博士論文

ソルボサーマル反応を用いた ベーマイトナノ粒子の作製と機能化に関する研究

Study on fabrication and functionalization of boehmite nanoparticle via solvothermal reaction

2017 年

名古屋工業大学大学院 工学研究科 共同ナノメディシン科学専攻

太田 康博

目 次

第1章 緒言

1-1 アルミニウムとは	7
1-2 金属アルミニウム	7
1-3 アルミナ水和物およびアルミナ	8
1-4 ベーマイト	11
1-5 ベーマイトの合成	14
1-5-1 水熱合成法	14
1-5-2 ゾル-ゲル法	17
1-5-3 超臨界合成法	17
1-6 有機化合物と複合化されたベーマイトに関する研究	18
1-7 ベーマイト/高分子の複合体に関する研究	19
1-8 本研究の概要と研究目的	20
1-9 参考文献	21

第2章 水酸化アルミニウムゲルの作製と評価

2-1 序論	25
2-2 実験	27
2-2-1 原料	27
2-2-2 試料作製	27
2-2-3 分析・解析	28
2-2-3-1 XRD	28
2-2-3-2 TG-DTA	28
2-2-3-3 窒素ガス吸脱着	28
2-2-3-4 微細構造観察	28
2-3 結果と考察	29
2-3-1 中和曲線	29

2-3-2 XRD	31
2-3-3 TG-DTA	33
2-3-4 窒素ガス吸脱着	34
2-3-5 微細構造観察	36
2-4 結論	39
2-5 参考文献	40

第3章 ソルボサーマル反応を用いたベーマイトナノ粒子の作製と評価

3-1 序論	42
3-2 実験	44
3-2-1 原料	44
3-2-2 試料作製	44
3-2-3 分析・解析	45
3-2-3-1 XRD	45
3-2-3-2 動的光散乱	45
3-2-3-3 IR スペクトル	45
3-2-3-4 ¹³ C および ²⁷ Al CP/MAS NMR スペクトル	45
3-2-3-5 TG-DTA	46
3-2-3-6 元素分析	46
3-2-3-7 窒素ガス吸脱着	46
3-2-3-8 微細構造観察	46
3-2-3-9 励起および蛍光スペクトル	46
3-3 結果と考察	48
3-3-1 XRD	48
3-3-2 IR スペクトル	55
3-3-3 ¹³ C および ²⁷ Al CP/MAS NMR スペクトル	58
3-3-4 TG-DTA	60
3-3-5 元素分析	62
3-3-6 微細構造観察	64

3-3-7	窒素ガス吸脱着	65
3-3-8	励起および蛍光スペクトル	66
3-3-9	反応メカニズム	69
3-4 結		73
3-5 参	考文献	74

第4章 ソルボサーマル反応を用いて作製したベーマイトナノ粒子の機能化

4-1 序	論		78
4-2 実	験		80
4-2-1	原料	화	80
4-2	-1-1	AHG の作製	80
4-2	-1-2	NBM-MEA の作製	80
4-2-2	試料	科作製	81
4-2-3	分材	斤・解析	81
4-2	-3-1	XRD	81
4-2	-3-2	IR スペクトル	81
4-2	-3-3	¹³ C CP/MAS NMR スペクトル	82
4-2	-3-4	TG-DTA	82
4-2	-3-5	元素分析	82
4-2	-3-6	電子スピン共鳴スペクトル	82
4-2	-3-7	窒素ガス吸脱着	82
4-2	-3-8	励起および蛍光スペクトル、内部量子効率	82
4-2	-3-9	時間分解蛍光分光	83
4-3 結	果と	考察	84
4-3-1	XR	D	84
4-3-2	IR	スペクトル、NMR スペクトル、元素分析	87
4-3-3	TG	-DTA	91
4-3-4	励却	起および蛍光スペクトル と 発光のメカニズム	93
4-3-5	反应	芯機構	100

4-4	結論	101
4-5	参考文献	102
第5章	1 総括	105
		
者有分	を表の論文	107
謝辞		109

緒言

1-1 アルミニウムとは¹⁻³

原子番号 13 のアルミニウム (Al) は、酸素、ケイ素に次いで地殻に豊富に存在する元素であ り、火成岩や珪酸塩鉱物などの粘土鉱物にアルミニウム化合物として固定されている。人類はこ のアルミニウムの粘土鉱物や化合物を古くから用いてきた。例えば、アルミニウムの粘土鉱物は、 今から 7000 年前の中東メソポタミアにおいて彩色土器として使用され、アルミニウム化合物で ある明礬 (硫酸カリウムアルミニウム) は、紀元前の古代ローマ時代において、染物の色を鮮や かにする媒染剤、止血剤や鎮痛剤などの医薬品として利用されていたと伝えられている。一方で、 その単体であるアルミニウム (金属アルミニウム) の歴史は浅く、200 年ほどしかない。この理 由は、アルミニウムと酸素の結合力が非常に強く、単離が容易にできなかったためである。この ことについて、1782 年にフランスの科学者 Lavoisiér が「明礬土 (ばん土) は酸素との親和力が 非常に高く、炭素やその他の還元剤では到底還元分離できない、新しい金属の酸化物である」と 指摘していた。

本章では、近代科学史におけるアルミニウムおよびその酸化物と水酸化物について概観する。

1-2 金属アルミニウム 1-5

19 世紀に入り、金属アルミニウムの研究およびその製造方法の開発が相次いで実施された。 1807年にイギリスの科学者 Davy は酸化アルミニウム (アルミナ) と水酸化カリウムを加熱熔融 し、電気分解を利用することによって金属アルミニウムの抽出を試みたが、達成することはでき なかった。しかしながら、その2年後に、彼は鉄とアルミナを混合してアーク溶解することによっ て、鉄-アルミ合金が生成することを見出し、未知の元素としてアルミニウムの存在を確認して いる。1825年、デンマーク物理学者 Ørsted は水銀との合金であるカリウムアマルガムを使用し て塩化アルミニウムを還元し、世界で初めてアルミニウムの単離に成功した。1846年にはドイ ツの化学者Wöhlerが純度の高いpin-headほどの粒状のアルミニウムを作製した。彼はその比重 や融点などを測定することによって、「軽くて展延性あり、空気中で安定で吹管の熱で融解する」 というアルミニウムの基礎的な性質を見出した。1850年において、フランスのDevilleは金属ナ トリウムを使用して塩化アルミニウムを還元する化学還元法を考案し、アルミニウムの生産コス トを下げることに成功した。Devilleが作製した金属アルミニウムの棒は、1855年に開催された パリ万博に出展され、「粘土から得た銀」(silver from clay)と称されて世間の注目を集めた。この 当時、アルミニウムは貴金属としての扱いを受けており、純度の高いアルミニウムは金よりも高 価であった。また、フランスのナポレオン3世がアルミニウム製品を愛用していたとも記録され ている。金属アルミニウムを工業的に利用するためには、より製造コストを下げる必要があった。 この課題を達成するため、1886年にHallとHéroultはそれぞれ独自にアルミナを電界浴中で電 気分解する電気還元法を用いて金属アルミニウムの精錬する手法を開発した。この手法は Hall-Héroult法と呼ばれ、大規模な金属アルミニウムの製造を可能にした。その後も、Hall-Héroult 法に代わる精錬プロセスの開発もされたが工業化には至らず、現在も金属アルミニウムの精錬に

1-3 アルミナ水和物およびアルミナ

アルミナ水和物 (Al₂O₃・nH₂O) およびアルミナ (Al₂O₃) は、現在、大量に使用される無機材 料の1つであり、ボーキサイト (bauxite) から製造されている。このボーキサイトは、1821 年に フランスの鉱物学者 Berthier によってフランス南部 Les Baux-de-Provence で発見され、この地名 に因んで名付けられた。ボーキサイトはおよそ 50~60% のアルミナおよびアルミナ水和物に加 えて、酸化ケイ素、種々酸化鉄、酸化チタンを不純物として含んでいるため、高純度の水酸化ア ルミニウムを得るためには精製プロセスが必要である³。1855 年に Le Chatelier は炭酸ナトリウ ムとともに焼成したボーキサイト鉱石を水中で溶解させてアルミン酸ナトリウム (NaAlO₂) 水 溶液とし、その水溶液に二酸化炭素ガス(CO₂(g))を吹き込むことによって水酸化アルミニウムを 精製する手法を開発した。しかしながら、この手法では NaAlO₂ 水溶液を冷却する工程が必要で あり、効率的に水酸化アルミニウムを得ることができなかった。この課題を解決するために、1888

Figure 1-1. Transition of Al(OH)₃ production method from Le Chatelier pyrometallurgical route to Bayer's one. ⁵

年に Bayer はボーキサイトから調製された NaAlO₂水溶液に高純度の水酸化アルミニウムを種結 晶として添加することによって水酸化アルミニウムを析出させる Bayer 法を開発した。この Bayer 法と先に述べた Hall-Héroult 法を組み合わせることによって、ボーキサイトからアルミナ を経て金属アルミニウムを精錬する画期的なプロセスが確立され、100 年以上経った現在におい ても、工業的にこれらのプロセスが利用されている。Figure 1-1 にボーキサイトから水酸化アル ミニウムの精製プロセスの変遷の概要を示した⁵。

アルミナ水和物は、3 水和物であるバイヤライト (Bayerite)、ギブサイト (Gibbsite) およびノ ルドストランダイト (Nordstrandite)、1 水和物であるベーマイト (Boehmite) およびダイアスポア (Diaspore) がよく知られており、プラスチックスやゴムへの添加剤、人工大理石の原材料、凝集 剤、アジュバントなどとして、さまざまな化学分野で使用されている^{4.6}。代表的なアルミナ 3 水和物およびアルミナ1水和物として、ギブサイトおよびベーマイトの構造モデルを Figure 1-2 に示した⁷。アルミニウムは八面体の中心に位置し、酸素は赤で示した。水素について、この構 造モデルでは省略した。ギブサイトは Al(OH)₆八面体が稜共有して *a、b* 軸方向に連なって層構 造を形成し、それが*c* 軸方向に積み重なった構造である (Figure 1-2(a))。一方、ベーマイトはア ルミニウムイオンを中心とした AlO₆ 八面体が稜共有して a、c 軸方向にジグザグ状に連なって シート構造を形成し、b軸方向に2枚のシート構造が水素結合によって接合した結晶構造である (Figure 1-2(b))。アルミナ水和物は熱処理することによって脱水反応が起こり、準安定相である 遷移アルミナへ相転移する。これらの準安定相は出発のアルミナ水和物の結晶構造によって異な り、それらはギリシャ文字の χ 、 ϵ 、 ρ 、 κ 、 γ 、 δ 、 θ を用いることによって分類されて表記さ れる。いずれの遷移アルミナとも最終的には安定相であるα-アルミナへ相転移する。Figure 1-3 にアルミナ水和物の熱処理によるアルミナへの結晶相転移のフローチャートを示した⁴。遷移ア ルミナは大きな比表面積を有することから、主に触媒担体として利用されている。α-アルミナは コランダム (鋼玉、corundum) とも呼ばれ、高いモース硬度 (9)、高い融点 (ca. 2050 °C)、大き な絶縁抵抗値、化学的に安定といった特徴を有しており、セラミックスの原材料、研磨剤、耐火 材および触媒担体などに利用されている^{8a),8b)}。また、アルミナは Haber-Bosch 法として知られ るアンモニア合成時に用いられる二重促進鉄触媒 (Fe/Al₂O₃/K₂O)の表面積維持のためにも使用 されている^{&c)}。純粋な単結晶のα-アルミナは無色であるが、不純物として微量の鉄、クロムや チタンが固溶されると、赤色や青色を示す。これらは、ルビー (紅玉、ruby)およびサファイア (蒼 玉、sapphire) は呼ばれ、宝石として装飾品に利用されている。また、人造のルビーおよびサファ イアは固体レーザーや精密機器の軸受けなどに利用されている。近年、高純度のアルミナ水和物 およびアルミナがファインセラミックス材料や電子情報材料にも多く使用されている^{8a),8b)}。

Figure 1-2. The structure model of (a) gibbsite and (b) boehmite drawn by VESTA.⁷

Figure 1-3. Transformation sequence $Al(OH)_3 \rightarrow Al_2O_3^4$

2017年の独立行政法人 石油天然ガス・金属鉱物資源機構の報告によれば、2015年の世界のアルミナ生産量はおよそ1億tである⁹。このうち、90%以上が金属アルミニウムの精錬用に消費されており、それ以外は化成品として用いられる⁹。

1-4 ベーマイト

ベーマイトはアルミナ1水和物の1つであり、安価で環境調和性が高く、遷移アルミナの前駆体として利用される重要な材料である。1925年にドイツの地質学者 Böhm によって発見され、彼の名に因んでベーマイト (Boehmite, γ-AlOOH) と命名された⁴。ベーマイトの結晶構造は、天然品および合成品のいずれも大きな単結晶が得られていないため、粉末X線回折 (XRD) 法のみによって研究されている。1946年、Reichaertz と Yost は合成したベーマイトの結晶構造をレピドクロサイト (Lepidocrocite, FeOOH)の構造に基づいて解析し、その空間群を Amam と決定した¹⁰。1956年の Milligan と McAtee もまた、いくつかの合成されたベーマイトの回折パターンを解析し、最も可能性の高い空間群が Amam であると提案している¹¹。1979年の Christoph らは合成

されたベーマイトの粉末 XRD 法から、格子定数がそれぞれ *a* = 3.6936 (±0.0003)、*b* = 12.214 (± 0.001)、*c* = 2.8679 (±0.0003) であると導出した¹²。このベーマイトの XRD パターンおよび格子 定数を含む情報は JCPDS 21-1307 に登録されており、現在もベーマイトの結晶構造の標準データ として広く利用されている。

ベーマイトは、その結晶子径の大きさによって、結晶性の乏しいベーマイト (Poorly-crystallized boehmite)である擬ベーマイト (Pseudo-boehmite, PBM)と結晶性の高いベーマイト (Well-crystallized boehmite) に区別されて表記されることがある。PBM は結晶性の結晶中に含有 される水の量が理論値の 15 wt%よりも多い。この水の存在位置について、Baker と Pearson は PBM に含有される過剰の水が表面上に位置するアルミニウイオンに配位したモデルを提案した ¹³。一方、Tettebhorst と Hofmann は室温から 300 ℃ の温度範囲で 32 種類のベーマイトを合成し、 電子顕微鏡観察、粉末 XRD、示差熱分析、赤外分光 (IR) 法を用いて解析した結果から、PBM が結晶性の高いベーマイトと比較して多くの吸着水を含み、その吸着水の一部がベーマイトの八 面体シートの層間に規則的あるいは不規則的にインターカレートされていると結論付けている ¹⁴。また、彼らは PBM の結晶子径が小さくなるに従って、(020)面の XRD ピークの低角側にシ フトが大きくなることも見出している¹⁴。Tsukada らは結晶子の小さいベーマイトからは結晶子 の小さいγ-アルミナおよびθ-アルミナが生成することに由来して、最終的に得られるα-アルミナ への相転移温度が低下することを示し、ベーマイトの結晶子径の大きさとγ-アルミナおよびα-アルミナの相転移温度に明確な関係があることを報告した¹⁵。Iijima らは1次元の繊維状のPBM の高分解透過型電子顕微鏡 (TEM) 像および密度汎関数理論 (density functional theory, DFT)から、 繊維状の PBM の結晶成長は c 軸方向に起こることを報告している¹⁶。また、彼らは(020)面に 帰属されるベーマイトの基底間隔が理論値である 0.61 nm から 0.68 nm に広がっており、特定の 箇所ではおよそ 1 nm の基底間隔を有することを高分解 TEM 像から直接観察している¹⁶。Figure 1-4(a)、(b)に水熱合成法によって作製された平均粒子径がおよそ 100 nm であるベーマイトのナ ノ粒子の TEM 像を、Figure 1-4(c)に Figure 1-4(b)の赤線枠内のコントラストのヒストグラムを示 した¹⁷。Figure 1-4(b)より、粒子の端面に黒と白の縞模様が確認でき、ベーマイトのシート構造 の積層が直接観察されている。Figure 1-4(c)から、このベーマイトのシート構造の一層あたりの 厚みは 0.635 nm と見積もられた。この事実からも、ベーマイトのシート構造の層間にベーマイ トの結晶構造に影響しない水がインターカレートしていることが示唆されている。

Table 1-1 にベーマイトの一般的な特性を整理した。光が乱反射することに由来してベーマイ

12

トの粉末は白色に観察されるが、その結晶ひとつひとつは透明である。結晶性の良いベーマイト は、およそ 500℃の加熱温度で結晶構造が崩壊し、構造水の放出に伴う吸熱反応を示す。また、 ベーマイトの結晶構造の崩壊温度は、粒子の形状、結晶子の大きさおよび不純物の有無によって 変化する¹⁵。ベーマイトは広い pH 領域で化学的に安定であり、水や有機溶媒にほとんど不溶で ある。このような特徴を有するベーマイトは、セラミックスや触媒担体の原材料、プラスチック スへの添加剤、吸着剤などの幅広い用途に使用されている。さらに近年では、ベーマイト膜を用 いた単室型燃料電池など、エネルギー分野への応用が研究されている¹⁸。

Figure 1-4. TEM images of (a, b) boehmite nanoparticles and (c) their histogram.¹⁷

Crystal system	(-)	Orthorhombic
Space group	(-)	Amam
Lattice parameter	a (Å)	3.694
	<i>b</i> (Å)	12.21
	c (Å)	2.868
Mohs scale	(-)	3.5 ~ 4.0
Specific gravity	$(g \cdot cm^{-3})$	3.04
Refractive index	(-)	1.65
Hue	(-)	Transparence
Decomposition temperature	(°C)	<i>ca.</i> 500

Table 1-1. Crystal parameters and physical properties of boehmite.^{12,19}

1-5 ベーマイトの合成

ベーマイトの合成方法は、水熱合成法、ゾル-ゲル法、超臨界合成法などがよく知られている。 これらの合成法の特徴を下記に述べる。

1-5-1 水熱合成法

高温高圧下(100 ℃、1気圧以上)で溶液として存在している水は熱水と呼ばれ、その熱水を 利用した無機あるいは有機化合物を合成する手法は水熱合成法と呼ばれている。熱水は、温度の 上昇に伴って、その密度、粘性、表面張力、および誘電率などが連続的に低下し、常温常圧の水 では溶解されないような物質を溶解することできる。水熱合成法を利用すると、固相反応よりも 低温かつ短時間で目的とする生成物を合成できることがある。また、均一性および結晶性の高い 生成物が得られ、さらに粒子の大きさ/形状を制御することも可能である。加えて、水熱条件下 でのみ安定な化合物の合成や目的とする化合物の前駆体を調製することもできる。このように特 徴的な生成物を得られる合成方法であることから、近年、水熱合成法を利用して、水酸化物や酸 化物の合成、酸化膜の作製など、さまざまな化学分野で活発に研究が行われている²⁰。Figure 1-5 に、一般的に水熱合成法で使用される圧力容器(オートクレーブ)の写真を示した。

Figure 1-5. The photograph of autoclave.

一般的に、ベーマイトは、アルミナの 3 水和物であるギブサイト (Gibbsite) やバイヤライト (Bayerite) の懸濁液を飽和蒸気圧のもと 150°C以上の温度で反応させることによって容易に作製 できる²¹。この懸濁液にアルカリ金属化合物、アルカリ土類金属化合物あるいは遷移金属化合物 などを添加して水熱合成することによって、反応速度や粒子の大きさ/形態を制御することも可 能である²¹。Figure 1-6 に種々形状のベーマイト粒子の SEM 像および TEM 像を示した。Figure 1-6(a)から(c)の SEM 像より、菱面体、六角板、針の形状を有するミクロンサイズの粒子が、Figure 1-6(d)の TEM 像から 100 nm ほどのナノサイズの粒子が観察される。これらのいずれの粒子の XRD パターンともベーマイトの回折パターンと一致する。Figure 1-7 に Al₂O₃-H₂O の相図を示し た。373 K 付近の平衡温度では反応速度が非常に遅いことから、バイヤライトからベーマイトへ の相転移の境界温度は実験からではなく推定と熱力学的計算から定められている。また、575 K 以下の水熱条件下で生成する結晶相はベーマイトであることが報告されている。

Figure 1-6. SEM and TEM images of boehmite particles with several morphologies.

Figure 1-7. Phase Diagram of Al_2O_3 - H_2O ⁴

1-5-2 ゾル-ゲル法

無機ナノ粒子を合成する手法として、金属塩や金属アルコキシドなどの前駆体化合物を含む溶 液を加水分解あるいは重縮合反応させるゾル-ゲル法がよく知られている²²。出発原料が溶液で あることから分子レベルで混合でき、均質で純度の高いコロイド粒子のゾルあるいはゲルを得る ことができる。また、生成したコロイド粒子が分散したゾルあるいはゲルを加熱処理することに よって、ナノサイズの金属酸化物を得ることが可能である。ゾル-ゲル反応によって得られる生 成物は、固相法よりもはるかに低い焼成温度で金属酸化物へ相転移することが知られている。無 機ナノ粒子のサイズ/形状はその特性に大きな影響を与えることから、無機ナノ粒子の形態制御 が可能なゾル-ゲル法に関する研究が活発に行われている²²。

近年、多くの研究者がゾル-ゲル法を用いたベーマイトのナノ粒子の合成について研究している²³。ゾル-ゲル法で合成されるベーマイトのナノ粒子の大きさ/形状は、加水分解による沈殿物形成時の pH、温度および添加剤の存在、懸濁液中の水/固体比、熟成温度および時間などの種々条件が影響すると報告されている²³。また、それらの条件が、自己組織化によって形成する二次構造に影響を与えることも明らかとなっている²⁴。さらに、異元素 (Fe、Ga、Y) がドーピングされたナノチューブおよびナノシートの形状を有するベーマイトの報告もされている²⁵。形態を制御したベーマイトのナノ粒子は触媒担体^{23i) 24k}、吸着剤^{24c)}、エアロゲル²⁶ などのさまざまな化学分野へ展開できる。このような背景から、ベーマイトのナノ粒子の大きさ/形状の制御が可能なゾル-ゲル法を用いたベーマイトの合成が非常に注目されている。

1-5-3 超臨界合成法²⁷

水は固相、液相、気相の三態があることがよく知られている。水の温度と圧力を高くすると、 ある点で液体と気体の境界がなくなる点がある。この点が臨界点(Critical Point)であり、その 時の温度(374°C)および圧力(22.1 MPa)はそれぞれ臨界温度、臨界圧力と定義されている。こ の臨界温度と臨界圧力を超えた流体は超臨界流体(Supercritical fluid)、沸点を超え臨界点未満の 流体は亜臨界流体(Subcritical fluid)と呼ばれる。超臨界水は気体の拡散性と液体の溶解性をあわ せ持っており、温度と圧力の制御によって、その密度、溶解度、誘電率などの物性を大幅に変え ることができる。また、強い酸化力を有していることから、超臨界水は貴金属を腐食することや、 セルロースやダイオキシンなど常温常圧下で安定な物質を分解することもできる。Figure 1-8 に 温度と圧力を軸にとった、水の状態図を示した。

Figure 1-8. Phase diagram of water.

この超臨界水および亜臨界水を利用したベーマイトの合成に関する研究が報告されている。 Adschiri らは、種々濃度の硝酸アルミニウム水溶液 (0.0059、0.02、0.05 mol L⁻¹)を種々温度 (350、 400°C)、種々圧力 (35、40 MPa)の超臨界水中および亜臨界水中で反応させることによって、ひ し形状、六角板状、針状などのさまざまな形状を有するベーマイト粒子が作製できることを報告 した^{27b}。さまざまな粒子形態を有するベーマイトが得られる理由として、彼らは温度および圧 力に依存する超臨界水の物理的および化学的性質の違いがベーマイトの粒子の形態の変化に影 響すると説明している^{27b}。Fujii らは、400 °C の超臨界水中でアルキルカルボン酸を含むベーマ イトのナノ粒子の懸濁液を処理することによって、ベーマイトの粒子の形状がひし形状から六角 板状に変化することを報告した^{27c}。彼らは、合成時間が長くなるにしたがって、ベーマイト粒 子のアスペクト比([a 軸の長さ])が大きくなることも見出している^{27c}。

1-6 有機化合物と複合化されたベーマイトに関する研究

ベーマイトはそのシート構造の表面および層間に水酸基(-OH)を有している。これらの水酸基 に有機化合物あるいは金属錯体を修飾させることによって、機能性が付与されたベーマイトの複 合体に関する研究が行われている²⁸⁻³³。Inoue ら、Kim らはベーマイトの層間にアルコールやグ リコールなどの有機化合物をインターカレートした複合材料について研究した^{28,29}。また、Kim らは、この複合材料を焼成することによって、粒子の細孔径や細孔容積といった細孔構造を制御 したアルミナが得られることも報告している²⁹。Buchold らは、中空のベーマイトのナノ粒子に ローダミンを内包したベーマイトのナノ粒子の複合体を合成した³⁰。ローダミンの放出制御が容 易に行えることから、生体イメージング材料の用途へ展開できることを言及している³⁰。Auxilio らは、ベーマイトのナノ粒子である PBM の表面に L-リジンを修飾させることにより、未処理の PBM よりも酸性染料の吸着性が向上したことを報告した³¹。Delgado-Pinar らは、ランタノイド 錯体を修飾したベーマイトが無毒な生体イメージング材料として役割を果たし、従来のシリカを 母材とした材料の代替になることを見出した³²。Bai らはベンジルアルコールを配位したベーマ イトのナノ粒子と紫外線発光ダイオードと組み合わせたデバイスを作製し、白色発光ダイオード への用途を開拓した³³。このように、ベーマイトと有機化合物および金属錯体との複合材料は幅 広い分野への展開が期待され、盛んに研究が行われている。

1-7 ベーマイト / 高分子ナノコンポジットに関する研究

近年、材料の軽量化、高機能化、低価格化などのニーズの高まりから、金属および無機材料から樹脂材料への置き換えが進んでいる。この目的を達成するために、100 nm以下のナノサイズのフィラーを高分子材料に均一に分散させたナノコンポジットに注目が集まっている。わずか数%のナノサイズのフィラーを添加することで、数倍以上の機械的強度の向上や耐熱性の向上が報告されている。また、歯や骨といった生体の硬組織もコラーゲンとヒドロキシアパタイト(水酸化リン酸カルシウム)からなるバイオナノコンポジットとみなすことができる。このように、工業用途のみならず医療用途としてもナノコンポジットは有用な材料として期待されている。

ベーマイトにおいても、そのナノ粒子と高分子を複合化したナノコンポット材料に関して研究 が報告されている³⁴。Sangermano らは紫外線下で交差架橋する脂環式エポキシ樹脂にベーマイ トが分散したナノコンポジットを作製し、空間電荷の蓄積と電荷移動がベーマイトフィラーの充 填量によって大きく影響を受けることを報告した^{34a)}。Zhang らは *in site* で作製されたベーマイ ト/ポリエチレンテレフタラート(PET)からなるナノコンポジットが純粋な PET と比較して総熱 放出量が減少し、さらに発煙抑制効果が得られることを見出した^{34b)}。また、彼らは PET 中に存 在するナノベーマイトが PET の結晶化のための核形成剤として機能することも報告している^{34b)}。 Mohammadnezhad らはポリマー中にベーマイトがよく分散し、高い熱安定性を示すベーマイト/ ポリアミド-6 からなる新規のナノコンポジットを作製した^{34c)}。また、彼らは *in situ* での重合に よって作製されたベーマイト/ポリメチルメタクリレートのナノコンポジットが水溶液中の銅イ オンを吸着することを報告している^{34d)}。

1-8 本研究の概要と研究目的

有機化合物と複合化されたベーマイトは、ベーマイトの物性と有機化合物の特性を兼ね備え、 かつ新規の機能を有する複合材料として、さまざまな化学分野への応用が期待できる。このよう な背景から、新規の有機化合物と複合化されたベーマイトナノ粒子の作製とその機能を創出する ことを目的として研究を行った。

本論文は下記の5章によって構成されている。

第1章は序論であり、アルミニウムおよびその化合物の概論を述べた。特に、アルミナ水和物 の一形態であるベーマイトついて、結晶構造、特性、合成方法および用途について説明した。ま た、ベーマイトの機能化に着目して有機化合物や高分子と複合化されたベーマイトに関する研究 例を述べ、それらの特徴及び応用例を整理した。そして、新たな有機分子と複合化されたベーマ イトのナノ粒子の研究戦略について述べ、本研究の目的を示した。

第2章では有機分子とハイブリッド化されたベーマイトを作製するためのアルミニウム原料 として使用する水酸化アルミニウムゲル (AHG)の合成について述べた。NaAlO₂水溶液に CO₂(g)を吹き込むことによって作製された AHG について、特に NaAlO₂水溶液の濃度とその温 度に着目して検討し、その物性について言及した。

第3章では種々アルミニウム源と種々有機化合物のソルボサーマル反応について述べた。特に、 第2章で作製した AHG とモノエタノールアミン (MEA) とのソルボサーマル反応について詳細 に言及し、得られた青色の蛍光を示す MEA 誘導体がインターカレートしたベーマイトについて、 その特性、構造および反応機構について議論した。

第4章では第3章で作製した青色の蛍光を示す MEA 誘導体がインターカレートしたベーマイトの機能性の向上に述べた。青色の蛍光を示す MEA 誘導体がインターカレートしたベーマイトの加熱処理温度が蛍光特性に与える影響と発光の起源に関して詳述した。

第5章は総括であり、本研究の成果を述べ、今後の機能性を有するベーマイトの開発に関して 言及し、まとめとした。

1-9 参考文献

- 1. American Chemical Society, Commemorative Booklet: Commercialization of Aluminum., 2001.
- 2. Rabinovich, D. The allure of aluminium, Nature Chemistry, 2013, 5, 76.
- 3. 谷内研太郎, ホール・エルー精錬法100周年, 日本金属学会会報, 1986, 25(11), 941-949.
- 4. Wefers, K.; Misra, C. Oxides and Hydroxides of Aluminum Alcoa Technical Paper No. 19, Revised, Alcoa Laboratories, **1987**.
- 5. Habashi, F. A short history of hydrometallurgy, Hydrometallurgy, 2005, 79, 15-22.
- a) Hippi, U.; Mattila, J.; Korhonen, M.; Seppälä, J. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes. *Polymer*, 2003, 44(4), 1193-1201. b) Lindblad, E. B. Aluminium compounds for use in vaccines. *Immunol. Cell. Biol.* 2004, 82, 497-505. c) 機能性フィラーの開発 技術, シーエムシー, 東京, 1990, p229-230.
- 7. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.*, **2011**, 44, 1272-1276.
- a) ファインセラミックス事典編集委員会, ファインセラミックス事典, 技報堂出版株式会社, 東京, 1987 b) 粉体工学会; (社)日本粉体工業技術協会, 改訂増補 粉体物性図説, 日経技術図書, 東京, 1985, 231-235. c) 尾崎萃, アンモニア合成触媒の進化〈第2回〉, 未来材料, 2008, 8(5), 69-72.
- 9. 独立行政法人石油天然ガス・金属鉱物資源機構, *鉱物資源マテリアルフロー2016*, 2017, 252-269.
- 10. Reichertz, P. P.; Yost, W. J. The crystal structure of synthetic boehmite. J. Chem. Phys. 1946, 14, 495-501.
- Milligan, W. O.; McAtee, J. L. Crystal structure of γ-AlOOH and γ-ScOOH. *J.Phys. Chem.* 1956, 60, 495-501.
- Christoph, G. G.; Carbató, C. E.; Hofmann, D. A.; Tettenhorst, R. T. The Crystal Structure of Boehmite. *Clay. Clay Miner.* **1979**, 27(2), 81-86.
- Baker, B. R.; Pearson, R. M. Water Content of Pseudoboehmite: A New model for Its Structure. J. Cat. 1974, 33, 265-278.
- Tettenhorst, R.; Hofmann, D. A. Crystal Chemistry of Boehmite. *Clay. Clay Miner.* 1980, 28(5), 373-380.
- 15. Tsukada, T.; Segawa, H.; Yasumori, A.; Okada, K. Crystallinity of boehmite and its effect on the phase transition temperature of alumina. *J. Mater. Chem.* **1999**, 9, 549-553.
- Iijima, S.; Yumura, T.; Zheng, L. One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH). *PNAS*, **2016**, 113(42), 11759-11764.

- 17. 平成 26 年度ナノテクノロジープラットフォーム学生研修プログラム参加報告書, http://nanonet.mext.go.jp/gakusei/h26/DR/Report-NPF_GakuseiKensyu_H26.pdf.
- a) Nagata, A.; Nosaka, H.; Yoshimura, Y.; Kimura, T. Room temperature operation of surface-conduction single chamber fuel cell using a novel inorganic electrolyte as proton conductor. *Inst. Electr. Eng. Jpn.* 2008, 3(5), 593-595. b) 木村健志; 長田昭義. プロトン伝導性ベーマイト 電解質の燃料電池への応用, J. Vac. Soc. Jpn. (真空), 2007, 50(3), 175-177.
- 19. a) 相馬勲, フィラーデータ活用ブック, 工業調査会, 2004, 114-117. b) 株式会社テクノプラ ザ編, 材料(新素材)マニュアル, 2004, 4, 33.
- 20. a) 柳澤和道, 水熱法によるセラミックス粉末の合成, ニチアス 技術時報, 2008, 353, 1-7. b) 水熱科学ハンドブック編集委員会, 水熱科学ハンドブック, 技報堂出版, 1997.
- a) Yanagisawa, K.; Gushi, D.; Onda, A.; Kajiyoshi, K. Hydrothermal Synthesis of Boehmite Plate Crystals. J. Ceram. Soc. Jpn. 2007, 115, 894-897. b) Fujiyoshi, K.; Ishida, S.; Takeuchi, N. Morphology and Thermal Stability of Boehmite HydrothermallySynthesized in the Presence of Metal Acetates. J. Soc. Inorg. Mater. Jpn. 2001, 8, 204-212. c) Filho, R. W. N. D.; Rocha, G. A.; Montes, C. R.; Vieira-Coelho, A. C. Synthesis and Characterization of Boehmites Obtained from Gibbsite in Presence of Different Environments. Mat. Res. 2016, 19(3), 659-668.
- 22. 作花済夫監修, ゾル-ゲル法応用技術の新展開』普及版, シーエムシー出版, 東京, 2008.
- 23. a) Chen, X. Y.; Lee, S. W. pH-Dependent formation of boehmite (y-AlOOH) nanorods and nanoflakes. Chem. Phys. Lett. 2007, 438, 279-284. b) Alemi, A.; Hosseinpour, Z.; Dolatyari, M.; Bakhtiari, A. Boehmite (γ-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations. Phys. Status Solidi B 2012, 249, 1264-1270. c) Li, G.; Sun, Y.; Li, X.; Liu, Y. Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020). RSC adv. 2016, 6, 11855-11862. d) Zhou, M.; Ferreira, J. M. F.; Fonseca, A. T. Baptista, J. L. Hydrothermal ageing effects on the coprecipitated mullite-alumina composite precursor. J. Eur. Ceram. Soc. 1997, 17, 1539-1544. e) Song, X.; Yang, P.; Jia, C.; Chen, L.; Matras-postolek, K. Self-assembled synthesis of urchin-like AlOOH microspheres with large surface area for removal of pollutants. RSC Adv. 2015, 5, 33155-33162. f) Pardo, P.; Calatayud, J. M.; Alarcón, J. Improvement of boehmite nanoparticles' aqueous dispersability by controlling their size, shape and crystallinity. RSC Advances, 2014, 4, 48389-48398. g) Pardo, P.; Serrano, F. J.; Vallcorba, O.; Calatayud, J. M.; Amigó, J. M.; Alacón, J. Enhanced lateral to basal surface ratio in boehmite nanoparticles achieved by hydrothermal aging. Cryst. Growth Des. 2015, 15, 3532-3538. h). He, T.; Xiang, L.; Zhu, S. Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions. Cryst. Eng. Comm. 2009, 11, 1338-1342. i) Jiao, W.; Wu, X; Xue, T.; Li, G.; Wang, W.; Wang, Y.; Wang, Y.; Tang, Y.; He, M. Morphological Controlled Growth of Nanosized Boehmite with Enhanced Aspect Ratios in an Organic Additive-Free Cationic-Anionic Double Hydrolysis Method. Cryst. Growth. Des. 2016, 16,

5166-5173. j) Hou, H.; Xie, Y.; Yang, Q.; Guo, Q.; Tan, C. Preparation and characterization of g-AlOOH nanotubes and nanorods. *Nanotech.* **2005**, 16, 741-745. k) Liu, S.; Chen, C.; Liu, Q.; Zhuo, Y.; Yuan, D.; Dai, Z.; Bao, J. Two-dimensional porous γ -AlOOH and γ -Al₂O₃ nanosheets: hydrothermal synthesis, formation mechanism and catalytic performance. *RSC adv.* **2015**, 5, 71728-71734. i) Mohammadnezhad, G.; Akintola, O.; Plass, W.; Steiniger, F.; Westermann, M. A facile, green and efficient surfactant-free method for synthesis of aluminum nanooxides with an extraordinary high surface area. *Dalton Trans.* **2016**, 45, 6329-6333.

- 24. a) Hicks, R. W.; Pinnavaia, T. J. Nanoparticle assembly of mesoporous AlOOH (boehmite). *Chem. Mater.* 2003, 15, 78-82. b) Wu, X.; Zhang, B.; Hu, Z. Microwave hydrothermal synthesis of boehmite hollow microspheres. *Mater. Lett.* 2012, 73, 169-171. c) Song, X.; Yang, P.; Jia, C.; Chen, L.; Matras-Postolek, K. Self-assembled synthesis of urchin-like AlOOH microspheres with large surface area for removal pollutants. *RSC adv.* 2015, 5, 33155-33162. d) Wen, J. R.; Liu, M. H.; Mou, C. Y. Synthesis of curtain-like crumpled boehmite and γ-alumina nanosheets. *Cryst. Eng. Comm.* 2015, 17, 1959-1967.
- a) Zhao, Y.; Frost, R. L.; Martens, W. N. Gallium-Doped Boehmite Nanotuves and Nanoribbons. A TEM, EDX, XRD, BET, and TG study. *J. Phys. Chem. C* 2007, 111, 5313-5324. b) Zhao, Y.; Frost, R. L.; Martens, W. N.; Zhu, H. Y. XRD, TEM and Thermal Analysis of Fe Doped Boehmite Nanofibres and Nanosheets. *J Therm. Anal. Calorim.* 2007, 90, 755-760. c) Zhao, Y.; Frost, R. L. Synthesis and surface characterization of yttrium doped boehmite nanofibers. *J. Coll. Interf. Sci.* 2008, 326, 289-299. d) Frost, R. L.; Zhao, Y.; Waclawik, E. R.; Vagvolgyi, V.; Kristof, J.; Horvath, E.; XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. *J. therm. Anal. Calorim.* 2008, 94(1), 219-226.
- Hayase, G.; Nonomura, K.; Hasegawa, G.; Kanamori, K.; Nakanishi, K. Ultralow-Density, Transparent, Superamphiphobic Boehmite Nanofiber Aerogels and Their Alumina Derivatives. *Chem. Mater.* 2015, 27(1), 3-5.
- a) 水熱科学ハンドブック編集委員会, 水熱科学ハンドブック, 技報堂出版, 1997, 388-399.
 b) Adschiri, T.; Kanazawa, M.; Arai, K. Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Sub-critical and Supercritical Water. J. Am. Ceram. Soc. 1992, 75(9), 2615-2618. c) Fujii, T.; Kawasaki, S.; Suzuki, A.; Adschiri, T.; High-speed Morphology Control of Boehmite Nanoparticles by Supercritical Hydrothermal Treatment with Carboxylic Acids. Cryst. Groswth Des. 2016, 16, 1996-2001. d) 青木宣明, 相田努, 北條大介, 高見誠一, 阿尻雅文, 超臨界水熱合成 によるハイブリッドナノ粒子の創製, 表面科学, 2014, 35(9), 498-503.
- a) Inoue, M.; Kondo, Y.; Inui, T. The reaction of crystalline aluminum hydroxide in ethylene glycol. *Chem. Lett.* **1986**, 1421-1424. b) Inoue, M.; Kondo, Y.; Inui, T. An Ethylene Glycol Derivative of Boehmite. *Inorg. Chem.* **1988**, 27, 215-221. c) Inoue, M.; kominami, H.; Inui, T. Thermal reaction of aluminum alkoxide in glycols. *J. Am. Ceram. Soc.* **1990**, 73(4), 1100-1102. d) Inoue, M.; Tanino, H.;

Kondo, Y.; Inui, T. Formation of Organic Derivatives of Boehmite with Glycols and Aminoalcohols. *Clay. Clay Miner.* **1991**, 39, 151-157. e) Inoue, M.; Kominami, H.; Inui, T. Reaction of Aluminium Alkoxides with Various Glycol and the Layer Structure of Their Products. *J. Chem. Soc. Dalton Trans.* **1991**, 3331-3336. f) Inoue, M.; Kominami, H.; Kondo, Y.; Inui, T. Organic Derivatives of Layered Inorganics Having the Second Stage Structure. *Chem. Mater.* **1997**, 9, 1614-1619. g) Inoue, M.; Kimura, M.; Inui, T. Alkoxyalumoxanes. *Chem. Mater.* **2000**, 12, 55-61.

- a) Kim, S. W.; Iwamoto, S.; Inoue, M. Pore structure of aluminas derived from the alkyl derivatives of boehmite. *J. Porous Mater.* 2009, 16, 605-612. b) Kim, S. W.; Iwamoto, S.; Inoue, M. Novel synthesis method of alumina having a large pore-volume. *Top. Catal.* 2010, 53, 535-542. c) Kim, S. W.; Iwamoto, S.; Inoue, M. Surface and pore structure of alumina derived from xerogel/aerogel. *J. Porous Mater.* 2010, 17, 377-385.
- Buchold, D. H. M.; Feldmann, C. Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality. *Nano Lett.* 2007, 11, 3489-3492.
- Auxilio, A. R.; Andrews, P. C.; Junk, P. C.; Spiccia, L.; Neumann, D.; Raverty, W.; Vanderhoek, N.; Pringle, J. M. Functionalised pseudo-boehmite nanoparticles as an excellent adsorbent material for anionic dyes. *J. Mater. Chem.* 2008, 18, 2466-2474.
- a) Delgado-Pinar, E.; Albelda, M.T.; Frías, J. C.; Barreiro, O.; Tejera, E.; Kubíček, V.; Jiménez-Borreguero, L. J.; Sánchez-Madrid, F.; Tóth, E.; Alarcón, J.; García-España, E. l.; Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite. *Dalton Trans.* 2011, 40, 6451-6457. b) Delgado-Pinar, E.; Frías, J. C.; Jiménez-Borreguero, L. J.; Albelda, M. T.; Alarcón, J.; García-España, E. One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes. *Chem. Commun.* 2007, 32, 3392-3394.
- Bai, X.; Caputo, G.; Hao, Z.; Freitas, V. T.; Zhang, J.; Longo, R. L.; Malta, O. L.; Ferreira, R. A. S.; Pinna, N. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. *Nat. Commun.* 2014, DOI: 10.1038/ncomms6702.
- 34. a) Sangermano, M.; Deorsola, F.; Fabiani, D.; Montanari, G.; Rizza, G. Epoxy-Boehmite Nanocomposites as New Insulating Materials. *J. Appl. Polym. Sci.* 2009, 114, 2541-2546. b) Zhang, J.; Ji, Q.; Zhang, P.; Kong, Q.; Xia, Y. Preparation and Characterization of Poly(ethylene Terephthalate)/Boehmite Nanocomposites. *Polym. Polym. Compos.* 2011, 19(6), 469-476. c) Mohammadnezhad G, Dinari M, Nabiyan A, High surface Area Nano-Boehmite as Effective Nano-Filler for Preparation of Boehmite-Polyamide-6 Nanocomposites. *Adv. Polym. Technol.* 2016, 21783. d) Mohammadnezhad G, Dinari M, Soltani R, The preparation of modified boehmite/PMMA nanocomposites by in situ polymerization and the assessment of their capability for Cu²⁺ ion removal. *New J. Chem.* 2016, 40, 3612-3621.

第2章

水酸化アルミニウムゲルの作製と評価

2.1 序論

ナノマテリアルとは、「少なくとも一次元の大きさが 100 nm よりも小さく製造された材料」 と定義された材料である¹⁻³。ナノマテリアルであるナノ粒子は、しばしばバルク状とは異なる 機能を発現することから、近年、さまざまな分野で活発に研究が行われている¹。アルミナ水和 物のナノ粒子である AHG は高い反応性を有しており、工業分野ではアルミナやゼオライトの出 発原料⁴として、医薬分野では制酸剤として使用されている⁵。AHG はアルミニウム塩およびア ルミン酸塩の水溶液の中和反応やアルミニウムアルコキシドの加水分解によって作製できる ⁶¹³。 中和反応および加水分解における水溶液中のアルミニウムイオンの濃度、反応温度、反応時間、 およびテンプレート剤の有無などの反応条件が、生成される AHG の特性に影響することが報告 されている⁶⁻¹³。また、水媒体中において、AHG は 70℃より低い温度で、AHG から PBM を経 て結晶性の水酸化アルミニウムへ相転移することが知られている^{9,13-16}。Prodromouらはアルミニ ウム塩 (塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム)と塩基 (水酸化ナトリウム、 水酸化カリウム、アンモニア)の反応によって得られる水酸化アルミニウムに関して、その形成 時におけるイオンの影響を系統的に研究した。彼らは合成時に使用したアルミニウム塩のアニ オンと塩基のカチオンは生成するゲルの形成に影響しなかったが、唯一水酸化カリウムおよびア ンモニアが存在する SO4²イオンと混在する場合には非晶質のゲルを生成させることを見出した ⁶。Park らは硫酸アルミニウムと硫酸ナトリウムの混合水溶液に炭酸ナトリウム水溶液を滴下し て加水分解させて AHG を調製し、種々pH 領域において 90 ℃ で熟成することによって、大きな 表面積 (189~433 m²g-¹)と細孔容積 (0.32~1.27 cm³g-¹)を有する多孔性水酸化アルミニウムが形 成されることについて報告した⁷。Chang らは NaAlO₂水溶液 を 12 および 60 ℃ のエタノールに 滴下して懸濁させ、その懸濁液を1時間撹拌することによって、多孔性の AHG およびハリネズ ミ状の PBM の中空粒子を作製した⁸。

アルミニウム塩 (塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム) から作製した

25

AHG にはアルミニウム塩に由来するアニオンが AHG および PBM 中に残留している。アルミニ ウムアルコキシドはアニオンの残留はないが、原材料として高価である。このような背景から、 安価な NaAlO₂ と CO₂(g)の中和反応を用いた合成手法が提案されている^{17,18}。しかしながら、彼 らの報告は主として PBM の合成条件についての言及であり、AHG の合成条件は殆ど明確にさ れていない。そこで、本研究では、NaAlO₂水溶液の濃度および温度が NaAlO₂水溶液に(CO₂(g)) を吹き込むことによって作製される AHG の粒子の形態およびその結晶相に与える影響について 検討、評価した。

2-2 実験

2-2-1 原料

本章では、Na₂O/Al₂O₃比が 1.5 である一級試薬の NaAlO₂(関東化学製) および CO₂(g) (純度: 99.95%以上、琵琶商事製)を精製せずに使用した。

2-2-2 試料作製

500 mL の蒸留水に種々量の NaAlO₂(10、40、80 g) 溶解させて、透明な NaAlO₂水溶液を得た。 これらの NaAlO₂水溶液の濃度はそれぞれ 0.49、0.98、1.95 M である。この NaAlO₂水溶液の反 応の開始温度をおよそ 5、25 および 45 ℃ に調整した。続いて、撹拌条件のもと NaAlO₂水溶液 に pH が 9 以下になるまで 1 L min⁻¹ の吹き込み速度で CO₂(g) を吹き込むことにより、白色の沈 殿物を得た。この白色の沈殿物をただちにろ過分離し、蒸留水および工業用アルコール(今津薬 品工業社製、クリンエース・ハイ)を使用して洗浄した。ろ取した生成物を 40 ℃ に設定した定 温乾燥機内で一晩乾燥させることにより、白色の粉末状の試料を得た。得られた試料の名称 を"NaAlO₂"+"NaAlO₂の重量"+"反応温度"と定義した。例えば、NaAlO₂が 10 g、反応の開始温度 が 25 ℃ の条件で合成された試料は、NaAlO₂(10-25)と記載される。各実験条件の要約を Table 2-1 に示した。

	Sample name	Amout of starting materials		Reaction condition		F ' 1 II
number		NaAlO ₂ (g)	Distilled water (mL)	Temp. (°C)	Time (min)	Final pH (-)
1	NaAlO ₂ (10-25)	10	500	25	10	7.3
2	NaAlO ₂ (40-25)	40	500	25	43	7.8
3	NaAlO ₂ (80-25)	80	500	25	105	8.6
4	NaAlO ₂ (40-5)	40	500	5	49	7.7
5	NaAlO ₂ (40-45)	40	500	45	45	7.8

Table 2-1. Experimental conditions.

2-2-3 分析・解析

この章の各分析で用いた測定装置及び解析方法は以下の通りである。

2-2-3-1 XRD

Burker 製の XRD 装置 (D2-Phaser) を使用して、X 線光源には管電圧30 kV、管電流 10 mA で 操作した Cu-Kαを用い、スキャン範囲5–70°、スキャン速度0.1 s 、ステップ角0.1°の測定条件 で粉末状の試料の XRD パターンを測定した。得られた XRD パターンから、式1 に示す Scherrer の式を使用して結晶子径を算出した。

$$\mathbf{D} = K\lambda / (\beta \cos\theta) \tag{i}$$

ここで、D は結晶子の大きさ、K は形状係数、λは X 線の波長 (0.15418 nm)、βは半値全幅、θは ブラッグ角である。本研究では、形状係数 K に 1.84 を適用した。

2-2-3-2 TG-DTA

Bruker AXS 社製の熱重量-示差熱分析 (TG-DTA) 装置 (TG-DTA2000SA) を使用して、60 mL min⁻¹の吹き込み速度で空気を導入しながら、10 °C min⁻¹の昇温速度で 1000 °C まで測定し、粉末 状の試料の熱挙動を記録した。標準物質として、α-アルミナを使用した。

2-2-3-3 窒素ガス吸脱着

日本ベル社製の比表面積/細孔分布測定装置(BELSORP mini II)を使用して窒素ガス吸脱着測 定を行い、得られた吸脱着等温線から Brunauer-Emmett-Teller (BET) 法を使用して BET 表面積を、 Barrett-Joyner-Halenda (BJH) 法を使用して細孔分布と細孔径をそれぞれ導出した。なお、窒素ガ ス吸脱着測定前に真空条件下で 40℃、16 時間前処理した試料を測定検体とした。

2-2-3-4 微細構造観察

試料の微細構造を日本電子製の走査型電子顕微鏡 (SEM) (JSM-7500FA) を使用して1 keV の 加速電圧で観察した.

2-3 結果

2-3-1 中和曲線

実験手順4のNaAlO₂(40-5)を代表として、NaAlO₂水溶液にCO₂(g)を吹き込んだときのpH および液温の経時変化曲線をFigure 2-2に示した。pH 曲線は大きく4つの領域に分類すること ができる(それぞれ、領域1、領域2、領域3、および領域4と記載する)。領域1における反応 の開始時点において、NaAlO₂水溶液のpH 値は13.5であった。アルミニウムイオンは強塩基性 条件下では四配位のテトラヒドロキソアルミン酸イオンとして存在することから、NaAlO₂は水 溶液中において式(ii)に示すように溶解していると考えられる。

 $NaAlO_2 + 2H_2O \leftrightarrow Na^+ + [Al(OH)_4]^-$ (ii)

この水溶液に CO₂(g) を吹き込むと、時間とともに pH 値が 13.5 から 13.2 に緩やかに減少した (領域 1)。これは、CO₂(g) が式(iii)~(v)に示すような反応して、水溶液中に CO₂(aq) として溶解 したためと考えらえる¹⁸。

$CO_2(g) \leftrightarrow CO_2(aq)$	(iii)
$CO_2(aq) + OH^{-}(aq) \leftrightarrow HCO_3^{-}(aq)$	(iv)
$HCO_3^-(aq) + OH^-(aq) \leftrightarrow CO_3^{2-}(aq) + H_2O$	(v)

領域2において、終了点のpH値は開始点と比べておよそ1小さくなり、さらにNaAlO₂水溶 液が透明から不透明に変化することが確認された。これは、式(iv)に示すように[Al(OH)₄]から不 溶性であるナノサイズの水酸化アルミニウム(Al(OH)₃)が析出したためと推測される。

 $[Al(OH)_4]^- \rightarrow Al(OH)_3 + OH^-$

(vi)

領域3において、CO₂(g)の吹き込み時間の増加に伴って緩やかに pH 値が減少し、NaAlO₂水 溶液は白濁した。これは、反応式(vi)に示す Al(OH)₃の析出反応が進行し、析出したナノサイズ の Al(OH)₃が凝集したためと考えられる。

領域4において、開始点のNaAlO₂水溶液のpH値はおよそ 11 であった。Figure 2-3 に pH値 に対するAl(OH)₃の溶解度曲線を示す¹⁶。pH値が11より小さくなるに従ってAl(OH)₃の溶解度 が減少し、pH4から9の範囲では殆ど溶解しないことがわかる。本試験の反応の終点は pH (7.3 ~8.6) であることから、水溶液中のNaAlO₂はほとんどがAl(OH)₃として析出したと考えられる。

Figure 2-2. pH change of NaAlO₂(aq) after introducing CO₂ gas.

Figure 2-3. Solubility curve of $Al(OH)_3$ as a function of pH value.¹³

2-3-2 XRD

開始温度を25℃としてNaAIO2の添加量を変えた条件(実験条件1から3)から調製された粉 末状の試料である NaAlO₂(10-25)、NaAlO₂(40-25)、および NaAlO₂(80-25)の XRD パターンを Figure 2-4 に示した。NaAlO₂(10-25) および NaAlO₂(40-25) においては結晶性のピークが検出されず、 非晶質であることがわかった。一方で、NaAlO₂(80-25)は20 = 13.5、28.0、38.4、48.7、および 65.0 に PBM の結晶構造に由来する回折ピークが確認された。Figure 2-5 に、NaAlO₂の添加量を 40gとして開始温度を変化させた条件 (実験条件4および5) から調製された NaAlO₂(40-5) およ び NaAlO₂(40-45)の XRD パターンを示した。比較として、NaAlO₂(40-25)を併せて示した。 NaAlO₂(40-5)の XRD パターンは非晶質であることを示していた。一方で、NaAlO₂(40-45)は PBM に帰属される回折パターンが確認された。70 ℃ 以下において、AHG の懸濁液は自発的に PBM を通じてバイヤライトに相転移する¹⁵。これら結晶相の転移速度は、懸濁液中のアルミニ ウムイオンおよび塩基の濃度、pH 値や OH/Al の比率、無機および有機化合物の有無、反応時 および熟成時の温度および時間、撹拌の有無などの条件の違いによって変化することが知られて いる¹⁵。Violante らは、0.5 M の水酸化ナトリウム水溶液に 0.001 M のクエン酸を含む 0.1 M の塩 化アルミニウムを滴下することによって AHG が生成し、熟成時間が長くなるに従って PBM へ 相転移することを報告した⁹。Satoらは、25 ℃および 50 ℃ における種々濃度の硫酸アルミニウ ム水溶液(0.1、0.5、1 M) と水酸化ナトリウム水溶液(3 M) の中和反応によって析出する生成物 の結晶相について系統的に研究し、pH5から9において非晶質のAHGが生成することを報告し た¹⁹。 今回の XRD パターンと彼らの報告から、NaAlO₂(80-25)は、他の条件と比較してアルミニ ウムイオンや塩基の濃度も高いために PBM の核生成速度が速くなり、AHG から PBM への相転 移が促進されたと推定される。また、NaAlO₂(40-45)は、NaAlO₂水溶液の反応温度が高いために PBM の核生成速度が速くなり、AHG から PBM への反応が促進されたと考えられる。一方で、 NaAlO₂(10-25)、NaAlO₂(40-25)、および NaAlO₂(40-5)は、PBM が生成した NaAlO₂(80-25)および NaAlO₂(40-45)と比較して NaAlO₂水溶液中のアルミニウムイオンや濃度や反応温度が低いため に、PBM への反応が抑制されて AHG として得られたと推測される。

31

Figure 2-4. XRD patterns of (a) NaAlO₂(10-25), (b) NaAlO₂(40-25), and (c) NaAlO₂(80-25).

Figure 2-5. XRD patterns of (a) NaAlO₂(40-5), (b) NaAlO₂(40-25), and (c) NaAlO₂(40-45).

2-3-3 TG-DTA

各実験条件で得られた生成物の TG-DTA の測定結果を Figure 2-6 に示した。Figure 2-6 より、 NaAlO₂(10-25)、NaAlO₂(40-25)および NaAlO₂(40-5) はよく似た熱挙動を示し、30~75°C の範囲 でおよそ 5 wt%の吸熱反応に伴う重量減少と 75~400 °C の範囲でおよそ 36 wt%の吸熱反応を伴 う重量減少がそれぞれ確認された。最初の重量減少は試料表面に物理吸着した水に由来し、2 番 目の重量減少は物理吸着した水および AHG の結晶構造の崩壊に伴い放出される水に由来すると 推定される。一方、NaAlO₂(80-25)、NaAlO₂(40-45) は測定開始と同時に吸熱反応を伴う重量減少 が起こり、30~75 °C の範囲で 8.9~10.4 wt%の物理吸着水の脱離に伴う重量減少が検出された。 また、75~400 °C の範囲において、25~27 wt%のベーマイトの結晶構造の崩壊に由来する重量減 少が観測された。結晶性の高いベーマイトはおよそ 500 °C で結晶構造が崩壊し、理論的に 15 wt% の重量減少が生じる。Tsukada らはベーマイトの結晶子径が小さくなるに従い、その結晶構造の 崩壊温度が低下し、その重量減少値が大きくなることを報告している²⁰。Tettenhorst らは結晶子 径の小さいベーマイトはその層間に結晶構造に由来しない水がインターカレートされており、層 間距離が広がることを報告している²¹。NaAlO₂(80-25) および NaAlO₂(40-25) の(020) 面の回折

Figure 2-6. TG and DTA curves of (a) NaAlO₂(10-25), (b) NaAlO₂(40-25), and (c) NaAlO₂(80-25).

ピークは理論値 (20 = 14.5°)よりも低角側 (20 = 13.5°) に検出された。この回折ピークから Scherrer の式を用いて結晶子径を算出したところ、その値はおよそ4 nm であった。この結晶子 径は十分に小さいと判断される。それゆえ、NaAlO₂(80-25) および NaAlO₂(40-25)はベーマイト の結晶構造が崩壊する温度が低く、重量減少率が理論値よりも大きくなったと考えられる。 NaAlO₂(10-25)、NaAlO₂(40-25)、および NaAlO₂(40-5) よりも NaAlO₂(80-25) および NaAlO₂(40-25) のほうが 30~75 °C における重量減少率が大きい理由は、後述する BET 表面積が大きいことに 由来して、物理吸着した水の量が多いためと推測される。

2-3-3 窒素ガス吸脱着

NaAlO₂(40-5) および NaAlO₂(80-25) を代表例として、AHG と PBM の窒素ガス吸脱着等温線 を Figure 2-7 および Figure 2-8 にそれぞれ示した。また、吸脱着等温線から BJH 法によって導出 された細孔径分布を Figure 2-7 および Figure 2-8 の挿入図にそれぞれ示した。Figure 2-7 に示す AHG である NaAlO₂(40-5) の吸脱着等温線はメソ孔が存在しない、あるいはマクロ孔が存在する 可能性を示唆する II 型に分類された²²。Figure 2-7 の挿入図の細孔径分布から、メソ孔を殆ど有 していないことが確認された。一方で、Figure 2-8 に示された PBM である NaAlO₂(80-25)は II 型 に分類される吸脱着等温線および H3 型として知られるヒステリシスパターンを示した。H3 型 のヒステリスパターンは平板状の粒子の凝集体などに観測される。このことは後述する SEM 画 像に観察された粒子の形態とよく一致していた。全てのサンプルにおいて、吸脱着等温線から BET 表面積、細孔容積および細孔径を算出した。また、得られた粒子を球であると仮定して、 式(vii)を用いて BET 表面積から粒子の直径を推定した。

 $D = 6 / (\rho S)$

(vii)

ここで、Sは表面積、ρは密度、Dは粒子の直径である。それらの結果を Table 2-2 に要約した。

Figure 2-7. Adsoption isotherm of NaAlO₂(40-5). Condition: -77 K. *P*, P_0 and P/P_0 are pressure, saturated vapor pressure and relative pressure, respectively. Inset: pore diameter distribution.

Figure 2-8. Adsorption isotherm of NaAlO₂(80-25). Condition: -77 K. *P*, P_0 and P/P_0 are pressure, saturated vapor pressure and relative pressure, respectively. Inset: pore diameter distribution.

	Surface area	Pore diameter	Pore volume	Calc. particle size
Sample name	(m^2g^{-1})	(nm)	$(cm^{3}g^{-1})$	(nm)
NaAlO ₂ (10-25)	20	1.6	0.10	126
NaAlO ₂ (40-25)	62	2.7	0.34	40
NaAlO ₂ (80-25)	293	1.6	0.52	7
NaAlO ₂ (40-5)	45	1.6	0.25	55
NaAlO ₂ (40-45)	267	1.6	0.45	8

 Table 2-2. Summary of surface area, pore diameter, pore volume, and particle size.

2-3-4 微細構造観察

実験条件 1~5 で得られた試料の SEM 像を Figure 2-9 に示した。AHG である NaAlO₂(10-25)、 NaAlO₂(40-25)、および NaAlO₂(40-5) は丸みを帯びた不定形の粒子が観察された。NaAlO₂(10-25) は、NaAlO₂(40-25)および NaAlO₂(40-5) と比較して、一次粒子が大きいことがわかる。Table 2-2 に 示した BET 表面積から算出される粒子の直径と SEM 像から観察される一次粒子径はおおよそ一 致した。全ての実験条件において CO₂(g) の吹き込み速度は一定である。従って、NaAlO₂水溶液 の濃度の低い NaAlO₂(10-25) は、CO₂(g) の吹き込みに伴う pH 値の減少速度が速いため、[Al(OH)₄] から Al(OH)₃ への変化とそれに伴う析出速度が速いと考えられる。このことから、反応速度と得 られる AHG の直径に関係があり、反応速度が速いと核生成速度よりも粒子の成長速度が速くな るために、AHG 粒子が大きくなると説明できる。一方で、AHG が生成する条件において、NaAlO₂ 水溶液の温度の違いは AHG の粒子径の大きさに影響を与えなかった。NaAlO₂(80-25) および NaAlO₂(40-25) はハリネズミのように平板状のベーマイトのナノ粒子が凝集した二次粒子を形 成している様子が観察された。このベーマイトの平板状のナノ粒子の二次凝集体は窒素ガス吸脱 着等温線の結果を支持する。また、このベーマイトのア板状の形態は Cheng らの報告とよく 似ていた⁸。

Figure 2-9a. SEM images of (a, b) NaAlO₂(10-25), (c, d) NaAlO₂(40-25), and (e, f) NaAlO₂(80-25) respectively.

Figure 2-9b. SEM images of (g, h) NaAlO₂(40-5) and (i, j) NaAlO₂(40-45), respectively.

2-4 結論

NaAlO₂とCO₂(g)を出発原料に用い、NaAlO₂水溶液の濃度および温度に着目して、生成する粒 子の結晶相と粒子形態の制御について調査した。NaAlO₂水溶液の濃度が 0.98 M より低い、かつ 反応温度が 25 ℃ より低いときは AHG が得られた。これらの条件下では、PBM の核生成が抑制 されたために、AHG として得られたと考えられる。一定の CO₂(g)の吹き込み速度において、 NaAlO₂水溶液の濃度は得られる AHG の粒子径に影響するが、AHG の粒子径と NaAlO₂水溶液 の開始温度の間には明確な関係が確認されなかった。NaAlO₂水溶液の濃度が 1.95 M かつ NaAlO₂ 水溶液の反応の開始温度が 25 ℃ のとき、あるいは NaAlO₂の濃度が 0.98 M かつ NaAlO₂水溶液 の反応の開始温度が 45 ℃ のときは、PBM のナノ粒子がハリネズミのように凝集した二次粒子 が得られた。これらの条件下では、PBM の核生成速度および結晶成長速度が速いために、AHG ではなく PBM として得られたと考えられる。得られた AHG はセラミックス材料の原材料や制 酸剤として、PBM は遷移アルミナの前駆体や吸着剤としての応用が期待される。

2-5 参考文献

- 1. The Royal Society & The Royal Academy of Engineering. *Nanoscience and Nanotechnologies: oprtunities and uncertainties.* UK. **2004**, 7-13.
- 日本化粧品工業連合会 Japan Cosmetic Industry Association 公式ホームページ (2016年11月 18日), http://www.jcia.org/n/biz/info/nano/, (最終検索日 2017年5月29日).
- ナノマテリアルの定義に関する欧州委員会勧告(仮訳), https://staff.aist.go.jp/kishimoto-atsuo/201110_EU_definition_J.pdf, (最終検索日 2017 年 5 月 29 日).
- a) Singh, V. K.; Sinha, R. K. Preparation of alumina by combined precipitation and gelation process. *Mater. Lett.* 1994, 18, 201-206. b) Yan, X. W.; Han, X. W.; Huang, W. Y.; Zhu, J. H.; Min, K. Attempts on generating basic sites on mesoporous materials. *Stud. Surf. Sci. Catal.* 2002, 142, 1481-1488.
- 5. Lindblad, E. B. Aluminium compounds for use in vaccines. Immunol. Cell. Biol. 2004, 82, 497-505
- Prodromou, K. P.; Pavlatou-Ve, A. S. Formation of aluminum hydroxides as influenced by aluminum salts and bases. *Clay. Clay Miner.* 1995, 43(1) 111-115
- 7. Park, B. Y.; Lee, Y. S.; Koo, K. K. Preparation of highly porous aluminum hydroxide gels by hydrolysis of an aluminum sulfate and mineralizer. *J. Ceram. Processing Res.* **2010**, 11(1), 64-68.
- Cheng, T. S.; Na, J. H.; Jung, C. Y.; Koo, S. M. An easy one-pot synthesis of structurally controlled aluminum hydroxide particles from an aqueous sodium aluminate solution. *J. Ceram. Processing Res.* 2009, 10(6), 832-839.
- 9. Violante, A.; Huang, P. M. Formation mechanism of aluminum hydroxide polymorphs. *Clay. Clay Miner.* **1993**, 41(5), 590-597.
- Amini, M. M.; Mirzaee, M. Effect of Solution Chemistry on preparation of Boehmite by Hydrothermal Assisted Sol-Gel Processing of Aluminum Alkoxide. J. Sol-Gel Sci. Technol, 2005, 36, 19-23.
- Pierre, A. C.; Uhlmann, D. R. Amorphous Aluminum Hydroxide Gels. J. Non-Cryst. Solids. 1986, 82, 271-276.
- Zamboulis, D.; Misaelides, P.; Bakoyannakis, D.; Godelitsas, A.; Barbayannis, N.; Stalides, G.; Anousis, I. Perrhenate Ion Uptake by Aluminum Hyrdoxide Gels. *J. radioanal. nucl. chem.* 1996, 208(2), 507-517.
- Hicks, R. W.; Thomas J. Pinnavaia, T. J. Nanoparticle Assembly of Mesoporous AlOOH (Boehmite). *Chem. Mater.* 2003, 15 (1), 78–82.
- Antimes, M. L. P.; Santos, J. S.; Santos, P. S. Characterization of the aluminum hydroxide microcrystals formed in some alcohol-water solutions. *Mater. Chem. Phys.* 2002, 76, 243-249.
- 15. a) Bye, G. C.; Robinson, J. G. Crystallization Processes in Aluminum Hydroxide Gel.

Kolloid-Z.u.Z.Polymere, **1964**, 198, 53-54. b) Bye, G. C.; Robinson, J. G.; Sing, K. S. W. The Characterization of Aluminum Hydroxide Gels by Nitrogen Adsorption. J. Appl. Chem. **1967**, 17, 138-142.

- Wefers, K.; Misra, C. Oxides and Hydroxides of Aluminum Alcoa Technical Paper No. 19, Revised, Alcoa Laboratories, 1987, 3.
- Wang, Y.; Xu, D.; Sun, H. Luo, G. Preparation of pseudoboehmite with a large pore volume and large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO₂ and a NaAlO₂ solution. *Ind. Eng. Chem. Res.* **2011**, 50, 3889-3894.
- Asadi, A. A.; Bazmi, M.; Alavi, S. M.; Royaee, S.J. Neutralization of NaAlO₂ solution with CO₂ for synthesis of γ-Al₂O₃ nanoparticles, part 1: effects of synthesis parameters in semi-batch membrane dispersion microstructured reactor. *RSC Adv.* **2016**, 6, 109681.
- Sato, T.; Sato, K.; Preparation of Gelatinous Aluminium Hydroxide from Aqueous Solutions of Aluminium Salts Containing Sulphate Group with Alkali. J. Ceram. Soc. Jpn. 1996, 104(5), 377-382.
- 20. Tsukada, T.; Segawa, H.; Yasumori, A.; Okada, K. Crystallinity of boehmite and its effect on the phase transition temperature of alumina. *J. Mater. Chem.* **1999**, 9, 549-553.
- 21. Tettenhorst, R.; Hofmann, D. A. Crystal Chemistry of Boehmite. *Clay. Clay Miner.* **1980**, 28(5), 373-380.
- 22. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. *Pure Appl. Chem.* **1985**, 57, 603-619.

第3章

ソルボサーマル反応を用いた ベーマイトナノ粒子の作製と評価

3-1 序論

有機-無機ハイブリッド材料 (Organic-inorganic hybrid materials) は無機成分と有機成分が分子 あるいはナノオーダーで複合化された材料である¹。無機成分の耐熱性、堅牢性、耐候性といっ た特性と、有機成分の柔軟性、加工性、多様性といった特性を兼ね備え、さらに複合化されるこ とによってそれぞれの素材とは異なる新規の機能が創出されることが報告されている¹。Figure 3-1 に無機-有機ハイブリッド材料の典型的な構造モデルを示した。それぞれ、層状複水酸化物な どに代表される無機層状化合物の層間に有機化合物がインターカレートされた構造モデル (Figure 3-1(a))、メソ孔を有する多孔質シリカに代表される無機母材の孔に有機化合物が挿入され た構造モデル (Figure 3-1(b))、無機成分の殻の内部に有機化合物が封入されたコア-シェル粒子の 構造モデル (Figure 3-1(c))である。このような有機-無機ハイブリッド材料は吸着剤²、光触媒³、 蛍光体⁴、ドラッグデリバリーシステム⁵、生体イメージング材料⁶として応用できることから、 さまざまな分野で活発に研究が行われている。

本章では、新規の特性を有するベーマイトと有機化合物のハイブリッド材料を創成することを 目的に検討を行った。出発のアルミニウム源には第2章で作製した AHG を、有機化合物には水 酸基 (-OH) とアミノ基 (-NH₂) を有する MEA を使用した。以前に、Inoue らは出発原料に水酸

Figure 3-1 Schematic views of (a) lamellar structure, (b) mesoporous, and (c) core-shell particle.

化アルミニウムであるギブサイト (gibbsite) およびアルミニウムイソプロポキシド (AIP) と MEA 使用し、250-300℃ でソルボサーマル反応させることによって、MEA がインターカレート したベーマイトが得られることを報告している^{9b,9c)}。しかしながら、ギブサイトを使用したと きは生成した MEA がインターカレートしたベーマイト中に未反応の出発原料が含まれていた^{9b)}。 また、AIP を使用したときは均一な溶液が得られるという報告に留まっており、その生成物の詳 細について研究されていない^{9c)}。本研究では、より温和な条件で出発原料や副生成物を含まな い MEA をインターカレートしたベーマイトの作製について系統的に試験した。また、得られた 生成物の各化学分析の結果から、生成物の特性、構造モデルおよび反応機構を考察した。

3-2 実験

3-2-1 原料

本章では、アルミニウム源として、第2章で作製した AHG、市販のギブサイト型の水酸化ア ルミニウム (ATH) (日本軽金属製、BF013)、市販の PBM (富田製薬製、AD-220T)、一級試薬の AIP (関東化学製)を精製せずにそのまま使用した。また、溶媒として特級試薬の MEA (関東化学 製)、特級試薬のエチレングリコール (EG) (関東化学製)、特級試薬のプロパノールアミン (PA) (東京化成工業製)を精製せずにそのまま使用した。

3-2-2 試料作製

典型的な作製条件の詳細は次のとおりである。

ポリテトラフルオロエチレン製のサンプル容器に AHG (1.0 g) と MEA (20 g) を入れ、撹拌す ることによって懸濁させた。この懸濁液をサンプル容器ごと耐圧容器に格納し、密栓した。この 耐圧容器内の懸濁液をホットマグネチックスターラーで撹拌しながら、種々温度 (100, 120, 150, 200 °C) で所定時間 (2, 3, 4, 5, 6, 13 時間) ソルボサーマル反応させた。所定時間の反応後、耐圧 容器を急冷することによって反応を直ちに停止させた。ソルボサーマル反応後に得られた反応物 から粉末状の生成物を回収するために、反応物に 20 mL の蒸留水を加え、一晩撹拌することに よって凝集体を含む懸濁液を調製した。この懸濁液をろ過分離することによってろ過物を得、さ らに蒸留水および工業用アルコール (今津薬品工業社製、クリンエース・ハイ) を使用してよく 洗浄した。洗浄した試料は 40 °C に設定した定温乾燥機内で乾燥させた。乾燥された試料を乳鉢 で粉砕することによって、粉末状の試料を得た。AHG 以外のアルミニウム源においても同様の 作製手順で試験した。ここでは AHG に代えて、ATH (1.0 g)、PBM (0.8 g)、AIP (2.6 g)をそれぞ れ使用した。また、反応溶媒を MEA に代えて、EG (20 g)、PA (20 g) を使用してそれぞれ試験し た。各実験条件下、ソルボサーマル反応後に得られた反応物の見た目および反応物から回収した 粉末状の試料の主の結晶相を Table 3-1 に要約した。

得られた粉末状の試料の名称は"アルミニウム源の名称" + "溶媒の名称" ("反応温度", "反応時間") のように定義した。例えば、AHG と MEA を 120℃ で 6 時間ソルボサーマル反応させることによって得られた試料の名称は、AHG-MEA(120,6)と表記される。

3-2-3 分析·解析

この章の各分析で用いた測定装置及び解析方法は以下の通りである。

3-2-3-1 XRD

結晶相を同定するために Burker 製の XRD 装置 (D2-Phaser) を使用した。X 線光源に管電圧 30 kV、管電流 10 mA で操作した Cu-Kαを用い、スキャン範囲4-70°、スキャン速度0.1 s 、ス テップ角0.1°の条件で XRD パターンを積算測定した。また、式1に示す Scherrer の式を使用し て、(020), (200)および (002) 面に由来するベーマイトの回折ピークの半値全幅から結晶子径を算 出した。

$$D = K\lambda / (\beta \cos\theta)$$

(i)

ここで、D は結晶子の大きさ、K は形状係数、λは X 線の波長 (0.15418 nm)、βは半値全幅、θは ブラッグ角である。本研究では、形状係数 K に 1.84 を適用した。

3-2-3-2 動的光散乱

反応物として得られたコロイド溶液の粒子径分布を Malvern Instruments 製の Zetasizer Nano ZS を使用して動的光散乱 (DLS) 法を用いて測定した。なお、測定時のコロイド溶液は MEA で 10 倍希釈したものを用いた。

3-2-3-3 IR スペクトル

IR スペクトルは KBr 錠剤法を使用して日本分光製のフーリエ変換赤外分光光度計 (FT/IR-4600)を用いて測定した。測定範囲は4000-400 cm⁻¹であり、スキャン幅4 cm⁻¹の条件で 積算した。

3-2-3-4 ¹³C および ²⁷AI CP/MAS NMR スペクトル

¹³C および²⁷Alの核磁気共鳴 (NMR) スペクトルを交差分極/マジック角回転 (CP/MAS) 法を 利用して VARIAN 製および日本電子製の NMR 装置 (INOVA 400 および JNM-ECA600II) を使用 してそれぞれ測定した。測定時の試料プローブの回転速度はそれぞれ 5 kHz、6 kHz である。ま た、標準試料として、テトラメチルシラン (TMS) および 1 M 硝酸アルミニウム水溶液をそれ ぞれ使用した。

3-2-3-5 TG-DTA

熱挙動は Bruker AXS 社製の TG-DTA 装置 (TG-DTA2000SA) を使用して、60 mL min⁻¹の吹き 込み速度で試料室に空気を導入しながら、10 °C min⁻¹の昇温速度で室温~1000 °C の範囲を測定 した。標準試料としてα-アルミナを使用した。

3-2-3-6 元素分析

粉末の試料中の炭素 (C) および窒素 (N) の含有量は Elementar 製の全自動元素分析装置 (Vario EL cube) によって測定した。

3-2-3-7 窒素ガス吸脱着

日本ベル社製の比表面積/細孔分布測定装置 (BELSORP mini II) を使用して試料の窒素ガス 吸脱着測定を行った。得られた吸脱着等温線から BET 法を使用して BET 表面積を、BJH 法を使 用して細孔分布と細孔径をそれぞれ導出した。窒素ガス吸脱着測定前に真空条件下で 40 ℃、16 時間前処理した試料を測定検体とした。

3-2-3-8 微細構造観察

粉末試料の微細構造を日本電子製の SEM (JSM-7500FA) および TEM (JEM-2100) を使用して 観察した。SEM および TEM 観察時の加速電圧はそれぞれ 1 keV および 200 keV である。SEM観 察試料は粉末試料をカーボンテープに張り付けることによって、TEM 観察試料はエタノール中 で超音波分散した試料をマイクログリッドに滴下することによってそれぞれ作製した。

3-2-3-9 励起および蛍光スペクトル

粉末状の試料およびコロイド溶液の励起および蛍光スペクトルは、日立ハイテクサイエンス製の分光蛍光光度計 (F-7000)を用いて測定した。また、粉末状の試料の蛍光スペクトルについて、 光源として浜松ホトニクス製の 60 W のキセノン (Xe) フラッシュランプを、分光器として Jovan Yvon 製の H10UV を使用して測定した。

	Starting material		Reaction condition		Appearance of	Main
Sample name	Aluminum	<u> </u>	Temp.	Time	the reacted	crystalline
	source	Solvent	(°C)	(hours)	solution	phase
AHG-MEA(100,6)	AHG	MEA	100	6	with white precipitate	X*
AHG-MEA(120,6)	AHG	MEA	120	6	colloidal solution	BM-MEA**
AHG-MEA(150,6)	AHG	MEA	150	6	colloidal gel-state	BM-MEA
AHG-MEA(200,6)	AHG	MEA	200	6	colloidal gel-state	BM-MEA
AHG-MEA(120,2)	AHG	MEA	120	2	with white precipitate	Х
AHG-MEA(120,3)	AHG	MEA	120	3	with white precipitate	X+BM-MEA
AHG-MEA(120,4)	AHG	MEA	120	4	cloudy colloidal	X+BM-MEA
AHG-MEA(120,5)	AHG	MEA	120	5	solution colloidal solution	X+ BM-MEA
AHG-MEA(120,13)	AHG	MEA	120	13	colloidal solution	BM-MEA
ATH-MEA(120,6)	ATH	MEA	120	6	with white precipitate	Х
PBM-MEA(120,6)	PBM	MEA	120	6	with white precipitate	PBM
AIP-MEA(120,6)	AIP	MEA	120	6	gel-state	Х
AIP-MEA(200,6)	AIP	MEA	200	6	gel-state	Х
AHG-EG(120,6)	AHG	EG	120	6	with white precipitate	Not assigned
AHG-PA(120,6)	AHG	PA	120	6	with white precipitate	PBM
AIP-MEA- 1.0wt%H ₂ O(120,6)	AIP	MEA with 1.0 % of Water	120	6	solution	X + Not assigned
AIP-MEA- 2.5wt%H ₂ O(120,6)	AIP	MEA with 2.5 % of Water	120	6	colloidal solution	BM-MEA+ Not assigned

 Table 3-1.
 Summary of experimental conditions.

* Although X is estimated as poorly crystallized gibbsite, further information needs to identify crystalline phase.

** Nano boehmites with protonated and carbamated MEA derivatives inside its layer.

3-3 結果と考察

3-3-1 XRD

反応の最適条件を見出すために、始めに AHG と MEA のソルボサーマル反応を種々温度 (100、 120、150、200 °C)で 6 時間行った。120 °C の反応温度では、透光性を有する ivory-colored のグル 状のコロイド溶液が得られた。150 °C および 200 °C の反応温度では、ivory-colored のゲル状のコ ロイド溶液および brown-colored のゲル状のコロイド溶液がそれぞれ反応物として得られた。一 方で、100 °C の反応温度では白色の沈殿物を含んだ懸濁液が反応物として得られた。これらの反 応物から回収した粉末状の試料の XRD パターンを Figure 3-2 に示した。比較として、出発原料 の AHG および PBM を併せて記載した。Figure 3-2 の XRD パターンから、120 °C 以上で 6 時間 ソルボサーマル反応させることによって得られた生成物は 20 = 49 および 65 °の高角側に 2 つ のブロードな回折ピークが検出された。これらの回折ピークはベーマイト構造の a および c 軸方 向に由来する(200) 面および (002) 面にそれぞれ帰属される ¹⁰。このことから、AHG と MEA を 120 °C 以上で 6 時間ソルボサーマル反応させることによって、ベーマイトのコロイド溶液が得ら れることが見出された。続いて、ベーマイト構造の生成速度を確認するために、AHG と MEA

Figure 3-2. XRD patterns: (a) AHG, (b) PBM, (c) AHG-MEA(100,6), (d) AHG-MEA(120,6), (e) AHG-MEA(150,6), and (f) AHG-MEA(200,6). The simbols, " \blacklozenge " and " \blacktriangle ", denote diffraction peaks of boehmite and poorly crystalized gibbsite, respectively.

を120℃の反応温度で種々時間(2、3、4、5、6、13)ソルボサーマル反応させた。Figure 3-3(a) に2、4、6、13時間ソルボサーマル反応させることによって得られた反応物の写真を示した。 Figure 3-3(a)より、透光性を有するベーマイトのコロイド溶液を得るためには、少なくとも6時間のソルボサーマル反応が必要であることがわかる。Figure 3-3(b)は6時間のソルボサーマル反応によって得られたコロイド溶液に赤色のレーザー光線を照射した写真である。チンダル現象を はっきりと確認できた。反応物がコロイド溶液として得られた理由は、MEA が分散安定剤とし ての役割を果たすためと考えられる¹¹。コロイド溶液として分散しているベーマイトの粒子径分 布を DLS 法によって測定し、Figure 3-3(c)に示した。中心粒子径はおよそ 50 nm であった (Figure 3-3(c))。Figure 3-4 には 120℃の反応温度で種々時間(2、3、4、5、6、13時間) ソルボサーマル 反応させることによって得られた反応物から回収した粉末状の試料の XRD パターンを示した。 反応時間が3時間のとき、高角度側にベーマイト構造に帰属される回折ピークがわずかに検出さ れた。この回折ピークの強度は反応時間が増加するとともに大きくなった。また、AHG からベー マイトへの転移が完了するためには、少なくとも6時間の反応時間が必要であることが確認でき た。Figure 3-4 の差込図に各反応時間における 20 = 21 および 49°に検出される回折ピークの強度

Figure 3-3. The photoimages of (a) products reacted at 120 °C for 2, 4, 6, and 13 hours from left to right and (b) the observation of Tyndall phenomenon in the colloidal solution reacted for 6 hours. (c) The particle size distribution estimated by DLS method using the solutions diluted with MEA to 10 times.

を示した。反応時間が4時間を超えると、20=21°の回折ピークの強度が急激に減少する一方で、 20=49°の回折ピークの強度が急激に増加していた。このことは、ベーマイトの生成には長い誘 導時間があるが、ひとたび反応が開始すると、自触媒的に反応が進行することを示唆している。 また、Figure 3-4 の差込図に示す回折ピークの強度の挙動が Johnson-Mehl-Avrami- Kolmogorov の 式で表される S 字曲線を描くことから、AHG と MEA のソルボサーマル反応は晶析理論に基づ いてベーマイトを生成させていると推測される¹²。

ベーマイト構造の b 軸方向に由来する (020) 面の基底間隔 (*d* 値) は *b*/2 = 0.61 nm であり、 Cu-*Ka*線によって測定される XRD パターンにおいて、その回折ピークが 20 = 14.45°に出現する ¹⁰。一方で、Figure 3-2 および Figure 3-4 に示したベーマイトへの転換が完了した生成物である AHG-MEA(120,6)、AHG-MEA(150,6)、AHG-MEA(200,6)および AHG-MEA(120,13) (以降では、こ れらの生成物を総称として BM-MEA とも記載する) において、およそ 20 = 7.5°に回折ピークが 検出された。以前に、Grebille らや Tettenhorst らは、ベーマイトの結晶子が小さくなるに伴って、 (020) 面に帰属される回折ピークが低角側 (20 = 11°) に移動することを報告した ¹³。この理由と して、彼らはベーマイトのシート構造間に余剰の水がインターカレートして層間が広がったため と説明している ¹³。本研究における AHG と MEA のソルボサーマル反応によって得られた生成

Figure 3-4 XRD patterns: (a)AHG-MEA(120,2), (b) AHG-MEA(120,3), (c) AHG-MEA(120,4), (d) AHG-MEA(120,5), (e) AHG-MEA(120,6), and (f) AHG-MEA(120,13). The synbols, " \blacklozenge " and " \blacktriangle " denote diffraction peaks of boehmite and poorly crystalized gibbsite (X), respectively. Inset: Time-course of the products obtained with solvothermal reaction.

物の回折ピークの角度は、彼らの報告よりも更に低角側 (2θ=7.5°) に検出された。Inoue らおよ び Kim らはベーマイトの層間にアルコールあるいはグリコールなどの有機化合物がインターカ レートされることによって、ベーマイトの (020) 面に帰属される回折ピークの角度が 20 < 8.0° の低角側に移動することを報告した⁹。また、Inoue らは MEA がインターカレートしたベーマイ トの (020) 面に帰属される d 値が、おおよそ 1.4 から 1.9 nm の値の範囲であることも報告して いる^{9b)}。しかしながら、本研究の生成物の d 値はおよそ 1.2 nm と算出された。Inoue らが報告す る生成物と本研究の生成物の d 値が異なる理由は、出発原料として使用したアルミニウム源およ び反応温度の違いに由来すると考えられる。すなわち、本研究では非晶質の AHG を使用してい るが、Inoue らは結晶性の水酸化アルミニウムであるギブサイトを用いている⁹⁰⁾。また、本研究 の合成温度は 120 から 200 ℃ の範囲であるが、Inoue ら報告は 250 から 300 ℃ である^{9b)}。これら のことに由来して、本研究におけるベーマイトの結晶成長や MEA の重合、変質および熱分解な どの反応のメカニズムが Inoue らの報告と異なると考えられる。BM-MEA の結晶子径を(020)、 (200)、(002) 面の回折ピークから Scherrer の式を使用して算出し、その要約を Table 3-2 に示した。 (020) 面から算出された BM-MEA の結晶子径は4から5 nm であった。b 軸方向の格子定数はお よそ 2.4 nm と算出できることから、(020) 面の厚みはわずか 2 格子単位であると推定される。 AHG-MEA(100,2)、AHG-MEA(120,2)のような低温あるいは短時間の反応条件下で得られた生成 物の XRD パターンでは、2θ = 18、38、64°にブロードな回折ピークと 2θ = 21°に鋭い回折ピー クがそれぞれ検出された。後述する IR スペクトルの結果も含めて、これらの生成物は結晶性の 乏しいアルミナ 3 水和物の一形態であるギブサイト(Gibbsite)と推定される。しかしながら、十 分な情報が得られていないため、その構造を明確に特定することができなかった。

Sample name	Basal space** (nm)	b axis of lattice	Crystallite size*		
		constant	(020)	(200)	(002)
		(nm)	(nm)	(nm)	(nm)
AHG-MEA(120,6)	1.2	2.4	4	10	10
AHG-MEA(150,6)	1.2	2.4	5	12	12
AHG-MEA(200,6)	1.2	2.4	5	13	13
AHG-MEA(120,13)	1.2	2.4	5	11	11

Table 3-2. Basal space, *b* axis of lattice constant, and crystallite sizes of products.

* This is estimated by using Scherrer equation; the value of shape factor, K, was taken to be 1.84.

** This is calculated from peak position of 020 in XRD.

アルミニウム源として AHG を使用することの優位性を確認するために、AHG の代わりに ATH、 PBM および AIP をそれぞれ使用し、120 ℃ で 6 時間ソルボサーマル反応させた。得られた粉末 状の生成物の XRD パターンを Figure 3-5 および Figure 3-6 にそれぞれ示した。Figure 3-5 に示し た ATH-MEA(120,6)および PBM-MEA(120,6)の XRD パターンは、出発原料の ATH および PBM の XRD パターンと非常によく似ていた。AIP-MEA(120,6)において、ソルボサーマル反応後に均 質な溶液が反応物として得られた。しかしながら、BM-MEA と同様の手順で回収した粉末状の 試料の XRD パターンは AHG-MEA(100,6)とよく似ており、ベーマイト構造に由来する回折ピー クは検出されなかった (Figure 3-6)。200 ℃ の反応温度も試験したが、ベーマイトの構造に由来 する回折ピークは認められなかった (Figure 3-6)。

以前に、Inoue らは反応系内に存在する少量の水がアルコールおよびグリコールがインターカ レートしたベーマイトの生成を促進させることを報告した^{9c,9d}。本研究においても、少量の水の 影響を確認するために、1.0 wt% あるいは 2.5 wt%の水を含む MEA と AIP の懸濁液を 120 °C で 6 時間ソルボサーマル反応させ、粉末状の試料を得た。試料の名称をそれぞれ AHG-MEA-1.0wt%H₂O(120,6)および AHG-MEA-2.5wt%H₂O(120,6)とする。AHG-MEA-2.5wt%H₂O(120,6)にお いて、20 = 49 および 65 ° にベーマイト構造に由来する回折ピークが検出された (Figure 3-7)。こ の結果から、AIP と MEA の反応においても、少量の水の存在によりベーマイト構造の形成が促 進されることを確認できた。しかしながら、AIP と少量の水を含む MEA をソルボサーマル反応 させることによって得られた生成物の XRD パターンは、AHG と MEA の反応系で得られた生成 物の XRD パターンと比較すると、回折ピークはブロードであり、20 = 18、21 ° 付近にわずかで あるが回折ピークが検出された。AIP は加水分解によって 1-プロパノールが生成する。そのため、 AIP と MEA のソルボサーマル反応と AHG と MEA のソルボサーマル反応では、反応のメカニズ ムが異なると推測される。AHG-MEA-1.0wt%H₂O(120,6)においては、ベーマイト構造に由来する 回折ピークは認められなかった (Figure 3-7)。

続いて、アルミニウム源として AHG を使用し、MEA に代えて PA および EG を溶媒として用 いて、それぞれ 120°C で 6 時間ソルボサーマル反応させた。AHG-PA(120,6)において、ソルボサー マル反応後に白色の沈殿物を含んだ懸濁液が得られたが、同様の手順で回収した粉末上の試料の XRD パターンは PBM の回折パターンとよく似ていた (Figure 3-8)。AHG-EG(120,6)の粉末状の 試料は、いかなる特徴的な回折パターンが認められず、非晶質であることがわかった (Figure 3-8)。

52

Figure 3-5. XRD patterns of (a) PBM-MEA(120,6) and (b) ATH-MEA(120,6). The symbols, "●" and "◆", diffraction peaks of gibbsite and boehmite, respectively.

Figure 3-6. XRD patterns of (a) AIP-MEA(200,6) and (b) AIP-MEA(120,6). The symbol, " \blacktriangle ", denotes diffraction peaks of gibbsite.

Figure 3-7. XRD patterns of (a) AHG-MEA-2.5wt%H₂O(120,6) and (b) AHG-MEA-1.0wt%H₂O(120,6). " \blacklozenge " and " \blacktriangle " denotes diffraction peaks of boehmite and gibbsite, respectively.

Figure 3-8. XRD patterns of (a) AHG-EG(120,6) and (b) AHG-PA(120,6). The symbol, "♦", denotes diffraction peaks of boehmite.

3-3-2 IR スペクトル

AHG と MEA の懸濁液を 120 ℃ で種々時間 (2、3、4、5、6、13 時間) ソルボサーマル反応さ せることによって得られた反応物から回収された粉末状の試料の IR スペクトルを Figure 3-9 に 示した。反応時間が長くなる従って、757、615、490 cm⁻¹に IR バンドがはっきりと確認された。 この IR バンドはベーマイトのシート構造を形成する AlO₆の伸縮振動に帰属できる¹⁴。一方で、 1800-1000 cm⁻¹に検出される IR バンドは、ベーマイトおよび MEA のどちらの IR バンドとも一 致しなかった (Figure 3-10)。AHG は加熱されることによって、その結晶構造内に含まれる水 (H₂O)を放出する。また、この水と MEA がソルボサーマル反応されることによって、MEA の一 部が変質あるいは分解され、最終的に CO2が生成されると考えらえる。これらのことから、AHG と MEA のソルボサーマル反応は CO₂-H₂O-alkanolamine 系の下で進行すると推測される¹⁵。 MEA は CO₂を捕捉することによって、カルバメート基が修飾した MEA (MEACOO⁻) とプロトン化さ れた MEA (MEAH⁺) が MEA 誘導体として生成されることがよく知られている^{15,16}。近年、多 くの研究者が in situ の IR 法を使用して、MEA を含む水溶液に CO2の吹き込んだときに生成す る MEACOO⁻と MEAH⁺の生成挙動に関して報告している¹⁶。Figure 3-10 に示す AHG-MEA(120,6) と AHG-MEA(120,13)の 1800-1300 cm⁻¹の範囲における IR バンドは彼らの報告する IR バンドと よく一致している¹⁶。これらの事実に基づいて、AHG-MEA(120,6) と AHG-MEA(120,13) におけ る 1563、1500、1322 cm⁻¹の IR バンドは、MEACOOのカルバメート基に帰属される¹⁶。1389 cm⁻¹ の IR バンドは炭酸塩 (CO₃²⁻) に由来し¹⁶、1434 cm⁻¹の IR バンドは CO₃²あるいは MEA の変質 あるいは熱分解によって生成した NH4⁺の痕跡と考えられる^{16d),17}。また、1105 cm⁻¹に検出される IR バンドはベーマイトの Al に配位した O-C の伸縮振動と推測される^{9e}。1069 および 1027 cm⁻¹ にわずかに観測される 2 つの IR バンドは、MEAH⁺における C-N および C-O の伸縮振動と考え らえる¹⁶。1639 cm⁻¹の IR バンドは MEAH⁺の-NH₃⁺の変角振動あるいは生成物の表面に物理吸着 した水の変角振動と推測される^{16a),16b),18}。Kiss らはベーマイトの構造に含まれる-OHの伸縮振動 は 3295 (v_aOH)、3092 (v_sOH)、1157 (δ_{as}OH) および 1068 (δ_sOH) cm⁻¹に検出されることを報告し ている^{14b)}。AHG-MEA(120,6)および AHG-MEA(120,13)において、ベーマイトの-OH に由来する IR バンドは検出されなかった (Figure 3-9)。このことは、MEA 誘導体がベーマイトの表面に密 に結合し、ベーマイトのシート層間に強く束縛されていることを示唆している。1800-1000 cm⁻¹ の範囲の IR スペクトルデータを Table 3-3 に要約した。

Figure 3-9. IR spectra of (a)AHG-MEA(120,2), (b) AHG-MEA(120,3), (c) AHG-MEA(120,4), (d) AHG-MEA(120,5), (e) AHG-MEA(120,6), and (f) AHG-MEA(120,13).

Wavenumber (cm ⁻¹)	Assignment	Reference	
1639	NH ₃ ⁺ (protonated MEA)	15a),16b)	
	Physisobed water	28	
1563	COO ⁻ (carbamate)	15a),16b),16c),16d)	
1500	COO ⁻ (carbamate)	15a),16b),16c),16d)	
1434	C-O (carbonate) or NH_4^+	16d),17	
1389	C-O (carbonate)	15a),16b),16c),16d)	
1322	N-COO ⁻ (carbamate)	15a),16b),16c),16d)	
1105	C-O (in C-O-Al)	9e)	
1069	C-N (protonated MEA)	15a) 16b) 16c) 16d)	
1027	C-O (protonated MEA)	15a),16b),16c),16d)	

 Table 3-4.
 Assingment of absorption peak for AHG-MEA (120,6) in the IR spectrum.

Figure 3-10. IR spectra of (a) PBM, (b) AHG-MEA(120,6), and (c) MEA (solvent measured by KBr method). IR (KBr): (a), 3302 (w) cm⁻¹(ν_{as} (OH)); 3094 (w) cm⁻¹ (ν_{s} (OH)); 1641 (m) cm⁻¹ (δ (OH)); 1490 (w) cm⁻¹(ν (C-O)); 1395 (w) cm⁻¹ (ν (C-O)); 1160 (w) cm⁻¹ (δ_{as} (OH)); 1074 (s) cm⁻¹ (δ_{s} (OH)); 738 (w) cm⁻¹ (ν (AlO₆)); 628 (w) cm⁻¹ (ν (AlO₆)); 477 (s) cm⁻¹ (ν (AlO₆)). (b) 2965 (w) cm⁻¹ (ν (CH₂)); 2897 (w) cm⁻¹ (ν (CH₂)); 2603 (w) cm⁻¹ (ν (AlO₆)); 477 (s) cm⁻¹ (ν (AlO₆)). (b) 2965 (w) cm⁻¹ (ν (CH₂)); 2897 (w) cm⁻¹ (ν (CH₂)); 2603 (w) cm⁻¹ (NH₃⁺); 2486 (w) cm⁻¹ (NH₃⁺); 1639 (m) cm⁻¹ (δ (OH)); 1563 (m) cm⁻¹ (ν_{as} (COO⁻)); 1500 (m) cm⁻¹ (ν_{s} (COO⁻)); 1434 (w) cm⁻¹ (NH₄⁺); 1389 (m) cm⁻¹ (cO₃²⁻); 1322 (w) cm⁻¹ (ν (N-COO⁻)); 1105 cm⁻¹ (m) (ν (C-O)); 1069 (w) cm⁻¹ (ν (C-N)); 1022 (w) cm⁻¹ (ν (C-O)); 757 (w) cm⁻¹ (ν (AlO₆)); 615 (m) cm⁻¹ (ν (AlO₆)); 490 (s) cm⁻¹ (ν (AlO₆)). (c) 3354 (m) cm⁻¹ (ν (OH) + ν (NH₂)); 3293 (m) cm⁻¹ (δ (CH₂)); 1359 (s) cm⁻¹ (δ (OH)); 1318 (w) cm⁻¹ (tw(CH₂)); 1235 (w) cm⁻¹ (tw(CH₂)); 1166 (m) cm⁻¹ (ρ (CH₂)); 1077 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1032 (s) cm⁻¹ (ν (C-N)).

3-3-3 ¹³C および ²⁷AI CP/MAS NMR スペクトル

ベーマイトのシート構造の層間に含まれる MEA 誘導体の化学状態を特定するために、 AHG-MEA(120,2)、AHG-MEA(120,4)、AHG-MEA(120,6)および AHG-MEA(120,13)の¹³C CP/MAS NMR スペクトルを測定し、その結果を Figure 3-11 に示した。いずれの試料においても、およそ 43、60 および 165 ppm に 3 本のブロードなシグナルが検出された。García-Abuín らは、MEACOO^の の C2、C1、carboxyl carbon (COO⁻) のシグナルがそれぞれ 43.94、62.04、165.27 ppm に、MEAH⁺ の C2、C1 のシグナルがおよそ 42 および 59 ppm にそれぞれ検出されることを報告した¹⁹。Inoue らおよび Rezgui らはベーマイトの酸素原子と共有結合することによって引き起こされる異方性 効果は-OH よりも小さいと報告している^{90,20}。また、Inoue らはベーマイトの層間にインターカ レートしたアルコールやグリコールは、ベーマイトの酸素原子と共有結合しており、その層間に 強く束縛されていると結論付けている^{90,90}。Inoue らの報告と XRD、IR および¹³C NMR スペク トルの結果に基づいて、AHG と MEA のソルボサーマル反応によって生成した BM-MEA は、 MEACOO⁻および MEAH⁺の MEA 誘導体がベーマイトの酸素原子を介して共有結合し、ベーマイ トの層間にインターカレートしていると推測される。AHG-MEA(120,2) にブロードなシグナル が認められた理由は、生成物の表面に MEA 誘導体が物理吸着しているためと推測される。

続いて、ベーマイト構造内のアルミニウム原子の配位数を確認するため、AHG-MEA(120,2)、 AHG- MEA(120,4)および AHG-MEA(120,6)の²⁷Al CP/MAS NMR スペクトルを測定した。その結 果を Figure 3-12 に示した。Figure 3-12 より、いずれの場合も 13.3 ppm にシグナルが検出された。 Choi らは六配位のアルミニウム (Al^[6]) のシグナルが-5-17 ppm の範囲に検出されることを報告 している²¹。このことから、いずれの試料ともアルミニウム原子の配位数は六配位であることが 確認された。

 $\mathbf{58}$

Figure 3-11. ¹³C CP/MAS NMR spectra of (a) AHG-MEA (120,2), (b) AHG-MEA(120,4), (c) AHG-MEA(120,6), and (d) AHG-MEA(120,13).

Figure 3-12. ²⁷Al CP/MAS NMR spectra of (a) AHG-MEA(120,2), (b) AHG-MEA(120,4), and (c) AHG-MEA(120,6). Spinning side bands are denoted by an asterisk.

3-3-4 TG-DTA

AHG-MEA(120,6)の熱挙動を TG-DTA を用いて測定し、その結果を Figure 3-13 に示した。TG 曲線から 100 および 300 ℃ 付近に大きな重量減少が確認された。100 ℃ 付近に認められる吸熱 反応を伴う重量減少は試料の表面に物理吸着した水の脱離に由来する。300℃付近に観測される 発熱反応を伴う重量減少はベーマイト構造の崩壊に伴い MEACOO と MEAH⁺が燃焼分解された と考えられる。結晶性のよいベーマイトはおよそ 500 ℃ でその構造が崩壊し、遷移アルミナで あるy-アルミナへ相転移することが知られている²²。また、ベーマイト構造の崩壊温度は結晶子 径が小さくなるに従って低下することが報告されている²²。Scherrerの式を用いて、(020)面か ら計算された AHG-MEA(120,6)の結晶子径はおよそ 4 nm であった。このことから、 AHG-MEA(120,6)のベーマイト構造がおよそ 300 ℃ で崩壊することを説明できる。MEA の 沸点はおよそ 170 ℃ であることから、PBM と MEA を重量比 4 : 1 で混合して PBM 表面に MEA を物理吸着させた試料を作製し、その試料の熱挙動を測定することで AHG-MEA(120,6)の結果と比較した(Figure 3-14)。Figure 3-14の TG-DTA 曲線より、PBM 表 面上の MEA に由来する発熱反応の極大値は 170 ℃ に観測された。対照的に、 AHG-MEA(120.6)の発熱反応の極大値は MEA の沸点よりも高い 238 および 305 ℃ に観測さ れた (Figure 3-13)。この理由は、MEACOO および MEAH⁺がベーマイトの層間に強く束縛さ れているためと考えられる。Strazisar らおよび Vevelstad らは、MEA の変質および熱分解に よって、カルボン酸、アンモニア、2-オキサゾリジノンなどの誘導体が生成されることを報 告している²³。AHG-MEA(120,6)においても、ベーマイトの層間にインターカレートされた MEA 誘導体が変質および熱分解されることによって、上記の誘導体が生成されると考えら れる。それゆえ、DTA 曲線において、2 つの発熱反応の極大値が観測されたと推測される。

60

Figure 3-13. TG-DTA measurements of the nano boehmite treated by solvothermal reaction of AHG in MEA. Condition: heating rate of 10 $^{\circ}$ C min⁻¹ by the flow of dried air in a 60 mL min⁻¹.

Figure 3-14. TG-DTA measurements of mixture of MEA and PBM (commercially available). The mixing weight ratio of PBM and MEA is 4 : 1. Condition: heating rate of 10 $^{\circ}$ C min⁻¹ by the flow of dried air in a 60 mL min⁻¹.

3-3-5 元素分析

ベーマイトの全ての OH 基に MEACOO が修飾したと仮定すると、C および N の含有率はそれ ぞれ 24.7 および 9.6 % であり、その C/N 比は 3 と計算される。 一方で、 ベーマイトの層間に MEA 以外の有機化合物が含まれていないとすると、その C/N 比は2 でなければならない。BM-MEA の元素分析より、CおよびNの含有率はそれぞれ7.7~9.5%および3.4~4.1%であり、そのC/N 比は 2.6~2.7 と算出された。このことは MEACOO および MEAH⁺である MEA 誘導体がベーマ イトの OH 基の一部と置換していることを示唆している。BM-MEA の IR スペクトルにおいて、 CO₃²に帰属される IR バンドが検出されていた。Richner らおよび Jakobsen らは CO₂-MEA の混 合水溶液において、カルバメートの形成が支配的であることに由来して CO3²の存在は非常に少 ないと報告している^{15a,24}。また、McCann らは水溶性のアミン系内における CO₂の溶解性のモデ ルから計算から、40 および 100 ℃ における 30%MEA 水溶液において、溶解した CO2はカルバ メートとして支配的に含まれると結論付けている^{15b}。それゆえ、BM-MEA においても、CO₃²⁻ よりもカルバメートのほうが支配的に存在していると仮定できる。これらのことから、BM-MEA の実験式は AlO(OH)(1-(m+n))(OCH₂CH₂NH₃⁺)m(OCH₂CH₂NHCOO⁻)n として表されると推定できる。 元素分析および TG-DTA から、各反応条件において得られた BM-MEA のmおよびnの値を Table 3-4 に示した。AHG-MEA(120,6)の実験式は AlO(OH)_{0.82}(OCH₂CH₂NH₃⁺)_{0.05}(OCH₂CH₂NHCOO⁻)_{0.13} として求められた。これらの結果より、Scheme 3-1 に示される BM-MEA の構造モデルを提案す る。

	AHG-MEA (120,6)	AHG-MEA (120,13)	AHG-MEA (200,6)
Found			
C (%)*	7.7	7.9	9.5
N (%)*	3.4	3.6	4.1
C/N	2.6	2.6	2.7
Weight loss (%)**	30.6	30.8	28.0
Calculated			
C (%)	8.1	8.2	7.8
N (%)	3.5	3.6	3.4
C/N	2.7	2.7	2.7
Weight loss (%)	30.6	30.8	30.0
m	0.05	0.06	0.05
n	0.13	0.13	0.12

Table 3-4. Elemental analysis of AlO(OH)_{(1-(m+n))}(OCH₂CH₂NH₃⁺)_m(OCH₂CH₂NHCOO⁻)_n.

* Values of elemental analysis.

** Difference in weight loss values at 110 and 1000 °C.

Scheme 3-1. Structure model of BM-MEA.

3-3-6 粒子形態の観察

AHG-MEA(120,6)の SEM 像、TEM 像および制限視野電子線回折を Figure 3-15 に示した。Figure 3-15(c)の SEM 像より、凝集した粒子が観察された。Figure 3-15(a)の TEM 像からシート状のナノ 粒子が凝集している様子が認められた。Figure 3-15(b)の制限視野電子線回折から、*d*=0.33、0.18 および0.14 nm の3つの回折リングが確認された。これらの回折リングはベーマイトの(120) 面、 (200)面 および (002) 面にそれぞれ帰属される¹⁰。これらのことより、MEA 誘導体がインター カレートされたベーマイトはシート状のナノ粒子であることが確認できた。

Figure 3-15. (a) TEM image, (b) selected area electron diffraction, and (c) SEM images of AHG-MEA(120,6).

3-3-7 窒素ガス吸脱着

BM-MEA の比表面積、細孔容積および細孔径分布を推定するために、窒素ガス吸脱着等温線 を測定した。代表例として、Figure 3-16 に AHG-MEA(120,6)の吸脱着等温線を示した。また、Figure 3-16 の挿込図には BJH 法から導出された細孔径分布を示した。さらに、Table 3-5 に BET 法から 算出された BET 表面積と BJH 法から計算された細孔容積を要約した。Figure 3-16 の吸脱着等温 線はメソポアの存在を示す IV 型であり、細孔の形状が不明瞭な H2 型のヒステリシスループと して分類される²⁵。IV 型かつ H2 型に分類される吸脱着等温線を示した理由は、テンプレート剤 などを用いずにコロイド溶液を凝集させることによって回収した粉末状の試料であるためと考 えられる。BM-MEA の BET 表面積はおよそ 200 m² g⁻¹ と推定された。Table 3-1 に示される(020)、 (200)および(002) 面の結晶子径を用いて算出した BM-MEA の比表面積は 230~292 m² g⁻¹ であっ た。実測値と計算値にみられる誤差は、粒子同士が強く凝集しているためと考えられる。

Figure 3-16. Nitrogen (N₂) adsorption/desorption isotherm of AHG-MEA(120,6). Condition: -77 K. *P*, P_0 and P/P_0 are pressure, saturated vapor pressure and the relative pressure, respectively. Inset: pore diameter distribution.

Table 3-5. Surface area, pore diameter, isotherm classification, and hysteresis pattern of products.

Sample name	Surface area (m^2g^{-1})	Pore volume (cm^3g^{-1})	Isotherm classification	Hysteresis pattern
AHG-MEA(120,6)	197	0.1	IV	H2
AHG-MEA(120,13)	203	0.1	IV	H2

3-3-8 励起および蛍光スペクトル

粉末状のAHG-MEA(120,6)およびAHG-MEA(200,6)の蛍光スペクトルを60WのXeフラッシュ ランプを使用して測定し、その結果を Figure 3-17 に示した。ここで用いた励起波長は 360 nm で ある。Figure 3-18 にはソルボサーマル反応後に得られた AHG-MEA(120,6)のコロイド溶液、その コロイド溶液から回収した粉末状の試料の励起および蛍光スペクトルを示した。比較のため、粉 末状の AHG-MEA(200,6)の励起および蛍光スペクトルも Figure 3-18 に示した。また、 AHG-MEA(120,6)のコロイド溶液および粉末状の試料のλ=365 nm の UV ランプ下の写真を Figure 3-18 の挿込図に示した。Figure 3-17 および Figure 3-18 より、AHG-MEA(120,6)の蛍光強度は AHG-MEA(200,6)のそれと比較して大きいことがわかる。AHG-MEA(120,6)のコロイド溶液は420 nmの蛍光波長で360 nm を中心とした励起帯が確認されるが、その粉末状の試料は290-380 nm の幅広い励起帯が観測された。酸素欠陥 (oxygen vacancies)である F および F⁺ center を有するア ルミナは 205 あるいは 230 から 250 nm に発光励起帯を、420 あるいは 330 nm に発光帯を有する こと報告されている²⁶。Peng らは5配位のアルミニウムを含むγ-アルミナのフィルムが 325 nm の励起波長で F⁺ center に由来する強い青色の蛍光を 450 nm に示すことを報告した²⁷。Gao らは 10 nm の平均幅を持つ1次元のベーマイトのナノベルト状の粒子が230 nm の励起波長で298 nm を中心とした蛍光帯を示すことを報告した²⁸。彼らは、この発光起源は酸素欠陥であるFおよび F⁺ center に由来すると説明している²⁸。Alemi らはベーマイトナノ粒子が 230 nm の励起光によっ て 370、422、483 および 518 nm に発光帯を示すことを報告した²⁹。彼らもまた、この発光は F および F⁺ center に由来すると説明している²⁹。本研究の AHG-MEA(120,6)のコロイド溶液および その粉末状の試料の励起帯は 360 nm および 290 から 380 nm の範囲である。従って、 AHG-MEA(120,6)から観測される 420 nm を中心とした発光帯は F および F⁺ center 由来ではない と考えられえる。Pan らは CO2を吹き込むことによってカルバメート基を修飾させたポリエチレ ンイミンが 364 nm の励起波長によって 470 nm に発光帯を示すことを報告している ³⁰。 AHG-MEA(120,6)はカルバメート基が修飾した MEA (MEACOO) を有しており、その励起およ び蛍光スペクトルは Pan らの報告とよく似ている。したがって、BM-MEA の発光の起源はカル バメート基に由来すると推測される。Fujii らはクマリンをインターカレートした Mg-フィロシ リケートの層状ハイブリッド材料に、さらにローダミン 6G をインターカレートしたローダミン /クマリン/Mg-フィロシリケートのハイブリッド材料を作製し、クマリンに由来する発光が短波 長側にシフトすることを報告した³¹。この理由の1つとして、彼らは、層間の有機密度の増加に 伴ってクマリンの回転自由度が減少することによって、励起されたクマリンからの発光を短波長

側にシフトしたと説明している³¹。Huang らは、MSiAl₂O₃N₂:Ce³⁺および MSiAl₂O₃N₂:Eu²⁺(M = Ca、 Sr、Ba)において、活性化部位に対する化学的圧力の圧縮効果が蛍光波長のシフトを引き起こす ことを報告している³²。これらのことより、Pan らの報告するカルバメート基が修飾したポリエ チレンイミンと比較して AHG-MEA(120,6)の蛍光帯が 50 nm ほど高エネルギーシフトしている 理由も、ベーマイトの層間にインターカレートした MEACOO⁻がその層間に強固に束縛されるこ とによる化学的圧力の圧縮効果に由来すると考えられる。

Figure 3-17. Photoluminescence spectra of (a) AHG-MEA- (120,6) and (b) AHG-MEA(200,6) with an excitation of 360 nm.

Figure 3-18. Photoluminescence excitation and emission spectra of (a) gel-like dispersion of AHG-MEA(120,6), (b) powdery sample of AHG-MEA(120,6), and (c) powdery sample of AHG-MEA(200,6). Asterisk denotes stray light. Inset: photoimage of blue photoluminescence appeared under UV lamp with $\lambda = 365$ nm.

3-3-9 反応メカニズム

以前に、Kubo と Uchida はギブサイトとメタノールを反応させることによって、実験式 AlO(OH)_{0.5}(OCH₃)_{0.5} として表される生成物が得られることを報告した³³。この生成物は Hedvall 効果によってギブサイトの格子内へメタノール分子が拡散することによって生成したと彼らは 結論付けている³⁴。Inoue らはギブサイトと EG のソルボサーマル反応によって実験式 AlO(OCH₂CH₂OH)_{0.31}(OH)_{0.69} で表記される EG がインターカレートしたベーマイトが得られるこ とを報告している^{9a,),9b)}。EG のような嵩高い分子はギブサイト格子内への拡散は不可能であるこ とから、彼らは EG がインターカレートしたベーマイトは溶解-析出反応によって生成したと結 論付けている^{9b)}。MEA も EG と同様に嵩高い分子であることを考慮すると、本研究で得られた BM-MEA もまた溶解-析出反応によって生成したと推測される。

残念なことに、MEA、ソルボサーマル反応前の AHG の MEA の懸濁液およびソルボサーマル 反応後に得られたコロイド溶液の IR スペクトルの間に明確な差異を見出すことができなかった ため、反応メカニズムの明確な証明を得ることはできなかった (Figure 3-19)。しかしながら、 AHG は非晶質に由来して高い反応性を有していることから、AHG と MEA のソルボサーマル反 応によって中間生成物を生成すると推測される。また、AHG と MEA の反応が進行することに よって、AHG の結晶構造に含まれる水が反応系内に放出される。この水と MEA がソルボサー マル反応することによって、MEA の一部が変質あるいは熱分解され、最終的に CO₂を生成され ると考えらえる。それゆえ、BM-MEA の反応は CO₂-H₂O-alkanolamine 系のもとで進行すると推 測される。CO₂-H₂O-alkanolamine 系である CO₂、H₂O および MEA からなる水溶液において、11 種の化学種と 9 つの反応式と 3 種類の反応機構が提唱されている^{15,16,35}。AHG と MEA のソルボ サーマル反応における MEACOO⁻および MEAH⁺の MEA 誘導体の反応機構は次のように簡略化 して表記できる。

$MEA + CO_2 \Leftrightarrow MEA^+COO^-$	(ii)
$MEA^+COO^- + MEA \Leftrightarrow MEACOO^- + MEAH^+$	(iii)

溶解-析出反応および上記の反応式(ii)と(iii)基づいて、BM-MEAの反応機構は Scheme 3-2 に示 すように進行すると考えられる。ここで、Scheme 3-2 中の Al(OH)₃は AHG、HOCH₂CH₂NH₂は MEA をそれぞれ示している。また、今回の反応系において、水はベーマイト構造の形成に非常 に需要な役割を果たしている。このことは AIP-MEA(120,6) と AIP-MEA-2.5wt%H₂O(120,6)の生 成物の XRD パターンから説明できる (Figures 3-5, 3-6)。すなわち、少量の水を含んだ MEA を溶 媒に使用した AIP-MEA-2.5wt%H₂O (120,6)ではベーマイト構造の形成が確認されたが、水を含ま ない AIP-MEA(120,6)ではベーマイトの形成を認められなかったことである。生成するベーマイ トの粒子の形態は反応時の pH が影響することが知られている ³⁶。Chen らおよび He らは、塩 基性条件下において生成するベーマイトはシート状の粒子あるいは薄片状の粒子であると報告 している ^{36a,36b}。ソルボサーマル反応後に得られたコロイド溶液の pH は 12.4 であった。従って、 AHG と MEA のソルボサーマル反応後に得られたコロイド溶液の pH は 12.4 であった。従って、 AHG と MEA のソルボサーマル反応なら生成する BM-MEA は塩基性溶媒の下で反応が進行した ため、シート状のベーマイトのナノ粒子が生成したと推測される。興味深いことに、BM-MEA である AHG-MEA(120,6)は、以前に 250 ℃ で実施された Inoue らの報告 ^{9b} よりもはるかに低い 120 ℃ で作製できた。いくつかの先行文献において、ソルボサーマル反応中に存在する少量の水 が核生成と結晶成長を促進させることが記載されている ^{9c,9d,37}。これら先行技術と実験結果に基 づいて、120 ℃ という低温で反応が進行した理由は、アルミニウム源として反応性の高い非晶質 の AHG を使用したため、また非晶質の AHG から放出された少量の水がベーマイトの形成を促 進させたためであると推測される。

Figure 3-19. IR spectra of (a) MEA, (b) suspension of AHG and MEA before solvothermal reaction, and (c) the colloidal solution. IR (KBr), (a): 3354 (m) cm⁻¹ (ν (OH) + ν (NH₂)); 3293 (m) cm⁻¹ (ν (OH) + ν (NH₂)); 2936 (s) cm⁻¹ (ν (CH₂)), 2869 (s) cm⁻¹ (ν (CH₂)), 1598 (s) cm⁻¹ (δ (NH₂)); 1471 (s) cm⁻¹ (δ (CH₂)) 1359 (s) cm⁻¹ (δ (OH)); 1318 (w) cm⁻¹ (tw(CH₂)), 1235 (w) cm⁻¹ (tw(CH₂)); 1166 (m) cm⁻¹ (ρ (CH₂)); 1077 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1032 (s) cm⁻¹ (ν (C-N)). (b): 3349 (m) cm⁻¹ (ν (OH) + ν (NH₂)); 3291 (m) cm⁻¹ (ν (OH) + ν (NH₂)); 2923 (s) cm⁻¹ (ν (CH₂)); 2864 (s) cm⁻¹ (ν (CH₂)); 1590 (s) cm⁻¹ (δ (NH₂)); 1462 (s) cm⁻¹ (δ (CH₂)); 1363 (s) cm⁻¹ (δ (OH)); 1312 (w) cm⁻¹ (tw(CH₂)); 1232 (w) cm⁻¹ (tw(CH₂)); 1160 (m) cm⁻¹ (ρ (CH₂)); 1074 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1029 (s) cm⁻¹ (ν (CH₂)); 2857 (s) cm⁻¹ (ν (CH₂)), 1588 (s) cm⁻¹ (δ (NH₂)); 1456 (s) cm⁻¹ (δ (CH₂)) 1363 (s) cm⁻¹ (δ (OH)); 1312 (w) cm⁻¹ (tw(CH₂)), 1233 (w) cm⁻¹ (tw(CH₂)); 1159 (m) cm⁻¹ (ρ (CH₂)); 1074 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1312 (w) cm⁻¹ (tw(CH₂)), 1233 (w) cm⁻¹ (tw(CH₂)); 1159 (m) cm⁻¹ (ρ (CH₂)); 1074 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1028 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1028 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1074 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1312 (w) cm⁻¹ (tw(CH₂)), 1233 (w) cm⁻¹ (tw(CH₂)); 1159 (m) cm⁻¹ (ρ (CH₂)); 1074 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1028 (s) cm⁻¹ (ν (C-O) + ρ (CH₂)); 1028 (s) cm⁻¹ (ν (C-O)).

Scheme 3-2. Possible formation mechanisms of BM-MEA.
3-4 結論

AHGと MEA の懸濁液を 120 ℃ 以上で 6 時間以上ソルボサーマル反応させることによって、 青色の蛍光を有する MEA 誘導体がインターカレートされたベーマイト (BM-MEA) のナノ粒子 を作製することに成功した。反応温度が 120 ℃ のときはゾル状のコロイド溶液が、反応温度が 150 ℃以上のときはゲル状のコロイド溶液が反応物としてそれぞれ得られた。これらの反応物か ら回収した粉末状の試料は XRD、IR、¹³C および²⁷Al CP/MAS NMR スペクトル、TG-DTA、元 素分析によって評価された。これらの結果から、MEA 誘導体として生成した MEACOO および MEAH⁺は共有結合を介してベーマイトのシート表面に修飾し、それらはベーマイトの層間に強 く束縛されていると推測される。 BM-MEA の実験式はおおよそ AlO(OH)0.82-(OCH₂CH₂NH₃⁺)_{0.05}(OCH₂CH₂NHCOO⁻)_{0.13}として表されると推定できる。BM-MEA の SEM 像およ び TEM 像から、BM-MEA の粒子の形態はシート状のナノ粒子の凝集体であることが観察された。 窒素ガス吸脱着等温線から、BM-MEA の BET 表面積はおよそ 200 m² g⁻¹と算出された。120 ℃ で6時間ソルボサーマル反応させることによって得られた BM-MEA のコロイド溶液および粉末 試料は、360 nmの励起光で420 nmを中心とした蛍光帯が持つことが見出された。この特徴的な BM-MEA の青色の蛍光は、CO₂-H₂O-alkanolamine 系において生成したカルバメート基に由来す ると考えらえる。青色の蛍光を有する BM-MEA のコロイド溶液は、紫外線遮蔽や波長変換のよ うな新規の塗料としての用途が期待される。また、ベーマイトの層間に MEACOO および MEAH⁺ がインターカレートされていることから、in situ で高分子材料と重合反応させることによって、 ベーマイトのナノ粒子がよく分散したナノコンポジット材料が作製できる可能性があると考え られる。さらに、BM-MEA は大きな形状異方性を有していることから、高い補強効果やガスバ リア性といった優れた特性を有する高性能なナノコンポジットが作製できると推測される。加え て、元素戦略の観点から、希土類元素を含まずクラーク数の大きなありふれた元素のみから構成 される青色の蛍光を有する BM-MEA は次世代の蛍光材料としての応用が期待される。

73

3-5 参考文献

- 1. 中条善樹監修, *有機-無機ナノハイブリッド材料の新展開《普及版》*, シーエムシー出版, 東京, 2009.
- a) Xue, X.; Gu, Q.; Pan, G.; Liang, J.; Huang, G.; Sun, G.; Ma, S.; Yang, X. Nanocage Structure Derived from Sulfonated β-Cyclodextrin Intercalated Layered Double Hydroxides and Selective Adsorption for Phenol Compounds. *Inorg. Chem.* 2014, 53, 1521-1529. b) Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M.G. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42- Ion. *J. Am. Chem. Soc.* 2016, 138, 2858-2866.
- a) Gunjaker, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S. J. Mesoporous Layer-by-Layer Ordered Nanohybrids of Layered Double Hydroxide and Layered Metal Oxide: Highly Active Visible Light Photocatalysts with Improved Chemical Stability. *J. Am. Chem. Soc.* 2011, 133, 14998–15007. b) Silva, C.G.; Bouizi, Y.; Fornés, V.; García, H. Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water. *J. Am. Chem. Soc.* 2009, 131, 13833-13839.
- Lee, J. H.; Jung, D. Y.; Kim, E.; Ahn, T. K. Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces. *Dalton Trans.* 2014, 43, 8543-8548.
- 5. Bi, X.; Zhang, H.; Dou, L. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery. *Pharm.* **2014**, 6, 298-332.
- a) Lin, P.; Eckersley, R. J.; Hall, E. A. H. Ultra bubble: a laminated ultrasound contrast agent with narrow size range. *Adv. Mater.* 2009, 21, 3949–3952. b) Hu, H.; Zhou, H.; Du, J.; Wang, Z.; An, L.; Yang, H.; Li, F.; Wu, H.; Yang, S. Biocompatiable hollow silica microspheres as novel ultrasound contrast agents for in vivo imaging. *J. Mater. Chem.* 2011, 21(18), 6576–6583. c) Malvindi, M. A.; Greco, A.; Conversano, F.; Figuerola, A.; Corti, M.; Bonora, M.; Lasciafari, A.; Doumari, H. A.; Moscardini, M.; Cingolani, R.; Gigli, G.; Casciaro, S.; Pellegrino, T.; Ragusa, A. Magnetic/silica nanocomposites as dual-mode contrast agents for combined magnetic resonance imaging and ultrasonography. *Adv. Func. Mater.* 2011, 21(13), 2548–2555.
- Auxilio, A. R.; Andrews, P. C.; Junk, P. C.; Spiccia, L.; Neumann, D.; Raverty, W.; Vanderhoek, N.; Pringle, J. M. Functionalized pseudo-boehmite nanoparticles as an excellent adsorbent material for anionic dyes. *J. Mater. Chem.* 2008, 18, 2466-2474.
- Delgado-Pinar, E.; Albelda, M.T.; Frías, J. C.; Barreiro, O.; Tejera, E.; Kubíček, V.; Jiménez-Borreguero, L. J.; Sánchez-Madrid, F.; Tóth, E.; Alarcón, J.; García-España, E. l.; Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite. *Dalton Trans.* 2011, 40, 6451-6457

- a) Inoue, M.; Kondo, Y.; Inui, T. An Ethylene Glycol Derivative of Boehmite. *Inorg. Chem.* 1988, 27, 215-221. b) Inoue, M.; Tanino, H.; Kondo, Y.; Inui, T. Formation of Organic Derivatives of Boehmite with Glycols and Aminoalcohols. *Clay. Clay Miner.* 1991, 39, 151-157. c) Inoue, M.; Kimura, M.; Inui, T. Alkoxyalumoxanes. *Chem. Mater.* 2000, 12, 55-61. d) Inoue, M.; Kominami, H.; Kondo, Y.; Inui, T. Organic Derivatives of Layered Inorganics Having the Second Stage Structure. *Chem. Mater.* 1997, 9, 1614-1619. e) Kim, S. W.; Iwamoto, S.; Inoue, M. Surface and pore structure of alumina derived from xerogel/aerogel. *J. Porous Mater.* 2010, 17, 377-385.
- Christoph, G. G.; Corbató, C. E.; Hofmann, D. A.; Tettenhorst, R. T. The Crystal Structure of Boehmite. *Clay. Clay Miner.* 1979, 27, 81-86.
- Jeon, I.; Ryan, J. W.; Nakazaki, T.; Yao, K. S.; Negishi, Y.; Matsuo, Y. Air-processed inverted organic solar cells utilizing a 2-aminoethanol-stabilized ZnO nanoparticle electron transport layer that requires no thermal annealing. *J. Mater. Chem. A* 2014, 2, 18754-18760.
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212-224.
- a) Grebille, D.; Bérar, J. F. Calculation of Diffraction Line Profiles in the Case of Coupled Stacking Fault and Size-Effect Broading: Application to Boehmite AlOOH. *J. Appl Cryst.* 1986, 19, 249-254.
 b) Tettenhorst, R.; Hofmann, D. A. Crystal Chemistry of Boehmite. *Clay. Clay Miner.* 1980, 28, 373-380.
- a) Fripiat, J. J.; Bosmans, H., Rouxhet, P. G. Proton Delocalization in Boehmite. J. Phys. Chem. 1967, 71, 1097-1111. b) Kiss, A. B.; Keresztury, G.; Farkas, L. Raman and i.r. spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D¹⁷_{2h} space group. Spectrochim. Acta. Part A 1980, 36, 653-658.
- a) Richner, G.; Puxty, G.; Assessing the Chemical Speciation during CO₂ Absorption by Aqueous Amines Using in situ FTIR. *Ind. Eng. Chem. Res.* 2012, 51, 14317-14324. b) McCann, N.; Maeder, M.; Attalla, M. Simulation of Enthalpy and Capacity of CO₂ Adsorption by Aqueous Amine Systems. *Ind. Eng. Chem. Res.* 2008, 47, 2002-2009.
- a) Conway, W.; Wang, X.; Fernandes, D.; Burns, R.; Lawrance, G.; Puxty, G.; Maeder, M. Comprehensive Kinetic and Thermodynamic Study of the Reactions of CO₂(aq) and HCO₃⁻ with Monoethanolamine (MEA) in Aqueous solution. *J. Phys. Chem. A* 2011, 115, 14340-14349. b) Sun, C.; Dutta, P. K. Infrared Spectroscopic Study of Reaction of Carbon Dioxide with Aqueous Monoethanolamine Solution. *Ind. Eng. Chem. Res.* 2016, DOI: 10.1021/acs.iecr.6b00017. c) Jackson, P.; Robinson, K.; Puxty, G.; Attalla, M. In situ Fourier Transform-Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. *Energ. Proc.* 2009, 1, 985–994. d) Motang, N. In situ FTIR Measurements of the Kinetics of the Aqueous CO₂-Monoethanolamine Reaction. Thesis, Stellenbosch University, Republic of South Africa, 2015.
- 17. Altaner, S. P., Fitzpatrick, J. J.; Krohn, M. D.; Bethke, P. M.; Hayba, D. O.; Goss, J. A.; Brown, Z. A.

Ammonium in alunites. Am. Mineral. 1988, 73, 145-152.

- Feng, Y.; Lu, W.; Zhang, L.; Bao, X.; Yue, B.; lv, Y.; Shang, X. One-Step Synthesis of Hierarchical Cantaloupe-like AlOOH Superstructures via a Hydrothermal Route. *Cryst. Growth Des.* 2008, 8, 1426-1429.
- García-Abuín, A.; Gómez-Díaz, D.; López, A. B.; Navaza, J. M.; Rumbo, A.; NMR Characterization of Carbon Dioxide Chemical Absorption with Monoethanolamine, Diethanolamine, and Triethanolamine. *Ind. Eng. Chem. Res.* 2013, 52, 13432-13438.
- Rezgui, S.; Gates, B. C. Chemistry of Sol-Gel Synthesis of Aluminum Oxides with in situ Water Formation: Control of the Morphology and Texture. *Chem. Mater.* 1994, 6, 2390-2397.
- 21. Choi, M.; Matsunaga, K.; Oba, F.; Tanaka, I.; ²⁷Al NMR Chemical Shifts in Oxide Crystals: A First-Principles Study. *J. Phys. Chem. C* **2009**, 113, 3869-3873.
- 22. Lippens, B. C.; Boer. J. H. D. Study of Phase Transformation During Calcination of Aluminum Hydroxide by Selected Area Electron Diffraction. *Acta. Cryst.* **1964**, 17, 1312-1321.
- a) Strazisar, B. R.; Anderson, R. R.; White, C. M.; Degradation Pathways for Monoethanolamine in a CO₂ Capture Facility. *Energ. Fuel.* 2003, 17, 1034-1039. b) Vevelstad, S. J.; Eide-Haugmo, I.; Silva, E. F.; Svendsen, H. F. Degradation of MEA; a theoretical study. *Energ. Proced.* 2011, 4, 1608-1615.
- 24. Jakobsen, J. P.; Krane, J.; Svendsen, H. F. Liquid-Phase Composition Determination in CO₂-H₂O-Alkanolamine systems: An NMR Study. *Ind. Eng. Chem. Res.* **2005**, 44, 9894-9903.
- Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. *Pure Appl. Chem.* **1985**, 57, 603-619.
- a) Evans, B. D.; Stepelbroek, M.; Optical properties of the F⁺ center in crystalline Al₂O₃. *Phys. Rev.* B 1978, 18, 7089-7098. b) Akselrod, M.S.; Larsen, N. A.; Whitley, V.; McKeever, S. W. S. Thermal quenching of F-center luminescence in Al₂O₃:C, *J. Appl. Phys.* 1998, 84, 3364-3373.
- Peng, C. H.; Hwang, C. C.; Hsiao, C. S. Structure and photoluminescence properties of strong blue-emitting alumina film developed from a liquid sol at low temperature. *J. Alloy. Compd.* 2010, 491, 29-32.
- 28. Gao, P.; Xie, Y.; Chen, Y.; Ye, L.; Guo, Q. Large-area synthesis of single crystal boehmite nanobelts with high luminescent properties. *J. Crystal Growth* **2005**, 285,555-560,
- Alemi. A; Hosseinpour, Z.; Dolatyari, M.; Bakhtiari, A. Boehmite (γ-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations. *Phys. Status Solidi b* 2012, 6, 1264-1270.
- Pan, X.; Wang, G.; Lay, C. L.; Tan, B. H.; He, C.; Liu, Y. Photoluminescence from Amino-Containing Polymer in the Presence of CO₂: Carbamato Anion Formed as a Fluorophore. *Sci. Rep.* 2013, DOI: 10.1038/srep02763.

- Fujii, K.; Iyi, N.; Sasai, R.; Hayashi, S. Preparation of a Novel Luminous Heterogeneous System: Rhodamine/Coumarin/Phyllosilicate Hybrid and Blue Shift in Fluorescence Emission. *Chem. Mater.* 2008, 20, 2994-3002.
- Huang, W. Y.; yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H. S.; Chan, T. S.; Chiang, C. Y.; Zhou, W.; liu, R. S. Chemical Pressure Control for photoluminescence of MSiAl₂O₃N₂:Ce³⁺/Eu²⁺ (M = Sr, Ba) Oxynitride Phosphors. *Chem. Mater.* 2014, 26, 2075-2085.
- 33. Kubo, T and Uchida, K. Reactions between Al(OH)₃ and CH₃OH. *Kogyo Kagaku Zasshi* **1970**, 73, 70-75.
- 34. Hedvall, J. A. Current problems of heterogteneous catalysis. Adv. Catal. 1956, 8, 1-17.
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO₂ Capture into Monoehtanolamine solution with Different CO₂ Loading During the Absorption/Desorption Process. *Environ. Sci. Technol.* 2015, 49, 10728-10735.
- 36. a) Chen, X. Y.; Lee, S. W. pH-Dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes. *Chem. Phys. Lett.* 2007, 438, 279-284. b) He, T.; Xiang, L.; Zhu, S. Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions. *Cryst. Eng. Comm.* 2009, 11, 1338-1342. c) Jiao, W.; Wu, X; Xue, T.; Li, G.; Wang, W.; Wang, Y.; Wang, Y.; Tang, Y.; He, M. Morphological Controlled Growth of Nanosized Boehmite with Enhanced Aspect Ratios in an Organic Additive-Free Cationic-Anionic Double Hydrolysis Method. *Cryst. Growth. Des.* 2016, 16, 5166-5173.
- a) Jung, Y. J.; Lim, D. Y.; Nho, J. S.; Cho, S. B.; Riman, R. E.; Lee, B. W. Glycothermal synthesis and characterization of tetragonal barium titanate. *J. Cryst. Growth* 2005, 274,638-652. b) Nohara, A.; Takeshita, S.; Isobe, T. Mixed-solvent strategy for solvothermal synthesis of well-dispersed YBO₃:Ce³⁺, Tb³⁺ nanocrystals. *RSC Adv.* 2014, 4, 11219-11224. c) Wojnarowicz, J.; Opalinska, A.; Chudaba, T.; Gierlotka, S.; Mukhovskyi, R.; Pietrzykowska, E.; Sobczak, K.; Lojkowski, W. Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis. *J. Nanomater.* 2016, 2789871.

第4章

ソルボサーマル反応を用いて作製した ベーマイトナノ粒子の機能化

4-1 序論

蛍光材料は紫外線などの外部からのエネルギーを光に変換する物質であり、白色発光ダイオード (White-light-emitting diodes, WLED)、ディスプレイのバックライト、太陽電池の変換効率の向上、生体イメージング剤、セキュリティなどの幅広い分野で使用されている¹。多くの無機蛍光材料は、母材となる材料に希土類元素が発光イオンとして賦活されている。例えば、母相の酸化物および窒化物に Eu²⁺および Ce³⁺を賦活した BaMgAl₁₀O₁₇:Eu²⁺および LaSi₃N₅:Ce³⁺の青色蛍光体²、 Mn^{2+} および Tb³⁺を賦活した Zn₂GeO₄: Mn^{2+} および MgAl₁₁O₁₉:Tb³⁺の緑色蛍光体³、Eu²⁺および Eu³⁺を賦活した CaAlSiN₃:Eu²⁺および Y₂O₂S:Eu³⁺の赤色蛍光体⁴ がよく知られている。しかしながら、希土類元素は高価であり、供給に不安があることから、希土類元素を使用しない蛍光材料の開発が強く望まれている。このような背景から、これまで、ゼオライトの細孔に銀イオンを挿入した蛍光体⁵ や有機色素とハイブリッド化された多孔質シリカ⁶が報告されている。

アルミナは酸素欠陥 (oxygen vacancies)である double-ionized oxygen vacancies (F center) およ び single-ionized oxygen vacancies (F⁺ center)に由来した蛍光を示すことが知られている⁷。その水 和物であるベーマイトもまた、F center および F⁺ center に由来した蛍光特性を有していることが 報告されている⁸⁻¹⁰。Gao らは、アルミホイルから molecule tailoring lamella method と水熱合 成法を用いて作製された 10 nm 幅のナノベルト状のベーマイトが 230 nm の励起光によって 298 nm の蛍光を示すことを報告した ⁸。Bai らは安息香酸ベンジルが配位した板状のベーマイトを 用いることによって、希土類元素を含まない高効率の WLED が作製できることを見出した ⁹。 また、Alemi らはナノ粒子のベーマイトの蛍光特性に関して研究し、密度関数理論 (density functional theory) からベーマイトの直接遷移が 4.510 eV であると算出している ¹⁰。本論文の 第 3 章において、MEA 誘導体をインターカレートしたベーマイトのナノ粒子 (NBM-MEA) は、 360 nm の励起光によって 420 nm を中心とした蛍光帯を有することを示した ¹¹。アルミナ基質 の材料である多孔質陽極酸化アルミナ膜において、Du らや Huang らは加熱処理がそれらの蛍 光特性に与える影響に関して報告している¹²。本章では、NBM-MEA を種々温度で加熱し、そ の加熱温度が蛍光特性に与える影響について調査した。各化学分析の結果から、生成物の特性お よび蛍光特性について議論し、発光の起源を推定した。

4-2 実験

4-2-1 原料

本章において、第2章記載の作製手順を一部変更して作製した AHG および第3章記載の作製 手順を一部変更して作製した NBM-MEA を使用した。その手順を以下に示す。

4-2-1-1 AHG の作製

500 mL の蒸留水に 20g の NaAlO₂を添加し、プロペラ型の攪拌機を使用して撹拌しながら溶解 させ、透明な NaAlO₂水溶液を得た。この NaAlO₂水溶液の液温を 10 ℃ 以下に調整した。続いて、 撹拌しながら、品温調整した NaAlO₂水溶液に 1 L/min の吹き込み速度で CO₂(g)を NaAlO₂水溶 液の pH が 8 以下になるまで吹き込み、白色の沈殿物を得た。得られた白色の沈殿物をただちに ろ過分離し、ろ過物を蒸留水および特級試薬のエタノール (関東化学製)を使用して繰り返し洗 浄した。洗浄したろ過物を 40 ℃ に設定した定温乾燥機に静置し、一晩乾燥させた。乾燥させた 試料を粉末 XRD、TG-DTA、窒素ガス吸脱着測定、および SEM を用いて微細構造を観察するこ とによって、目的とする AHG であることを確認した。

4-2-2-1 NBM-MEA の作製

ポリテトラフルオロエチレン製のサンプル容器に 3.0 g の AHG と 60.0 g の MEA を投入し、撹 拌することによって懸濁させた。そのサンプル容器を耐圧容器に格納し、密栓した。この耐圧容 器内の懸濁液をホットマグネチックスターラーで撹拌しながら、120 ℃ で 13 時間ソルボサーマ ル反応させた。所定時間の反応後、耐圧容器を急冷し、反応を直ちに停止させた。反応物として 得られたゾル状のコロイド溶液から粉末状の試料を回収するために、反応物に 60 mL の蒸留水 を加え、1 時間撹拌することによって凝集体を含む懸濁液を得た。この懸濁液を遠心分離して、 上澄みを除去した。続いて、沈降物に蒸留水を加えて懸濁液を得、それを遠心分離して上澄みを 除去する操作を 6 回繰り返して洗浄した。その後、ろ過分離によって凝集体を分離し、さらに蒸 留水および特級試薬のエタノール (関東化学製)を使用して凝集体をよく洗浄した。この凝集体 を 40℃に設定した乾燥機内で乾燥し、乾燥物を乳鉢で粉砕することによって粉末状の試料を得 た。粉末 XRD、FT-IR、TG-DTA から目的とする NBM-MEA であることを確認した。

IR : 2965 (w) cm⁻¹ (ν (CH₂)); 2897 (w) cm⁻¹ (ν (CH₂)); 2603 (w) cm⁻¹ (NH₃⁺); 2486 (w) cm⁻¹ (NH₃⁺); 1639

(m) cm⁻¹ (δ (OH)); 1563 (m) cm⁻¹(ν_{as} (COO⁻)); 1500 (m) cm⁻¹(ν_{s} (COO⁻)); 1434 (w) cm⁻¹ (NH₄⁺); 1389 (m) cm⁻¹ (CO₃²⁻); 1322 (w) cm⁻¹ (ν (N-COO)); 1105 cm⁻¹ (m) (ν (C-O)); 1069 (w) cm⁻¹(ν (C-N)); 1022 (w) cm⁻¹ (ν (C-O)); 757(w) cm⁻¹ (ν (AlO₆)); 615(m) cm⁻¹(ν (AlO₆)); 490 (s) cm⁻¹ (ν (AlO₆)).

4-2-2 試料作製

0.80 gの NBM-MEA をるつぼに入れ、大気条件の下、乾燥機および電気炉を使用して種々温 度 (100、140、180、200、220、300、400 ℃) で4時間加熱処理した。加熱処理後、るつぼを乾 燥機から取り出して室温まで自然冷却した。得られた粉末状の試料の名前を "NBM-MEA"+("加 熱温度")のように定義した。例えば、180 ℃ で加熱した試料は NBM-MEA(180)と記載される。 また、未加熱の試料を"NBM-MEA(as-prepared)"と表記した。加熱温度が高くなるにしたがって、 NBM-MEA の色はクリーム色から黄色および橙色を経て、茶色に変化した。

4-2-3 分析および解析

この章の各分析で用いた測定装置及び解析方法は以下の通りである。

4-2-3-1 XRD

結晶相を同定するために Burker 製の XRD 装置 (D2-Phaser) を使用して、X 線光源に管電圧 30 kV、管電流 10 mA で操作した Cu-*K*αを用い、スキャン範囲4–70°、スキャン速度0.1 s 、ス テップ角0.1°の条件で XRD パターンを積算測定した。得られた XRD パターンから、式(i)に示 す Scherrer の式を使用して (020), (200)および (002) 面の半値全幅から結晶子径を算出した。

$$\mathbf{D} = K\lambda / (\beta \cos\theta)$$

(i)

ここで、D は結晶子の大きさ、K は形状係数、 λ はX 線の波長 (0.15418 nm)、 β は半値全幅、 θ は ブラッグ角である。本研究では、形状係数 K に 1.84 を適用した。

4-2-3-2 IR スペクトル

IR スペクトルは KBr 錠剤法を使用して日本分光社製のフーリエ変換赤外分光光度計 (FT/IR-4600)を用いて測定した。測定範囲は4000-400 cm⁻¹であり、スキャン幅4 cm⁻¹で積算測 定した。

4-2-3-3 ¹³C CP/MAS NMR スペクトル

¹³C NMR スペクトルは日本電子製の NMR 装置 (JNM-ECA600II) を使用し、CP/MAS 法を利用 してそれぞれ測定した。マジック角におけるサンプル回転速度は 6 kHz である。標準試料として、 TMS を使用した。

4-2-3-4 TG-DTA

熱挙動は Bruker AXS 社製の TG-DTA 装置 (TG-DTA2000SA) を使用し、60 mL min⁻¹の吹き込 み速度で空気を導入しながら、10 °C min⁻¹の昇温速度で 1000 °C まで測定した。標準試料として、 α-アルミナを使用した。

4-2-3-5 元素分析

粉末の試料中のCとNの含有量はElementar 製の全自動元素分析装置 (Vario EL cube) を使用 して測定した。

4-2-3-6 電子スピン共鳴スペクトル

電子スピン状態は日本電子製の電子スピン共鳴 (ESR) 装置を使用して、室温で測定した。

4-2-3-7 窒素ガス吸脱着

日本ベル社製の比表面積/細孔分布測定装置 (BELSORP mini II) を使用して試料の窒素ガス 吸脱着測定を行った。得られた吸脱着等温線から BET 法を使用して BET 表面積を導出した。窒 素ガス吸脱着測定前に真空条件下で 40℃、16 時間前処理した試料を測定検体とした。

4-2-3-8 励起および蛍光スペクトル、内部量子効率

励起・蛍光スペクトルおよび内部量子効率は日立ハイテクサイエンス製の分光蛍光光度計 (F-7000)によって測定した。

4-2-3-9 時間分解蛍光スペクトル

時間分解蛍光スペクトルは大塚科学製の時間分解蛍光装置 (PTI-5100S) を使用して測定した。

励起源には 337 nm の窒素ガスレーザーを使用し、420 nm の蛍光波長を検出した。試料の蛍光寿 命は式(ii)を用いて時間分解蛍光スペクトルを曲線回帰することによって算出した。

 $I(t) = a N(0)e^{-(1/\tau 1)t} + b N(0)e^{-(1/\tau 2)t}$ (ii)

ここで、*I*(t)は時刻 t における蛍光強度、N(0)は t=0 における励起分子の数、τ1 およびτ2 は励起 状態の寿命、a および b は係数である。

4-3 結果と考察

4-3-1 XRD

種々温度で加熱処理した NBM-MEA の XRD パターンを Figure 4-1 に示した。比較として、 NBM-MEA(as-prepared)の XRD パターンも併せて示した。加熱温度が 300 ℃ 以下のとき、ベー マイト構造に由来する (200) 面および (002) 面に帰属される 2 つの回折ピークがおよそ 20=50 および 65°にそれぞれ検出された¹³。IR スペクトルにおいても、750、615、490 cm⁻¹にベーマ イトの構造に由来する AlO₆ 骨格の伸縮振動が確認された (Figure 4-2)¹⁴。300 ℃ 以下で加熱処理 した NBM-MEA の結晶子径は、(020) 面の回折ピークから Scherrer の式を使用することによっ て、4~5 nm と算出された。NBM-MEA(400)の XRD パターン (Figure 4-1) および IR スペクトル (Figure 4-2) において、ベーマイトの構造の消失が確認された。Lippens らの報告によれば、結晶 子径の小さい PBM は 350 ℃ 以下でベーマイト相からγ-アルミナ相へ相転移する¹⁵。このことか ら、NBM-MEA を 400℃ で加熱処理することによって、ベーマイト構造が崩壊してγ-アルミナへ 相転移したと考えらえる。NBM-MEAの(200)の回折ピークの位置に着目すると、加熱温度が 高くなるにしたがってわずかに高角側に移動していることが確認された (Figure 4-3)。 NBM-MEA(as-prepared)および NBM-MEA(300)の格子定数 a を算出すると、それぞれ 0.367 およ び 0.364 nm と算出された。一方で (002) 面に由来する回折ピークはほぼ同じ位置に検出され、 その格子定数 c は 0.287 nm と計算された。これらの結果は、加熱処理されることによって NBM-MEA のベーマイトのシート構造が a 軸方向に歪んだことを示唆している。NBM-MEA の (020) 面に帰属される回折ピークの位置は、加熱処理によってはっきりと高角側に移動した。 Figure 4-4 に加熱処理された NMB-MEA の (020)面の回折ピーク位置から算出された基底間隔と 加熱処理温度の関係を示し、Table 4-1 にその基底間隔の値をまとめた。比較として、加熱処理 された PBM の基底間隔も Figure 4-4 に示した。興味深いことに、加熱処理温度に対する基底間 隔の挙動はおおよそ4領域にわけることができる。領域1である40~100℃において、加熱温 度が高くなるに従い、基底間隔は小さくなった。領域2の100から200℃では、基底間隔がほ ぼ一定であった。領域3の200から300 ℃において、基底間隔は加熱温度の増加とともに直線 的に減少し、領域 4 の 300℃以上ではほぼ一定であった。対照的に、PBM の基底間隔は加熱処 理温度に依らず、ほぼ一定であった。この結果に関して、後述の IR スペクトルの項で議論する。

Figure 4-1. XRD patterns of (a) NBM-MEA(as-prepared), (b) NBM-MEA(100), (c) NBM-MEA(140), (d) NBM-MEA(180), (e) NBM-MEA(200), (f) NBM-MEA(220), (g) NBM-MEA(300), and (h) NBM-MEA(400). " \bullet " and " ∇ " denotes diffraction peaks of boehmite and γ -alumina phases, respectively.

Figure 4-2. XRD patterns of (a) NBM-MEA(as-prepared), (b) NBM-MEA(100), (c) NBM-MEA(140), (d) NBM-MEA(180), (e) NBM-MEA(200), (f) NBM-MEA(220), (g) NBM-MEA(300), and (h) NBM-MEA(400).

Sample name	Crystallite size* (nm)	Basal space** (nm)
NBM-MEA(as-prepared)	5	1.2
NBM-MEA(100)	5	1.1
NBM-MEA(140)	5	1.0
NBM-MEA(180)	5	1.0
NBM-MEA(220)	5	1.0
NBM-MEA(300)	4	0.83
NBM-MEA(400)	-	-

 Table 4-1. The summary of crystallite size and basal space in NBM-MEA(as prepared) and heated

 NBM-MEA.

* This is estimated by using Scherrer equation; the value of shape factor, K, was taken to be 1.84.

** This is calculated from peak position of 020 in XRD.

Figure 4-3. The enlarged view of the powder XRD patterns shown in Figure 4-1. A and B are (200) and (002) planes, respectively, of boehmite in the range of $2\theta = 48$ to 52° and 63 to 67° . Note: (a) NBM-MEA(as-prepared), (b) NBM-MEA(100), (c) NBM-MEA(140), (d) NBM-MEA(180), (e) NBM-MEA(200), (f) NBM-MEA(220), (g) NBM-MEA(300), and (h)

Figure 4-4. Temperature depencency of the basal space of heated NBM-MEAs and PBM.

4-3-2 IR スペクトル、¹³C CP/MAS NMR スペクトル、元素分析

加熱処理された NBM-MEA におけるベーマイトの層間にインターカレートした MEA 誘導体 の化学状態を特定するために、IR スペクトルを測定した。測定された IR スペクトルの 2000-1000 cm⁻¹ の範囲を Figure 4-5 に示した。比較として、NBM-MEA(as-prepared) もあわせて示した。 NBM-MEA(100)の IR スペクトルは NBM-MEA(as-prepared)とよく似ており、1563 (*v*_{as}(COO⁻))、1500 (*v*_s(COO⁻))、1322 (*v*(N-COO⁻)) cm⁻¹にカルバメート基に由来する吸収帯が検出された^{11,16}。このカ ルバメート基に由来する IR バンドは、加熱温度が高くなるに従って減少し、代わりに 1663、1590、 1386、1350、1260 cm⁻¹に新しい IR バンドが新たに観測されるようになった。NBM-MEA(180)お よび NBM-MEA(200)のスペクトルにおいて、カルバメート基に由来する IR バンドは検出されな かった。Figure 4-6 に示す NBM-MEA(200)の¹³C CP/MAS NMR スペクトルから、171.8 ppm に -COOH 基に由来するシグナルが検出された。Tseng らは酸化チタン(TiO₂)の表面に修飾した MEA の一部が CO₂ を吸着することによってカルバミン酸である-OCH₂CH₂NHCOOH を生成すること を報告している¹⁷。層状無機化合物が有する層の空間はナノ反応場として機能することがあり、 選択的に化合物が生成されることが報告されている¹⁸。NBM-MEA におけるベーマイトの層間も、 ナノ反応場として機能すると推測される。従って、NBM-MEA を加熱処理することによって、 ベーマイトの層間に修飾している MEA 誘導体である MEACOO および MEAH からカルバミン 酸である-OCH2CH2NHCOOH が生成したと考えられる。種々温度で加熱した NBM-MEA に含ま れるCとNの含有量およびC/N比を確認するために、元素分析を行った。Figure 4-7に加熱温度 に対する C および N の含有量および C/N 比を示した。加熱温度が 200 °C 以下にまでは、加温 によりCおよびNの含有率はともに減少したが、そのC/N比は2.6~3.0であり大きく変化はみ られなかった (Figure 4-7)。100-200 ℃の加熱温度範囲において、ベーマイトの基底間隔はほぼ 一定であった (Figure 4-4)。このことから、加熱温度が 100~200 ℃のとき、試料中の C および N の含有率の減少は NBM-MEA の層間ではなく、その表面に物理吸着あるいは修飾した MEA 誘導体の脱離に由来すると考えらえる。従って、NBM-MEA(180)および NBM-MEA(200)に観測 された IR バンドについて、1663 (v(C=O)) cm⁻¹はカルバミン酸、1590 (δ(NH)) cm⁻¹は MEA、1386 (δ(CH₂)) cm⁻¹は MEA、1350 (δ(CH₂)) cm⁻¹は MEA、1260 (tw(CH₂)) cm⁻¹は MEA にそれぞれ由来す ると考えられる。大気下では不安定なカルバミン酸が検出された理由は、ベーマイトの層間にイ ンターカレートされていることによって、安定化されたためと考えられる。加熱温度が 200 ℃ を超えたとき、カルバミン酸に由来する IR 強度の減少は、C および N の含有率の減少とベーマ イトの基底間隔の収縮を伴って確認された (Figures 4-4、4-6、4-7)。このことは、NBM-MEA の 加熱処理によって、ベーマイトの層間にインターカレートされたカルバミン酸が変質あるいは分 解され、ベーマイトの層間から放出されたことを示唆している。NBM-MEA(300)において、1105 cm⁻¹に観測されるはずの Al に配位した O-C 結合の伸縮振動に帰属される吸収帯が検出されな かった (Figure 4-5)。この Al に配位した O-C 結合に由来する IR バンドは 260 ℃ 以上で加熱され た NBM-MEA において検出されなかった (Figure 4-8)。AHG-MEA(300)の¹³C CP/MAS NMR スペ クトルにおいても、MEA 誘導体の C2、C1 に由来する 43 および 60 ppm のシグナルが観測され なかった (Figure 4-6)。これらの結果に基づいて、ベーマイトの Al に配位した MEA 誘導体の O-C 結合は 260 ℃ 以上の加熱温度で開裂すると考えられる。

Figure 4-5. IR spectra of (a) NBM-MEA(as-prepared), (b) NBM-MEA(100), (c) NBM-MEA(140), (d) NBM-MEA(180), (e) NBM-MEA(200), (f) NBM-MEA(220), (g) NBM-MEA(300), and (h) NBM-MEA(400).

Figure 4-6. ¹³C CP/MAS NMR spectra of NBM-MEA(as-prepared), NBM-MEA(200), and NBM-MEA(300).

Figure 4-7. The plots of heated temperatures vs. content percentages of elements C, N, and calculated C/N ratio.

Figure 4-8. IR spectra of (a) NBM-MEA(200), (b) NBM-MEA(220), (c) NBM-MEA(240), (d) NBM-MEA(260), (e) NBM-MEA(280), and (f) NBM-MEA(300).

4-3-3. TG-DTA

NBM-MEA(as-prepared)および種々温度(100, 140, 180, 220, 300, 400 °C) で加熱処理された NBM-MEA の TG および DTA 曲線をそれぞれ Figures 4-9、4-10 に示した。Figure 4-9 の TG 曲線 および Figure 4-10 の DTA 曲線において、300 °C 以下で加熱された NBM-MEA はおよそ 100 お よび 300 °C の 2 箇所に吸熱および発熱反応を伴う重量減少が検出された。100 °C における吸熱 反応を伴う重量減少は試料表面に物理吸着した水の脱離であり、300 °C における発熱反応を伴う 重量減少はベーマイト構造の崩壊に伴う MEA 誘導体の変質および熱分解に由来すると考えられ る。NBM-MEA(400)は 300 °C 付近の重量減少が観測されないことから、ベーマイト構造を有し ていないことを示唆している。Figure 4-10 の DTA 曲線から、NBM-MEA(as-prepared) で検出さ れていた 230 °C 付近の発熱反応は、加熱処理温度が高くなるにしたがって観測されなくなった。 IR (Figure 4-5) および ¹³C NMR スペクトル (Figure 4-6) の結果も踏まえて、加熱処理によって変 化した DTA 曲線はベーマイトの層間にインターカレートされたカルバメートおよびプロトン化 された MEA 誘導体の変質が進行したことを支持する。熱分析から得られた結果の要約を Table 4-2 に記載した。

Figure 4-9. TG curve of NBM-MEA(as-prepared) and NBM-MEAs heated at several temperatures. Condition: heating rate of 10 $^{\circ}$ C min⁻¹ by the flow of dried air in a 60 mL min⁻¹.

Figure 4-10. DTA curve of NBM-MEA(as-prepared) and NBM-MEAs heated at several temperatures. Condition: heating rate of 10 $^{\circ}$ C min⁻¹ by the flow of dried air in a 60 mL min⁻¹.

 Table 4-2. The summary of crystallite size and basal space in NBM-MEA(as prepared) and heated

 NBM-MEA.

Sample name	Weightloss* (wt%)	The temperature showing a peak
		maximum in DTA curve (°C)
NBM-MEA(as-prepared)	48.3	237, 327
NBM-MEA(100)	45.9	248, 329
NBM-MEA(140)	43.6	330
NBM-MEA(180)	41.6	330
NBM-MEA(220)	37.8	327
NBM-MEA(300)	33.0	-
NBM-MEA(400)	24.8	-

* Difference in weight loss values at 30 and 1000 °C.

4-3-4. 励起および蛍光スペクトル と 発光のメカニズム

種々温度で加熱処理された NBM-MEA の励起および蛍光スペクトルを Figure 4-11、4-12 に示 した。また、明所およびλ = 365 nm の紫外線ランプ下の NBM-MEA(140)、NBM-MEA(180)、 NBM-MEA(220)の写真を Figure 4-12 の差込図に示した。加熱処理温度が高くなるに従って、 NBM-MEA の蛍光色は青色から青白色に変化した。いずれの試料とも 360~370 nm の励起光に よって 380~560 nm の範囲に蛍光帯が確認された。NBM-MEA(140)、NBM-MEA(180)、および NBM-MEA(220)の蛍光帯の中心位置の波長は 424、430、440 nm であった。蛍光波長の極大値の 長波長側へのシフトはベーマイトの結晶の歪みが影響していると推測される。NBM-MEA(180) において、300-500 nm の範囲の反射スペクトルの強度 (Figure 4-13) および 370 nm の励起スペク トルの強度 (Figure 4-11) が NBM-MEA(as-prepared)と比較して強くなっていることが確認され た。また、NBM-MEA(180)の内部量子効率は 2.7%であり、NBM-MEA(as-prepared) (1.4%)と比較 して、およそ 2 倍になっていた。興味深いことに、NBM-MEA(140)、NBM-MEA(180)および NBM-MEA(220)において、励起波長に依存した蛍光スペクトルが観測された (Figure 4-14、4-15、 4-16)。アルミナ基質の材料である陽極酸化アルミナ膜は、紫外線励起によって青色の蛍光を示 すことが報告されている^{12,19}。Duらは 360 nm の励起波長で 450 nm を中心とした蛍光帯を有す る陽極アルミナ膜の蛍光強度が加熱処理によって増加されることを報告した^{12a}。Huang らはア ルミホイルの陽極酸化によって紫外線励起によって 400 nm に発光帯を示す3層構造を有するア ルミナ膜を作製し、その発光のメカニズムについて研究した^{12b)}。さらに、Wuらは4nm以下の 平均粒子径を持つ超微小な非晶質アルミナ粒子の懸濁液を陽極酸化アルミナ膜から作製し、280 から 400 nm の励起波長を増加に伴って、蛍光波長の中心が 390 から 500 nm に単調にシフトす ることを見出した¹⁹。彼らはアルミナ膜および非晶質アルミナ粒子の発光の起源を特定するため に、電子の振舞を観測する ESR スペクトルを測定している。その ESR スペクトルから算出され るg値は2.0085^{12a)}、2.0073^{12b)}、2.0082¹⁹であったことから、彼らはこの発光の起源はアルミナ基 質内に生成した singly ionized oxygen vacancy (F⁺ center)であると結論付けている。Figure 4-17 に NBM-MEA(as-prepared)および NBM-MEA(180)の ESR スペクトルを示した。NBM-MEA-(as-prepared)のESR スペクトルにはシグナルは認められなかったが、NBM-MEA(180)にはシグ ナルが検出され、そのg値は 2.0063 であった。ESR の結果と Wu らの報告に基づいて、ベーマ イトの構造内に F⁺ center が生成したことによって、励起波長に対応した蛍光波長を示したと推 測される。一方、Gao らと Chen らは、陽極酸化アルミナ膜における青色の発光の起源はアルミ

ホイルの陽極酸化時に使用したシュウ酸に由来する炭素の不純物 (カーボン量子ドット) であ ると報告した²⁰。カーボン量子ドットは紫外線で励起されることによって、青色の蛍光を示すこ とが知られている²¹。また、Wang ら、Zhou ら、Li ら、Sahu らが報告するカーボン量子ドット は、励起波長に依存した蛍光スペクトルを示している^{21b),21d),21e),21f)}。この理由は、カーボン量子 ドットの表面上に C-OH、C-O-C、C=O、C-H のような種々官能基を有することによって、励起 波長に対応したエネルギー準位からの発光が支配的になるためと説明されている^{21e),21f)}。Figure 4-18 に NBM-MEA(as-prepared)と NBM-MEA(180)の窒素ガス吸脱着等温線を示した。いずれも IV 型かつ H2 型に分類される吸脱着等温線であることが確認された²²。また、BET 法から算出され る表面積はそれぞれ 233 m²g⁻¹および 227 m²g⁻¹であり、優位な差は認められなかった。これらの ことから、NBM-MEA(as-prepared)を加熱処理して作製された NBM-MEA(180) において、ベーマ イトの層間にインターカレートした MEA 誘導体の変質あるいは熱分解することによって、炭素 の不純物が生成したと考えられる。これまで、非晶質アルミナ内に生成したラジカルカルボニル に由来する炭素の不純物はg=2.004および2.02にひとつのESRシグナルを示すことが報告され ている²³。 ラジカルカルボニルの g 値は F⁺ center のそれと近いことから、これら 2 種類のシグナ ルは重なったスペクトルとして検出されたと考えられる。Figure 4-19 に NBM-MEA(180)の時間 分解蛍光の減衰曲線を示した。この時間分解蛍光の減衰曲線は2つの指数関数をいることで近似 曲線が描けることから、NBM-MEA(180)は2つの発光の起源を持つことが示唆される。この2 つの蛍光寿命τはそれぞれ 1.9 および 11.1 ns と算出された。一般に、F⁺ center に由来する蛍光寿 命は 7 ns 以下であり、炭素の不純物であるカーボン量子ドットの蛍光寿命は 2 から 20 ns である と報告されている^{7a,21}。したがって、NBM-MEA(180)の発光帯はベーマイトの構造内のF⁺ center と MEA 誘導体の変質あるいは熱分解に由来する炭素の不純物に由来する2つを発光の起源を有 していると推測される。各種分析と先行技術から、F⁺center および炭素の不純物に由来するどち らの発光とも、励起波長に依存した蛍光を示すと考えられる^{19,21b),21d),21e),21f)。それゆえ、ベーマ} イトの構造内の F⁺ center と炭素の不純物に由来する発光の相乗効果によって、量子効率が高く なったと推測される。このような観点から、2つの発光種の波長変換プロセスの模式図を推定し、 Figure 4-20 に示した。ここでは、370 nm の励起波長のとき、それに対応するエネルギー準位か らの発光である 430 nm の発光が支配的に観測され、420 nm の励起波長のときは、475 nm の発 光が支配的に観測されることを示している。

Figure 4-11. Excitation spectra of NBM-MEA(as prepared) and NBM-MEAs heated at 100, 140, 180, 220, 300, and 400 °C.

Figure 4-12. Photoluminescence spectra of NBM-MEA(as-prepared) and NBM-MEA heated at 100, 140, 180, 220, 300, and 400 °C. Inset: Photographs of NBM-MEA(140), NBM-MEA(180), and NBM-MEA(220) under daylight and UV lamp of $\lambda_{ex} = 365$ nm.

Figure 4-13. Reflectance spectra of NBM-MEA(as prepared) and NBM-MEA(180).

Figure 4-14. Photoluminescence spectra of NBM-MEA(140) as excited with several wavelengths. Inset: Photographs of NBM-MEA(140) under daylight and UV lamp of $\lambda_{ex} = 365$ nm.

Figure 4-15. Photoluminescence spectra of NBM-MEA(180) as excited with several wavelengths. Inset: Photographs of NBM-MEA(180) under daylight and UV lamp of $\lambda_{ex} = 365$ nm.

Figure 4-16. Photoluminescence spectra of NBM-MEA(220) as excited with several wavelengths. Inset: Photographs of NBM-MEA(220) under daylight and UV lamp of $\lambda_{ex} = 365$ nm.

Figure 4-17. ESR spectra of NBM-MEA(as-prepared) and NBM-MEA(180).

Figure 4-18. N₂ adsorption/desorption isotherm of NBM-MEA(as-prepared) and NBM-MEA(180). Condition: -77 K. *P*, P_0 and P/P_0 are pressure, saturated vapor pressure and the relative pressure, respectively.

Figure 4-19. Time-resolved photoluminescence decay of NBM-MEA(180). τ_1 and τ_2 were calculated from the decay curve, respectively.

Figure 4-20. The simple scheme of wavelength conversion process in NBM-MEA.

4-3-5 反応機構

Katayama らは水中でベーマイトと4等量のアセチルアセトンを反応させることによって、ア ルミニウムアセチルアセトナートが得られることを報告している²⁴。彼らはアセチルアセトンの C=O 結合がベーマイトの Al に配位し、続いて、キレートが形成することよってベーマイト構造 内の Al-O 結合の開裂が誘発される反応機構を提案している²⁴。また、Landry らは、ベーマイト と反応したカルボン酸がカルボキシルアトアルモキサンを生じさせることを報告している²⁵。 Tseng らは、TiO₂ 表面に修飾した MEA が CO₂ を吸着することによって生成したカルバミン酸 (-NHCOOH) が、Ti⁴⁺と相互作用することを報告している¹⁷。今回の種々化学分析の結果と先行 技術に基づいて、NBM-MEA のベーマイト構造内の Al³⁺と層間に生成したカルバミン酸の C=O が相互作用することによって、Scheme 4-1 に示すようにベーマイトの構造内に F⁺ center が生じ たと推測される。

Scheme 4-1. Structure model of NBM-MEA(180).

4-4 結論

MEA 誘導体をインターカレートしたベーマイトのナノ粒子 (NBM-MEA) は加熱処理温度の 変化に依存して、その蛍光特性が変化することが見出された。NBM-MEA(140)、NBM-MEA(180) および NBM-MEA(220)において、励起波長に依存した蛍光スペクトルが観測された。XRD、IR、 ¹³C CP/MAS NMR、元素分析、ESR、蛍光分光法、時間分解蛍光の減衰曲線から、加熱処理した NBM-MEA の発光の起源はベーマイト構造内に生成した singly ionized oxygen vacancies (F⁺ center) およびベーマイト層間の MEA 誘導体の変質および熱分解によって生成した炭素の不純 物の2種類に由来すると結論付けた。励起波長依存性を示すベーマイトのナノ粒子は極めて稀な 例である。ここで示された NBM-MEA は、希土類を含まずにありふれた元素のみで構成されて いることから、新規の蛍光材料としてさまざまな化学分野への展開が期待される。

4-5 参考文献

- 1. 磯部徹彦監修, ナノ蛍光体の開発と応用《普及版》, シーエムシー出版, 東京, 2007.
- a) Kim, K. B.; Kim, Y. I.; Chun, H. G.; Cho, T. Y.; Jung, J. S.; Kang, J. G. Structural and Optical Properties of BaMgAl₁₀O₁₇:Eu²⁺ Phosphor. *Chem. Mater.*, **2002**, 14(12), 5045-5052. b) Suehiro, T.; Hirosaki, N.; Xie, R. J.; Sato, T. Blue-emitting LaSi₃N₅:Ce³⁺ fine powder phosphor for UV-converting white light-emitting diodes. *Appl. Phys. Lett.* **2009**, 95(5), 051903.
- a) Enhanced photoluminescence and phosphorescence properties of green phosphor Zn₂GeO₄:Mn²⁺ via composition modification with GeO₂ and MgF₂. *Dalton Trans.* 2016, 45(23), 9506-9512. b) Sommerdijk, J. L.; Verstegen, J. M. P. J. Concentration dependence of the Ce³⁺ and Tb³⁺ luminescence of Ce_{1-x}Tb_xMgAl₁₁O₁₉. *J. Lumin.*, 1974, 9(5), 415-419.
- a) Li, J.; Watanabe, T.; Wada, H.; Setoyama, T.; Yoshimura, M. Low-Temperature Crystallization of Eu-Doped Red-Emitting CaAlSiN₃ from Alloy-Derived Ammonometallates. *Chem. Mater.* 2007, 19(15), 3592-3594. b) Kawahara, Y.; Petrykin, V.; Ichihara, T.; Kijima, N.; Kakihana, M. Synthesis of High-Brightness Sub-micrometer Y₂O₂S Red Phosphor Powders by Complex Homogeneous Precipitation Method. *Chem. Mater.* 2006, 18(26), 6303-6307.
- a) Jacobs, P. A.; Uytterhoeven, J. B.; Beyer, H. K. Some unusual properties of activated and reduced AgNaA zeolites. *J. Chem. Soc. Far., Trans.*, **1979**, 75, 56-64. b) Yumura, T.; Nanba, T.; Torigoe, H.; Kuroda, Y.; Kobayashi, H.; Behavior of Ag Clusters Inside a Nanometer-Sized Space of ZSM-5 Zeolite. *Inorg. Chem.*, **2011**, 50(14), 6533–6542
- Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. *Chem. Soc. Rev.*, 2014, 43, 4243-4268.
- a) Evans, B. D.; Stepelbroek, M.; Optical properties of the F⁺ center in crystalline Al₂O₃. *Phys. Rev. B* 1978, 18, 7089-7098. b) Akselrod, M.S.; Larsen, N. A.; Whitley, V.; McKeever, S. W. S. Thermal quenching of F-center luminescence in Al₂O₃:C, *J. Appl. Phys.* 1998, 84, 3364-3373.
- 8. Gao, P.; Xie, Y.; Chen, Y.; Ye, L.; Guo, Q. Large-area synthesis of single crystal boehmite nanobelts with high luminescent properties. *J. Crystal Growth* **2005**, 285,555-560,
- Bai, X.; Caputo, G.; Hao, Z.; Freitas, V. T.; Zhang, J.; Longo, R. L.; Malta, O. L.; Ferreira, R. A. S.; Pinna, N. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. *Nat. Commun.* 2014, DOI: 10.1038/ncomms6702.
- Alemi. A; Hosseinpour, Z.; Dolatyari, M.; Bakhtiari, A. Boehmite (γ-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations. *Phys. Status Solidi b* **2012**, 6, 1264-1270.
- Ohta, Y.; Hayakawa, T.; Inomata, T.; Ozawa, T.; Masuda, H. A Blue Photoluminescent Nano Boehmite Prepared in a Solvothermal Reaction of Aluminum Hydroxide Gel in Monoethanolamine at Low Temperature. *Chem. Lett.* **2017**, 46, 32-34.

- a) Du, Y.; Cai, W.L.; Mo, C. M.; Chen, J.; Zhang, L.D.; Zhu, X. G. Preparation and photoluminescence of alumina membranes with ordered pore arrays. *Appl. Phys. Lett.* **1999**, 74(20), 2951-2953. b) Huang, G. S.; Wu, X. L.; Kong, F.; Cheng, Y. C.; Siu, G. G.; Chu, P. K. In situ fabrication of alumina nanotube array and photoluminescence. *Appl. Phys. Lett.* **2006**, 89, 073114-1.
- Christoph, G. G.; Corbató, C. E.; Hofmann, D. A.; Tettenhorst, R. T. The Crystal Structure of Boehmite. *Clay. Clay Miner.* 1979, 27, 81-86.
- a) Kiss, A. B.; Keresztury, G.; Farkas, L. Raman and i.r. spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D¹⁷_{2h} space group. *Spectrochim. Acta. Part A* 1980, 36, 653-658. b) Kiss, A. B.; Gadó, P. A critical study of the hydrogen position in the crystal lattice of boehmite, γ-AlO(OH). *Spectrochim. Acta. Part A* 1982, 11, 1231-1236.
- 15. Lippens, B. C.; Boer, J. H. D. Study of Phase Transformation During Calcination of Aluminum Hydroxide by Selected Area Electron Diffraction. *Acta. Cryst.*, **1964**, 17, 1312-1321.
- a) Sun, C.; Dutta, P. K. Infrared Spectroscopic Study of Reaction of Carbon Dioxide with Aqueous Monoethanolamine Solution. *Ind. Eng. Chem. Res.*, 2016, 55 (22), 6276–6283. b) Richner, G.; Puxty, G.; Assessing the Chemical Speciation during CO₂ Absorption by Aqueous Amines Using in situ FTIR. *Ind. Eng. Chem. Res.* 2012, 51, 14317-14324.
- Tseng, C. L.; Chen, Y. K.; Wang, S. H.; Peng, Z. W.; Lin, J. L. 2-Ethanolamine on TIO₂ investigated by in situ Infrared Spectroscopy. Adsorption, Photochemistry, and Its Interaction with CO₂. *J. Phys. Chem. C*, **2010**, 114, 11835-11843.
- a) Song, L.; Shi, W.; Lu, C. Confinement Effect in Layered Double Hydroxide Nanoreactor: Improved Optical Sensing Selectivity. *Anal. Chem.*, **2016**, 88(16), 8188-8193. b) Ding, W.; Wei, Z.
 D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L.J.; Alvi, S. F.; Li, L.
 Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction. *Angew. Chem.*, *Int. Ed.* **2013**, 52, 11755-11759.
- Wu, X.; Xiong, S.; Guo, J.; Wang, L.; Hua, C.; Hou, Y.; Chu, P. K. Ultrathin Amorphous Alumina Nanoparticles with Quantum-Confined Oxygen-Vacancy-Induced Blue Photoluminescence as Fluorescent Biological Labels. *J. Phys. Chem. C*, **2012**, 116, 2356–2362.
- a) Gao, T.; Meng, G; Zhang, L. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities. *J. Phys.: Condens. Matter*, 2003, 15, 2071-2079. b) Chen, J. H.; Huang, C. P.; Chao, C. G.; Chen, T. M. The investigation of photoluminescence centers in porous alumina membranes. *Appl. Phys. A*, 2006, 84, 297-300.
- a) Zheng, C.; An, X.; Gong, J. Novel pH sensitive N-doped carbon dots with both long fluorescence lifetime and high quantum yield. *RSC adv.* 2015, 5, 32319-32322. b) Wang, L.; Zhou, H. S. Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application. *Anal. Chem.* 2014, 86(18), c) Zheng, H.; Wang, Q.; Long, Y.; Zhang, H.; Huang, X. Zhu, R.; Enhancing the luminescence of carbon dots with a reduction pathway. *Chem. Commun.*, 2011, 47,

10650-10652. d) Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. *Mater. Lett.* **2012**, 66, 222-224. e) Li, W.; Yue, Z.; Wang, C.; Zhang, W.; Liu, G. An absolutely green approach to fabricate carbon nanodots from soya bean grounds. *RSC Adv.* **2013**, 3, 20662. f) Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. *Chem. Commun.* **2012**, 48, 8835-8837.

- 22. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. *Pure Appl. Chem.* **1985**, 57, 603-619.
- a) Wakui, Y.; Takahashi, K.; Shan, Y. J.; Tezuka, K.; Imoto, H.; Hosokawa, S.; Shinozaki, N.; Ando, M.; Maekawa, H. Study on effects of carbon impurities and oxygen vacancies in amorphous alumina phosphor prepared via a solution method. *J. Lumin.* 2015, 157, 137-142. b) Lin, C. K.; Yu, M.; Cheng, Z. Y.; Zhang, C. M.; Meng, O. G.; Lin, J. Bluish-White Emission from Radical Carbonyl Impurities in Amorphous Al₂O₃ Prepared via the Pechini-Type Sol–Gel Process. *Inorg. Chem.* 2008, 47(1), 49-55.
- Katakura, R.; Koide, Y. One-step Synthesis of Aluminum Acetylacetonate from [AlO(OH)]_n (Boehmite) in Water. *Chem. Lett.* 2005, 34(10), 1448-1449.
- Landry, C. C.; Pappé, N.; Mason, M. R.; Apblett, A. W.; Tyler, A. N.; MacInnes, A. N.; Barron, A. R. From Minerals to Materials: Synthesis of Alumoxanes from the Reaction of Boehmite with Carboxylic Acid. *J. Mater. Chem.*, **1995**, 5(2), 331-341.

総括

本研究はソルボサーマル反応を用いた有機化合物とハイブリッド化されたベーマイトナノ粒 子の作製と機能化を模索し、その研究成果をまとめたものである。各章は次のように要約される。 第1章は序論であり、アルミニウムおよびその化合物の概論を述べた。特に、アルミナ水和物 の一形態であるベーマイトついて、その結晶構造、特性および用途について詳述し、代表的な合 成方法とその特徴について整理した。また、粒子の大きさ/形状が制御されたベーマイト、有機

化合物および高分子材料との複合化によって機能性が付与されたベーマイトの研究事例について整理し、ベーマイトの有用性について言及した。そして、新たな有機化合物と複合化されたベー マイトナノ粒子の研究戦略について述べ、本研究の意義・目的を示した。

第2章では反応性の高い非晶質の AHG の作製条件を見出すことを目的に、CO₂(g)を NaAlO₂ 水溶液に吹き込むことによって作製される AHG について、NaAlO₂ 水溶液の濃度と温度に着目 して検討を行った。得られた生成物を各種化学的測定にすることによって、NaAlO₂ 水溶液の濃 度が 0.98 M 以下かつ 25 ℃ 以下の条件で作製することによって、目的とする非晶質の AHG が得 られた。NaAlO₂の濃度、反応温度を下げることによって、PBM の核生成が抑制されたためと考 えられる。

第3章では種々アルミニウム原料と種々有機化合物のソルボサーマル反応について述べた。第 2章で合成した AHG と MEA をソルボサーマル反応させることによって、120 ℃ という低温で MEA 誘導体を層間にインターカレートしたベーマイトのナノ粒子がコロイド溶液として得られ、 360 nm の励起波長で 420 nm を中心とした幅広い蛍光帯を示すことを見出した。さらに、各種化 学測定によって、その MEA 誘導体とハイブリッド化されたベーマイトの実験式は AlO(OH)_{0.82}-(OCH₂CH₂NH₃⁺)_{0.05}(OCH₂CH₂NHCOO⁻)_{0.13} であると推定された。120 ℃ という低い反応温度でハイ ブリッド化されたベーマイトナノ粒子が生成した理由は、非晶質に由来する AHG の高い反応性 と、反応の進行に従って AHG から放出された少量の水がベーマイト構造の形成を促進したため と考えらえる。

第4章では第3章で作製した MEA 誘導体を層間にインターカレートしたベーマイトのナノ粒

子の機能性の向上について述べた。加熱処理温度に依存して MEA 誘導体を層間にインターカ レートしたベーマイトのナノ粒子の粉末の色および蛍光特性が変化することが確認された。また、 140 °C、180 °C、220 °C で加熱処理された MEA 誘導体を層間にインターカレートしたベーマイ トのナノ粒子は励起波長依存性を示し、180 °C で加熱されたベーマイトナノ粒子の量子効率は未 加熱のそれと比較しておよそ 2 倍向上することが見出された。XRD、IR、¹³C CP/MAS NMR,元 素分析電子スピン共鳴および時間分解蛍光の減衰曲線の解析結果から、加熱処理された MEA 誘 導体を層間にインターカレートしたベーマイトのナノ粒子の発光の起源はベーマイトの構造内 に生成した singly ionized oxygen vacancy である F⁺ center と MEA 誘導体の分解によって生成した carbon impurity に由来すると推定された。

以上、本研究ではソルボサーマル反応を用いて、新規の MEA から誘導される有機化合物と複 合化されたベーマイトナノ粒子を合成し、その構造の解明と機能化に関する研究を行った。希土 類元素を含まずに蛍光特性を有する MEA 誘導体を層間にインターカレートしたベーマイトのナ ノ粒子およびそのコロイド溶液は、新規の蛍光材料、機能性塗料への展開が想定される。また、 ベーマイトの層間にインターカレートされた MEA 誘導体と *in situ* で重合反応をさせることによ るナノコンポジット材料への応用が考えられる。このように、本研究で得られた MEA 誘導体を 層間にインターカレートしたベーマイトのナノ粒子は幅広い化学分野での応用が期待される。

著者発表の論文・特許等

【 論文 (査読有)】

- A Blue Photoluminescent Nano Boehmite Prepared in a Solvothermal Reaction of Aluminum Hydroxide Gel in Monoethanolamine at Low Temperature, <u>Yasuhiro Ohta</u>, Tomokatsu Hayakawa, Tomohiko Inomata, Tomohiro Ozawa, and Hideki Masuda, *Chem. Lett.* 2017, 46(1), 32-34. (第3章にて参照)
- 2 Novel Nano Boehmite Prepared by Solvothermal Reaction of Aluminum Hydroxide Gel in Monoethanolamine, <u>Yasuhiro Ohta</u>, Tomokatsu Hayakawa, Tomohiko Inomata, Tomohiro Ozawa, and Hideki Masuda, *J. Nanopart. Res.* 2017 in press. (第3章にて参照)
- 3 Temperature Dependency of Photoluminescence Emitted by Heat-treatment of Nano-Boehmite Intercalated with Monoethanolamine Derivatives, <u>Vasuhiro Ohta</u>, Tomokatsu Hayakawa, Tomohiko Inomata, Tomohiro Ozawa, and Hideki Masuda, *Chem. Lett.* 2017, 46(5), 722-725. (第4章にて参照)

【 特許出願 】

- ベーマイト複合体および及びその製造方法 太田康博、木戸健二、河合刀記夫、猪股智彦、小澤智宏、増田秀樹 特願 2017-058833
- 励起波長依存性を示すベーマイト複合体及びその製造方法 太田康博、木戸健二、河合刀記夫、猪股智彦、小澤智宏、増田秀樹 出願準備中

【学会発表(国内)】

 <u>太田康博</u>、早川知克、猪股智彦、小澤智宏、増田秀樹 [モノエタノールアミンと水酸化アル ミニウムゲルのソルボサーマル反応による青色の蛍光を有するナノベーマイトの作製]
 『第 26 回日本 MRS 年次大会』、D1-O20-008、神奈川、2016 年 12 月 奨励賞受賞
謝辞

本研究は名古屋工業大学 小澤・猪股研究室において、大学院工学研究科共同ナノメディシン 科学専攻博士後期課程における新素材の開発と機能の創出をテーマとして行いました。本研究に おいて、適切なご指導・ご鞭撻を賜りました小澤智宏准教授、ならびに猪股智彦准教授に深く感 謝の意を表すとともに謹んで御礼申し上げます。本研究を進めるにあたり、日頃より多大なご助 言・ご指導賜りました小澤・猪股研究室の増田秀樹プロジェクト教授に厚く御礼申し上げるとと もに、日頃からご便宜を賜りました谷山八千代技官、天野浩子さまに深く御礼申し上げます。

本研究を行うことをご承認くださりました河合石灰工業株式会社 河合進一社長、河合伸泰副 社長、ならびに経営陣の皆さま方に深く感謝の意を表すとともに謹んで御礼申し上げます。また、 博士後期課程に進学するにあたり、多大なご便宜を賜りました河合石灰工業株式会社 河合孝治 専務、河合刀記夫常務、木戸健二部長には深く御礼申し上げます。

本研究を進めるにあたり、蛍光分光光度測定および量子効率の測定においてご支援くださいま した名古屋工業大学 早川研究室の早川知克教授、時間分解蛍光測定においてご指導賜りました 名古屋工業大学 柳生研究室の柳生剛義准教授、電子スピン共鳴測定においてお世話になりまし た名古屋工業大学 小澤・猪股研究室の中根大輔博士、動的光散乱測定においてご厚意賜りまし た岐阜大学 櫻田・吉田研究室の櫻田修教授に深く感謝申し上げます。

平成26年度ナノテクノロジープラットフォーム学生研修プログラムにおきまして、ご指導賜 りましたエコトピア科学研究所 超高圧電子顕微鏡施設の春日部進教授、荒井重勇准教授ならび に同施設でご支援賜りました方々に深く感謝の意を表すとともに謹んで御礼申し上げます。また、 当研修に採択してくださいました独立行政法人物質・材料研究機構 ナノテクノロジープラット フォームセンターの方々に深く感謝申し上げます

本研究を遂行し、本論文をまとめることができたのは、小澤・猪股研究室の皆さまならびに河 合石灰工業株式社の皆さまと実験・議論を共にした結果であることは言うまでもありません。皆 さま方と共にした時間の全てが私の糧となっております。改めて感謝申し上げます。

最後になりますが、これまでの人生を支えてくださいました両親、家族への最大限の感謝を 持って、謝辞といたします。

> 2017年9月 太田 康博