
Implementation and Performance Analysis of STT
Tunneling using vNIC Offloading Framework

(CVSW)
Ryota Kawashima

Dept. of Computer Science and Engineering
Nagoya Institute of Technology

Nagoya, Japan
e-mail: kawa1983@nitech.ac.jp

Hiroshi Matsuo
Dept. of Computer Science

Nagoya Institute of Technology
Nagoya, Japan

e-mail: matsuo@nitech.ac.jp

Abstract—Network Virtualization Overlays (NVO3) provides
multi-tenancy services in cloud datacenters with existing net-
working equipment. IP tunneling is an essential technology to
logically separate each virtual traffic, in particular, Stateless
Transport Tunneling (STT) is considered to achieve better
performance using TCP Segmentation Offload (TSO) feature.
Currently, there is no openly available implementation of STT,
and its implementation and performance characteristics have
not been studied in academic field so far. We have therefore
implemented STT protocol and conducted performance evalua-
tion by comparing with VXLAN protocol. In practice, the STT
implementation has been done using a virtual NIC offloading
framework, co-virtual switch (CVSW). CVSW is a software
component that extends virtual NICs and provides high-level
packet processing framework such as OpenFlow Match-Action.
In this paper, we describe implementation details of STT and
performance evaluation results from various perspectives. The
results showed that the actual performance of STT was almost
equal to non-tunneling VM-to-VM communication and was two-
times higher than that of VXLAN. Furthermore, we clarify the
high-performance nature of STT is brought from both byte-
stream characteristic of TCP and Generic Receive Offload (GRO)
feature rather than widely believed TSO.

Index Terms—SDN, NVO3, STT, VXLAN, OpenFlow, datacen-
ter, NIC offloading

I. INTRODUCTION

The notion of Software-Defined Networking (SDN) has
begun to be introduced in cloud datacenters that provide multi-
tenancy services. Various network virtualization techniques
have been proposed to achieve logically separated tenant net-
works and practically Edge-overlay or Network Virtualization
Overlays (NVO3)[1] approach has gained attentions so far.

Under the overlay-based model, high-functional edge (vir-
tual) switches and L2-in-L3 tunneling protocols play a core
role in network virtualization. Specifically end-to-end virtual
switches establish IP tunneling and then Ethernet frames of
virtual machines’ are encapsulated by the tunneling protocol,
such as VXLAN[2], NVGRE[3], and STT[4]. These protocols
add similar outer Ethernet and IP headers to the original
frames, however, L4/tunnel headers vary from protocol to

protocol and their characteristics can cause measurable per-
formance differences of virtual networks.

Stateless Transport Tunneling (STT) has been proposed by
Nicira, Inc. (acquired by VMware, Inc.) for high-performance
virtual networks. The unique characteristic of STT is that it
uses a pseudo-TCP header identified by protocol number (6)
at IP layer, which makes STT packets look like TCP packets
to physical NICs. As a result, STT packets can be processed
with NIC offloading technology such as TCP segmentation
offload (TSO)[5]. However, there has been no openly available
implementation and rigorous evaluation of STT so far, even
though its specification has been released as RFC draft[4].

In this paper, we first explain implementation details of
STT1 and analyze its performance characteristics evaluated
from various points of view. For STT implementation, we used
our previously proposed virtual NIC offloading framework,
Co-Virtual Switch (CVSW)[6], to ease the development of
the protocol. CVSW is a high-functional virtual NIC driver
(based on virtio net driver of Linux kernel) that provides
OpenFlow[7] Match-Action packet processing and VXLAN
tunneling. The main advantages of CVSW use for STT im-
plementation are as follows; (i) driver-level implementation
simplifies the tunnel protocol development (ii) CVSW does not
depend on both hypervisor platforms and underlying physical
NIC devices. The former reason is derived from avoiding
kernel’s protocol stack to be modified. The later is achieved by
widely supported virtio[8] mechanism because para-virtualized
network driver (virtio net) needs not emulate any physical
NIC device. Therefore, CVSW is a preferable framework to
implement and evaluate STT protocol.

We have conducted performance evaluation of the imple-
mented STT by comparing with two VXLAN implementations
(CVSW-based and Open vSwitch[13]-based). In practice, VM-
to-VM throughput of TCP/UDP communications with varied
packet sizes and various offloading effects have also been eval-

1Our implementation can be available at GitHub.
https://github.com/sdnnit/cvsw net (cvsw-nvo3 branch)

 Payload�Ether� IP� P-TCP� STT� Ether� IP� TCP�

Ether� IP� P-TCP� STT� Ether� IP� TCP� Payload 1�

Ether� IP� P-TCP� Payload 2�

Ether� IP� P-TCP� Payload N�

�
�
�
�

 Payload�Ether� IP� TCP�VM�

CVSW
(Encapsulation)�

Physical NIC
(Segmentation)�

TSO�

Fig. 1. STT’s encapsulation and segmentation flows with TSO feature

uated on 40GbE network. As a result, the actual throughput
of STT was about 90% higher at most than MTU-adjusted
VXLAN communication. Furthermore, our analysis clarifies
that the cause of the STT’s high-performance results come
from both byte-stream characteristics of TCP and Generic
Receive Offload (GRO)[9], rather than widely believed TSO.

The rest of this paper is organized as follows. Section II
introduces fundamental protocol overviews of STT. Then, brief
description of CVSW architecture is explained in Section III
and implementation details of STT in CVSW architecture is
illustrated in Section IV. In Section V, we evaluate actual per-
formance of the implemented STT by comparing with native
and VXLAN-based VM-to-VM communications. Section VI
discusses related work, and finally, Section VII concludes this
study and gives future work.

II. STATELESS TRANSPORT TUNNELING (STT)

STT[4] is one of the major L2-in-L3 tunneling protocols for
network virtualization purpose. The main characteristic of STT
is that STT packets are handled as TCP packets by physical
NICs, which enables the NICs to apply TCP Segmentation
Offload (TSO) feature to large STT packets. Generally, large
payload data is split at the TCP protocol layer of the kernel
in order to limit single TCP segment size up to Maximum
Segment Size (MSS) + 20 bytes. TSO performs this process
at the underlying physical NIC instead of the TCP protocol
layer to reduce CPU load of the physical server.

Figure 1 shows a sequence of encapsulation and segmen-
tation of a VM’s Ethernet frame at the sender side. First, the
VM can create large Ethernet frames if TSO feature of the
virtual NIC is enabled. Then, a tunnel endpoint system such
as virtual switches or CVSW (in this case) encapsulates the
frame with STT and pseudo-TCP (P-TCP) headers. Finally,
the underlying physical NIC divides the large frame into the
multiple frames that have consecutive sequence values in P-
TCP headers. Note that the counterpart tunnel endpoint system
has to reassemble the P-TCP segments before decapsulation
because each P-TCP segment except the first one does not
include STT and inner headers.

Currently, implementation of STT protocol can only be
available in some production systems, such as VMware NSX

(Nicira NVP)[10] and Stratosphere SDN Platform (SSP)[11],
and thorough evaluation of STT including how offloading
methods effect its performance or what causes the perfor-
mance differences from other protocols like VXLAN has not
been performed yet in academic field. Therefore, we have
implemented STT protocol as open source and its performance
characteristic is evaluated in this paper.

III. CO-VIRTUAL SWITCH (CVSW) FRAMEWORK

In this section, we describe the overview architecture of
the Co-Virtual Switch (CVSW) framework[6] that we have
developed so far. CVSW is a high-functional software compo-
nent that resides in para-virtualized network driver (virtio net)
of virtual machines, and it performs VM-dedicated packet
manipulation based on OpenFlow.

Virtual
switch�

CVSW�

VM�
User space�

Kernel space�

Protocol stack�

Physical server�

Match� Action�

OpenFlow
+α�

Flow table�
�OF Match/Action
�IP tunneling
�MTU setting
�Offload setting�

OpenFlow
controller�

OpenFlow session�

DC network�

Fig. 2. Overview architecture of CVSW-enabled system

OFPT_FLOW_MOD�Ether� IP� TCP� OFPT_PACKET_OUT� Ether�

OpenFlow message�

Payload�

Flow entry�

Fig. 3. Packet structure of CVSW message

Figure 2 illustrates the overview architecture of a CVSW-
enabled system. First, CVSW works in the kernel space of the
virtual machine (VM) as a part of network driver (vNIC). Like
existing OpenFlow-enabled switches, CVSW has its own flow
table that consists of Match and Action directives for flow-
oriented packet processing. CVSW currently supports all of
packet modification actions defined as OpenFLow version 1.0.
In addition, VXLAN encapsulation/decapsulation and vNIC
configuration (MTU size and NIC offloading) are supposed.
The flow table of CVSW can be managed by OpenFlow
controllers via the OpenFlow-enabled virtual switch in a way
that the controller sends OFPT_FLOW_MOD message follow-
ing an Ethernet header as a payload of OFPT_PACKET_OUT
message (See figure 3).

CVSW implementation framework is useful for supporting
tunneling protocols in that encapsulation/decapsulation pro-
cess can be implemented independently of TCP/IP protocol
stack in both VM and host kernels, and protocol behaviors
can be tested on virtual machine environment.

IV. IMPLEMENTATION OF STT WITH CVSW

We describe implementation details of STT protocol as
a function of CVSW in this section. Entire CVSW’s func-
tionality is implemented in the widely used virtio net para-
virtualization driver such that the driver’s interface is not
changed, and therefore, any modification o f VM’s kernel or
the underlying hypervisor is not necessary.

start_xmit

cvsw_handle_tx_skb

	

cvsw_handle_data	

cvsw_handle_data

	

xmit_skb	

virtqueue_kick	

cvsw_handle_tx_skb	

from VM's kernel	

to the hypervisor	

cvsw_handle_rx_skb

	

cvsw_handle_data	
receive_buf

netif_receive_skb	

cvsw_handle_rx_skb	

from the hypervisor	

to VM's kernel	

cvsw_apply_set_stt

	

cvsw_apply_strip_stt

	

foreach entry	

Apply actions	

Match ?	

done	

make tunnel space	

setup ip header	

setup ptcp header	

setup stt header	

calculate csum	

validate headers	

merge segments	

remove headers	

Transmit	

Receive	
yes	

no	

<skb>	

<skb>	

<skb,in_port>	

<skb>	

<skb>	

Fig. 4. Flow chart of STT processing on CVSW framework

Figure 4 shows a basic flow chart of STT encapsulation/de-
capsulation as a part of CVSW’s processing. In transmission
process, the kernel of the VM calls start_xmit function of
the driver to pass a skb (socket buffer) containing transmitting
Ethernet frame. In the case of normal virtio_net driver,
the skb is directly passed down to the underlying hypervi-
sor, however, CVSW-enabled driver performs flow matching
in cvsw_handle_data function before passing down the
skb. The flow matching is conducted using flow_table
entry list as shown below.

struct cvsw_flow_entry
{

/* Priority of this entry */
__u16 priority;
/* The number of instructions */
__u16 nr_insts;
/* Flow match conditions */
struct cvsw_match match;
/* Array of instructions */
struct cvsw_instruction *instructions;
/* Pointers to next and previous entries */
struct list_head list;

};

/* List of cvsw_flow_entry (sorted by priority) */
static LIST_HEAD(flow_table);

If matching entry is found, its instructions are
applied to the skb in order. For STT encapsulation,

cvsw_apply_set_stt function is invoked as an instruc-
tion. In this function, buffer space for outer headers (72 bytes)
is first ensured. Next, 3-layers of protocol headers (IP, P-
TCP, and STT) are inserted into the buffer space. Finally, the
checksum filed in the P-TCP header is set with proper value.

In receiving process, receive_buf function is called
when Ethernet frames arrive, and the corresponding skb
is passed to cvsw_handle_data function. 　 For STT
decapsulation, cvsw_apply_strip_stt function is called
as an instruction. In this function, not only decapsulation of
outer headers but also reassembling of P-TCP segments is
performed because segmented P-TCP data except the first
one does not include inner headers at all (See figure 1).
CVSW provides generic reassembling/defragmentation mech-
anism based on hash table as shown below, and the original
STT frame is restored in the skb member of tun_fragment
structure. After the reassembling process, the entire STT frame
is decapsulated and the original data is passed to the TCP/IP
protocol stack of the VM’s kernel.

struct tun_fragment
{

/* P-TCP’s identifier */
__be32 id;
/* Offset for the next segment */
off_t next_idx;
/* Total STT frame size after reassembling */
size_t frame_size;
/* Ressembled skb */
struct sk_buff *skb;
/* Pointers to next and previous entries*/
struct hlist_node list;

};

/* Hash list of tun_fragment */
static DEFINE_HASHTABLE(frag_hash, 12);

V. PERFORMANCE EVALUATION

We have explained overview architecture and implemen-
tation detail of STT with CVSW framework so far. In this
section, we evaluate actual performance of the implemented
STT protocol in 40GbE environment[12] by comparing with
existing VXLAN protocol implemented in Open vSwitch
(OVS)[13]2. In addition, throughput of optimal model that
does not encapsulate VMs’ Ethernet frames was also measured
to indicate maximum results in our environment.

Iperf
client�

CVSW�

VM�

Iperf
server�

CVSW�

VM�

vnet0�

eth2� eth1�

vnet0�
STT tunnel�

TCP/UDP communication�

Physical server 1 Physical server 2�

Virtual
switch�

Virtual
switch�

40GbE

Fig. 5. Experiment environment

2MTU size of vNICs were set to 1450 bytes for VXLAN encapsulation.

TABLE I
MACHINE SPECIFICATIONS

VM 1 (Sender)
OS CentOS 6.5 (2.6.32)
CPU 1 core
Memory 2 GBytes
vNIC virtio-net
MTU 1420 bytes
Offload TSO, UFO, GSO,

GRO

Physical server 1
OS CentOS 6.5 (2.6.32)
VMM KVM
vSwitch Open vSwitch 2.1.2
CPU Core i7 (3.60 GHz)
Memory 64 GBytes
MTU 1500 bytes
Offload TSO, GSO, GRO
Network 40GBASE-SR4

VM 2 (Receiver)
OS CentOS 6.5 (2.6.32)
CPU 1 core
Memory 2 GBytes
vNIC virtio-net
MTU 1420 bytes
Offload TSO, UFO, GSO,

GRO

Physical server 2
OS CentOS 6.5 (2.6.32)
VMM KVM
vSwitch Open vSwitch 2.1.2
CPU Core i7 (3.40 GHz)
Memory 32 GBytes
MTU 1500 bytes
Offload TSO, GSO, GRO
Network 40GBASE-SR4

Figure 5 shows the experimental network environment and
table I gives machine specifications. In the experiments, actual
throughput of VM-to-VM running on different physical servers
was measured under performance mode3 using Iperf[14]
such that the Iperf client continuously sends TCP or UDP to
the Iperf server for a minute. Note that the flow tables of both
CVSW and OVS were set in advance in the experiments.

A. TCP communication

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 64 256 1024 4096 16384 65536

Ba
nd

wi
dt

h
[M

bp
s]

Packet Size [bytes]

Optimal
STT (CVSW)

VXLAN (CVSW)
VXLAN (OVS)

Fig. 6. Throughput of single TCP communication

In this experiments, performance of single TCP connection
between end-to-end VMs was evaluated using Optimal, STT,
and VXLAN protocols with various packet sizes. The result
shows that the throughputs of these three protocols are almost
the same for 64–8192 packet sizes. For larger packet sizes,
throughputs of Optimal and STT went up to about 12Gbps
at maximum, while that of VXLAN peaked under 6Gbps.
Considering outer header size of VXLAN is smaller than that
of STT, it is reasonable to consider that this performance

3/sys/devices/system/cpu/cpu*/cpufreq/scaling governer

gap between VXLAN and the others was cased by offloading
effects. In addition, the performance gap only occurs for large
packets, which indicates the bottleneck of VXLAN is packet
segmentation or reassembling process. Therefore, we evaluate
the actual effects of various offloading functions next.

B. Offloading effects

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4096 8192 16384 32768 65536
Ba
nd
wi
dt
h
[M
bp
s]

Packet Size [bytes]

ALL:on
TSO:off
GSO:off
GRO:off
ALL:off

Fig. 7. Effects of offloading types (TSO, GSO, GRO) for STT

We evaluated the performance effects of offloading features,
TSO, GSO[15], and GRO, for STT protocol4. TSO (TCP
Segmentation Offload) is a NIC level function to perform
TCP segmentation for large Ethernet frames including TCP/IP
headers into acceptable length of ones. On the other hand,
GSO (Generic Segmentation Offload) and GRO (Generic
Receive Offload) emulate the hardware-level segmentation
or reassembling by software at the kernel. GSO supports
segmentation for various protocols including TCP and UDP,
by contrast, GRO reassembles received packets.

Figure 7 shows the result of offloading effects. First, the
dashed line (ALL:on) is a result when every offloading feature
was enabled and this is the same with the STT’s result in
figure 6. It is remarkable that TSO and GSO did not effect
actual throughput of VM-to-VM communication. This was
because the TCP segmentation was not a bottleneck process in
the communication under the current computing power. The
result indicates that the bottleneck of STT communication is
intensive software interruptions (softirq) for received packets
considering GRO reduces the number of interruptions by
reassembling multiple received packets before the interruption.
In addition, the throughput of STT without GRO was approx-
imately the same with that of VXLAN shown in the previous
figure. We discuss this phenomenon later in this section.

C. UDP communication

Finally, we evaluated the performance of UDP communi-
cation. The throughputs of every model was almost the same

4We did not evaluate LRO (Large Receive Offload)[16] because it did not
work in our environment.

 0

 2000

 4000

 6000

 8000

 10000

 64 256 1024 4096 16384

Ba
nd
wi

dt
h
[M

bp
s]

Packet Size [bytes]

Optimal
STT (CVSW)

VXLAN (CVSW)
VXLAN (OVS)

Fig. 8. Throughput of single UDP communication

when packet size was small, however, performance of STT
is outstanding for lager packets because GRO feature works
for pseudo-TCP. The throughput of VXLAN was apparently
below Optimal for large packets. Considering packet drop rate
of VXLAN (72%) was higher than that of Optimal (27%)
when packet size was 16384 bytes, defragmentation process
at the physical server before decapsulation could cause buffer
overflow of the physical NIC.

D. Discussion

We have evaluated fundamental performance of STT pro-
tocol and found the key of its high-speed communication is
GRO. Here, we discuss why STT can take advantage of GRO
feature and VXLAN cannot, even though GRO can be applied
to UDP-based flows.

To show how outgoing/incoming packets are processed by
GRO, we measured packet length during ten-second VM-to-
VM TCP communication at several interfaces, vnet0, eth2
(Tx), and eth1 (Rx). Figure 9–11 show the number of packets
was handled for each packet size. In figure 9, length of most
packets was 64K bytes for both protocols because TSO feature
of the vNIC was enabled. After GSO processing at the kernel
of physical server, lengths of VXLAN packets were changed
as shown in figure 10 to fit into MTU size. Large STT packets
are also divided by TSO feature of the physical NIC, however,
the difference that who divides the packets does not effect
VM-to-VM performance according to the above results. At the
receiver side, you can see only STT packets were reassembled
and GRO feature did not work for VXLAN packets as shown
in figure 11. Since GRO can reduce the number of software
interruption for received packets, its effect can make a clear
difference in actual throughput.

To clear why GRO does not work for VXLAN packets, we
analyzed packet structure of VXLAN at the sender machine
and the figure 12 illustrates packet structure transition during
encapsulation and segmentation processes. We have found that
the segmentation process of GSO is applied to the inner L4
protocol by skb_udp_tunnel_segment function in the

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 64 256 1024 4096 16384 65536

P
a
c
k
e
t

C
o
u
n
t
s

Packet Size [bytes]

STT
VXLAN

Fig. 9. Tx: Packet size statistic at the vnet0 (before GSO)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 64 256 1024 4096 16384 65536

P
a
c
k
e
t

C
o
u
n
t
s

Packet Size [bytes]

STT
VXLAN

Fig. 10. Tx: Packet size statistic at the eth2 (after GSO)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 64 256 1024 4096 16384 65536

P
a
c
k
e
t

C
o
u
n
t
s

Packet Size [bytes]

STT
VXLAN

Fig. 11. Rx: Packet size statistic at the eth1 (after GRO)

kernel to prevent IP fragmentation that is not recommended
by the VXLAN’s specification[2]. As a result, original large
Ethernet frames from the VM are divided into independent

multiple frames and outer headers are added to each frame.
Considering message-oriented characteristic of UDP protocol,
there is no need to integrate multiple independent UDP packets
by GRO. On the other hand, TCP has byte-stream character-
istic, which allows reassembling of multiple packets. This is
why STT protocol has higher performance than VXLAN.

 Payload�IP� UDP�VXLAN�Ether� IP� TCP�

Ether� IP� UDP�VXLAN�Ether� IP� TCP� Payload 1�

Ether� IP� UDP� Payload 2�

Ether� IP� UDP�

�
�
�
�

 Payload�Ether� IP� TCP�VM�

OVS/Kernel
(Encapsulation)�

Kernel
(2-level
 Segmentation)�

VXLAN�Ether� IP� TCP�

Payload M�VXLAN�Ether� IP� TCP�
GSO�

Fig. 12. VXLAN’s encapsulation and segmentation flows with GSO

VI. RELATED WORK

VMware has reported the performance of STT implemented
in their products[17]. Their result showed that the throughput
of STT was comparable to Optimal (9.3Gbps) and they have
stated that the use of TSO feature enables high-performance
communication. However, analysis of how or which offloading
feature brings the improvement of tunnel performance has not
written in the report.

Performance of VXLAN has also been reported in [18]
provided by VMware. In their report, aggregated throughput of
five-sessions per VM running on VMware vSphere was up to
about 9Gbps using 10GbE NICs. However, it is unclear about
the performance of single session and maximum throughput
without the bandwidth limitation.

VII. CONCLUSION

Edge-overlay based network virtualization has continued to
spread in multi-tenant datacenter networks under the SDN
paradigm. Various tunneling protocols have been proposed
so far, and especially Stateless Transport Tunneling (STT)
has been regarded as fastest protocol by taking advantage
of TCP Segmentation Offload (TSO) feature. However, actual
throughput of STT and the cause of its high-performance have
not been analyzed in academic field.

In this paper, we implemented STT protocol using our
developed CVSW framework to evaluate. CVSW is a high-
level packet processing mechanism that resides in virtual NIC
drivers, and it allows developers to concentrate on STT’s
encapsulation/decapsulation processes. Our evaluation results
showed that actual throughput of STT can double compared
to VXLAN for large packet size. In addition, we found that
the cause of this result was brought from the effect of Generic
Receive Offload (GRO) rather than TSO. That is, byte-stream

characteristics of TCP is a key to reassemble received packets
with GRO feature.

STT protocol can cause compatibility problem with packet
inspection tools by regarding STT packets as incorrect TCP
packets. Therefore, we are planning to explore yet another
tunneling protocol based on new connection-less L4 protocol
that has byte-stream characteristic.

REFERENCES

[1] M. Lasserre, F. Balus, T. Morin, N. Bitar, and Y. Rekhter, ”Framework
for DC Network Virtualization”, Internet draft, 2013.

[2] M. Mahalingam, D. Dutt, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, ”Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks”, RFC 7348, 2014.

[3] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, ”NVGRE:
Network Virtualization using Generic Routing Encapsulation”, Internet
draft, 2014.

[4] B. Davie, Ed. and J. Gross, ”A Stateless Transport Tunneling Protocol
for Network Virtualization (STT)”, Internet draft, 2014.

[5] Offloading the Segmentation of Large TCP Packets, http://msdn.
microsoft.com/en-us/library/windows/hardware/ff568840(v=vs.85).aspx

[6] R. Kawashima and H. Matsuo, ”Virtual NIC Offloading Approach
for Improving Performance of Virtual Networks”, The Transactions of
Institute of Electronics Information and Communication Engineers B
(IEICE), vol.J97-B, no.8, pp.639–647, 2014 (Japanese).

[7] N. McKeown, T. Andershnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, J. Turneron, and H. Balakris, ”OpenFlow: Enabling Innovation
in Campus Networks”, Newsletter ACM Computer Communication
Review, Vol. 38, Issue 2, pp. 69-74, April 2008.

[8] R. Russel, ”virtio: Towards a De-Facto Standard For Virtual I/O De-
vices”, ACM SIGOPS Operating Systems Review, Vol. 42, Issue 5,
pp.95–103, 2008.

[9] JLS2009: Generic receive offload, http://lwn.net/Articles/358910/
[10] VMware NSX, http://www.vmware.com/products/nsx/
[11] Stratosphere SDN Platform, http://www.stratosphere.co.jp/
[12] Mellanox, ”Performance Tuning Guidelines for Mellanox Network

Adapters”, http://www.mellanox.com/related-docs/prod software/
Performance Tuning Guide for Mellanox Network Adapters v1.10.
pdf

[13] Open vSwitch, http://openvswitch.org/.
[14] Iperf, http://iperf.sourceforge.net/
[15] gso — The Linux Foundation, http://www.linuxfoundation.org/

collaborate/workgroups/networking/gso
[16] Leonid Grossman, ”Large Receive Offload implemen- tation in Neterion

10GbE Ethernet driver”, Proc. of the Linux Symposium, vol.1, pp.195-
200, Ottawa, CA, July 2005.

[17] T. Koponen et. al, ”Network Virtualization in Multi-tenant Dat-
acenters”, http://download3.vmware.com/software/vmw-tools/technical
reports/network virt in multi tenant dc.pdf, VMWare, Technical Re-
port TR-2013-001E, 2013.

[18] VMware, ”VXLAN Performance Evaluation on VMware vSphere
5.1”, Technical Papers, http://www.vmware.com/files/pdf/techpaper/
VMware-vSphere-VXLAN-Perf.pdf, 2013.

