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ABSTRACT

The present paper describes Japanese and English singing voice syn-
thesis systems based on hidden Markov models (HMMs). In this ap-
proach, the spectrum, excitation, and vibrato of the singing voice are
simultaneously modeled by context-dependent HMMs, and wave-
forms are generated by the HMMs themselves. Japanese singing
voice synthesis systems have already been developed and used to
create variable musical contents. To extend this system to English,
language independent contexts are designed. Furthermore, methods
for matching musical notes and pronunciation of English lyrics are
presented and evaluated in subjective experiments. Then, Japanese
and English singing voice synthesis systems are compared.

Index Terms— English singing voice synthesis, HMM-based
speech synthesis, HMM-based singing voice synthesis

1. INTRODUCTION
Singing voice synthesis enables computers to “sing” any song.
It has become especially popular in Japan because of Yamaha’s
VOCALOID singing synthesizer [1]. There is now a growing de-
mand for more flexible systems that can sing songs with various
voices as evidenced by the many singer libraries being created
and released on the Internet by users for UTAU [2] singing voice
synthesis software.

One approach to synthesizing singing voices is to use hidden
Markov models (HMMs) [3] [4]. In this approach, the spectrum,
excitation, and vibrato of a singing voice are simultaneously mod-
eled, and singing voice parameter trajectories are generated from the
HMMs by using a speech parameter generation algorithm [5]. Sys-
tems of HMM-based speech synthesis [6] [7] which is the base of
HMM-based singing voice synthesis usually have smaller footprints
than those of unit-selection synthesis because they store statistics
rather than waveforms. This approach makes it possible to model
different voice characteristics, speaking styles, and emotions with-
out recording large speech databases. Adaptation [8], interpolation
[9], and eigenvoice [10] techniques, for example, have been applied
to HMM-based systems, demonstrating that voice characteristics can
be modified. As a demonstration of HMM-based singing voice syn-
thesis, our research group publicly released a web service [4] [11],
and it has been used by many creators.

If Japanese singing voice synthesis systems were extended to
support other languages, people all over the world could also enjoy
singing voice synthesis. We are thus working to extend the singing
voice synthesis technique to other languages, focusing on English
as the first step. In this paper, we present an HMM-based English
singing voice synthesis system in addition to Japanese one.

The rest of this paper is organized as follows: Section 2 de-
scribes the overview of the HMM-based singing voice synthesis sys-
tem. Details of the English singing voice synthesis system and com-
parison to the Japanese one are described in Section 3. Section 4 de-
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Fig. 1. Overview of HMM-based singing voice synthesis system.

scribes our experimental evaluation and presents the results. The key
points are summarized and future work is mentioned in Section 5.

2. HMM-BASED SINGING VOICE SYNTHESIS SYSTEM

The HMM-based singing voice synthesis system is quite similar to
the HMM-based text-to-speech synthesis system [6] [7]. However,
there are distinct differences. Figure 1 gives an overview of the
HMM-based singing voice synthesis system [3] [4]. It consists of
training and synthesis parts. In the training part, the spectrum (e.g.,
mel-cepstral coefficients), excitation, and vibrato are extracted from
a singing voice database and then modeled by context-dependent
HMMs. Context-dependent models of state durations are also es-
timated simultaneously [12]. Pitch adaptive training (PAT) [13] is
used to generate singing voices in any pitch. An arbitrarily given
musical score including the lyrics to be synthesized is first converted
into a context-dependent label sequence in the synthesis part. Next, a
state sequence corresponding to the song is constructed by concate-
nating the context-dependent HMMs in accordance with the label
sequence. The state durations of the song HMM are then deter-
mined with respect to the state duration models. Next, the speech
parameters (spectrum, excitation, and vibrato) are generated by an
algorithm [5]. Finally, a singing voice is synthesized directly from
the generated parameters by using a mel log spectrum approximation
(MLSA) filter [14].

The rhythm and tempo of the music are important factors in
singing voice synthesis. Therefore, the start timings of the notes and
the phoneme durations for each note must be determined from the
musical score. However, if the musical score is strictly followed, the
synthesized singing voice will be unnatural because of time lags. To
overcome this problem, the time lags of individual notes are modeled
by Gaussian distributions [3].



Table 1. Relationships between Japanese strings and pronunciation.
String Mora げ ん こ つ や ま の た ぬ き さ ん
Pronunciation Mora ge N ko tsu ya ma no ta nu ki sa N

Phoneme g e N k o ts u y a m a n o t a n u k i s a N

Table 2. Relationships between English strings and pronunciation.
String Word rhythm of the classical music

Syllable rhy thm of the clas si cal mu sic
Pronunciation Syllable rih dhaxm ahv dhax klae sih kaxl myuw zihk

Phoneme r ih dh ax m ah v dh ax k l ae s ih k ax l m y uw z ih k

3. ENGLISH SINGING VOICE SYNTHESIS
3.1. Lyrics of English musical scores
Lyrics in Japanese musical scores are generally written in kana
characters, which can be converted into labels by using a mora-to-
phonemes table. On the other hand, English lyrics are generally
written in words, and a word-to-phonemes table is not sufficient for
words, like “the” and “lead” for which the pronunciation depends
on the context. Thus, morphological analysis is needed to convert
the word sequence into syllable and phoneme sequences. A musical
phrase that is an uttered part between musical rests is regarded as
a sentence and analyzed. A syllable consists of a vowel (syllable
nucleus) and consonants around it. Tables 1 and 2 show the relation-
ships between strings and pronunciation in Japanese and English
respectively. In these tables, vowels are indicated by boldface.

Contexts for English singing voice synthesis are designed by
expanding contexts for Japanese one [4]. English syllables and
Japanese moras are allocated to a common level in the context de-
sign to standardize contexts of these languages. In addition, a new
area is appended to the context design to address language depen-
dent contexts, e.g. stress and accent, which are used only in English.
The proposed context design is presented in Table 3. The proposed
area is indicated by boldface.

In this paper, the Flite [15] is used for morphological analysis,
and the CMU pronouncing dictionary [16] is used as the word dic-
tionary. The phoneme set consists of phonemes in CMU pronounc-
ing dictionary, long silence “sil”, silence neighboring uttered parts
“pau”, and breath “br”.

3.2. Syllable allocation methods
The number of syllables for each word is obtained by morphological
analysis. However, it is not always equal to the number of corre-
sponding notes. Therefore, a method for allocating syllables to notes
is required. Here we propose two methods.
1: Left-to-right allocation

In this method, syllables in a word are allocated to corresponded
notes one-by-one from the head note. If the number of syllables
is not equal to that of notes, the remaining syllables are allocated
to the tail note or each of all remaining notes receives a syllable
duplicated from the last syllable.

2: Score-based allocation
In this method, syllables in a word are allocated to corresponded
notes based on the number of characters in each note. Each note
that has no syllable receives a syllable duplicated from the syl-
lable of previous note. The allocation procedure comprises three
steps.

Step 1: Count number of characters corresponding to each
note
First, the number of characters corresponding to each note is
counted. A character denotes a letter in a lyric string in Ta-
ble 2. Since many syllables should be allocated to notes that

every         -         thing

1:       [eh]

2: [eh | v, r, iy]

[v, r, iy | th, ih, ng]

[th, ih, ng]

Fig. 2. Two methods for syllable allocation.

have many vowels (syllable nucleus), we count “a”, “e”, “i”,
“o”, and “u”, which tend to be vowels, as two characters in this
paper. Table 2 shows an example. The word “classical” has two
“a” and one “i”, and they are allocated to three syllables one-by-
one as vowels. Similarly, one of the exceptions to “a”, “e”, “i”,
“o”, and “u” being vowels is “rhythm” in Table 2. Although it
contains none of these letters, its pronunciation includes some
vowel sounds.

Step2: Calculate score for each note
The score wn of a note n is defined as

wn =
Scn∑N
n′=1 cn′

, (1)

where cn, N and S denote the number of characters correspond-
ing to note n, the number of notes in a word, and the number of
syllables obtained by morphological analysis respectively. The
summation of all scores is equal to the number of syllables.

Step3: Determine allocation of syllables to notes
Finally, the number kn of syllables allocated to each note n is
determined. The numbers are initialized to 0. The note with
the highest score, n̂, is selected, and kn̂ and wn̂ are updated
to kn̂ = kn̂ + 1 and wn̂ = wn̂ − 1. The kn for all n are
obtained after S iterations of this procedure. Note that at least
one syllable has to be allocated to the head note of a word.

Figure 2 shows an example illustrating these two methods. The
word “everything” is converted into three syllables “eh | v, r, iy | th,
ih, ng”. The symbol “|” represents a syllable boundary. If the word
corresponds to two notes, method 1 allocates syllables one-by-one
from the head note and allocates all remaining syllables to the tail
note. As a result, one syllable “eh” is allocated to the first note, and
two syllables “v, r, iy | th, ih, ng” are allocated to the second note. In
method 2, because of S = 3, c1 = 7, and c2 = 5, the score for each
note is obtained as

w1 = (3× 7) / (7 + 5) = 1.75, (2)
w2 = (3× 5) / (7 + 5) = 1.25. (3)

Thus, two syllables, “eh | v, r, iy”, are allocated to the first note, and
one syllable, “th, ih, ng”, is allocated to the second note.

3.3. Syllable duplication methods
If the number of notes is smaller than that of syllables, there are some
notes without a syllable. We propose two methods for allocating
a syllable to each of these notes by duplicating the syllable of the
previous note.



Table 3. Proposed context design. English syllables and Japanese moras are allocated to common level, and new area for language dependent
context is appended. The proposed area is indicated by boldface.

Phoneme Quinphone. (Phoneme within the context of two immediately preceding and succeeding phonemes)
Syllable Number of phonemes in {previous, current, next} syllable.
(Mora) Position of {previous, current, next} syllable in note.

Language dependent context in {previous, current, next} syllable.
(English: with or without {accent, stress}, Japanese: undefined)

Note Musical {tone, key, beat, tempo, and length} of {previous, current, next} note.
Position of current note in {measure, phrase}.
With or without a slur between current and {previous, next} note.
Dynamics to which current note belongs.
Difference in pitch between current note and {previous, next} note.
Distance between current note and {next, previous} {accent, staccato}.
Position of current note in current {crescendo, decrescendo}.

Phrase Number of {syllables, notes} in {previous, current, next} phrase.
Song Number of {syllables, notes} / Number of measures.

Number of phrases.

Table 4. Diphthong duplication rules.
Original ey ay ow aw oy
Duplicated eh, ey aa, ay ao, ow aa, aw ao, oy

smile smi     -     le

One note Two notes

[s, m, ay, l] a: [s, m, ay]

b: [s, m, aa]

[ay, l]

[ay, l]

Fig. 3. Two methods for duplicating syllables.

a: Simple duplication
In this method, the nucleus of the syllable allocated to the previ-
ous note is simply duplicated, and the syllable is divided.

b: Rule-based duplication
Consecutive diphthongs due to duplication may degrade the con-
tinuity of a singing voice, so we defined the duplication rules for
diphthongs shown in Table 4.

Figure 3 shows an example illustrating these syllable duplication
methods．The word “smile” has one syllable, “s, m, ay, l”, and it
corresponds to two notes. In method a, “ay” is simply duplicated
as “s, m, ay” and “ay, l”. In method b, the “ay” of the first note is
converted to “ah” by using a duplication rule.

4. EXPERIMENTS
To evaluate the effectiveness of the proposed methods and compare
Japanese and English singing voice synthesis, we conducted subjec-
tive experiments. Twenty English songs sung by a female singer who
was a bilingual student were used for training English models, and
five songs were used for evaluation. For comparison, 17 Japanese
songs sung by the same singer were used for training Japanese mod-
els, and five songs were used for evaluation. The total length of the
voiced parts was adjusted to about 30 minutes for each training data
set. Singing voice signals were sampled at a rate of 48 kHz and win-
dowed with a 5-ms shift. The feature vectors were the spectral, ex-
citation, and vibrato feature vectors. The spectrum parameter vector
consisted of 49 STRAIGHT [17] mel-cepstral coefficients including
the zero-th coefficient. The excitation parameter vector consisted of
log F0. The vibrato parameter vector consisted of fluctuation ampli-
tude and frequency. In addition to these parameters, their deltas and
delta-deltas were used.
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Fig. 4. Effect of syllable allocation and duplication methods.

A seven-state (including the beginning and ending null states),
left-to-right, no-skip structure was used for the MSD-HSMM [12]
[18]. The phoneme alignment results for the training data obtained
by using the deterministic annealing EM (DAEM) [19] algorithm
were used as the initial phoneme boundary labels. A decision-tree-
based context-clustering technique was separately applied to the dis-
tributions for the spectrum, excitation, vibrato, state duration, and
time lag. The MDL criterion [20] was used to control the size of
the decision trees. The heuristic weight α for the penalty term in
Equation (1) in [20] was 3.0. Ten Japanese subjects were asked to
evaluate the naturalness of the synthesized singing voices on Mean
Opinion Score (MOS) with a scale from 1 (poor) to 5 (good). Each
subject was presented 10 randomly selected musical phrases from 30
musical phrases. The average length of the musical phrases was 8.1
seconds. Three experiments were carried out in a sound-proof room.

4.1. Experiment of syllable allocation and duplication
In this experiment, combinations of syllable allocation and duplica-
tion methods were compared. The syllable allocation methods were
defined as follows.

1: Left-to-right allocation
2: Score-based allocation

The syllable duplication methods were defined as follows.
a: Simple duplication
b: Rule-based duplication

The four possible combinations (1-a, 1-b, 2-a, and 2-b) were evalu-
ated in terms of the MOS.

As shown in Fig. 4, combinations 1-b, 2-a and 2-b obtained
higher score than combination 1-a, and combination 2-b obtained
the highest score. This indicates the superiority of the score-based
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syllable allocation method and the rule-based syllable duplication
method. Figure 5 shows an example of the differences between a
natural singing voice and two synthesized singing voices with com-
binations 1-a and 2-b for “rainbow”. The phoneme alignments of
the natural singing voice were obtained by hand labeling, and those
of the synthesized singing voices were obtained when the singing
voices were synthesized. The word “rainbow” consists of two syl-
lables, “r, ey, n” and “b, ow”. With combination 1-a, two syllables
were allocated to the head and center notes, and the syllable “b, ow”
was duplicated into “b, ow” and “ow”. With combination 2-b, two
syllables were allocated to the head and tail notes, and the syllable
“r, ey, n” was duplicated into “r, eh” and “ey, n” on the bases of the
duplication rule. As a result, combination 2-b produced a singing
voice similar to the natural singing voice and was thus used in the
next two experiments.

4.2. Experiment of time lag
In this experiment, the effect of time-lag modeling and where the
time-lag should be measured from were evaluated for Japanese and
English singing voice synthesis 1. The following three methods were
compared.

A: Without time-lag models
B: With time-lag (from head phoneme) models
C: With time-lag (from syllable nucleus) models

Synthesized voices were played with a click for every quarter note
synchronized to the corresponding musical score (only in this exper-
iment).

Figure 6 shows the results of MOS evaluation. Improvement
with time-lag modeling was evident for both languages. In Japanese,
method B obtained a little higher score than method C. In English,
method C obtained higher score than method B. A possible explana-
tion for this is that, since two or more consonants can appear in front
of the syllable nucleus in English, the phoneme durations before the

1The obtained results are not comparable in absolute value across lan-
guages because these experiments were conducted independently.
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Fig. 7. Effect of amount of training data.

first vowel may fluctuate widely. Method C, which achieved the best
score for English, was used in the last experiment.

4.3. Experiment of data size
In this experiment, the relationships between training data size and
the naturalness of the synthesized voices were compared between
Japanese and English singing voice synthesis. There were three sizes
for the data (length of voiced part):

S: 8 min.（5 Japanese songs, 5 English songs）
M: 15 min.（9 Japanese songs, 10 English songs）
L: 30 min.（17 Japanese songs, 20 English songs）
As shown in Fig. 7, naturalness improved for both languages

with an increasing amount of training data. Moreover, the scores
for English varied widely, probably because English is not the native
language for subjects.

5. CONCLUSIONS
In this present paper, HMM-based singing voice synthesis and its
application to Japanese and English were described. Language
independent/dependent contexts were defined for both languages,
and syllable allocation and duplication methods for matching En-
glish syllables to musical notes were described and evaluated in the
subjective experiments. Furthermore, other experiments clarified
the effects of time-lag modeling and the relationships between the
amount of training data and the naturalness of the synthesized voice
in Japanese and English singing voice synthesis. Each of them
showed a largely similar trend in both languages. Future work in-
cludes subjective evaluation by English native speakers, additional
experiments by using other singer voices, and expansion of singing
voice synthesis to other languages, e.g., Mandarin.
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