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On Holomorphic Curves Extremal for the Defect Relation
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Let f be a transcendental holomorphic curve from Cinto P™(C) and X be a subset of C"— {0} in
N-subgeneral position. In this paper we shall give some results on d (@, f) (@ € X ) when N >n = 2m — |

(m € N) and the defect relation for X with respect to f is extremal.

1. Introduction

Let f = [f,,"**, f,+] be a holomorphic curve from C into the n-dimensional complex projective space P"(C) with a reduced

representation

(firosfut)) 1 €= C"H1—(0}

where n is a positive integer. We use the following notations:

I = (| A@P+ "+ £ @D
and for a vectora = (a;, ", an+1)€C"+l—{0}

lall = (a)++la,+ D% @f@) = a i@t Fau11fi+1Q@, (@f)=afit+a,rifri-

The characteristic function 7(r, ) of f is defined as follows (see [10]):
l 2n )
T, f)=5- [ log Il f(re®®)Id6-log I f(O)1 .
2wy

We suppose throughout the paper that fis transcendental and that fis linearly non-degenerate over C; namely, fj,"**, f,+ | are
linearly independent over C. It is well-known that f is linearly non-degenerate if and only if the Wronskian W= W( f},**", f,+ ) of
f1,-". fu+ 1s not identically equal to zero.

For meromorphic functions in the complex plane we use the standard notation of Nevanlinna theory of meromorphic
functions ([4],[6]).

Fora €C"t!— {0}, we write

mr.a.f) = ﬁ jznlog————“a I f(’f;a) Lag  and Neaf) =N, ﬁ )
0 | (a, f(re "))l ’
We call the quantity
. . . r.
LS TR s

the deficiency of a with respect to f. It is known that 0 < d(a, f) < 1.

We denote by S(r, ) any quantity satisfying S(r, f) = o(T(r, f)) as r — ©°, possibly outside a set of r of finite linear measure.

Let X be a subset of C” 7! —{0} in N-subgeneral position ; that is to say, (i) #X >N +1 and (ii) any N + 1 elements of X
generate C" !, where N is an integer satisfying N > n.

Cartan([1], N = n) and Nochka([7], N >n) gave the following

Theorem A (Defect relation). For any g elements @y, ***, a, of X,

q
D 8a.f)<2N—n+1
j=1
(N—n+1<g< o) (see also [2] or {3]).
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We are interested in holomorphic curves f extremal for the defect relation:
q :
D 8. f)=2N—n+1. €))
i=1
In [8] we proved the following theorem.
Theorem B. Suppoes that there are vectors ay, ***, a, in X such that (1) holds, where 2N—n+1<g <0,
If (n+1,2N—n-+1)=1, then there are at least

[@GN—n+1)/(n+ D]+1

vectorsa € {a;, - ,aq} satisfying & (a,f)=1.
In [9] we improved Theorem B. Namely, we changed the condition “(n +1, 2N —n+1)=1" in Theorem B into a weaker
condition “N >n and n =2m" with the same conclusion, where m is a positive integer.

The main purpose of this paper is to give some results on 3 (a, /) when the equality (1) holds under the following condition:

N>n=2m—1 and (N+1,m)=1 (mEN).

2 Preliminaries

Let f = [f},"**, f,+ 1} and X etc. be as in Section 1. Let g be an integer satisfying 2N —n+1<g< oo and put Q={1,2,"*, g}.

Let {q; |j €Q } be a family of vectors in X. For a non-empty subset P of O, we denote
V(P) = the vector space spanned by {a;|j €P}, d(P)= dim V(P)

and we put O ={P CQ|0<#P<N+1}.

For {aj |;€Q ), let w:Q — (0, 1] be the Nochka weight function given in [3, p.72] and € the reciprocal number of the
Nochka constant given in [3, p.72]. Then, they have the following properties:

Lemma 1 (see [3], Theorem 2.11.4). ‘

(a) 0<w(j)8 <lforalljeQ; ((b)g—2N+n—1 :6'(27-=1w(_/' )—n—1);

() N+D/(n+1H<O <@N—n+1)/(nt]1);, (d)IfPEQO,then Zjep w(j)<d(P).

Lemma 2 (see pp.109-110 in [3]). Letf, {aj |/€Q } and @ be as above. Then,

(1 Zji:lw(j )S(aj,f)Sn-lr 1; [I] Z?:]S(a~,_f)S2N~--n+ 1.

Lemma 3. Suppose that there exists a function ¢ : Q — (0, 1] which satisfies the following condition (x):

(x) Forany PEQ, Zjep G (j)<d(P).

Then, for any ay, **-, a,€X we have the following inequalities:

M Zioi100jImra; )<+ DI )= NG 1/ W)+S0s f);

(I Zi-10(j)d @ f)<n+tl.

Proof. (I) Due to the assumption () and Proposition 1 ([8]) we can prove this lemma as in the case of Theorem 1 in [8].

1) It is quite easy to obtain the second inequality from (I) as usual.

Definition 1 ([8], Definition 1). We put

A= nin dP)/#P and o(j)=1 (JEQ).
Pe®

These A and ¢ have the following properties.

Proposition 1 ([8], Proposition 2).

@ 1/(N—n+1) <A <@+1/(N+1): (b)Forany PEO, X, p 6 (j)<d(P).
By Proposition 1 and Lemma 3, we obtain the following
Lemma 4 ([8], Theorem 1 and Corollary 2). Fora,, ***,a,€ X,
M) Zioimlr,a; f)SZT0n )~ L NGy D)+ )

a I8, f)<min@N—n+1, (n+1)/1).

q
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3 Extremal case for the defect relation, I : <o

Let f, X etc. be as in Section 1 or 2 and ¢ an integer satisfying 2N—n+1<g<°o. From now on throughout this section we
suppose that

(i) N>n=2m—1and (N+1,m)=1(mEN);

(i) there existay, **, a,€ X satisfying d(a,f)>0(j=1,+,q)and

Zq: d@,f)=2N—n+1.
J=1

We note that n=2m— 1 implies (n+ 1)/ 2N—n+ 1)=m/(N—m+1).

Proposition 2. A <m/(N—m+1).

In fact, we obtain this inequality from Lemma 4 (II) and the assumption (ii) immediately.

Here we give a remark.

Remark 1. (a) If 4 < m/(N—m+1), then 4 =min; sjsq @(j) and Ow (j)<1(jE€P,) for an element P, €0
satisfying A =d(P,)[#P,,.

(b) IfA =m/(N—m+1),then @(j)=1/0 =4 (=1, ¢).

In fact, the first assertion of (a) is given in the proof of Proposition 2.4.4([3],p.68) and by the definition of w(j) ([3], p.72.).
For the second assertion of (a), as @(j)=A (jEP,yand m/(N—m+1)<1/ 6, we have the conclusion.

(b) See the definition of @(j) ([3],p.72).

(I) The case when A <m/(N—m+1).

By Proposition 1(a) we have m>2, so that n =2m —123. By Theorem 2 in [8] there are at least [N —n+1)/(n+ 1)] +1
vectorsa € {ay, **, a,} satistying 3 (a,f)=1.

(II) The case when A =m/(N—m+1).

We note that w(j)=A4 (jE€ Q) by Remark 1(b). Put

Qy={PEO | dP)/#P=2 =m|(N—m+1)}.

It is easy to see that O is non-empty and finite.
Proposition 3. Forany PE O, #?=N—m~+1 and d(P)=m.
Proof. Let P be in Q. Then, #P=(N—m+ 1)d(P)/m and so we have the inequality

#P—d(P)=d(PYN—n)/m<N—n

by (2.4.3) in [3], p.68 and n=2m— 1. This implies that d(P) <m and #P <N—m~+1. By the definition of 4 and the assumption

(N+1, m)=1, we have the conclusion:
#P=N—m+1 and dP)=m.

Proposition 4. # 0y>2.

Proof. Suppose to the contrary that # Oy=1. Let Oy={Py}. Then, by Proposition 3 we have #Py=N—m~+1 and d(Py)=m.

Let O, ={PEO | P—Py* ¢}. Then O;F ¢. In fact, if O, = ¢, any PE O is a subset of Py, so that
g=#Q=#Py=N—m~+ 1 <2N—n+1<gq, which is a contradiction. Put A, =minp¢ 0, d(P)/#P. Then, we have

A <A 2)

In fact, the inequality 4<A; holds by the definition of 4. Suppose that A= A;. Then there exists an element P} €0,

satisfying
dP)/#Pi=m[(N—m+1D)=A.

This means that P € O and P ¥ Py, which is a contradiction. We have (2). Now put
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. A je Py);
o(j)= { e Py
/11 (Je Q-Py).
Then, the function & : @ — (0, 1] satisfies the condition (*) in Lemma 3. In fact, for any element P of O,
(a) when PC Py, Zjep G (j)=A#P<(d(P)/#P) #P=d(P),
(b) when P—Py+ ¢, Zjep G (7)< A #P < (d(P)[#P) #P=d(P).
By Lemma 3 and the assumption (ii), we obtain the inequality
q q
2.0(/)8 @, frsnt1= > 8. f)

j=1 j=1
from which we obtain the inequality

q
0<(4=2) Y s@.))= 2 (6(j)=2)3(@.f)<0.
jeQ - Py jeQ=F

This is a contradiction. This implies that #0;22.
Proposition 5. Let Py and P, be in Q. Then, Py=P,or PP, = ¢.
Proof. Suppose that P{(\ P, # ¢. Then, from the inequality

d(P,\UPy)+d(P,N Py <d(P))+d(P,) 3)

(see [3], p-68) and by Proposition 3 we obtain the inequality d(P;UP,)<2m—1=n, which implies that #(P; UP,;) <N so that
PIUP,EO.
Next, by the definition of A , we have the inequality

A #(P, N\ Py) <d(P, N P,) )

since by the definition of 2 we obtain the inequality A <d(P| N Py)/#(P; N Py).
We note that P; NP, < O since 0<#P| NPy SN—m+1<N.
From the definition of 4 , (3) and (4) we have the inequality

1< d(PUPy) < d(P)+d(P)—d(P; N P,)

< < <4,
#PUP,) ~ #P,+#P,—#(P NP,

which implies that
d(PyNPy) [ #PNPY=1 =m/(N—m+1),

so that PP, € 0. By Proposition 3 #P|=#P,=#(P;\Py)=N — m+ 1, which implies that P; =P,.
PutQ,=U Pe0, P;. Then, by Propositions 3 and 5 for a positive integer a,, #0,=a,(N —m+1).

Proposition 6. 0=0Q,,.
Proof. Suppose that Qog Q. Put O,={PEQ | P—Q,* ¢}. Then, O, is a non-empty, finite set.
Put A ,=minre 0,d(P)/#P. Then, we have that

A<y )

In fact the inequality A <A, holds by the definition of 4. Suppose that  =A,. Then, there exists an element P €0,

satisfying
d(P)[#P=24 =m[(N—m+1),

which implies that P€ Q. This is a contradiction. We have (5). We define Gy, :Q—>(0,1] by
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A Geoy:
o)) {/12 (je 0-0p.

Then, this function o, satisfies the condition () of Lemma 3. In fact, let P be any element of O.
(a) When PCQ,, Z;cp 6 5(j)=A2 #P<(d(P)[#P) #P=d(P);
(b) When P—Q,% ¢, Zcp 6 o(j) < A, #P<(d(P)/#P) #P=d(P).

By Lemma 3 and the assumption (ii) we have the inequality

q q
Y. 0,(i)8 @, frsntl= Y 15(;f),
j=1 j=1
which reduces to

0<(2,—2) QZQ8<a,-,f):_ QZsz(j)f/l)a(agf)so,
JEL -, jed-¢,

which is a contradiction. This implies that Q= Q, must hold.

Summarizing the results obtained above in this section, we have the following

Theorem 1. Suppose that

(i) N>n=2m—land (N+1,m)=1 (mEN),

(i) there existay, =, a,€ X 2N—n+1<g< o) satisfying & (a;, f)>0(j =1, -, ¢9) and

q
> 8. f)=2N—n+1.
j=1
Then, either (I) of (II) given below holds:
(I) There are at least [2N—n+1)/(n+ )]+ 1 vectorsa € {aj |j €Q} satisfying & (a, f)=1.
(I) ¢ is divisible by N—m+1 and Q:U\[,):lPV, where p=¢q/(N—m+1), the sets Py, -+, P, are mutually disjoint
and #P =N—m+1,d(P))=m (v=1,",p).

Example

Whenm=1and N >n=2m—1=1,if

q
8(a;j, f)>0(j=1,"",q) and D 8a; f)=2N,
j=l
then, A =1/N and ¢ is divisible by N. Further, put p =¢g/N, then Q is divided into p mutually disjoint subsets P, (v =1, **, p)
satisfying the followings:
O#P,=Nandd(P)=1(v =1, ,p).

We suppose without loss of generality that
P,={N(v —1)+1,--,Nv} (v=1,,p)

Then,

(i) 4, 8@y, f)=2.

In fact, noting that for j, k € P, there exists a non-zero constant ¢ such that (aj yfl=clay, f)asd(P,)=1(v =1, ", p),so0
that & (a; ,f)=238(a;, f) and we immediately have (i) and (ii) from Theorem 1.

Remark 2. (a) When p >3, we obtain & =N by Remark 1(b).

(b) According to the example given in [5], there does not always exist j € Q such that & (aj,f): 1 in this case.
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4 Extremal case for the defect relation, Il : g=oo

Let f, X etc. be as in Section 1 or 2. Suppose that

D 5@ f)=2N—n+1.

acX
Then, it is easy to see that the set Y={a €X |8 (a, f)>0} is at most countable and

> 8@ f)=2N—n+1.

ac€y
We treated the case when Y is a finite set in Section 3. In this section, we suppose that Y is not finite. Let ¥ = {a; |jENY}.

Then,
2.8, f)=2N—n+1. (6)
j=1
We put Qoo ={PCN | 0<#P<N-+1}, where N is the set of positive integers, and for any non-empty finite subset P of N we
use V(P) and d(P) as in Section 2.
Further we put

u=mnin dP)/#P and o(j)=u (jEN).

Pe@,,
Note that the set {d(P)/#P | PE€ (s} is a finite set. We have the followings:
(@-a) 1I/(N—n+1)S g <(n+1)/(N+1);

(4-b) Forany PEQ o, X ;cp 6 (j ) <d(P);

(4-c) (the inequality (12) in [8]) 2;0:15 (a; S Osn+D)/u.

From (6) and (4-c), we have the following inequality;
M <(ntD/Q2N—n+1). 7

Under these circumstances, we have the following
Lemma 5. If 4 <(n+1)/(2N—n+1), then there are at least [(2N—n+ 1)/(n+1)]+ 1 vectorsa €Y satisfying & (a fH)=1.
(As for the proof of this lemma, see the proof of Theorem 3 in [8], p.144-p.146.)

Next, we consider the case ¢ =(n+1)/2N—n+1).

From now on throughout this section we suppose that

(i) N >n=2m—1and (N+1, m)=1, where nE€N;

(i) X2 8(a;.f)=2N—n+1.

Then, note that # =(n+1)/2N—n+1D)=m/(N—m+1).

We put Fo={PE O |d(P)/#P=m/(N—m~+ 1)}, which is not empty in this case. As in the case of Proposition 3, we have
the following

Proposition 7. Forany PE F (, ##=N—m+1 and d(P)=m.

Proposition 8. #F;>2.

Proof. Suppose that # F,=1. Let F,={Py}. Then, by Proposition 7, we have #Po=N—m=+1 and d (Pg)=m. Let F; =
{[PEOQs | P—Py+ ¢}. Then, F,+ ¢ since #Pg=N—m+1< o0, As the set {d(P)/#P | PE F}-is finite, we put
My =minpe 7 d(P)/#P. Then,

H<u, . | (8)

In fact, the inequality x# < #, holds by the definition of 4. Suppose that 4= 4, . Then, there exists an element P € F,
satisfying d(P)/#P= u ;= u, which means that P, € F and P+ P,. This is a contradiction to our assumption. We have (8).

Now, let € be any number satisfying
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0<e<l—ufu, )

and P, € F, satisfying d(P,)/#P,= u;. We choose a positive integer g satisfying

(4-d) PQUP,CO={1,2,",q); (4e) Zj=18(a; . f)>2N—nt1—¢
and 2N—n+1<g<oo. For this Q, we use 8, @, and A, instead of 6 , @ and 4 in Section 2 respectively. By the choice of ¢ in
(4-d), 4 = A, and by Remark 1(b) for j€Q

w,(J)=p=m|{(N—m+1) (10)
and so we have from (4-¢)

q
qu(j)ﬁ(aj,f)>n+1*e,u, (11
j=1

e P
c(j):{# (e fo)
o (je Q=Py).

Put

Then, the function ¢: Q — (0, 1] satisfies the condition (*) in Lemma 3 as in the case of Proposition 4. By Lemma 3, (10) and

(11) we obtain the inequality
q

q
Y. 008, )<nt1< Y udla; fHteu,

j=1 ji=1
which reduces to the inequality

(=) Y, 8@y fH<eu. (12)
jeQ-Py

Y 8@, f)>2N—n+1—¢ —#Py=N—m+1—¢,
jeQ-Py

from (12) we have the inequality (x, — #)(N—m+1—¢) <eu, which reduces to the inequality

(uy— pN—my<epy or (1—pu[u)N—m)<e,

which contradicts (9) as N—m2 1. This implies that # F ;>2.

As in the case of Proposition 5, we have the following

Proposition 9. Let P; and P, be in F . Then, Py=P,or P\ (\P,= ¢.

Proposition 10. # F =0,

Proof. Suppose that # F o< o0 and F y={Py, Py, =**, P;}. Put

0=U P and A= Z;i)/s(aj,f)(< IN=n+1).
€

Let F,={P€ F,|P—Q'# ¢}. Then, F,+ ¢ since #NLOO and #Q'<< 0. Asthe set {d(P)/#P | PE F,} is finite, we put

Hr=minpe r d(P)/#P. Then,

u<p, (13)

In fact, the inequality 4 <y, holds by the definition of z. Suppose that y= u,. Then, there exists an element Fo € F,
satisfying d(F)/#Fy= it ,= g, which means that F, € F, and Fy—Q'# ¢. This is a contradiction to our assumption. We have
(13). Now, let £ be any number satisfying

0<e<(I—u/u)@N—n+1—A4) (14)

and F| € F, satisfying d(F)/#F,= 1,. We choose a positive integer ¢ satisfying
@f) QUFCT=(1,20,1); (42 Zj=18(a;, fY>2N—n+1—¢
and 2N—n+1<r<oo. For this T, we use 8,,w, and A, instead of 6, @ and A in Section 2 respectively. By the choice of t in
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(4-f) u=A, and by Remark 1(b) for jET
w(j)=u=m|[(N—n+1) (15)
and so we have from (4-g)

1
wa(j)é(ajrf)>n+l*8ﬂ. (16)
J=1
Put

. H (jeQ)
o (j)= { . ,
Hy (jeT—Q").
Then, the function 6: T — (0, 1] satisfies the condition (*) in Lemma 3 as in the case of Proposition 4. By Lemma 3, (15) and

(16) we obtain the inequality
t

!
> 6(j)6 @, )<nt+1< Y udlay, e,
=1

Jj=1 j=
which reduces to the inequality

(p=p) D, 8@, H<eu. (17)
jeT-Q

Y. 8(a. f)>2N—nt1—-A—¢,
jeT-0Q'

from (17) we have the inequality (4, — #£)2N—n+1—A —¢) <eu, which reduces to the inequality
(= )CN—n+1—A) <eu, or (1—u/uy)@N—n+1—A) <g,

which contradicts (14). This implies that # JFy = co.

Let Fo={P, Py, ", Pj, -} | P;E O} and put U;: i P; =Q,. Then, we have the following
Proposition 11. Q,=N.
Proof. Suppose to the contrary that ng N. Put ;3 ={PE€ Q4 | P—Q,F ¢}, which is not empty by our assumption of this

proof, and we put 4, =min d(P)/#P. Then,

Pe Fs
U<y (18)
In fact, the inequality # < /15 holds by the definition of 2 Suppose that g = u5. Then, there exists an element P € F3

satisfying d(P)/#P= p1,= p, which means that P€ F and P—Q,+ ¢. This is a contradiction to our assumption. We have (18).

Let g, be the least number in N—Q,, and let £ be any number satisfying

0<e <(u3/pt—1)d(ay,f) (19)

We choose a positive integer u satisfying

(4-h) P, CU={1,2, -, u}and u>q,, (4-i) E;f:I 8(a;. f)>2N—n+1—¢
and 2N—n+1<<u<oo. For this U, we use 8,,w, and 4, instead of §, w and 4 in Section 2 respectively. By the choice of u in
(4-h), 4 = A, and by Remark 1 (b) for jE U

@(j)=p=m{(N—m+1) (20)
and so we have from (4-1)
Za)u(j)ﬁ(aj,f)>n+l—s,u. 21

j=1
Put
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, H (jeQ@,NU)
c(j)=
U3 (jeU=-Q,).

Then, the function ¢ : U — (0, 1] satisfies the condition (*) in Lemma 3 as in the case of Proposition 4. By Lemma 3, (20)

and (21) we obtain the inequality

u

> 68, HH<n+t1< D uda;, f)teu,

j=1 ji=1

which reduces to the inequality (u; — u )Zje v-o, 8 (a;, f)<eu, so that we have the inequality

(3= 8@y, H<eu or (u3/u—1)38(@,, <k,

which is a contradiction to (19). This means that 0,=N.

Summarizing Propositions from 7 through 11 obtained above in this section, we have the following
Theorem 2. Suppose that
AN >n=2m—1and (N +1, m)=1, where mEN,
(ii) there exist an infinite number of vectors a; in X satisfying ) (@, f) >0(jEN)and
.Zl 8(a;, f)=2N —n+1.
j =
Then, either (I) or (II) given below holds:
(I) There are at least [N —n+1)/(n+1)]+1 vectorsa € {a | j EN } satisfying & (aj,f): 1.
IHN=UT.iR,
where Py, P,,***, P, , *** are mutually disjoint and #F, =N —m+1,d(P,)=m (v=1,2,"").

v
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