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ABSTRACT

This paper proposes a novel acoustic model based on neural net-
works for statistical parametric speech synthesis. The neural net-
work outputs parameters of a non-zero mean Gaussian process,
which defines a probability density function of a speech waveform
given linguistic features. The mean and covariance functions of
the Gaussian process represent deterministic (voiced) and stochastic
(unvoiced) components of a speech waveform, whereas the previous
approach considered the unvoiced component only. Experimen-
tal results show that the proposed approach can generate speech
waveforms approximating natural speech waveforms.

Index Terms— Statistical parametric speech synthesis; neural
network; wavefom

1. INTRODUCTION

Typical statistical parametric speech synthesis systems first extract
a set of parametric representation of speech (e.g., cepstra [1], line
spectrum pairs [2], fundamental frequency, and aperiodicity [3]) then
model relationships between the extracted acoustic parameters and
linguistic features associated with the speech waveform using an
acoustic model [6] (e.g., hidden Markov models [4], neural net-
works [5]). There have been a couple of attempts to integrate acous-
tic feature extraction into acoustic modeling, such as the log spec-
tral distortion-version of minimum generation error training [7], sta-
tistical vocoder [8], waveform-level statistical model [9], and mel-
cepstral analysis-integrated hidden Markov models [10].

Tokuda and Zen recently proposed a neural network-based ap-
proach to integrate acoustic feature extraction into acoustic model-
ing [11]. Here, a neural network outputs parameters of azeromean
Gaussian process, which defines a probability density function of
a speech waveform given linguistic features. The covariance func-
tion of the Gaussian process is parameterized by minimum-phase
cepstrum. The network weights are optimized so as to maximize
the log likelihood of the Gaussian process given corresponding pairs
of speech waveforms (target) and linguistic feature sequences (in-
put). This approach can overcome the limitations of the previous
approaches, such as two-step optimization (acoustic feature extrac-
tion → acoustic modeling), use of spectra rather than waveforms,
and use of overlapping and shifting frames as unit. However, the
speech signal model used in this approach has only a stochastic (un-
voiced) component, whereas human speech has both stochastic and
deterministic (voiced) components.

This paper extends the previous approach [11] to have both the
voiced and unvoiced components in its speech signal model. A neu-
ral network outputs parameters of anon-zeromean Gaussian pro-
cess, which defines a probability density function of a speech wave-
form given linguistic features. The deterministic (voiced) compo-
nent of a speech waveform is modeled by the mean function of the

Gaussian process, which is parameterized by mixed-phase complex
cepstrum. Its training algorithm which can run sequentially in a
sample-by-sample or segment-by-segment manner is also derived.

The rest of the paper is organized as follows. Section 2 defines
the signal model and the waveform-level probability density func-
tion. Section 3 derives the training algorithm. Preliminary experi-
mental results are presented in Section 4. Concluding remarks are
given in the final section.

2. WAVEFORM-LEVEL DEFINITION OF PROBABILITY
DENSITY FUNCTION OF SPEECH

2.1. Signal model

This paper adopts the signal model shown in Fig. 1. Thus, the
probability density function of a discrete-time speech signalx =
[x(0), x(1), . . . , x(T − 1)]⊤ corresponding to an utterance or
whole speech database is assumed to be anon-zero meanstationary
Gaussian process, which can be written as

p(x | λ) = N (x;Hcvp,Σcu) , (1)

whereλ is the model parameter set,p = [p(0), p(1), . . . , p(T − 1)]⊤

is a pulse sequence having value1 at pitch mark positions otherwise
0:

p = [0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0]⊤ , (2)

andHcv is a deterministic component matrix1 given as

Hcv =


h(0) h(−1) ··· h(−T+1)

h(1) h(0)
...

...
...

...
... h(−1)

h(T−1) ··· h(1) h(0)

 , (3)

whose elements are given by the impulse response of the mixed
phase system functionHv(z):

h(n) =
1

2π

∫ π

−π

Hv(e
jω) ejωn dω. (4)

In this paper, we assume that the system functionHv(z) generating
voiced componentv(t) is parameterized by complex cepstrumcv as

Hv(e
jω) = exp

M∑
m=−M

cv(m) e−jωm, (5)

wherecv = [cv(−M), ..., cv(0), . . . , cv(M)]⊤. The systemHv(z)
should not modeldelaysince it causes an under-determined problem

1Although we assume thatx andp are infinite sequences, they are de-
scribed as finite sequences for notation simplicity. When they are finite se-
quences,H should be a circulant matrix rather than a Toeplitz matrix.
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when we estimateHv(z) and pulse positions ofp(t) simultaneously.
The complex cepstral representation can avoid the problem because
it intrinsically does not representdelayof the system.

The covariance matrixΣcu is given as

Σcu =


r(0) r(1) ··· r(T−1)

r(1) r(0)
...

...
...

...
... r(1)

r(T−1) ··· r(1) r(0)

 (6)

where

r(k) =
1

2π

∫ π

−π

∣∣∣Hu(e
jω)

∣∣∣2 ejωk dω, (7)

and
∣∣Hu(e

jω)
∣∣2 is the power spectrum of the unvoiced component

u(t). This paper assumes that the corresponding minimum-phase
system functionHu(z) is parameterized by minimum cepstrumcu
as

Hu(e
jω) = exp

M∑
m=0

cu(m) e−jωm, (8)

wherecu = [cu(0), cu(1), cu(2), . . . , cu(M)]⊤. The inverse of the
covariance matrixΣc can be written as the same form in [11] as

Σ−1
cu = A⊤

cuAcu , (9)

where

Acu =


a(0) 0 ··· 0

a(1) a(0)
...

...
...

...
... 0

a(T−1) ··· a(1) a(0)

 (10)

anda(n) is the impulse response of the inverse system given as

a(n) =
1

2π

∫ π

−π

H−1
u (ejω) ejωn dω. (11)

From the above definition, the logarithm of the probability den-
sity function can be written as

log p(x | λ) = −T

2
log 2π +

1

2
log

∣∣∣A⊤
cuAcu

∣∣∣
− 1

2
(x−Hcvp)

⊤ A⊤
cuAcu (x−Hcvp) (12)

where the model parameter set is given asλ = {cv, cu,p}. We
assume that pulse positions inp are extracted by using an external
pitch marker and thereforep is fixed in the following discussion.

2.2. Non-stationarity modeling

Equation (12) can be rewritten as

log p(x | λ) = −T

2
log 2π +

1

2
log

∣∣∣A⊤
cuAcu

∣∣∣
− 1

2
(Acux−Gp)⊤ (Acux−Gp) , (13)

whereG = AcuHcv is given as

G =


g(0) g(−1) ··· g(−T+1)

g(1) g(0)
...

...
...

...
... g(−1)

g(T−1) ··· g(1) g(0)

 (14)

andg(n) is the impulse response of the system functionG(z) =
Hv(z)H

−1
u (z):

G(ejω) = exp

M∑
m=−M

{cv(m)− cu(m)} e−jωm,

(cu(m) = 0,m < 0), (15)

that is,

g(n) =
1

2π

∫ π

−π

G(ejω) ejωn dω. (16)

To model the non-stationary nature of the speech signal,x is
assumed to be segment-by-segment piecewise-stationary:Acu in
Eq. (10) andG in Eq. (14) are redefined as

Acu =



...
...

a(i−1)(0) 0 ··· ··· ··· ··· ···
··· a(i)(1) a(i)(0) 0 ··· ··· ··· ···
··· ··· a(i)(1) a(i)(0) 0 ··· ··· ···

...
...

...
··· ··· ··· ··· a(i)(1) a(i)(0) 0 ···
··· ··· ··· ··· ··· a(i+1)(1) a(i+1)(0)

...
...



 L

(17)
and

G =



...
...

g(i−1)(0) g(i−1)(−1) ··· ··· ··· ··· ···
··· g(i)(1) g(i)(0) g(i)(−1) ··· ··· ··· ···
··· ··· g(i)(1) g(i)(0) g(i)(−1) ··· ··· ···

...
...

...
··· ··· ··· ··· g(i)(1) g(i)(0) g(i)(−1) ···
··· ··· ··· ··· ··· g(i+1)(1) g(i+1)(0)

...
...



 L,

(18)
wherei is the segment index,L is the size of each segment,a(i)(n)

is the impulse response of the inverse system ofH
(i)
u (z) represented

by cepstrum

c(i)u =
[
c(i)u (0), c(i)u (1), . . . , c(i)u (M)

]⊤
, (19)

as in Eq. (8) for thei-th segment, andg(i)(n) is the impulse response
of the systemG(i)(z) represented by cepstrumc(i)u and

c(i)v =
[
c(i)v (−M), . . . , c(i)v (0), . . . , c(i)v (M)

]⊤
(20)



as in Eq. (15) for thei-th segment.
Here the model parameter set of the probability density func-

tion p(x | λ) can be written asλ = c = {cv, cu}, wherecv ={
c
(0)
v , c

(1)
v , . . . , c

(I−1)
v

}
, cu =

{
c
(0)
u , c

(1)
u , . . . , c

(I−1)
u

}
, andI is

the number of segments inx corresponding to an utterance or whole
speech database, and thusT = L × I. Note thatp is omitted from
λ since it is assumed to be fixed in this paper.

3. TRAINING ALGORITHM

3.1. Derivative of the log likelihood

With some elaboration,2 the partial derivative of Eq. (13) w.r.t.c(i)v

can be derived asd(i)
v = ∂ log p(x | c)/∂c(i)v =

[
d
(i)
v (−M), . . . ,

d
(i)
v (0), . . . , d

(i)
v (M)

]⊤
, where

d(i)v (m) =

L−1∑
k=0

e(i)(Li+ k) f (i)(Li+ k −m), (21)

andf (i)(t) is the output ofG(i)(z), whose input isp(t), i.e.

f (i)(t) =

∞∑
n=∞

g(i)(n) p(t− n), (22)

The signale(i)(t) is given as

e(i)(t) = s(i)(t)− f (i)(t), (23)

wheres(i)(t) is the output of the inverse ofH(i)
u (z), whose input is

x(t), i.e.

s(i)(t) =

∞∑
n=0

a(i)(n)x(t− n). (24)

The partial derivative of Eq. (13) w.r.t.c(i)u can also be derived as

d
(i)
u = ∂ log p(x | c)/∂c(i)u =

[
d
(i)
u (0), d

(i)
u (1), . . . , d

(i)
u (M)

]⊤
,

where

d(i)u (m) =

L−1∑
k=0

e(i)(Li+ k) e(i)(Li+ k −m)− δ(m)L, (25)

andδ(m) is the unit impulse function.

3.2. Sequential algorithm

For calculating the impulse responsea(i)(n) or g(i)(n) using a re-
cursive formula [13],O(MN) operations are required at each seg-
menti, even if it is truncated with a sufficiently large number ofN .
Furthermore, for calculatings(i)(t) in Eq. (24) orf (i)(t) in Eq. (22),
O(N(M + L)) operations are required for each segmenti.

First, to reduce the computational burden in calculatings(i)(t)
in Eq. (24), the following two approximations are applied;

1. By assuming

s(i)(t) ≃ e(i−1)(t), t = Li−M, . . . , Li− 1 (26)

2Similar derivation can be found in Eqs. (14) and (16) in [12].
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Fig. 2. Block diagram of the proposed waveform-based framework
(M = 2, L = 1, i.e. i = t). The elementz can be realized in the
training phase because it is in anofflineprocessing mode. For nota-
tion simplicity, here acoustic model is illustrated as a feed-forward
neural network rather than long short-term memory recurrent neural
network (LSTM-RNN).

s(i)(t) can be calculated as the output of the inverse system
whose parameters change segment by segment as follows:

s(i)(t) = s(t) =

∞∑
n=0

at(n)x(t− n), (27)

where

at(n) = a(i)(n), t = Li, . . . , Li+ L− 1 (28)

2. As an approximation, inverse filtering in Eq. (27) can be
efficiently calculated by the log magnitude approximation
(LMA) filter 3 [12] whose coefficients are given by

−cut = −c(i)u , t = Li, . . . , Li+ L− 1 (29)

The same approximation can be applied to calculation ofs(i)(t)
in Eq. (24), except that the system functionG(z) corresponding to
Eq. (22) is decomposed into minimum- and maximum-phase com-
ponents asG(z) = G+(z)G−(z), where

G+(e
jω) = exp

M∑
m=0

{cv(m)− cu(m)} e−jωm, (30)

G−(e
jω) = exp

−1∑
m=−M

cv(m) e−jωm. (31)

3The LMA filter is a special type of digital filter which can approximate
the system function of Eq. (8).
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Each of them are implemented in the LMA filter structure. However,
G−(z) is an anticausal system whileG+(z) is a causal system, and
thusG−(z) should run in a time-reversal manner.

With the above approximations, a simple structure for training
the neural network acoustic model, which represents a mapping
from linguistic features to speech signals, can be derived. It can
run in a sequential manner as shown in Fig. 2. This neural net-
work outputs cepstrumc given linguistic feature vector sequence4

l =
{
l(0), l(1), . . . , l(I−1)

}
, which in turn gives a probability den-

sity function of speech signalsx corresponding to an utterance or
whole speech database conditioned onl as

p(x | l,M) = N
(
x;Hc(l)p,Σc(l)

)
, (32)

whereM denotes a set of network weights,c(l) is given by acti-
vations at the output layer of the network given input linguistic fea-
tures, and the RHS is given by Eq. (12). By back-propagating the
derivative of the log likelihood function through the network, the
network weights can be updated to maximize the log likelihood.

It should be noted that the proposed approach optimizes the
acoustic feature extraction part and acoustic modeling part simul-
taneously. As a result, better modeling accuracy can be expected.

3.3. Synthesis structure

The speech waveform can be generated by samplingx from the
probability density functionp(x | l,M). It can be done by
using the signal model structure shown in Fig. 1. By decompos-
ing Hv(z) into minimum- and maximum-phase components as
Hv(z) = Hv+(z)Hv−(z), the system functionsHv+(z), Hv−(z)
andHu(z) can be implemented by using the LMA filter structure,
whereHv+(z) runs in a time-reversal manner. It should be noted
that we need an externalF0 predictor for generating the pulse train
p(t).

4. EXPERIMENTS

Speech data in US English from a female professional speaker was
used for the experiments. The training and development data sets
consisted of 35,497 and 100 utterances, respectively. A speaker-
dependent unidirectional LSTM-RNN [14] was trained.

The linguistic features derived from speech data, transcriptions,
and alignments, included 560 linguistic contexts, 10 numerical fea-
tures for coarse-coded position of the current frame within the cur-
rent phoneme, and one numerical feature for duration of the current
phoneme.

The speech data was downsampled from 48 kHz to 16 kHz.
Then 0–39 mel-cepstrum, 5 band aperiodicity, 1logF0, and 1
voiced/unvoiced binary flag were extracted at each frame. Glot-
tal closure instants (GCI) locations were also extracted using
REAPER [15]. Both the input and output features were normalized
to have zero-mean unit-variance. The architecture of the LSTM-
RNN had 1 feed-forward hidden layer with 256 units and recti-
fied linear (ReLU) activation [16] followed by 3 forward-directed
LSTMP [17] hidden layers with 512 memory blocks and 256 pro-
jection units, 1 feed-forward hidden layer with 256 units and ReLU
activation, and an output layer with 47 units5 and linear activation.

4The definition of the linguistic feature vector used in this paper can be
found in [5] and [14].

5It included 0–39 mel-cepstrum, 5 band aperiodicity, 1logF0, and 1
voiced/unvoiced flag.
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Fig. 3. A segment of the generated speech waveform for a sentence
“Two elect only two” not included in the training data.

To reduce the training time and the impact of having many si-
lences, 80% of silence regions were removed. After setting the
network weights randomly, they were first updated to minimize the
mean squared error between the extracted and predicted acoustic fea-
tures. Then the last layer was replaced by a randomly initialized
output layer with 119 units6 and linear activation. After updating
the weights associated with the output layer, all weights in the net-
work were updated by the proposed sequential algorithm so as to
maximize the log likelihood of Eq. (12). They were first updated
by non-distributed Adam [18] then distributed AdaGrad [19]. The
mini-batch back propagation through time (BPTT) [20] algorithm
was used [17] in both cases. Dropout [21] stochastic regularization
(50%) was used throughout to prevent overfitting.

Fig. 3 shows a synthesized speech waveform generated from the
trained neural network. It can be seen from the figure that a speech
waveform approximating the natural speech waveform is generated.

5. CONCLUSIONS

An acoustic modeling approach based on neural networks to statisti-
cal parametric speech synthesis was proposed. The network outputs
parameters of anon-zeromean Gaussian process, which defines a
probability density function of a speech waveform given linguistic
features. The stochastic (unvoiced) component of a speech wave-
form is modeled by the covariance function of the Gaussian process,
parameterized by minimum-phase cepstrum, whereas the determin-
istic (voiced) component is modeled by the mean function of the
Gaussian process, parameterized by mixed-phase complex cepstrum.
Its training algorithm which can run sequentially on speech wave-
form in a sample-by-sample or segment-by-segment manner was de-
rived.

Future work includes simultaneously estimating pitch marks in-
cluding fractional pitch search in the model training. One of the
limitations of this approach is that both acoustic modeling (l → c)
and waveform modeling (c → x) error goes to the unvoiced com-
ponent. Introduction of a covariance structure for the voiced compo-
nent can alleviate this problem. Performance evaluation in practical
conditions as a text-to-speech synthesis application is also included
in future work.

6It included 0–39 minimum-phase unvoiced cepstrum, 0–39 minimum-
phase voiced cepstrum, and 1–39 maximum-phase voiced cepstrum.



6. REFERENCES

[1] S. Imai and C. Furuichi, “Unbiased estimation of log spec-
trum,” in Proc. EURASIP, 1988, pp. pp.203–206.

[2] F. Itakura, “Line spectrum representation of linear predictor
coefficients of speech signals,”The Journal of the Acoust. So-
ciety of America, vol. 57, no. S1, pp. S35–S35, 1975.

[3] H. Kawahara, J. Estill, and O. Fujimura, “Aperiodicity extrac-
tion and control using mixed mode excitation and group delay
manipulation for a high quality speech analysis, modification
and synthesis system straight,” inProc. MAVEBA, 2001, pp.
13–15.

[4] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Ki-
tamura, “Simultaneous modeling of spectrum, pitch and dura-
tion in HMM-based speech synthesis,” inProc. Eurospeech,
1999, pp. 2347–2350.

[5] H. Zen, A. Senior, and M. Schuster, “Statistical paramet-
ric speech synthesis using deep neural networks,” inProc.
ICASSP, 2013, pp. 7962–7966.

[6] H. Zen, K. Tokuda, and A. Black, “Statistical parametric
speech synthesis,”Speech Commn., vol. 51, no. 11, pp. 1039–
1064, 2009.

[7] Y.-J. Wu and K. Tokuda, “Minimum generation error train-
ing with direct log spectral distortion on LSPs for HMM-based
speech synthesis,” inProc. Interspeech, 2008, pp. 577–580.

[8] T. Toda and K. Tokuda, “Statistical approach to vocal tract
transfer function estimation based on factor analyzed trajectory
hmm,” in Proc. ICASSP, 2008, pp. 3925–3928.

[9] R. Maia, H. Zen, and M. Gales, “Statistical parametric speech
synthesis with joint estimation of acoustic and excitation model
parameters,” inProc. ISCA SSW7, 2010, pp. 88–93.

[10] K. Nakamura, K. Hashimoto, Y. Nankaku, and K. Tokuda,
“Integration of spectral feature extraction and modeling for
HMM-based speech synthesis,”IEICE Trans Inf. Syst., vol.
97, no. 6, pp. 1438–1448, 2014.

[11] K. Tokuda and H. Zen, “Directly modeling speech waveforms
by neural networks for statistical parametric speech synthesis,”
in Proc. ICASSP, 2015, pp. 4215–4219.

[12] K. Tokuda, T. Kobayashi, and S. Imai, “Adaptive cepstral anal-
ysis of speech,”IEEE Trans. Speech Audio Process., vol. 3, no.
6, pp. 481–489, 1995.

[13] A.V. Oppenhem and R.W. Schafer,Descrete-Time Signal Pro-
cessing, Prentice Hall, 1989.

[14] H. Zen and H. Sak, “Unidirectional long short-term memory
recurrent neural network with recurrent output layer for low-
latency speech synthesis,” inProc. ICASSP, 2015, pp. 4470–
4474.

[15] “REAPER: Robust Epoch And Pitch EstimatoR,”https://
github.com/google/REAPER , 2015.

[16] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.-V.
Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. Hin-
ton, “On rectified linear units for speech processing,” inProc.
ICASSP, 2013, pp. 3517–3521.

[17] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” inProc. Interspeech, 2014.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,”The Jour-
nal of Machine Learning Research, pp. 2121–2159, 2011.

[20] R. Williams and J. Peng, “An efficient gradient-based algo-
rithm for on-line training of recurrent network trajectories,”
Neural Comput., vol. 2, no. 4, pp. 490–501, 1990.

[21] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by pre-
venting co-adaptation of feature detectors,”arXiv preprent
arXiv:1207.0580, 2012.


