@ = E® and
G* = (V,F® U F(9)). We call G* the dual Kihler graph of G. By taking the duals of
GHH, G H, GOH, G% H and G&H we get other Kahler graphs of product type

by commutative operations.

ProprosiTiON 2.1. If G and H are connected, then the principal graphs of their
Kahler graphs of product type GEH H, G H, GOH, G % H are also connected.

PROOF. We take two distinct vertices (v,w) and (v/,w’) in the Ké&hler graph of
product type in the assertion. Since G is connected, if v # v" we have a path v joining

vand v (o(y) = v and t(y) = v'). Similarly as H is connected, if w # w’ we have

a path o joining w and w’ (o(c) = w and t(o) = w’). If we denote v = (vg, ..., v,
and o = (wp, ..., wy,), then the curve 4 - & with 4 = ((vo,w), . (vn,w)) and 6 =
((v/,wo), - .., (v, wy)) joins (v,w) and (v/,w’). When either v = v/ or w = w/, the
curve ¢ or the curve ¥ joins (v, w) and (v',w’). O

Here, we note that we can do the product operations and the complement-filling
operation in the same time. Given two ordinary graphs G = (V, E) and H = (W, F)
we define a Kihler graph G B® H as follows;

i) Its set of the vertices is the product V' x W of their sets of vertices;
ii) Two distinct vertices (v,w), (v,w’) € V x W are adjacent to each other by
a principal edge if and only if either v = v and w ~ w’ in H or w = w’ and
v~vin G;
iii) Two distinct vertices (v, w), (v/,w') € V- x W are adjacent to each other by
an auxiliary edge if and only if they satisfy one of the following conditions;
ili-a) v ~ v in G and w ~w' in H,
ili-b) v = v, w # w' and w £ w' in H,
ili-c) w=w', v#v and v £ V" in G.
We call this graph a Kahler graph of commutatively complement-filled Cartesian-
tensor product type. We note that both G and H are complete graphs we have
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GHE®H = GEH. We can obtain G B8 H from G BH by adding auxiliary edges
according to the rule that
[rule B): (v,w) ~, (V',w') if either v # V', v % v" in G and w = W',
orv=v,w#w and w ¢ w' in H.
Similarly, by using other Kahler graphs of product type and by adding auxiliary edges
according to [rule ®)], we get five Kihler graphs G L® H, GO®H, G x®H, G&®H
and G&®H. When G and H are finite graphs, then these six Kihler graphs are finite.

Their principal and the auxiliary degrees are given as

A0) sy (0 0) = A0, (0,0) = ) (0,0) = di(v) + dir(w),
d) . (0, 0) = de(v) + di (w) + de (v)d (w),
07 5 (0, 0) = d(0) (s — di(w)} + dgr(w){ng — da(v)},
dg;o@H(U’w> = dg(v)dn(w)
and
d) . (0, w) = da(v)dr(w) + ng + ny — da(v) — du(w) - 2,
d) g (0, w) = (da(v) + D{ng — dy(w) — 1} + (dg(w) + 1){ng — da(v) — 1},
4 s (0,0) = n(din () + 1) + npr(da(v) + 1) — 2{do(v) + dyr(w) + 1,
d) 5y (0, 0) = (da(v) + D{nu — du(w) = 1} + (du(w) + 1){ng — da(v) — 1},
A 1y (0, 0) = ng + npg + da(v)dn(w) — da(v) — dp(w) - 2,
Ao sy (V) = n6(di + 1) + g (de + 1) = 2(dg + 1) (dy + 1),

By definition, it is clear that these operations are commutative:
GH®H =HE%G, GO®H = HO®G, Gx®H=H%%G,

CA%H = HA%G, Ga®H = H&®G



3. Vertex-transitive Kahler graphs

In this section we give a condition that we can construct a “symmetric” Kahler
graph of given cardinality of the set of vertices. Here, the word “symmetric” is vague.

We shall explain this later, and at first we study regular Kahler graphs.

3.1. A condition on regular Kahler graphs. We shall start by considering
experimentally the situation of small cardinality of the set of vertices. Let G =

(V, E® U E@) be a Kihler graph.

(1) If ng = 1, as we suppose it does not have loops, it is a graph of an isolated
point and does not have edges, hence it is not a Kahler graph.

(2) If ng = 2, as we suppose it does not have loops and multiple edges (i.e.
simple), it is either a graph of two isolated points or a graph of an edge and
its end points, hence it is not a Kahler graph.

(3) If ng = 3, as it is a simple graph, the degree at each vertex is less than
three. Thus we can not construct a Kahler graph of ng = 3 by the condition
d?® (v) > 2,d9(v) > 2. Even if we weaken the condition on degrees to
d®)(v) > 1,d(v) > 1, we need at least one pair of multiple edges. (see
Fig. 56)

(4) When ng = 4, we can not construct Kéahler graphs by the condition on degrees.
If we weaken the condition on degrees to d®(v) > 1,d@(v) > 1, we get a
graph of constant degrees dg) = d(c?) =1 (see Fig. 57).

If we allow us to use loops an multiple edges, we have “extended” Kéahler

graphs like Figs. 58, 59 .

58
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Under the above study we give a condition on the cardinality of the set of vertices

and the principal and the auxiliary degrees of a regular Kahler graph.

PROPOSITION 2.2. If G = (V,E®) U E®W) is a finite Kdihler graph, then its car-
dinality ng of the set of vertices, its principal degree d(Gp) and its auziliary degree dgf)
satisfy the following conditions:

1) ng > 5;
2) d(v) 2 2, d&(v) > 2, d§ (v) + & (v) < e =1
Moreover, if G is regular, they additionally satisfy the following condition:

en ng 1S oaa, ot an are even.
(3) Wh s odd, both d¥ and d

PROOF. Since G is simple, the total degree dg(v) = dg) (v) —I—d(Ga)(v) is less than ng.
Hence the second condition comes from the definition of Kéhler graphs. In particular,
we have ng > d(Gp)(v) + d(Ga)(v) +1>5.

When G is regular, by hand shaking lemma (Proposition 1.2), the cardinalities of
the sets of principal and auxiliary edges satisfy 24E®) = n(;d(Gp) and 24E(®) = ngd(Ga).
We hence get the third condition. 0

In this section we show the converse of this proposition.

3.2. Kahler graph isomorphisms. Though the regularity condition shows some
“symmetric” property of a Kéhler graph, it is a very weak condition. We hence in-
troduce another notion which shows more on “symmetry” of Kahler graphs. Let
G = (Vi, EPUE™), Gy = (Va, EP + E{") be two Kihler graphs. A map f : V; — Vs
is said to be a homomorphism of G to Gy if it induces homomorphisms between prin-
cipal graphs and between auxiliary graphs. That is, if two vertices v,w € V satisfy
v ~, w in Gy then f(v) ~, f(w) in Go, and if they satisfy v ~, w in G; then
f(v) ~q f(w) in Go. We shall denote a homomorphism between two Kéhler graphs
G1 and G5 as f : Gy — G5. When f is a bijective homomorphism and its inverse
f~t: V4, =V is also a homomorphism between Kéhler graphs, we call it an isomor-

phism of a Kahler graph.
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LEMMA 2.1. Let f : G; — Gy be an isomorphism between locally finite Kdahler
graphs. For each vertex v € Vi we have dgg (f(v)) = dgl)(v) and dgfg (f(v) = d(Gal) (v).

PROOF. We denote as G = (Vi, EP U E\) and Gy = (Va, BV U EY). For

v € Vi we take all vertices vy, ... € V1 which are principally adjacent to v (i.e.

»Ya® (v)

vj ~, v), and all vertices v], ... € Vi which are auxiliary adjacent to v (i.e.

)

G1

vy ~q v). Since f is a homomorphism, we have f(v;) ~, f(v) and f(v}) ~, f(v) in

Go. As f is a bijection these f(vy),..., f(vd@)(v)),f(vi), . ,f(v;(a)( )) are mutually
Gy a, W

different. Hence we have dg’l)(v) < dg’g (f(v)) and d(gl)(v) < d(Gag (f(v)). Since f7'is

also a bijective homomorphism, by the same argument we have d(Gpl) (v) > d(ci) (f(v))

and d(gl) (v) > dglg (f(v)) because f~'(f(v)) =v. Thus we get the conclusion. O

We call a Kihler graph G = (V, E®)U E@) vertez-transitive if for arbitrary distinct
vertices v,w € V there is an isomorphism (automorphism) f : V — V of G satisfying
f(v) = w. By Lemma 2.1, we find that a vertex-transitive Kahler graph is regular.

We have many vertex-transitive Kahler graphs. But regular graphs are not neces-

sarily vertex-transitive.

ExamMpLE 2.22. A Kahler graph of m-dimensional complex Euclidean lattice is
vertex-transitive.

As a matter of fact, we take arbitrary distinct vertices z, 2 € Z*™ C R?™ = C™.
We define a bijection ¢ = ¢, » as a translation ¢(w) = w+ (2 — 2). Clearly, we have
¢(z) = Z. Suppose w ~, w'. We denote as

z= (a1 +V—=1b1,...,apm +V—=1by,), 2= (a)+ V=1V, ... d, +/—1b),
w=(c;+V—=1dy,....cpm+V—=1dyp), W =(+vV=1d,....c ++v—1d,).
Then, there is ig satisfying that ¢ = ¢, £1, ¢ = ¢; for i # iy and d; = d; for all i. As
we have
p(w) = ((e14d)—ar) + V=1(di+b,=b1), ..., (cm+al, —an) + V=1(dn+b,—bpn)),

o(w) = ((+a)—ar) + V=1({d +b = b1), ..., (,+a, —an) + V—1(d,,+b, b)),
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we see p(w) ~, ¢(w'). Similarly, if w ~, w, there is 4, satisfying that dj = d;; £ 1,
d; = d; for i # iy, and ¢, = ¢; for all i. Hence we have ¢(w) ~, p(w'), and find that ¢
is a homomorphism.

Since ¢! is given by ¢~} (w) = w+ (z— #), this also is a homomorphism. Hence
@ is an isomorphism. Thus we find the vertex-transitivity of a Kahler graph of m-

dimensional complex lattice.
PROPOSITION 2.3. Every Cayley Kdahler graph is vertez-transitive.

PROOF. Let G = (g, E(G;SP)U E(Q;S(a))) be a Cayley Kéhler graph. We take
distinct two vertices g, ¢’ € G and define amap ¢, : G — G by ¢, 4 (x) = g'g 'z, As

we have
_ IR _ 1 _
o0 () g (y) = (997 '2) (997 'y) =27 9(g)) g9y =17y,
we find that 27!y € S®) if and only if (i, (x))flgag,g/ (y) € S® and that 'y € S@

if and only if ((pgyg/(:c))_lgog’g/(y) € 8@, Therefore ¢,, is an isomorphism. Since

©g.4(9) = ¢’ we find that G is vertex-transitive. U
EXAMPLE 2.23. We consider a Kéhler graph G = (V, E) given in Fig. 60. That is,
V =A{vg,...,vs} and
E(p) = {{U07 U1}7 {Ub U2}7 {U27 U3}7 {U37 U4}7 {U47 U5}7 {'U57 Uﬁ}v {U67 UO}}a
E(a) = {{UO7 1}4}7 {U4, ’UG}, {Uﬁ, Ul}, {Ul, '03}, {'037 U5}7 {,057 U2}7 {U27 UO}}'

Uo
(%} Us

U2 Us

Us ([

FiG. 60
Since both its principal and auxiliary graphs are 7-circuits, they are vertex tran-

sitive as ordinary graphs, in particular it is a regular Kahler graph. As isomorphisms
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of its principal graph are rotations fo = Id, fi, ..., f¢ which are given by v; — v;;, we
study how they map auxiliary edges. At a vertex vy we have auxiliary edges {vo, va}
and {wvg,vs}. Their differences between indices of vertices are 2 and 4. If we calculate

in the same way we have
v1 2,5, v+ 3,9, w3+ 2,9, U4|—>2,3, U5|—>4,5, vs — 2, 5.

Hence we find that rotations do not preserves auxiliary edges. Therefore G is not

vertex-transitive.
We here show the converse of Proposition 2.2.

THEOREM 2.1. Let N,d®),d® be positeve integers satisfying N > 5, d® >
2, d > 2 gnd dP + d@ < N — 1. Then there exists a vertex-transitive finite
Kahler graph G satisfying ng = N, d(Gp) =d® and d(Ga) = d@ if and only if one of the
following conditions holds:
1) N is odd and both dP),d® are even,

2) N in even.

PROOF. We shall show the assertion step by step. We take V' = {vg, vy, -+ ,on_1}
We shall give principal and auxiliary edges by considering the indices of vertices by
modulo N.

(1) The case that N is odd and both d®,d® are even.

We denote d®,d@ as d?) = 2d; and d® = 2d, with positive integers dy, dy. We
define principal edges so that each vertex v; is principally adjacent to vertices v;y;
with 7 = £1,£2,--- | £d;, and define auxiliary edges so that it is auxiliary adjacent
to vertices vy ; with j = 4(dy + 1), +(dy +2),- -+, £(dy +dy). Since dP +d@ < N—1,
this graph does not have multiple edges.

We consider rotations fr : V. — V (k= 1,2,--- , N — 1) which are given by
fiu(v;) = visr. Then they are automorphisms of our Kéhler graph (V, E® U E@). It

is clear that f, is a bijection. When v; ~, vy then |i — ¢] < d;. As fg(vs) = vsqs and
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[t (vs) = vs_g, and |(i+k) — ((+Fk)| = |[i— €| = |(i—k) — ({—k)|, we find that fi.(v;) ~,
fre(ve) and £ (v;) ~, fi ' (ve). Similarly, when v; ~, vy then dy < |i — €| < dy +da. As
Fi0s) = varp and f0,) = vy, and (64 K) — (€4 F) = i — £ = (G = F) — (€~ b)),
we find that fi(v;) ~o fr(ve) and fi'(v;) ~a fo'(ve). Thus we find that f; is an

isomorphism(see Fig. 61). Therefore our Kahler graph is vertex-transitive.

e o
7, N
7 N
K O i i
ad N
s/ ANEERN (N [ d
sy NN /
s NI \ /
/ \ e /.
Y \ NN /s
L] L ] NN / 7
S -
\ /
N s
° ° Qo
e o
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(2) The case that N and d® are even and d® is odd.

We denote N,d® d@ as N = 2m,d® = 2d; and d% = 2d, + 1 with positive
integers m, dy, dy. We define principal edges so that each vertex v; is principally adja-
cent to v,y for j = £1,£2,--- ,+d;, and define auxiliary edges so that it is auxiliary
adjacent to v;y; for j = +(dy + 1), +(dy + 2),--- ,£(dy + d3). By these, we have 2d;
principal edges and 2d, auxiliary edges at each vertex. Since N — 1 is odd we see
2(dy + dy) < N —2 = 2m — 2, we can join v; and its antipodal point v;,,, by an
auxiliary edge (see Fig. 62). We then have d(éf) = 2d; and d(g) = 2ds + 1 and G does
not have multiple edges.

We take the rotations fy : V=V (k=1,2,--- ,N—1). Asv; ~, v, if and only if
li—fl) <dj,and as [(i+k)— ({+Ek)|=|i—{] = |(i—k)— ({— k)|, we find that v; ~, vy
if and only if fi(v;) ~, fi(ve). Similarly, as v; ~, ve if and only if dy < |i — €| < d or
|i — €] = m, we find that v; ~, v, if and only if fi(v;) ~4 fr(ve). Thus these rotations
fr (k=1,2,--- /N — 1) are automorphisms of our Kéhler graph. We hence find that

1t 1s vertex-transitive.

(3) The case that N and d'® are even and d® is odd.
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If we change the roles of the principal and the auxiliary edges in the argument in
the case of (2), we can obtain a desirable vertex-transitive Kéhler graph. We here
give our Kéhler graph explicitly. We denote N,d®,d® as N = 2m,d® = 2d; + 1
and d® = 2d, with positive integers m, di, d». We define principal edges so that each
vertex v; is principally adjacent to v;y; for j = £1,£2,...,£d; and is principally
adjacent to v;,,,, and define auxiliary edges so that each vertex v; is auxiliary adjacent
to vy for j = £(dy + 1), £(dy + 2),...,£(d1 + d2). We then have dg’) = 2d; + 1 and
dgl) = 2dy and G does not have multiple edges because 2(d; + dy) < N —2 =2m — 2.
(see Fig. 63).

We take the rotations f : V=V (k=1,2,--- N —1). As v; ~, v, if and only
if|i—¢ <dyorli—{¢=m,andas |(i+k)—({+k)|=1]i—L=]|(Gi—k)—(—k)
we find that v; ~, v if and only if fi(v;) ~, fx(ve). Similarly, as v; ~, v, if and only
if di < |i —¢| < dy, we find that v; ~, vy if and only if fi(v;) ~, fx(ve). Thus these
rotations fi (k=1,2,---, N — 1) are automorphisms of our Kéhler graph. We hence

find that it is vertex-transitive.

Fi1c. 63
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(4) The case that N is even and both d®, d® are odd.

We denote N,d®) d® as N =2m, d? =2d, + 1 and d¥ = 2d, + 1 with positive
integers m, dy,dy. First, we define principal edges so that vey_o and vgy_y with ¢ =
1,2,--- ,m are principally adjacent to each other, and define auxiliary edges so that
vge_1 and vy are auxiliary adjacent to each other. Next we define principal edges so
that each vertex v; is principally adjacent to vertex v;y; for j = £2, 43, ..., £(d; + 1),
and define auxiliary edges so that it is auxiliary adjacent to vertex v;; for j = £(d; +
2), +(dy+3),...,4(dy+dy+1). By these we have d? = 2d;+1 and d% = 2d,+1. We
note that the condition d® +d@ < N —1 guarantees that 2d; +142ds +1 < 2m — 1.
This shows 2(d; + dy) < 2(m — 1) — 1, hence leads us to d; + dy < m — 2. Therefore,
G does not have multiple edges (see Fig. 64). Moreover, there are no edges joining v;
and vy ,.

We shall show that this Kahler graph is vertex transitive. First, we study transi-
tivity for even k = 2k. We take the rotation fr : V= V. As we have fip(vy_o) =
Uggoriy—2s J(V2e-1) = Vgpypy 1 Se(vae) = Vypppys we see fi(va—a) ~p fi(vae—1) and
fr(var—1) ~q fr(vee). By a similar argument as in other cases we find that f; is an

isomorphism. (see Fig. 64)

FiG. 64

Next we study transitivity for odd k& = 2k — 1. We define a map g, : V — V
by gx(v;) = v_;1r which is a composition of a reflection given by v; — v_; and a
rotation fi. As we have gi(vep_2) = Vbt 1)—15 gk(Ve-1y) = Ug(h—t+1)—2 = Va(i—s) and
9i(V20) = Vyi_py_y, We see g(var—2) ~p gr(vae—1) and gi(vae—1) ~a gr(var). Since the

sets of principal and auxiliary edges which we secondary took are invariant under the
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action of reflection v; — v_;, we find that g, is an isomorphism of our Kéahler graph.

We hence find that it is vertex-transitive. This completes the proof. 0

Fia. 65

3.3. Examples of vertex-transitive Kahler graphs. By Theorem 2.1, we see
that there are many vertex-transitive Kahler graphs. We here give some more exam-
ples. A Petersen graph (V, E) is a graph of 10 vertices which is given as follows: We
take a set V' = {v10, 011, V12,013, V1.4, V20, Va1, V22, Va3, V24} Of vertices, and set

{01,07 U1,1}, {01,17 U1,2}, {01,27 U1,3}, {01,37 U1,4}, {01,47 U1,o},

E = {U2,0, U2,2}, {U2,2, U2,4}, {U2,4, U2,1}, {U2,1, U2,3}, {U2,3, U2,0},

{01,07 112,0}7 {01,17 112,1}7 {01,27 112,2}7 {01,37 112,3}7 {01,47 112,4}

e |
<

2,1 é § [ —2,4
%3

13 2,2

F1G. 66. Petersen graph F1G. 67. 3-dim. representation

It is known that a Petersen graph is not a Cayly graph. For j = 1,2, 3,4 we define a
map f; : V. — V by fj(vi;) = vi4j, [i(v2;) = v2,4;, where we consider the second
index by modulo 5. We define g : V' — V by

L V1,0 =7 V20, V11 =7 Vg3, V12 > V211, V13 > V24, V14 = V22,
V2,0 = V1,0, V2,2 = V11, V24 F> V12, V21 > V13, U3 > V14



§2.3. Vertex-transitive Kahler graphs 67

The maps fi,..., f1 are rotations, and the map ¢ is a reversing of upper and lower
in the Fig. 67. Thus these 5 maps are isomorphisms of G = (V, E) as an ordinary
graph. Considering f;, go f; (j =1,2,3,4) and ¢ we find that a Petersen graph is a

vertex-transitive graph.

EXAMPLE 2.24. Let (V, E) be a Petersen graph. We put E®) = E. We define

seven sets EJ(-a) (j=1,...,7) as
5@ _ { {vr0, v}, {vi2, viak, {via, vin} {vi, vis), {ves, Ul,o},}
N {02,07 U2,1}, {02,17 U2,2}, {02,27 U2,3}, {02,37 U2,4}, {02,47 U2,0}
( {Ul,()v 02,1}, {01,07 02,2}, {01,07 02,3}, {01,07 02,4}, )
{01,1, 02,0}, {01,1, 02,2}, {01,1, 02,3}, {01,1, 02,4},
Eéa) = {U1,27 U2,0}, {U1,27 U2,1}, {U1,27 U2,3}, {U1,27 U2,4}, s

{U1,37 U2,0}7 {01,37 U2,1}7 {01,37 U2,2}7 {01,37 U2,4}7

L {U1,4, ’112,0}7 {U1,4, ’U2,1}7 {U1,4, ’112,2}7 {U1,4, ’U2,3} )
( {01,0, 01,2}7 {01,2, 01,4}7 {01,4, 01,1}7 {01,1, 01,3}7 {01,3, 01,0}7

Eg(,a)z {U2,0702,1}7{U2,1702,2}7{U2,2702,3}7{U2,3702,4}7{U2,4702,0}7 )

. {vi0,v21}, {vi1,v22}, {vi2, vas}, {vis, vaa}, {v1a, v20}
B = {{vig,vagei}s {vi g, vagae} [ 7 =0,1,2,3, 4},
B v g1} |5 =0,1,2,3,4

5 {{Ul,]aUQ,JJrl}a {v15,v2,5-1} ’ J P }’
ES” = {{viova 501} {vngs va 1} {vn o vags0} | 5= 0,1,2,3,4},
By = {{v1,v2 01} {1, vageat {vig, va oo} | 1 =0,1,2,3,4},

where in the last four sets the second indices of edges are considered by modulo 5. We

then get thirteen Kahler graphs
Gi= (V,EUE") (see Figs. 68, 80), Gy = (V,EUE{") (see Figs. 69, 81),
Gy = (V,EUEY) (see Figs. 71, 83), G,=(V,EUE") (see Fig. 72),

Gs = (V,EUE) (sce Figs. 73,85), Gg=(V,EUE") (see Fig. 74),



68 II. K&hler graphs

Gr = (V,EUEY) (see Fig. 75), Gs = (V,EU B\ U E") (see Figs. 76, 84),
Gy = (V,EU B U E™) (see Fig. 77), Gio = (V,EUE” UE") (see Fig. 78),
Gy = (V,EUE" UE™) (see Fig. 79),

and the complement-filled Kahler graph

G = (V, E® (Efa) u Eéa))) (see Figs. 70, 82).

Fic. 74. Gg Fi1c.75. G5 Fi1G. 76. Gy
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Fi1c.80. G; Fi1c.81. Gy Fic. 82 F1c. 83. G

These graphs are regular and have

A =3 (j=1,...,12)
a (@) _ 4(a) _ (@) _ 4(a) _ 4(a) _
ds) =d) =de) =2, dY) =d¥) =d%) =3,
dy) =d) =d%) =4, dY) =d¥) =5 d% =6.
In particular, if these Kahler graphs have different auxiliary degrees they are not

isomorphic to each other.
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By Figs, 68, 69, 70, we find that G, Gy hence G5 are vertex-transitive by the
isomorphisms f;, go f; (j = 1,2,3,4) and g. But G35,G5 and Gy are not vertex-
transitive because g is not an isomorphism between Kahler graphs. As a matter of fact,
V10 ~a V21 but g(vig) = veg g v13 = g(va1). Similarly, G4, G7,Gg and Gy; are not
vertex-transitive because vy g ~, Va2 but g(vi) = va % v11 = g(v22). Also Gg and
Gho are not vertex-transitive because vy g ~, v24 but g(vio) = v20 e V12 = g(v24).
In, particular we find that G, is not isomorphic to G4, G5, and G4 is not to Gg, Gy.
Since g is not an isomorphism between G4 and G5, we find they are not isomorphic.
Similarly Gg and G7 are not isomorphic to each other. By the same reason we see non
two of G, Gy are not isomorphic to each other, and nore are Gyo, G1; are.

We note that if we set

B = {{v1j,v2;-0} | 1 =0,1,2,3,4},
B = {{vij,va 12}, {v1,v25-2} | 1 =0,1,2,3,4},

Eéa) = {{Ul,jav2,j+l}7 {Ul,j>U2,j—1}, {Ul,ja'UQ,j—2} ’ J=0, 1,2,374}7
we have five Kéhler graphs

Gy = (V,EUE" UE™) (see Figs. 86),

GL = (V,EU EY), Gy = (V,EUE® UE™) (see Fig. 87),

G, = (V,EU EY), ‘o= (V,EUE" UE™) (see Fig. 88),
but they are isomorphic to Gs, G5, Gs, G7, G19, respectively.

We call Gy a Kdhler Petersen graph. We call Gs (or G%) Petersen Kdhler graphs of
first kind, G, Gg Petersen Kahler graphs of second kind, and G, G11 Petersen Kahler
graphs of third kind.

Of course, we have more Kahler graphs obtained from a Petersen graph which
are not “symmetric” (in particular which are not regular) by modifying our ways of
constructing auxiliary edges. For example, we can set

{U1,07 Ul,z}, {U1,27 U1,4}, {01,47 Ul,l}, {01,17 U1,3}, {01,37 Ul,o},

Eé‘f) = {U1,0, U2,1}7 {U1,1, U2,2}7 {U1,2, U2,3}7 {U1,3, U2,4}7 {U1,4, U2,0}7 )

{Ul,o, 712,2}7 {Ul,l, 712,3}7 {U1,2, 712,4}7 {U1,3, 712,0}7 {U1,4, U2,1}
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{02,0, U2,1}> {02,1, U2,2}> {02,2, U2,3}> {02,3, U2,4}> {02,4, U2,0}>
Eé;) = {Ul,Ou U2,1}7 {Ul,lu U2,2}7 {U1,27 U2,3}7 {U1,3, U2,4}7 {U1,4, U2,0}7

{Ul,oa 02,2}7 {01,17 02,3}7 {v1,27 02,4}7 {01,37 02,0}7 {01,47 02,1}

A Heawood graph is (V, E) is a graph of 14 vertices which is given as follows: We

take a set V = {vg, vy, - ,v13} of vertices, and set
{vi,vip1} (0 <0 < 13),

b {{Uo,%}, {va,v7}, {va, vo}, {vs, vi1}, {vs, v13}, {vi0, 1}, {?)12,03}}7
where we consider the index of vertices by modulo 14 (see Fig. 89). We define f; :
V — V by for(v;) = viyor and for_1(v;) = vop_1-_;. That is, for, is a rotation and for_1
is a composition of a rotation and reversing ¢ : V' — V given by ¢(v;) = v_;. Then we

see they are isomorphisms as an ordinary graph.

EXAMPLE 2.25. Let (V, E) be a Heawood graph. We set E®) = E. If we define
the sets of auxiliary edges by
B = {{vi,vipa} |0<i <13}, B = {{v, v} |0 <i <13},
B = {{vivipa} |0<i <13}, B = {{v, v} |0 <i <13},
{Uiavi+7} (0 <1< 6)7
E(‘l) —
5 )

{vi,v6}, {vs, vs}, {vs,vi0}, {vr, via}, {ve,vo}, {vi1,va}, {v13,va}
{vi, vier} (0< 0 <6),
- 3
{v1,v4}, {vs, v6}, {vs, vs}, {vr,vio}, {ve,via}, {vi1,v0}, {v13,v2}
we obtain 6 vertex-transitive Kihler graphs Hy, ..., Hg of auxiliary degree d(@ = 2
(see Figs. 90, 91, 92, 93, 94, 95). As a matter of fact, it is clear by definitions of these
Kahler graphs that for (k= 1,2,3,4,5,6) are isomorphisms of K&hler graphs. By the
map ¢ we have t(v;) = v_; and (v;4,) = v_;_4, Hence by putting ¢/ = —i — a we see

—i =1+ a. Thus we find that fy,_; are also isomorphisms.
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Fia. 89. original
Heawood graph

F1G.92. Hj F1G.93. Hy

EXAMPLE 2.26. Let (V, E) be a Heawood graph. We set E® = E. If we define

the sets of auxiliary edges by

{Ui7vi+2} (O <1< 13)7
E(a) —
21 )

{Ulavﬁ}u {Usavs}, {U5,U10}7 {U7,U12}, {U97v0}7 {U117U2}, {U13,U4}
{vi, vigs} (0 <d < 13),
E(a) —
22

{Ulﬂiﬁ}a {U37U8}7 {U5,U10}7 {U7,U12}, {U97U0}, {0117?12}7 {U13,U4}

{vi,viya} (0 <i < 13),
EY = { } :

{U1,U6}7 {U37U8}7 {115,1110}, {0777112}7 {U97U0}, {U11,U2}, {013704}

@ {{'UiaviJrﬁ} ’ 0<:< 13}7
24 —
{Ul,va}, {Ug,vs}, {Usavlo}, {U7,U12}, {Ug,vo}, {011702}, {U13>U4}

ESY = {{vi, 042} (0<i < 13), {v, 007} (0<i<6)}
Eég) = {{v;,vizs} (0<0 <13), {v;,via7} (00 <6)},
B = {{v, via} (0 < < 13), {ui,vi47} (0 < < 6)},
B = {{vnvirs} (0< 0 <13), {vi, 047} (0 <7 < 6)),
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{vi,viga} (0 <i < 13),
B3 =
{U17v4}7 {U371)6}7 {U57U8}7 {U77U10}7 {'0971]12}7 {'Ull,'U(]}, {U137U2}

@ { }
{Uivvi+4} (0 <1< 13)7
E?(,;) = )
{Ulv U4}7 {U37 UG}? {U57 US}? {U77 UIO}J {U97 U12}7 {Ulla UO}; {U137 UQ}
(@ {{vi, vise} ‘ 0 <i<13},
Eay' = )
{U17 U4}7 {U37 U6}7 {U57 /US}v {U77 UlO}a {Ug, 012}7 {Ulh U0}7 {U137 1}2}
{vi,vitr} (0 <@ <6),
Eg(,z) = {U17U6}7 {U37U8}7 {U57U10}, {07, 1112}7 {U97 Uo}, {UH»UQ}, {013, U4}7 )
{Uh U4}7 {U37 U6}7 {U57 U8}7 {U77 UlO}a {U97 U12}7 {Ulh UO}? {1)137 U2}
we get 12 kinds of Kahler graphs Hoi, . .., Hog, Hs1, . . ., Hsq of auxiliary degree d® = 3
(see Figs. 96, ..., 107). In view of their construction we find they are vertex-transitive
by fj (7 =1,...,13). We shall call Hy, = (V, E'U Eé;)) a Heawood Kdhler graph, and
Hy = (V,EUES), Hyy = (V, EUEY), Hy = (V, EU E{¥) Kihler Heawood graphs.

Fi1c. 96. H21 Fic. 97. HQQ F1aG. 98. HQg F1c. 99. H24

Fic. 100. H25 Fic. 101. H26 Fic. 102. H27 Fic. 103. H28
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Fi1c.104. Hs Fi1Gc. 105. Hss F1Gc. 106. Hss Fi1c. 107. Hsy

ExampLE 2.27. Let (V, E) be a Heawood graph. We take a Kéhler graph given
by Fig. 90. If we add it auxiliary edges in the following way

Eﬁ) = {{Uz‘»UHQ}; {vi, vigs} ‘ 0<:< 13},
Ezig) = {{%Uwz}y {vi, viga} ‘ 0<:< 13},
Eig) = {{Ui7vi+2}7 {vi, vize} ‘ 0<:< 13},
@ { {visvise} (0<i < 13),  {ws,vi47} (0 <0 <6), }
E4Z - ’
{U17U6}7 {U371}8}7 {U57U10}7 {/077/012}7 {U97UO}7 {U115v2}7 {/U137U4}
(@) { {vi, vige} (0 <0 < 13),  {wi,vigr} (0 <0 <6),
E4g =

)
{U17U4}7 {U37U6}7 {U57U8}7 {U77U10}7 {0977}12}7 {U117U0}7 {,U137,02}

{Uivvi+2} (0 <1< 13)7
Ei‘é) = ¢ {v1,v6}, {vs,vs}, {vs,v10}, {v7,v12}, {vo,v0}, {v11,v2}, {vis, v}, )
{U17U4}7 {U37U6}7 {U57U8}7 {077U10}7 {U97v12}7 {U117U0}7 {1}1371]2}

then we get 6 kinds of Ké&hler graphs whose auxiliary degree is 4 (see Figs. 108, ...,
113).

Fic. 108. Hy F1G.109. Hy Fia. 110. Hy
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D

Fic. 111. Hy F1Gc. 112. Hyy F1G. 113. Hyg

Similarly, by taking a Kahler graph given by Fig. 91 and adding auxiliary edges as

EY) = {{vi,viss}, {vi,vipa} | 0 < i <13},
B = {{vi,vips}, {vivige} | 0 < i <13},

© { {vi,vigs} (0< i <13), {vs,v47} (0<4 <6), }
Egy = ’

{Ulavt‘)}a {U?an}a {115,7)10}, {717,1112}, {09700}7 {Un,vz}, {U13,’U4}

or by taking a Kahler graph given by Fig. 92 and adding auxiliary edges as

ESY) = {{vi, vira}, {vi v} | 0 <0 <13},

{ {vi,viga} (0<i < 13),  {wi, 047} (0 <0 <6), }
{UhUG}) {U37U8}7 {U57U10}7 {U7aU12}7 {U97/UO}> {U117U2}7 {v137/04}
© { {vi,via} (00 <13), {vp,v47} (0S4 <6), }

E5g = )
{Ulav4}7 {Ug,’l)(g}, {U57UB}7 {U77U10}7 {U97U12}7 {1)1171}0}7 {U137U2}

{viavi+4} (0 <1< 13)7

i -

Eg(,?) = {U17U6}7 {U37U8}7 {’057?]10}, {07,012}; {U97U0}7 {Un,w}, {013,?14}7 )

{Uly U4}7 {U37 U6}7 {U5, US}v {U77 UlO}a {U97 U12}7 {Ulh U0}7 {0137 UQ}
or by taking a Kahler graph given by Fig. 93 and adding auxiliary edges as

i -

{ {vi,viz6} (0 <i <13), {v;,vi47} (0 <1 <6), }

{711,?16}7 {7137718}, {71577110}7 {U7,U12}> {Ug,vo}, {7111,1)2}7 {U13,U4}
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@ { {vi,vize} (0 <@ <13), {v;,vi47} (0 <1 <6), }
E5g = )

{U17U4}7 {U?)JUG}? {1}571}8}7 {U77U10}7 {U97U12}7 {Ullav()}u {U137v2}
{vi, vige} (0 <d < 13),
Eég) = {UhUG}a {U37U8}7 {05,1)10}, {077012}7 {U97U0}7 {Un,vz}, {0137714}; )

{Ul) U4}7 {U3) UG}) {U57 US}) {U77 UlO}a {097 'U12}7 {Ulla UO}, {U137 UQ}
we get 10 other kinds of Kéhler graphs whose auxiliary degree is 4. By definition, it is

clear that all these Kahler graphs are vertex-transitive. We have many other regular

Kahler graphs obtained by a Heawood graph.

Fi1c. 114. complement-filled Heawood graph

EXAMPLE 2.28. We set Q) = {(al,ag, cee, Q) ’ a; € {0, 1}} for an integer k > 3.
We define that two vertices v = (ay,...,ax), w = (by,...,b;) € Qy are adjacent to
each other in the principal graph if and only if there is iy (1 < ip < k) satisfying that
a;, # by, and a; = b; for i # ip, and define that they are adjacent to each other in
the auxiliary graph if and only if there are iy, is (1 < i1 < ip < k) satisfying that
ai, # by, a;, # by, and a; = b; for i # iy, iy, Since the graph (Qg, E®) is called a
k-cube, we shall call the graph G = (Qy, E® U E@) a Kdhler k-cube. By definition
we have d¥) = k and d%) = k(k — 1)/2.

ExaMPLE 2.29. For the sake of explanation, we here consider a Kahler 3-cube

G = (Qs, E® U E@). Six vertices
0 =(0,0,0), A=(1,0,0), B=(1,1,0), C=(0,1,0),

D =(0,0,1), E=(1,0,1), F = (1,1,1), G = (0,1,1)
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and principal edges
{07 A}7 {A7 B}7 {B7 C}7 {C7 0}7 {D7 E}? {E7 F}7 {F7 G}? {G7 D}?
{0,D}, {A,E}, {B,F}, {C,G}
form a cube in R3. Auxiliary edges are diagonal lines on six faces:
{O,B}, {A,C}, {O,E}, {A,D}, {A,F}, {B,E},
{B7 G}7 {C7 F}’ {C? D}? {07 G}7 {D7 F}’ {E7 G}
Thus (3 have 12 principal edges and 12 auxiliary edges, and dg’) = dglg = 3. We note
that the auxiliary graph is not connected.

We take a rotation f and reversing upper and lower g which are given as
f:O—A  A—-B, B—~C, C—~0O;D—E E—F F—~G, G— D,

g:0—-D, A»E B—»F, C—~G, D—~0O,E—~A F—B, G— C.
Then they are isomorphisms. By using f, f2, 3, 9,90 f,go f%,go 2 we see G is

vertex-transitive.

1011 V0
0,11 051,51 « — 7N /!
/ /
N odi
\Y
\ 7%} N /§
‘(/ N N
A rﬁ/,d,s \
/
1.0,0 /N R0
0,10 01,0% — T\7/
[
0,0,0 0,0,0

F1c.115. 3-cube FIG.116. auxiliary graph  Fi1a. 117. Kahler 3-cube

PROPOSITION 2.4. A Kdhler k-cube 1s vertex-transitive.

Proor. We prove the assertion by induction with respect to k. When k£ = 3,
we see in the above that a Kahler 3-cube is vertex-transitive. We suppose a Kahler
k-cube is vertex-transitive. We study a Kéhler (k + 1)-cube. Let f : Qp — Qk be an

isomorphism of a Kahler 3-cube. We define f P Qpr1 — Qi1 as

f((Gb e 7ak7ak+1)) = (f((@b e 7ak>)aak+1)-
In oder to show that f is an isomorphism, we only need to check edges of the form (a,b)

with @ = (ay,...,ax,0) and b = (by,..., b, 1). When a~,b, we have (ay,...,a;) =
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(by,...,br). Hence we see f(a) ~, f(b). When a~,b, we have (ai,...,az) ~,
(b1, ...,by) in a Kdhler k-cube. Hence f((a1,...,ax)) ~p f((b1,...,by)) in this Kéhler
k-cube, in particular their difference is only one coordinate. Thus we see f(a) ~, f(b).

We define g : Qg1 — Qrq1 by
g((al,...,ak,O)) = (al,...,ak,l) and g((al,...,ak,l)) = (al,...,ak,()).

This is also an isomorphism. Thus considering f, f o ¢ for all isomorphisms f of a

Kahler k-cube, we find that a Kéhler (k + 1)-cube is vertex-transitive. O



4. Complete Kahler graphs

We say a Kahler graph to be a complete Kahler graph if it is a complete graph as
an ordinary graph and is regular as a Kéhler graph. Thus each pair of vertices of a
complete Kéhler graph is joined by either a principal edge or an auxiliary edge.

One of the most typical way to construct complete Kahler graphs is to take
complement-filled Kéhler graphs (see §2.1). We take an ordinary regular finite graph
G = (V,E) of degree 2 < dg < ng — 3, and consider its complement-filled Kéhler
graph G = (V, E U E°). Since the complement graph G¢ = (V, E¢) is regular of de-
gree dge = ng — dg — 1, this Kahler graph is a complete Kahler graph whose principal

degree is dg and whose auxiliary degree is ng — dg — 1.

‘ . o
Fic.118. G Fic. 119. G° Fic. 120. G¥

We here give a condition that we can construct a complete Kahler graph.

PROPOSITION 2.5. Let N,d®), d be positive integers satisfying N > 5, d® >
2, d@ > 2 and d® + dW = N — 1. Then there exists a vertex-transitive complete
Kahler graph G satisfying ng = N and d(Gp) =dW), d(c?) = d@ if and only if one of the

following conditions holds:

i) N is odd and both d®  d*) are even,

ii) N is even, and one of dP),d'® is even and the other is odd.

PROOF. Since d®) +d@ = N — 1, when N is even then N — 1 is old, hence one of
d® @ is even and the other is odd. Thus we find by Theorem 2.1 that the condition

on N,d®, d® is necessary. On the other hand, we can construct a vertex-transitive

79
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Kahler graph G satistying ng = N and d(éf) = dP), d(Ga) = d@ by Theorem 2.1, Since
the condition d® +d@ = N — 1 shows that G is complete, we get the conclusion. [

COROLLARY 2.1. Let N > 5 be a positive integer. There exists a vertex-transitive
complete Kdhler graph G satisfying ng = N and d(g;) = d(c?) if and only if N =

1 (mod 4).

Proor. If we have a complete Kahler graph whose cardinality of the set of vertices
is N and whose principal and auxiliary degrees are d, we have N — 1 = 2d. Therefore
N is odd. By Proposition 2.5 we find d is even, hence find that N — 1 is divided by
4. On the other hand, if N satisfies the condition, Proposition 2.5 shows that we have

such a complete Kéahler graph. O

The above results show that we have many vertex-transitive complete Kahler
graphs. We here study whether they are isomorphic. Though complete ordinary graphs
of given cardinality of the sets of vertices are isomorphic to each other (Proposition
1.3), as we have two kinds of edges for Kéhler graphs, even if we fix the cardinality of
the set of vertices there exist non-isomorphic Kahler graphs.

When N = 5, as we have d? = d = 2. we find that the principal and the
auxiliary graphs are circuits. Hence we find that complete Kahler graphs of ng = 5

are isomorphic to each other by Proposition 1.5.

ExaMPLE 2.30. Figs. 121, 122 show complete vertex-transitive Kahler graphs with
ng =9, dg) = d(cff) = 4 which are not isomorphic and whose principal and whose
auxiliary graphs are connected. For the set of vertices V' = {vg,v1,v9,...,08}, we
define their sets of principal edges by

B = {{vi,vi1}, {vi,viga} | 0 <i <8},

EY = {{vi,vira}, {vi,vis} | 0 <i <8}
By definition, two graphs Gy = (V, E?) and Gy = (V, EYY)) are vertex-transitive by
rotations fi : V' — V defined by v; — v,y for k = 1,...,8. Hence their complement-

filled Kihler graphs GI, GE are. We can see that they are not isomorphic by observing
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3-step closed principal paths. In the Kahler graph in Fig. 121 we have three 3-step
closed principal paths emanating from each vertex. On the other hand, in the Kahler

graph in Fig. 122 we have only one 3-step closed principal path emanating from each

vertex.

FiG. 121. ng =9,d? =d@ =4  Fic.122. ng =9,d? = d¥ =4

ExAMPLE 2.31. Figs. 123, and 124 show complete vertex-transitive Kahler graphs

with ng = 6, dg) =2, dgz ) — 3 which are not isomorphic. The former has a connected
principal graph but the latter does not. Their auxiliary graphs, which are principal

graphs of their dual Kahler graphs, are connected.

Fia. 123. ng = 6,d? =2,d9 =3  Fic. 124. ng = 6,d? =2,d =3
(principally connected) (principally inconnected)

Since a complete Kahler graph is a complement-filled Kahler graph of its principal
graph, we obtain the following.
PROPOSITION 2.6. (1) Two complete Kdhler graphs are isomorphic to each

other if and only if their principal graphs are congruent to each other.

(2) Two complete Kdhler graphs are isomorphic to each other if and only if their

auxiliary graphs are congruent to each other.
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We now classify complete Kahler graphs whose principal graphs are regular graphs
of degree 2 by using Propositions 1.5 and 2.6. We denote by p : N — N the partition
function. This function is defined as follows. For a positive integer n, we consider its
representation as a sum of positive integers. Here, we are allowed to use same integers
in the representation, but the order of summing is irrelevant. The (integer) partition

p(n) is the number of such representations of n. For example, we have

p(l) =1,

p(2) =2, because 2 =1+1,

p(3) =3, because 3=24+1=1+1+1,

p(4) =5, because 4=34+1=242=2414+1=1+14+1+1,
p(b) =7, because 5=4+1=3+2=3+1+1=2+2+1

=24+1+14+1=14+1+14+1+1,

p(6) =11, because 6=5+1=44+2=3+3
=4+1+1=3+2+1=2+2+2
—3414+14+1=2+2+1+1
— 2l b1l bl =141 4+1 414141,

p(7) =15, because 7=6+1=5+2=4+3
=5+1+1=44+24+1=34+34+1=3+2+2
=44+14+1+1=34+24+14+1=2+2+2+1
=34+1+14+1+1=2+24+1+1+1
=24+1+14+1+14+1=14+1+14+1+1+1+1.

For more detail, see §19 of [6].

PROPOSITION 2.7. For each positive number n (> 5) the number of isomorphic
classes of complete Kahler graphs whose sets of vertices have the cardinality n and

whose auziliary degrees are 2 is p(n) —p(n —1) —p(n —2) + p(n — 3).
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PROOF. Let G = (V, E®) U E@) be a complete finite Kdhler graph with ng = n
and d(Ga) = 2. If we consider its auxiliary graph, each of its component is a circuit,
which is a circle as a 1-dimensional CW-complex. Since G is obtained by considering
the complement graph of (V, E(®), we are enough to consider the number of congruence
classes of ordinary regular graphs of degree 2 and of ng = n.

By Proposition 1.5, two circuit graphs are isomorphic to each other if and only if
they have the same cardinality of their sets of vertices. As our graph does not have
multiple edges and loops, each of these circuits has at least three vertices. Thus the
number of congruence classes coincides with the number of partition of n using only
integers greater than 2.

Let 9(n) denote the set of all partitions of n. That is, R(3) = {(3), (2,1), (1,1,1)},
for example. If v = (ay,a9,...,a5_1,1) € R(n), then we have v/ = (ay,...,a5_1) €
M(n —1). On the other hand, for each v € :(n — 1) we can construct ¢ by adding 1 at
last. Thus we find that {(ai,...,ax_1,1) € R(n)} corresponds to R(n — 1) bijectively.
If s = (by,...,bi-1,2) € R(n), then we have §' = (by,...,bp—1) € R(n — 2). On the
other hand, if 8’ = (by,...,bp—1) € R(n — 2) satisfies by_; > 2, we can construct s by
adding 2 at last. Since the set {(b1,...,be—2,1) € R(n —2)} corresponds to R(n — 3)
bijectively, We see the cardinality of the set {(as,...,a;) € R(n) | a; > 3} coincides
with p(n) — p(n — 1) — {p(n — 2) — p(n — 3)}. Hence we get the conclusion. O

By considering dual Kahler graphs we have
COROLLARY 2.2. For each positive n (> 5) the number of isomorphic classes of

complete Kdhler graphs whose sets of vertices have the cardinality n and whose principal

degree is 2 is p(n) —p(n — 1) —p(n — 2) + p(n — 3).
Also, if we add a condition of connectivity we get a congruence results.

COROLLARY 2.3. (1) Two finite complete Kdihler graphs whose auziliary graphs
are connected and are of degree 2 are isomorphic to each other if and only if

cardinalities of their sets of vertices coincide.
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(2) Two finite complete Kdhler graphs whose principal graphs are connected and
are of degree 2 are isomorphic to each other if and only if cardinalities of their

sets of vertices coincide.

PROPOSITION 2.8. For a positive integer n (> 5), the number of isomorphic classes
of complete vertez-transitive Kdahler graphs whose sets of vertices have the cardinality
n and whose auxiliary degree is 2 coincides with the number of divisors of n which are

greater than 2.

ProOOF. We are enough to consider the auxiliary graph. If we have such a vertex-
transitive Kahler graph, as a component of the auxiliary graph is transferred to a
component, we see every component have the same cardinality of the set of vertices.
Thus we get a divisor of n which is greater than 2 as this cardinality.

We construct a Kéhler graph corresponding to a given divisor of n. Suppose n =
nine with some positive integers nq, no satisfying ny > 3. We prepare ny circuit graphs
having ny vertices. By making them an auxiliary graph we have a complete Kahler
graph (V, E®) U E@) satisfying 1V = n and d(Ga) = 2. Since all the components
of (V, E() are circuits having the same numbers of vertices, for arbitrary distinct
v,v" € V we have an isomorphism of (V, E®) which maps v to v" and maps the
component containing v to the component containing v’. It is clear that this induces
an isomorphism of (V, E® U E®). Thus, we find that this Kéhler graph is vertex-

transitive, and get the conclusion. 0

COROLLARY 2.4. Let n (> 5) be a positive prime integer. Two complete vertez-
transitive Kdhler graphs whose sets of vertices have the cardinality n and whose auz-

iliary degrees are 2 are isomorphic to each other.



CHAPTER 3

Discrete models of trajectories for magnetic fields

1. Trajectories for magnetic fields

A static magnetic field on R? is a vector-valued function B = (By, By, Bs) : R® —
R? satisfying Gauss formula div(B) = g—i + % + g—fg’ = (0. This gives the Lorentz
force v x B = {2pv on a unit charged particle when its velocity vector is v. Here {2 is

a skew-symmetric matrix given by

0 Bs —DBs
—B; 0 By
By, —-B; 0

If we define a 2-form B on R? by B(u,v) = (u, {2zv) with the standard inner product

(, ) on R?, then this form is represented as
B = Bldl'Q VAN d.’L’g + Bgd$3 VAN dl’l + Bgdl’l N dJTQ.

Since we have

0B, 0By 0Bs
dB = d d d
(axl + 85(32 + 8:703) T A ) A xrs3,

we find that the Gauss formula div(B) = 0 is equivalent to d B = 0, which means that

B is a closed 2-form.

Under this consideration, we call a closed 2-form B on a Riemannian manifold M a
magnetic field. For a magnetic field B on M, we define a bundle map 25 : TM — TM
on the tangent bundle TM of M by B(u,v) = (u, 2g(v)) for every u,v € T, M at an
arbitrary point x € M with Riemannian metric (, ) on M. We then find that (2p is
skew symmetric, that is (u, 25(v)) = —(2p(u),v).

When (25 is parallel, that is V{2g = 0, we say that B is an uniform magnetic field.
Here, V denotes the Riemannian connection on M. For example, we take a Kahler

manifold M with complex structure J. Then its Kéhler form Bj; which is defined
85
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by Bj(u,v) = (u,Jv) is a closed 2-form and (2, = J is parallel. Therefore every
constant multiple B, = kB, (k € R) is an uniform magnetic field. This magnetic field
is called a Kéahler magnetic field (for more detail see [1]).

It is needless to say that we have many magnetic fields which are not uniform. Let
M be a real hypersurface of a Kéahler manifold M. That is, when M is of complex
dimension n then M is a real submanifold of real dimension 2n — 1. For a unit normal
vector field Ny of M in ]TJ, we define a vector field £ on M by & = —JNy, and
define a (1,1)-tensor ¢ : TM — TM by ¢(v) = Jv — (v,€)Ny;. They are called
the characteristic vector field and the characteristic tensor of M. If we define Fy by
Fy(u,v) = (u,¢(v)), then it is a closed 2-form and 25, = ¢ (see [4]). Generally, it
is not uniform. We call a constant multiple F,, = xFy (x € R) a Sasakian magnetic
field.

Under the influence of a static magnetic field, the equation of motions of a unit

charged particle of mass m is given as md—: = v x B. As we have EHUHQ = 2(v, d_1t}> —
2(v, 2gv) = 0, this particle has constant speed. We shall call a smooth curve on M
dry

satisfying the differential equation V.7 = Qp(y) a trajectory for B. Here, 7/ = e

and V., denotes the covariant differentiation along v with respect to the Riemannian

connection V on M. Since we have
YUY =20 = (Vs ) + (V') = (28(3),9) + (3, 28(9),
and Qp is skew symmetric, we find 7/(||7/||*) = 0. This shows that v has constant

speed. We usually call treat trajectories of unit speed.

In the field of geometry, ordinary graphs are considered as discretizations of Rie-
mannian manifolds and paths are considered as correspondences of geodesics. In his
paper [2] Adachi introduced Kéhler graphs as discritizations of Riemannian manifolds
admitting uniform magnetic fields. In the next section, following to [2] we introduce
correspondences of trajectories on Kahler graphs and show why Kéahler graphs can be

considered as discritizations of Riemannian manifolds with magnetic fields.



2. Bicolored path

Let G = (V, E® U E@) be a Kihler graph. For a pair (p,q) of relatively prime
positive integers, we say a (p+ ¢)-step path v = (vo, V1, -+ ,Upiq) €V X oo - x V to
be a (p, q)-primitive bicolored path if it satisfies the following conditions;

i) vig # v for 1 <i<p+qg—1,

i) vi_g ~pv; for 1 <i <p,

i) v~ v forp+1<i<p+gq.
The first condition shows that this path does not have backtracking, the second shows
that the first p-step path is a path in the principal graph and the third shows that the
last g-step path is a path in the auxiliary graph. When an m(p + ¢)-step path ~ is of
the form v = 1 - y9 -+ - v, with (p + ¢)-primitive bicolored paths v; (i = 1,...,m), it
is called a (p, q)-bicolored path.

EXAMPLE 3.1. On a Heawood Kihler graph of d?) = 3,d® = 2 given as Fig. 1,
the paths v1 = (0,1,2,5), 72 = (5,6,7,10) are (2, 1)-primitive bicolored paths (see
Fig. 2), and the paths y3 = (0,1,4),v4 = (4,5,8),75 = (8,9,12),v = (12,13,2),9; =
(2,3,6),78 = (6,7,10) are (1, 1)-primitive bicolored path (see Fig. 3). Hence v3-v4, 74
Vs, Y5 ' Yes Yo+ V777 * Vs are 4-step (1, 1)-bicolored paths, and s -1+ Y5 - Y6 - V7 - s 8
a 12-step (1, 1)-bicolred path.

0
1 13 1 13
. " -
2 o2 2o £~ T T = X2
//
3e : o1 3[{ : o1
| <\ |
L 810 48 \ 210
Ve \ P )
7
5\\‘ - K "y /\/‘//9
6 % g\( 8
7 7
Fig. 1 Fig. 2 Fic. 3

Since we pose a condition on Kahler graphs that their principal and auxiliary

graphs do not have hairs, we have a (p, ¢)-bicolored path passing through an arbitrary
87
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vertex for each pair (p, q). Therefore, if we only study (1, 1)-paths we can weaken the
condition to the condition that there is at least one principal edge and one auxiliary
edge emanating from each vertex, that is, to the condition that there are no isolated
vertices in both principal and auxiliary graphs.

Ordinary graphs are usually regarded as discrete models of Riemannian manifolds
and paths on graphs are considered as correspondences of geodesics. We therefore
regard paths on the principal graph of a Kahler graph as geodesics which are motions of
charged particles without the influence of magnetic fields. Considering Kahler graphs
as discrete models of complex manifolds, we regard (p, q)-bicolored paths as trajectories
for a magnetic field of strength ¢/p on these graphs. This means that a p-step path on
the principal graph of a Kahler graph is bended under the action of a magnetic field
and its terminus turns to the terminus of a (p, ¢)-primitive bicolored path whose first
p-step coincides with the given path.

e o o o e

*——¢—9o—o—o
¢ — S — 9 —0—0

¢e—o —¢ —o —9o—o

¢ — & ¢ o &

F1G. 5. bicolored path on a

F1G. 4. path on principal edge Kiéhler graph

In order to consider correspondences of trajectories for a magnetic field of strength
q/p, we define (p, ¢)-primitive bicolored paths for a pair (p, q) of relatively prime posi-
tive integers. But for the sake of interpretation it is easier to extend this notion to all
pairs of positive integers. So, if a (p + ¢q)-step path satisfies the conditions for (p, q)-
primitive bicolored paths, we sometimes call it a (p, ¢)-bicolored path even if p, ¢ have
common divisor. Moreover, we sometimes call a p-step path in the principal graph a
(p, 0)-primitive bicolored path, and call a ¢-step path in the auxiliary graph a (0, q)-
primitive bicolored path. We note that we only use the terminology (p, q)-bicolored

paths only for a pair of relatively prime positive integers.
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As graphs do not have 2-dimensional objects, we can not show the direction of
the action of the magnetic field. Therefore, if there are two and more (p, ¢)-primitive
bicolored paths whose first p-step paths coincide with the given p-step path, we can not
determine the terminus of trajectories. In order to get rid of bifurcations of motions
of charged particles, we shall consider (p, q)-bicolored paths probabilistically. For a
(p, q)-primitive bicolored path v = (vg, -+ ,Vpiq), We define its probabilistic weight

w(y) by
1

w(v) = — e :
A& (0p) T ) (ve) = 1}
For a (p,q)-bicolored path v = (v1,72 -+ ,7,) with (p,¢)-primitive bicolored paths

v (i =1,...,m), we difine its probabilistic weight by w(vy) = Hw(%).
i=1

EXAMPLE 3.2. Let G = (V, E® U E(@) be a Kihler graph. A part of it is shown
in Fig. 6. We take a (3, 4)-bicolored path v = (vg, v1, v2, V3, V4, Us, Vg, v7) in this graph.

We find that auxiliary degrees at vertices vs, vy, v5,v5 € V are
A (vs) =3, d(vy) =6, d(vs) = 4, d(vs) = 2.

Thus we have the probabilistic weight of 7 is
1 1

4% (v5) {d) (0a) — DA (vs) — H{dD (wg) — 1} 45

~ /
\X/ Us
/ \ / /R\
us/\ /////Q/Lts .
¢ N7 o U
N =~ \ <\
u /\/ \ \b
2 P

F1G. 6. a part of a Kéhler graph G

For a p-step path o in the principal graph of a Kéhler graph G, we denote by B, (o)
the set of all (p, ¢)-primitive bicolored paths whose first p-step coincide with o. That
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is, if o = (v, ..., v,) then each (p, ¢)-primitive bicolored path v € B,(o) is of the form

v =(vo, .., Up, W1, ..., W)

LEMMA 3.1. For each p-step path o in the principal graph of a Kahler graph G, we

have
Z w(y) =1.
¥EBq(o)
PROOF. Let 7 = (vo,...,Up, w1, ..., w;) with j > 1 be a (p, j)-primitive bicolored

path. Then v = 7+ (w;,w) is a (p, j + 1)-primitive bicolored path if and only if w ~ w;,
and w # w;_;. Here, we consider w;_; = v, when j = 1. Therefore we have d(Ga)(wj) -1

(p, j + 1)-primitive bicolored paths whose first p + j coincide with 7. We hence have

w(T) = . ! = Z w(7 - (wy,w)).

de (vp) TT_ {d&) (wy) — 1}

W w F# W1,
w ~ wj in G

As we have d(Ga) (vp) (p,1)-primitive bicolored paths whose first p coincide with o, we

get the conclusion. O

REMARK 3.1. For v € P,(0), its probabilistic weight does not coincides with
1/4(Py(0)), in general. If the auxiliary graph of G is regular, then they coincide with

each other.



3. Derived graph of Kahler graphs

In this section we explain how to construct new graphs from a Kéhler graph by

using paths without backtracking.

3.1. Derived graph. We shall start by using ordinary graphs. Let G = (V, E)
be an ordinary (non-oriented) graph. For a positive integer n, we denote by P, (G)
the set of all n-step paths without backtracking on V. We shall call the oriented
graph G, = (V, ‘BH(G)) the n-step derived graph of G. This means that if we have
v € PB,.(G) with o(y) = v and ¢(y) = w then we regard it as an oriented edge from v
to w on G|y Therefore, the oriented graph G,) may have loops and multiple edges.

As G is non-oriented, for a path v € 9,(G) we can consider its reversed path
vt € PB,(G). For two paths 71,72 € Pn(G), we set 71 & 7o if either 73 = 79 or
71 = 75 " holds. Then it is clear that = is an equivalence relation on %,,(G). We denote
by P, (G)/ ~ the set of all equivalence classes of n-step paths without backtracking
on (. We shall call the non-oriented graph é[n] = (V,B.(G)/ =) the n-step derived
non-oriented graph of G. This means that if we have v € ,,(G) with o(y) = v and
t(y) = w then we regard its equivalence class [y] as a non-oriented edge between v and
w on é[n].

We set B,,(v) = By (v;G) = {7 € Bu(G) | o(7) = v}. Then we see that dg,, (v)
is the cardinality of this set and satisfies dg,, (v) < (ng — 1)(ng — 2)"~" when G is
finite. We call the adjacency and the transition operators of G/, which are the same
as those of CA}[H] the n-step adjacency and the n-step transition operators, respectively.
They are given as

Aoy f0) = >0 (), Peyf() = o5 D2 f(t0).
[ )

1
YEPn (v) 7] (v) YEPn (v

Derived graphs and derived non-oriented graphs are generally complicated. Even
the original graph is connected, its derived graphs are not necessarily connected. To
get rid of complexity, we shall reduce edges of derived graphs. We define a non-oriented

graph é[n} = (V, E}y) so that two vertices v, v’ € V' are adjacent to each other in this
91
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graph if and only if there is v € B,,(G) with o(y) = v, t(7) = v'. Even if there are two
and more paths joining them, we only attach an edge between them. Thus this graph
may have loops but does not have multiple edges. For a pair (v,v) of vertices we set
Bn(v,v') = {7 € B (v ’ t(y) = v’}. When G is locally finite, we define a function
m : By, — Z so that m((v,v’ )) shows the cardinality of the set B, (v, v"). We shall
call the “weight graph” (@M,m) the reduced n-step derived graph of G.

When n = 1, it is clear by definition that G = CAJM = CNJM and m only takes the
value 1. We note that these terminologies of derived graphs may not be general. But

for the sake of extending these notions to Kéhler graphs we use these terminologies.

2. Derived graphs of Kahler graphs. Next we construct derived graphs cor-
responding (p, ¢)-primitive bicolored paths on Kihler graphs. Let G = (V, E® U E@)
be a Kéhler graph. For a pair (p,q) of relatively prime positive integers, we denote
the set of all (p, ¢)-primitive bicolored paths on G' by By, (G). We call the oriented
ordinary graph G, 4 = (V, PBpo(G )) the (p, q)-derived graph of G. This oriented graph
may have loops and multiple edges. But it does not have hairs by the condition of
Kéhler graphs. If we set B,,,(v) = Bpq(v; G) = {7 € B,(G) ‘ o(y) = v} for a vertex

v € V, then the adjacency operator of G, 4(G) is given as

Ac,, [ (v) = Z F(t()).

VEG p,q (G)

Considering probabilistic weights of (p, ¢)-primitive bicolored paths, we have a function

w : Pp4(G) — R. Hence we get a “weighted graph” (G, q,w).

LEMMA 3.2. For a pair (p,q) of relatively prime positive integers, we have

for each vertexv € V.
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PRrOOF. This is a direct consequence of Lemma 3.1. We decompose the set B, ,(v; G)
into a disjoint union of paths as

PBpg(v; G) = U Bqy(o).

UE‘BP(U;G(P))
We then have

> wiy) = wiy) = > 1=t(B,(;GP)) =dg,, (v).

v;G(P)) YEPq(0) o€PBp(v;GP)

2
m
=)
3
_
S
q
m
=]
S

O

For vertices v,v" € V' (which may coincide with each other), we set B, ,(v,v’) =

{7 € PByev) | t(y) = v'}. Since the inverse path 4! of a (p, ¢)-bicolored path is not
a (p, q)-bicolored path, we see B, ,(v,v") # B, ,(v',v), except the case that both of
these sets are empty. We here suppose that

i) G is a finite Kéhler graph;

ii) for each pair (v, v") of vertices, there is a bijection ¢, v : Py 4(v, V") = By, (V/,v)

satisfying w(v) = w(Lew(7)).

Here, we take the bijections in the above conditions as ./, = L;ﬂl], for each pair (v, v’).
For two primitive bicolored paths v1,72 € B, ,(G), we set 71 =~ 7, if either v, = 7o
OF V1 = lo(ya),t(72)(V2) holds. Then it is an equivalence relation on B, ,(G). We can
define an non-oriented graph (A}[M} = (V,%,,4(G)/=). Under the above assumption
we define a non-oriented graph é[p’q] = (V, Eppq) so that two vertices v,v" € V are
adjacent to each other if there is v € B, ,(G) satisfying o(y) = v and t(y) = v'. We
define a function m : Ej,, — R by m((v,v)) = D ey g (oo W(7). We shall call the
“weighted graph” (é[pyq],m) the reduced (p, q)-derived graph of G.

ExaMPLE 3.3. We take a complete Kéahler graph G of ng = 5 whose principal and
auxiliary degrees are dg) = d(c‘;) = 2 (see Fig. 7). On this graph (1, 1)-bicolored paths

and (2, 1)-bicolored paths of origin v; are

ml,l(vl> - {(U17U27U4>7 <U17U27U5)7 (/U17/U57U2)7 (U17U57U3)}
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and

(‘]32,1(1]1) - {<U17U27U37U1>7 (U17U27U37U5)7 (/U17/U57U47U1>7 (U17U57U47U2)}-

Thus, the directed edges in G[1 j) and Gp1y at vy are like Figs. 8, 9. Since G' is vertex-

transitive by rotations, we find that G|; ) and Go;y) are like Figs. 10, 11. Therefore

6[171} is a complete graph (see Fig. 12) and 6[271} are like Fig. 13.

u1 [{2]

(L7
Us Us

(L3 (£
u, U,

Fia.7. G2

Fi1c. 10. G[l,l]

(L3
Us

o,
U,

Fic. 12. é[l,l]

u,

FiG. 8. E[l,l] at vy

(2]

Us

[} (2
uy

Fic. 9. E[271] at vq

Fic. 11. G[2,1}

Fic. 13. 6[271}

We study derived graphs for some Kahler graphs of product types.

ExXAMPLE 3.4. When GG and H are graphs of real lattice, we consider their Kahler

graph of Cartesian product type. Then the edges in its reduced (1, 1)-derived graph
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—~—— —~——

(GﬁH)[l’l] and in the reduced (2, 1)-derived graph (GﬁH)[Q’” at a vertex are like the
following figures. They do not have multiple edges.

[ ] [ ] [ ] e o o o [ J [ ] e o o

[ ] [ o [ ] [ J [ ] [ ] [ ]

[ ] [ J e o [ [ ] e o o

[ ] [ ] [ J [ ] [ J [ ] [ ] [ ]

[ ] [ o e o [ I [ [ ] o o o
—_ — —_ N —

Fia. 14. edges in (GﬁH)[Ll] at a vertex  F1G. 15. edges in (GﬁH)p’l] at a vertex

EXAMPLE 3.5. When G and H be graphs of real lattice, we consider their Kahler

graphs of strong product type, of semi-tensor product type and of lexicographical

P

product type. Edges in their reduced (1, 1)-derived graphs (G@H)[LH, (G@H)[M] and

(G H )[171] at a vertex are like the following figures. They have multiple edges.

o0 o o o o o0 oo o o o o o0 oo o o o o o0
° ° ° ) ° o
o o o e o o o 0 o e o o o 0 o o o o
° ° ° ) ° °
e 6 o o o o o e 6 O o o o o o 6 o o o o o
Fic. 16. (GRH), Fic. 17. (G&H) 4 Fic. 18. (Gv H)y

EXAMPLE 3.6. When GG and H are graphs of real lattice, edges in the reduced
(1,0)-derived graph and in the reduced (1, 1)-derived graph of G B H at a vertex are

like the following figures.







CHAPTER 4

Eigenvalues of (1,1)-Laplacians for Kahler graphs

In this chapter we define Laplacians corresponding to bicolored paths on finite

Kahler graphs and study their eigenvalues.

1. Definitions of Laplacians for Kahler graphs

Let G = (V, E® U E@) be a finite Kihler graph. We denote by C(V, C) the space
of all complex valued function on V. As in Chapter 3, for a pair (p,q) of relatively
prime positive integers and v € V', we denote by B, ,(v) the set of all (p, ¢)-primitive
bicolored paths on G whose origins are v. We define the (p, q)-adjacency operator

Ap.q) = Acpg and the (p, q)-probabilistic transition operator Q) = Qa(p,q) acting
on C'(V,C) are defined as follows:

Acpaf@) = Y w@)f(tm),

YEPp,q(v)

QG (g [ (v) = > w ().

Z w(,y) YEPp,q(v)

YEPp,q(v)

for each f € C(V,C). Here, w(7y) denotes the probabilistic weight of v (see §3.2).
When G is a locally finite Kihler graph, we denote by L?(V, C) the space of all square

summable complex valued function on V. That is,
L2(v,c)={recv.c) | S Irw) < oo}
veV

We can then define Ag, ) and Qg(, ) acting on L*(V,C) by the same way. But in

X))
this paper, we only treat the case of finite Kahler graphs.
For a positive p, we denote by B, ¢(v) the set of all p-step paths on the principal

graph G® = (V, EP) whose origins are v and that do not have backtracking. That is
97
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we set PB0(v) = B, (v; GP). We denote the cardinality of this set ,,0(v) by de .0 (v),

and define the degree operator D, ¢y acting on C(V,C) by

Da(p.0)f(v) = d p,0)(v) f ()

for each f € C(V,C). By use of the notation in Chapter 3, we have D¢, 0) = Dg,-
By using these operators we define the (p, ¢)-combinatorial Laplacian A Agp.g and the

(p, g)-probabilistic transitional Laplacian Ag  , of G acting on C(V,C) by

AA(m) =Dapo) — Acpg and AQ(N) =1 - Qg

where Z denotes the identity operator. We sometimes just call them (p, q)-Laplacians.

Just like we used matrix representations of adjacency and transition operators in
§1.2, by using characteristic functions ¢, : V' — R (C C) we use matrix representa-
tions Agq) and Qg of (p,¢)-adjacency and (p, g)-probabilistic transition opera-
tors with respect to the basis {év ‘ v E V}. Similarly, we use matrix representations

AA(p o Ag(p o Oof Au, ,, and Ag,,,, with respect to this basis.

1.1. (1,1)-Laplacians. First we study the case (p,q) = (1,1). A (1, 1)-bicolored
path is a path where principal and auxiliary edges appear alternatively. Just like the
fundamental 2-forms on Kahler manifolds and on their real hypersurfaces, which are
fundamental magnetic fields of Kdhler magnetic fields and Sasakian magnetic fields,
(1,1)-bicolored paths show a “fundamental” magnetic structure on a Kéhler graphs.
We therefore specialize (1, 1)-Laplacians of a Kéhler graph G = (V, E® U E@),

We put Ag) = Acw, 7387 ) = Paw, which are the adjacency and the transition
operators of the principal graph G® = (V, E®)), and put P(Ga ) = Peay, which is the
transition operator of the auxiliary graph G(@ = (V, E(®). Though in §1.2 we define
adjacency and transition operators of an ordinary graph as operators acting on the

space C(V,R) of real valued functions, we extend them and consider that they act on
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the space C(V,C). Therefore, we define these three operators as

PRl - PEI) = d(p) PR

v~ v’ v/ ~pu

P f(v) = Z flv

U’UN

First we consider the relationship between (1,1)-adjacency and (1,1)-probabilistic

transition operators and these operators.
LEMMA 4.1. We have Ag(1,1) = Ag)Pgl) and Qg 1y = 7?8”)7?8)

PROOF. A (1,1)-bicolored path v € P 1(v) of origin v is expressed as v = (v,v’, w)
with vertices v/, w € V satistying v ~, v" and v" ~, w. On contrary if we take such
vertices then they form a (1, 1)-bicolored path, because we do not have multiple edges
(i.e. v # w). As we have w(y) = 1/d£§)(v’), we have

Aaf(v) = Z d(“)—’f(w)

(v, w)
v~y Vg w

Z Z (a) _A(p P(a)f(v).

v/ ~pv wiwnvg 1}’

(v,v',w)
v~ U g w

d(p IRpS d@ = PYPS I (v).

v ~pv wiwng v’

Hence we get the conclusion. 0

By this Lemma, when the principal graph of a Kahler graph is regular as an
ordinary graph, we find Ag 1) = d PG 1,1)- Since dg, , (v) = dgw (v), if we denote
by DG = D the degree operator acting on C(V,C) of the principal graph G® of
G, we have A-A(LI) = D(G) — A(1,1)- Hence, if the principal graph of a Kahler graph is

regular, we have AA<1 y = d(g;)Ap(l b
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EXAMPLE 4.1. We take a complete Kéhler graph G = (V, E®) U E(@) of principal
and auxiliary degrees d®) = d(® = 2 and of cardinality of the set of vertices ng = 5.

(see Fig. 1). We set V' = {vy, va,v3,v4,v5} and
E(p) — {(UlaUQ)7 (’U27U3), (0371)4)7 ('U4,U5), (U57U6)}7

E(a) = {(Ul,U3>, (U3,U5)7 (U5’U2)7 (0271}4)7 (U4’U1)}’

Its (1, 1)-adjacency matrix and (1, 1)-probabilistic transition matrix are

01001\ /(903350 0335 3 3
1010o0|[0003F 3 3 03 3 3

Acuyy =AcoPow =10 1.0 1 0[5 000 3]=135 35035 5],
1 1 1 1 1 1

toorof{zz o) iy

053 00 3 3 2 3 0

03003\ /0035 30 0 3 & 1 1

3 03 00][000 5 3 iOiii)
Qcuy = PewnPow =10 5 0 5 0 1000 12=]33071 3]
0035035335000 T 1103

3 0030/ \0 35 300 T 1110

Therefore, its matrix representations of (1,1)-combinatorial and (1, 1)-probabilistic

transitional Laplacians are

o0 L 1 11 9 1 1 1 1
200 0 0 2 2 2 2 2 2z 2 2
02000 303 3 3 i 2 3 3 3

1 1 1 1 1 1 1 1

A-A(LD: 00 2 00 — 55055 = — b} b -2 2 2 )
000270 533 03 3 31 3 2 3
0000 2 11 1 1 101 1 1 9

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
10000 0% 1 11 R T SR

1 1 1 1 1 1 1 1
01000 10313 A S

ORI SO I R O D RO

Quu — 4 1 1 1| = 1 1 1 1
0001 0) |1dsodf |11 o4 -1l
00001 111 1 111 1

4 4 4 4 4 4 4 4

We note that G is a regular Kéhler graph. As we can see, these matrices satisfy

AG(1,1) = 2@6‘(1,1) and AA(I,I) = 2AQ(1,1)'
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(L3

Us

Us

v,

Fic. 1. Gg“) Fic. 2. Gg

EXAMPLE 4.2. We take a Kihler graph G = (V, E®) U E@) of ng = 6 which
is complete as a graph and that is not regular (see Fig. 2). That is, we set V =

{Ula V2, U3, U4, Us, 'UG} and

E® = {(v1,v2), (va,v3), (v3,v4), (Va,v5), (V5,06), (v6,v1), (vi,v4), (vs,06), },

E(Cb) — {(Uly U3)7 (U37U5)7 (U57 Ul)u (U27U4>7 <U47 U6>7 (U671)2)7 <U27 U5)}'
Its (1, 1)-adjacency matrix and (1, 1)-probabilistic transition ma