コーン型ドラフトチューブ付撹拌槽の混合性能

古川陽輝¹·加藤禎人¹·南雲亮¹·多田豊¹·佐藤誠²

¹名古屋工業大学 生命・物質工学科, 466-8555 名古屋市昭和区御器所町 ²佐竹化学機械工業(株), 335-0021 埼玉県戸田市新曽 66

キーワード : 撹拌, 混合, ドラフトチューブ, 所要動力

風力発電において使用されている風レンズの形状に着目し、コーン型ドラフトチューブを考 案した.本報では、このコーン型ドラフトチューブを備えた撹拌槽における混合パターンと撹 拌所要動力を観測・測定した.その結果、コーン型ドラフトチューブを使用することによって低 動力で良好な混合が得られた.

緒言

ドラフトチューブは対流誘導円筒としてエアリフト リアクターや通気撹拌槽あるいはヘリカルリボン翼と 併用した重合反応装置に使用される場合がある.ドラフ トチューブを設置することによって撹拌槽内流体の上 下の対流循環が促進され,気泡の循環および液中への 取り込みも促進され,低通気量で済む場合もある.一方, エアリフトリアクターでは高い通気量による運転が可 能となり高い K_La が得られるという利点もある.また高 粘度流体の混合に対してヘリカルリボン翼との併用に より非常にシャープな循環時間分布が得られるという データもあり種々の利点がある.しかしながら,ドラフト チューブを撹拌槽に設置する場合の技術的なデータは ほとんど入手できないのが実情である.

そこで,筆者らは(Furukawa *et al.*, 2013),種々の幾何形 状のドラフトチューブを備えた撹拌槽の所要動力を測 定し,その動力数がドラフトチューブの幾何形状にはほ とんど影響されないことを見出した.さらにその動力数 は低粘度流体を使用した乱流域では,亀井ら(Kamei *et al.*, 1995, 1996)および平岡ら(Hiraoka *et al.*, 1997)の式を用い て,邪魔板枚数を $n_{\rm B}$ =1 とし,邪魔板幅をパドル翼では $B_{\rm W}/D$ =0.05,ピッチドパドル翼では $B_{\rm W}/D$ =0.08 とするこ とで相関できることを示した.ただし,どのような幾何形 状のドラフトチューブが混合に適しているかは検討さ れていない.

そこで,筆者らは風力発電において使用される風レン ズと呼ばれる集風体に着目した.風レンズとは,これを風 車周りに設置することによってレンズ後方での圧力低 下が起き,これにより集風効果をもつものである.この風 レンズの形状を基にコーン型ドラフトチューブ(コーン 型 DT)を考案した.コーン型 DT を用いることによって

Fig.1 Geometry of mixing vessel

Table 1 Geometry of cone type draft tube

No.	$D_{\rm DT}[\rm m]$	$d_{\rm DT}[\rm m]$	α [rad]	$H_{\rm DT}[\rm m]$
1	0.120	0.0700	5π/12	0.0925
2	0.120	0.0527	7π/18	0.0925
3	0.156	0.0700	13π/36	0.0925
4	0.120	0.070	π/6	0.0144

撹拌槽内の循環が促進されると考えられる.本報では,コ ーン型 DT を備えた撹拌槽において混合パターンを可 視化し,撹拌所要動力を測定し,有用な結果が得られたの で報告する.

1. 実験方法

使用した撹拌槽はアクリル樹脂製平底円筒槽であり, その内径 D は 0.185 m であり,液高さ H は槽径 D と等し

Fig. 2 Mixing pattern of turbulent vessel without baffle in turbulent region. (*Re*=18,000)

くした.コーン型 DT 付撹拌槽の幾何形状を Figure 1 に 示す.使用したコーン型 DT は4種類の幾何形状で作製 した.その詳細については Table 1 に示す.コーン型 DT は全ての実験で Z/H=0.5 に設置した.撹拌翼には,翼径 *d* が 0.070 m で,翼幅 *b/d* が 0.2 の 4 枚羽根パドル翼を使用 した.流体には,濃度を調整した水飴水溶液,および水 道水を使用した.

撹拌所要動力測定には,最も一般的な軸トルク測定法 を用いた.使用したトルクメーターは SATAKE ST-3000 である.

撹拌所要動力はその平均トルクを用いて $P = 2\pi nT$ で求 めた.動力測定法は筆者らの一連の方法(Kato *et al.*,2010) と同じである.

混合過程は,ヨウ素でんぷん反応を用いた着色法で可 視化し,CCD カメラ(SONY 製 HDR-CX180)で撮影した. さらに,ヨウ素-チオ硫酸イオンの酸化還元反応を利用 した脱色法で混合時間を測定した.

2. 結果と考察

2.1 混合パターン

予備実験として,コーン型 DT を用いないで乱流域に おける邪魔板無し乱流撹拌槽の混合パターンを観測し

Fig. 5 Mixing pattern of turbulent vessel with cone type draft tube (No. 3) in turbulent region. (*Re*=18,000)

た.その結果を Figure 2 に示す.一般的に知られているように,この条件では翼近傍に固体的回転部が発生する.

これに対して,Table 1 に示した No.1 のコーン型 DT を 使用したところ Figure 3 に示すような混合パターンを 得た.固体的回転部が翼近傍に発生することなく,良好な 混合が得られた.

No.1 と比較して上部開口径 *d*_{DT} を狭くした Table 1 に 示した No.2 のコーン型 DT および下部開口径 *D*_{DT} を広

 Table 2 Mixing time and power consumption for various condition

	Without	Standard	Cone type draft tube			
	baffle	baffle	No.1	No.2	No.3	No.4
$t_{\rm m}[{\rm s}]$	462	5.3	28.1	28.9	21.8	19.8
$N_{ m P}[-]$	0.60	4.4	1.6	1.8	1.9	1.9
$P_{\rm V}[{\rm W}\cdot{\rm m}^{-3}]$	10.7	78.4	28.8	32.4	33.8	33.8

くした No.3 のコーン型 DT を用いて得られた混合パタ ーンを観測した.その結果を,各々Figure 4 および5 に示 す.両図から,上部開口径と,下部開口径のいずれを変化 させた場合も,混合時間にはほとんど影響は無かった.

ー方,コーン型 DT の高さ H_{DT}を小さくした No.4 のコ ーン型 DT を使用すると,混合パターンに大きな変化が みられた.得られた挙動を Figure 6 に示す.コーン型 DT 高さを変化させた場合,混合時間が劇的に減少している ことが分かる.このような結果となった理由は,H_{DT} が高 い場合には着色液がコーン型 DT 内部で循環した後に 下方向に吐出されるのに対して,H_{DT} が低い場合にはコ ーン型 DT 内部で循環することなく速やかに下方向に 吐出されるためである.

2.2 混合時間

対照実験として、コーン型 DT を用いないで標準邪魔 板条件(n_b =4, B_W/D =1)での混合時間も測定した.邪魔板 無し撹拌槽、標準邪魔板条件の撹拌槽および4種類のコ ーン型 DT 付撹拌槽で測定された混合時間 t_m を Table 2 に示す.標準邪魔板条件では一般的に知られているよう に速やかに混合が達成される.一方,いずれのコーン型 DT でも邪魔板無し撹拌槽と比較して,混合時間は短縮 されたことが確認できる.

さらに,混合時間が最も短いコーン型 DT は,H_{DT} が低 いNo.4 であった.前述したように,コーン型 DT 高さが高 いものでは着色液がその内部で混合された後に吐出さ れて撹拌槽内全体で混合が達成されるのに対して,低い ものは着色液の投入直後に撹拌槽内全体に拡散され混 合が達成される.この混合過程の違いが,混合時間に反映 されていると考えられる.

2.3 フローパターン

乱流撹拌槽においてコーン型 DT の使用を使用する と,混合が促進される.Figure 7は,スリット光を用いたト レーサー法で可視化したコーン型 DT 付撹拌槽のフロ ーパターンである.Fig.7(a)に示すようにコーン型 DT 付 撹拌槽では,翼から吐出される流れがコーン型 DT に衝 突し,上下の二次循環流が発生する.これに対し て,Fig.7(b)に示すように邪魔板無し乱流撹拌槽では旋回 流が主体的である.このことがコーン型 DT 付乱流撹拌 槽において混合を促進するものと考えられる.

(a) with cone type draft tube (1

Fig. 7 Visualization of flow pattern in mixing vessel (a) with and (b) without cone type draft tube

Fig. 8 Effect of cone type draft tube on power consumption

2.3 撹拌所要動力

邪魔板無し撹拌槽,標準邪魔板条件の撹拌槽およびコ ーン型DT付撹拌槽で測定された動力数を Figure 8に示 す.図中の黒の点線は亀井らの式(Kamei et al., 1995, 1996)から計算された標準邪魔板条件(n_b=4, B_W/D=0.1)の 動力数を示しており,乱流域において一般的に知られて いるように高い動力数を示している.コーン型 DT 付撹 拌槽の動力数は,層流域では邪魔板およびドラフトチュ ーブの有無に関係なく同じ動力数を示すが,乱流域では 標準邪魔板条件より低い動力数を示した.一方, Furukawa et al. (2013)で得られたドラフトチューブ付撹 拌槽の動力相関を実線で示すが,これとはよく一致し た.したがって,コーン型 DT 付撹拌槽は低動力で良好な 混合を得るのに有用な撹拌装置である.

3. 結言

種々のコーン型 DT を用いて混合パターンを観測した.その結果,コーン型 DT を用いることによって混合が 促進されることがわかった.さらに,混合をより促進する ためには,DT 高さを小さくした方が良い.また,乱流域に おいて,4枚羽根パドル翼の標準邪魔板条件における動 力数は4前後を示すのに対して,コーン型 DT 付撹拌槽 における動力数は2前後の低い動力数を示す.以上のこ とからコーン型 DT を使用した撹拌槽は低動力で良好 な混合を達成できると考えられる.

Nomenclature

b	= height of impeller blade	[m]
$B_{\rm W}$	= baffle width	[m]
С	= clearance between impeller and bottom	[m]
d	= impeller diameter	[m]
$d_{\rm DT}$	= upper diameter of cone type draft tube	[m]
D	= vessel diameter	[m]
$D_{\rm DT}$	= lower diameter of cone type draft tube	[m]
Η	= liquid depth	[m]
$H_{\rm DT}$	= height of cone type draft tube	[m]
$K_{\rm L}a$	= volumetric mass transfer coefficient	[s ⁻¹]
п	= impeller rotation speed	[s ⁻¹]
$N_{\rm P}$	= power number $(=P/\rho n^3 d^5)$	[-]
Р	= power consumption	[W]
$P_{\rm v}$	= power consumption per unit volume	$[W \cdot m^{-3}]$
Re	= impeller Reynolds number (= $d^2 n \rho / \mu$)	[-]
$t_{\rm m}$	= mixing time	[s]
Т	= shaft torque	[N•m]
Ζ	= clearance between draft tube and bottom	[m]
μ	= liquid viscosity	[Pa•s]
ρ	= liquid density	[kg • m ⁻³]
α	= angle of cone type draft tube	[rad]

Literature Cited

Furukawa, H., Y. Kato, Y. Tada, S. T. Koh and Y. S. Lee;
"Power Consumption of Mixing Vessel with Draft
Tube," Kagaku Kogaku Ronbunsyu, 39, 9-12
(2013)
Hiraoka, S., N. Kamei, Y. Kato, Y. Tada, H. G. Cheon and T.
Yamaguchi; "Power Correlation for Pitched Blade
Paddle Impeller in Agitated Vessels With and
Without Baffles," Kagaku Kogaku Ronbunsyu, 23,
969-975 (1997)
Kamei, N., S. Hiraoka, Y. Kato, Y. Tada, H. Shida, Y. S. Lee,
T. Yamaguchi and S. T. Koh; "Power Correlation
for Paddle Impellers in Spherical and Cylindrical
Agitated Vessels," Kagaku Kogaku Ronbunsyu, 21,
41-48 (1995)
Kamei, N., S. Hiraoka, Y. Kato, Y. Tada, K. Iwata, K. Murai,
Y. S. Lee, T. Yamaguchi and S. T. Koh; "Effect of
Impeller and Baffle Dimensions on Power
Consumption under Turblent Flow in an Agitated
Vessel with Paddle Impeller," Kagaku Kogaku

Kato, Y., Y. Tada, K. Urano, A. Nakaoka and Y. Nagatsu;
"Differences of Mixing Power Consumpiton between Dished Bottom Vessel and Flat Bottom Vessel," *Kagaku Kogaku Ronbunsyu*, **36**, 25-29 (2010)

Ronbunsyu, 22, 249-256 (1996)

Mixing Performance of a Cone-Type Draft Tube

Haruki FURUKAWA1, Yoshihito KATO1, Ryo NAGUMO1, Yutaka TADA1, Makoto SATO2

¹Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-shi, Aichi, 466-8555, Japan

2Tokyo Office, Satake Chemical Equipment Mfg., Ltd., 66 Niizo, Toda-shi, Saitama, 335-0021, Japan

Keyword : Mixing, Agitation, Draft tube, Power consumption

To improve mixing performance, a cone-type draft tube based on the wind lens used in a wind power plant was proposed. Observation and measurement of the mixing pattern and power consumption with the cone-type draft tube revealed that it provided better mixing with lower power consumption.