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Abstract—A new approach to recover 3-D shape from a
Scanning Electron Microscope (SEM) image is described. With
an ideal SEM image, 3-D shape can be recovered using the
Fast Marching Method (FMM) applied to the Eikonal equation.
However, when the light source direction is oblique, the correct
shape cannot be obtained by the usual one-pass FMM. The new
approach modifies the intensities in the original SEM image using
an additional SEM image of a sphere and Neural Network (NN)
training. Image modification is a two degree-of-freedom (DOF)
rotation. No assumption is made about the specific functional
form for intensity in an SEM image. The correct 3-D shape can
be obtained using the FMM and NN learning, without iteration.
The approach is demonstrated through computer simulation and
validated through real experiment.

I. INTRODUCTION

A new approach is described to recover the 3-D shape of an
object imaged using a Scanning Electron Microscope (SEM).
The approach is based on non-parametric image intensity mod-
ification. Related approaches are summarized in the following.

Pentland [1] proposed Linear Shape from Shading to re-
cover shape from shading in one image under the assumption
that the reflectance function is linear. Pentland [1] uses a light
source direction different from the viewpoint (i.e., camera di-
rection) under the assumption that reflectance is approximately
linear under wide angle illumination.

Ikeuchi and Horn [2] proposed Shape from Occluding
Boundaries to recover shape from shading in one image. The
approach uses regularization and the resulting algorithm is
iterative. Initialization is based on the geometric information
at occluding boundaries. On an occluding boundary, surface
orientation is orthogonal to both the contour of the boundary
and to the 3-D viewing direction. Iterative relaxation combines
the initial geometric information at occluding boundaries with
interior shading to estimate surface gradient densely. The
method works best for simple, closed, convex, curved surfaces.

Other methods recover shape using multiple images of
an object under rotation. Laurentini [3] proposed Shape from
Silhouette that uses multiple images through 360 degrees of
rotation. Difficulties arise when the object has local concav-
ities. Shape is determined based on the convex hull of the
observed image silhouettes. Accuracy of the obtained result
also depends on the step increment in angle between each
rotational view. Lu and Little [4] use 90 degrees of rotation

of an object. Their method recovers shape from many images
obtained during rotation with a small step increment in angle.

With an SEM, there is no equivalent to controlling the angle
between the illumination and the viewpoint. Objects imaged
with an SEM often have complex shape. Further, the ability
to rotate an object being imaged with an SEM is restricted.
Consequently, the above approaches cannot be applied directly
to SEM images.

Iwahori et al. [5] developed Radial Basis Function Neural
Network (RBF-NN) photometric stereo. Subsequently, Iwahori
et al. [6] introduced an optimization based approach that
uses two images obtained with rotation of the object stand.
Optimization is applied using a Hopfield like Neural Network
(HF-NN) [7]. The initial vector determined by the RBF-NN
is given to the HF-NN for optimization. Iwahori et al. [8]
use the FMM to recover 3-D shape. A single, directional light
source aligned with the viewing direction is assumed. Non-
Lambertian reflectance is handled via self-calibration based
on controlled rotation of the target object. Unfortunately, this
method also is not directly applicable to SEM images. Stereo
vision approaches to SEM images are the exception [9], [10],
[11]. The photometric approach of Ding et al. [15] uses a single
viewpoint. It estimates surface reflectance through rotations of
the target object. Tankus et al. [14] is another monocular vision
approach to recover 3-D shape from a single image. They
provide an iterative approach, based on the FMM, applicable
to objects with Lambertian reflectance. They also address
the problem of an oblique light source. Iteration improves
the recovered shape to a degree, as is demonstrated in our
comparison experiment. At the same time, our experiments
demonstrate that our method produces higher accuracy with
relaxed assumptions about the functional form of reflectance
and without iteration.

Iwahori et al. [16] describe an approach to modify an SEM
image based on a synthesized image of a sphere. However,
that approach assumed a parametric model for SEM reflectance
used for image synthesis. This paper extends that work to make
it possible to recover 3-D shape directly. Intensity modification
is based on the SEM image of a real calibration sphere. An
affine transformation is estimated to align the electron beam
and viewing direction. A neural network (NN) is trained with
data from the calibration sphere and subsequently used on
SEM images of target objects to produce modified images.
The FMM is applied to the modified image, without iteration,
to recover the 3-D shape of the target object.



Fig. 1. Scanning Electron Microscope

The remaining sections of the paper review the relevant
characteristics of an SEM image, describe the approach used
to recover 3-D shape under an oblique light source, and
demonstrate the approach through computer simulation and
real experiment.

II. CHARACTERISTICS OF AN SEM IMAGE

The relevant architecture and reflectance characteristics of
an SEM are summarized. The architecture is shown in Fig. 1.
An SEM image has the following properties [2]:

(1) Brightness is lowest for points where the surface
normal is toward the viewer.

(2) Light source direction and viewpoint are assumed to
be aligned (in the ideal case).

(3) Cast shadow does not occur.

Intensity, Ix,y, in an SEM image is often represented as

Ix,y =
Imin

cos θx,y
= Imin

√
1 + p2x,y + q2x,y (1)

where, for each image point (x, y), θx,y is the angle between
the direction of the electron beam and the surface normal and
(px,y, qx,y) is the surface gradient (i.e., p and q are the partial
derivatives of z with respect to x and y). Imin is the minimum
value of observed image intensity, assumed to correspond to a
surface normal pointing directly at the electron beam.

This paper relaxes condition (2) to consider the case of an
oblique light source. Further, the particular functional form for
intensity given in Eq. (1) is not assumed. As a consequence,
shape can be recovered with greater accuracy.

III. SHAPE FROM SEM WITH OBLIQUE LIGHT SOURCE

A. Fast Marching Method (FMM) for Lambertian Reflectance

Kimmel and Sethian [13] introduced shape recovery using
the FMM [12]. Assumptions made are that the light source
direction is aligned with the viewing direction and that re-
flectance is Lambertian. With these assumptions, the image
irradiance equation becomes

E =
1√

p2 + q2 + 1
(2)

(a) Initialize (b) Determine 4 nearest
known{0}, far{∞}, neighbor points

trial{} known{0}, far{∞},
trial{A,B,C,D}

(c) Select minimum (d) Determine temporal
points among ABCD value of 4 nearest points

known{0, A}, far{∞}, known{0, A}, far{∞},
trial{B,C,D} trial{B,C,D,E, F,G}

Fig. 2. FMM

where (p, q) is the surface gradient (i.e., p and q are the partial
derivatives of z with respect to x and y). Eq. (2) can be
rewritten as √

p2 + q2 =

√
1

E2
− 1 (3)

Eq. (3) is known as the Eikonal equation. The FMM [12] is
a fast algorithm to solve the Eikonal equation. Its operation
is illustrated in Fig. 2. Being able to formulate shape from
shading as a solution to the Eikonal equation allows one to use
the FMM to recover object shape from one image. Thus, many
approaches assume Lambertian reflectance and light source
direction aligned with the viewpoint and use FMM to solve
the associated Eikonal equation. These assumptions, however,
cannot be applied directly to SEM images.

B. Generation of Modified Image from SEM Image of Sphere

The goal is to transform an actual SEM image into one
that would have been obtained had the viewpoint been aligned
with the electron beam. The SEM image of a real sphere is
used to estimate the required transformation. Suppose an SEM
image of a real sphere is acquired under the condition that
the apparent viewpoint is not aligned with the electron beam
(i.e., the light source is oblique). The physical characteristic
of SEM imaging that still holds is that measured intensity is
isotropic (i.e., rotationally symmetric) about the light source
direction.

Under these conditions, the SEM image of the sphere can
be transformed geometrically into one in which intensity is
rotationally symmetric about the viewing direction. Suppose
the local minimum intensity of the SEM image of the sphere
occurs at a point whose surface normal, OP, has zenith angle,
α, and azimuth angle, β, with respect to the Z axis, as shown
in Fig. 3.



Fig. 3. Angles α and β of the Affine Transformation

An affine transformation is used to align the vector OP with
the Z axis. The transformation is modeled as the following two
steps. First, the vector OP is rotated by an angle −β about the
Z axis. This rotates the vector OP into the XZ plane. Second,
the vector is rotated by an angle −α about the Y axis. This
aligns the original vector OP with the Z axis. Any other surface
normal on the original sphere can be similarly transformed.

The associated affine transformation is first[
X ′

Y ′

Z ′

]
=

[
cos(−β) − sin(−β) 0
sin(−β) cos(−β) 0

0 0 1

][
X
Y
Z

]
(4)

then [
X ′

Y ′

Z ′

]
=

[
cos(−α) 0 sin(−α)

0 1 0
− sin(−α) 0 cos(−α)

][
X
Y
Z

]
(5)

The two rotations, Eq. (4) and Eq. (5), are applied to every
point on the calibration sphere to produce a modified image
of the calibration sphere. Intensity values from the obliquely
illuminated calibration sphere are mapped forward to become
the intensity values in the modified image. Interpolation is
applied to the modified image, as a post process, to fill
any small gaps (i.e., any pixels missed) after applying the
affine transformation to each point in the original image.
This modified image models the image that would have been
acquired had the original electron beam been aligned with
the viewing direction. This modified image of the calibration
sphere is used to train the NN that is used to similarly map the
SEM image of a test object of unknown shape, as described
in the next subsection.

C. Intensity Modification for Oblique Light Source Image

Depending on the location of the electron detector, SEM
images can appear as if obtained with an oblique light source.
The goal is to improve the accuracy of previous methods by
first producing a modified image corresponding to what would
have been obtained with a viewer aligned (i.e., frontal) light
source. The intensity modification is performed by nonlinear
transformation implemented as a NN. The reason that a NN
implementation was chosen is that neural networks are well
suited to perform nonparametric function approximation with
high accuracy.

The NN is trained with input/output data from the original
and modified SEM images of the calibration sphere. The NN

is subsequently used to modify the intensity distribution of the
image of a target object.

A Radial Basis Function Neural Network (RBF-NN), as
proposed by Chen et al. [17], is one choice that has proved
suitable in many applications. In particular, it is a choice
that has been widely used for strict interpolation tasks in
multidimensional spaces. An RBF-NN often can be designed
in a fraction of the time it takes to train standard feed-forward
networks. An RBF-NN can work well when many training
vectors are available. An RBF-NN represents non-linearity via
the choice of basis function. The Gaussian is not the only
choice of basis function but it is a choice widely used and the
one used here.

The overall intensity modification processing pipeline is
shown in Fig. 4.

Fig. 4. Intensity Modification Processing Pipeline

The processing steps are as follows:

(1) FMM is applied to the SEM image of the calibration
sphere. This image has a local minimum point and
this local minimum is used as the initial point. FMM
estimates an initial z distribution.

(2) Surface gradient, (p, q), is determined numerically
from the z distribution estimated in step (1). It is
expected that these (p, q) values are “wrong” (with an
oblique light source). In calibration, surface gradients
are used as input to train the required NN. For
each given wrong (p, q), the associated output for
NN training is the intensity, E, the (p, q) maps to
in the modified image of the calibration sphere, as
described in the previous subsection. For a test object,
intensity at each point is modified to be the output, E,
produced by the NN when the wrong (p, q) is given
as input.

(3) FMM is applied again to recover a more accurate
depth map.

For a test object, FMM is applied in the same way as for
the calibration sphere (step (1)). Again, numerical estimation
of (p, q) produces “wrong” values (step (2)). These “wrong”
values are used as input to the NN trained during calibration
to produce a modified image. FMM is applied once again
to the modified image (step (3)). Our experiments show that
the resulting z distribution is of higher accuracy. Multiple
iterations of FMM are not required, in contrast to [14].

D. Obtain
√
p2 + q2 from Intensity, E, and Apply FMM

Given the SEM image of a test object, we need to obtain
a value for

√
p2 + q2 from intensity, E, at each surface point.

A conversion table is generated. The estimate of
√

p2 + q2 is
expressed as a third order polynomial equation in E



√
p2 + q2 = aE3 + bE2 + cE + d (6)

Estimation is based on the modified calibration sphere
image. A linear least square method is used. Suppose there
are n points on the quadrant along the equator of the sphere.
Then,


E3

1 E2
1 E1 1

E3
2 E2

2 E2 1
...

...
...

...

E3
n E2

n En 1




a

b

c

d

 =



√
p21 + q21√
p22 + q22

...√
p2n + q2n

 (7)

Eq. (7) is of the form Ax = y. The coefficients
x = [a, b, c, d]T can be determined as x = (ATA)−1ATy.
FMM can then be applied directly, based on this third order
polynomial approximation, without any specific reflectance
assumption (Lambertian, SEM reflectance function, etc.).

IV. EXPERIMENTS

Both computer simulation and real experiment with SEM
imaging were done in order to evaluate the approach.

A. Simulation

Let the image size be 256×256. Let the range of x and
y be −3 to +3 for the sphere and −π/2 and +π/2 for the
synthesized test object z = h cosx cos y, respectively. The
radius of the sphere is 2.5 and the height (h) of the test object is
3.5. The synthesized image of the sphere under an oblique light
source is shown in Fig. 5(a) with the light source direction of
α = 30 [deg] and β = 315 [deg]. FMM is applied to the image
and a z distribution is obtained. A NN is constructed to map the
“wrong” (p, q) estimated from the z distribution obtained by
the FMM to the correct intensity, E, at the corresponding point
under the condition of frontal illumination. The target image
used to train the NN is shown in Fig. 5(b). The simulation
assumes Lambertian reflectance.

NN training was tested with different learning epochs. The
spread parameter for the RBF-NN was 0.5 for the distribution
of (p, q) and the error goal was set at 10−6. A total of 300
learning epochs was sufficient to train the NN.

The synthesized image of the test object is shown in
Fig. 6(a). FMM is applied to this image and (p, q) is estimated
from the resulting z distribution. These gradients, (p, q), are
input to the NN. The output of the NN is E, as shown in
Fig. 6(b). FMM is applied again to the modified image. The
recovered result for the test object is shown in Fig. 7(b).

Fig. 7(a) is the recovered shape result for the sphere image
itself. As above, FMM is first applied to Fig. 5(a) and (p, q)
is estimated from the resulting z distribution. FMM is applied
to the modified image, E, to produce Fig. 7(a).

For comparison, results of the Tankus et al. approach [14]
are shown in Fig. 8. Their approach decreases the error via
iteration and the error status is shown in Table I. It is assumed
that the range of values of E is scaled to be between 0 and 1.

TABLE I. ERROR STATUS OF TANKUS et al. APPROACH (FOR
LAMBERTIAN IMAGE)

Mean Err. Max Err.
1 Epoch 0.271 0.581
2 Epoch 0.141 417
3 Epoch 0.098 0.354
4 Epoch 0.079 0.235
5 Epoch 0.063 0.219
6 Epoch 0.055 0.201
7 Epoch 0.061 0.289
8 Epoch 0.078 0.342

With Tankus et al., multiple iterations are required to
achieve convergence in shape. Even with convergence, the
resulting shape shows some distortion compared to the results
of our approach.

With our approach, the mean error and the maximum
error for the shape of the recovered sphere were 0.008 and
0.031 respectively. The mean error and the maximum error
for the test object were 0.011 and 0.036, respectively. Error
for the test object was a little bit larger than for the sphere.
A comparison of error between our approach and Tankus et
al. is shown in Table II. Compared to Tankus et al., our error
was smaller for both objects. In our approach, some points
were not learned by the NN owing to self-shadow in the
sphere image generated by simulation. Nevertheless, for the
test object, intensity modification was correctly done and the
resulting z distribution was obtained with higher accuracy.

TABLE II. COMPARISON OF ERROR FOR TEST OBJECT

Mean Err. Max Err.
Proposed Approach 0.011 0.036

Approach [14] 0.055 0.201

(a) Input Image (b) Target Image

Fig. 5. Lambertian Sphere

(a) Test Object Image (b) Test Object Image
before modification after modification

Fig. 6. Test Object Image

B. SEM Sphere Image

A stainless steel sphere with radius 0.5mm was used and
the SEM image obtained is shown in Fig. 9(a). FMM was



(a) Sphere (b) Test Object

Fig. 7. Shape Result (Simulation)

(a) Initial State (b) Four Iterations (c) Eight Iterations

Fig. 8. Result of Tankus et al. Approach (Simulation)

applied without further processing and the result is shown in
Fig. 9(b). The real sphere SEM image (which corresponds to an
oblique light source) and the modified sphere image generated
with the affine transformation (which corresponds to frontal
illumination) were used to train the NN. Fig. 10(a) repeats the
original image of Fig. 9(a). The modified sphere image used
to train the NN is shown in Fig. 10(b). The corresponding iso-
brightness contour images for Fig. 10(a) and (b) are shown in
Fig. 10(c) and (d), respectively.

As in the simulation case, FMM is applied to the real
sphere image and (p, q) is estimated from the resulting z
distribution. These gradients, (p, q), are input to the NN. FMM
is applied again to the modified image to recover the shape for
evaluation.

The resulting image after modification with the NN is
shown in Fig. 11(a). The result of applying FMM to this image
is shown in Fig. 11(b). Analysis confirms that the result from
the original image (without modification), shown in Fig. 9(b),
has larger error for the original radius of 0.25 [mm]. The result
from the modified image, shown in Fig. 11(b), has improved
the recovered shape. Unlike in the simulation case, the SEM
image of the real sphere has no equivalent to a self-shadow
region. This reduces the error when training the NN at every
point in real experiments.

(a) Original Image (b) Recovered Result

Fig. 9. Sphere Result without Modification

Experiment with another test object, a blob of solder, also
was done. The original SEM image of the solder blob is shown

(a) Input Image (b) Image Used
(before Modification) for NN Learning

(c) Contour Image (d) Contour Image
(before Modification) (for NN Learning)

Fig. 10. Sphere Image for NN Learning

(a) Modified Image (b) Recovered Result

Fig. 11. Sphere Result after Modification

in Fig. 12(a). The recovered result, without modification,
is shown in Fig. 12(b). The modified image is shown in
Fig. 13(a) and the recovered result, with modification, is shown
in Fig. 13(b). The convex part of the top point slips out of
place in Fig. 13(a) while the corresponding part fits correctly in
Fig. 13(b). Quantitative analysis in this case is difficult because
the true shape is not known. But, the recovered result of
Fig. 13(b) is a qualitatively better result than that of Fig. 12(b).

V. CONCLUSION

This paper described a new approach to recover the 3-D
shape from the SEM image of a target object. Assumptions
about the alignment of the electron beam with the apparent
viewing direction and about the specific functional form for
intensity in an SEM image are relaxed. Instead, what is
required is obtained from an SEM image of a sphere, used
for calibration. Measurements from the calibration sphere are
used to train a NN. Once trained, the NN is used to modify the
SEM image of the target object so that standard FMM can be
applied, without iteration. Experiments show that 3-D shape
can be recovered with greater accuracy.

Further topics to explore include application of the ap-
proach to test objects with more complex (i.e., convex and
concave) shape. The problem to address is that the FMM



generates its solution from a given initial point in depth on the
assumption that the surface has a monotonic, convex shape.
More complex shapes will require multiple initial points in
depth and the ability to segment and to recombine surfaces
into distinct convex and concave regions.

(a) Original Image

(b) Recovered Result

Fig. 12. Solder Result without Modification

(a) Modified Image

(b) Recovered Result

Fig. 13. Solder Result after Modification
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