
A Distributed and Cooperative NameNode Cluster
for a Highly-Available Hadoop Distributed File System

Yonghwan Kim† Tadashi Araragi‡ Junya Nakamura† Toshimitsu Masuzawa†
†Graduate School of Information and Technology, Osaka University, Osaka, Japan

‡Communication Science Laboratories, Nippon Telegraph and Telephone Corp., Kyoto, Japan

1 Introduction and Related Works

Recently, Hadoop attracts much attention of engineers and
researchers as an emerging and effective framework forBig
Data. HDFS(Hadoop Distributed File System)can manage
huge amount of data with guaranteeing high performance
and reliability with only commodity hardware.

However, HDFS requires a single master node, called
NameNode, to manage the entire namespace (or all the i-
nodes) of a file system. This causesSPOF(Single Point
Of Failure) problem [1] because the file system becomes
inaccessible when theNameNodefails. This also causes a
bottleneck of efficiencysince all the access requests to the
file system have to contact theNameNode. Hadoop 2.0 re-
solves the SPOF problem by introducing manual failover
based on twoNameNodes, ActiveandStandby. However,
it still has the efficiency bottleneck problem since all the
access requests have to contact theActivein ordinary exe-
cutions. It may also lose an advantage of using commodity
hardware since the twoNameNodeshave to share a highly-
reliable sophisticated storage.

In this paper, we propose a new HDFS architecture to
resolve all the problems mentioned above. The proposed
architecture has the following features and advantages.

1. Multiple NameNodes(not restricted to two) can be
utilized to improveavailability. The entire names-
pace of a file system is partitioned into severalfrag-
ments, and replicasof each fragment are dispersed
among theNameNodes. When each fragment hask
replicas, the file system can tolerate up to (⌊ k

2 − 1⌋)
faulty NameNodes.

2. Multiple NameNodescan be utilized to improveper-
formance. The performance bottleneck caused by a
singleNameNodecan be circumvented by assigning
different NameNodesto different fragments as the
primaryones (or the entry points).

3. The highly-reliable storageshared by theNameN-
odesis removed by introducing message-based con-
sistency mechanism among theNameNodes. The ar-
chitecture requires onlycommodity hardware.

2 Distributed NameNode Cluster

2.1 Namespace Partitioning

Figure 1 represents overview of HDFSs in Hadoop 2.0 and
our proposed architecture. The whole namespace is com-
pletely replicated in Hadoop 2.0, however, the namespace
is partitioned into several fragments,NSi , in our architec-
ture. Replicas of each fragment are dispersed among the
NameNodes, one of which works as a primary one and
the others as backups. Namespace’s partitioning rules and
states can be changed dynamically for load-balancing, and

Namespace

𝑁𝑆 𝑁𝑆 𝑁𝑆

…

Active NN Standby NN

Shared Storage

Hadoop 2.0

𝑁𝑆 𝑁𝑆 𝑁𝑆

…

𝑁𝑆 𝑁𝑆 𝑁𝑆

…

Proposed Architecture

NameNode1

…
B

ac
ku

p
Pr

im
ar

y

B
ac

ku
p

Pr
im

ar
y

B
ac

ku
p

Pr
im

ar
y

B
ac

ku
p

Pr
im

ar
y

𝑁𝑆

𝑁𝑆 𝑁𝑆 𝑁𝑆

𝑁𝑆 𝑁𝑆
𝑁𝑆

𝑁𝑆 𝑁𝑆

NameNode2 NameNode3 NameNode4

ZooKeeper (Manage NSTable, Alive monitoring and Automatic Failover)

Figure 1: Namespace Partitioning

recorded to ZooKeeper, as a specific hash table, named
NSTable.

2.2 Cooperation among NameNodes

Consistency Mechanism: Replicas of each fragment dis-
persed among the NameNodes should keep consistency and
this is achieved by themajority-basedmechanism. Only
the primaryNameNodecan receive the requests from clients.
On receipt of the request, it must broadcastsync messages
to the backupNameNodes. When it receives⌈ k

2⌉ ackmes-
sages from backupNameNodes, it confirms the process and
broadcastsupdatemessages to backupNameNodes.

Automatic Failover: If ZooKeeper suspects a current pri-
mary NameNodefails, ZooKeeper elects a new primary
NameNodeand notifies it of the backupNameNodes. Each
backupNameNodereports its fragment’s version and records
it to ZooKeeper. When a majority ofNameNodesreports
its fragment’s version, the latestNSi of them is chosen as
the new commonNSi among theNameNodes. The consis-
tency mechanism guarantees the consistency of this new
NSi ’s version through the automatic failover. Even if a
newly elected primaryNameNodefails during the auto-
matic failover, the system can still guarantee consistency.

References

[1] K. Shvachko, ”Warm HA NameNode going Hot,”
Apache Hadoop Issues, HDFS-2064, 2011.

1

