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Holomorphic curves extremal for the truncated defect relation are considered in this article and several
results on the defect are given. These results correspond mainly to those obtained for holomorphic curves

extremal for the non-truncated defect relation in the references [10] and [11].

1. Introduction

Let f = [ f},"**, fu+1] be a holomorphic curve from C into the n-dimensional complex projective space P "(C) with a reduced

representation
(fis s fue) 1 € = €™ =10},

where n is a positive integer.

We use the following notations:

If @1 = AP+ +| frar@P
and for a vectora=(ay, ***, anH)EC"”—{O}

lal =(la)? -+ a2 @f)=a fit+apforr, @F@Q)=afi)+ " Fape fr )

The characteristic function of f is defined as follows (see {12]):
2n
10 )= 5= [ loghf(ei®)ld6-logl£(O)]
0

We suppose throughout the paper that f is transcendental; that is to say,

lim Zf) = oo
r—oeo lOGr
and f is linearly non-degenerate over C ; namely, fi, ***, f,, are linearly independent over C.

It is well-known that f is linearly non-degenerate over C if and only if the Wronskian W=W(f|, ***, f,,1) of fi, ***, fu41 18
not identically equal to zero.

For meromorphic functions in the complex plane we use the standard notation of the Nevanlinna theory of meromorphic
functions ([4], [S]).

Fora €C""!—{0} we write

_ 1 llalllfre’®)l — 1
a.f)=— | loglelifreD yg N (ra, f)=N(r, ——).
m(r,a,f) 2 ), og @ f(re®) | (r.a,f) (r, (a’f))

We then have the First Fundamental Theorem ([12], p.76):
T(r.f)=m(r,a,f)+N(r,a, f)+0Q1).
We call the quantity

S(a,fy=1—limsup N(r,a,f)/T(r,f) = liminf m(r,a,f)[T(r,f)
r— oo r— oo
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the deficiency (or defect ) of a with respect to f. We have 0 < 8(a, f) < 1.

Further, let v(c) be the order of zero of (a, f (z)) at z=c and for a positive integer & let

n(r.a,f) = z min{v(c), k}.
lel<r

Then, we put for r>0

rn,(t,a,f)—n,(0,a,f)
Nyr,a,f) = j. . - !
0 t

dr+n,(0,a,f)log r

and put 8, (a, f)=1—1im sup, .c Ni(r,a,f)/T(r,f). Then,
0<8(a, < (a, f)<1 ey

Let X be a subset of C” 71— {0} in N-subgeneral position; that is to say, #X > N + 1 and any N +1 elements of X generate
C"*1 where Nis an integer satisfying N=n.

Cartan ([1], N=n) and Nochka ([6], N >n ) gave the following

Theorem A (Truncated Defect Relation). For any g elementsa; (j =1, ", g) of X,

q
Y 8,(a,f)S2N=n+1
j=1

where 2N—n+1<g < % (see also [2] or [3]).
We are interested in a holomorphic curve f for which the defect relation is extremal:

q
28"(a»,f)=2N—n+l. ®))
j=1
Put X(0)={a = (a;,**, a,+1)EX | a,4+,;=0}. Then, it is easy to see that 0 <#X(0) <N since X is in N-subgeneral position.

Further we put (see Definition 1 in [7])

_ 1 2"1 N 0\ 10
w= max | @], )= [ Cogutre®)-logu(e))

and
Q= limsup #(r,f)/T(r.f).
r— oo

Proposition A (see [7]). (2) #(r,f) is independent of the choice of reduced representation of f.
(b) «r,fYST(r,f)F+0). (c) N(r, 1/];)5 T(r,)tOo) (j=1,,n). (d) 0£Q <1

We proved the following
Theorem B. Suppose that (i) N>n>2 and (ii) there are vectors ay,"*, 4, in X satisfying

q
2. 8(a;,f) =2N—n+1,
Jj=1

where 2N—n+1<g< .
(D If Q <1, then (a) #X(0)=N; (b) There exists a subset P of {1, 2,"**, g} satisfying

#P=N—n+1, S(aj,f)Zl (j€EP) and X(O)ﬁ{aj|j€P}= o
(c) Any nelements of X—{a; | jE€ P} are linearly independent (see [11]).
(I) If n=2m (m € N), then there are at least [N —n+1)/(n+1)]+ 1 vectorsac {a;,' ", a,} satisfying & (a, f)=1 ([10]).

Our main purpose of this article is to change the assumption (ii) in Theorem B for a weaker condition (2) and to obtain a

similar result to Theorem B.
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2 Preliminaries and lemma

We shall give some lemmas for later use. Let f = [ fi,***, fur1], X, X(0) etc. be as in Section 1, g any integer satisfying 2N—
nt1<g< and we put 0={1,2, -, q}. Let {q; |j € O} be a family of vectors in X. For a non-empty subset P of Q, we denote

V(P)= the vector space spanned by {a; |j€P} and d(P)=dim V(P)

and we put O ={PCQ | 0<#P<N+1}.

Lemma 2-1 ((2.4.3) in [3], p.68). For PEQ,#P—d(P)SN—n.

For {aj | j€Q0), let @ : Q — (0, 1] be the Nochka weight function given in [3, p.72] and 8 the reciprocal number of the
Nochka constant given in [3, p.72]. Then they have the following properties:

Lemma 2-2 (see[3], Theorem 2.11.4).

(@) 0< w(j)@<1foralljEQ; (b) g—2N+n—1=6 (zj?zlw(j) —n—1);

©) N+D/(nt1) <<Q2N—n+1)/(n+1); (d) If PEQ, then Zjepw(j)g d(p).

Note 2-1. (c¢) of Lemma 2-2 can be refined as floolws:

N/n< 6 <@N—n+1)/(n+1).

Proof. When 8 =(2N—n+1)/(n+ 1), there is nothing to prove as N/n<(2N—n+1)/(n+1).
When 8 <(2N—n+1)/(n+ 1), then N>n and there is an element P € @ satisfying

6=QRN—n+1—#P)/(n+1—d(P)) (1<d(P)<n)
by the definition of 6. By Lemma 2-1 we have
O=02N—n+1—#P)/(n+1—d(P)2(N+1—d(P))/(nT1—d(P))>N/n

since d(P) 21 in this case.

Lemma 2-3 ([8], Theorem 2). For any a;,""", a, € X, we have the inequality

q
Za) (J)m(r, aj,f)-i-N(r, 1/WHS(A+d)T(r, fY+(n—d)xr, f)+S(r,f),
i=1

where d= Zaje X(O)w(j).
Corollary 2-1 (Defect relation). For any a,,"**, @, € X, we have the following inequalities:
O Tl 0()d,@, )<d+1+(n=dQ;

n z? _ 8, )HS2N=n+1=Nn—d)n—Q)/n,

where d is that given in Lemma 2-3.

Proof. From the inequality (3.2.14) in [3] we easily obtain the inequality
q
D OGN, a5 )= Ny(r. a;. f H<N(r, 1/W)+0(logr).
J=1

By using this inequality we obtain (I) from Lemma 2-3 and by applying Lemma 2-2 and Note 2-1 to (I) we obtain (II) as vaual.

Remark 2-1. This is an amelioration of Theorem A since d<n, Q <1 and so
d+t1+(n—d)Q <n+1 and 2N—n+1—Nun—d)(1—Q)/n<2N—n+1.

Lemma 2-4 (see [9], Lemma 3). Suppose that N>n. Fora, -, a,< X, the maximal deficiency sum

q
D 8@, )=2N—n+t1

J=1

holds if and only if the following two relations hold:
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1) (1— Bw(j))1 '5,,(aj,f))=0 G=1,"9; 2 Zjﬂa)(j)sﬂ(ajrf):"_’_ 1.
Proof. The proof is similar to that of Lemma 3 in [9]. We easily have that

q q9 q
030 ()8, NTa—0Y o ()= Y (8,@. N+ (1~ 001~ 3@
= |

J j=1 Jj=1
which reduces to

q q q
N—nt1= Y Bya;, )= 6n+1— Y 0(D8,a. )+ Y (1= 6018, ) )
J=1 j=1 ji=1

by Lemma 2-2(b). By Corollary 2-1 and Remark 2-1, we easily obtain this lemma since
(1= 61— 38,@a;, N20 (j =1, q)

from (1) and Lemma 2-2(a).
Corollary 2-2. Suppose that N>n and that fora, -, a,€X, the equality

q
3 8,(a;, ) =2N—n+1
j=1
holds. If 8w (j)<1 for some j € Q, then §,(a;, f)=1.
Definition 2-1 ([9], Definition 1). We put

l:[Pnir(lgd(P)/#P and T(j)=A (JEQ)

Then, A and T have the following properties.

Lemma 2-5 ([9], Proposition 2). (a) I/(N—n+1) <A <(n+1)/(N+1);

(b) Forany PEQ, X . p T(j)<d(P).

Remark 2-2. (a) If A <(n+1)/(2N—n+1), then A =min; cjsq @) @(H)= A and 8w (j)<1 (jEP,) for an element
P,E€ O satistying A =d(P,)/#P,.

(b) f A2(n+1)/2N—n=+1),then @(j)=1/0=n+1)/CN—n+1)(j =1, q).

In fact, the first assertion of (a) is given in the proof of Proposition 2.4.4 ([3],p.68) and by the definition of @(j) ([3],p.72).
For the second assertion of (a), as (n+1)/2N—n+1)<1/ 8 and @(j)= A (jEP,), we have the conclusion.

(b) See the definitions of @ (j) and @ ([3], p.72).

Lemma 2-6. Suppose that there exists a function T: Q — (0, 1] which satisfies the following condition ().

(%) Forany PEQO, Zjep T(j)<d(P).

Then, for any P& O satisfying #7=N+ 1 and for real numbers E|, ***, E_ satisfying E;2 1 (j & Q), there exists a subset B of
P satisfying the followings:

(2) #B=n+l; (b) {a; | /€ B} is a basis ofC"TL (¢ T

Proof. By (*), we can prove this proposition as in the case of Proposition 2.4.15 in [3], p.75. To make sure of it we shall give

1)
e B < E;.

a proof of this proposition. We suppose without loss of generality that £y 2 E>2-+2E,. We choose ji,", j, +| by induction as
follows:

1) Letj; be the minimum number in P. We put
Pi={ji;} and R/={jEP|aEV(P)}
2) Suppose that J;,***, j; are chosen. We put for k> 1
Pi=jyii) and Ry={jEP—R,_| | ;EV(PY)},

where Ry= ¢. We choose ji | (1 <k<n) as follows.
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Je+1= min{ jJEP | a;¢ V(Py)}

and put

Per1={ip k1l and Ry ={jE€EP— P | a;€V(Pr1 ).

Then, it is easy to see that

(1) Ry,**, Ry+ are mutualy disjoint and a4, are linearly independent;
i) P=URLI R, (i) E, 2 E; for jER; (iv) Ej; 2E; 22E 21
We put for k=1, =, n+1

TszIU"'URk and Z 'C(j):dk.
jER,
Then,

de -m<0 m=12, -, nt1) )
k=1
since

Sd=3 3 )<dT,)=m
k=1 k=1 jER,

by (*). Put B={ j;,"**, j,+1}. Then, B satisfies (a), (b) and (c). It is easy to see that (a) and (b) hold. We have only to prove (c).
Now, by (4), (iii) and (iv) we have the inequality (c):

2 n+1 n+1 j n+1 dk _1+d n+1 _l+d n+1 d
; E. : <E.E. ! *
ME" =T M&"<T &= 15 =55 """ 11 & <EE, E,
jePp k=1 Jj€ R, k=1 Je Ry k=1 k=2 k=2
~1+d +d, "1 ~2+d, +d, "1 “2edi+d, "H1 4
_ijElz H J| JzElz H E "Eleszjz H Ejk
k=3
E -2+d +d,+d, 2+l Edk EEE -3+d, +d,+d, ntl d
I N P £ Je T TSI TR i
k=4 k=4
-n-1l+d,+ " +d, |
<E E --E. E. <E.E. -E = .
EllEjz Elnn I+ Ji ) Jn+i HE!
jeB

Lemma 2-7. Suppose that a function T : Q — (0, 1] satisfies (*) in Lemma 2-6. Then, the following inequality holds.

Zq: T(ym(r,a;, f)s(n +DT(r, f)—N(r, 1/W)+S(r, ).

j=1
Proof. We put (a;, f)=F;(j =1, ***, q). For any z(#0) arbitrarily fixed in | z |< oo for which Fi@F0(j =1, q), let
|Fj ()] < |Fj ()| < <|Fj ()],
where ji,'+*, j, are distinct and 1 < jy,°+, j,<g. Then, there is a positive constant K such that
I <K|F; ()] (v=N+1,. q). (&)

(From now on we denote by K a positive constant, which may be different from each other when it appears.)
We have by (5) and Lemma 2-6
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= (gl f @I N“(ua lall £ >ujwv la; A2
K
U (!(a,f(z))l) <K 11 |Fj, ()] H |F; (2)]

el W)
|W(z2)| njve,,lev(z)\’

(6)

where Wp(z) is the Wronskian of F' ) (jy€ B). Note that Wg(z)=cW(z) (cF0, constant). From (6) we obtain

q
1 el LA
() log === <(n+1) log —log |W + log'l ——E2—"————+1log K,
2OV ey ST DI lo WG 2, Lo s

where summation ZBC 0 is taken over all BC @ satisfying that {a; | JEBY} is a basis of C 7*1 From this inequality we obtain the
inequality
q
Zt(j)m(r, a; IS+ DT f)—N(r, Y W)HES(r, f).

j=1
as usual.

For any entire function 4 and a point a €C, let v ;(a) be the order of zero of h(z) at z=a.

Lemma 2-8. Suppose that a function T: Q — (0, 1] satisfies (*) in Lemma 2-6. Then, for any vectors ay,"*", a, € X, we have
the inequality:

q
Z’c(j){N(r, a;, )~ Ny(r,a;, f)} <N, I/W)+0(logr).
J=1
Proof. As in the case of (3.2.14) in [3], we obtain the inequality
Z Vg @=m) " < vy (@), ™
j=1
where Fi=(a;, f)and = max(x, 0) for a real number x.

In fact, as is seen from the proof of the inequality (3.2.14), only (d) of four properties (a), (b), (¢) and (d) in Lemma 2-2 is
necessary to prove it. Therefore, the proof is effective if we change @ for our weight function T which has the same property ()
as Lemma 2-2 (d) and we have the inequality (7).

From (7), we obtain the inequality

Z 1)), a;, f)=ny(r, @, ) <nr, 1/ W),
J=1
from which we have our lemma immediately.
Lemma 2-9. Suppose that a function T: Q — (0, 1] satisfies (*) in Lemma 2-6. Then, for vectors a;,**, a,EX, we have the
inequality:
q
218, (@), f)<n+1.
Jj=1
Proof. From the First Fundamental Theorem, Lemma 2-7 and Lemma 2-8 we obtain the inequality
q
2T a;, )= Ny(r, @, )< (n+ DT f)+S(r ),
ji=1
from which we obtain our lemma as usual.
Corollary 2-3. For vectors a;,"**, a, € X, we have the inequality

q
Z 8”(aj .

j=1

Proof. As 1(j)= A (j€ Q) satisfies the property (*) in Lemma 2-6 (Lemma 2-5(b)), we have this corollary from Lemma 2-
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9 immediately.

3 Extremal caseI: Q <1land g <

Let f, X, X(0) and @ etc. be as in the previous sections and g an integer satisfying 2N —n+1<g<co. Throughout this
section we suppose that
i) N >n22;
(i1) there are vectors a;,***, aqEX satisfying
q
Z Sn(aj,f):?.N—n-H;

j=1
(i) Q@ <1.

Proposition 3-1. For any a €X(0), 3,(a,f)208(a,f)21—Q >0.
Proof. From the definitions of #(r, f) and N (r, a, f), for a €X(0) we easily have the inequality N(r, a, f) < t(r, f)+ O(1), so

that we obtain the inequality
3, f)zd(@fHz1—Q>0.

Proposition 3-2. X(0)C{a, -, aq}.
Proof. If there exists a vector a € X(0) satisfyinga ¢ {a,, ", a,} then by Proposition 3-1 and Theorem A
q
z 8,@@;, fIS2N—n+1— d,(a f)<2N—n+1,
j=1

which is a contradiction to our assumption (ii).

Put P(0)={jE€Q | 4; €X(0)} and 2 poy@()=d.
Proposition 3-3. d=n.

In fact, according to Corollary 2-1 (II), we easily have that d=n by the assumption (ii) and (iii) as d <n.

Proposition 3-4. 0 =N/n, #X(0)=N and 6Gw(j)=1 (jEP0)).
Proof. As X is in N-subgeneral position, we have #X(0) <N, so that from Proposition 3-3 and Lemma 2-2(a)
(x) On= P, Bw(j)< D, 1=#P0)=#X(0)<N,
JE P(0) JEP(0)
so that we have @ <N/n. By Note 2-1 we obtain § =N/n.
Combining this result with the inequality (* ), we have

#X(0)=N and 6w(j)=1 (jEP©O)).

Corollary 3-1. A<(n+1)/2N—n+1).
Proof. By Corollary 2-3 and the assumption (ii) we have that A <(n+1)/(2N—n+1).
If A=(n+1)/(2N—n++1), then by Remark 2-2 we have

0=0QN—n+1)/(n+1)>N/n,
which is a contradiction to Proposition 3-4. This means that our corollary must hold.
Put P\={j| 6w (j)<1, 1< j <q}. Then, PN P(0)= ¢ by Proposition 3-4. Note that 8, (a;, f)=1(j€ P}) by Corollary
2-2. We have the following

Proposition 3-5. N—n+1<#P;<2N—n+1.
Proof. (a) From Lemma 2-2 (b) and Proposition 3-4, Lemma 2-5 (a) and Remark 2-2, we have
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q
g—CQN—n+1)=06( Y. w(j)—n—N)= 2 6o(j)+ Y 6w(j)— 6n—0
Jj=1 J€ P jenp

N #P)

N ;
=g—N— - —NY>ag—N— ——— —
q—N—#P + = —( > w(j)—H2g—N—#P+ (N1 D

JeP,

n
which reduces to the inequality

#P\((N—n+1—N/n)2(N—n+1—-N/n)(N—n+1).
AsN—n+1—=N/n=(N—n)(n —1)/n>0, we have #P; 2N—n+1.

(b) From Propositions 3-2 and 3-4 we have #P; <2N—n+1as PN P0)=¢.

Let Py be an element of O satisfying d(Py)/#Py= A, where A =min ,_,d(P)/#P. Then, @(j)= A (j€ Py) (see Remark 2-
2) and Py is a non-empty subset of P, since 4 <1 by Corollary 3-1 and Remark 2-2 (a).

Proposition 3-6. #Py=N—n+1,d(Pg)=1and w(j)=A=1/(N—n+1) (JEPy).

Proof. As @ =N/n (Proposition 3-4) and it is smaller than 2N—n+1)/(n+ 1), by the definition of 8, there exists a subset P
of O satisfying

PyCP, 1<d(P)<n and 6=QN—n+t1—#P)/(n+1-—d(P)

in this case. By Proposition 3-4 and Lemma 2-1 we have the inequality

B e n(n+ 1 —d(P)) 2 a1 -d(py) D

which implies that d(P)=1 and ##=N—n+1, so that by Lemma 2-2 (a), Remark 2-2 and Lemma 2-5 (a) we have

1=d(P)2 Y w(j)2N-n+thHAizl

jepP
and A=1/(N—nt+1D)=w(j) (JEP).
By the choice of Py, 1 <d(Py) <d(P)=1 and so we have

d(Po):l and #POZN"‘II'*'I

Remark 3-1. Note that 1 /(N—n+1)<(n+1)/2N—n+1).
Proposition 3-7. #P|=N-—n-+1 and P; =P,
Proof. Suppose that #P; >N—n=+1. Then, by Lemma 2(b), Propositions 3-4 and 3-6 we have

qg—(@2N—nt+1)=86 Z a(j)=q—Q2N—n+1)— Z (1= 8w(j N<g—Q2N—n+1),
jeP(0)UP, JEP,—Py
which is a contradiction. We have our result From proposition 3-6.

Summarizing these propositions, we obtain the following

Theorem 3-1. Suppose that

(i) N>n2>2 and (ii) there are vectorsaj,"*,a, €X 2N—n+ 1< g< o) satisfying
i 8n(aj,f)=2N—n+ 1.
j=1

If Q <1, then (a) #X(0)=N and (b) there is a subset PC Q satisfying

#P=N—n+1, dP)=1, 8,@;.f)=1 (JEP) and X(0)N{a; | jEP} =¢.

4 Extremal case I : Q <1 and g=0
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Let [ fi,"*, fus1)> X, X(0), @ and @ etc. be as in Section 1, 2 or 3. From Theorem A, it is easy to see that the set
{a<€X|3,(a, f)>0} is at most countable and

3 8@ f)<2N—n+1.

acX

In this section we consider a holomorphic curve f with an infinite number of vectors a; € X such that 8 (a;, f)>0 (j=1,2,3,
TP 'j n\%j J

--+). We put
N={1, 2, 3,"**} (the set of positive integers); Y= {a; |j EN}; P={PCN | 0<#P<N+1}

and for any non-empty, finite subset P of N, we use V(P) and d(P) as in Section 2.
Definition 4-1 (see [9], p.144). We put

yZ;pir;)d(P)/#P and T(j)=u (JEN).

Note that {d(P)/#P | PE€ P} is a finite set. We have the following ([9],p.144):
(4-a) I/(N—n+ 1)< u <(n+1)/(N+1);  (4-b) Forany PE P, ZjcpT(j)<d(P).
We denote by Py an element of P satisfying y =d(Pgy)/#Py.
Lemma 4-1. ):‘;’zlsn(aj,f)S(n+1)/y.
Proof. Let g be an integer satisfying Q ={1, -, g} DPg and 2N —n+1<g< . Then, by Corollary 2-3 we have the
inequality
q
Y 8ua;. )Yt/ 1
j=1
by (4-b). As g can be taken as large as possible, by letting g — ©© we have our lemma.

From now on throughtout this section we suppose that
(i) N>n22; (ii) there exists a subset Y={a; | j €N } of X satisfying 8 ,(a;, f)>0 and
D 8,a;, f)=2N—n+1

=1
and (iil) Q <1.

Note that we obtain the inequality
U<(nT1)/2N—n+1) (8)
from (ii) and Lemma 4-1. For any positive number € satisfying
0<e <(N—n)(1—Q)/(N—n+D(n+1) C)]

there exists p € N satisfying {1,2, -**, p} DPy, 2N—n+1<p< % and

p
IN—ntl1—e< ). 8,0, f). (10)
j=1
For any integer g not less that p, we put @ ={1,2, === , ¢}. For this Q, we use 6,, @, and 4, instead of &, @ and A4 in
Section 2 respectively. Note that
Ag=p an
since QD P,. Further we obtain the following inequalities from (3) and (10):
p
nt1=e/6,< Y @,())8,@; f), (12)
i=1
p .
> (=6, @,(j )1 —38,(a;, f)<e. (13)
ji=1

From now on we put £, =€ /(1— Q).
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Proposition 4-1. For any a €X(0), 0<1—Q <d(a, f)<d,(a f).

We obtain this proposition as in Proposition 3-1.

Proposition 4-2. X(0)C {ay, -, aq}.

Proof. If there exists a vector a € X(0) satisfying a¢ {ay, ***, a,}, then by Proposition 4-1, Theorem A and (10)

q
2N—ntl—e< z 8@, fIS2N—n+1—8,(a f)S2N—n+1—-(1—Q)<2N—n+1—¢
ji=1
asp<qgand € <1—Q from (9). This is a contradiction. We have this proposition.
We put P(0)={j€Q | a,€X(0)} and dq:):F,,(O) @,(j)- Note that

#P(O)SN and d <d(P(0))<n. (14)

Proposition 4-3. n—¢,/6,<d,
Proof. From (12) and Corollary 2-1 (I) we have the inequality

q
nt1=e/6,< Y @y(j)8,a;, f)Sd,H1+(n—dpQ
Jj=1
from which we obtain n—¢, /6, <d,as Q <1.

Proposition 4-4. (a) #P(0)=N and (b) 6,<(N+g)/n
Proof. From (14), Proposition 4-3, the definition of dq, Lemma 2-2 (a) and Note 1 we have

N—g <6,(n—¢,/0,)<6,d, =6, > @, j)<H#HPO)N
JeP(0)
from which we obtain that N —&, <#P(0) <N and 6,(n —¢,/6,) <N. As 0<g <1 from (9), we have (a) of this proposition.
Next, we obtain (b) from the second inequality.
Corollary 4-1. 6, 4,<1.
Proof. From (8), (11) and Proposition 4-4 we have by (9)

6, A, <{((N+e,[n}{(n+1)/@N—n+1)}<1.

PutP ={(E€EQI6,2,(j)<I;je P0)}.
Proposition 4-5. N—n+1<#P,.
Proof. From Lemma 2-2 (b) and Proposition 4-3, we have the inequality
q
g—QN—n+1) =6,{ Z @ j)—n—1)
Ji=1

=6, Y o i)t Y o0t Y e )1

je P) JjEP, je P(OUP,
>6, Z W (j)+ Z @ (j)—(1+g/8))}
jep, je POUP,

and by (4-a), (11) and Remark 2-2
20, #P | [(N—nt+1)tq—#P(0)—#P,— 0 —¢,,
from which and Proposition 4-4 we obtain the inequality

8,
q
#Pl(l_ m)>N“n+l_9q “81,

N
which reduces to the inequality
#P\(N—n+1—6,)>(N—nt DH(N—n+1-6, —¢)).

Since

N—n+1—6,>N—n+1—(N+g)/n>0
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by Proposition 4-4 and (9), we have

#P, >(N—n+1)(1—¢,/(N—n+1—6,))
>(N—n+l)(l*8]/(N—n+l—(ZN—n+l)/(n+l)))
=(N—n+DH(A—@+1Deg /N—n)n—1)>N—n

by Lemma 2-2 (c) and (9). This means that #P| 2N—n+t1.
Proposition 4-6. #Pq=N—n+1,d(Py)=1and 6, =N/n.

Proof. In this case, by the definition of €, and the choice of Py, there exists a set P satisfying
PyCP, 1<d(P)<n and ,=QN—n+1—#P)/(n+1—d(P)). (15)
By Proposition 4-4(b), Lemma 2-1 and (15)
(%) 0>6,~(N+g)/n=6,—N/n—¢g/n
={(N—n)(n— 1)+ Nd(P)—n#P}[{n(n+1—d(P))} —¢,/n
> (N—n)dP)—1)/{n(n+1—d(P)}—¢g,/n
Suppose that d(P)> 2. Then, from (%) we have the inequality ¢€,/n >(N—n)/n(n—1), from which we have

€, > (N—n)/(n— 1), which contradicts (9). This means that d(P) must be equal to 1.
Further, as d(P)=1 we have from Proposition 4-4(b), (15) and Note 1

(N+¢,)/n>8,=(QN—n+1—#P)[n= N/n

sothat N—g, <#P<N—n+1. As g <1 we have that #P=N—n+1, so we obtain from (15) that §, =N/n and by Lemma 2(d),
(4-a) and (11)
1=d(P)2 D, 0,(j)= (N—n+Dig2 1
JEP

since @ ,(j)2 Ag (see Remark 2-2), so that we have Ag=1/(N—nt1)= wy(j)(JEP).

By the choice of Py, 1 <d(Py) < d(P)=1 and we have d(Py)=1 and #Pg=N—n+1.

Corollary 4-2. ,= u =1/(N—n+1)=w,j) (JEPy).

Proposition 4-7. P\=Py and d,=n

Proof. As 6, =N/n (Proposition 4-6) and @ ,(j)= 1/(N—nt+1) (J€Py) (Corollary 4-2),

6, wq(j):N/n(N—n+l)<1 (JEPY. (16)

Next, we prove that PN P(0) = ¢. Suppose to the contrary that PV P(0)# ¢. Then, as d(Py) =1, we have PuCP(0). In
this case by Propositions 4-3, 4-4, 4-6 and Lemma 2-2(a)

n—g /6,<d,= Z 0, (j)= Z(uq(j)+ z @,(J)
JEP0) JER JEPO)—F
< 1+H#(PO)~ Py)/6, =1+ (n—Dn/N,

which reduces to the inequality (N—n)(n—1)/n<g,. This contradicts (9) This implies that
PyNPO)=¢. 17
(16) and (17) mean that Py P|. Suppose that #7) >N—n~+ 1. Then, by Lemma 2-2 (b), Lemma 2-2(a), Propositions 4-4 and 4-6

g—QN—n+1) =6, 3 0 j)—6(n—d)
je P(O)UR,
=q—QN—ntDhH= > (=6, 0,j) b (n—d,,
JjeP, —F
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that is to say,

3 (=6, 0, (j)+6;(n—d)=0.
JEP —F
As G,0,(j)<1for jEP| and d; < n, it must hold that P; =Py and d,=n.
Proposition 4-8. For any j€ Py, ,(a;, f)=1.
Proof. Suppose to the contrary that
min 8n(aj,f)=8<1. (18)
jePpy
Now, for any positive number €, satisfying

WN-m1-9Q)

. n
0< €2< mm{(l n(N——IH-l))(l 8), m }, (19)
we choose s € N satisfying §= {1,"**, s} D Py, s> p and
N
IN—n+1—e,< . 8,0 1) (20)

j=1
Note that 2N —n +1 <s< . For this S we use &, @, and A instead of 6, @ and A in Section 2 respectively. Then the
following relations hold from the results obtained above by the choice of s:
4-c) A=u=1/(N—nt+1)=ayj) for j€ Py (Corollary 4-2); (4-d) 6,=N/n (Proposition 4-6).
By the equality (3) in the Proof of Lemma 2-4, Lemma 2-3, Remark 2-1 and (20) we obtain
S
2 (1= Ga())(1— 8, <&,
j=1
so that for any jES§,(1—-6a(N1— 5,,(aj ,fN<eg, By the definition of &, (4-c) and (4-d) given above
(1—=N/n(N—n+1))(1— 8)< &, which is a contradiction to (19). This means that §,(a;, f)=1 (j€ Py).
Summarizing Propositions from 4-1 through 4-9 given above we obtain the following

Theorem 4-1. Suppose that (i) N>n2 2 and (ii) there an infinite number of vectors a;, a,,**~ € X satisfying §,, (aj ,f)>0and

> 8,(a;, f)=2N—n+1.
ji=1
If Q <1, then (I) X(0)C{a, a,,**} and #X(0)=N; (II) there is a subset P of N satisfying

#P=N—n+1, dP)=1, 8,a;.f)=1 (JEP) and X(O)N{a;|j EP)=¢.

5 Extremal case IIl : n=2m and g <

Letf = [f1,**, f,+1), X etc. be as in Section 1 and let g be an integer satisfying 2N—n+1<g<oo, 0={1,"**, ¢}, V(P), d(P),
@, o, @ and A etc. as in Section 2.

From now on throughout this section we suppose that

(i) N>n=2m (m€E€N) and (ii) there existay, ***, a, € X satisfying

q
D 8.(a.f)=2N—n+1.
i=1

Proposition 5-1. A <(n+1)/2N—n+1).
In fact, we obtain this inequality from Corollary 2-3 and the assumption (ii) immediately.
Now, suppose that for some n=2m
A=n+1)/CN—n+1). (21)

Put O,)={PE O | d(P)/#P= A =(n+1)/(2N—n+1)}. Then, we have the followings.
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Proposition 5-2. For PE Oy, (a) #P—d(P)<N—n; (b)#P<N—m; (c)d(P)<m.

Proof. (a) In general, we have the inequality
#P—d(P)SN—n (22)

(Lemma 2-1). As PE O,
nt1l _ 2(N—n)

#P—d(P)=#P —#P N1 AN—mF1 - #P. (23)
If #P—d(P)= N—n, we have from (23)
#P=2N—n+1)/2=N—m+1/2,
which is a contradiction. We have (a) from (22).
(b) From (a) and (23) we have #P<N—m~+1/2, so that #? < N—m.
(c)As PE Oy,
n+1 2m+1 1
= < —m)y<m+—
A= 1 P sy T N T STy

so that we have d(P)< m.
Proposition 5-3. If P}, P, € O, then P,UP,E O,.
Proof. By the definition of O,

d(P))/#P=d(Py)[#P,=(nt1)/2N—n+1).
From Proposition 5-2 (a) we obtain
d(P))+d(Py)= A#P;+#Pp)< A(d(P))+d(Py+2(N—n)),
which reduces to the inequality
d(P)+TdPP<2A /(1= ANIN—n)=n+1
since A =(n+1)/(2N—n+1). This means that

d(P))td(Py)<n (24)

d(P)UPy)+d(P,NPy) < d(P))+d(Py). (25)

(see p.68 in [3]), we have from (24) and (25) d(P| U P,) < n, which implies that #(P;UP,)< N, so that P,UP,€ 0.
Next, by the definition of 4,

A <d(P UPy[#(PUPy). (26)
On the other hand, we have the inequality
A#(P NP <dPyNPy). 27)
In fact, when d(P| N P,) >0, by the definition of 4 we have the inequality
A <d(PiNPy)[#(P N Py),

which implies (27).
When d(P; N P,)=0, as P, P,= ¢, we have #(P; (N P,)=0, so that (27) holds in this case.
We have (27) in any case. Therefore from (25) and (27) we have the inequality

d(P UPy) d(P))+d(Py)~d(P\UP)) _
#(PUP,)~ #P, +#P,— #(P,NP,)

(28)
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(26) and (28) imply that
d(P{UPy)[#P UP)=A=(n+1)/2N—n+1),

which means that P{UP, € Oy .

Put
S = PgO‘P. (29)

Then, from Proposition 5-3 and (29) we have the following

Proposition 5-4. S| € O, and if PE€ O, then PCS.

Next, put O,={PE O | P—S,+ ¢} and 4;=min pe, dP)/#P (< 1). Note that O,% ¢. Then, we have the following

Proposition 5-5. 4 <4,

Proof. By the definitions of A and A, we have 4 < A,. Suppose that A =A4;. Then, there is a set P € O, satisfying
d(P)/#P= A, which means that P€ O.

On the other hand, as P€ O,, P~ S, ¢. This means that PUS, € O, by Proposition 5-3 and PUS, 2§}, which contradicts
Proposition 5-4. This means that the inequality 4 < A; must hold.

Definition 5-1.

A (e S,
()= )
A (e Q-S)p.

Then, we have the following

Proposition 5-6. Forany P€ O, X .p 1(j) < d(P).

Proof. (i) When PCS|, by the definition of 4 we have the inequality

Z T(j)=A#P< d(P) ‘#P=d(P).
) #P
jep
(ii) When P—S, ¥ ¢, by the definition of 4, and by Proposition 5-5, we have the inequality
D> WIS A #Ps< 4P) yp=a(p).
. #P
jep

Theorem 5-1. Under the hypothesis (i) and (ii) given in the first part of this section, there exist at least [QN—n+1)/(n+ 1)}
+1 vectors a € {ay, "',aq} satisfying 8, (a, f)=1.

Proof. By Proposition 5-1, 2 < (n+1)/(2N—n+1). We want to prove that A <(n+1)/(2N—n+ 1) under the hypothesis (i)
and (ii). Suppose to the contrary that the equality (21) holds for some n=2m. Then, from Lemma 2-9 and the hypothesis (ii) we
have the inequality for 7 given in Definition 5-1:

1 , &+l X
2 1)@, HSntl= N+l 8,@;. )

j=1 j=
and so we have the inequality

_ QZS (T(j)_an—+nl+ 1)5"("1'”30'
JEQ—3,

As 1(j)—(nt+1)/2N—n+1)>0 for j€ Q—S,; by Proposition 5-4 and the definition of (),
8,(a;. /)=0 (JEQ—S).
This means that by the assumption (ii) and Proposition 5-2(b)

IN—n+1= ), 8,(a;, f)<HS|<N—m,
jies,
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which is a contradiction. This shows that (21) does not occur. That is to say, A must satisfy the inequality
A<(n+1)/(2N—n+1). By the definition of A, there exists a subset P, of Q satisfying A =d(P,)/#P,. Then, by Remark 2-2

(a) and Corollary 2-2, we have our theorem as

#P,=d(P,)[ A >d(P,)2N—n+1)/(n+1)2(2N—n+1)/(n+1).

6 Extremal case IV : n=2m and g=°

Letf = [f},"**»fy+1])> X etc. be as in Sections 1,2 and 5. From Theorem A, it is easy to see that the set {a € X | 8,(a f)>0}
is at most countable and

> 8,(a f)<2N—n+1.

acX

In this part we consider holomorphic curves with an infinitc number of vectors a;€ X such that
8,a;, f)>0 (j=1,2,3,).
We put
N={1, 2, 3,-:*} (the set of positive integers); Y= {aj |JEN}Y Ow={PCN | o<#P<N+1)

and for any finite and non-empty subset P of N, we use V(P) and d(P) as in Section 2.

Definition 6-1. We put ¢ =min Peowd(P)/#P and T(j)=u (j EN).

Note that the set {d(P)/#P | P€ O « ) is a finite set.

As in Section 3, we have the following

6-a) 1/(N—nt+1)Su<(nt1)/(N+]). (6-b) For any PE O , Zjep T(j)<dP).

(6-c) (Lemma 4-1)  Xj18,(a;, f)<(nt D)/ p.

From now on throughout this section we suppose that

i) N>n=2m (mEN);

(ii) there exists a countable subset Y= {a|, a,, a3,"*} C X satisfying 5, (aj ,f)>0and
D 8, f)=2N-—nt1. (30)
J=1

Proposition 6-1. ¢ <(n+1)/(2N —n+1).

We obtain this inequality from (6-c) and the assumption (ii) immediately.

Now, suppose that for some n=2m
H=nm+1/2N—n+1). (€2))

Put P={PE Do | dP)/#P=(n+1)/(2N —n+1)}. Then, we can prove the following propositions as in Propositions 5-2
and 5-3.

Proposition 6-2. For PE P, (a) #P—d(p)<N—n; (b) #PsSN—m; (c) d(P)<m.

Proposition 6-3. (a) If P, P,€ P, then P{UP,E P. (b) #P <0,

Proof of (b). Suppose to the contrary that P ={Py, Py, **, P;, >}, where P;# P; if i#j. Then, #(U7 = 1P;)=°, and so there

exists a positive number v satisfying
14
N+ 1<#( U, P). (32)

On the other hand, by (a) of this proposition Ul- 1P, € PC O so that #( Uy 1P)< N+ 1, which contradicts (32). This
means that #P < oo,
Put

= U e
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Then, from Proposition 6-3 and (33) we easily have the following

Proposition 6-4. T, € P and if PE P, then PCT).

Next, put Pi={PE Qe | P—T)F ¢} and A |=min,, Py d(P)/#P (<1). Note that P, ¢. Then, we have the following
as in Proposition 5-5.

Proposition 6-5. u <A,

For any positive number 0<e < min(l, # —4)), we choose a number gEN satisfying Q={1,2, -, q} DT,
2N—n+1<g< 0 and

q
AN—n+1—e< ) 8,@;. ). (34)
Jj=1

For this Q, we use 6, @,, A, and O g instead of 8, w, A and @ in Section 2 respectively.

By the choice of g,
/1=/?.q=(n+1)/(2N~n+l). (35)

Definition 6-2.

. (eTy,
T()= {“ !
A1 (je Q-T).
Then, we have the following as in Proposition 5-6.
Proposition 6-6. Forany PEQ,, X, pT £J)<dP).
The following inequality holds as in Lemma 2-9.
Proposition 6-7. Zj‘?ﬂ 1,(j)8,(a;. f)<n+1.
Theorem 6-1. Under the hypothesis (i) and (ii) in this section, there are at least

[@N—n+1)/(n+D]1+1

vectors a in Y satisfying 8, (a, f)=1.
Proof. There is an element P, of QO satisfying 4 =d(P,)/#P,. By the assuption (ii) of this theorem and (6-c) we obtain
M < (nt+1)/(2N —n+1). We want to prove that 4 <(n+1)/(2N —n+1). Suppose to the contrary that (31) holds. Here we use
the same notations given between Propositions 6-5 and 6-6. From (34) and the euality (3) in the proof of Lemma 2-4 we have the
inequality
q
n+1< ) o)), f)+e /6, (36)

j=1
From Proposition 6-7 and (36) we have

q
Y (1)) @ N8, )< /6,.
j=1
a)q(j):/?.q:(n'f- D/@N—n+1)=1/6, (j=1,",q)
by (31),(35) and Remark 2-2(b), we have the inequality

A=) 2. 8,a.N)<e/d,.
JEQ-T,

By Proposition 6-2(b) and (34), we obtain the inequality
G (A —u)N—m+1—¢)<eg,
so that we have
A= u <N —m)( 4 —u)<e<A4—u

since € <1 and 6, (N —m)>1. This is a contradiction. This implies that the inequality ¢ <(n+1)/(2N —n+ 1) must hold.
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Now, we shall prove that 8,(a;, f) =1 (j €P,). Suppose to the contrary that min ;¢ p 8,(a;, f) =38 <1. For any positive

number €, satisfying
0<£1<(l—,u(2N—n+l)/(n+1))(l—8), 37N
we choose g EN satisfying 0=1{1,2, =+, q} OP,,2N—n+1 <g< o and

q
IN—n+1—¢,< ) 8,(a;.f). (38)
=1

For this Q, we use ,,4, and @, instead of 6, A and @ respectively. By the choice of g, =,
By Corollary 2-2(I), Remark 2-1 and (3) we obtain

Zq: 8,(a;, f)+ i (1= 8a, ()1 —8,@;, fH<2N—n+1. (39)
From (38) and (39) we have - "
Zq: (1= Gay (N1 —8,(a;, FN<g. (40)
By Remark 2-2(a), for jEP, ~
0 ()= 1 =2 @1
and by Lemma 2-2(c)
u<(n+1)/@QN—-n+1)<1/86,. (42)

From (40), (41) and (42) for some jEP,
(1= x@N—n+1D)/(n+1))A—38)<(1—6, 1)1~ 06)<g,
which contradicts (37). This means that § must be equal to 1. As
QN —n+1)/(nT 1< (2N —n+1)/(n+ 1)d(P,)<#P,,

we have our theorem.
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