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Large Deviation Bounds for a Polling System
with Two Queues and Multiple Servers
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In this paper, we present large deviation bounds for a discrete-time polling system consisting of two-par-
allel queues and m servers. The arrival process in each queue is an arbitrary, and possibly correlated, stochastic
process. Each server (serves) independently serves the two queues according to a Bernoulli service schedule.
Using large deviation techniques, we analyze the tail behavior of the stationary distribution of the queue length
processes, and derive upper and lower bounds of the buffer overflow probability for each queue. These results
have important implications for traffic management of high-speed communication networks such as call

admission, bandwidth allocation, and server control.
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1. Introduction

Polling systems have found many applications in the areas of high-speed ATM (Asynchronous Transfer Mode) networks,
computer-communication networks, and multiprocessor systems, where service capacity (CPU, bandwidth) has to be shared
among different users. In particular, polling systems consisting of two-parallel queues and multiple servers have been used to
model communication systems with two different types of traffic: the real-time traffic (e.g., voice and video) and the non-real-time
traffic (e.g., data), and wireless mobile communication systems with originating calls and handoff calls (e.g., Bluetooth system)
(see [20] and [21] for detailed analyses and surveys on this subject). In order to meet diverse Quality of Service (QoS)
requirements, various service schedules such as the exhaustive, k-limited ([10], [18]), Bernoulli ([11], [16]) and Markovian ([4],
[6], [171, {191, [22]) have also been proposed. In this paper, we consider a discrete-time fluid polling system consisting of two-
parallel queues (Q and Q,) and m(> 1) servers. By discrete-time fluid, we mean that all arrival and service happen at discrete-
time slots indexed by integers, and are in the form of fluid. The arrival process in Q; is an arbitrary, and possibly correlated
stochastic process. Each server visits Q; and Q, independently each other according to a Bernoulli service schedule: at the
beginning of each discrete-time, if both queues are not empty, then the kth server just completing the service in Q; makes a random
decision: with probability pf ,0 <pf <1, it continues to deal with cells of Q; in the next slot, and with probability qf =1 #pf, it
switches to Q; (j¥i ) and deals with cells of Q; in the next slot. The service rate of each server is ¢, and the service policy is
assumed to be work-conserving. That is, each server is permitted to devote its residual service capacity to another queue whenever
the present queue becomes empty. Furthermore, each server is assumed not to experience switching times in its transition from
one queue to the other. All arrival processes and service processes are mutually independent.

The motivation for this work is three-fold. First, as development of high-speed packet-switched communication networks
employing ATM technology, discrete-time fluid models become more and more important. Up to now, most of work for discrete-
time fluid models is mainly devoted to performance analysis of single queueing systems, the problem of analyzing discrete-time
fluid polling systems have received remarkable little attention in the literature. Secondly, the polling system considered here is

actually deduced from discretization of a continuous-time Markovian fluid polling system, with continuous-time arrival processes
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and Markovian service processes. This model is important in describing the dynamics of high-speed ATM networks by using fluid
mechanics. Finally, for the polling systems with general, possibly autocorrelate arrival processes and multiple servers, getting the
exact stationary distribution of queue-length processes is extremely difficult, because of the autocorrelate structure of the arrival
processes, and the complexity of the service processes. To the best of our knowledge, no any analytic results on the discrete-time
fluid polling system considered here have been obtained. As a mathematical problem, therefore, it is also a challenging work to
study the behavior of the polling system.

In this paper, we utilize large deviation techniques to analyze the tail behavior of the stationary distribution of the queue
length processes, and derive upper and lower bounds of the buffer overflow probability for each queue. In recent decade, large
deviation techniques have been extensively applied to problems of estimating tail probability of rare events in single queueing
systems ([3], [5], [9],.[13]) and queueing networks ([1], [2], [7], [12], [18], [23], [24]). In [1], [2] and [24], large deviation results
for a network system consisting of two-parallel queues and a single sever have been derived under Generalized Process Sharing
(GPS) service discipline. In [12], we obtained large deviation bounds for a polling system consisting of two-parallel queues and a
single server. For a Weighted Round Robin (WRR) polling system, Massoulie[18] derived logarithmic equivalents of the
stationary tail distribution of the queue length for each queue, by using sample path large deviation techniques. For an Markovian
polling system with a single server, Poisson arrival processes and exponentially distributed service times, Delcoigne and Fortelle
[7] presented the local rate function governing the sample path large deviation principle.

The paper is organized as follows. In Section 2, we briefly review some conceptions and results from large deviation theory
on the real-line R. Then, we define exactly the potential service process of each server by using Markov chains, and give some
large deviation results for these service processes. In Section 3, we show our main theorem — the upper and lower bounds of the

overflow probabilities, and in Section 4, we prove the theorem. Finally, some conclusions are included in Section 5.

2. Preliminaries

-1
Throughout the paper, all time indices ¢, T, etc., are always integers. N={0,1,2, -}. We denote by Sﬁ = Z;( =X Tt
-1 . s
and Sf: Z,i -0 X, the partial sums of the random sequence X = {X,; t €N}, and by Sf((s) = 21[1;10 X, /t,0<s<1 the scaled
partial sum of X, respectively. Furthermore, we denote by Ay () the limit logarithmic moment generating function of the partial

sum process of X, and by A}(oc) the Legendre-Fenchel transform of Ay (). Namely,

X
Ax(&)= lim ~l—logE[eBS'

Lim 2 1., 6€ER; Ay(a)= 323{%‘/\)((9)}, o €ER. (1)
A. Basic assumptions and definitions

WEe first give some definitions and results from large deviation theory on the real-line R. A rate function I from R to [0, 0]
is good if all level sets {y €R,; I(y) < x}, x €[0, ©°) are compact. A sequence of probability measures { 4 ; t €N} on R satisfies

Large Deviation Principle (LDP) with a good rate function [ if

1. Upper Bound: For every closed set F, 1im sup L logu,(F)y<-inf1(x). 2)
n—ooo N XEF

2. Lower Bound: Foreveryopenset G, lim inf L logu,(G)=~inf I (x). (3)
n—ooe N xeG

Let {X,; t €N} be a sequence of random variables on R and { i ; t €N} the corresponding sequence of probability measures.
If { & ; tEN} satisfies the large deviation principle with a good rate function 1, we say {X; €N} also satisfies the large deviation

principle with a good rate function /.

Assumption Al:

(1) The limit logarithmic moment generating function Ay () exists for all 6 as an extended ratl function, i.e., =00 are
permitted as limit points.

(2) The origin is in the interior of the domain D/\x ={0; Ax(8) <co})of Ay(8).

(3) Ax(8) is differentiable in the interior of D/\x , and derivative tends to infinity as @ approaches the boundary of D/\x

(4) Ax(8)is lower semicontinuous, i.e., liminf, _ ,Ay(6,) 2 A, (9).
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Theorem 2.1 (Giirtner-Ellis): Under Assumption A1, the large deviation upper bound (2) and lower bound (3) hold with the

good rate function /= A} .

Note that A, (-)and A}( - ) are convex dual, namely, Ay(@) is also the Legendre-Frenchel transform of A*X(ot).
Ay(0) = sup {6a - Ay(a)}, ER. 4)
ae

The following properties of A,(6) and A’y(c) hold (cf. [24]).

Proposition 2.2: (i) Ay(6) and A}(oc) are all strictly convex and essentially smooth.

(ii) Ay(8) and A;((H) are all strictly increasing.

(iii) dom A'(o) =int(ran A'y) and Ay(o) is continuous in in{(dom A%). In particular, infu>a[A}((x) = infaZul Ay(o) and
infge, Ax(0)=infg, ASy(a), where a; and a, the left and right end points of dom A , respectively.

(iv) Let X=E[X,] ,then A%(¥)=0and Ay(0)=%.

(v)  Ay(6) + Ay(o) = 6o if and only if &= Ay(6).

A stronger concept than LDP for the partial sum process S,X is the Sample Path Large Deviation Principle (LDPps) for the
partial process Stx (s). Let D([0, 1], R) denote the space of right continuous function with left limits from [0, 1] to R equipped
with the supremum norm topology. A sequence of probability measures {4, t EN} on D(]0, 1], R) satisfies the LDPsp with a
good rate function I( ¢) if (i) I(¢) is a function from D([0, 1], R) to [0, o] with compact level sets, and (ii) the upper bound (2)
and the lower bound (3) hold for any closed and open sets in D([0, 1], R).

Assumption A2: {X,; t €N} is adapted to a filtration {_7-'?; t EN} with the following property: for any & €R, there exists a
function T'y(@), 0 <T(8), such that for any T.r2 0

Ay(@)t—Ty(8) < logE[e%%+1 | FY] < Ay(8)1+Tx(6) as.. )

Let g, be the probability measure of StX (-). Then, under Assumption A2, { &, t €N} satisfies the LDPsp with the good
rate function 7 ( - ) defined as follows: for any ¢ €D([0, 1], R),

,X((,,)_{ [ Nx (¢()dr,  ifoe AC(I011R), ©

o otherwise,

where ACy([0, 1], R) is the space of absolutely continuous function from [0, 1] to R with ¢(0) =0, and ¢’(7) is the derivative of
o).

As we allow dependence between the number of customers at different slots in each arrival process, this will lead to the fact
that at steady state, the arrival magnitude at 1 may be dependent on the stationary queue length at 1(<t). The following
assumption permits us to deal with such dependence in deriving the large deviation results for each queue.

Assumption A3: Let ffﬁka)z o {X; —o<r<k}and
()= Sup \P(U’|UY— P(U")), %
UEFE o UEFL, yuy PLUY>O
then, lim,, ..o L *(n)=0.

The assumptions (A1), (A2) and (A3) are satisfied by processes that are commonly used to model burst traffic in
communication networks, e.g., renewal processes, Markov-modulated processes and more generally stationary processes with

mild mixing conditions.

B. Arrival processes and potential service processes
The arrival process in Q; is denoted by { Af ;t €N}. We assume that { Aﬁ ; t €N} satisfies the following conditions:
(1) The arrival process { A ; ;¢ €N} is ergodic and strictly stationary.

(2) The arrival process { Af; t €N} satisfies Assumptions Al, A2 and A3.
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Now we define the service process in Q;. Since each server serves the two queues according to Bernoulli service schedule,
the lengths of the service period(duration that one sever continues to serve Q;) and the non-service period are two independent

sets of i.i.d. random variables with geometric distributions as follows: for > 1

P { service period of Q; contains t slots } = (1 *pi)p,." !

P { non-service period of Q; contains t slots } = (1 —pj)pj" ! J#IL.

Let b; be the number of servers during the slot . Then from the geometric nature of the service and non-service periods, it

follows that bi for i =1,2 can be derived from bﬁ as follows:

t+1
1 b,1 m*b,‘ 2 m—b[2 17,2
bt+l:ZGk+ z (I—=n), b, = Z (I_Gk)+zﬂk’ (8)
k=1 k=1 k=1 k=1

where {6y, k =1,2, -*-,m} and { n;, k = 1,2, -*-, m} are two independent sets of i.i.d. Bernoulli random variables with probability

distributions
Ploy=1}=p;, P{oy=0}=q; and P{m=1}=p,, P{m=0}=¢q,.

Note that b,1 -l—bt2 =m for any ¢, and m servers are independent. We have the following proposition.
Proposition 2.3: For i =1,2, the process {b;; t €N} is an irreducible Markov chain with state space {0,1,2, -*-, m} and

transition probability matrix P, = (p},c ), where for Lk€ {0,1,2, -+, m}

min{/, k}
1 1 1, { nl-n (m—I k-n (m=10)-(k-n)
P =P{b,, =klb,=1}= Z (,I)qul (k_,,)qz %) ,
n=

|
t+1

2 2 2 1
Py =Pib,, \=klb; =1y =P{b,, | =m—k|b,=m—1}

min{m—l,m—k}(

m—I n m-l-n [ m-k-n I-(m-k-n)
P19, ( )‘12 P :
n m—k—n

n=0

As the service rate of each server is c, B: = b; ¢ denotes the total service rate devoted to Q; in the slot 7. Obviously, [B:; te
N} is also a Markov chain with the state space {0,c,2¢, ***, mc} and the transition probability matrix PB,- :(p;(,kc ), where
Pioge =Py We call (Bj; tEN) the potential service process (MSP), and denote its equilibrium distribution by

ng=(my,m|, -, %)) and its mean by B’ :E[Bj] =% cht,i.

C. The stability condition
Let L: be the queue length (backlog) of Q; at time 1. L,:L: + L%. Note that Bi + B% =mc and no switching times are
experienced during each server transitions. It follows from Loynes's Stability Theorem [15] that the stable condition of the polling

system is
A+ A2<me )

where A’ =E[A[l ]. Throughout the paper, we assume that the condition (9) hold. Thus, the aggregate queue length process L,

converges in distribution to a finite random variable. As L, < L,, L, converges also in distribution to a finite random variable.

D. Large deviation results on the potential service processes
For any & €R and i=1,2, define (m +1) X(m+1) matrices Wi(0)= (p;(',vk(_,eekc

). Let p.(6) =sp(‘l"b_,-(9)) be the
spectral radii of \I’B, (@) and xB'(H) =(x6 @), xi1 @), -, xfn(B ))T the positive right eigenvector corresponding to pB‘(Q).

Furthermore, define T ,(6) =max, < ;< ,4(60)/x,(6) . When m =1, p_(8), x#(6) and T (6) can be directly calculated. We

. . . 2 ¢ i B¢
have for i, j=1,2; i #J, pB,»(e):(1)j+pl-eﬂc+\/(pj*piegc)7+ 44,0,6% ) /2, % O)=(( PO~ pe™) 1 (p(O)+ q;—
c 9',- C (& g e
pie™). a1 (@) + q;— pie” D, and T ()=max (4,/(p, ()~ pie™), (£~ pe™) I, ). Utilizing the general

discussion on the large deviation of Markov chains (see [6],[71,[8] and [11] for details), we obtained the following large deviation
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results on the Markov chain {Bi ,tEN}.

Theorem 2.4: (i) AB,(H): log ( pB[(H)), and

SUpg»ot80— AB,(e)} if B;<a<me
Api(o) :esg%z{ea— AB.(H)}Z SUpg s o{ 00— AB"(B)} if 0<as<B, (10)

oo otherwise.

(i) The processes { S? '/t ; tE N} satisfies the large deviation principle with the convex, good rate function A*Bi(oc) .
(iii) Let F¥ =o { B,; 1<t} thenforall ERand 1,1 <0,

0S5, | rBq_ 5 R
A (61— T (8) < logE [%5cere| F |=log E[¢%%r|B]< A (O)1+ T (6). as.

(v) The process {Bi , tEN) satisfies Assumption A3, i.e., 1im, _, o # (n)=0.
p ' p

3. Large deviation bounds of the overflow probability

In this section, we present our main theorem-the large deviation upper and lower bounds of the overflow probability for the
polling system. The proof of the theorem is relegated to the next section. By a,(f) and 0i(6) we express the effective
bandwidths of {Ai, t €N} and {Bi, t €N}, respectively, i.e., o,(8)= A,:(6)/6 and 05i(6)= Api(6)/6. Furthermore, we
define 0)i(8) = Api(8)/6 and UE,(H) = Agi(0)/6 fori =12, where Api(6) and Agi(6) are given as follows.

For any @ =0,

CASE1. A'< A,i(8;) < B'< min{a/ , mc}
A,(6) if 6 <8
A (8) + Agi(@—8)) if <6 and
Bi< A0 —8;) < min{al, me}
A, (8)+ @ —38) min{a), mc} — Ag:(min{a} , mc}) if <6 and min{a’,mc}< Ay —38;)

CASE2. A< Bi< A,:(8;) < min{a/ , mc}

A,i(0) if@: N,i(6) <B'
7:(6) if6: N,(0)>BL6 <& or
N,i(8) >Bi 6 >§;

Ap(8) = Api(6 —8;) < Kyi(37)

max{J,(8), Ayi(87) + Agi(@—38))) if6: A,(6)>B6 >& and

N (8) < A6 —8)) < min{al, me}
max{J,(6), A,:(8;) + (6 —8;) min{a}, mc} if6: N, (8)>B.6 >& and
— A%i(min{al, mc})} A6 —8}) > min{a], mc}

CASE3. AI< Bi< min{al, mc} < N,i(8)

A,i(0) if6 : A, (8) < B
K;(8) if 6 : N,i(8) > B’
CASEA. A’z B'
Agi(6) (an

where, & is the largest solution of the equation A,i(6) + Agi(—6)=0, and 1,(8)=(0 — 6} (8)— 6y (B)nA'B' (8)+
AA,-(é:i (0))+ABi(é§f (@), here 7A'B' (6) is the maximum point of function ot — A% (o) — A'gi (@) in the interval (B,
AA.(B‘) ]. For 8 fixed, 9::' (6) and 9;, (@) are the unique solutions of the equations A),; () = NA'B (0) and Ap, @) =n4'8'(6),
respectively. K;(8)=(6 — 8} (8)— 63 (ONEXE (0)+ A, (65 (8)) + Agi(Gy (8)). E4B(6) is the maximum point of the
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function fo. — A%/ (o) — A% (o) in the interval [ B, min{a,i ,mc}]), here aﬁ is the right end point of dom A';i. For @ fixed,
HA*: (8) and 0;/' () are the unique solutions of the equations A’,; (é) = «fAlB‘ () and Ay, (é) = fA‘B‘ (0) respectively.

CASEl. A< B!
Ai(8) if 8: A, (0)<B’
AG(O)= K;(6) if 8: A, (6)>B" (12)
CASE2. Ai> B!
Bio

where K;(8) is given in the definition (11).

Remark 1. As will be seen, Agi(6) and Api(6) are respectively the effective bandwidths of the transient departure process
(e.g., the departure process from an empty queue at time 0) and the stationary departure process from an G/MSP/m queueing
system with the arrival process {Af, t €N} and the service process {Bi ,tEN}.

Theorem 3.1: Under the stability condition (9), the queue length Lg of Q; at steady state satisfies the following bounds.

(1) upper bound:
lim SUDLIOgP{L(i)>x}SA6;j, (13)
X0 X

where, @7; is the unique solution of the equation:

o, (0)+ oy (@)=me, iF). (14)
(i) lower bound:
lim infLlogP{L{>x} > —6y . (15)
x o0 X

where, 0?}' is the unique solution of the equation:

0, (0)+ 0pi(8) =me, iF). (16)

4. The proof of Theorem 3.1

In this section we prove Theorem 3.1. First we give some large deviations of the stationary queue length and the effective

bandwidths of the stationary and transient departure processes from a G/MSP/m queueing system.

4.1. Large deviations of a G/MSP/m queueing system

Consider a G/MSP/m queueing system with the arrival process {A, = Af; t €N} and the service process { B, = B,z; 1t €ENJ.
According to Loynes's Stability Theorem, this system is stable if A< I3, where .4 and B3 are the mean arrival rate and the mean
service rate, respectively. Let L, be the queue length of the queueing system at time t. Then under the stable condition, L, converges
in distribution to a finite random variable L. Here we assume that the queue process have reached its steady state. Thus L has the
same distribution as L. Applying the large deviations of a single G/G/ 1 queueing system (cf. [3], {5], [9], {13]) to the G/MSP/m
queueing system considered here, we obtain the following large deviations.

Theorem 4.1: Under A < BB, the tail of the distribution of the steady state queue length L, is characterized by

lim L logP{Ly>x}= 5, (17)
X —yoo X

where 8" >0 is the largest solution of the equation:
AL (8) + Ag(—6)=0. (18)

In the case 5= oo, the equality (17) holds trivially. To avoid such a case, we assume that 8" is finite in the sequel. Let E, be
the number of departures from the transient G/MSP/m queueing system at time #, and D, the number of departures from the

stationary G/MSP/m queueing system at time 7. Under steady state, these departure processes are also stationary. E,, D, and their
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partial sum process SIE, S,D are governed by the following recursive equations:
E=min{L,_,+A,_,B,_,}, Sf= inf (S{+S7), (19)
D=min{L,_,+A, B}, S/ =min{Ly+ inf (SE+SP), sBy. (20)

Furthermore, we define the processes S ,E and S',D as followe:
SE=nin{s?,sP}, SP=nmin{Ly+5% 57}, tEN. @n

Then under the assumption that { A,; €N} satisfy Al, A2 and A3, we obtain the following result according to Theorem 2 in
Chang and Zajic [5].

Theorem 4.2: Under A< BB, for any o €R,

()
lin LlogP{SE>ar} = limLlogP{SE>ar }=— inf A%(x), (22)
t—oo t t el xzo
linLlogE[efF 1= linLlogE[e® )= AL6), 6 >0, 23)
t—oo I t e I
where,
0 if a<A
) Al (o if o <B
A (o)= inf A%(x) + inf A%(x) = f( ) . _ ,
xza xza Ny (o) + Ap(a) if B<a < min{a,, mc}
© if o> min{q,, mc},
here, a, is the right end point of domAZ, and
Ag(8) =sup{fa — Ap(0)} = su| o — Ax(o) }. 24
E( ) Asp(x{ E( ) .ASGSII]i[I‘l){a,,mC}{ E( ) 24)
(ii)
limilogp{s?>at}= limllogP{§?>at }=— inf A'p(x), (25)
t—oo [ t—oo b xza
lin LlogE[ef' 1= lin L1logE[e®1=Ap0), 620, 6)
t—oo I t—oo I
where,

Ap() =80 —sup, o of 8% — A% (1)} =inf , , Ap(x)

0 if a<A
Al (o) if o <A4(8) and A<a <B
_ Ny(a) + Ag () if @ <A4(8) and B<a < min{a, mc}
T S ALY if o>A(8) and A<a<B
8o — A4(8") + A () if o>A(8) and B<o < min{a, mc}
0o if o > min{a,, mc},

here, 6* is the largest solution of the equation (18), and
A,(0) = sup fa A’ o - Sup o A* o . 27
D( ) A< { D( )} <a<nmin{a, C}{ D( )} ( )

From (24) and (27) we can directly calculate A, (6) and A g(6). Here we omit their long derivation because of the space
limitation.

Theorem 4.3: Under A < B, the limit logarithmic moment generating functions A;(8) and A(8) of the departure
processes { E,,t €N} and { D,, t €N} are given by (11) and (12) fori = 2.
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The following conclusions are obtained from (24), (27) and the convexity of A‘;)( -) and A*E( ).

Corollary 4.4:
(i) Forany o0 €R, A}, (o) < Ap(a). In particular, A, (o) = A% () if o < Ay (8).
(i) Forany 8@ 20, Ap(6) 2 Ag(8). In particular, A, (8) = Ag(8) if 6 < 5.

4.2 Proof of the large deviation bounds

Having the previous preparation, we prove the large deviation bounds given in Theorem 3.1.The methodology is similar to
one used in {27] and [17]. Without loss of generality, we establish the upper (13) and the lower (15) for Q), i.e,, for the case i =1,
J =2. For convenience, we look backwards in time from ¢ =0, and assume that the polling system have reached its steady state.
Thus, L} has the same distribution as L. .

1. Upper bound: Since the Bernoulli service schedule is work-conserving, we have that for any >0, min{l, (Li_,_l +
A[ -1 )/B';,_l } denotes the time length spent in Ql by bi,_l servers during the slot (—¢— 1, —t]. When Li_,_l +Ai_,_1 >
B_r_ 1, the time length is 1, which means that all bl -1 Servers thC been servmg Q, during the slot (—¢—1, —¢], and Qj (jFi)
receives B. (-1 service amounts at most. When L -1 +A- -1 <BL;_\, the time length becornes (LW,_ 1AL Y
B_,_1< I, and during the remained time 1 —(L_,_l +A—r—1) /B_t_1, all m servers serve Qf(j +1i). Hence, Qf receives
actually BY (Lo _1 +AL 1)/ BL i Fme(l —(Lh 1+ AL )/ BL =Bl (Lo + AL )/ BL o (B
+Bi,,, (1 W(Li,_] +Ai_,_ 1)/ Bi,_ |):mC*(L"_,_1 +Ai_,_ 1) amount of service. Basing on the above observation, the

dynamics of the polling system can be expressed by the following recursions:
L =max{L 1+ AL —max{Bl,_ 1, me—(LE o1+ AZiZ1)), 0), (28)

=max{L>, 1+ A% 1 —max{B>, 1, me—(L 1+ A 1)} o). (29)

~
L
|

Define Ri, = max{Bi,, mec—( Lj_, + Aj_,)}, i, j=1,2; i¥j. Then, Ri, denotes the amount of service actually received by Q;
during the slot (—z—1, —¢]. Expanding (28) and (29) recursively we have

Li=max{s4—s5), i=12 (30)
teN
! -1 i . . . . .
where, Sft =X _, R% is the total amount of service actually received by Q;in [—¢,0). Observing that

sf=1l +sh-1). i=12 31

we have Sﬁ[ > Sﬁ— Lé Therefore the maximum in (30) for i =1 must be achieved at the time when L1 =0. Let —r<0 be the
first time such that L ,=0and L <~ 0for T €(0, #). Since the queue Ql is busy during the interval ( —1, 0] and the Bernoulli
service schedule is a work -conserving policy, the queue Q, gets at least s? + amount of service (by considering the situation that
the queue @, may become empty during [ —¢, 0)). Thus, S_x > S—z. On the other hand, since mct is the total amount of service

devoted by m servers during [ —1, 0), it always holds that
SR+ §K =mer. 32)

Also from the definition of { B; , €N}, we have that for any 120,

S mmer—§% . Q=12 iF) (33)
Hence,
SR =mei— SR = nax (met— SFi, $%1)=nax {met— 5%, S5y =mer—min { %, 5% ). (34)
Substituting (34) into (30) for i =1 yields
L= rlnga&({sf,l +min ( S%, §5)—mer). (35)

CASEl: A?< B?
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In this case we can upper bound L by the queue length at a virtual system. Consider a G/MSP/m queuemg system with the
arrival process {A, ,t €N} and the service process { B, ,t EN}. Let D_, be the number of departures, and L_, the queue length
at tlme —t of the virtual system, respectively. Since this virtual system does not receive extra service except s? ¢, it always holds
that L . We have by (31)

2 2 -~ 2
sRi<L?+st <12+ 5%, (36)
Combining (35) with (36) yields
1 ~ 2 1 ~ 2
Ly < max (% +min (L. + 5%, 5%y —mery= max (8% + 5% —mer), 37
te

where 3’3; =min {I:E, + Sé:, S—t } From the fact that {A, ,t €N} satisfies Assumption A2 and Theorem 4.2, it follows that for
any 8 >0,

) o :‘11 ) D.
tlun%logE[e s 1= A,(0), and tlim%logE[ees 1= Ap2(8). (3%)
—oo oo
Then, for any € >0, there exists a sufficiently large ¢, such that for any 2z,
Al A = p? A
Ele 854 <o (A (6) +e)t and E[eos,, 1< e( ,,z(H)+€)r. (39)
We have
N ' M2 LY B
E et?L(,]SE[eﬂmax,eN}S_"l + 0,5, —mcltl] < Z Ial eH(Sj + S5 —met) ] (40)

te N
a2 g A A re e
_ z E[eBSv, ]E[ees,, Je 9’"”SC€+ Z e( A (O +Ap(v6)+2¢ mta)r’

te N t>t,

2 ~ 2
where the last second equality follows from the independence of Sét and S2, and C, is aconstant dependent on €.

1
Therefore, we have E[€9L°]< oo if A,i(0) + AD2(6’)+2£ —mc8O <0. By Chebyshev's inequality, P{L%) >x} < e—ex
1
E[ FLo ] for any x>0, and the definitions of (xA.(H) and a,,,(6), we have if o, 1(8) + ap)(6) +2¢e /16 —me<0,
lim sup— P{L0>x}<— 4D
X —>oo
Taking € — 0 and getting the tightest upper bound, we establish the upper (13).
CASE2: A*:>RB?
By (35), we have
Ly< max{S + S —mer). (42)
te N
Similarly, for any 8 >0, if A,(6) + Ag2(6) +2¢e —mc@ <0, then,
1 . 2 2
Bl ef)< S A HSHH ST = met) y < oo, 43)
te N
Again by Chebyshev's inequality, if o,,(8) + a 2(9) +2e /6 —mc<0,
lim sup— P{L0>x}<— (44)
X —o0
Taking £ — 0 and getting the tightest upper bound (note that ¢.)>(6) = A42(8) / @ in this case), we establish the upper (13).
The next lemma will be used repeatedly in deriving the lower bound.
Lemma 4.5 For A*X (-)and Ay () being convex conjugate, it holds
Ay () .
inf XM _ g (45)
a>c A—¢C

where 8" is the unique positive root of the equation Ay(8) =cé, and c¢>E[X] is a constant.
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2. Lower bound: In section 2, we have defined the aggregate queue length of the two queues as L, = L, + L, . The aggregate

service process for L, is R,—R, +R, =mc . Hence,
1 2
Ly = max { sS4+ 8% —mer) (46)
te N

Similarly, the maximum must be achieved at the time when L_, =0. Let —*<0 be the first time such that L_ =0 (which

implies Ll_,‘ = Lz.,‘ =0)and L_, >0 for € (0, t*). Further, we have a similar expression for the queue length L%) , namely,
2 1 1
Ly= max { s% +min (S%, %) —mer). (47)
te

Also, this maximum must be achieved at the time when Lz_, =0. Let — 1" <0 be the first time such tnat L . =0 and Lz_, >0 for

t€(0, 'c*). Then we have T" <r*. Utilizing this fact and the relations (46) and (47), we have

Li =Ly L= max (% + % —mer)— max (8% +min (SR, $5)—mer) (48)
te N te N
1
= ma)ls{S ' +SA: mct—omax {S—‘r +m1n[S’E¢, Sf_gx}—mct}]
te
> max{S r+SAt —mct— max {S T+S—T} mcT }}= max{S t + min { SZ t—‘c+S—t} mct}.

0<t< 0ty

For any x>0, lett = [x/fF], where >0 is an arbitrary constant. We have

lim 1nf——logP{L0>x}>—11mmf ogP{L(l)>ﬁz} (49)
X oo F o
z—l—llmmf-—logP{S : + m1n {S ‘|:+ s8 1, ‘t}“m(,t>ﬂt
ﬂ t— o0
1 Sftl min0<.t<1 {S—t+S—t,—1}
— 1m1nf—logP{ + == >mc+ f}
,B (e 1 t t
CASEl: A2 B2 Since B!+ B%=mc,
A" pin [s%+ 8B .
P S;r + 0s1S!t t’ -1 >me+ B)
A" min s+ 5B 4
=p{ St—r + 0<t<y tT & >BI+B2+,B]
Al . A? B?
> p(SL >R+ g, osTss {S;TH'“* >B?)
s min {5t + s .
=p(3L >Bl+ pyp—0sist (2T 0T S g2y

t

where the last equality follows from the independence of { Al_,; t €N}, { AE,; t €N} and { BE,; t €N}. Then,

lim 1nf—logP{L >x} (50)
X — oo
sh min 3Sf2+S_[.32‘_ |
> (lin inf+logp {5~ B'+ﬂ}+11mmf logp(—051st ST T 5 g2y )
ﬂ toe I t— oo !
1 . * 1 : *
>——= inf Ay(o)— — inf A, (a)=—-= inf Ay (a),
B a>B'+f B o> B? E 'BaZB'+,B

where, the last equality follows from the fact that infa B 22 (o) = AZ‘Z(B 2) =0if A%22 B2 As f is arbitrary we have

: Ayi(o) _ _ Nyi(a)
lim mf—logP{L0>x}>— inf inf =— inf inf 5hH
x e B204>p'4p B a>B' a-B'>p A

Al (o) .
0(>13’l a— R

where, the last second equality follows from that 1/ x is a continuous decreasing function for x >0, and the last equality follows
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from Lemma 4.5, here 9;2 is the unique positive solution of the equation: A ,,(6) =B 1g. However, by the definition (11),
Ap(8)= B2 6 in the case A2> B2. We have mc6 — Ap2(8)= mc@® — B20=PB'6. Hence, 9;2 is actually the unique solution
of the equation A ,(8) + AE2(9) =mc#, which is the equation (16).

CASE2: A2<B? Let a,2A',i=1,2and o, +0,>mec+f . Then,

A" min R L P min [s%+5%
P{———t_’ o fsrst [T "> me+ B }>P{———>0c1, fstsr tt = >a,)
! ming o, |S%+ 55 <]
—P{——'>0°1} (—=rE tT - >0y ).
We have
lim mf—logP{L0>x} (52)
X —>00
§A! min {sh+sE
_L(hmmf —logP{ 0s<esr 07 'T >ao]>
,B [ —> o0 t— oo t “
1 1 *
> _F ( inf A% i(x)+ inf AEz(x) ) F(AAI(OL])-I- A}z(az)),
x>u x>a
where, the last equality follows from the increasing properties of A’:\z( -). As f is arbitrary we have
llmlnf—PL> >—1nf— inf Ao+ AL (o
X —yoo { 0 x} 0,5 {a,eR, (1>.A17]201 +a,>mc+ B} t Al( 1) EL( 2)}
. . A (o) AL (o
=— inf inf { o) g2 2)}
{o,eR,02A4,i= 1,20, +0,>me} o, +o,—me>f
_ inf Ati(a) + A (o)
{oe R, ;2 A i =120, +a,>me} oy + o, —me
=— inf I(a) 612,
oa>me (T mcC
where,
May=- inf {A%yi(a)) + A2 (o)), (53)

{ae R, o2 A =12 0,+0,>mc}
and 0]*2 is the unique solution of the equation A ,1(6) + AL2(0) =mc@. Let (f)=sup . gif0— I'(a)}. By Lemma 4.5, if
we can prove that /(8) = A ,,(6) + AEz(Q) and I’(0) <mc, then the last equality is obtained. First, we have

1(6)=sup { 6o — inf (A"gi(ey) + AL (o)) (54)
aER {o,eR, 02 Ai=12;0,+ 0, >mc}
= sup sup {60 — A" () = Apa(0y))
a€ER{aeR o2 A i=120ta,>mc}

= sup {60+ 6o, — Ap(0)— Afa(ay))

o, €ER,a,€

sup R{(6’011 — A p(0) T (o — N (0)))

o ER,0,E
:asllépR{ Bo, — Ap(a)))+ aflépxl Bty — Ay (0,) 1= A4 (8) +Ag2(6).
Secondly, since A2< B?and the stability condition (9), we have
I'@))y_o=(N(O) T A2 (1,6)) g o= A+ A2<B'+ B?=mc.

Hence, we obtained the lower bound (15) when A< B2
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5. Conclusion

In this paper we have analyzed a discrete-time polling system consisting of two-parallel queues and m servers. The arrival
process in each queue is an arbitrary, and possibly correlated stochastic process, and each server serves independently the two
queues according to the Bernoulli service schedule. For each queue, we derived the upper and lower bounds of the buffer overflow
probability by using the large deviation techniques and the effective bandwidth concept. The results can be used in traffic
management of high-speed communication networks such as call admission, server allocation, and congestion control. As have
been seen, however, the upper and lower bounds obtained here in general do not match exactly. The main reason is that when each
server allocates its service capacity to the two queues randomly, a large deviation in the departure process may be encouraged (see
[51). Therefore, for the polling system with general arrival processes, developing an approach to get matched upper and lower

bounds of the overflow probability still is an opening problem for future investigation.
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