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Abstract—We propose a crossover operation for multi-
terminal decision diagrams (MTBDDs). To survey this crossover
operation, we conducted experiments of the evolution of MTBDDs
with and without the proposed crossover operation. We confirmed
that MTBDDs that have better fitness were obtained in the
evolution of MTBDDs with the proposed crossover operation
than without it. We also confirmed that MTBDDs that possess
the smaller number of vertices were obtained in the evolution of
MTBDDs with the proposed crossover operation than without it.

I. INTRODUCTION

Service robots for domestic tasks and entertainments have
recently been developed [1], [2], [3]. These robots are more
familiar to us than industrial robots. This trend will continue
and more service robots will be developed [4]. Interest is
particularly high in humanoid robots because they have human-
like bodies and move like humans, and function in our daily
environments. However, such robots that possess complex
mechanisms are difficult to control and require complex me-
chanical computation. To avert such computation, Kanoh et
al. [5] proposed to control robots by using multi-terminal
binary decision diagrams (MTBDDs) and to obtain the graph
structure of MTBDDs by the evolution of MTBDDs with
genetic programming. The “evolution of MTBDDs” indicates
to modify graph structure of MTBDDs by using evolutionary
computation. In this research, robot joint angles are inputted
into an MTBDD to control robots. However the MTBDD
variables take only binary values, so multiple variables are
needed to represent a single robot joint angle. This creates
a large number of variables. To solve this problem, Sakai
et al. [6] used multi-valued decision diagrams (MDDs) to
control robots. Its variables take several values, so only a
single variable is needed to represent a single robot joint angle.
They argued that MDDs are more effective than MTBDDs
in discovering important variables from decision diagrams.
However, these researches used genetic programming without
a crossover operation to evolve decision diagrams. Gener-
ally, genetic programming is used in tree structures. In a
tree structure, subtrees can be created easily, so a crossover
operation by sub-trees swapping can be defined. In decision
diagrams, sub-diagrams swapping is difficult because decision
diagrams are the graph structures that possess closed paths.
A crossover operation is important for the maintenance of
diversity in genetic programming. If a crossover operation is
used in the evolution of decision diagrams, we expect to obtain
the diagrams with better fitness. APPLY crossover, which is a
crossover operation for decision diagrams, has been proposed
[7]. However, this operation can only be applied to decision

diagrams that possess the same variable orders. To solve this
problem, Flexible APLLY crossover [8], which can be applied
to decision diagrams that possess different variable orders, has
been proposed by extending APPLY crossover. However, sub-
structures of diagrams of the individuals generated by these
crossover operations might be lost because the input-output
relation of the individuals is generated stochastically. In this
paper, we propose a crossover operation for MTBDDs that
possess the different variable orders. To confirm effectiveness
of this crossover operation, we conducted the experiments on
the evolution of MTBDDs by using genetic programming with
and without the proposed crossover operation and compared
the results.

II. EVOLUTIONARY BINARY DECISION DIAGRAMS

A. Binary Decision Diagrams

Binary decision diagrams (BDDs) [9] are data structures
that are compact representations of Boolean functions. They
consist of two types of vertices (i.e., non-terminal vertices and
terminal vertices) and two types of edges (i.e., 0-edge and
1-edge). Edges connect upper non-terminal vertices and lower
non-terminal vertices or upper non-terminal vertices and lower
terminal vertices. Each non-terminal vertex possesses one 0-
edge and one 1-edge. If the value of the variable assigned to
the non-terminal vertex is 0, the 0-edge is followed; when the
value is 1, the 1-edge is followed. A terminal vertex is assigned
a value of 0 or 1. The processing of the variable proceeds from
the non-terminal vertex at the root of the diagram in order until
a terminal vertex is reached.

An example a BDD is shown in Fig. 1, where non-
terminal vertices are represented by circles and terminal
vertices are represented by squares. In this BDD, three
variables (x1, x2, x3) can be processed. For example, when
(x1, x2, x3) = (0, 1, 1) is input, first the 0-edge is followed
from the non-terminal vertex x1 located at depth 0. Then, the
1-edge is followed from non-terminal vertex x3 at depth 2 to
arrive at the output of 1.

B. Multi-terminal binary decision diagrams

Multi-terminal binary decision diagrams (MTBDDs) ex-
tend BDDs to have multiple output values. That is, MTBDDs
allow the terminal vertices to have multiple values other than
0 or 1.

In the example MTBDD shown in Fig. 2, three vari-
ables (x1, x2, x3) can be processed. For example, when



Fig. 1. Example of BDD Fig. 2. Example of MTBDD

(x1, x2, x3) = (0, 1, 1) is input, first the 0-edge is followed
from the non-terminal vertex x1 located at depth 0. Next, the
1-edge is followed from non-terminal vertex x3 at depth 2 to
arrive at the output of 1.

C. Evolutionary Binary Decision Diagrams

In this paper, we use genetic programming in the evolution
of MTBDDs. The procedure is as follows.

i) Initialize generation g ← 0.
ii) Generate initial population whose elements are MTB-

DDs U = {u1, u2, ..., un}, where n is the number of
individuals.

iii) Compute the fitness of the individuals in U .
iv) Select the top k individuals from U , and let them be

the set P = {p1, p2, ..., pk}.
v) Q = U \ P , and perform genetic operations to Q.

The set after this procedure is Q′.
vi) Generate the next-generation set U = P ∪Q′.

vii) t← t+ 1return to step iii).

Moriwaki [10] and Kanoh [5] proposed the three operations
as genetic operations for MTBDDs. (i.e., insertion, mutation,
deletions).

a) Insertion (Fig. 3): Insertion adds a new nontermi-
nal vertex above a randomly selected edge. One of the edges of
the added non-terminal vertex remains connected to the vertex
to which it was connected prior to the addition. The other
edges connect to any lower non-terminal or vertices.

b) Mutation (Fig. 4): Mutation changes the destina-
tion of one randomly selected edge of a non-terminal vertex
to a randomly selected subordinate non-terminal or terminal
vertices.

c) Deletion (Fig. 5): Deletion deletes a randomly
selected non-terminal vertex. The edges that are connected to
the delete vertex are set to connect to the vertices to which the
edges of the deleted vertex are pointed.

We believe all these genetic operations are classed as
mutations in the general genetic operation because they only
add or delete a single vertex or change the destination of a
single edge. It is possible that the characteristics the parents
possess are inherited by only mutation, but this is inefficient.
In this paper, the proposed crossover operation is introduced
in the evolution of MTBDDs.

Fig. 3. insertion

Fig. 4. mutation

III. CROSSOVER OPERATION

A crossover operation generates a new individual by com-
bining two diagrams. In this paper, we propose a crossover
operation that is based on sub-diagrams swapping by referring
to the crossover operation for tree structures.

Figure 6 shows the algorithm of the proposed crossover
operation.

With this algorithm, the crossover operation by sub-
diagrams swapping is possible in graph structures that possess
closed paths. We explain the algorithm by using Figure 7. In
this figure, ParentA is d1 and ParentB is d2. First, create
set V (lines 4-8 in Fig. 6 ). The element of V is a combination
of the two non-terminal vertices in which one is the vertex
in ParentA and the other is the vertex in ParentB. The
suffixes of the variables of both vertices are the same. When
there is no non-terminal vertices that possess the same suffix
of variables; V = ϕ, the algorithm ends (lines 9-11 in Fig. 6
). Next, in ParentA, delete all non-terminal vertices that can
be reached from v1 (line 14 in Fig. 6 and Fig. 7(c)) then,
in the combination of non-terminal vertices (v1, v2) selected
randomly from V , change the destination of edge e of which
destination is v1, into v2 (line 15 in Fig. 6 and Fig. 7(d)). At
this time, in ParentA randomly change the destinations of
edges that do not possess any destination (line 16 in Fig. 6
and 1-edge of x2 in Fig. 7(e)). Finally, reduce ParentA and
output ParentA as a result of the crossover operation (lines
17-18 in Fig. 6 and Fig. 7(f)).

Fig. 5. deletion



Crossover Operation
Input Q : a set of BDDs.
Output ans : a BDD. (If crossover is possible)

: false. (If crossover is impossible)
1. begin
2. Select two BDDs d1, d2 ∈ Q randomly;
3. Equalize variable orders in d1, d2;
4. V ← ϕ;
5. for each v

(d1)
xi ∈ d1

% v
(d1)
xi is a non-terminal vertex that possesses xi

6. for each v
(d2)
xj ∈ d2

% v
(d2)
xj is a non-terminal vertex that possesses xj

7. if i = j

8. then the edge whose destination is v
(d1)
xi is e,

V ← V ∪ {(e, v(d1)xi , v
(d2)
xj )};

9. if V = ϕ then begin
10. ans← false;
11. go to 19.
12. end
13. Select (e, v(d1)xk , v

(d2)
xk ) ∈ V randomly;

14. Delete all non-terminal vertices
that can be reached from v

(d1)
xk ;

15. Change the destination of e into v
(d2)
xk ;

16. In d1, randomly connect the edges
that possess no destination to the lower vertex
than the vertex that possesses the edges;

17. Reduce d1;
18. ans← d1;
19. end.

Fig. 6. Crossover operation algorithm

We explain the method of equalizing different variable
orders of two BDDs at line 3 in Fig. 6. Swapping the order
of two adjacent variables in a BDD affect only non-terminal
vertices assigned these variables; all other vertices remain un-
changed [11]. This is obvious by considering the combination
of inputs-outputs represented by two variables. Let x(n) be a
variable placed at depth n, and f(a, b) be an output obtained by
inputting x(n) = a ∈ {0, 1} and x(n+1) = b ∈ {0, 1} to vx(n) .
Figure 8 shows that the same function can be represented after
variable order changes. This property is the same in MTBDDs.
Swapping the order of two adjacent variables by bubble sort
enables to creation of a BDD having the desired order (Fig. 9).

IV. EVOLUTION SIMULATION EXPERIMENTS

A. Experimental outline

To confirm the effectiveness of the proposed crossover
operation, we conducted simulation experiments to obtain
motion representation of a humanoid robot standing up from
being seated in a chair by using MTBDDs. In this paper, we
focused on the evaluation on proposed crossover operation. We
compared the results of the evolution of MTBDD with and
without the proposed crossover operation. For the humanoid
robot, we used the HOAP-1 (Humanoid for Open Architecture
Platform) produced by Fujitsu Automation. The robot is 48 cm
tall, weighs 6 kg, has 20 degrees of freedom (DOFs), and has
four pressure sensors, each on the soles its feet. Additionally,
angular rate and acceleration sensors are mounted on its chest.

Fig. 7. Example of crossover

Fig. 8. Overview of reordering

Figure 10 show HOAP-1. Figure 11 illustrates the joint angles
we used. The humanoid robot by usage of a MTBDD obtains
the following data from the sensors:

x = (xW
0 , xW

1 , xK
0 , xK

1 , xA
0 , x

A
1 , x

B
0 , x

B
1 ) (1)



Fig. 9. Example of reordering

where xi ∈ {0, 1} and xW
i , xK

i , and xA
i are variables that

represent the angles of the waist, knee, and ankle, respectively,
and xB

i represents the pitch of the body. These variables
values are determined from the current joint angle values
listed in Table I. In this table, θmin and θmax are limiting
values of the motor range of motions, which are defined as
θWmin = −80.0 [deg], θWmax = 70.0 [deg], θKmin = 0.0 [deg],
θKmax = 120.0 [deg], θAmin = −60.0 [deg], θAmax = 60.0 [deg],
θBmin = −60.0 [deg], and θBmax = 60.0 [deg]. The variables of
the MTBDDs are placed from depths 0 to 7 because the total
number of variables is 8. The robot action outputs are listed
in Table II, where the plus signs ’+’ signify that the joint is
moved at 20.0 [deg/sec] and the minus signs ’−’ signify that
the joint is moved at −20.0 [deg/sec].

The robot control time interval was set as ∆t = 0.01[s].
One trial ended when the robot fell down or time exceeded
10 s. The fitness was calculated the sum of the values of the
robot’s chest position h(t) [m] at all times t during t atrial
(i.e., Fitness = Σth(t))). To simulate the evolution of robot
motion, we used the open dynamics engine [12].

The probabilities of genetic operations, in the evolu-
tion of MTBDD with the proposed crossover operation, are
crossover = 0.5, insertion = 0.3, mutation = 0.15, and
deletion = 0.05, and the probabilities of genetic operations in
the evolution of MTBDD without the proposed crossover oper-
ation are insertion = 0.6, mutation = 0.3, deletion = 0.1.
Both ratios of the probabilities of genetic operations except
crossover are equal.

In the proposed crossover operation, one variable order
is selected from the variable order of two parent MTBDDs
and the variable order of them are equalized to this variable

Fig. 10. Overview of HOAP-1 (Humanoid for open architecture platform)

Fig. 11. Robot and joint angles

order before sub-diagrams swapping. In these experiments, this
variable order is that the sum of the number of vertices in two
parent MTBDDs is smaller when the variable orders of them
are equalized to this variable order than when the variable
orders of them are equalized to the other variable order. The
reason for this is that we can easily recognize the rule of
MTBDDs that can be represented with the small number of
vertices.

The MTBDDs in the initial population are generated using
30 insertion operations because the proposed crossover op-
eration greatly affects the MTBDDs that possess a sufficient
number of vertices.

B. Results and discussion

Fig. 12 shows one example of the acquired motions;
standing up. Figure 13 shows the fluctuation in fitness. We
can see that the results of the evolution of MTBDDs with the
proposed crossover operation were better fitness than those
without the proposed crossover operation. In early generations,



TABLE I. CORRESPONDENCE BETWEEN ANGLE DATA AND VARIABLE
VALUES

Sensed degree (x0, x1)

θmin ≤ θ < 1
4
θmax + 3

4
θmin (0, 0)

1
4
θmax + 3

4
θmin ≤ θ < 1

2
θmax + 1

2
θmin (0, 1)

1
2
θmax + 1

2
θmin ≤ θ < 3

4
θmax + 1

4
θmin (1, 0)

3
4
θmax + 1

4
θmin ≤ θ < θmax (1, 1)

TABLE II. TYPES OF BEHAVIOR

Terminal vertex Motor output
Waist Knee Ankle

a0 + + +
a1 + + −
a2 + + 0
a3 + − +
a4 + − −
a5 + − 0
a6 + 0 +
a7 + 0 −
a8 + 0 0
a9 − + +
a10 − + −
a11 − + 0
a12 − − +
a13 − − −
a14 − − 0
a15 − 0 +
a16 − 0 −
a17 − 0 0
a18 0 + +
a19 0 + −
a20 0 + 0
a21 0 − +
a22 0 − −
a23 0 − 0
a24 0 0 +
a25 0 0 −
a26 0 0 0

the increase in fitness in evolution of MTBDDs with the
proposed crossover operation was faster. We consider that
the diversity of individuals is maintained by the proposed
crossover operation in early generations, which affects the
faster increase in fitness in early generations.

Fig. 14 shows the fluctuation in the number of non-
terminal vertices. We can see that the results of the evolution
of MTBDD with the proposed crossover operation were the
rapidly increase in the number of non-terminal vertices in
early generations. We consider that irreducible MTBDDs that
possess a large number of vertices are generated by applying
the proposed crossover operation to MTBDDs, in which the
graph substructures are very different, and that it is possible
that MTBDDs that possess a large number of vertices have
better fitness because they can represent various input-output
relations. We consider that this reason for accelerating the
evolution of MTBDD with the proposed crossover is this. It
should be noted that quasi-optimum MTBDDs that possess a
smaller number of vertices are obtained. We consider that the
important MTBDD substructures in the control of robot are
obtained then, as the features are optimized, individuals with
better fitness and possessing a small number of vertices are
obtained. The MTBDDs possessing small number of vertices
are easy to recognize, because the rule represented by the
MTBDDs is simple. MTBDDs that represent a simple rule for
controlling robots are effective when people know that rule. We

(a) 0sec (b) 2sec

(c) 4sec (d) 6sec

(e) 8sec (f) 10sec

Fig. 12. Evolution results for MTBDD (500th generation)

conclude that the proposed crossover operation is an effective
in promoting recognition of control rue of robot.

V. CONCLUSION

In this paper, we proposed a crossover operation for
MTBDDs. To survey the proposed crossover operation, we
conducted experiments on obtaining motion representation for
a humanoid robot standing up from being seated in a chair
in the evolution of MTBDD with the crossover operation. We
conducted the same experiment in the evolution of MTBDD
without the proposed crossover operation. We confirm that
MTBDDs which have better fitness were obtained in the
evolution of MTBDD with the proposed crossover operation
than without it. We also confirm that MTBDDs that possess a
smaller number of vertices were obtained in the evolution of
MTBDD with the proposed crossover operation without it.

For future works, we will compare Flexible APLLY
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times)

crossover and the proposed crossover operation and evaluate
each property of these operations. We will also modify this
operation for MDDs and compare the results to Sakai et al.’s
research [6], in which they argue that the evolution of MDDs
has the problem in which the fitness of the obtained individuals
is worse than the evolution of MTBDDs. We will confirm
whether it is possible to solve this problem by using the
proposed crossover operation.
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