VSE: Virtual Switch Extension for Adaptive CPU
Core Assignment in softirq

Shin Muramatsu
Nagoya Institute of Technology
Nagoya, Aichi, 466-8555, Japan
muramatsu @matlab.nitech.ac.jp

Ryota Kawashima
Nagoya Institute of Technology
Nagoya, Aichi, 466-8555, Japan

kawal983 @nitech.ac.jp

Shoichi Saito
Nagoya Institute of Technology
Nagoya, Aichi, 466-8555, Japan
shoichi @nitech.ac.jp

Hiroshi Matsuo
Nagoya Institute of Technology
Nagoya, Aichi, 466-8555, Japan

matsuo@nitech.ac.jp

Abstract—An Edge-Overlay model constructing virtual net-
works using both virtual switches and IP tunnels is promising
in cloud datacenter networks. But software-implemented virtual
switches can cause performance problems because the packet
processing load is concentrated on a particular CPU core.
Although multi queue functions like Receive Side Scaling (RSS)
can distribute the load onto multiple CPU cores, there are still
problems to be solved such as IRQ core collision of heavy traffic
flows as well as competitive resource use between physical and
virtual for packet processing. In this paper, we propose a software
packet processing unit named VSE (Virtual Switch Extension)
to address these problems by adaptively determining softirq
cores based on both CPU load and VM-running information.
Furthermore, the behavior of VSE can be managed by OpenFlow
controllers. Our performance evaluation results showed that
throughput of our approach was higher than an existing RSS-
based model as packet processing load increased. In addition,
we show that our method prevented performance of high-loaded
flows from being degraded by priority-based CPU core selection.

Keywords-Software-Defined Networking, Network Virtualiza-
tion, OpenFlow, Virtual Switch, RSS

I. INTRODUCTION

In public cloud datacenters, virtual networks have to be
provided for each tenant to realize multi-tenant services.
Generally, there are many virtual network equipments, such as
virtual machines (VMs), virtual routers and virtual firewalls,
and they are logically connected one another. Each virtual
network shares same physical network resources, therefore, a
mechanism that logically separates traffic of virtual networks
is required. Recently, an Edge-Overlay model (or NVO3[1])
constructing virtual networks using both virtual switches and
IP tunnels is promising in cloud datacenter networks. In
this model, virtual switches establish IP tunnels, such as
VXLAN]2], NVGREJ3], and STT[4], among them and each
virtual network traffic can be identified by a tunnel ID included
in the tunnel header.

Virtual switches have an impact on actual performance of
virtual networks in that their software-based packet processing

can be a performance bottleneck. In addition, state of the
art virtual switches support high-level functionality including
OpenFlow[5], QoS control, and security, which makes worse
the performance issue. Furthermore, the notion of Network
Functions Virtualization (NFV)[6] that realizes various types
of virtual network appliances has gained wide attentions. As
a result, further performance improvement of virtual networks
is required.

Again, fundamental functionality of virtual switches is
implemented in software, and therefore, they occupy CPU re-
sources of the underlying physical server when they do heavy
packet processing such as encryption and tunneling. Thus,
degradation of VMs’ CPU resources results in poor virtual
network performance. To address the problem, an additional
mechanism that adaptively distributes packet processing load
based on CPU resource usage is required.

Many hardware-assisted techniques have been proposed to
improve the performance of virtual networks. sSNICh[7] allows
hardware offloading of OpenFlow processing onto physical
NICs. Tanyingyong et al.[8] have proposed a method that
caches flow entries of the virtual switch at FlowDirector[9]
implemented in Intel® NICs, in order to decrease the load of
look-up processing of virtual switches. Receive Side Scaling
(RSS)[10] and FlowDirector provide multi-queue functions
that alter CPU cores to be interrupted by the hardware NIC
based on the received packet headers. Although such high-
end technologies have been adopted by many vendor prod-
ucts, vendor-specific technologies can cause vendor lock-in
problems.

This paper proposes yet another software packet process-
ing component, Virtual Switch-extension (VSE), to improve
performance of virtual networks by adaptively selecting CPU
cores for received packet processing using existing hardware
equipments. VSE resides in between the virtual switch and the
physical NIC, and has its own OpenFlow-based flow table to
distribute the flow handling load to adequate CPU cores. In
addition, the behavior of VSE can be managed by a unified

controller using an OpenFlow-based protocol. In this paper,
we describe architectural design of VSE and how to control its
behavior by the controller system. Besides, its implementation
details within the device driver of the physical NIC are
also explained. Performance evaluation results showed that
throughput of our approach was higher than that of a simple
RSS-based model as the packet processing load increases. In
addition, we show that performance degradation of higher-
priority flows can be prevented by the proposed method when
the physical server is high load.

The rest of this paper is organized as follows. Section II
gives related work. Section III describes overall architecture of
the proposed method, and implementation details is described
in Section IV. Section V shows the performance evaluation
results, and finally, Section VI concludes the paper and gives
future work.

II. RELATED WORK

SNICh[7] manages a flow table in the physical NIC to
reduce the OpenFlow-related packet processing load of virtual
switches. However, such hardware-based offloading approach
bypasses the processing of high-functional virtual switches,
and therefore, applying this method to Edge-Overlay model is
difficult.

Sira et al.[11][12] have proposed SR-IOV[13] based ap-
proach to improve performance of virtual routers. By using
this technology, received packets are directly passed from
the physical NIC to the virtual NIC, therefore, the switching
overhead between kernel and user space can be reduced. Since
this technology also bypasses virtual switches, there remains
the same problem to be considered.

Tanyingyong et al.[8] uses FlowDirector[9] supported by
Intel NICs to accelerate look up processes of the flow table
and reduce the CPU loads of the physical server. However,
such vendor specific technologies cannot be applied to data-
center networks where various hardware appliances are used.
Furthermore, FlowDirector can cause out-of-order packets as
reported in [14].

Receive Side Scaling (RSS)[10] and Receive Packet Steer-
ing (RPS)[15] distribute the packet processing load onto
multiple CPU cores by using hash values calculated from
received packet headers. Since hash values are deterministi-
cally calculated, heavy-cost flows can be assigned to the same
core. Moreover, if VMs are running on CPU cores where
intensive packet processing is being performed, performance
degradation of virtual network can occur as shown in Section
V.

[16] and [17] have been built on top of Intel’s Data Plane
Development Kit (DPDK)[18]. DPDK adopts Polling Mode
Driver (PMD) to exclude interruption overheads and moves
all packet processing function to user space. However, the
provided functions such as look up processing of virtual
switches and packet transmission require fixed CPU core
assignment. Thereby, this technology has many challenges in
adaptive load distribution based on machine load fluctuation.

Controller

VM VM VM VM
Virtual 4 Flow Table N Virtual
Switch ’Switch

OpenFlow 1.0,
VM_ID

VS-extension 'VS-extension

Network Driver

Network Driver Core Table

load, VM_ID

Datacenter Network

Fig. 1: Overview architecture of the proposed system

III. ARCHITECTURE OF PROPOSED METHOD

As described in Section II, the intensive packet processing
load can occur with existing approaches. In this section,
we describe architectural overview of the proposed method
designed for adaptive load balancing in virtual switches and
how unified OpenFlow controllers manage the behavior of our
system. Figure 1 depicts overview architecture of the proposed
system. Virtual Switch-extension (VSE) resides in NIC driver
and controls Soft IRQ cores using its own flow and core tables.
Furthermore, the controller manages flow tables of both virtual
switches and VSEs using OpenFlow protocol with vendor
extensions.

A. Received packet processing in Linux

First, we explain general procedure of packet reception in
Linux kernel. The hardware NIC first interrupts the device
driver (Hard IRQ) when packet reception. After that, the
driver issues Soft IRQs to the same CPU core and the kernel
executes protocol stack processing, such as TCP/IP, IPsec, and
VXLANTJ2]. Since Soft IRQs are to be processed on the same
CPU core where Hard IRQs occurred, the packet processing
load can concentrate on the single core. In this paper, we
propose VSE that adaptively determines Soft IRQ cores for
incoming flows based on the current CPU load.

B. Flow Table/Core Table

As illustrated in Fig. 1, VSE has two types of tables, a
flow table and a core table. The flow table has OpenFlow
1.0 based match entries for classification of incoming flows.
In addition, VSE’s flow table can also support encapsulated
packet header matching (e.g. VXLAN tunnneling). The core
table stores statistical load information of each CPU core as
well as VM-core binding relations. Unlike OpenFlow, VSE
determines Soft IRQ cores for each flow in the action directive.
If the matching process failed, protocol stack processing is
to be performed on the same core straightforwardly. When
an incoming flow matches an entry of the flow table, VSE
references the core table to decide a Soft IRQ target core based

OpenFlow Controller
OFPT_HELLO ——»]
le———— OFPT _HELLO
le— OFPT_FEATURES REQUEST —

[OFPT_FEATURES REPLY
OFPT VFND(%
Host Info.

OFPT_PORT MOD
OFPT VEND%
VM Info.
OFPT_FLOW_MOD
VM ID

OFPT_PACKET_OUT
[(OFPT_FLOW_MOD)

[Virtual Machine J [Virtual Switch J

« hardware features

(RSS, Flow Director etc)
Port info with

« VM ID

pinning core

* tenant

* the number of CPU cores }

[+ Set Priority

VS-extended
(Flow Table)

Fig. 2: A protocol between a vswitch and an OpenFlow controller

Encapsulated VM
packet ETH 1P Tunnel(+IPsec) Payload
version, IP address
IP header hdr_len tot_len ToS ID etc
Flow Control | Priority VM ID
Field (1bit) (7bit)

Fig. 3: A flow control field structure in ToS field

on the CPU load and VM-running information. In this way,
VSE can adaptively distribute the packet processing load.

C. Flow table configuration

Next, we describe how OpenFlow controllers configure
flow tables of VSEs using the existing OpenFlow proto-
col framework. When a virtual switch establishes an Open-
Flow session to the controller, the switch notifies how many
CPU cores are equipped with the physical server and what
hardware-acceleration features such as RSS and FlowDirector
are supported using OpenFlow’s vendor extension message
(OFPT_VENDOR). When a VM starts up, the virtual switch
sends an OFPT_PORT_MOD message to the controller. In our
approach, the virtual switch additionally sends VM-related
information such as VM_ID, tenant ID, CPU core where
the VM is running on. The controller decides whether the
proposed method is enabled and how the flow table of VSE
should be configured based on these information. Flow tables
of VSEs are configured using an OFPT_FLOW_MOD message
structure like the table of OpenFlow switches, however, VSE
does not have direct connection with the controller. The
controller therefore encapsulates the message with OpenFlow’s
OFPT_PACKET_OUT message and the virtual switch acts as a
proxy to forward the OFPT_FLOW_MOD message to the VSE.

D. Flow Control Field

Most incoming flows can be identified by an address—port
pair in the packet headers, however, special care is required
for certain type of flows that includes IP fragmentation or
IPsec. The proposed method provides an optional solution
to identify these flows by re-defining Type of Service (ToS)
field in the IP header or IEEE 802.1Q VLAN tag as Flow
Control Field (FCF). Figure 3 and 4 illustrates packet structure
of FCF. If original ToS field usage is required in datacenter

VLAAN tag
Encapsulated VLAN VM
packet ETH | Type | CFI D Type | IP ‘ Tunnel(+IPsec) Payload ‘
Flow Control | Priority VM ID
Field (1bit) (11bit)
Fig. 4: A flow control field structure in VLAN tag
TABLE I: Additional rules
vSwitch Actions:set_flow_control_field
VS-extend | Match:VM_ID, Actions:IRQ

networks, the VLAN tag is used as FCF instead. VSE uses
VM ID to distinguish the destination VM running on the same
physical server. For example, existing OpenFlow-based flow
matching cannot identify destination VMs for VXLAN over
IPsec because VM’s IP header is encapsulated and encrypted.
FCF enables outer IP header to include the destination VM
identifier and VSE can use this field to determine appropriate
CPU cores. Moreover, the same benefits can be applied
for IP fragmented packets. Since IP tunneling can cause IP
fragmentation at the encapsulation process, VM ID in FCF is
an only key to know the destination VM for receive-side VSEs.
In our model, the use of FCF is an option and controllers
can insert flow entries including standardized matching fields
only. As shown in Fig. 3 and 4, FCF has not only VM ID,
but priority bit frag. When the frag is set, the incoming flows
are preferentially assigned to lower load CPU cores.

E. Received packet processing with VSE
Here, we summarize packet processing flows in VSE-
enabled systems as follows:
1) The physical NIC notifies packet reception to the
corresponding network driver as Hard IRQ.
2) VSE performs flow matching based on its flow table.

3-a) If matching succeeds, VSE decides a CPU core for
Soft IRQ based on the flow and core tables.
3-b) If matching fails, VSE simply assigns the current

CPU core for Soft IRQ.
4) The driver delivers the packet to the kernel layer with
processing Soft IRQ.

F. Appended Action rules

In order to realize VSE’s functionality, existing OpenFlow’s
Action rules have to be extended. We show the appended rules
in table I. To support FCF setting, OFPAT_SET_FCF action
is newly supported between virtual switches and controllers.
On the other hand, OFPAT_SET_IRQ CORE action is added
for VSE.

Iv.

We have implemented VSE’s functionality on a Mellanox
ConnectX®-3 driver[19]. In this section, implementation de-
tails of VSE focusing on how VSE controls Soft IRQ core
selection is described. Figure 5 shows a flowchart of received
packet processing with VSE. Our implementation is based

IMPLEMENTATION

Driver

) Kernel
Hardware IRQ |—W"h°m VSE,

netif_receive_skb

(Mellanox Driver)

|Yes

set_flow_entry IO W

| [Yes
| set_sock_table |—>| set_skb_hash

enqueue_to_backlog

Software IRQ

Fig. 5: A flowchart of frame processing in Mellanox Driver

on Receive Packet Steering (RPS) feature provided by Linux
kernel. RPS is a software implementation of RSS. If RPS
function is enabled, rps_get_cpu function selects a Soft
IRQ core based on a sock_flow_table that contains
<hash:core> relation pairs after the kernel received the
packet from the driver by netif_receive_skb function.
Then, enqueue_to_backlog function executes a softirq to
the core. Like RSS, RPS also simply determines CPU cores
to interrupt based on hash values (skb->rxhash) calcu-
lated from received packet headers. Meanwhile, the proposed
method adaptively determines Soft IRQ cores based on the
CPU load. First, every incoming flows are matched with the
VSE’s flow table in match_entry function. If matching
fails, VSE simply assigns the current CPU core for Soft IRQ.
If matching succeeds, VSE executes a softirq to the core
specified in the entry. In the case of practical CPU core number
is not given, set_flow_entry function references the core
table to determine the softirq core. For example, if the core
table has flow entries given in table II, core 2 is selected
because its load is lower and VM is not running on the core.
Then, VSE sets IRQ:2, rxhash:skb->rxhash to the
entry. Existing methods simply assign Soft IRQ cores based
on the hash values, whereas our proposed method considers
fluctuating CPU loads. When all cores are high-load, VSE
does not alter Soft IRQ cores. Next, set_sock_table
function sets skb->rxhash and the corresponding core
number to sock_flow_table provided by Linux kernel.
The kernel is supposed to select VSE’s intended softirq core
because sock_flow_table retains the relation between
the hash value and the core number. For subsequent packets
of the same flow, set__skb_hash function overwrites the
skb->rxhash value such that the packet is processed on
the same core included in the entry. When the entry becomes
useless, an aging timer of the VSE deletes the entry. Note that
our VSE implementation does not require any kernel modifi-
cation because entire VSE’s functionality is implemented in
the Ethernet driver.

V. EVALUATION

In this section, we evaluate performance of the proposed
method for packet processing by comparing with the existing
RSS model. First, we evaluated actual throughput of VM-
to-VM communication with heavy packet processing, 256-bit
AES block cipher and VXLAN tunneling used as substitute for

TABLE II: Statuses of Core Table and Flow Table

Core Table
status
VM pinning,

core
0 load:10,
load:50,
load: 20
load:50
Flow Table
Actions

IRQ:3,rxhash:45678
IRQ:—, rxhash: -

VM_ID:1
VM_ID:2

VM pinning,

W N —

Match
VM_ID=1
VM_ID=2

VXLAN over IPsec as preliminary evaluation. In this experi-
ment, two types of heavy workload of CPU cores, two flows
are simultaneously processed on a same core and each flow is
handled on VM’s running core, were evaluated. Next, effect
of the adaptive load balancing by the proposed method was
evaluated. Finally, we show the priority-based load distribution
results. Figure 6 and Table III give the experimental environ-
ment. The throughput of VM-to-VM communication between
different physical servers was measured using Iperf[20] with
various packet sizes (64, 1400 and 8192 bytes) .

A. Preliminary evaluation

In this experiment, an Iperf client in VM1 and VM3
continuously sends UDP packets to the Iperf server in the
counterpart VM for 80 seconds, and the average throughput
during 60 seconds of the Iperf server was evaluated. Table IV
shows performance results of two cases, ‘two flow-collision’
and "PM/VM flow-collision’. The ’two-flow-collision’ shows
that two independent flows are handled on the same CPU core.
The "PM/VM-flow-collision’ shows that a flow is processed by
both the virtual switch and the destination VM on the same
core. Throughput of ’non-flows collision” was 1509.9 Mbps
when packet size was 1400 bytes, by contrast, that of "flows
collision’ decreased. Furthermore, when packet size was 8192
bytes, VM-to-VM communication was not established for
’two flow-collision’ case, even though increase in throughput
can been seen for ’non-flows collision’ case. Besides, the

core2 corel
VM4 VM2 VM1 VM3
Iperf Iperf Iperf Iperf .
Server Server Client Client
Virtual Virtual
Switch ’SWitch

‘ o
o ||

i [l

7ﬁ;sical Serverl

Physical Serv;i

Fig. 6: Experimental environment

TABLE III: Machine specifications

Physical Serverl \ Physical Server2 VM
oS CentOS 6.5(2.6.32) Ubuntu 12.04(3.5.0)
CPU Core 15(4 core) [Core 17(4 core) 1 core(Pinning)
Memory 16 GB 2GB
Buffer 4 MB
Network 40Gbit Ethernet [-

TABLE IV: Preliminary evaluation [Mbps]

TABLE V: The total number of Soft IRQs per CPU core

packet size 64bytes | 1400bytes | 8192bytes 64bytes core(corel core2 core3
flows collision 39.5 954.9 - default 0 0 0 | 165,159,804
non-flows collision 3904 1509.9 1702.4 1SS 39,936,135 | 53,710,644 41,317,702 28,924,990
flow-VM collision 9.7 6173 70 proposal 0 0| 82634610 | 82634450
non flow-VM collision | 19.8 754.6 880.1 [ihtes - . T TR
1SS 35,263,529 | 48,655,872 41,435,459 29,002,358
50 64bytes default Iss proposal proposal 0 0 | 82,873,766 | 82,875,742
= 8192bytes
z default 0 0 0 | 184,126,030
g 4 s 197,691,348 | 5,391,984 | 6,221,397 | 10,844,689
= proposal 0 0 | 171,580,236 | 171,738,991
£ %
g at the receiver side, and each flow continues 1 minute. We
E 20 modified the Iperf client to assign a source port because the
; underlying kernel selects different port number each time. In
E 10 our experiments, same addresses and port numbers were used
for every model ’default’, ’rss” and ’proposal’. The ’default’
0 0 T g 0 "5 5,0 model does not use RSS or similar technologies. The ’rss’
time(m) model uses RSS function at the physical NIC. The *proposal’
faul : also supports RSS as well as VSE feature implemented in
1600 1400bytes defaut i proposa NIC driver (Mellanox 2.2.0). Note that flow entries of VSEs

1200 ———— &
\J\.M_MJ\AJI\J\M\J\\MJMM’\J\\‘NLMSVQN\J\/\.MJ

Total Throughput(Mbps)

800
400
0 — — ——
0 5 10 15 20
time(m)
default ss roposal
2000 8192bytes prop

W‘\,MW"'\.A.A_/'\.A,.A—VJ\N'\JM

1500

1000

500 e ! l

A e fed \
0+ ‘\-'T\-lf‘ ’,\\,\-4‘_'{‘—:\& AP E}-/ﬁﬁ\g_

0 5 10 15 20
time(m)

Total Throughput(Mbps)

Fig. 7: Total throughput in two VM-to-VM communications

throughput of "flow-VM collision’ degraded when packet sizes
were 1400 and 8192 bytes. This was because the virtual switch
occupied CPU resources for heavy packet processing. These
results proved that both types of collision can degrade the
end-to-end performance requiring heavy packet processing.

B. Two VM-to-VM communications

Next, we evaluated total throughput of two VM-to-VM com-
munications. In this experiment, the Iperf client sequentially
created UDP flows 20 times in order to vary rxhash values

and virtual switches were set in advance (VM1’s flow:core2,
VM2’s flow:core3).

1) Total throughput of 2 flows:
Figure 7 expresses a relationship between elapsed time and
the total bandwidth of VM-to-VM links. When the packet size
was 64 bytes, throughput was the same for each model. On the
other hand, when the packet size was 1400 bytes, throughput
of ’default’ peaked at 1000 Mbps and the result of ’rss’
varied in each flow. The point *A’ in 1400 bytes’ graph shows
that RSS optimally distributed the packet processing load by
accident. By contrast, the point B’ indicates that RSS caused
flow collision on VM2’s running core, therefore the throughput
of 'rss’ was lower than that of ’default’. Furthermore, when
the packet size was 8192 bytes, the throughput of *proposal’
was obviously higher than that of the other models.

2) The total number of Soft IRQs:
Table V shows that the ’rss” model frequently handled Soft
IRQs on VMs’ running cores, and moreover coreQ handled a
significant number of interruptions compared with the others
when the packet size was 8192 bytes. This was because all
fragmented packets except the first one had the same hash
value and naturally they ware interrupted to the same core
(core0). In contrast, the *proposal’ model processed softirq on
core2 and core3 only, therefore, the flow-VM collision was
not caused and throughput did not decrease.

3) Packet loss rate at the receiver:
Next, we show the packet loss rate at the receiver VMs in
Table VI. As you can see, the packet loss rate of ’default’
and ’rss’ models were apparently higher when packet sizes
were 1400 and 8192 bytes. In these models, concentration
of packet processing on a specific CPU core caused frequent
buffer overflow at the physical NIC.

C. Throughput of priority-based flows

Finally, we evaluated throughput of priority-based flows
with the priority bit in FCF field for three VM-pairs. In

TABLE VI: Packet loss of VMs[%]

64bytes 1400bytes 8192bytes
VM1 | VM2 || VM1 | VM2 || VMI | VM2
default 0.1 0.1 345 | 345 514 | 524
ISs 0.8 0.9 15.8 17.0 953 | 435
proposal 0.1 0.1 0.2 0.2 14.8 14.7

TABLE VII: Throughput of priority-based flows

64bytes 1400bytes
VM1 | VM2 | VM3 VM1 | VM2 | VM3
rSs 194 | 195 19.3 481.8 | 465.6 | 406.3
proposal | 19.7 19.7 19.7 745.3 | 635.0 | 646.4
8192bytes
VM1 | VM2 | VM3
ISs 3.4 192.8 | 20.9
proposal | 844.8 | 466.3 | 181.4

the proposed method, VM1’s flow was set as a high priority
flow, and was processed on core3 while the other flows were
processed on the other cores where the destination VMs were
running on. Table VII gives average throughput of receiver
VMs during 20 minutes. From the result, throughput of VM1
was higher when the packet size were 1400 and 8192 bytes
respectively. These results indicate that the higher priority flow
is preferentially processed on low-load CPU core to prevent
its performance from being decreased.

D. Discussion

As shown in the evaluation results, our method can improve
performance of virtual networks by distributing heavy packet
processing load on adequate CPU cores. This is beneficial
in SDN-enabled virtual networks based on high-functional
virtualization edges (e.g. an edge-overlay model). In addition,
simple hash-based load-balancing methods such as RSS and
RPS are not suitable for certain flows that require heavy packet
processing. The proposed priority-based approach using FCF
is effective for encapsulated or fragmented packets because
VMID can identify the destination VMs correctly. This enables
OpenFlow controllers to differentiate tenants by their priori-
ties, which is useful for some datacenter systems adopting
grading system.

VI. CONCLUSION

Network virtualization based on IP tunneling has been
getting attention lately for multi-tenant datacenter networks. In
such network, intelligent packet processing is often performed
by software-implemented virtual switches, and therefore, the
performance of the virtual switches is important for the
efficiency of overall virtual networks.

This paper has presented VSE that is a software component
for adaptively distributing the packet processing load of virtual
switches without specific hardware-assistance. VSE matches
incoming flows using its own OpenFlow-based flow table, and
determines an appropriate CPU core for Soft IRQ on-the-fly. In
addition, the flow table of VSE can be managed by a unified
controller using the OpenFlow message format. The perfor-
mance evaluation result showed that the packet processing load

was properly distributed in the proposed method, moreover,
it confirmed that performance of higher-priority flows were
higher than non-priority flows by preferentially assigning low-
load CPU core. We are planning to implement the southbound
protocol between VSEs and controllers. Besides, dynamic
alternation of CPU core selection based on CPU load change
has to be implemented in future work.

ACKNOWLEDGMENTS

This work was supported in part by MEXT KAKENHI
Grant Number 25400113.

REFERENCES

[1] D. Black, J. Hudson, L. Kreeger, M. Lasserre, and T. Narten, An
Architecture for Overlay Networks(NVO3), Aug. Internet Draft. 2013.

[2] P.Agarwal, D.Dutt, K.Duda, P.Agarwal, L.Kreeger, T.Sridhar, M.Bursell,
and C.Wright, “Virtual eXtensible local area network (VXLAN): A
framework for overlaying virtualized layer 2 networks over layer 3
networks,” RFC 7348, 2014.

[3] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, “Network
virtualization using generic routing encapsulation,” Internet Draft. 2014.

[4] B. Davie and J. Gross, “A stateless transport tunneling protocol for
network virtualization (STT),” Internet draft 2014.

[5] N. McKeown, T. Andershnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turneron, and H. Balakris, “Openflow: Enabling inno-
vation in campus networks,” ACM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, April 2008.

[6] Network Functions Virtualization, SDN and OpenFlow World Congress,
http://portal.etsi.org/nfv/nfv_white_paper.pdf, Oct. 2012.

[71 K. Ram, J. Mudigonda, A. Cox, S. Rixner, P. Ranganathan, and
J. Santos, “sNICh: Efficient last hop networking in the data center,”
Proc. ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (SNCS 2010), pp. 1-12, Oct. 2010.

[8] V. Tanyingyong, M. Hidell, and P. Sjodin, “Using hardware classification
to improve pc-based openflow switching,” Proc. IEEE 12th International
Conference on High Performance Switching and Routing (HPSR 2011),
pp. 215-221, July 2011.

[9] “Flowdirector,” www.kernel.org/doc/Documentation/networking/ixgbe.
txt.

[10] “Design considerations for efficient network applications
with intel multi-core processor-based systems on linux,”
http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/multi- core-processor-based-linux-paper.pdf.

[11] M. Rathore, M. Hidell, and P. Sjodin, “PC-based router virtualization
with hardware support,” Advanced Information Networking and Applica-
tions (AINA), 2012 IEEE 26th International Conference on, pp. 573-580,
March 2012.

[12] M. Rathore, H. Markus, and S. Peter, “KVM vs. LXC: comparing per-
formance and isolation of hardware-assisted virtual routers,” American
Journal of Networks and Communications, no. 2, pp. 88-96, Aug. 2013.

[13] “Single Root I/O Virtualization,” http://www.pcisig.com/specifications/
iov/single_root.

[14] W. Wu, P. DeMar, and M. Crawford, “Why Does Flow Director Cause
Packet Reordering?” IEEE Commun.Lett., vol. 15, pp. 253-255, 2011.

[15] “Receive packet steering,” https://www.kernel.org/doc/Documentation/
networking/scaling.txt.

[16] H. Masutani, Y. Nakajima, T. Kinoshita, T. Hibi, H. Takahashi,
K. Obana, K. Shimano, and M. Fukui, “Requirements and design of
flexible NFV network infrastructure node leveraging SDN/openFlow,”
Proc. 2014 International Conference on Optical Network Design and
Modeling, pp. 258-263, May 2014.

[17] G. Pongracz, L. Molnar, and Z. Kis, “Removing roadblocks from SDN:
OpenFlow software switch performance on intel DPDK,” Proc. 2013
Second European Workshop on Software Defined Networks (EWSDN),
pp. 62-67, Oct. 2013.

[18] “DPDK: Data plane development kit,” http://dpdk.org/.

[19] “ConnectX EN 10 and 40 gigabit linux driver,” http://www.mellanox.
com/page/products_dyn?product_family=27.

[20] “Iperf,” http://iperf.sourceforge.net/.

