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Abstract
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shev polynomials of the second (resp. first) kind. As an application, we obtain
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1 Introduction

Let G = (V, E) be a finite undirected simple graph and K an arbitrary field. A func-
tion on V with values in K is called a configuration. Let CG,K denote the set of all
configurations. It is regarded as a vector space over K. For a ∈ K, we define the
endomorphism ∆G,K,a of CG,K , which we call the a-Laplacian, by

∆G,K,a(f)(v) := af(v) +
∑

(u,v)∈E

f(u).

In the case where G is r-regular, the ordinary Laplacian is −∆G,K,−r. We are inter-
ested in the dimension of the space of “a-harmonic functions”

d(G,K, a) := dimK ker∆G,K,a.

Let Pn denote the path graph with n vertices (n ≥ 2) and Cn the cycle graph with
n vertices (n ≥ 3). Let G × H denote the Cartesian product of graphs G and H . The
number d(Pn ×Pn, F2, 1) (resp. d(Cn ×Cn, F2, 1)) has attracted special attention in
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connection with the “Lights Out” puzzle (resp. the torus version of this puzzle); see the
references [1],[2], [3], [4], [8], [9], [10], [11], [12], [13]. The behavior of these numbers
is rather mysterious; see [3, Table 1] for the values of d(Cn × Cn, F2, 1), n ≤ 300.

In this paper we shall give an explicit expression of d(Pm×Pn,K, a) and d(Cm×
Cn,K, a) in terms of Chebyshev polynomials of the second and first kind, respectively.
A configuration for Cm × Cn is naturally identified with a function on Z2 which is
(m,n)-periodic, hence the title of this paper. The normalized Chebyshev polynomials
of the first and the second kind are defined by

C0(x) = 2, C1(x) = x, Cn(x) = xCn−1(x) − Cn−2(x) (n ≥ 2),

S0(x) = 1, S1(x) = x, Sn(x) = xSn−1(x) − Sn−2(x) (n ≥ 2),

respectively. We put C̃n(x) := Cn(x) − 2. Let ordp(n) denote the p-adic additive
valuation of n. The main result is the following.

Theorem 1.1. (i) d(Pm × Pn,K, a) = deg gcd K(Sm(x), Sn(−x − a)).

(ii) d(Cm × Cn, K, a) = 2 deg gcd K(C̃m(x), C̃n(−x − a)) − ε, where

• ε = 2 if charK = p ≥ 3, a = 0, ordp(m) = ordp(n), and both m,n are
even,

• ε = 1 if either

– char K = 2, a = 0, and both m, n are odd,

– char K = p ≥ 3, a = −4, ordp(m) = ordp(n),

– char K = p ≥ 3, a = 4, ordp(m) = ordp(n), and both m,n are even,
or

– char K = p ≥ 3, a = 0, ordp(m) = ordp(n), and either m or n is
even,

• ε = 0 otherwise.

Theorem 1.1 (i) was essentially known in the case charK = 2, a = 0 (cf. Remark
4.2). In the case a = 1, (i) was proved in [10] (see also [4]). The equality (ii) for a = 1
was conjectured in [3] in the case char K = 2 and in [11] in the case charK = p > 0.

The organization of this paper is as follows. Basic properties of Chebyshev polyno-
mials are gathered in Section 2. It should be pointed out that Chebyshev polynomials
of the (somewhat minor) third and fourth kind will be proved to be useful for our pur-
poses. In Section 3 we prove Theorem 1.1. Using Theorem 1.1, we obtain various
identities concerning d(Pm ×Pn,K, a) and d(Cm ×Cn,K, a) in Section 4. Some of
them are already known but proved by different methods. We can give a unified proof
using Theorem 1.1 and basic properties of Chebyshev polynomials.

We use the following notation. Fq denotes the finite field with q elements, In the
identity matrix of degree n, charK the characteristic of a field K, and A ⊗ B the
Kronecker product of matrices A and B.
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2 Chebyshev polynomials

The Chebyshev polynomials Tn, Un, Vn, and Wn of the first, second, third, and fourth
kind, respectively, are characterized by

Tn(cos θ) = cos nθ, Un(cos θ) =
sin(n + 1)θ

sin θ
,

Vn(cos θ) =
cos(n + 1/2)θ

cos θ/2
, Wn(cos θ) =

sin(n + 1/2)θ
sin θ/2

,

where n is an integer (cf.[5],[6]). Note that Cn(x) = 2Tn(x/2), Sn(x) = Un(x/2).
We adopt Schur’s notation Sn(x) := Sn−1(x). For odd n we define

Vn(x) := V(n−1)/2(x/2), Wn(x) := W(n−1)/2(x/2),

which we propose to call the normalized Chebyshev polynomials of the third and fourth
kind, respectively. We always assume odd indices for V and W . The polynomi-
als Cn(x), Sn(x), Vn(x), Wn(x) have integral coefficients and are monic except for
C0(x) = 2 and S0(x) = 0. The following properties of Chebyshev polynomials are
well known and easily verified. Some of them will not be used in the following, but are
here for the sake of completeness.

Lemma 2.1. (i) We have

Cn(z + z−1) = zn + z−n,

Sn(z + z−1) =
zn − z−n

z − z−1
= zn−1 + zn−3 + · · · + z−(n−3) + z−(n−1),

Vn(z + z−1) =
zn/2 + z−n/2

z1/2 + z−1/2
= z(n−1)/2 − z(n−3)/2 + · · · − z−(n−3)/2 + z−(n−1)/2,

Wn(z + z−1) =
zn/2 − z−n/2

z1/2 − z−1/2
= z(n−1)/2 + z(n−3)/2 + · · · + z−(n−3)/2 + z−(n−1)/2.

(ii) Cn(2) = 2, Sn(2) = n, Vn(2) = 1, Wn(2) = n.

(iii) Cn(−x) = (−1)nCn(x), Sn(−x) = (−1)nSn(x),Vn(−x) = (−1)(n−1)/2Wn(x).

(iv) C−n(x) = Cn(x), S−n(x) = −Sn(x), V−n(x) = Vn(x), W−n(x) = −Wn(x).

(v) We have

Cn(x)2−Cn+1(x)Cn−1(x)=4 − x2,

Sn(x)2−Sn+1(x)Sn−1(x)=1,

Vn(x)2− Vn+2(x)Vn−2(x) =2 − x,

Wn(x)2−Wn+2(x)Wn−2(x)=2 + x.
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(vi) We have

Cm(x)Cn(x) =Cm+n(x) +Cm−n(x),

(x2 − 4)Sm(x)Sn(x)=Cm+n(x) −Cm−n(x),

(x + 2)Vm(x)Vn(x) =C(m+n)/2(x)+C(m−n)/2(x),

(x − 2)Wm(x)Wn(x)=C(m+n)/2(x)−C(m−n)/2(x),

Cm(x)Sn(x)=Sm+n(x) −Sm−n(x),

Cm(x)Vn(x) =V2m+n(x) +V2m−n(x),

Cm(x)Wn(x) =W2m+n(x) −W2m−n(x),

(x + 2)Sm(x)Vn(x) =W2m+n(x) +W2m−n(x),

(x − 2)Sm(x)Wn(x)=V2m+n(x) −V2m−n(x),

Vm(x)Wn(x) =S(m+n)/2(x)−S(m−n)/2(x).

(vii) We have

Cn(x) + 2 =

Cn/2(x)2 (n : even),

(x + 2)Vn(x)2 (n : odd),

Cn(x) − 2 =

(x2 − 4)Sn/2(x)2 (n : even),

(x − 2)Wn(x)2 (n : odd),
(1)

Sn(x) =

Sn/2(x)Cn/2(x) (n : even),

Vn(x)Wn(x) (n : odd),
(2)

Sn(x) + 1 =

S(n+1)/2(x)C(n−1)/2(x) (n : odd),

Vn−1(x)Wn+1(x) (n : even),

Sn(x) − 1 =

S(n−1)/2(x)C(n+1)/2(x) (n : odd),

Vn+1(x)Wn−1(x) (n : even).

(viii) We have

Cmn(x) = Cm(Cn(x)),

Smn(x) = Sm(Cn(x))Sn(x),

Vmn(x) = Vm(Cn(x))Vn(x),

Wmn(x) = Wm(Cn(x))Wn(x).

(ix) Let p be a prime number and e ≥ 0. We have the following polynomial congru-
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ences modulo p:

Cpe(x) ≡ xpe

,

Spe(x) ≡ (x2 − 4)(p
e−1)/2,

Vpe(x) ≡ (x + 2)(p
e−1)/2,

Wpe(x) ≡ (x − 2)(p
e−1)/2.

Note that the second congruence makes sense even if p = 2, and we assume that
p is odd in the third and the fourth congruences.

(x) Cn(x) ≡ xSn(x) (mod 2).

(xi) The solution of the linear recurrence equation xn = axn−1 − xn−2 is given by
xn = Sn(a)x1 − Sn−1(a)x0.

Since the normalized Chebyshev polynomials have integral coefficients, they can
be considered over any field. Recall that we put C̃n(x) = Cn(x) − 2.

Lemma 2.2. Let m,n be positive integers and g = gcd(m,n). Over an arbitrary field
K, we have the following. (We assume odd indices for V and W .)

gcd(C̃m(x), C̃n(x)) = C̃g(x), (3)

gcd(Sm(x), Sn(x)) = Sg(x), (4)

gcd(Vm(x), Vn(x)) = Vg(x), (5)

gcd(Wm(x), Wn(x)) = Wg(x). (6)

Proof. In this proof we abbreviate C̃n(x) as C̃n etc.
First we prove (4), following [6, Section 5.3] (see also [7, Section 7]). It suffices

to show that (Sm, Sn) = (Sg) as ideals of K[x]. By Lemma 2.1 (viii) we have
(Sm, Sn) ⊂ (Sg). Let a, b be integers such that am + bn = g. By Lemma 2.1 (vi)
we have

Sg =

∣∣∣∣∣ Sam S−bn

Sam+1 S−bn+1

∣∣∣∣∣ ∈ (Sam, S−bn) ⊂ (Sm, Sn),

as desired.
Next we prove (5). We have (Vm, Vn) ⊂ (Vg) similarly. Since n is odd, there exist

odd integers a and b such that 2am + bn = g. Then by Lemma 2.1 (vi) we have

Vg = C(am+bn)/2Vam − Vbn ∈ (Vam,Vbn) ⊂ (Vm, Vn),

as desired.
Changing the sign of x in (5) and using Lemma 2.1 (iii), we obtain (6).
Before proving (3), we show that (Sm, Wn) = (Wg). Since (Sg) ⊂ (Wg) by (2),

we have (Sm, Wn) ⊂ (Wg). Since n is odd, there exist integers a and b such that b is
odd and 4am + bn = g. Then by Lemma 2.1 (vi) we have

Wg = (x + 2)SamV(bn+g)/2 − W−bn ∈ (Sam, W−bn) ⊂ (Sm, Wn),
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as desired. Now we prove (3) using the factorization (1). If m,n are even, then

(C̃m, C̃n) = ((x2 − 4)(Sm/2, Sn/2)2) = ((x2 − 4)S 2
g/2) = (C̃g).

If m,n are odd, then

(C̃m, C̃n) = ((x − 2)(Wm,Wn)2) = ((x − 2)W 2
g ) = (C̃g).

Finally if m is even and n is odd, then noting that Wn(−2) 6= 0, we have

(C̃m, C̃n) = ((x − 2)(Sm/2, Wn)2) = ((x − 2)W 2
g ) = (C̃g).

3 Proof of Theorem 1.1

The a-Laplacian ∆G,K,a is represented by the matrix aIn + A(G), where n is the
number of vertices of G and A(G) denotes the adjacency matrix of G, so d(G,K, a) is
the dimension of the eigenspace of A(G) for the value −a. Since d(G,K, a) is stable
under scalar extension, we may and do assume that K is algebraically closed.

For a square matrix A of degree n, let χA(x) := det(xIn − A) denote the charac-
teristic polynomial.

Lemma 3.1. (i) We have χA(Pn)(x) = Sn(x). Every eigenspace of A(Pn) is one-
dimensional. The minimal polynomial of A(Pn) over K is Sn(x).

(ii) We have χA(Cn)(x) = C̃n(x). The eigenspace of A(Cn) for an eigenvalue λ

is one-dimensional if charK - n and λ ∈ {±2}. It is two-dimensional in other
cases. The minimal polynomial of A(Cn) over K is

xSn/2(x) (n : even, charK = 2),

(x − 2)(x + 2)Sn/2(x) (n : even, charK 6= 2),

(x − 2)Wn(x) (n : odd).

Proof. These may be well known. See for example [10, Lemma 4.1] for (i). Since
we have not been able to find an appropriate reference for (ii), we give a proof for
completeness.

(i) We introduce an order in the vertex set of Pn so that we have

A(Pn) =



1
1 1

1
. . .

. . . 1
1


.
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Then t(x0, x1, . . . , xn−1) is an eigenvector for an eigenvalue λ if and only if
t(x0, x1, . . . , xn−1) = t(S0(λ), S1(λ), . . . , Sn−1(λ))x0 and Sn(λ)x0 = 0. This
proves the assertions.

(ii) Similarly, we have

A(Cn) =



1 1
1 1

1
. . .

. . . 1
1 1


.

Then t(x0, x1, . . . , xn−1) is an eigenvector for an eigenvalue λ if and only if,
introducing two more variables,

xj = λxj−1 − xj−2 (2 ≤ j ≤ n + 1), xn = x0, xn+1 = x1.

By Lemma 2.1 (xi), this is equivalent to
x0

x1

...
xn−1

 =


S0(λ)
S1(λ)

...
Sn−1(λ)

x1 −


S−1(λ)
S0(λ)

...
Sn−2(λ)

x0

and

B(λ)

(
x0

x1

)
=

(
0
0

)
,

where we put

B(λ) :=

(
Sn−1(λ) + 1 −Sn(λ)
−Sn(λ) Sn+1(λ) − 1

)
.

Thus we see that χA(Cn)(x) = det B(x) and the dimension of the eigenspace of
A(Cn) for λ is equal to 2 − rankK B(λ). By Lemma 2.1 (vii) we have

B(λ) =


Sn/2(λ)

Cn/2−1(λ) −Cn/2(λ)

−Cn/2(λ) Cn/2+1(λ)

 (n : even),

Wn(λ)

Vn−2(λ) −Vn(λ)

−Vn(λ) Vn+2(λ)

 (n : odd),

so that χA(Cn)(x) = C̃n(x) by Lemma 2.1 (v) and (1). Moreover, we can give a
complete description of the value of rankK B(λ) by using Lemma 2.1 (ii), (iii),
and (1).
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Put A := A(Cn) and let q(x) denote the claimed minimal polynomial of A over
K. We note that A = X + X−1, where

X =



1
1

. . .

1
1

 .

Using Lemma 2.1 (i), we show that q(A) = O as follows.

If n is even and charK = 2, then

q(A) = (X + X−1)
(
X

n
2 −1 + X

n
2 −3 + · · · + X−n

2 +3 + X−n
2 +1
)

= (Xn + In)X−n
2 + 2

(
X

n
2 −2 + X

n
2 −4 + · · · + X−n

2 +4 + X−n
2 +2
)
.

If n is even and charK 6= 2, then

q(A) = (X2 + X−2 − 2In)
(
X

n
2 −1 + X

n
2 −3 + · · · + X−n

2 +3 + X−n
2 +1
)

= (Xn − In)
(
X−n

2 +1 − X−n
2 −1

)
.

If n is odd, then

q(A) = (X + X−1 − 2In)
(
X

n−1
2 + X

n−3
2 + · · · + X−n−3

2 + X−n−1
2

)
= (Xn − In)

(
X−n−1

2 − X−n+1
2

)
.

In any case we have q(A) = O since Xn = In.

Finally, we show that f(A) 6= O for any monic polynomial f ∈ K[x] with
d := deg f < deg q. The following idea coming from the theory of cellular
automata is borrowed from [10, Lemma 4.1]. Let M(i, j) denote the (i, j)-entry
of a matrix M . Note that

Ak(1, k + 1) = Ak(1, n + 1 − k) = 1,

Ak(1, k + 2) = · · · = Ak(1, n − k) = 0

holds for 0 ≤ k < n/2. If d < n/2, then it follows that f(A)(1, d + 1) = 1, so
that f(A) 6= O. In the remaining case, i.e., n is even, d = n/2, and charK 6= 2,
we have An/2(1, n/2+1) = 2, hence f(A)(1, n/2+1) = 2, so that f(A) 6= O.

This completes the proof.

Let Jn(λ) denote the Jordan block of eigenvalue λ and of size n:

Jn(λ) :=



λ 1
λ 1

. . . . . .

λ 1
λ

 .
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For matrices A and B, let

A ⊕ B :=

(
A O

O B

)
denote the block sum.

Lemma 3.2. (i) The Jordan canonical form of A(Pn) is of the form
⊕r

j=1 Jmj (λj)
where λj’s are distinct from each other.

(ii) The Jordan canonical form of A(Cn) is of the form

J1(2) ⊕
⊕r

j=1 Jmj/2(λj)⊕2 (n : odd, charK - n),

J1(2) ⊕ J1(−2) ⊕
⊕r

j=1 Jmj/2(λj)⊕2 (n : even, charK - n),

Jk(2) ⊕ Jk+1(2) ⊕
⊕r

j=1 Jmj/2(λj)⊕2 (n : odd, charK | n),

Jk(2) ⊕ Jk+1(2) ⊕ Jk(−2) ⊕ Jk+1(−2)

⊕
⊕r

j=1 Jmj/2(λj)⊕2 (n : even, 2 6= charK | n),

Jk(0)⊕2
⊕r

j=1 Jmj/2(λj)⊕2 (2 = charK | n)

where k = bpe/2c, p = charK, e = ordp(n), r ≥ 0, λj 6∈ {±2}, and λj’s are
distinct from each other.

Proof. The claim (i) and (ii) in the case charK - n is immediate from Lemma 3.1.
Suppose n is odd, p = charK | n and put e = ordp(n), m = n/pe. By Lemma 2.1
(viii) and (ix) we have

Wn(x) = (x − 2)(p
e−1)/2Wm(x),

C̃n(x) = (x − 2)pe

Wm(x)2

in K[x]. Since Wm(2) 6= 0 in K, the multiplicity of the eigenvalue 2 in χA(Cn)(x) =
C̃n(x) is pe and that in the minimal polynomial (x − 2)Wn(x) is (pe + 1)/2. This
proves the claim in this case. The remaining cases can be treated similarly.

Lemma 3.3. The eigenspace of Jm(α) ⊗ In + Im ⊗ Jn(β) for the eigenvalue α + β

has dimension min{m,n}.

Proof. We may suppose m ≤ n. Let {ei} and {fj} be the standard bases of Km and
Kn, respectively. Then

∑
i,j cij(ei⊗fj) is an eigenvector of Jm(α)⊗In+Im⊗Jn(β)

for the eigenvalue α+β if and only if ci,j+1 + ci+1,j = 0 holds for all i = 1, 2, . . . , m

and j = 1, 2, . . . n where we make the convention cm+1,j = ci,n+1 = 0. Since any
choice of c11, c21, . . . , cm1 uniquely determines an eigenvector, the claim follows.

Lemma 3.4. Let A and B be square matrices of degree m and n, respectively, and let
d be the dimension over K of the eigenspace of A ⊗ In + Im ⊗ B for λ ∈ K.

(i) If both A and B have the property that every eigenspace has dimension 1, then

d = deg gcd K(χA(x), χB(λ − x)).
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(ii) If the Jordan canonical forms of A and B are of the forms

r⊕
i=1

J1(αi) ⊕
s⊕

j=1

(
Jmj (µj) ⊕ Jm′

j
(µj)

)
and

t⊕
k=1

J1(βk) ⊕
u⊕

l=1

(
Jnl

(νl) ⊕ Jn′
l
(νl)
)

,

respectively, where α1, . . . , αr, µ1, . . . , µs (resp. β1, . . . , βt, ν1, . . . , νu) are dis-
tinct from each other and mj ≤ m′

j ≤ mj+1(1 ≤ j ≤ s), nl ≤ n′
l ≤ nl+1(1 ≤

l ≤ u), then

d = 2 deg gcd K(χA(x), χB(λ − x)) −
∑

αi+βk=λ

1 −
∑

µj+νl=λ

(j,l)∈S

1,

where
S = {(j, l) |m′

j = mj + 1, n′
l = nl + 1,mj = nl}.

Proof.

(i) Let χA(x) =
∏r

i=1(x − µi)mi , χB(x) =
∏s

j=1(x − νj)nj be the factorization
over K where µ1, µ2, . . . , µr (resp. ν1, ν2, . . . , νs) are distinct roots. Then the
Jordan canonical forms are

⊕r
i=1 Jmi

(µi) and
⊕s

j=1 Jnj
(νi), respectively, so

by Lemma 3.3 we have

d =
∑

µi+νj=λ

min{mi, nj},

which is easily seen to be equal to deg gcd K(χA(x), χB(λ − x)).

(ii) By Lemma 3.3 we have

d =
∑

αi+βk=λ

1 +
∑

αi+νl=λ

2 +
∑

µj+βk=λ

2

+
∑

µj+νl=λ

(
min{mj , nl} + min{mj , n

′
l} + min{m′

j , nl} + min{m′
j , n

′
l}
)
.

On the other hand, gcd K(χA(x), χB(λ − x)) has degree∑
αi+βk=λ

1 +
∑

αi+νl=λ

1 +
∑

µj+βk=λ

1 +
∑

µj+νl=λ

min{mj + m′
j , nl + n′

l}.

The claim follows since

min{mj , nl} + min{mj , n
′
l} + min{m′

j , nl} + min{m′
j , n

′
l}

− 2min{mj + m′
j , nl + n′

l}

is −1 if m′
j = mj + 1, n′

l = nl + 1,mj = nl, and 0 otherwise.
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Proof of Theorem 1.1. Recall that d(Pm×Pn,K, a) is the dimension of the eigenspace
of the adjacency matrix A(Pm × Pn) for the value −a. In view of the fact

A(G × H) = A(G) ⊗ In + Im ⊗ A(H)

for graphs G,H with m,n vertices, respectively, we can apply Lemma 3.2 (i) and
Lemma 3.4 (i) to obtain

d(Pm × Pn,K, a) = deg gcd K(χA(Pm)(x), χA(Pn)(−x − a)).

Now by Lemma 3.1 (i) we complete the proof of Theorem 1.1 (i). The proof of (ii) is
similar, though tedious.

4 Application

Applying Theorem 1.1, we obtain some corollaries. Let ε be defined as in Theorem
1.1.

Corollary 4.1. (i) d(Pm−1 × Pn−1,K, 0) = gcd(m,n) − 1.

(ii)

d(Cm × Cn,K, 0) =

2 gcd(m,n) − ε (charK = 2 or mn:even),

0 (charK 6= 2 and mn:odd).

Proof. (i) By Lemma 2.2.

(ii) By Lemma 2.1 (iii) we have C̃n(−x) = C̃n(x) if char K = 2 or n is even. In
this case the claim follows from Lemma 2.2. Changing m and n, we also cover
the case where m is even. Suppose charK 6= 2 and mn is odd. By Lemma 2.1
(vii), noting that Wm(−2)Vn(2) 6= 0, we have

gcd(Cm(x) − 2, Cn(x) + 2) = gcd(Wm(x), Vn(x))2.

We show that (Wm(x), Vn(x)) = (1) as ideals of K[x]. Put l = mn. As in the
proof of Lemma 2.2, we have (Wm(x), Vn(x)) ⊃ (Wl(x),Vl(x)). By Lemma
2.1 (vi) we have

Vl(x) = S(l+1)/2(x) − S(l−1)/2(x),

Wl(x) = S(l+1)/2(x) + S(l−1)/2(x),

so that we have, noting that charK 6= 2,

(Wl(x), Vl(x)) = (S(l+1)/2(x), S(l−1)/2(x)) = (S1(x)) = (1),

as desired. The claim follows from this.
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Remark 4.2. In the case charK = 2, Corollary 4.1 (i) was proved in [1] and [8]. See
also [2].

Corollary 4.3. Suppose charK = p > 0.

(i)

d(Ppm−1 × Ppn−1, K, a) =


pmin{m,n} − 1 (a = 0),

(pmin{m,n} − 1)/2 (p ≥ 3, a = ±4),

0 (otherwise).

(ii)

d(Cpm × Cpn , K, a) =


2pmin{m,n} (p = 2, a = 0),

2pmin{m,n} (p ≥ 3, a = −4,m 6= n),

2pm − 1 (p ≥ 3, a = −4,m = n),

0 (otherwise).

(iii) d(Cpm × Cpn,K, a) + ε = p(d(Cm × Cn, K, a) + ε).

(iv) For any power q of p with q ≥ 4 and for any a ∈ K ∩ Fq , we have

d(Cq+1 × Cq+1,K, a) = d(Cq−1 × Cq−1,K, a) + 4.

Proof. (i) By Lemma 2.1 (ix).

(ii) By Lemma 2.1 (ix) we have C̃pn(x) ≡ xpn − 2 ≡ (x − 2)pn

(mod p).

(iii) By Lemma 2.1 (viii) and (ix) we have C̃pn(x) = Cp(Cm(x)) − 2 ≡ Cm(x)p −
2 ≡ C̃n(x)p (mod p).

(iv) By Lemma 2.1 (vi), (viii), and (ix) we obtain C̃q+1(x)C̃q−1(x) = (Cq(x) −
x)2 ≡ (xq − x)2 (mod p). Since (xq − x)2 is stable under x 7→ −x − a, we
have

C̃q+1(x)C̃q−1(x)C̃q−1(−x − a) ≡ (xq − x)2C̃q−1(−x − a),

C̃q+1(−x − a)C̃q−1(−x − a)C̃q−1(x) ≡ (xq − x)2C̃q−1(x).

By taking “2 deg gcd” of both sides, we obtain the desired formula.

Remark 4.4. In the case p = 2, a = 1 (this implies ε = 0), Corollary 4.3 (iii) was
first observed in [3] and was proved there by an elementary method. In the same paper,
(iv) was also observed for the first time and was proved by using an elliptic curve.
Subsequently, in [11], the author applied the same method to prove (iv) in the case
where p is general and a = 1.
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Corollary 4.5. Let µ(n, a) denote the multiplicity of x−a in the factorization of Sn(x)
over K, and introduce the notation

δm,n(a) =

2 (if µ(m, a) > µ(n, 2)),

0 (otherwise).

(i) If char K = 2, then

d(Cm × Cn,K, a) = 2d(Pm−1 × Pn−1,K, a) + δ,

where

δ =

2 − ε (a = 0),

δm,n(a) + δn,m(a) (a 6= 0).

(ii) If char K 6= 2, then

d(C2m × C2n,K, a) = 4d(Pm−1 × Pn−1,K, a) + δ,

where

δ =


4 − ε (a = 0),

2 − ε + δm,n(6) + δn,m(6) (a = ±4),

δm,n(a + 2) + δm,n(a − 2) + δn,m(a + 2) + δn,m(a − 2) (a 6= 0,±4).

Proof. (i) By Lemma 2.1 (x) we have

d(Cm × Cn,K, a) = 2 deg gcd K(xSm(x), (−x − a)Sn(−x − a)) − ε,

and the claim follows as follows. It is clear for a = 0. If a 6= 0, then we have

v0(Sn(−x − a)) > v0(Sm(x)) ⇐⇒ µ(n,−a) > µ(m, 0),

v−a(Sm(x)) > v−a(Sn(−x − a)) ⇐⇒ µ(m,−a) > µ(n, 0),

where vb(f) denotes the order of a polynomial f ∈ K[x] at x = b ∈ K. Also
note that ε = 0 if a 6= 0.

(ii) Use C̃2n(x) = (x2 − 4)Sn(x)2 from Lemma 2.1 (vii) (1) instead.

Remark 4.6. (i) Consider the case a = 1. Corollary 4.5 (i) was conjectured in
[3], and under the restriction that mn is prime to charK, both (i) and (ii) were
obtained essentially in [11, Proposition 2.2].

(ii) This result says that there is a relation between usual Lights Out puzzle and the
torus version of the puzzle. It would be interesting to find out a combinatorial
interpretation of this result.
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(iii) Let n ≥ 1 and put e = ordp(n) in the case char K = p > 0. Using Lemma 2.1,
we can easily verify

µ(n, 2) =


0 (charK = 0),

2e − 1 (charK = 2),

(pe − 1)/2 (charK = p ≥ 3).
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