A Distributed and Cooperative NameNode Cluster
for a Highly-Available Hadoop Distributed File System

Yonghwan Kiny Tadashi Araradi Junya Nakamura Toshimitsu Masuzawia

tGraduate School of Information and Technology, Osaka University, Osaka, Japan
tCommunication Science Laboratories, Nippon Telegraph and Telephone Corp., Kyoto, Japan

1 Introduction and Related Works Hadoop 2.0

Active NN Standby NN

Recently, Hadoop attracts much attention of engineers an Namespace
researchers as an emerging afidaive framework foBig
Data. HDFS(Hadoop Distributed File Systerrgn manage
huge amount of data with guaranteeing high performanc

and reliability with only commodity hardware. Y s A
However, HDFS requires a single master node, callec
NameNodgeto manage the entire namespace (or all the i ‘ Shared Storage
nodes) of a file system. This causeBROF(Single Point
NameNode, NameNode, NameNode, NameNode,

Of Failure) problem [1] because the file system become:

inaccessible when thdameNoddails. This also causesa = |: H A\ Z/é\ H
bottleneck of giciencysince all the access requests to the |* 5SS = . ~"

file system have to contact tiNameNodeHadoop 2.0 re- N Z\ \
solves the SPOF problem by introducing manual failover | A/ S é
based on twdNameNodgsActive and Standby However, % - 2 S P W a I

it still has the diciency bottleneck problem since all the I I I I

access requests have to contactAlsévein ordinary exe- | ZooKeeper (Manage NSTable, Alive monitoring and Automatic Failover) |

cutions. It may also lose an advantage of using commodit - ‘

hardware since the twidameNodekave to share a highly-

reliable sophisticated storage. Figure 1: Namespace Partitioning
In this paper, we propose a new HDFS architecture to

resolve all the problems mentioned above. The proposed

architecture has the following features and advantages. recorded to ZooKeeper, as a specific hash table, named

1. Multiple NameNodegnot restricted to two) can be NSTable

utilized to improveavailability. The entire names-

pace of a file system is partitioned into sevdray- 2.2 Cooperation among NameNodes
ments andreplicas of each fragment are dispersed
among theNameNodesWhen each fragment h&s
replicas, the file system can tolerate up Lté €1)
faulty NameNodes

2. Multiple NameNodesan be utilized to improvper-
formance The performance bottleneck caused by
singleNameNode&an be circumvented by assigning
different NameNodego different fragments as the
primary ones (or the entry points).

3. The highly-reliable storageshared by theNameN- Automatic Failover: If ZooKeeper suspects a current pri-
odesis removed by introducing message-based cormary NameNod€fails, ZooKeeper elects a new primary
sistency mechanism among tNemeNodesThe ar- NameNodand notifies it of the backuNameNodesEach
chitecture requires onlgommodity hardware backupNameNodeeports its fragment’s version and records

it to ZooKeeper. When a majority dlameNodeseports
its fragment’s version, the lateBtS; of them is chosen as

Proposed Architecture

Consistency Mechanism Replicas of each fragment dis-
persed among the NameNodes should keep consistency and
this is achieved by thenajority-basedmechanism. Only
the primaryNameNodean receive the requests from clients.

n receipt of the request, it must broadcagic messages
o the backupNameNodesWhen it receive$§] ackmes-
sages from backudameNodest confirms the process and
broadcastsipdatemessages to backiyameNodes

2 Distributed NameNode Cluster the new commomNS; among theNameNodesThe consis-
S tency mechanism guarantees the consistency of this new
2.1 Namespace Partitioning NS;’s version through the automatic failover. Even if a

nra]ewly elected primaryNameNodefails during the auto-

Figure 1 represents overview of HDFSs in Hadoop 2.0 a e .)
nrr]l_atlc failover, the system can still guarantee consistency.

our proposed architecture. The whole namespace is co
pletely replicated in Hadoop 2.0, however, the namespace

is partitioned into several fragmenfdS;, in our architec- L?eferences

ture. Replicas of each fragment are dispersed among the

NameNodesone of which works as a primary one and [1] K. Shvachko, "Warm HA NameNode going Hot,”
the others as backups. Namespace’s partitioning rules and Apache Hadoop Issues, HDFS-2064, 2011.

states can be changed dynamically for load-balancing, and

