
490
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

PAPER Special Section on Foundations of Computer Science—New Spirits in Theory of Computation and Algorithm—

Faster Enumeration of All Maximal Cliques in Unit Disk Graphs
Using Geometric Structure

Taisuke IZUMI†a), Member and Daisuke SUZUKI†∗b), Nonmember

SUMMARY This paper considers the problem of enumerating all max-
imal cliques in unit disk graphs, which is a plausible setting for applica-
tions of finding similar data groups. Our primary interest is to develop
a faster algorithm using the geometric structure about the metric space
where the input unit disk graph is embedded. Assuming that the distance
between any two vertices is available, we propose a new algorithm based
on two well-known algorithms called Bron-Kerbosch and Tomita-Tanaka-
Takahashi. The key idea of our algorithm is to find a good pivot quickly
using geometric proximity. We validate the practical impact of our algo-
rithm via experimental evaluations.
key words: enumerating maximal cliques, Bron-Kerbosch algorithm, Unit
disk graph

1. Introduction

Cliques are recognized as one of the most important struc-
tures in graph theory, and there are a large number of ap-
plication areas demanding algorithms to find clique struc-
tures efficiently: Social network analysis [5], [13], bioinfor-
matics [19], [20], data engineering [4], [25], computational
topology [27], and so on. Some applications of those areas
often require the list of all maximal cliques rather than a sin-
gle large clique, which yields an interest to the problem of
enumeration of maximal cliques. Since the number of max-
imal cliques can be exponential in the number of nodes, this
problem trivially has no algorithm with a polynomial-time
worst-case bound. However, many algorithms with reason-
able running time in practice are currently known [6], [8],
[9], [14]–[16], [21], [23]. Among them, the algorithm by
Bron and Kerbosch [6] (referred to as BK algorithm here-
after) is the most famous one and has been used in many
applications. Most of the recent advance about the maximal-
clique enumeration is achieved by inventing a some modifi-
cation of this algorithm, and our study also lies on the same
line.

In this paper, we consider the problem of enumerating
all maximal cliques in unit disk graphs, where each vertex is
a point in a metric space and two vertices are connected with
each other if they are within a unit distance. This problem
setting is motivated by applications of finding similar groups
in data: Each vertex represents one entry of the given data
set and an edge represents a kind of similarity relationship

Manuscript received April 2, 2014.
Manuscript revised August 4, 2014.
†The authors are with the Graduate School of Engineering, Na-

goya Institute of Technology, Nagoya-shi, 466–8555 Japan.
∗Presently with Denso Corporation.

a) E-mail: t-izumi@nitech.ac.jp
b) E-mail: cht15081@nitech.jp

DOI: 10.1587/transinf.2014FCP0018

between its endpoints. In such a scenario, each entry is often
characterized by some numerical attributes. That is, it is a
point in some multi-dimensional space. Then the similarity
of two entries is often an interpretation of the proximity in
the space. Hence the graph over the data set is typically a
unit disk graph (in exact or approximated sense). This back-
ground brings us an interest to efficient algorithms making
use of underlying geometric structures. The primary con-
tribution of this paper is that we can actually have such an
algorithm: Our starting point is the maximal-clique enumer-
ation algorithm by Tomita et al. [16] (referred to as TTT al-
gorithm hereafter), which is a modified version of BK algo-
rithm and now is used in many application areas. The core
of BK algorithm is the incremental constructions of maxi-
mal cliques via some recursive procedure. While it is sim-
ple and clever, it also produces the meaningless recursions
which have no contribution to the output. So the technique
called pivoting is often used. The pivoting technique prunes
the branches of meaningless recursions by choosing a spe-
cial node called pivot at each recursion step. The core of
TTT algorithm is to select the best pivot with exhaustive
search, which substantially reduces the total number of re-
cursive calls. On the other hand, the cost of the pivot selec-
tion itself is relatively expensive.

In this paper, we show an alternative algorithm select-
ing good pivots for unit disk graphs. The geometric infor-
mation the proposed algorithm requires is the distance be-
tween any two vertices, but the coordinate of each vertex
is not necessary. Though its theoretical time bound is not
so improved, by a careful implementation and several re-
lated heuristics, we can expect its practical running time is
fast. We evaluate the proposed algorithm using random and
real-data instances. The results show that our algorithm ter-
minates substantially faster than TTT algorithm if the in-
put graph is not so sparse. In addition, even for sparse in-
stances, it is competitive to TTT one. So totally our algo-
rithm achieves better performance

It should be noted that clique problems often become
easier in unit disk graphs. For instance, the maximum clique
problem is generally NP-complete but polynomially solv-
able in two-dimensional unit disk graphs [11]. In addition,
the number of cliques in d-dimensional unit disk graphs of n
vertices∗∗ is bounded by O(nd) because the number of cells
in the arrangement of d-dimensional unit disks is bounded

∗∗More precisely, in higher dimensional space, it might be more
appropriate to say “unit ball (or sphere) graphs”. However, in this
paper we simply call them unit disk graphs.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

IZUMI and SUZUKI: FASTER ENUMERATION OF ALL MAXIMAL CLIQUES IN UNIT DISK GRAPHS USING GEOMETRIC STRUCTURE
491

by O(nd). That is, if d is a constant, the enumeration of
maximal cliques in unit disk graphs is a task allowing a
polynomial-time solution. However, even if d is not so large
(e.g., three or four), this task is still practically expensive.

The organization of the paper is as follows: After
stating the related work in Sect. 2, we first briefly explain
Bron-Kerbosh algorithm and TTT algorithm in Sect. 3. At
Sect. 4 we show our algorithm and its implementation de-
tails, where some heuristics improving the performance are
also introduced. Section 5 gives the results of the experi-
mental evaluation. Finally we conclude the paper at Sect. 6
with the note of future work.

2. Related Work

The maximal clique enumeration has a long history of re-
search. A seminal paper initiating it is the one by Bron and
Kerbosch [6]. Following this result, a number of algorithms
has been proposed so far. As we mentioned in the intro-
duction, since the output size (i.e., the number of maximal
cliques) can become exponential in n, it is not meaningful to
bound the total running time of the algorithms. Instead, the
efficiency of algorithms is often evaluated by the delay (i.e.,
the worst-case computation time between two consecutive
outputs). The algorithms achieving polynomial-time de-
lay has been proposed in several papers [10], [17], [21], [23].
Another direction is the exploration of experimentally fast
algorithms. The results on this line are Tomita et al. [16] and
Eppstein et al. [14]. Algorithms running on some different
computational models, such as parallel computation [22],
and space-limited computation [7], [9], are also considered.

While all the results above handle the maximal clique
enumeration for general graphs, several papers consider a
restricted class of graphs, or slightly different problem set-
tings. One of the popular related variants is the enumer-
ation of bicliques in bipartite graphs. A number of algo-
rithms are presented for this problem [1], [3], [12]. Another
variant is the enumeration of pseudo cliques, which are the
subgraphs with high edge density. An efficient algorithm
for enumerating pseudo cliques are proposed by Uno [24].
On algorithms for restricted graph classes, several case are
investigated: Bounded degeneracy graphs [14], odd-minor-
free graphs [18], Power-law graphs [12], and so on. For
unit disk graphs, there is no prior work explicitly consid-
ering the maximal clique enumeration, but the construction
of Vietoris-Rips complex from a point set in any metric
space [26], which is a fundamental problem in topological
data analysis, is an equivalent problem.

3. Preliminaries

3.1 BK Algorithm

Since our method is based on BK algorithm, we first present
its brief introduction. Let G = (V, E) be an input graph.
BK algorithm is defined as a recursive function taking three
vertex subsets R, P, X ⊆ V as arguments. The subset R is

the vertex set of the clique currently constructed. The sub-
set P consists of candidate vertices, which can be added to
R for expanding the clique. The set X is the forbidden set
of vertices. At each step of recursions, if both P and X are
empty, it is guaranteed that R is maximal and thus it is out-
putted. Otherwise, the algorithm tries to expand the clique
by adding a vertex in P. It first picks up and deletes one
vertex v from P, and adds v to R. Then eliminating non-
neighbors of v from P and X, the function is recursively
executed. After the execution of the recursion, vertex v is
moved from R to X. We show the pseudocode of BK algo-
rithm in Algorithm 1. In the pseudocode, N(v) denotes the
set of v’s neighbors (not including v itself).

Algorithm 1 BK Algorithm
1: BK(R, P, X)
2: if P and X are both empty then
3: report R as a maximal clique
4: else
5: for each vertex v in P do
6: BK(R ∪ {v}, P ∩ N(v), X ∩ N(v))
7: P := P \ {v}
8: X := X ∪ {v}
9: end for

10: end if

3.2 Pivoting

One problem in the original BK algorithm is that it often
executes redundant recursive calls which do not report any
maximal cliques. Pivoting is one of the promising tech-
niques to reduce such recursive calls. The basic ideas of the
pivoting are explained as follows: Assume that BK(R, P, X)
is called. Then, we choose an arbitrary vertex u from P∪X as
the pivot. Obviously any maximal cliques including R must
include the vertex that is not adjacent to u or u itself (other-
wise it contradicts to the maximality). This fact implies that
we do not have to call BK(R ∪ {v}, P ∩ N(v), X ∩ N(v)) such
that v ∈ N(u) holds. Algorithm 2 shows the pseudocode of
BK Algorithm with pivoting.

Algorithm 2 BK Algorithm with Pivoting
1: BK2(R, P, X)
2: if P and X are both empty then
3: report R as a maximal clique
4: else
5: choose a pivot vertex u in P ∪ X
6: for each vertex v in P \ N(u) do
7: BK2(R ∪ {v}, P ∩ N(v), X ∩ N(v))
8: P := P \ {v}
9: X := X ∪ {v}

10: end for
11: end if

3.3 Pivot Selection Strategy by Tomita et al.

While we can use any vertex in P ∪ X as pivots, the run-
ning time of the algorithm drastically changes according to

492
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Fig. 1 An example of the pivot selection in unit disk graphs.

the selection of pivots. TTT algorithm is known as one of
the best selection strategy. This strategy always chooses the
vertex u maximizing |P ∩ N(u)| (in other words, minimiz-
ing the number of recursions called directly by the current
recursion) as the pivot. The pseudocode of TTT algorithm
is obtained by replacing line 5 in Algorithm 2 by the code
shown in Algorithm 3.

Algorithm 3 TTT
1: for each u ∈ P ∪ X do
2: count the u’s neighbors in P
3: end for
4: select pivot u such that the number of neighbors in P is maximum

To find such vertex u, TTT algorithm exhaustively
checks the size of P ∩ N(u) (in what follows, we call it
the score of u) for each vertex u in P ∪ X, which consumes
O(|P| ·(|P|+ |X|)) time if the adjacency matrix of input graphs
is available (i.e. neighborhood relation is testable within a
constant time). Since the other parts of TTT algorithm for
one recursive call takes a time linear to |P| + |X|, this pivot
selection strategy is relatively costly in particular when |P|
is large. Actually, in our preliminary experiments, we found
that more than 80 percents of the running time was con-
sumed for the pivot selection in TTT algorithm.

4. Our Algorithm

This section provides the details of our new algorithm. Its
primary ingredient is a novel pivot-selection strategy uti-
lizing the distance information between two vertices. Let
G = (V, E) be the input unit disk graph in any metric space.
We assume that the distance d(v, u) between any two vertices
u, v ∈ V is available and can be computed within a constant
time.

4.1 Pivot Selection for Unit Disk Graphs

The fundamental idea of our algorithm is very simple. We
consider the pivot selection in recursive call BK(R, P, X).
Letting r ∈ R be an arbitrary vertex, any vertices in P must
be covered by the unit disk centered at r. Then the unit
disk centered at some vertex r′ near to r is also expected to
cover many points in P. If r′ belongs to P ∪ X, it seems

to have a good score, and thus can be a good candidate of
the pivot (Fig. 1). The core of our algorithm is to compute
such a pivot candidate for each r ∈ R, and choose one with
the highest score of all candidates. Algorithm 4 shows the
pseudocode of our pivot selection strategy. More precisely,
for each r ∈ R, the algorithm searches the vertex r′ nearest
to r in P ∪ X, and computes its score by testing the adja-
cency between u and each node in P. After repeating this
process for all vertices r, the vertex with the best score is
chosen as the pivot. While a naive implementation of this
algorithm takes O(|P| + |X|) time for each r ∈ R and thus
totally O(|R|(|P|+ |X|)) time is consumed for one pivot selec-
tion, we can improve its practical performance by a careful
implementation explained in the next subsection.

Algorithm 4 Geometric Pivot Selection
1: maxintersect ← 0
2: for all r ∈ R do
3: r′ ← argminp∈(P∪X)d(r, p)
4: if (|N(r′) ∪ P| > maxintersect) then
5: pivot ← r′
6: maxintersect ← |N(r′) ∪ P|
7: end if
8: end for

4.2 Implementation Details

4.2.1 Some Observations

We explain the details of our implementation. To explain
it, we first introduce several notations: Let us fix some
pivot-selection strategy. Then we describe (R1, P1, X1) ≺
(R2, P2, X2) if and only if the execution of BK(R2, P2, X2)
calls BK(R1, P1, X1). The score of the pivot selected
by TTT algorithm for call BK(R1, P1, X1) is denoted by
ms(R1, , P1, X1). Then, the following observations obviously
hold.

Observation 1 (R1, P1, X1) ≺ (R2, P2, X2) ⇒ P1 ∪ X1 ⊇
P2 ∪ X2

Observation 2 (R1, P1, X1)≺ (R2, P2, X2) ⇒ ms(R1, P1, X1)
≥ ms(R2, P2, X2)

IZUMI and SUZUKI: FASTER ENUMERATION OF ALL MAXIMAL CLIQUES IN UNIT DISK GRAPHS USING GEOMETRIC STRUCTURE
493

Fig. 2 Adding an element to R.

In the following argument we show a faster implemen-
tation of our algorithm and further heuristics based on these
two observations.

4.2.2 Finding Nearest Candidates

In TTT algorithm, the input graph is normally given as the
form of the adjacency matrix, and our algorithm also uses
it. However, in addition to the adjacency matrix, our faster
implementation utilizes a special form of its adjacency list,
where the neighbor list for each vertex v is managed as the
array sorted by the distance from v. We denote the array for
vertex v by A(v).

We also manage a pointer array rlist indexed by R.
Each entry rlist[r] for r ∈ R is the pointer to some entry
in A(r). The array rlist is passed with set R when the recur-
sive function is called (that is, in our implementation, BK
algorithm takes four arguments, R, P, X, and rlist). When
some new node v is added to R, a new entry corresponding
to v is also added to rlist. The initial value rlist[v] points
the head of A(v) (Fig. 2). At the beginning of some recursive
call, rlist[r] stores an index of A(r) corresponding to the
pivot candidate of r computed at the parent of the current
recursion. The value of rlist[r] is updated at the procedure
of finding pivot candidates, shown as follows:

1. Check whether the element pointed by rlist[r] is in-
cluded in P ∪ X or not.

• If included, take it as the pivot candidate for r and
go to step 2.

• Otherwise, increment the value of rlist[r] and re-
peat step 1.

2. Calculate the score of the vertex pointed by rlist[r].

Repeating this procedure for all r ∈ R, the algorithm
completes both the pivot selection and the update of rlist.
The reason why this procedure correctly returns pivot can-
didates can be understood as follows: From observation 1,
the set P∪ X monotonically grows up for the increase of the
depth of recurrence. Thus, if rlist[r] = k holds at the begin-
ning of the current recursion, any node in A(r) with index

smaller than k is guaranteed not to be in P ∪ X. It follows
that the candidate nearest to r can be found by checking only
the entries of A(r) with index larger or equal to k.

By using this implementation, the choice of pivot can-
didates for each vertex in R becomes substantially fast.
While the theoretical time bound is still O(|R|(|P| + |X|)), its
typical running time behaves as O(|R|). Thus the calculation
of scores for each candidate is rather dominating part of our
pivot selection strategy, which takes O(|R||P|) time.

4.2.3 First Heuristic – Hybrid Approach

The asymptotic time estimation of our pivot-selection strat-
egy raises up an interest to some hybrid approach with TTT
strategy: As we stated, the asymptotic time bound for TTT
strategy is O(|P|(|P|+ |X|)) and for our algorithms, the bound
is O(|R|(|P|+ |X|)) and the realistic behavior is O(|R||P|). Ba-
sically, as recurrence is deepened, R grows up and P goes
small. Therefore, we can take the best of both the algo-
rithms by switching them according to the value of |P|, |X|,
and |R|. More precisely, this heuristic approach adopts our
strategy if |R| ≤ α(|P| + |X|), and TTT otherwise, where α is
a design parameter biasing the choice of strategies.

4.2.4 Second Heuristic – Aborting Score Calculation

From observation 2, the score of the best pivot at each re-
cursion is bounded by that of its parent recursion. It im-
plies that the score of the pivot at the parent recursion can
be used to measure how good the calculated score of a pivot
candidate is. The principle of this heuristic is to abort the
following score calculation once the algorithm finds a pivot
with a good score competitive to the parent recursion. In
this heuristic, the score s of the pivot at the parent recursion
is passed as an argument of recursive calls. At the current
recursion, if the algorithm finds a pivot candidate with score
larger than or equal to s−β, it is immediately adopted as the
pivot, where β is an “laziness” parameter.

5. Experiments

We implemented and evaluated the proposed algorithm for

494
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Table 1 The results of the experimental evaluation.

nodes dim. δ̄ δmax Max Clique Cliques GPS(ms) TTT(ms) GPS/TTT
adult

10000 3 83 282 109 60890 9447 14822 0.63
5 69 271 108 50904 9299 12311 0.75

15000 3 149 464 174 196689 36928 101154 0.36
5 123 439 173 161954 46210 63561 0.72

nomao
10000 3 322 750 457 3336 17848 133477 0.13

5 86 376 229 2831 7266 11461 0.63
15000 3 476 1065 710 4582 54146 over 10min 0.09

5 126 488 318 3940 17596 45005 0.39
20000 5 197 757 493 13225 44163 253424 0.17

letter-recognition
10000 3 78 182 183 470 6013 7053 0.85

5 15 70 71 2359 5175 5288 0.98
15000 3 118 569 270 503 14869 18760 0.79

5 22 106 107 2764 13034 13446 0.97
20000 3 158 377 378 530 31668 43579 0.73

5 29 151 152 3089 27580 43477 0.63
Random

10000 3 3 12 8 7513 5152 5007 1.02
15000 3 4 13 8 13098 14083 13037 1.08
20000 3 5 17 10 19634 25602 25838 0.99

several real-data and random instances. All of the following
experiments are performed on the PC with Corei5-3210M
CPU and 4GB memory. All algorithms are implemented by
Java, and run on Java SE7 environment with JIT optimiza-
tion.

The real data sets are obtained from the UCI machine
learning repositories [2]. We choose three data sets for clas-
sification and clustering problems, called adult, nomao, and
letter-recognition respectively. While some of those data
sets have a high dimension and/or many data entries, we
trimmed them into some fixed dimensions and sizes: three
and five for dimensions, and 10000, 15000, and 20000 for
the sizes of data sets. Every coordinate value is normalized
into the range [0, 100] and the diameter of the unit disk is set
at four in the standard L2-metric. All random instances are
obtained by placing a specified number of data points uni-
formly at random in the metric space. We ran our algorithm
and TTT algorithm for all the prepared instances. Both of
the two proposed heuristics are installed into our algorithm
with design parameter α = 1.5 and β = 1.

The result of the experiments is shown in Table 1. The
columns #nodes, d, δ̄, δmax, Max, and #Cliques respec-
tively mean the number of nodes, dimension of the met-
ric space, average degree, maximum degree, largest clique
size, and total number of maximal cliques. GPS and TTT
show the running times of our algorithm and TTT algo-
rithm respectively. The last column GPS/TTT shows the
running time ratio. Some of the results for instances with
20000 nodes are omitted because the algorithms do not com-
plete by out-of-memory errors. Basically, the pivot selec-
tion in TTT algorithm becomes costly when the execution
includes many recursive calls with large P. Since |P| is
clearly bounded by the degree of any node in R, TTT al-
gorithm is expected to consume much time for instances
with high average degrees and/or giant cliques. The ex-

Fig. 3 The effect by the choice of α.

perimental evaluation actually exhibits such tendency, and
for those instances our algorithm is much (sometimes dras-
tically) faster. On the other hand, TTT algorithm works ef-
ficiently for low average-degree instances, and thus we can-
not find any strict advantage of our algorithm. However,
even for such instances our algorithm is competitive to TTT,
which implies that the overhead incurred by our algorithm
is negligibly small. Totally, our algorithm achieves better
performance for the overall experiments.

We also evaluated the effect of the design parameters
α and β. For instances of dimensions five and 15000 ver-
tices, we plot the performance of the proposed algorithm for
value α = 0.5, 1, 3, 7 and ∞, and β = −∞, 1, 2 and 5. Note
that α = ∞ and β = −∞ means that the algorithm does not
use the corresponding heuristics. Figure 3 and 4 show the
evaluation result, where the running time of the algorithm is
plotted by the values relative to that for no use of the cor-
responding heuristics (i.e., α = ∞ and β = −∞). From the
result, we can see two heuristics definitely improves the per-
formance for the instances our algorithm efficiently solves.

IZUMI and SUZUKI: FASTER ENUMERATION OF ALL MAXIMAL CLIQUES IN UNIT DISK GRAPHS USING GEOMETRIC STRUCTURE
495

Fig. 4 The effect by the choice of β.

Fig. 5 The effect of the second heuristic applied to TTT algorithm.

About the choice of the parameters, α = 1.0 ∼ 2 and β = 1
stably marks good performance.

From this result, some readers may have the doubt that
these heuristics are the dominant part of the speed-up in our
algorithm. In fact, the second heuristic is independent of our
geometric pivot selection, and thus applicable to the original
TTT algorithm. So it looks plausible that the performance
of TTT algorithm also considerably improves if we apply
the second heuristic to it. However, interestingly it is not
true. We present an result by the application of the second
heuristics to TTT algorithm in Fig. 5. It shows that the abort
heuristic is rather harmful for TTT algorithm.

6. Concluding Remarks

In this paper, we proposed a new algorithm for the problem
of enumerating maximal cliques in unit disk graphs. The
key ingredient of the proposed algorithm is the improve-
ment of the running time by utilizing geometric information.
Compared to TTT algorithm, our algorithm achieves better
or competitive performance in practice, which is validated
by the experimental evaluations for real-data and random
instances.

An important future direction is the application of the
proposed algorithm to massive instances. While our current
implementation does not support the instances with an ex-
tremely large number of vertices, the recent result by Epp-
stein et al. [15] gives several techniques to make TTT algo-

rithm applicable to large-sparse instances. The development
of an algorithm reflecting those techniques and its evaluation
is one of our future work. It is also an important problem
to explore an algorithm to select better pivots much faster
in unit disk graphs. While the paper is based on a simple
closest-neighbor approach, , utilizing the smallest enclosing
balls or convex hulls might lead a much better algorithm.

Acknowledgements

This work is supported in part by KAKENHI No.25106507
and No.25289114, and Inamori Foundation.

References

[1] A. Gély, L. Nourine, and B. Sadi, “Enumeration aspects of max-
imal cliques and bicliques,” Discrete Appl. Math., vol.157, no.7,
pp.1447–1459, 2009.

[2] The UC Irvine machine learning repository.
http://archive.ics.uci.edu/ml/

[3] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, and B.
Simeone, “Consensus algorithms for the generation of all maximal
bicliques,” Discrete Appl. Math., vol.145, no.1, pp.11–21, 2004.

[4] J.G. Augustson and J. Minker, An analysis of some graph theoretical
cluster techniques, J. ACM, vol.17, no.4, pp.571–588, 1970.

[5] N.M. Berry, T.H. Ko, T. Moy, J. Smrcka, J. Turnley, and B. Wu,
“Emergent clique formation in terrorist recruitment,” Proc. AAAI-
04 Workshop on Agent Organizations, 2004.

[6] C. Bron and J. Kerbosch, “Finding all cliques of an undirected
graph,” Commun. ACM, vol.16, no.9, pp.575–577, 1973.

[7] J. Cheng, Y. Ke, A.W.-C. Fu, J.X. Yu, and L. Zhu, “Finding max-
imal cliques in massive networks by h*-graph,” Proc. 2010 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD), pp.447–458, 2010.

[8] J. Cheng, Y. Ke, A.W.-C. Fu, J.X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol.36,
no.4, pp.21:1–21:34, 2011.

[9] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for max-
imal clique enumeration with limited memory,” Proc. 18th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp.1240–1248, 2012.

[10] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol.14, no.1, pp.210–223, 1985.

[11] B.N. Clark, C.J. Colbourn, and D.S. Johnson, “Unit disk graphs,”
Discrete Mathematics, vol.86, no.1-3, pp.165–177, 1990.

[12] P. Damaschke, “Enumerating maximal bicliques in bipartite graphs
with favorable degree sequences,” Inf. Process. Lett., vol.114, no.6,
pp.317–321, 2014.

[13] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, “Community detection
in large-scale social networks,” Proc. 9th WebKDD and 1st SNA-
KDD 2007 Workshop on Web Mining and Social Network Analysis,
pp.16–25, 2007.

[14] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in sparse graphs in near-optimal time,” Proc. 21st International
Symposium on Algorithms and Computation (ISAAC), pp.403–414,
2010.

[15] D. Eppstein and D. Strash, “Listing all maximal cliques in large
sparse real-world graphs,” Proc. 10th International Conference on
Experimental algorithms (SEA), pp.364–375, 2011.

[16] E. ETomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theor. Comput. Sci., vol.363, no.1, pp.28–42, 2006.

[17] D.S. Johnson and C.H. Papadimitriou, “On generating all maxi-
mal independent sets,” Inf. Process. Lett., vol.27, no.3, pp.119–123,
1988.

496
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

[18] K.-I. Kawarabayashi and D.R. Wood, “Cliques in odd-minor-free
graphs,” Proc. 18th Computing: the Australasian Theory Sympo-
sium (CATS), pp.133–138, 2012.

[19] I. Koch, “Enumerating all connected maximal common subgraphs in
two graphs,” Theor. Comput. Sci., vol.250, no.1-2, pp.1–30, 2001.

[20] I. Koch, T. Lengauer, and E. Wanke, “An algorithm for finding max-
imal common subtopologies in a set of protein structures,” J. Com-
putational Biology, vol.3, no.2, pp.289–306, 1996.

[21] K. Makino and T. Uno, “New algorithms for enumerating all max-
imal cliques,” 9th Scandinavian Workshop on Algorithm Theory
(SWAT), pp.260–272, 2004.

[22] M.C. Schmidt, N.F. Samatova, K. Thomas, and B.-H. Park, “A scal-
able, parallel algorithm for maximal clique enumeration,” J. Parallel
and Distributed Computing, vol.69, no.4, pp.417–428, 2009.

[23] S. Tsukiyama, M. Ide, M. Ariyoshi, and I. Shirakawa, “A new algo-
rithm for generating all maximal independent sets,” SIAM J. Com-
put., vol.6, no.3, pp.505–517, 1977.

[24] T. Uno, “An efficient algorithm for solving pseudo clique enumera-
tion problem,” Algorithmica, vol.56, no.1, pp.3–16, 2010.

[25] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms
for fast discovery of association rules,” Proc. 3rd Internatilal Confer-
ence on Knowledge Discovery and Data Mining, pp.283–286, 1997.

[26] A. Zomorodian, “Fast construction of the vietoris-rips complex,”
Comput. & Graph., vol.34, no.3, pp.263–271, 2010.

[27] A. Zomorodian, “The tidy set: a minimal simplicial set for com-
puting homology of clique complexes,” Proc. Twenty-Sixth An-
nual Symposium on Computational Geometry (SoCG), pp.257–266,
2010.

Taisuke Izumi received the M.E. and D.I.
degrees in computer science from Osaka Uni-
versity in 2003 and 2006. During 2006-2008, he
worked at Nagoya Institute of Technology as an
assistant professor. He is now an associate pro-
fessor of Graduate School of Engineering, Na-
goya Institute of Technology. His research inter-
ests include algorithms and distributed systems.
He is a member of IEICE, ACM and IEEE.

Daisuke Suzuki received the B.E. and M.E.
degrees in computer science from Nagoya Insti-
tute of Technology in 2012 and 2014. He works
at Denso Corporation from 2014.

