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SUMMARY This paper proposes a novel approach for integrating spec-
tral feature extraction and acoustic modeling in hidden Markov model
(HMM) based speech synthesis. The statistical modeling process of speech
waveforms is typically divided into two component modules: the frame-by-
frame feature extraction module and the acoustic modeling module. In the
feature extraction module, the statistical mel-cepstral analysis technique
has been used and the objective function is the likelihood of mel-cepstral
coefficients for given speech waveforms. In the acoustic modeling module,
the objective function is the likelihood of model parameters for given mel-
cepstral coefficients. It is important to improve the performance of each
component module for achieving higher quality synthesized speech. How-
ever, the final objective of speech synthesis systems is to generate natural
speech waveforms from given texts, and the improvement of each com-
ponent module does not always lead to the improvement of the quality of
synthesized speech. Therefore, ideally all objective functions should be
optimized based on an integrated criterion which well represents subjective
speech quality of human perception. In this paper, we propose an approach
to model speech waveforms directly and optimize the final objective func-
tion. Experimental results show that the proposed method outperformed
the conventional methods in objective and subjective measures.
key words: integrative model, HMM-based speech synthesis, acoustic
modeling, mel-cepstral analysis, trajectory HMM

1. Introduction

Statistical speech synthesis based on HMMs has been
proposed to enable machines to naturally speak like hu-
mans [1]–[3] and widely used for TTS systems. In this tech-
nique, spectral and F0 features are extracted from speech
waveforms and modeled by statistical techniques [2]. In
general, a TTS system consists of several component mod-
ules, e.g., text analysis, spectral estimation, F0 estimation
and acoustic modeling, that are usually optimized inde-
pendently each other. It is important to improve the per-
formance of each component module for achieving higher
quality synthesized speech. However, the final objective of
TTS systems is to generate natural speech waveforms from
given texts, and the improvement of each component mod-
ule does not always lead to the improvement of the quality of
synthesized speech. Therefore, ideally all component mod-
ules should be optimized based on an integrated criterion
which well represents subjective speech quality of human
perception. A similar idea using the optimization integra-
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tion has been seen in the construction of large scale sys-
tems, e.g., acoustic and language models of speech recogni-
tion systems [4], speech translation systems [5], [6] and spo-
ken dialog systems [7]–[9]. In TTS systems, an approach
integrating text analysis and acoustic modeling modules has
been proposed [10]. By integrating linguistic and acoustic
models, it became robust against text analysis errors and
improved the quality of synthesized speech. Thus, the opti-
mization integration is an important trend for improving the
performance of systems based on statistical approaches.

In this paper, we integrate the feature extraction and
the acoustic modeling of HMM-based TTS systems. These
modules are typically connected in series and optimized in-
dependently. We optimize them as an integrated generative
model of speech waveforms. As the component modules of
feature extraction and acoustic modeling, statistical gener-
ative model-based approaches that are suitable for the inte-
gration have already been proposed and employed in HMM-
based speech synthesis. For feature extraction, a statistical
parametric mel-cepstral analysis [11], [12] has been widely
used. In this method, mel-cepstral coefficients, i.e., fre-
quency transformed cepstral coefficients, are regarded as pa-
rameters of a generative model and they are estimated by
the maximum likelihood criterion based on the likelihood
of waveform domain. For the acoustic modeling, “trajec-
tory HMM” [15]–[17] has been proposed as a generative
model of static features considering the temporal continu-
ity of feature sequences. It is well known that an acous-
tic modeling technique considering the temporal continuity
of each feature sequence improves the quality of synthe-
sized speech [1]. In the standard HMM, dynamic features
calculated from extracted static features are typically mod-
eled with static features. However, as the proposed method
requires a generative model of only static features, the tra-
jectory HMM should be used. We integrate the statistical
mel-cepstral analysis and the trajectory HMM and redefine
as a generative model.

The rest of this paper is organized as follows. Section 2
summarizes HMM-based speech synthesis, including the
mel-cepstral analysis and the trajectory HMMs. In Sect. 3,
the integration method of the mel-cepstral analysis and the
acoustic modeling is derived. Experimental results are pre-
sented in Sect. 4. Concluding remarks and future plans are
presented in the final section.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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2. HMM-Based Speech Synthesis

In HMM-based TTS systems, spectral envelope, F0, and
duration are modeled simultaneously based on generative
models, i.e., MSD-HSMM (Multi-Space Probability Distri-
bution Hidden Semi-Markov Models). However, this paper
focuses only on the spectral modeling based on the stan-
dard HMMs (or trajectory HMMs). When a target text is
given to the TTS system, the spectral parameter sequence
is generated from HMMs, and a speech waveform is finally
synthesized from them via the source-filter based produc-
tion model. In the training process, the spectral feature ex-
traction followed by the training HMMs is firstly performed.
The statistical mel-cepstral analysis [11], [12] which regards
mel-cepstral coefficients as the model parameters is widely
used in the standard HMM-based TTS systems, and the mel-
cepstral coefficients are estimated from a given input signal
x in the maximum likelihood (ML) sense:

ĉt = argmax
ct

P (xt |ct) (1)

The training of HMMs using extracted mel-cepstrum se-
quences c = (c1, · · · , cT ) is also performed based on the
ML criterion

Λ̂ = argmax
Λ

P (c|w,Λ) (2)

where Λ̂ is a set of the model parameters of HMMs and
w is a text corresponding to the training data (w is omit-
ted in the following formulas for simplicity). In this paper,
trajectory HMMs are used for acoustic modeling instead
of standard HMMs, because the standard HMMs generate
step-wise parameter sequences with discontinuity at state
boundaries due to the shortcoming of model structures while
training HMMs. To overcome this problem, the consistency
between static and dynamic features that causes the smooth
trajectory is considered in the spectral parameter generation.
In the rest of this section, the mel-cepstral analysis and tra-
jectory HMMs will be briefly reviewed.

2.1 Mel-Cepstral Analysis

In the mel-cepstral analysis, the synthesis filter H (z) is
represented by mel-cepstral coefficients c = [c (0) , · · · ,
c (M − 1)]�† defined as frequency-transformed cepstral co-
efficients:

H (z) = exp
M−1∑
m=0

c (m) z̃−m (3)

z̃−1 =
z−1 − α
1 − αz−1

, |α| < 1 (4)

where α is a frequency warping parameter. If α = 0, mel-
cepstral coefficients are equivalent to standard cepstral co-
efficients. Figure 1 shows the frequency warping function

†In Sect. 2.1, x and c correspond to not an utterance but a
frame. The frame index t is abbreviated.

Fig. 1 Frequency warping function.

with varying α. The vertical axis gives the warped frequen-
cies. If α > 0, the system function defined as Eq. (3) has
a high resolution at low frequencies, and if α < 0, it has a
high resolution at high frequencies.

For a given input signal, x = [x (0) , · · · , x (N − 1)]�,
the mel-cepstral coefficients are determined by minimizing
a spectral evaluation function with respect to c [24],

E (x, c) =
1

2π

∫ π

−π
{
exp R (ω) − R (ω) − 1

}
dω (5)

where

R (ω) = log IN (ω) − log
∣∣∣∣H (

e jω
)∣∣∣∣2 (6)

and IN (ω) is the modified periodogram of weakly stationary
process x (n) with a time window w (n) of length N:

IN (ω) =

∣∣∣∑N−1
n=0 w (n) x (n) e− jωn

∣∣∣2∑N−1
n=0 w

2 (n)
(7)

Mel-cepstral coefficients are determined easily by using an
iterative algorithm (e.g., the Newton-Raphson method) be-
cause E (x, c) is convex with respect to c.

When x (n) is assumed to be a zero-mean Gaussian pro-
cess, the log likelihood can be approximated by

log P (x|c) � −N
2

[
log (2π)

+
1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)∣∣∣H (
e jω

)∣∣∣2
}

dω

]
(8)

There are some techniques to approximate time series sig-
nals by a zero-mean Gaussian process [25]. The approxima-
tion used in this paper is shown in Appendix. Accordingly,
the minimization of E (x, c) corresponds to the maximiza-
tion of P (x|c). It should be noted that the spectral evalu-
ation function of mel-cepstral analysis has the same form
as that of LPC analysis [26]. Furthermore, taking the gain
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factor outside from H
(
e jω

)
indicates that the minimization

of E (x, c) with respect to c is equivalent to both minimiza-
tion of residual energy and maximization of the prediction
gain. Mel-log spectrum approximation (MLSA) filter [27] is
generally used to re-synthesize speech from the mel-cepstral
coefficients.

2.2 Trajectory HMM

In HMM-based speech synthesis systems, observation vec-
tor sequences are quasi-stationary and each stationary part
is represented by a state of the HMMs. The statistics of
each state do not change dynamically, and intra-state time-
dependency cannot be represented. Therefore, a technique
that augments the dimensionality of an acoustic static fea-
ture vector by appending its dynamic feature vectors is
widely used. The standard HMMs with static and dynamic
features are improper in the sense of statistical modeling be-
cause they model the static and dynamic features indepen-
dently. By imposing the explicit relationship between them,
the standard HMMs are naturally translated into trajectory
HMMs. The trajectory HMMs can overcome the impro-
priety in the standard HMM framework without any addi-
tional parameters, and be a consistent generative model of
the static feature sequences.

Let a spectral feature vector sequence be o =[
o�1 , · · · , o�T

]�
, where ot =

[
c�t ,Δc�t ,Δ2c�t

]�
includes not

only static but also dynamic features. Mel-cepstral coeffi-
cients ct are a M dimensional vector, and T is the number of
frames. In the standard model, the probability density of o is
shown as P (o|q,Λ) and assumed as a Gaussian distribution,
where q = (q1, q2, · · · , qT ) is a state sequence of HMMs.
By imposing an explicit relationship between static and dy-
namic features, which is given by o = Wc, where W is a
3MT × MT window matrix as shown in Fig. 2, the standard
HMM is reformed as the trajectory HMM as:

P (c|Λ) =
∑
∀q

P (c|q,Λ) P (q|Λ) (9)

Fig. 2 Example of the relationship between the static feature vector se-
quence c and the speech parameter vector sequence o in a matrix form.

P (c|q,Λ) = N
(
c|c̄q, Pq

)
=

1
Z

P (o|q,Λ) (10)

P (q|Λ) = P (q1|Λ)
t∏

t=2

P (qt |qt−1,Λ) (11)

where Z is a normalization term. In Eq. (10), c̄q and Pq are
the MT×1 mean vector and the MT×MT covariance matrix
given by q, respectively. They are represented as:

Z =

√
(2π)MT

∣∣∣Pq

∣∣∣√
(2π)3MT

∣∣∣Σq

∣∣∣ exp

{
−1

2

(
μ�qΣ

−1
q μq − r�q Pqrq

)}
(12)

Rqc̄q = rq (13)

Rq =W�Σ−1
q W = P−1

q (14)

rq =W�Σ−1
q μq (15)

μq =
[
μ�q1
, · · · ,μ�qT

]�
(16)

Σq = diag
[
Σ�q1
, · · · ,Σ�qT

]�
(17)

where μqt
and Σqt are the 3M × 1 mean vector and the

3M × 3M covariance matrix associated with the state qt, re-
spectively. The elements of W are given as regression win-
dow coefficients to calculate delta and delta-delta features as
follows:

Δd ct =

L(d)
+∑

τ=−L(d)
−

w(d) (τ) ct+τ, d = 1, 2 (18)

W = [W1,W2, . . . ,WT ]� ⊗ IM×M (19)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
(20)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸
t−L(d)

− −1

, w(d)(−L(d)
− ), . . . , w(d) (0) ,

. . . , w(d)(L(d)
+ ), 0, . . . , 0︸��︷︷��︸

T−
(
t+L(d)

+

)
]�
, d = 0, 1, 2 (21)

where L(0)
− = L(0)

+ = 0, w(0) = 1, and ⊗ denotes the Kronecker
product for matrices.

Note that c is modeled by a Gaussian distribution
whose dimensionality is MT , and the covariance matrices
Pq are generally full. As a result, the trajectory HMMs can
overcome the drawback of the HMMs. It is also noted that
the parameterization of the trajectory HMMs is completely
the same as that of the HMMs with the same model topol-
ogy.

3. Integration of Acoustic Modeling and Mel-Cepstral
Analysis

In the conventional method, the statistical modeling pro-
cesses for feature extraction and acoustic modeling are con-
nected in series. However, the essential problem of con-
structing TTS systems is to comprehensively estimate mod-
els that can generate speech waveforms from texts. In this
paper, we propose a technique to directly model speech
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Fig. 3 Basic idea of the proposed approach.

waveforms as a statistical model. The statistical mel-
cepstral model P (x|c) and the statistical acoustic model
P (c|Λ) are integrated as:

P (x|Λ) =
∫

P (x, c|Λ) dc

=

∫
P (x|c) P (c|Λ) dc (22)

The original point of this model structure is that two statis-
tical modeling processes are connected with the marginal-
ization of mel-cepstral coefficients, and the proposed model
is a generative model of speech waveforms. Figure 3 shows
the generative process. In the conventional model structure,
there is the strong constraint that only one mel-cepstral se-
quence is used to convey useful information from the fea-
ture extraction module to the acoustic modeling module. As
the proposed method can avoid this constraint, we expect
that the proposed method improve the quality of synthesized
speech.

In the standard mel-cepstral analysis technique, mel-
cepstral coefficients are estimated frame-by-frame. How-
ever, it is well known that considering the temporal con-
tinuity of mel-cepstral coefficients improves the quality of
synthesized speech. Thus, we use the trajectory HMM to
consider the temporal continuity as a statistical model of
mel-cepstral coefficients.

To train the proposed model, a lower bound of log
marginal likelihood F is maximized instead of the true like-
lihood. The lower bound F is defined by using Jensen’s
inequality:

L (x|Λ) = log P (x|Λ)

= log
∑
∀q

∫
P (x|c) P (c, q|Λ) dc

= log
∑
∀q

∫
Q (c, q)

P (x|c) P (c, q|Λ)
Q (c, q)

dc

= log
∑
∀q

∫
Q (c) Q (q)

P (x|c) P (c, q|Λ)
Q (c) Q (q)

dc

≥
∑
∀q

∫
Q (c) Q (q) log

P (x|c) P (c, q|Λ)
Q (c) Q (q)

dc

= F (23)

To overcome the difficulty of optimization, it is assumed that

c and q are conditionally independent. The optimal poste-
rior distributions can be obtained by maximizing the objec-
tive function F with the variational method [13] as:

Q (c) =
1
Zc

P (x|c) exp
∑
∀q

Q (q) log P (c|q,Λ) (24)

Q (q) =
1
Zq

P (q|Λ) exp
∫

Q (c) log P (c|q,Λ) dc (25)

where Zc and Zq are the normalization terms of Q (c) and
Q (q), respectively.

Zc =

∫
P

(
x|c′) exp

∑
∀q

Q (q) log P
(
c′|q,Λ)

dc′ (26)

Zq =
∑
∀q′

P
(
q′|Λ)

exp
∫

Q (c) log P
(
c|q′,Λ)

dc (27)

These optimizations can be effectively performed by itera-
tive calculations as the Expectation and Maximization (EM)
algorithm, which increases monotonically the value of ob-
jective function F at each iteration until convergence.

3.1 Posterior Probabilities of Mel-Cepstral Coefficients

It is difficult to calculate the integral of c in Eq. (25) because
of its high computational cost. Therefore, Q (c) is assumed
as a Gaussian probability distribution by using the Laplace
approximation [14]. The unnormalized probability in Q (c)
is defined by Q∗ (c) as:

Q∗ (c) = P (x|c) exp
∑
∀q

Q (q) log P (c|q,Λ) (28)

Taking the first three terms of the Taylor series expansion
around c = c̃ then the logarithm of Eq. (28) becomes:

log Q∗ (c) � log Q∗ (c̃) +

(
∂

∂c
log Q∗ (c) |c=c̃

)
(c − c̃)

+
1
2

(c − c̃)�
(
∂2

∂c∂c�
log Q∗ (c) |c=c̃

)
(c − c̃) (29)

where

c̃ = argmax
c

Q (c) (30)

As the first derivation of log Q∗ (c) at c̃ is equal to 0, Eq. (29)
can be represented as:

log Q∗ (c) � log Q∗ (c̃) − 1
2

(c − c̃)� A (c − c̃) (31)

A = − ∂2

∂c∂c�
log Q∗ (c) |c=c̃

=
N
2

H |c=c̃ +
∑
∀q

Q (q) P−1
q (32)

The Hessian matrix H is represented as follows:

H = − 2
N
∂2

∂c∂c�
log P (x|c)
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= diag
([

H�1 ,H
�
2 , · · · ,H�T

]�)
(33)

where Ht is the Hessian matrix of the spectral evaluation
function E (xt, ct) in Eq. (5) at time t:

Ht =
∂2

∂ct∂c�t
E (xt, ct) = − 2

N
∂2

∂ct∂c�t
log P (xt |ct) (34)

In order to approximate Q (c) by a Gaussian probability dis-
tribution, the normalization term Zc is approximated as:

Zc � Q∗ (c̃)
√

(2π)MT
∣∣∣A−1

∣∣∣ (35)

By using a Laplace approximation, Q (c) is represented as:

Q (c) � N
(
c|c̃, A−1

)
(36)

As the matrix A is a (4LM + 1)-diagonal band symmetric
matrix where L is the window length, the inverse matrix A−1

can be calculated in realistic time.

3.2 Posterior Probabilities of State Sequences

The Forward-Backward algorithm is generally applied to the
standard HMM in E-step. However, it cannot be applied to
the trajectory HMM, and the delayed decision Viterbi algo-
rithm [17], [18] is applied instead. Thus, we derive a delayed
decision Viterbi algorithm for the proposed model similarly.

By using Eq. (36), the expectation with respect to c in
Eq. (25) is given by∫

Q (c) log P (c|q,Λ) dc

�
∫
N

(
c|c̃, A−1

)
logN

(
c|c̄q, Pq

)
dc

= logN
(
c̃|c̄q, Pq

)
− 1

2
tr

(
Rq A−1

)
= log P (c̃|q,Λ) − 1

2
tr

(
Rq A−1

)
(37)

In Eq. (12), although
∣∣∣Σq

∣∣∣ and μT
qΣqμq can be computed

time-recursively, it is difficult to recursively compute
∣∣∣Pq

∣∣∣
and r�q Pqrq because of the temporal full-covariance matrix
Pq. However, by using the special structure of Pq, “tra-
jectory likelihood” (Eq. (9)) can be computed in a time-
recursive manner. When Δc̃t and Δ2 c̃t are computed as re-
gression coefficients from (c̃t−L, · · · , c̃t+L), Rq becomes a
(4LM + 1)-diagonal band symmetric positive definite ma-
trix. Accordingly, Rq can be decomposed by Cholesky de-
composition:

Rq = U�q Uq (38)

where Uq is an upper (2LM + 1)-band triangular matrix.
From Eq. (38),

∣∣∣Pq

∣∣∣ can be rewritten as:

∣∣∣Pq

∣∣∣ = ∣∣∣Rq

∣∣∣−1
=

∣∣∣U�q Uq

∣∣∣−1
=

∣∣∣Uq

∣∣∣−2
=

T∏
t=1

∣∣∣U(t,t)
qt+L

∣∣∣−2
(39)

where qt+L = (q1, · · · , qt+L). Since U(t,t)
qt+L

depends only on
the state sequence from time 1 to t+L,

∣∣∣Pq

∣∣∣ can be computed
time-recursively. From Eqs. (13), (14), and (38), r�q Pqrq can
be rewritten by

r�q Pqrq = r�q P�q Rq Pqrq = c̄�q U�q Uqc̄q

= g�q gq

(
g = Uqc̄q = U−1

q rq

)
=

T∑
t=1

(
g(t)

qt+L

)�
g(t)

qt+L
(40)

where gq is a vector computed from Uq and rq by forward

substitutions. Since g(t)
qt+L

depends only on the state sequence
from time 1 to t + L, r�q Pqrq can be also computed time-
recursively. As a result, “trajectory likelihood” can be com-
puted time-recursively as follows:

P (c̃|q,Λ) =
T∏

t=1

1

Z(t)
qt+L

P (õt |qt,Λ) (41)

where

Z(t)
qt+L
=

√
(2π)M

∣∣∣U(t,t)
qt+L

∣∣∣−2

√
(2π)3M

∣∣∣Σqt

∣∣∣
× exp

[
−1

2

{
μ�qt
Σ−1

qt
μqt
−

(
g(t)

qt+L

)�
g(t)

qt+L

}]
(42)

From Eq. (38), submatrices of Rq A−1 in Eq. (37) can be
rewritten as:(

Rq A−1
)(t,t)
=

(
U�q Uq A−1

)(t,t)
=

(
Uq A−1U�q

)(t,t)

=

t+2L∑
i=t

t+2L∑
j=t

U(t,i)
qt+2L

(
A−1

)(i, j)
U(t, j)

qt+2L
(43)

Since U(t, j)
qt+2L

depends only on the state sequence from time 1
to t + 2L, Rq A−1 can be computed time-recursively. There-
fore, Eq. (37) is represented as:∫

Q (c) log P (c|q,Λ) dc

�
T∑

t=1

[
log

1
Zq(t)

t+L

N
(
Wc̃t |μqt

,Σqt

)

− 1
2

t+2L∑
i=t

t+2L∑
j=t

tr
{
U(t,i)

qt+2L

(
A−1

)(i, j)
U(t, j)

qt+2L

}]
(44)

Thus, the proposed method can use the delayed decision
Viterbi algorithm.

3.3 Update Model Parameters

Model parameters m and φ are defined by concatenating the
mean vectors and covariance matrices of all unique Gaus-
sian components in the model set as:
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m =
[
μ�1 ,μ

�
2 , · · · ,μ�K

]�
(45)

φ =
[
Σ�1 ,Σ

�
2 , · · · ,Σ�K

]�
(46)

where μk and Σk are the mean vector and covariance matrix
of the k-th unique Gaussian component in the model set, and
K is the total number of Gaussian components in the model
set, respectively.

By setting the partial derivative of F with respect to m
to 0, a set of linear equations for determining m maximizing
F are obtained as:∑

∀q

Q (q) S�q W PqW�SqΦ
−1m =

∑
∀q

Q (q) S�q Wc̃ (47)

where

μq = Sqm (48)

Φ−1 = diag(φ) (49)

Σ−1
q = diag(Sqφ) (50)

SqΦ
−1 = Σ−1

q Sq (51)

In the above equations, Sq is a 3MT × 3MT matrix whose
elements are 0 or 1 determined by the Gaussian component
sequence q.

For maximizing F with respect to φ, a gradient method
is applied by using its partial derivative

∂F
∂φ
�

∑
∀q

Q (q)

[
1
2

S�q diag−1
{
W PqW� −W A−1W�

−Wc̃c̃�W� + 2μq c̃�W�

+Wc̄qc̄�q W� − 2μq c̄�q W�}] (52)

because Eq. (52) is not a quadratic function of φ. As ex-
plained above, the parameterization of the proposed model
is completely the same as that of the standard HMM and
trajectory HMM.

3.4 Related Work

As mentioned above, the proposed method integrates the
spectral estimation process and the spectral modeling pro-
cess and the generative model is defined on the waveform
domain. Some similar approaches have been found in previ-
ous researches. The vocal tract transfer function (VTTF)
estimation of a speech signal based on a factor analyzed
(FA) trajectory HMMs [19] is closely related to the proposed
method in terms of the direct modeling of speech observa-
tion. In this method, mel-cepstral coefficients are regarded
as factors and the harmonic components are represented
by using linear transformation with the time-varying factor
loading matrix. The likelihood function is defined in the
log spectral domain and measured only on voiced frames of
speech while the likelihood function of the proposed method
is defined in the waveform domain. Furthermore, as the pro-
posed method is based on the conventional acoustic model

structure, the proposed method has an advantage that rea-
sonable initial model parameters can be given by the con-
ventional method and many techniques are regarded for the
conventional models, e.g. speaker adaptation, can be ap-
plied.

In another related approach, the mel-cepstral analy-
sis was integrated into the estimation of Gaussian mix-
ture model (GMM) for modeling a quasi-stationary Gaus-
sian process [20]. It can represent mel-cepstral coefficients
stochastically with mixture weights of GMM. However,
mel-cepstral coefficients are constant because each mixture
has no variance parameters, and the temporal continuity of
mel-cepstral coefficients is also not considered. Contrary to
this, the proposed method assumes mel-cepstral coefficients
as latent variables with variances and marginalizes out to
form a single generative model. Additionally, the temporal
continuity is represented by using the trajectory HMMs.

The joint estimation of the acoustic and excitation
model parameters [21] is similar to the proposed method.
The distance between natural and synthesized speech wave-
forms is minimized in the time domain by updating the cep-
stral sequences, the trajectory HMMs, and the excitation
models iteratively. Although the proposed method treats the
cepstral coefficients as probabilistic variables and estimate
their distributions, the method in [21] uses only single cep-
stral coefficient vectors as an approximation. Furthermore,
the state sequence is fixed through the entire training pro-
cess in [21]. On the other hand, in the proposed method,
the modified delayed decision Viterbi algorithm are derived
and the state sequence can be optimized for the integrated
objective function.

The proposed algorithm and a small experiment have
already shown in [22]. The reason why we conducted only
the small experiment in [22] was large computational cost
over 1000 hours for the training of the proposed models.
This is mainly caused by following processes, (1) Searching
the best state sequences with the delayed decision Viterbi al-
gorithm, (2) Iterative updates for estimating the covariance
matrices, and (3) Estimating Q (c) in Eq. (24). Although the
process (1) and (2) are required for both the trajectory HMM
and the proposed method, (3) is necessary only for the pro-
posed method, because all mel-cepstral coefficients in each
utterance have to be estimated simultaneously. For a large
scale experiment, we reduced the computational cost in (3)
by changing the optimization method from the Newton-
Raphson method to the RPROP [23] method and using the
distributed processing in the estimation of Q (c).

4. Experiments

To evaluate the effectiveness of the proposed method, ob-
jective comparison tests on the likelihood measure and sub-
jective comparison tests on the mean opinion score (MOS)
were conducted. For training, two data sets which contain
different number of sentences from the phonetically bal-
anced 503 sentences of the ATR Japanese speech database
(Set B) [28] recorded in NITech were used.
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• Small data set: 50 sentences
• Large data set: 450 sentences

Fifty other sentences were used for evaluation. The speech
data was recorded at 48 kHz and windowed at a frame rate
of 5-ms by using a 25-ms Hamming window. The win-
dowed waveforms were used as the input data in the pro-
posed method, and 35 mel-cepstral coefficients, which in-
clude the zero coefficient estimated with the mel-cepstral
analysis technique [11], and their delta and delta-delta co-
efficients were used in the conventional method. The di-
mension of the hidden mel-cepstral coefficients of the pro-
posed method was set to the same as that of the conven-
tional method. The excitation parameter vectors consisted
of log F0 and its delta and delta-delta. The frequency warp-
ing parameter α was set to 0.55. A five-state, left-to-right,
no-skip structure was used for the HMMs. The excita-
tion parameters were modeled with multi-space probability
distributions HMMs [29] in both the proposed and conven-
tional methods. Each state output probability distribution
was modeled by a single Gaussian distribution with a diag-
onal covariance matrix.

The standard HMMs were estimated as context-
dependent models [30] and applied the decision tree based
context clustering technique [31]. The minimum descrip-
tion length (MDL) criterion was used to determine the size
of the decision trees [32]. After estimating the standard
HMMs, the trajectory HMMs and proposed models were re-
estimated by using the standard HMMs as their initial mod-
els in accordance with the training procedure described in
Sect. 3. The number of delayed frames in the delayed de-
cision Viterbi algorithm was set to seven. In the subjective
test, ten subjects were asked to rate the naturalness of the
synthesized speech on a MOS with a scale from 1 (poor)
to 5 (good). Fifteen randomly selected sentences were pre-
sented to each subject. The experiments were carried out in
a sound-proof room.

4.1 Experiments of Small Data Set

In the experiments on the small data set, an iteration of
the proposed embedded training was decided as follows:
(Step A) Estimating Q (c), and (Step B) estimating Q (q)
by delayed decision Viterbi algorithm were repeated three
times, and then (Step C) the model parameters were up-
dated. The embedded training process was repeated 5 times.

Figure 4 shows the difference of likelihood P (x|Λ) for
the training data set (close) and the test data set (open). The
vertical axis shows the average log likelihood per frame. All
likelihoods were measured with the proposed model likeli-
hood P (x|Λ) in the waveform domain (Eq. (22)). The pro-
posed model outperformed the others for both data sets.
This means that speech waveforms rather than mel-cepstrum
were modeled appropriately in the proposed method. Al-
though the trajectory HMMs was expected to obtain a higher
likelihood than HMMs, similar likelihoods were actually
obtained. This result indicates that improvement of each

Fig. 4 Log likelihood per frame for close and open data sets (Small data
set).

Fig. 5 Mean opinion scores for synthesized speech obtained by standard
HMMs, trajectory HMMs and proposed model (Small data set).

component does not always achieve better modeling in
terms of the final objective measure. Figure 5 shows the
subjective listening test results. In Fig. 5, the MOS of the
proposed method was better than that of the standard HMMs
and similar to or better than that of the trajectory HMMs.

4.2 Experiments on Large Data Set

In the experiments on the large data set, the state sequences
were previously determined by using the delayed decision
Viterbi algorithm, and the state sequences and the duration
models were fixed to reduce the computational cost while
the trajectory HMMs and the proposed models were trained.
The training process of the proposed models, (Step A) esti-
mating Q (c) and (Step C) updating the model parameters,
was repeated 5 times. As a result, the total computational
time was about 1000 hours. Actually, the computational
time was reduced by parallel processing of Step A using
multiple computers.

Figure 6 shows the subjective listening test results. The
MOS of the proposed method was significantly better than
the others. The reason why the trajectory HMMs obtained
a slightly worse MOS than the standard HMMs might be
that the state sequences were fixed through the embedded
training of the trajectory HMMs to reduce the computational
cost. Figure 7 shows examples of spectrum sequences gen-
erated by these models. The state duration for all models
was aligned to the natural spectrum sequence so as to com-
pare these spectra easily. It can be observed that the pro-
posed model generated sharper spectra than the other mod-
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Fig. 7 Example of logarithm spectrum sequences generated using standard HMMs, trajectory HMMs
and proposed model. (Large data set).

Fig. 6 Mean opinion scores for synthesized speech obtained by standard
HMMs, trajectory HMMs and proposed model (Large data set).

els, especially in the low frequency band. It might con-
tribute to naturalness of the generated voices in the proposed
method.

These results suggested that the proposed method
appropriately modeled speech waveforms directly, even
though the proposed model have exactly the same number
of parameters as the baseline system. Further improvement
is expected by applying the integrated optimization not only
to parameter estimation but also to the model structure se-
lection, e.g., context clustering in future work.

5. Conclusions

In this paper, we proposed a novel technique for modeling
speech waveforms directly by integrating the mel-cepstral
analysis and the acoustic modeling. A generative model
representing the TTS problem was constructed and opti-
mized, in which mel-cepstrum coefficients were treated as
latent variables and the statistical mel-cepstral analysis and
the statistical acoustic model were integrated with marginal-
izing over mel-cepstral sequences. In the objective experi-

ment, the proposed method outperformed the conventional
methods. In addition, the subjective evaluation score of
the proposed method was better than that of the conven-
tional methods. These results suggested that the proposed
method improves the quality of synthesized speech. Fu-
ture work includes experiments and evaluation on larger
data set with searching the best state sequences by the de-
layed decision Viterbi algorithm, and constructing a param-
eter tying structure based on the objective function of the
proposed method. Furthermore, the use of other features
rather than mel-cepstral coefficients in the proposed frame-
work will also be future work.
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Appendix: Likelihood Function of Mel-Cepstrum

It has been shown in literatures (e.g., [25]) that the following
equation approximates the log likelihood function of a zero-
mean Gaussian process when N → ∞:

log P (x|c) � −N
2

[
log (2π)

+
1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)∣∣∣H (
e jω

)∣∣∣2
}

dω

]
(A· 1)

As a result, it can be seen that the minimization of Eq. (5) is
equivalent to maximizing P (x|c).

This appendix shows that Eq. (8) approximates the log
likelihood function with an assumption that windowed sig-
nal

x′ =
[
x′(0), x′(1), · · · , x′(N − 1)

]� (A· 2)

where

x′(n) =

√
N∑N−1

n=0 w
2(n)
w(n)x(n) (A· 3)

is generated by circular convolution of white Gaussian pro-
cess

e = [e(0), e(1), · · · , e(N − 1)]� (A· 4)

whose variance is unity and

h̃ =
[
h̃(0), h̃(1), · · · , h̃(N − 1)

]�
(A· 5)

where

h̃(n) =
1
N

N−1∑
i=0

H
(
e jwi

)
e jwin, wi =

2πi
N

(A· 6)

that is, e is obtained by circular convolution of x′ and

g =
[
g(0), g(1), · · · , g(N − 1)

]� (A· 7)

where
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g(n) =
1
N

N−1∑
i=0

H−1
(
e jwi

)
e jwin (A· 8)

It is noted that x′(n) is normalized so that the energy of x(n)
is preserved, and windowing can reduce the effect of replac-
ing convolution by circular convolution.

From the assumption, the likelihood is written as

P
(
x′|c) = 1√

(2π)N |U|
exp

(
−1

2
x′�U−1x′

)
(A· 9)

where

U =
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u (0) u (1) · · · u (N − 1)

u (1) u (0)
. . .

...
...

. . .
. . . u (1)

u (N − 1) · · · u (1) u (0)
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(A· 10)

and

u (k) =
1
N

N−1∑
i=0

∣∣∣∣H (
e jωi

)∣∣∣∣2 e jωik (A· 11)

We can show

x′�U−1x′ =
N−1∑
i=0

IN (ωi)∣∣∣H (
e jωi

)∣∣∣2 (A· 12)

and

|U| =
N−1∏
i=0

∣∣∣∣H (
e jωi

)∣∣∣∣2 (A· 13)

Consequently, it can be shown

log P
(
x′|c) = −N

2

[
log (2π)

+
1
N

N−1∑
i=0

{
log

∣∣∣∣H (
e jωi
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e jωi
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(A· 14)

where IN(ω) is given by Eq. (7). By replacing the summa-
tion by an integration, we obtain

log P
(
x′|c) � −N

2

[
log (2π)

+
1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)∣∣∣H (
e jω

)∣∣∣2
}

dω

]
(A· 15)

Thus, maximizing P (x′|c), i.e., maximizing Eq. (A· 15) with
respect to c is equivalent to the minimization of Eq. (5) with
respect to c.
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