
Reducing the Number of Samples in Distributed
Cooperative Solution Method for Resource Supply

Networks
Toshihiro Matsui, Masayuki Kaneko, Yuho Takama and Hiroshi Matsuo

Nagoya Institute of Technology
Gokiso-Cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan

{matsui.t@, {kenko, takama}@matlab.,matsuo@}nitech.ac.jp

Abstract—Distributed Constraint Optimization Problems
(DCOPs) are applied to resource allocation problems in resource
supply networks. In previous studies, distributed cooperative
solution methods based on feeder trees have been utilized.
However, in most cases with resource supply networks, the size
of variable’s domains in the problems is very large, since the
variables originally take continuous values. This is critical even
if the networks are trees because it increases the number of
combinations. Therefore, sampling of solutions is necessary to
restrict the size of the problems. In this study, we propose
methods to reduce the number of samples for resource allocation
problems of resource supply networks. To maintain the feasibility
with the samples, boundaries for the resource amount and cost
values were introduced. With the proposed methods, the size of
problems is reduced while the methods keep relatively better
feasibility and quality of the solutions.

I. INTRODUCTION

Distributed resource allocation systems, including power
supply networks, have been studied as application domains
of multiagent systems. In autonomous distributed networks,
cooperative optimization methods are necessary to solve the
problem of resource allocation. The Distributed Constraint
Optimization Problem (DCOP) is a fundamental framework
of cooperative problem solving in multiagent systems [1], [2],
[3], [4]. The states of agents and the relationships between
agents are formalized into a constraint optimization problem,
which is distributed on the multiagent systems. Several types
of distributed cooperative algorithms are employed for the
DCOPs. The representation of DCOPs and corresponding
solution methods can also be extended to address specific
issues.

Resource allocation problems motivated by the power sup-
ply networks of smart-grid systems have been studied as
distributed optimization problems. In the supply networks,
resources that are initially distributed among source nodes
have to be shared among all nodes. In related works [5],
[6], dedicated classes of DCOPs and solvers were proposed
for resource allocation on feeder trees. These studies are
considered as a variation of Resource Constrained DCOP
(RCDCOP) [7], which is a dedicated class of problems where
shared resources are represented as global constraints that can
be decomposed into agents. Their solution methods are based
on pseudo trees for the problems.

While several studies represent these problems as discrete
optimization problems [5], [6], the size of the variable’s
domains in the problems is very large in most cases because
it originally takes continuous values. This is a critical issue,
even if the networks are trees, since it increases the number of
combinations. Therefore, sampling of solutions is necessary to
restrict the size of the problems.

There are studies on DCOPs with continuous variables
based on sampling, interpolation and numeric techniques [8],
[9]. On the other hand, for resource allocation problems, a
specific aggregation of variable values is employed to evaluate
constraints of resources. In addition, since resource constraints
are hard constraints, the feasibility is important even if the
problem is approximated with samples.

In this study, we propose methods to reduce the number
of samples for the resource allocation problems in resource
supply networks. To maintain the feasibility with the samples,
boundaries for the resource amount and cost values are in-
troduced. With the proposed methods, the size of problems
is reduced while the methods keep relatively better feasibility
and quality of the solutions.

The rest of the paper is organized as follows. In Section II,
we give background for the study. Then, in Section III, we
propose the method to reduce the size of problems. The
proposed methods are experimentally evaluated in Section IV.
Discussions and related works are shown in Section V. We
conclude our study in Section VI.

II. BACKGROUND

A. Problem Definition

In this study, we use a definition of a resource allocation
problem similar to [5], [6]. Most of the definitions are inherited
from these studies.

In this network, the resource amounts of several nodes are
allocated to other nodes. The previous studies assume that the
network structure is limited to trees [5], [6]. Since feeder trees
are common in actual power networks, such an assumption is
reasonable.

The components of the network are as follows:
• Nodes: Each node in the network supplies or consumes

an amount of resource. There are limitations on the

amounts of supply and consumption. Each node also has
a preference on the resource amount.

• Links: Each link connects two nodes. The links and
nodes form paths to transfer an amount of resource. The
capacity of the link limits the amount of resource that
is transferred in a link. As a common assumption, the
resource loss during the transfer is ignored.

In addition to the above limitations on the resource amount,
there is another type of constraints on the transferred re-
sources. In each node, the total amount of the resource that
is supplied and consumed has to be zero. The goal of the
problem is to globally optimize an aggregation of preference
under these constraints.

The problem is formally defined by ⟨N,L,R, F,L⟩, where
N , L, R, F , and L are a set of nodes, a set of links, a set of
resource amounts on the nodes, a set of cost functions, and a
set of resource amounts on the links, respectively.

For node i ∈ N , the preference of the supply and the
consumption of the resource amounts are defined as:

• Ri: Ri ∈ R is a finite set of resource amounts that are
supplied or consumed by node i. When amount r ∈ Ri

has a negative value, r represents an amount of the
supplied resource. On the other hand, amount r represents
an amount of consumed resource when it has a positive
value. Node i chooses a value of the amount from Ri.

• fi(r): fi(r) ∈ F is a cost function from amount r ∈ Ri of
the resource to a non-negative value. Here, we use cost
functions to represent preferences because our solution
methods are designed for minimizing problems.

Link (i, j) is defined for a pair ⟨i, j⟩ of nodes. For each node
i, the set of neighborhood nodes that are directly connected
with links is denoted as Nbri. The transfer of the resource on
link (i, j) ∈ L is represented as:

• li,j : li,j is the amount of resource transferred through link
(i, j). li,j must take a value such that −lci,j ≤ li,j ≤ lci,j ,
where lci,j is the capacity of link (i, j). The sign of value
li,j represents the direction of the transfer. The direction
of a flow on the network must be defined. li,j takes a
positive value when the corresponding link transfers an
amount of resource in the same direction as the flow.

In each node i ∈ N , the sum of ri and li,j for all links
(i, j) that connect node i must always be zero. The constraint
is defined as ∑

(i,j)∈Lin
i

li,j = ri +
∑

(i,k)∈Lout
i

li,k (1)

with set Lin
i of input links and set Lout

i of output links of
node i. Lin

i and Lout
i represent a flow on the network.

For allocation R of the resource amounts for all nodes, the
global cost f(R) is defined as f(R) =

∑
i∈N fi(ri). Here, ri

takes a corresponding value in allocation R. The goal of the
problem is to find the optimal allocation R∗ that minimizes
f(R) under the constraints.

xr1

xr2

xr3 xr4

xr5

xr0

xl1,2

xl0,1

xl1,5

xl2,3 x
l
2,4

3 4

5
2

1

0

VALUECOST
Fig. 1. Pseudo tree and message propagation for RCDCOP (acyclic network)

B. Representation as Resource Constrained DCOP

DCOPs have been studied as frameworks of multiagent co-
operation. With the representation of DCOPs, an optimization
problem in a multiagent system is defined as a constraint
optimization problem whose variables, constraints, and evalu-
ation functions are distributed among agents. This problem is
solved using distributed cooperative algorithms that are based
on message communication.

RCDCOP [7] is an extended class of DCOPs that contains
dedicated representations of resources and constraints related
to the resources. The resource allocation problem shown in
Subsection II-A is formalized as RCDCOPs [5], [6]. Here,
we show an RCDCOP that represents the resource allocation
problem.

The RCDCOP for the resource allocation on the network
is defined by ⟨A,L,Xr, Dr, F, C⟩. Here, A represents a set
of agents. Each agent i ∈ A corresponds to a node in the
resource allocation problem. For the sake of simplicity, we
use the notation of an agent and its corresponding node
interchangeably. L is a set of links. Xr is a set of variables
that represent the amounts of supplied or consumed resources
in the nodes. Dr is a set of finite domains of variables in Xr.
F is a set of cost functions and C is a set of constraints.

Additionally, X l and Dl are introduced for links. X l is
a set of variables that represent the amounts of transferred
resources in the links. Dl is a set of finite domains of variables
in X l. The domain of each variable for a link is dynamically
computed as shown in Subsection II-C.

For a set of agents, a partial order is defined based on the
pseudo tree [3] rooted at a node. Figure 1 shows a pseudo tree
for an RCDCOP. In the figure, six agents/nodes are represented
as nodes of the pseudo tree. The pseudo tree corresponds to a
spanning tree of the original network. In this work, the pseudo
tree is the same as the original tree, since original network is
a feeder tree, Based on the pseudo tree, notations of parent
agent pi and a set of child agents Chi are defined for each
agent i.

Agent i has a variable xr
i ∈ Xr that represents the

amount of the supplied or consumed resource. i also has a set
X l

i ⊂ X l of variables that represent the amount of transferred
resources from i. xl

i,j ∈ X l
i represents the amount of resources

transferred from agent i to its child agents j ∈ Chl
i. Similarly,

xl
pi,i

∈ X l
pi

represents the amount of resources transferred

from i’s parent agent pi to i. Agent i decides the values of the
variables except for xl

pi,i
, whose value is determined by pi.

Dr
i ∈ Dr and Dl

i,j ∈ Dl represent the domain of variable
xr
i for agent i and the domain of variable xl

i,j for link (i, j),
respectively. While Dr

i corresponds to Ri, Dl
i,j is dynamically

computed as mentioned above.
fi(x

r
i) ∈ F is a cost function that corresponds to fi(ri) for

node i in the resource allocation problem. Similarly, cri ∈ C
is a resource constraint for node i. Resource constraint cri is
defined as:

cri : xl
pi,i = xr

i +
∑

j∈Chi

xl
i,j . (2)

Additionally, in the root node, xl
pi,i

must be zero.
Moreover, capacity constraint cli,j ∈ C is defined for each

link (i, j) as:
cli : −lci,j ≤ xl

i,j ≤ lci,j . (3)

Global cost function f(X) for assignment X for all vari-
ables in Xr ∪ X l is defined as f(X) =

∑
i∈A fi(x

r
i). Here,

xr
i takes a corresponding value in X . The optimal allocation

X ∗ minimizes f(X) under the constraints.

C. Computation based on Pseudo Trees

Several exact solution methods can be applied to the RCD-
COP defined in Subsection II-B. In [5], [6], solution methods
were shown for when the networks are trees. Here, we show
important computations of the pseudo tree. See [2], [3], [5],
[6], [7] for more details.

The computation of the cost value is recursively defined.
The optimal cost g∗i (x

l
pi,i

) for assignment of the resource from
i’s parent node and the subtree rooted at agent i is represented
as follows:

g∗i (x
l
pi,i) = min

Xi

gi({xl
pi,i} ∪ Xi) (4)

gi({xl
pi,i} ∪ Xi) = δi({xl

pi,i} ∪ Xi) +
∑

j∈Chi

g∗j (x
l
i,j) (5)

δi({xl
pi,i} ∪ Xi) =

{
fi(di) s.t. (xr

i , di) ∈ Xi cri ∧ clpi,i

∞ otherwise.
(6)

Here, Xi denotes an assignment such that {(xr
i , di)} ∪∪

j∈Chi
{(xl

i,j , di,j)}, di ∈ Dr
i , di,j ∈ Dl

i,j . The value of xl
i,j

corresponds to the value in Xi.
In addition, domain Dl

pi,i
of the variable for link (pi, i) is

computed based on the scope of g∗i (x
l
pi,i

) as follows:

Dl
pi,i = {dlpi,i|g

∗
i (d

l
pi,i) ̸= ∞}. (7)

The above expression means that g∗i (x
l
pi,i

) is eliminated if
g∗i (x

l
pi,i

) = ∞.
In Equations (4), (5), and (6), for the sake of simplicity, we

assume that each agent is able to refer to the cost values and
assignments of other agents. In actual computation, we employ
an algorithm based on DYDOP [5] which is a variation of
dynamic programming for DCOPs [3].

The processing consists of two phases: the bottom-up com-
putation of the cost values and the top-down computation

of the decision of the optimal assignments of the variables.
These computations are performed using COST and VALUE
messages as shown in Figrue 11. In the bottom-up phase of the
computation, for each possible assignment of xl

pi,i
, cost values

are aggregated in a bottom-up manner using COST messages.
In the computation, assignments with the infinity cost values
are eliminated as shown above.

The computed cost values are stored in a table that basically
consists of elements xl

pi,i
and g∗i (x

l
pi,i

). Additionally, xr
i and

xl
i,j for each j ∈ Chi that are aggregated to xl

pi,i
are also

stored in the table. Here, a row of the table is called a
sample. Since a sample corresponds to an assignment, we
interchangeably use them. For sample s, an element * of s
is denoted by s.∗. We define the size of a table as the number
of samples in the table. The COST message from agent i to
pi sends a table that contains s.xl

pi,i
and s.g∗i (x

l
pi,i

) for each
sample s (i.e. xl

pi,i
). The received COST message is stored as

a table consisting of xl
i,j and g∗j (x

l
i,j) for each child j.

After the bottom-up computation of cost values, the root
agent has its table of global cost values that corresponds to
g∗i (0) if there is the optimal assignment. Then, the root agent
determines the optimal assignments of its variables. In the top-
down phase of the computation, similarly, optimal assignments
of other variables are recursively determined in a top-down
manner using VALUE messages that propagate the optimal
assignment of xl

pi,i
. When each agent i determines the optimal

assignments for i and i’s subtrees from the optimal assignment
xl∗
pi,i

, i looks up s∗ such that s∗.xl
pi,i

= xl∗
pi,i

. Then s∗.xr
i and

s∗.xl
i,j for each j ∈ Chi are assigned. Those elements have

been stored in i’s table by the bottom-up computation.
However, where the size of the variables’ domains is large,

these methods are not applicable due to the large size of
the agents’ local problems. In addition, the size of the local
problem exponentially grows with the degree of the node. This
is critical, even if the networks are trees, as it increases the
number of combinations. Therefore, sampling of solutions is
necessary to restrict the problem size. On the other hand, this
also reduces the feasibility of the original problem.

III. REDUCING SAMPLES

A. Basic Ideas

In the proposed method, we limit the size of tables with
given parameters. To reduce the number of samples in the
table, most of the samples are integrated to other samples with
a heuristic.

However, when each node arbitrarily chooses a set of
samples for its table, the total amount of resources may
not equal zero. To overcome this problem, we introduce
the boundaries of resource amounts for each samples. The

1While we use another simple representation, bottom-up and top-down
computations correspond to Value Calculation and Value Propagation phases
shown in [5]. Similarly, COST and VALUE messages correspond to Pow-
erCost and FlowCO messages. In addition, we consider each PowerCost
message as a table since its elements FlowCOjs represent pairs of a resource
amount and a cost value. Each FlowCOj corresponds to a sample of resource
amounts.

boundaries represent the amount of resources that satisfies
constraints on resources. When the total amount of resources
is not equal to zero, several samples are modified to satisfy
the constraint by inserting errors based on the boundaries.

We also introduce the cost values for the boundaries to
estimate cost values of modified samples. The cost values are
evaluated to determine an allocation of errors on the amount
of resources. The boundaries and cost values are computed
with the original samples.

B. Partial Integration of Samples

To reduce the number of samples, the maximum limit
number M of the samples (i.e. the maximum number of rows
in the tables of cost values) is applied to the tables. When a
new sample s is computed and added to the table, there are
following cases.

(a) There is a sample t such that t.xl
pi,i

= s.xl
pi,i

. In
this case, both samples are aggregated by minimizing cost
values. Therefore, the number of samples does not increase.
Otherwise, the following cases are applied.

(b) There is a sample t whose value of t.xl
pi,i

is within a
range of s.xl

pi,i
. If there are multiple samples in the range, the

sample with the highest cost value is selected. In this case, both
samples are aggregated by minimizing cost values. Therefore,
the number of samples does not increase. Otherwise, the
following cases are applied.

(c) The number of samples in the table is less than the
maximum limit number M . In this case, the new sample s is
added to the table. Otherwise, case (d) is applied.

(d) There is a sample t whose value of t.xl
pi,i

is the nearest
value of s.xl

pi,i
. In this case, both samples are aggregated by

minimizing cost values. Therefore, the number of samples does
not increase.

In the case of (b), for a new sample s, samples t whose
values of t.xl

pi,i
are within a range of s.xl

pi,i
are compared.

To evaluate the range, the distance between sample t and s is
defined as follows.

dis(s, t) = |s.xl
pi,i − t.xl

pi,i|. (8)

For each agent i, the range of samples is defined with threshold
parameter disi. If dis(s, t) ≤ disi, then t is in the range of s.
We define disi based on the range of xl

pi,i
as follows. First,

the minimum value xlmin
pi,i

and the maximum value xlmax
pi,i

of
xl
pi,i

are computed aggregating the minimum and maximum
values in Dr

i and Dl
i,j for each child agent j. Then disi is

calculated as follows.

disi = (xlmax
pi,i − xlmin

pi,i)/M. (9)

For new sample s, s.g∗(xl
pi,i

) and t.g∗(xl
pi,i

) of sample t
in the table are compared. Then one of the samples with the
highest cost value is eliminated.

In addition, dis(s, t) is also employed to evaluate the
distance of two samples in case (d). Figure 2 shows the
procedure of the above method. In the procedure, ≺ denotes
the preference of samples. While ≺ is simply defined as <
here, the operator is modified to evaluate the feasibility of

1 S ← ∅ // set of samples (i.e. table)
2 for all X ∈ Dr

i ⊗
⊗

j∈Chi
Dl

i,j {
3 generate sample s s.t.
4 s.xl

pi,i = s.xr
i +

∑
j∈Chi

s.xl
i,j ,

5 s.g∗i (x
l
pi,i) = g({s.xl

pi,i} ∪ X),
6 {(xr

i , s.x
r
i)} ∪ {(xl

i,j , s.x
l
i,j)|j ∈ Chi} = X .

7 if t s.t. t.xl
pi,i = s.xl

pi,i exists in S { // case (a)
8 if s.g∗i (xl

pi,i) ≺ t.g∗i (x
l
pi,i) { replace t by s. } }

9 else if t s.t. dis(s, t) ≤ disi exists in S { // case (b)
10 choose t s.t. ∀t′ ∈ S \ {t}, t′ ⪯ t.
11 if s.g∗i (xl

pi,i) ≺ t.g∗i (x
l
pi,i) { replace t by s. } }

12 else{
13 if |S| < M { add s to S. } // case (c)
14 else{ // case (d)
15 select t s.t. argmint∈Sdis(s, t).
16 if s.g∗i (xl

pi,i) ≺ t.g∗i (x
l
pi,i) { replace t by s. } } } }

Fig. 2. Integration of samples

samples prior to the evaluation of cost values as shown in
Subsection III-E3.

This method is based on heuristics to maintain better cost
values while considering the distribution of samples. On the
other hand, the feasibility and quality of the solutions decrease
when the number of samples is significantly reduced.

C. Boundaries for Feasibility

For resource allocation problems, the feasibility of solutions
is a serious issue. When the number of samples is reduced,
the feasibility decreases. Therefore, an additional method is
required to solve the problem when no feasible solutions are
left in the samples.

While there are two types of constraints, infeasibility is
mainly caused by resource constraints shown as Equation (2).
As a result of eliminating samples, a resource constraint may
not be satisfied in the root node agent. In such case, xl

pi,i
of

the root agent is not equal to zero. That is, there may be no
assignments of resources whose sum equals zero.

When an agent has a continuous amount of resources, the
resource amounts around each sample are available to absorb
extra amounts in the resource constraint. Filling such extra
amounts into continuous values requires boundaries of possible
continuous values. The original computation is therefore ex-
tended to compute the boundaries of the continuous resources.

For each sample s in the table of agent i, the lower bound
s.x⊥

pi,i
and upper bound s.x⊤

pi,i
of s.xpi,i are introduced. If

there are only discrete amounts of resources in the subtree
rooted at agent i, s.x⊥

pi,i
= s.xpi,i = s.x⊤

pi,i
. That is, there

is no flexibility to allow absorption of extra amounts of
resources. On the other hand, if the amount of the resources
is continuous, the boundaries are determined based on the
possible range of these amounts.

The range of resource amount Ri is defined by r⊥i and r⊤i ,
which are the minimum and maximum values in Ri. With
these ranges, boundaries r⊥ and r⊤ of r ∈ Ri are defined
as r⊥i ≤ r⊥ ≤ r and r ≤ r⊤ ≤ r⊤i . In addition, for each
link (i, j), the range of resource amount li,j is defined by
−lci,j ≤ li,j ≤ lci,j , as shown in Subsection II-A. Therefore,

boundaries l⊥ and l⊤ of amount l are defined based on a range
similar to r⊥ and r⊤. The boundaries of s.xpi,i are computed
from these elements.

As shown in Equation (2), xpi,i is the sum of a set of values
of xr

i and xl
i,j for all child nodes. Additionally the value of

xpi,i is also restricted by Equation (3). Calculations of xl⊥
pi,i

and xl⊤
pi,i

are defined as:

xl⊥
pi,i = max

−lcpi,i, x
r⊥
i +

∑
j∈Chi

xl⊥
i,j

 (10)

xl⊤
pi,i = min

lcpi,i, x
r⊤
i +

∑
j∈Chi

xl⊤
i,j

 . (11)

Here, xr⊥
i and xr⊤

i take values r⊥ and r⊤ such that xr⊥
i = r⊥

and xr⊤
i = r⊤. Note that there are cases such that xl⊤

pi,i
<

−lcpi,i
or lcpi,i

< xl⊥
pi,i

. In such cases, we eliminate the sample.
In other cases, xl⊥

pi,i
≤ xl⊤

pi,i
is always true.

xl
pi,i

is also modified to satisfy −lcpi,i
≤ xl

pi,i
≤ lcpi,i

and
xl⊥
pi,i

≤ xl
pi,i

≤ xl⊤
pi,i

if necessary. However, the modification
of xl

pi,i
causes an error on the amount of resources. This error

is treated as a offset in the computation of error values as
shown in Subsection III-E2 (b).

As shown above, boundaries r⊥ and r⊤ of r ∈ Ri can
take values from their range. Therefore, there are several
strategies for choosing the boundaries. Here we employ the
widest strategy: r⊥i = r⊥ and r⊤ = r⊤i . With this boundary,
each sample covers as wide a range as possible. As a result,
the feasibility of the solutions increases. On the other hand,
the ranges of a number of samples will overlap.

The computation of the bottom-up phase is extended with
the computations shown above. In addition to the cost values
computation, the boundaries are calculated. When the root
agent computes its table, there may be no samples in the table
due to violation of its resource constraint. In such cases, the
root agent chooses an assignment by modifying the sample.
When s.xl

pi,i
is not zero, s satisfies the resource constraint by

adding error elpi,i
= 0 − s.xl

pi,i
to s.xl

pi,i
. To this end, elpi,i

must be absorbed by i and i’s child agents.
When there are multiple samples that satisfy the resource

constraint with errors, we have several strategies for choosing
a sample. One method chooses the sample with the minimum
error.

In the top-down computation phase, root agent i sends
assignment s.xl

i,j to each child agent j based on the selected
sample s. In this communication, error eli,j for sample xl

i,j is
also propagated. That is, the root agent shares its error with
its child agents. If there are multiple child agents, the error is
distributed among the agents. The share of the error values is
shown as follows:

elpi,i = eri +
∑

j∈Chi

eli,j (12)

where s.xr⊥
i ≤ s.xr

i + eri ≤ s.xr⊤
i (13)

s.xl⊥
i,j ≤ s.xl

i,j + eli,j ≤ s.xl⊤
i,j . (14)

(a) (b) aggregation of (a) and (b)
x

x

x x''

x''

x''

x x''

x' x''

x' x''

x' x''

x' x''resourcecost
x' x''

x' x''

x x''

x' x''

Fig. 3. Aggregation of cost values for boundaries

Here, eri denotes the error for the assignment of i. There
are also several strategies for sharing the error. One method
allocates the error to all nodes in proportion to the range of
the bounds.

Each non-root agent i receives assignment xl
pi,i

and error
elpi,i

from its parent agent pi. Agent i simply chooses the
corresponding sample s in its table based on xl

pi,i
. i then

allocates the share of error elpi,i
among i and the child nodes

in Chi. In the computation of the shares of error values, a
strategy similar to the case of the root node is employed. i
then sends assignment s.xl

i,j and error eli,j to each child agent
j.

The above method increases the feasibility by modifying
samples. While this modification is reasonable, the cost value
should be also evaluated.

D. Estimation of Cost Values Considering Errors

The boundaries of errors on amounts of resources are
addressed above. Here, we focus on the estimation of cost
values in such cases.

Estimating the cost values requires several assumptions.
We assume knowledge of resources of continuous amounts.
With this knowledge, an interpolation method of cost values
is applied to the boundaries of the amounts of resources x⊥

and x⊤ for each x. Let h(r) denote the cost value for r ∈ Ri.
Here we employ h(r⊥) = fi(r

⊥) and h(r⊤) = fi(r
⊤).

Additionally, cost values h(xl⊥
i,j) and h(xl⊤

i,j) are also applied
to xl⊥

i,j , and xl⊤
i,j .

The aggregation of those cost values is defined below.
Besides the addition of resource amounts, the cost values are
calculated as:

h(x⊥) = h(x′⊥) + h(x′′⊥) where x⊥ = x′⊥ + x′′⊥. (15)

For h(x⊤), the cost value is similarly calculated.
On the other hand, the aggregation for value x that is not

bound values x⊥ and x⊤ is defined as follows.

h(x) = h(x′∗) + h(x′′∗) where x = x′∗ + x′′∗. (16)

x′∗ = argminx∈{x′⊥,x′,x′⊤}h(x) (17)

x′′∗ = argminx∈{x′′⊥,x′′,x′′⊤}h(x) (18)

The above calculation is considered as shown in Figure 3. In
this example, two boundaries (a) and (b) are aggregated. In the

figure, the horizontal axis stands for resource amounts while
the vertical axis stands for cost values. Black dots represent
cost values for x⊥, x and x⊤. The aggregations for the
boundaries x′⊥ +x′′⊥ and x′⊤ +x′′⊤ based on Equation (15)
are reasonable.

On the other hand, as shown in the figure, the true ag-
gregation may generate boundaries of cost values in different
directions. Here we employ the value with the minimum cost
value (x′+x′′⊥). As a result of this approximation, the number
of vertices does not change.

Note that the computation of h(x) shown in Equation (16)
may cause an error on the amount of resources since x may
not be equal to x′+x′′. This error is treated as a offset in the
computation of error values as shown in Subsection III-E2 (c).

When the boundaries of resources are limited by the capac-
ity of links as shown in (10) and (11), cost values h(xl

pi,i
),

h(xl⊥
pi,i

) and h(xl⊤
pi,i

) should be appropriately managed. We
simply modify the cost values in proportion to limited and
original bounds. As shown in Figure 3, there are two line
segments (xl⊥

pi,i
, xl

pi,i
) and (xl

pi,i
, xl⊤

pi,i
) for each sample.

Therefore, h(xl
pi,i

), h(xl⊥
pi,i

) and h(xl⊤
pi,i

) are moved on these
line segments so that xl

pi,i
, xl⊥

pi,i
and xl⊤

pi,i
satisfy the capacity

of links.
In the aggregation of minimizing cost shown in Subsec-

tion III-C, a new sample s is treated based on the cases (a),
(b), (c) and (d).

When the assignment is determined with resource amount
errors, cost values are also evaluated. With the estimated
cost values, agents determine the share of errors on resource
amounts. The cost value for an amount of resource x is
estimated based on h(x⊥), h(x) and h(x⊤). In addition,
to estimate cost values from a limited number of samples,
interpolation methods are necessary. As basic strategies, we
employ a linear interpolation.

The estimation of cost values is based on the sign of error
elpi,i

in agent i. If elpi,i
< 0 then the error is shared decreasing

the margin of lower bounds of resource amounts of agents.
For xr

i , the gradient of the cost value is calculated as follows.

−(h(xr⊥
i)− h(xr

i))/(x
r⊥
i − xr

i)) (19)

Similarly, the gradient of cost values for xl
i,j is as follows.

−(h(xl⊥
i,j)− h(xl

i,j))/(x
l⊥
i,j − xl

i,j)) (20)

Otherwise, the margins of upper bounds are similarly de-
creased. The gradients of cost values for xr

i and xl
i,j are

represented as follows.

(h(xr⊤
i)− h(xr

i))/(x
r⊤
i − xr

i)) (21)

(h(xl⊤
i,j)− h(xl

i,j))/(x
l⊤
i,j − xl

i,j)) (22)

Considering the gradients, the error is allocated to the agents
whose gradient values are small. Here, we greedily allocate
errors. The margins of resource amounts in agents are filled
with errors in ascending order on gradient values.

E. Several Details

1) Tables and messages: The proposed method needs ad-
ditional properties in the table of samples. In the original
table, each sample has xl

pi,i
, g∗i (x

l
pi,i

), xr
i and xl

i,j for each
j ∈ Chi. On the other hand, in the proposed method, each
sample also has xl⊥

pi,i
, xl⊤

pi,i
, g∗i (x

l⊥
pi,i

), g∗i (x
l⊤
pi,i

), elpi,i
and eli,j

for each j ∈ Chi. COST messages are extended to contain
xl⊥
pi,i

, xl⊤
pi,i

, g∗i (x
l⊥
pi,i

), g∗i (x
l⊤
pi,i

) and elpi,i
in addition to xl

pi,i

and g∗i (x
l
pi,i

). VALUE messages are extended to contain el∗pi,i

in addition to the information of the optimal assignment xl∗
pi,i

.
Here elpi,i

and eli,j are error values on amounts of resources
that are computed in the bottom-up computation. el∗pi,i

is the
error value for the optimal assignment xl∗

pi,i
. As shown above,

the proposed method employs additional properties. Therefore,
there are a trade-off between the number of samples and the
additional properties.

2) Errors on ammounts of resoruces: In the proposed
method, three types of errors on amounts of resources are
considered. (a) The root agent inserts an error to absorb extra
or insufficient amounts of resources. Then the error is assigned
to the root agent and its subtrees. Other nodes also determine
assignments of the error. This type of errors is represented as
el∗pi,i

and sent using a VALUE message. (b) When xl
pi,i

of a
sample is modified to satisfy the capacity of link (pi, i), an
error is inserted for xl

pi,i
. This error is stored as elpi,i

and sent
using a COST message. (c) When two samples are aggregated
as shown in Figure 3, an error may be inserted. This error is
stored to as eli,j for each j ∈ Chi. eli,j takes non-zero value
when xl⊥

i,j or xl⊤
i,j is aggregated for xl

pi,i
instead of xl

i,j . Since
error values (b) and (c) are fixed values, they are treated as
offset values in the assignments of error (a).

3) Addtitional heuristics: In the proposed method, operator
≺ in Figure 2 is modified to evaluate the feasibility of samples
prior to the evaluation of cost values. Here the feasibility
means whether xl

pi,i
is feasible or not. Note that an assignment

in [xl⊥
pi,i

, xl⊤
pi,i

] can be feasible even if xl
pi,i

is infeasible.
However, we prefer the samples of feasible xl

pi,i
for the

opportunities of globally feasible solutions. Also, when the
root node determines the optimal assignment, small error
values on amounts of resources are preferred prior to cost
values. Since the accuracy of approximated cost values in
the current method is relatively low, we prefer assignments
of small error values. To address these issues more studies
will be necessary.

F. Correctness and Complexity

The proposed method is clearly an incomplete algorithm
since it eliminates solutions without considering exact opti-
mality. On the other hand, the algorithm always terminates and
outputs a feasible solution or the information of infeasibility.

Since the proposed method limits the size of the tables
in each agent to M , the maximum size of messages is also
M . The proposed method does not directly address the issue
of table size that grows with the number of child agents.
Therefore, each agent evaluates at most |Ri| ·Mn samples for

TABLE I
FEASIBILITY AND SIZE OF TABLE

capacity of links
cost alg. [−∞,∞] [-500,500]
func. feasibility max. sz. feasibility max. sz.

[%] of tbl. [%] of tbl.
random exact 100 6201 100 1001

lmt100rnd 88 100 88 100
lmt10 44 10 44 10
lmt100 40 100 48 100
lmt10-res 100 10 100 10
lmt100-res 100 100 100 100
lmt10-res-cost 100 10 100 10
lmt100-res-cost 100 100 100 100

linear exact 100 6201 100 1001
lmt100rnd 40 100 40 100
lmt10 32 10 32 10
lmt100 52 100 52 100
lmt10-res 100 10 100 10
lmt100-res 100 100 100 100
lmt10-res-cost 100 10 100 10
lmt100-res-cost 100 100 100 100

quadratic exact 100 6201 100 1001
lmt100rnd 40 100 40 100
lmt10 32 10 32 10
lmt100 56 100 56 100
lmt10-res 100 10 100 10
lmt100-res 100 100 100 100
lmt10-res-cost 100 10 100 10
lmt100-res-cost 100 100 100 100

TABLE II
COST VALUE

capacity of links
cost alg. [−∞,∞] [-500,500]
func. cost value cost value

min max ave min max ave
random exact 197 366 286 218 336 280

lmt10-res 413 27331 13305 314 29026 14198
lmt100-res 413 27331 14275 252 29026 13421
lmt10-res-cost 309 2881 1167 323 2820 1082
lmt100-res-cost 309 2881 1159 273 2971 949

linear exact 6 3367 1009 6 3367 1009
lmt10-res 6 6455 2037 6 6401 2054
lmt100-res 6 6501 1947 6 6449 1957
lmt10-res-cost 6 4783 1463 6 4783 1391
lmt100-res-cost 6 4783 1424 6 4865 1364

quadratic exact 6 117390 20772 6 117390 20772
lmt10-res 12 160304 33258 12 183161 40071
lmt100-res 6 161127 40885 6 183689 46372
lmt10-res-cost 6 625738 159495 6 657767 145978
lmt100-res-cost 6 625738 137207 6 678851 125186

the number n of child nodes. However, the maximum table
size M can be individually reduced for each child node.

IV. EVALUATION

The proposed method was experimentally evaluated. The
experiments were performed using simulation programs. We
used example problems that were motivated by the feeder
trees on power supply networks. The problems were designed
for the proposed methods while those resemble the problems
shown in [5], [6]. As the first experiment, we chose relatively
simple settings.

Since the networks are trees, the problem consists of n
nodes and n−1 links. Each tree was generated as a binary tree
as possible. For the sake of simplicity, amounts of resource Ri

are the same for all agents. We designed Ri as a set of integer

values in [r⊥i , r
⊤
i]. Similarly, the capacities of links lci,j have

the same value for all links. In the following, we will show the
results in the case of n = 50, [r⊥i , r

⊤
i] = [−100, 100], lci,j = ∞

or 500. All problem instances have feasible solutions.
As cost function f(ri), the following three types of func-

tions were used:
• Random: f(ri) takes random integer values from

[1, 1000] based on an uniform distribution.
• Linear: Each node i has its most preferred amount r∗i

of its resource. r∗i is randomly set based on a uniform
distribution. In addition, node i has a weight value wi in
[1, 10]. f(ri) is defined as wi · |r∗i − ri|.

• Quadratic: While it resembles ‘linear,’ f(ri) is defined as
wi · (r∗i − ri)

2.
For each type of problem, 25 instances were averaged.

The following solution methods were evaluated:
• exact: The solution method shown in Subsection II-C. We

consider this method as a baseline since it resembles the
conventional method [5].

• lmt100rnd: This method integrates samples when the
number of samples in the tables reaches the maximum
limit value 100. However, instead of sample distances,
random selection is always employed.

• lmt100/10: The method that partially integrates samples
(Subsection III-B). The maximum number of samples in
a table is 100 or 10.

• lmt100/10-res: The method that manages the boundaries
of the amounts of resources is employed with ‘lmt100/10’
(Subsection III-C).

• lmt100/10-res-cost: The method that manages the es-
timation cost values is employed with ‘lmt100/10-res’
(Subsection III-D).

Except for ‘exact’, the maximum number of samples in the
table is limited to M = 100 or 10.

Table I shows the results for different types of prob-
lems. Here, we evaluated the feasibility of solutions and the
maximum size of tables. In the case that the link capacity
is [−∞,∞], ‘lmt100/10-res’ and its variations are effective
to satisfy feasibility, since those methods employ errors on
resource amounts to satisfy the resource constraints.

In most cases, those methods improved the feasibility of
solutions in comparison with ‘lmt100/10’ even if the limit
value M was small. While ‘lmt100’ was slightly better to solve
feasible solutions than ‘lmt100rnd’ in the case of ‘linear’ and
‘quadratic’, both methods are insufficient for these problem
instances. On the other hand, the effects of those method were
inverted in the case of ‘random’.

In the case of link capacity [−500, 500], similar results were
obtained. We also evaluated the case of link capacity [−50, 50].
In this case, all methods found the optimal solution for each
problem. This result reveals the fact that the influence of the
link capacity is not monotonic for the effects of these solution
methods.

Table II shows the cost values of feasible solutions.
‘lmt100/10-res-cost’ is more effective than ‘lmt100/10-res’ in

the case of linear cost functions. In addition, similar effects
are shown in the case of random cost functions.

However, in the case of quadratic functions, ‘lmt100/10-
res-cost’ increased the cost values. It is considered that the
simple linear approximation of ’lmt100/10-res-cost‘ do not
match with such cost functions. While ‘lmt100/10-res-cost’
has effects in several cases, its accuracy is relatively low. To
compute better estimation cost values, dedicated sampling and
approximation methods will be necessary.

In these experiments, we limited the size of tables (i.e. the
number of samples) M = |Dl

i,j | to relatively small values.
Each agent computes |Dr

i |·
∏

j∈Chi
|Dl

i,j | samples to aggregate
tables form child agents and its own cost function. Even in the
case of R = [−100, 100], M = 100 and a binary tree. Non-
leaf agents compute 201 · 1002 = 2010000 samples in the
worst case.

The proposed methods need computational overheads.
Therefore, there is a trade-off between the original method
and the proposed methods. The trade-off cannot be exactly
evaluated since our current implementation is not well opti-
mized. In the case of link capacity [−∞,∞] and linear cost
functions, ‘exact’ needs almost 103 seconds while ‘lmt100-res-
cost’ needs almost 11 seconds on Intel(R) Core(TM) i7-3930K
CPU @ 3.20GHz machine with 16GB memory. Reducing
the size of messages will also take an advantage in practical
systems.

V. DISCUSSIONS AND RELATED WORKS

There are several studies on DCOPs with continuous val-
ues. In [8], continuous piecewise linear functions (CPLFs)
are employed to represent objective functions of continuous
values. With CPLFs, domains of functions are represented by
a set of convex polytopes. To aggregate objective functions, the
summation of two CPLFs is defined. The CPLFs were applied
to Max-Sum algorithm [4]. This method is considered as an
approximation based on sampling. While a CPLF represent a
whole objective function, extensions are necessary to handle
resource constraints.

In [9], numeric methods are applied to Max-Sum algorithm.
Each agent performs a newton method or a gradient method
to compute locally optimal samples of its local functions. This
method also needs additional extensions to solve the problems
with resource constraints.

In this study, we mainly focused on resource constraints on
resource supply networks. Boundaries on resource amounts
are introduced to maintain feasibility with the limited number
of samples. On the other hand, our current method employs
relatively naive approximation of cost functions as the first
study. To improve solution quality, our approach will be
integrated with the related works shown above. In addition,
as shown in Figure 3, there are issues in the aggregation of
cost functions on resource amounts.

Similar to the conventional studies, we focus on a problem
at a discrete time. For temporal sequences of problems with a
continuous flow of resources, there are opportunities to apply
several techniques for dynamic DCOPs [10], [11].

VI. CONCLUSION

In this study, we proposed methods to reduce the number
of sample data in solution methods for the resource allocation
problems of power supply networks. To maintain the samples,
boundaries for the amount of resources and cost values were
introduced. With the proposed methods, the size of problems
is reduced while the methods keep relatively better feasibility
and quality of the solutions.

Our future work will include more accurate schemes to
represent the bounded samples and sophisticated interpolation
methods. Iterative approaches that employ search methods to
feedback and to refine the solution quality will also improve
the proposed method.

ACKNOWLEDGMENT

This work was supported in part by KAKENHI Grant-in-
Aid for Scientific Research (C), 25330257 and the Artificial
Intelligence Research Promotion Foundation.

REFERENCES

[1] R. Mailler and V. Lesser, “Solving distributed constraint optimization
problems using cooperative mediation,” in 3rd International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 2004, pp. 438–
445.

[2] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchronous
distributed constraint optimization with quality guarantees,” Artificial
Intelligence, vol. 161, no. 1-2, pp. 149–180, 2005.

[3] A. Petcu and B. Faltings, “A scalable method for multiagent constraint
optimization,” in 19th International Joint Conference on Artificial Intel-
ligence, 2005, pp. 266–271.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised
coordination of low-power embedded devices using the max-sum algo-
rithm,” in 7th International Joint Conference on Autonomous Agents and
Multiagent Systems, 2008, pp. 639–646.

[5] S. Miller, S. D. Ramchurn, and A. Rogers, “Optimal decentralised
dispatch of embedded generation in the smart grid,” in 11th International
Conference on Autonomous Agents and Multiagent Systems, vol. 1, 2012,
pp. 281–288.

[6] T. Matsui and H. Matsuo, “Considering equality on distributed con-
straint optimization problem for resource supply network,” in 2012
IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy, 2012, pp. 25–32.

[7] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo,
“Resource constrained distributed constraint optimization with virtual
variables,” in 23rd AAAI Conference on Artificial Intelligence, 2008, pp.
120–125.

[8] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings, “Decentralised
coordination of continuously valued control parameters using the max-
sum algorithm,” in 8th International Conference on Autonomous Agents
and Multiagent Systems, vol. 1, 2009, pp. 601–608.

[9] T. Voice, R. Stranders, A. Rogers, and N. R. Jennings, “A hybrid
continuous max-sum algorithm for decentralised coordination,” in 19th
European Conference on Artificial Intelligence, 2010, pp. 61–66.

[10] A. Petcu and B. Faltings, “Optimal solution stability in dynamic, dis-
tributed constraint optimization,” in 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, 2007, pp. 321–327.

[11] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig, “Incremental dcop
search algorithms for solving dynamic dcops,” in 10th International
Conference on Autonomous Agents and Multiagent Systems, vol. 3, 2011,
pp. 1069–1070.

