
Leximin Multiple Objective Optimization for
Preferences of Agents

Toshihiro Matsui1, Marius Silaghi2, Katsutoshi Hirayama3, Makoto Yokoo4, and
Hiroshi Matsuo1

1 Nagoya Institute of Technology, Gokiso-cho Showa-ku Nagoya 466-8555, Japan
{matsui.t, matsuo}@nitech.ac.jp

2 Florida Institute of Technology, Melbourne FL 32901, United States of America
msilaghi@fit.edu

3 Kobe University, 5-1-1 Fukaeminami-machi Higashinada-ku Kobe 658-0022, Japan
hirayama@maritime.kobe-u.ac.jp

4 Kyushu University, 744 Motooka Nishi-ku Fukuoka 819-0395, Japan
yokoo@is.kyushu-u.ac.jp

Abstract. We address a variation of Multiple Objective Distributed Constraint
Optimization Problems (MODCOPs). In the conventional MODCOPs, a few ob-
jectives are globally defined and agents cooperate to find the Pareto optimal solu-
tion. On the other hand, in several practical problems, the share of each agent is
important. Such shares are represented as preference values of agents. This class
of problems is defined as the MODCOP on the preferences of agents. Particularly,
we focus on the optimization problems based on the leximin ordering (Leximin
AMODCOPs), which improves the equality among agents. The solution methods
based on pseudo trees are applied to the Leximin AMODCOPs.

Keywords: leximin, preference, multiple objectives, Distributed Constraint Op-
timization, multiagent, cooperation

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [3, 10, 15, 21] lies at the
foundations of multiagent cooperation. With DCOPs, the optimization in distributed
resource allocation uses the representation of a single objective function. The Multiple
Objective Distributed Constraint Optimization Problem (MODCOP) [2] is an extension
of the DCOP framework, where agents cooperatively have to optimize simultaneously
multiple objective functions. For the case of multiple objectives, evaluation values are
defined as vectors of objective values. Agents cooperate to find the Pareto optimal so-
lution. In [2], a bounded Max-Sum algorithm for MODCOPs has been proposed. A
solution method based on tree-search and dynamic programming has also been applied
to MODCOPs [7]. In conventional MODCOPs, a few objectives are globally defined
for the whole system. However, such models do not capture the interests of each agent.
In several practical problems, the share of each agent is important. Such shares are rep-
resented as preference values of agents. This point of view recently has been addressed

2 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

in the context of DCOPs which are designed for dedicated resource allocation prob-
lems [12, 6, 13, 14]. These problems define multiple objective functions, optimizing the
preferences for all the agents.

In this work, we address a class of MODCOPs on the preferences of agents. Particu-
larly, we focus on problems where the importance of objective functions is based on the
leximin ordering (referred to as Leximin AMODCOPs). Since the optimization based
on the leximin ordering improves the equality among agents, this class of problems
is important. The solution methods based on pseudo trees are applied to the Leximin
AMODCOPs. Also, the investigated search methods employ the concept of boundaries
of the sorted vectors.

2 Preliminary

2.1 Distributed Constraint Optimization Problem

A Distributed Constraint Optimization Problem (DCOP) is defined as follows.

Definition 1 (Distributed Constraint Optimization Problem). A Distributed Con-
straint Optimization Problem is defined by (A,X,D, F) where A is a set of agents, X
is a set of variables, D is a set of domains of variables, and F is a set of objective
functions. Variable xi ∈ X represents a state of agent i ∈ A. Domain Di ∈ D is
a discrete finite set of values for xi. An objective function fi,j(xi, xj) ∈ F defines a
utility extracted for each pair of assignments to xi and xj . The objective value of as-
signment {(xi, di), (xj , dj)} is defined by the binary function fi,j : Di × Dj → R.
For an assignment A of variables, the global objective function F (A) is defined as
F (A) =

∑
fi,j∈F fi,j(A|xi

,A|xj
). The value of xi is controlled by agent i. Agent i

locally knows the objective functions that relate to xi in the initial state. The goal is to
find a global optimal assignment A∗ that maximizes the global objective value.

The computation to find the optimal solution is a distributed algorithm. We assume
that each pair of agents has a communication route on an overlay network. For the sake
of simplicity, we assume that all the objective functions are binary. Also, the state of
each agent is represented by only one variable. However, the proposal can be general-
ized for n-ary functions and agent states represented by multiple variables.

2.2 Multiple objective problem

Multiple objective DCOP [2] (MODCOP) is a generalization of the DCOP framework.
With MODCOPs, multiple objective functions are defined over the variables. The ob-
jective functions are simultaneously optimized based on appropriate criteria. The tuple
with the values of all the objective functions for a given assignment is called objective
vector.

Definition 2 (Objective vector). An objective vector v is defined as [v0, · · · , vK].
Here, vk is an objective value. The Vector F(X) of objective functions is defined
as [F 0(X0), · · · , FK(XK)] , where Xk is the subset of X on which F k is defined.

Leximin Multiple Objective Optimization for Preferences of Agents 3

F k(Xk) is an objective function for objective k. For assignment A, the vector F(A)
of the functions returns an objective vector [v0, · · · , vK]. Here, vk = F k(Ak) for each
objective k.

Objective vectors are compared based on Pareto dominance. For maximization
problems, the dominance between two vectors is defined as follows: Vector v dom-
inates v′ if and only if v ≥ v′, and vk > v′k for at least one objective k. Simi-
larly, Pareto optimality on the assignments is defined as follows: Assignment A∗ is
Pareto optimal if and only if there is no other assignment A, such that F(A) ≥
F(A∗), and F k(A) > F k(A∗) for at least one objective k. In previous studies
of MODCOPs [2], each objective function fi,j(xi, xj) in the original DCOPs is
extended to a vector [f0

i,j(xi, xj), · · · , fK
i,j(xi, xj)]. F k(Ak) is therefore defined as∑

fk
i,j∈Fk fk

i,j(Ak
|xi

,Ak
|xj

) for each objective k. Also, all the objectives are evaluated

for the same assignment. Namely, A0 = A1 = · · · = AK . Multiple objective problems
generally have a set of Pareto optimal solutions that form a Pareto front. With an ap-
propriate social welfare that defines an order on objective vectors, traditional solution
methods for single objective problems find a Pareto optimal solution.

2.3 Social welfare

There are several criteria of social welfare [17] and scalarization methods [5]. A well-
known social welfare function is defined as the summation

∑K
k=0 F

k(Ak) of objec-
tives. The maximization of this summation ensures Pareto optimality. This summation
is a ‘utilitarian’ criterion since it represents the total value of the objectives while it
does not capture the equality on these objectives. On the other hand, the minimization
minKk=0 F

k(Ak) on objectives emphasizes the objective of the worst value. Although
the maximization of the minimum objective (maximin) reduces the worst complaint
among all the objectives, the optimal assignment on the maximin is not Pareto (but weak
Pareto) optimal. To improve maximin, the summation welfare function is additionally
employed. A social welfare is defined as a vector [minKk=0 F

k(Ak),
∑K

k=0 F
k(Ak)]

with an appropriate definition of dominance. When the maximization on the minimiza-
tion part dominates that on the summation part, it can be considered as a (partial) lexi-
cographical ordering that yields the Pareto optimal solution, similar to the lexicographic
weighted Tchebycheff method [5].

Another social welfare, called leximin [11, 1], is defined with a lexicographic order
on objective vectors whose values are sorted in ascending order.

Definition 3 (Sorted vector). A sorted vector based on vector v is the vector where all
the values of v are sorted in ascending order.

Definition 4 (Leximin). Let v and v′ denote vectors of the same length K + 1. Let
[v0, · · · , vK] and [v′0, · · · , v′K] denote sorted vectors of v and v′, respectively. Also,
let ≺leximin denote the relation of the leximin ordering. v ≺leximin v′ if and only if
∃t,∀t′ < t, vt′ = v′t′ ∧ vt < v′t.

The maximization on the leximin ordering ensures Pareto optimality. The leximin is an
‘egalitarian’ criterion since it reduces the inequality on objectives. It is also considered

4 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

as an improved version of maximin similar to a variation with the summation. The
above property of the leximin is important for the preferences of agents. Further we
focus on the leximin social welfare.

2.4 Preferences of agents

While previous studies address MODCOPs [2, 7], their goal is to optimize a few global
objectives. Agents cooperate with each other to optimize those global objectives. On the
other hand, in practical resource allocation problems, such as power supply networks,
each agent has a strong interest for its share of the result. Hence there is the need for a
more appropriate model where the objectives represent the preferences of agents. This
class of problems has two key characteristics: 1) Each agent individually has its set
of objective functions whose aggregated value represents its preferences, while several
agents are related since subsets of their variables are in the scope of the same function.
2) The problem is a MODCOP where a solution is characterized by an objective vector
consisting of objective values that are individually aggregated for different agents.

In [6], a resource constrained DCOP, which is designed for resource allocation on
power supply networks, is extended to a MODCOP on the preferences of agents. In that
study, min-max as well as min-max with the additional summation was introduced for
minimizing problems. In addition, to reduce inequality among agents, a few first meth-
ods that consider the variance of objective values were shown. A general representation
of the objectives of individual agents has been proposed as Asymmetric DCOP (AD-
COP) [4]. In the ADCOP, two different objective functions are asymmetrically defined
for a pair of two agents. Here, each objective function represents the valuation for one
of the agents. Several classes of ADCOPs with multiple objectives for individual agents
have been proposed in [12–14]. We focus on a class of ADCOPs optimizing the lex-
imin social welfare. Since the leximin is known to reduce the inequality among agents,
it helps define an important class of MODCOPs on preferences of agents.

3 Leximin multiple objective optimization on preferences of agents

3.1 Problem definition

A Leximin MODCOP on preferences of agents (Leximin AMODCOP) is defined as
follows.

Definition 5 (Leximin MODCOP on preferences of agents). A leximin MODCOP
on preferences of agents is defined by (A,X,D, F), where A, X and D are similarly
defined as for the DCOP in Definition 1. Agent i ∈ A has its local problem defined on
Xi ⊆ X . Here, ∃(i, j), i ̸= j ∧Xi ∩Xj ̸= ∅. F is a set of objective functions fi(Xi).
The function fi(Xi) : Di0 × · · · ×Dik → R represents the objective value for agent i
based on the variables in Xi = {xi0 , · · · , xik}. For an assignment A of variables, the
global objective function F(A) is defined as [f0(A0), · · · , f|A|−1(A|A|−1)]. Here, Ai

denotes the projection of the assignment A on Xi . The goal is to find the assignment
A∗ that maximizes the global objective function based on the leximin ordering.

Leximin Multiple Objective Optimization for Preferences of Agents 5

As shown in Definition 5, each agent i has a function fi(Xi) that represents i’s local
problem. In a simple case, the local problem is defined as a part of an ADCOP where
fi(Xi) is the summation of the corresponding functions in the ADCOP. In an ADCOP,
variable xi of agent i relates to other variables by objective functions. When xi relates
to xj , agent i evaluates an objective function fi,j(xi, xj). On the other hand, j evaluates
another function fj,i(xj , xi). Based on this ADCOP, a local problem is represented as
fi(Xi) =

∑
j∈Nbri

fi,j(xi, xj) for agent i, aggregating objective functions among i
and its neighborhood agents Nbri. While we will discuss our solution methods based
on this ADCOP for the sake of simplicity, we address several motivated domains below.

Example 1 (Resource allocation on a power supply network). In a resource allocation
problem on a power supply network [9, 6], each agent represents a node of the network.
An agent i has several input links, output links and its resource. Given the amount xl

i,j of
transferred resource on each input/output link (i, j) and xr

i of its own resource, the total
amount must satisfy resource constraint ci :

∑
xl
j,i∈Xin

i
xl
j,i = xr

i +
∑

xl
i,k∈Xout

i
xl
i,k.

Here, Xin
i and Xout

i corresponds to input and output links, respectively. In addition,
agent i has an objective function fr

i (x
r
i) of its own resource use xr

i . Using a sufficiently
small objective value for the violation of hard constraint ci, this problem is represented
by fi(Xi) for agent i, where Xi consists of {xi

r}∪Xin
i ∪Xout

i . The value of fi(Xi) is
fr
i (x

r
i) if assignments for Xi satisfy ci. Otherwise, fi(Xi) takes the sufficiently small

value. Each agent desires to improve its local objective value under the resource con-
straints and preferences of other agents.

Example 2 (Variation of Coalition Structure Generation). A Coalition Structure Gen-
eration problem is represented as a DCOP [18]. An agent i has two variables xi and
xg
i . xg

i represents a group to which agent i belongs. xi represents i’s decision. Depend-
ing on xg

i , utility values that relate to xi are defined as follows. fv
i,j(xi, xj , x

g
i , x

g
j) =

vi,j(xi, xj) if xg
i ̸= ‘alone′ ∧ xg

i = xg
j . Otherwise, fv

i,j(xi, xj , x
g
i , x

g
j) = 0.

fv
i (xi, x

g
i) = vi(xi) if xg

i = ‘alone′. Otherwise, fv
i (xi, x

g
i) = 0. Based on this DCOP,

a local problem is represented as fi(Xi) = fv
i (xi, x

g
i) +

∑
j∈Nbri

fv
i,j(xi, xj , x

g
i , x

g
j)

for agent i aggregating utility functions among i and its neighborhood agents Nbri.

4 Solution method based on pseudo tree

4.1 Pseudo tree for local problems

Several solution methods for DCOPs are based on pseudo trees on constraint net-
works [10, 15]. A pseudo tree of the problem is a depiction of its constraint network
(adding directions to edges and levels for the nodes), based on a spanning tree in which
there are no edges between different sub-trees of the corresponding spanning tree. Such
pseudo trees can be generated using several algorithms, including the depth-first traver-
sal on the constraint network. Edges of the spanning tree are called tree-edges while
other edges are called back-edges. Based on the pseudo tree, the following notations
are defined for each agent i: parent agent (pi), set of child agents (Chi), the set of
lower neighborhood agents, i.e. the child and pseudo child nodes (Nbrsli), and the set

6 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

x
1

x
2

x
3

x
0

x
1

x
2

x
3

x
0

x
1

x
2

x
3 x

1

x
2

x
3

x
0

x
1

x
2

x
3

x
0
, x

1
, x

2 x
1
, x

3

x
0
, x

1
, x

2(a) probl em (b) deci sion maker (c) messages
X

0

={
x
0, x1, x2}

X
2

={
x
0, x1, x2} X3

={
x
1, x3}X

1

={
x
0, x1, x2, x3} VALUEUTIL shortcutVALUE
Fig. 1. Pseudo tree for local problems

of upper neighborhood agents, i.e. the parent and pseudo parent nodes (Nbrsui). A par-
tial order on a set of agents is defined based on the tree edges of a pseudo tree. The
priorities induced by this order are used for breaking ties during decision making.

Figure 1(a) shows a pseudo tree for a problem. In the figure, four nodes represent
agents/variables while four edges represent functions. In our problem, each edge stands
for a pair of two asymmetric objective functions. Since an objective function is eval-
uated by only one related agent, each agent has to evaluate all the related objective
functions. Namely, each agent has to manage all the assignments for its local prob-
lem. Therefore, the value of a variable xi is decided by the highest neighborhood agent
whose variable relates to the variable xi with an edge. Hence a modification of pseudo
trees is necessary. Figure 1(b) shows the pseudo tree modified from (a). The priority on
decisions of assignments is represented as shown in (b).

To set up the data structures need for this pseudo tree, agent i computes the follow-
ing information. XXupr

i : A set of pairs of variables to compute the related agent in the
highest level of the pseudo tree. Xdcd

i : The set of variables whose values are determined
by agent i. Xsep

i : The set of separator variables that are shared between the sub-tree
rooted at i and another part of the problem. Except at the root agent in the pseudo tree,
the information is recursively computed as follows.

XXupr
i =

∪
h∈Nbrsui

{(xi, xh)} ∪ {(xa, xb)|(xa, xb) ∈
∪

j∈Chi

XXupr
j ∧ xb ̸= xi} (1)

Xdcd
i = {xa|(xa, xi) ∈

∪
j∈Chi

XXupr
j ∧ ∄b, (xa, xb) ∈ XXupr

i } (2)

Xsep
i =

 ∪
h∈Nbrsui

{xh} ∪
∪

j∈Chi

Xsep
j

 \Xdcd
i (3)

Equation (1) enables defining the agent assigning xi as the highest placed agent in
the set of those having a relation with some node in the sub-tree rooted as xi (upper
neighbors of i and upper neighbors of variables in sub-trees defined by its children,
and found above i). Equation (2) defines the variables assigned by agent i as the lower
neighbors of xi in sub-trees defined by children, and which do not have upper neighbors
above i. Equation (3) defines the separator variables as those in the upper neighbors of

Leximin Multiple Objective Optimization for Preferences of Agents 7

xi and its sub-tree, and of that are not controlled by agent i or its children. Note that
xi ∈ Xsep

i and xi /∈ Xdcd
i , unlike the standard definition of separators on pseudo trees.

On the other hand, in the root agent, XXupr
i = ∅, Xdcd

i = {xa|(xa, xi) ∈∪
j∈Chi

XXupr
j } and Xsep

i = ∅. Note that the root agent also determines the value of
its own variable. The actual computation is performed as a distributed processing, after
the preprocessing of generating a pseudo tree. Each non-root agent i sends XXupr

i ,
Xdcd

i and Xsep
i to its parent agent pi in a bottom-up manner.

4.2 Computation of the optimal objective vector

We apply a computation of the optimal objective value, which is employed in the so-
lution method DPOP [15], to the Leximin AMODCOP. The computation is performed
on the modified pseudo tree shown in Subsection 4.1. For the aggregation of objective
values, we define an addition on vectors that is different from the common definition.
The addition is the operator concatenating all the values.

Definition 6 (Addition on vectors). Let v and v′ denote vectors [v0, · · · , vK] and
[v′0, · · · , v′K′]. The addition v ⊕ v′ of the two vectors gives a vector v′′ =
[v′′0 , · · · v′′K+K′+1] where each value in v′′ is a distinct value in v or v′. Namely, v′′

consists of all values in v and v′. As a normalization, the values in v′′ are sorted in
ascending order.

The computation of the optimal objective vector is recursively defined. The optimal
objective vector g∗i (A

sep
i) for assignment Asep

i of variables Xsep
i whose values are

determined by i’s ancestor nodes and parent node is represented as follows.

g∗i (A
sep
i) = max

Adcd
i for Xdcd

i

gi(Asep
i ∪ Adcd

i) (4)

gi(A) = [fi(A|Xi
)]⊕

⊕
j∈Chi,Asep

j ⊆A

g∗j (A
sep
j) (5)

Here, Adcd
i denotes an assignment of the variables in Xdcd

i whose values are deter-
mined by i. The operator ⊕ denotes aggregation of objective values. While the sum-
mation operator is used in common DCOPs, we aggregate objective vectors using the
operator shown in Definition 6. Similarly, max denotes the maximization on the lex-
imin ordering. This computation is a dynamic programming based on the following
proposition.

Proposition 1 (Invariance on leximin relation). Let v and v′ denote vectors of the
same length. Also, let v′′ denote another vector. If v ≺leximin v′, then v⊕v′′ ≺leximin

v′ ⊕ v′′.

Proof. Let [v0, · · · , vK] and [v′0, · · · , v′K] denote values in the sorted vectors of v and
v′, respectively. From the definition of leximin, there is a value t such that ∀t′ < t, vt′ =
v′t′∧vt < v′t. Let t′′ denote the value such that vt′′ < vt∧vt′′+1 = vt. Namely, vt′′ is the
value just before the sequence of values equal to vt. Note that t′′ +1 ≤ t. In the case of
t = 0, the value of t′′ is generalized using −1. Consider the values in the sorted vectors

8 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

of v⊕v′′ and v′⊕v′′. When vector v′′ contains k values smaller than vt, then there are
t′′+k such values in both sorted vectors of v⊕v′′ and v′⊕v′′. Namely, the sequences of
values less than vt are the same in both of the sorted vectors. When vector v′′ contains
k′ values equal to vt, v⊕v′′ contains a sequence of at least (t− t′′)+k′ values equal to
vt. On the other hand, v′ ⊕ v′′ contains a sequence of (t− 1− t′′) + k′ values equal to
vt. The above property also holds in the cases where k = 0 and/or k′ = 0. Now, we can
conclude that the sequences of the first (t′′ + k)+ (t− 1− t′′)+ k′ values are the same
in both sorted vectors of v⊕ v′′ and v′ ⊕ v′′, while the next values are the value equal
to vt and a value greater than vt, respectively. Therefore, v ⊕ v′′ ≺leximin v′ ⊕ v′′.

The maximization in Expression (4) compares objective vectors for the same assign-
ment Asep

i that will produce the same partial objective vector. The above computation
therefore correctly calculates the globally optimal objective vector.

After the computation of the optimal objective vector, the root agent i determine its
optimal assignment Adcd∗

i such that gi(∅ ∪ Adcd∗
i) = g∗i (∅). A

sep∗
j ⊆ Adcd∗

i is then
computed for each child j ∈ Chi. Similarly, non-root agent i computes Adcd∗

i such that
gi(Asep∗

i ∪ Adcd∗
i) = g∗i (A

sep∗
i), and Asep∗

j ⊆ Asep∗
i ∪ Adcd∗

i for each child j ∈ Chi.
The protocol of the modified version of DPOP is basically the same as the original one.
The DPOP employs two types of messages UTIL and VALUE shown in Figure 1(c).
After the processing of the modified pseudo tree, agents compute the optimal objective
vector. In this computation, UTIL messages are propagated in a bottom-up manner.
Each agent i sends g∗i (A

sep
i) to its parent pi using UTIL message. Then the optimal

assignment is computed propagating VALUE messages in a top-down manner. Each
agent i sends Asep∗

j to its child agents j ∈ Chi using VALUE message. The protocol
of DPOP is quite simple. However, the size of UTIL messages and memory use to
store g∗i (A

sep
i) of all the assignments exponentially increases with the size |Xsep

i | of i’s
separator.

4.3 Search method

We apply solution methods based on tree search and partial dynamic programming to
the Leximin AMODCOPs. The methods are variations of ADOPT [10, 20, 6], there-
fore needing less memory and employing messages of relatively smaller size. First, we
show a simple search method, which is basically a time division of DPOP. While this
method employs messages named VALUE and UTIL shown in Figure 1(c), they are
different from those of DPOP. Similar to DPOP, the method consists of two phases of
computations.

In the first phase, the optimal objective vector is computed in a manner of tree
search. The root agent i chooses an assignment Adcd

i,j for variables in Xdcd
i ∩Xsep

j for
its child j ∈ Chi. Then the root agent sends the current assignment Asep

j = Adcd
i,j to

its child node j using a VALUE message. When non-root agent i receives Asep
i from

its parent pi, agent i chooses an assignment Adcd
i,j for variables in Xdcd

i ∩Xsep
j for its

child j. Agent i then sends Asep
j ⊆ Asep

i ∪ Adcd
i,j for variables in Xsep

j to its child j.
Namely, an assignment is expanded for all children of a node in a pseudo tree, in the
same time. The current assignment Asep

i is called current context. In the root agent, the
current context is always ∅.

Leximin Multiple Objective Optimization for Preferences of Agents 9

For the current context Asep
i , each agent computes g∗i (A

sep
i). Then g∗i (A

sep
i) is sent

to i’s parent pi using a UTIL message. When agent i receives g∗j (A
sep
j) from its child

j, g∗i (A
sep
j) is stored in the agent, if Asep

j is compatible with Asep
i . When the current

context changes to new assignment Asep′
i, objective vector g∗j (A

sep
j) whose Asep

j is
incompatible with Asep′

i is deleted.
While the computation of g∗i (A

sep
i) is based on Equations (4) and (5), the compu-

tation is generalized to the case where agent i has not received g∗j (A
sep
j) from child j.

In such cases, the lower and upper limit values of unknown objective values are intro-
duced. With the limit values, the objective values are separated into lower and upper
bound values. For the leximin ordering, we define the upper and lower bounds of ob-
jective vectors.

Definition 7 (Boundaries of unknown vector). For an objective vector v of K un-
known values, lower bound v⊥ and upper bound v⊤ are vectors of K values, whose
values are −∞ and ∞, respectively.

These boundaries are obviously reasonable since they are the minimum vector and
the maximum vector on the leximin ordering. Operators ⊕ and ≺leximin are applied
to the boundaries of vectors without any modifications. For a vector v = [v0, · · · , vK]
and the lower bound v′⊥ = [−∞, · · · ,−∞] of unknown vector v′, the vector v⊕ v′⊥

consists of −∞, · · · ,−∞ and v0, · · · , vK . Similarly, v ⊕ v′⊤ consists of v0, · · · , vK
and ∞, · · · ,∞. We consider these vectors as (v ⊕ v′)⊥ and (v ⊕ v′)⊤, respectively.

Proposition 2 (Lower bound of partially unknown vector). Let v⊥ denote a vector
whose values are v0, · · · , vK and K ′ values of −∞. For any vector v whose values are
v0, · · · , vK and K ′ values greater than −∞, v⊥ ≺leximin v.

Proof. While the first value in the sorted vector of v⊥ is −∞, that of v is greater than
−∞. Therefore, v⊥ ≺leximin v.

Proposition 3 (Upper bound of partially unknown vector). Let v⊤ denote a vector
whose values are v0, · · · , vK and K ′ values of ∞. For any vector v whose values are
v0, · · · , vK and K ′ values less than ∞, v ≺leximin v⊤.

Proof. Consider a vector v⊤[v′
0] where one of values ∞ in v⊤ is replaced by a value

v′0 less than ∞. Both sorted vectors of v⊤[v′
0] and v⊤ contain the same sequence of k

values less than v′0, since v′0 does not affect this sequence. When v⊤ contains k′ values
of v′0, v⊤[v′

0] contains k′ + 1 values of v′0. We can conclude that the sequences of the
first k + k′ values are the same in both sorted vectors of v⊤[v′

0] and v⊤, while the next
values are the value equal to v′0 and a value greater than v′0, respectively. Therefore,
v⊤[v′

0] ≺leximin v⊤. Consider a vector v⊤[v′
0,v

′
1] where one of values ∞ in v⊤[v′

0] is
replaced by a value v′1 less than ∞. Similar to v⊤[v′

0] ≺leximin v⊤, we can conclude
v⊤[v′

0,v
′
1] ≺leximin v⊤[v′

0]. Based on the mathematical induction, we can conclude that
v = v⊤[v′

0,···v
′
K′−1

] ≺leximin · · · ≺leximin v⊤[v′
0] ≺leximin v⊤ for any combination

[v′0, · · · v′K′−1] of values that replace the values of ∞ in v⊤.

In addition, with a bottom-up preprocessing, the lower and upper limit values for
each function fi(Xi) can be aggregated to vectors of limit values instead of the vectors
of −∞ and ∞.

10 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

g∗i (A
sep
i) is extended to a pair of g∗⊥i (Asep

i) and g∗⊤i (Asep
i) that are simultaneously

computed. To introduce the boundaries, an agent has to know the number of descendants
of each sub-tree rooted at each child. The information of the descendants is addition-
ally computed in the preprocessing. When the number of descendants for a child j is
dcdj , g∗⊥j (Asep

j) for unknown g∗j (A
sep
j) is a vector of dcdj values of −∞. Similarly,

g∗⊤j (Asep
j) is a vector of dcdj values of ∞.

Based on the boundaries, agents complete the tree search for sub problems.
When g∗⊥j (Asep

j) = g∗⊤j (Asep
j) for child j ∈ Chi, agent i completes the tree

search for the assignment Asep
j . Then i chooses another assignment Asep′

j such that
g∗⊥j (Asep′

j) ≺leximin g∗⊤j (Asep′
j). While there are several search strategies on the

assignments, we employ a depth-first search based on the pseudo tree.
Now, a UTIL message carries a pair of vectors for the both boundaries. Since the

boundaries are narrowed with the true objective values that are propagated in a bottom-
up manner on the pseudo tree, agents repeatedly send UTIL messages. When agent i
receives new vectors of g∗⊥j(A

sep
j) and g∗⊤j(A

sep
j) from child j ∈ Chi, those vectors

update the previous vectors. While g∗⊥j(A
sep
j) is maximized, g∗⊤j(A

sep
j) is minimized

with the new vectors based on the leximin ordering.
When g∗⊥i (∅) = g∗⊤i (∅) in the root agent i, agent i compute the optimal assignment

Adcd∗
i such that g⊥i (∅ ∪ Adcd∗

i) = g⊤i (∅ ∪ Adcd∗
i) = g∗⊥i (∅) = g∗⊤i (∅). Asep∗

j ⊆
Adcd∗

i is then sent to each child j ∈ Chi using a VALUE message with a flag of the
termination. When g∗⊥i (Asep∗

i) = g∗⊤i (Asep∗
i) in non-root agent i, the agent similarly

computes the optimal assignment Adcd∗
i such that g⊥i (A

sep∗
i ∪ Adcd∗

i) = g⊤i (A
sep∗
i ∪

Adcd∗
i) = g∗⊥i (Asep∗

i) = g∗⊤i (Asep∗
i), and Asep∗

j ⊆ Asep∗
i ∪ Adcd∗

i for each child
j ∈ Chi under Asep∗

i . As a result, all the agents determine their optimal assignment.

4.4 Pruning

Next, we introduce the pruning based on the global lower bound of objective vec-
tors. The global lower bound is g∗⊥r (∅) in the root agent r. g∗⊥r (∅) is propagated in
a top-down manner using VALUE messages. An assignment Asep

j for agent j is pruned
if g∗⊥r (∅) ⊀leximin g∗⊤j (Asep

j). However, the length of g∗⊤j (Asep
j) is the number of

agents in the sub-tree rooted at j while the length of g∗⊥r (∅) equals the number of all
the agents |A|. In this case, ≺leximin is applied as follows. Since g∗⊤j (Asep

j) is an up-
per bound, unknown objective values are represented by ∞. Therefore, with padding
of ∞, g∗⊤j (Asep

j) and g∗⊥r (∅) can be compared as the same length of vectors. Let
g∗⊤⊤
j (Asep

j) denote the vector g∗⊤j (Asep
j) with the padding of ∞. In actual compu-

tation, the padding can be omitted since the sequence of ∞ is the last part of vectors.
When g∗⊥j (Asep

j) = g∗⊤j (Asep
j) ∨ g∗⊥r (∅) ⊀leximin g∗⊤⊤

j (Asep
j) for child j ∈ Chi,

agent i completes the tree search for the assignment Asep
j .

Moreover, to improve effects of the pruning, the upper bound for other parts of the
problem is introduced. Namely, for each child agent j ∈ Chi, agent i computes the
upper bound of objective vector h+⊤

j (Asep
j) for sub-trees except one rooted at j.

h+⊤
j (Asep

j) = h+⊤
i (Asep

i)⊕ max
Adcd′

i for Xdcd
i \Xsep

j

h⊤
i (A

sep
i ∪ Adcd′

i ∪ Asep
j) (6)

Leximin Multiple Objective Optimization for Preferences of Agents 11

h⊤
i (A) = [δi(A)]⊕

⊕
j∈Chi\{j},Asep

j ⊆A

g∗⊤j (Asep
j) (7)

Note that the maximization in Equation (6) is not the maximization of objective val-
ues but the selection of the widest boundary. Since Asep

j is a part of an assignment
for Xsep

i ∪ Xdcd
j , there are several assignments compatible with Asep

j . For such com-
patible assignments, the widest boundary prevents an over estimation. h+⊤

j (Asep
j)

is sent from agent i to its child j using VALUE messages. When g∗⊥j (Asep
j) =

g∗⊤j (Asep
j) ∨ g∗⊥r (∅) ⊀leximin h+⊤

j (Asep
j) ⊕ g∗⊤j (Asep

j) for child j ∈ Chi, agent i
completes the tree search for the assignment Asep

j .

4.5 Shortcut VALUE messages for modified pseudo tree

In several search methods [10, 20], additional VALUE messages are sent from ances-
tor agents to descendant agents taking shortcut paths. The shortcut VALUE messages
directly carry assignments to deep levels of the pseudo tree. Then the assignments are
propagated in a bottom-up manner using extended UTIL messages to update contexts.
In our solution methods, the shortcut messages are particularly important to reduce
the delay in updating the contexts since the decision makers of most variables are the
agents in higher levels of the pseudo tree. In the conventional methods, the paths of
shortcut VALUE messages are back edges. On the other hand, in our cases, back edges
may not directly connect the decision maker and the deepest agent which relate to the
same variable. In the example of Figure 1(c), the root agent sends x0, x1 and x2 to the
agent of x2, and sends x1 to the agent of x3, respectively. Note that the root agent and
the agent of x3 are not directly connected. Therefore, we compute the deepest related
agent for each variable in a bottom-up preprocessing, which is integrated to the prepro-
cessing. The information on the deepest agent is stored in the corresponding decision
maker. Agent i knows a set Sci of agents, to which shortcut VALUE messages are sent.
For each agent k ∈ Sci, i computes Asc

k containing assignments for k based on Asep
j ,

where child j ∈ Chi is an ancestor of k. In addition, we employ timestamps based on
the logical clock of the assignment for each variable, to compare the freshness of the
assignment.

4.6 Pseudo code of search method

Algorithm 1 shows the pseudo code of the search method for agent i. Here i∗ denotes
agent i’s copy of ∗. Also, ∗⊥/⊤ denotes a pair of ∗⊥ and ∗⊤. −−→−∞ and −→∞ denote the
vectors consisting of −∞ and ∞, respectively. The length of these vectors is the same
as the length of the vectors to be assigned. After the initialization (lines 2-4), agents
repeatedly receive messages and maintain their status (lines 5-8). Note that the message
passing is initiated by the root agent when it first enters the Maintenance state (line
8). When an agent receives a message, the agent updates its status based on the type
of messages (lines 9-19). Then the agent maintains other data structures (lines 21-23).
The root agent updates the global lower bound ig∗⊥(∅) (line 21). If the termination
condition is achieved, the agent determines its optimal assignment (line 22-23). Based
on the updated status, messages are sent to other agents (line 24-29).

12 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

Algorithm 1: Distributed search for leximin AMODCOP (agent i)
1 Main:
2 if pi = null then { Asep

i ← ∅. h+⊤
i (Asep

i)← []. ptrmi ← true. }
3 else { Asep

i ← null. ptrmi ← false. }
4 ig∗⊥r (∅) = −−→−∞. trmi ← false.
5 forever do {
6 until receive loop exits do
7 if ¬trmi then { receive a message. } else { purge all messages. }
8 if Asep

i ̸= null ∧ ¬trmi then Maintenance. }
9 Receive(VALUE, A, g, h, trm):

10 update Asep
i by A. if Asep

i =A then { h+⊤
i (Asep

i)← h. } else { h+⊤
i (Asep

i)← −→∞. }
11 ig∗⊥r (∅)← g. ptrmi ← trm. Consistent. return.
12 Receive(VALUE, A):
13 if Asep

i ̸= null then {
14 update Asep

i by A. if Asep
i is updated then h+⊤

i (Asep
i)← −→∞.

15 Consistent. } return.
16 Receive(UTIL, A, g⊥/⊤):
17 update Asep

i by A. if Asep
i is updated then h+⊤

i (Asep
i)← −→∞.

18 if Asep
i is compatible with A then store/update ig

∗⊥/⊤
j (A) by g⊥/⊤.

19 Consistent. return.
20 Maintenance:
21 if pi = null ∧ ig

∗⊥
r (∅) ≺leximin g

∗⊥
i (∅) then ig

∗⊥
r (∅)← g

∗⊥
i (∅).

22 if ptrmi∧ g∗⊥i (Asep
i) = g∗⊤i (Asep

i) then {
23 determine A∗dcd

i corresponding to the termination condition. trmi ← true. }
24 foreach j ∈ Chi do {
25 if trmi then { determine Asep

j from A∗dcd
i . } else { choose Asep

j with a strategy. }
26 send (VALUE, Asep

j , ig∗⊥r (∅), h+⊤
j (Asep

j), trmi) to j. }
27 foreach k ∈ Sci do {
28 determine Asc

k from Asep
j of k’s ancestor j. send (VALUE, Asc

k) to j. }
29 if ¬ptrmi then send (UTIL, Asep

i , g∗⊥/⊤
i (Asep

i)) to pi.
30 return.
31 Consistent:
32 foreach A incompatible with Asep

i do delete ig
∗⊥/⊤
j (A).

33 return.

4.7 Representation of objective vectors

In the whole computation of objective vectors, sorted vector can be employed. With the
sorted vectors, the objective values of individual agents are not directly identified. The
length of the objective vectors is upper bounded by the number of agents |A|. On the
other hand, the sorted vector is compressed with run-length encoding, as a sequence of
pairs (objective value, length). This reduces both the size of the representation and
the computation of ≺leximin, when there are a number of the same objective values.

4.8 Correctness and Complexity

The both of the extended DPOP and the search method are variations of the previous
solution methods [10, 15] while we use a representation without any subtraction. There-
fore, their correctness is proven with the same reasoning as for the previous methods,

Leximin Multiple Objective Optimization for Preferences of Agents 13

replacing the assignment concept with the proposed vectors (since we proved above that
it satisfies the same additive properties). We have addressed how the computation is ex-
tended to Leximin AMODCOPs. Propositions 1, 2 and 3 shows that the monotonicity in
the computation resembles the conventional solution methods based on addition. The
properties on the computational/communication complexity of the proposed methods
are also the same as those of the previous methods. On the other hand, the modified
pseudo tree implicitly increases the induced width [15], which is

∏
xi∈Xsep

i
|Di| for

agent i. The worst case of the basic tree search is as follows. 1) The tree is a single se-
quence of agents. 2) The decision maker is only the root node. 3) The evaluation is only
made in the single leaf node. 4) No pruning works. Therefore, the maximum number of
message cycles is 2(|A| − 1)

∏
xj∈X |Dj |. However, this is an inherent property of the

AMODCOPs. One can address large size problems using approximation methods. The
maximum length of objective vector is the same as the number of agent |A|. With the
representation using pairs of a value and its length, the size of the representation is be-
tween 2 and 2|A|. This representation can be implemented with several tree structures,
including Red-Blacks, tree whose major operations are performed in O(log n) time.
The size of messages increases since their scalar values are replaced by the vectors.

5 Evaluation

The proposed method was experimentally evaluated. In our experiments with Leximin
AMODCOPs (see Subsection 3.1) each problem consists of n ternary variables and c
pairs of asymmetric objective functions. The constraint network is randomly generated
by first creating a spanning trees and then adding additional edges. For each assign-
ment, the objective function fi,j(xi, xj) returns an integer value w from [0, 1] or [0, 10]
based on a uniform distribution. Note that we treat the aggregated function fi(Xi) as
a black-box which cannot be decomposed. For each type of problem, the results are
averaged over 25 instances. As the first experiment, we focused on the effects of search
methods on the modified pseudo trees and the leximin ordering. The following solution
methods were evaluated. b: the basic search method shown in Subsection 4.3. gl: b
with the pruning based on the global lower bound shown in Subsection 4.4. glou: bl
with the upper bound for other part of the problem shown in Subsection 4.4. glousv:
glou with shortcut VALUE messages shown in Subsection 4.5. lvb, lvgl, lvglou,
lvglousv: solution methods with the vectors of lower and upper limit values for each
function fi(Xi) addressed in Subsection 4.3 5. The experiments were performed using
simulation programs based on message cycles. In each message cycle, each agent re-
ceives messages from its message queue. Then the agent updates its status and sends
messages if necessary. A simulation is interrupted after a number of 50000 cycles. Ad-
ditionally, the number of non-concurrently performed operations (ncops) relating to
objective functions and assignments is also evaluated. While it resembles ncccs [8], we
also consider several operations that involve a (partial) assignment.

5 In this case, to avoid over estimation, we modified the condition of the pruning in the sec-
ond phase using a flag. Agent i completes the tree search for the assignment Asep

j when
g∗⊥j (Asep

j) = g∗⊤j (Asep
j) ∨ h+⊤

j (Asep
j)⊕ g∗⊤j (Asep

j) ≺leximin g∗⊥r (∅) for child j ∈ Chi.

14 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

Table 1. Number of iterations (w = [0, 10]) (trm.: number of completed instances)

n, c 10, 9 10, 12 10, 15 20, 19 20, 22 40, 39
alg. msg. ncop. trm. msg. ncop. trm. msg. ncop. trm. msg. ncop. trm. msg. ncop. trm. msg. ncop. trm.

cyc. (103) cyc. (103) cyc. (103) cyc. (103) cyc. (103) cyc. (103)
b 781 125 25 16312 6582 22 42125 45183 8 12092 1535 23 38866 16147 11 38499 8303 9
gl 660 118 25 6617 4349 25 28349 36721 18 8413 1320 23 29768 12341 16 35431 7847 11
glou 332 300 25 3169 4622 25 20553 42786 23 3602 3930 25 19774 25064 21 19922 28369 19
glousv 212 268 25 2140 5268 25 17692 52776 24 1561 3068 25 12813 25179 24 11267 22692 24
lvb 511 96 25 15584 6342 23 41998 44905 8 9295 1314 24 37743 15529 13 33538 8009 13
lvgl 434 92 25 6001 4206 25 25216 36259 19 5903 1095 24 27612 11706 19 30150 7372 15
lvglou 214 231 25 2473 4409 25 16461 41398 25 1046 2829 25 7645 18228 25 12305 23290 23
lvglousv 146 216 25 1787 5065 25 13970 51438 25 605 2465 25 4758 19189 25 4974 17074 25

Table 2. Size of pseudo tree (no dcd.: |Xdcd
i | = 0)

n, c max. max. max. max. max. #agent max.
depth |Chi| |Xsep

i | |Xi| |Xdcd
i | no dcd. |Sci|

10, 9 5 4 2 5 5 4 5
10, 12 6 2 5 5 5 6 5
10, 15 7 2 7 6 6 6 6
20, 19 8 4 2 5 5 9 5
20, 22 9 3 5 6 6 10 6
40, 39 11 5 2 6 6 17 6

Table 3. Size of vector
w [0, 1] [0, 10]

n, c 20, 22 40, 39 20, 22 40, 39
alg. len. sz. 2sz. len. sz. 2sz. len. sz. 2sz. len. sz. 2sz.

lvb 5 2 4 4 2 4 5 4 8 4 3 7
lvgl 9 3 5 15 2 5 9 6 13 15 7 14
lvglou 11 3 6 20 3 6 11 7 15 20 9 19
lvglousv 10 3 6 20 3 6 11 7 14 20 9 18

Table 1 shows the number of iterations. The efficient methods reduce the number
of message cycles. Particularly, glou is effective since it prunes branches with full
information of boundaries. Although glou employs the limit values −∞ and ∞, the
pruning works. The effect comes from the property that leximin partially compares val-
ues in two vectors. In addition, the lower and upper limit values for each function fi(Xi)
are effective in the case of trees and less effective for cyclic networks. This reveals the
need for better bounding methods, as available with conventional DCOP solvers. Such
methods are, however, domain specific since the decomposition of fi(Xi) and the iden-
tification of the preferences of the agents will be necessary. Advanced methods need
more ncops than basic methods. Also, the additional shortcut VALUE messages are
necessary, similar to ADOPT [10, 20]. Therefore, there are several trade-offs between
computation and communication. On the other hand, there are opportunities to reduce
ncops in our implementation. Table 2 shows the size of the pseudo trees. There are a
number of agents with an empty Xdcd

i . These agents only evaluate their objective val-
ues. While there are opportunities to reduce this redundancy by revealing the objective
functions of the agents, it will also be domain specific. Table 3 shows the size of the vec-
tors. The actual size (2sz.) of the representation of the vectors is relatively smaller than
the length (len.) of the vectors in the case of w = [0, 1]. In these results, the computation
of leximin is reduced since the number of pairs (sz.) to be enumerated is less than the
length of vectors. Table 4 shows the comparison between leximin (max-leximin) and
other optimization criteria. The other optimization criteria are summation (max-sum),
maximin (max-min), and maximin with additional summation (max-LWT). These cri-
teria were also applied to the solvers based on pseudo trees, similar to the previous
solvers [6]. Each cell shows the number of cases of dominance (≺ or ≻) or tie (=).
On the summation of objective values, max-sum and max-LWT are never dominated
by max-leximin. Max-leximin, max-min and max-LWT give the same minimum objec-
tive value. For max-sum and max-LWT, max-leximin relatively decreases the variance
of objective values. Max-min is not Pareto optimal while the other criteria are Pareto
optimal.

Leximin Multiple Objective Optimization for Preferences of Agents 15

Table 4. Comparison between max-leximin and other optimization criteria (w = [0, 10])
comparison sum min max
optimization max-sum max-min max-LWT max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 24 1 0 3 3 19 19 6 0 0 6 19 0 25 0 0 25 0 21 2 2 14 3 8 18 7 0
20, 22 25 0 0 2 0 23 23 2 0 0 2 23 0 25 0 0 25 0 23 2 0 11 3 11 18 6 1
40, 39 25 0 0 0 0 25 24 1 0 0 0 25 0 25 0 0 25 0 22 1 2 10 3 12 18 5 2

comparison variance leximin Pareto
optimization max-sum max-min max-LWT max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 24 1 0 14 2 9 20 5 0 0 1 24 0 2 23 0 5 20 0 25 0 0 22 3 0 25 0
20, 22 25 0 0 11 0 14 24 1 0 0 0 25 0 0 25 0 1 24 0 25 0 0 24 1 0 25 0
40, 39 25 0 0 12 0 13 24 0 1 0 0 25 0 0 25 0 0 25 0 25 0 0 25 0 0 25 0

6 Related works and discussions

In ADCOP [4], each value of a function is defined by a pair of values that correspond
to different directions on an edge of a constraint graph. Therefore, an agent has its local
view based on the direction of connected edges. However, its optimal solution corre-
sponds to the maximum summation over all functions and directions. In [12–14, 6],
resource allocation problems similar to ones in this study have been addressed. On the
other hand, we addressed an extension of ADCOPs based on the leximin social welfare.
While Theil based social welfare has been addressed in [12], that solution method is a
local search. In our proposed search methods, the high induced width exponentially in-
creases the number of search iterations. For addressing this issue, a promising direction
is to investigate more aggressive modifications of graphs [19]. Also, there are opportu-
nities to approximate the problems [16, 2]. While existing efficient techniques including
forward-bounding may improve the efficiency of solution methods [13], it needs several
assumptions such that each preference function is additive and can be decomposed to
sub-functions in exchange for the privacy of the agents. While several solution methods
for a centralized constraint optimization problem on the leximin ordering have been
proposed, for example [1], they are dedicated extensions of centralized solvers.

7 Conclusions

In this work, we presented a multiple objective DCOP that considers preferences of
agents, and its solution method based on the leximin ordering on multiple objectives.
Our future work will include improvements to reduce redundant computations, evalua-
tions in practical domains, and analysis on various types of problems.

References

1. Bouveret, S., Lemaı̂tre, M.: Computing leximin-optimal solutions in constraint networks.
Artificial Intelligence 173(2), 343–364 (2009)

2. Delle Fave, F.M., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decentralised coordi-
nation over multiple objectives. In: 10th International Conference on Autonomous Agents
and Multiagent Systems. vol. 1, pp. 371–378 (2011)

3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: 7th International Joint Conference on
Autonomous Agents and Multiagent Systems. pp. 639–646 (2008)

16 T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo

4. Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric distributed
constraint optimization problems. Journal of Artificial Intelligence Research 47, 613–647
(2013)

5. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization 26, 369–395 (2004)

6. Matsui, T., Matsuo, H.: Considering equality on distributed constraint optimization problem
for resource supply network. In: 2012 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology. vol. 2, pp. 25–32 (2012)

7. Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Distributed search method
with bounded cost vectors on multiple objective dcops. In: Principles and Practice of Multi-
Agent Systems - 15th International Conference. pp. 137–152 (2012)

8. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed
constraints processing algorithms. In: 3rd International Workshop on Distributed Constraint
Reasoning. p. (no page numbers) (2002)

9. Miller, S., Ramchurn, S.D., Rogers, A.: Optimal decentralised dispatch of embedded gener-
ation in the smart grid. In: 11th International Conference on Autonomous Agents and Multi-
agent Systems. vol. 1, pp. 281–288 (2012)

10. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)

11. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge : Cambridge University
Press (1988)

12. Netzer, A., Meisels, A.: SOCIAL DCOP - Social Choice in Distributed Constraints Opti-
mization. In: 5th International Symposium on Intelligent Distributed Computing. pp. 35–47
(2011)

13. Netzer, A., Meisels, A.: Distributed Envy Minimization for Resource Allocation. In: 5th
International Conference on Agents and Artificial Intelligence. vol. 1, pp. 15–24 (2013)

14. Netzer, A., Meisels, A.: Distributed Local Search for Minimizing Envy. In: 2013
IEEE/WIC/ACM International Conference on Intelligent Agent Technology. pp. 53–58
(2013)

15. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJ-
CAI05. pp. 266–271 (2005)

16. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised
coordination via the Max-Sum algorithm. Artificial Intelligence 175(2), 730–759 (2011)

17. Sen, A.K.: Choice, Welfare and Measurement. Harvard University Press (1997)
18. Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M., Hirayama, K., Matsui, T.: Coalition structure

generation based on distributed constraint optimization (2010)
19. Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: Constructing a unifying theory of dy-

namic programming dcop algorithms via the generalized distributive law. Autonomous
Agents and Multi-Agent Systems 22(3), 439–464 (2011)

20. Yeoh, W., Felner, A., Koenig, S.: Bnb-adopt: an asynchronous branch-and-bound dcop al-
gorithm. In: 7th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. pp. 591–598 (2008)

21. Zivan, R.: Anytime local search for distributed constraint optimization. In: AAAI08. pp.
393–398 (2008)

