1	Structures and dissolution behaviors of CaO-P ₂ O ₅ -TiO ₂ /Nb ₂ O ₅
2	(Ca/P ≥ 1) invert glasses
3	
4	Sungho Lee ¹ , Hirotaka Maeda ¹ , Akiko Obata ¹ , Kyosuke Ueda ² , Takayuki Narushima ² ,
5	Toshihiro Kasuga ^{1*}
6	
7	¹ Department of Frontier Materials, Graduate School of Engineering,
8	Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
9	² Department of Metallurgy, Materials Science and Materials Processing,
10	Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki,
11	Aoba-ku, Sendai 980-8579, Japan
12	
13	
14	
15	
16	* Corresponding author: Tel./Fax: +81 52 735 5288
17	E-mail address: kasuga.toshihiro@nitech.ac.jp

1 Abstract

 $\mathbf{2}$ Common phosphate glasses-for example, those in the metaphosphate regionshow potential as biodegradable materials. Some applications, such as biocompatible thin 3 films coated on titanium or its alloys using radiofrequency magnetron sputtering methods, 4 require films with good chemical durability. In the present work, CaO-P₂O₅-TiO₂/Nb₂O₅ $\mathbf{5}$ glasses with a Ca/P ratio of ≥ 1.00 were prepared using a melt-quenching method, and 6 $\overline{7}$ their structures and dissolution behaviors were investigated. When the Ca/P ratio was increased, the amount of orthophosphate (Q_p^0) group in the glasses increased, and that of 8 pyrophosphate $(Q_p^{\ l})$ group decreased. The amount of $Q_p^{\ o}$ group was greater than the 9 amount of Q_p^{-1} groups in glasses with a Ca/P ratio of ≥ 1.14 . Intermediate oxides (*i.e.*, 10 TiO₂ and Nb₂O₅) in the glasses cross-linked with the phosphate groups to form P-O-Ti/Nb 11 12bonds; these bonds were expected to take a tetrahedral form. The glasses prepared in the present work showed excellent chemical durability, because of the P-O-Ti/Nb bonds and 13the delocalized P=O bonds that resulted from the increasing Q_p^0 content in the glasses. 14

1 Highlights

10	Ke	eywords
9		
8		
7		
6		
5	•	The chemical durability increased with increasing Q_p^0 content in the glasses
4	•	TiO _x /NbO _y groups formed tetrahedrons in the glasses including numerous Q_p^0 groups
3	•	The number of P-O-Ti/Nb bonds increased with increasing Q_p^0 content in the glasses
2	•	Phosphate glasses including numerous orthophosphate groups (Q_p^0) were prepared

11 Biomaterial, calcium phosphate glass, invert glass, structure, dissolution

1. Introduction

2	Titanium-containing calcium phosphate invert glasses (Ti-IGs) have been a
3	focus of research in our group [1]. Ti-IGs consist of short phosphate groups, such as ortho-
4	and pyrophosphates $(Q_p^0 \text{ and } Q_p^1)$, because P-O-Ti bonds help to form their glass network
5	[1]. Ti-IGs indicate <i>in vitro</i> and <i>in vivo</i> bioactivity [2,3]. Ti-IGs can be applied as a coating
6	material for titanium or its alloys. In our previous work, Ti-IG powders were dip coated
7	on a Ti-29Nb-13Ta-4.6Zr alloy, and then heat treated at 800°C for 1 h. The resulting layer
8	were $10 \sim 20 \ \mu m$ in thickness, without significant cracks, and the tensile bonding strength
9	between the layer and the substrate was measured to be 26 MPa [4]. Recently, niobium-
10	containing calcium phosphate invert glasses (Nb-IGs) were prepared by our group [5,6].
11	Crystallized Nb-IGs showed apatite-forming abilities in simulated body fluids [5]. Trace
12	amounts of Nb $^{5+}$ ions (0.04 \sim 0.06 mM) dissolved from the Nb-IGs enhanced the
13	differentiation of osteoblast-like cells, such as alkali phosphatase (ALP) activity [6].
14	Tamai <i>et al</i> . reported that Nb ⁵⁺ ions enhanced calcification, because of the enhancement
15	of the ALP activity [7].

Narushima *et al.* reported an amorphous calcium phosphate film prepared on
metallic titanium using a radiofrequency magnetron sputtering (RF-sputtering) method
[8]. The tensile strength of the bond between the film and the titanium was greater than

1	60 MPa when the coating layer thickness was between 0.5 and 1 μ m (the epoxy glue used
2	in the test was detached without damage to the film) [9]. The bonding strength decreased
3	to 30 MPa after the amorphous calcium phosphate film on the titanium was immersed in
4	phosphate-buffered saline (PBS) for 3 days, because of the low chemical durability of the
5	film [10]. Amorphous films on metallic titanium or its alloys are required to have
6	excellent chemical durability and excellent biocompatibility.
7	Ti-IGs and Nb-IGs may be candidate for the amorphous film using RF-
8	sputtering method. To fully realize the application of method for Ti-IGs and Nb-IGs, it is
9	necessary to clarify their (Ti-IGs and Nb-IGs) dissolution behaviors. In this work, we
10	focused on phosphate invert glasses containing TiO2 or Nb2O5 and large amounts of CaO
11	(where the invert glasses were prepared via conventional melt-quenching), and examined
12	their structures and dissolution behaviors.
13	
14	
15	2. Materials and methods
16	2.1 Preparation of the glasses
17	Titanium- or niobium-containing calcium phosphate invert glasses with nominal
18	compositions of x CaO·(90- x)P ₂ O ₅ ·10TiO ₂ (mol%, $x = 60$ to 66, denoted here as Ti-IGs)

1	and $yCaO(94.5-y)P_2O_5(5.5Nb_2O_5)$ (mol%, $y = 63$ to 68.5, denoted here as Nb-IGs) were
2	prepared, as shown in Table 1. Glass batches were prepared using CaCO ₃ (99.5%), H ₃ PO ₄
3	(85% liquid), TiO ₂ (99.5%), and Nb ₂ O ₅ (99.9%). All reagents were obtained from Kishida
4	Chemical Co., Japan. The glass compositions were adjusted by changing the atomic ratios
5	of Ca, P, and Ti or Nb. The reagents were mixed with distilled water to make a slurry at
6	room temperature. After the mixture was dried under an infrared lamp overnight and then
7	stored at 140°C, it was melted in a platinum crucible at 1500°C for 30 min, and then
8	quenched via p\ressing, which was applied using two stainless-steel plates, to prevent
9	crystallization. The resulting glass compositions were examined using inductively
10	coupled plasma atomic emission spectroscopy (ICP-AES, ICPS-7000, Shimadzu Co.,
11	Japan) for the Ti-IGs, using aqueous solutions in which 5 mg of the glass powders was
12	dissolved in 20 mL of 1N HCl ($n = 3$). The compositions of the Nb-IGs were analyzed
13	using energy dispersive X-ray spectroscopy (EDX, JCM-6000 and JED-2300, JEOL Co.,
14	Japan): the glass fractures were coated with amorphous osmium using plasma chemical
15	vapor deposition equipment $(n = 3)$.

2.2 Thermal analysis

18 The glass transition temperature (T_g) and crystallization temperature $(T_c, defined$

1	as the onset of crystallization) of the glasses were obtained using differential thermal
2	analysis (DTA; heating rate: 5 K/min, Thermo plus TG8120, Rigaku Co., Japan). The
3	glassification degree—which is defined as $(T_c - T_g)/T_g$ (K/K) [11], and is used as an
4	indicator of the glass-forming ability-was calculated.
5	
6	2.3 Characterization of the glass structure
7	The glass structure was investigated using laser Raman spectroscopy, which was
8	performed on quenched glass samples in the Raman shift region between 500 and 1300
9	cm ⁻¹ (NRS-3300, JASCO Co., Japan). The samples were excited by the 532.08 nm line
10	of Nd:YAG solid-state laser with 6.4 mW of power at room temperature. The exposure
11	time was 10 sec and the cumulated number was 8. The resolution of Raman spectra is
12	4.13 cm^{-1} .
13	The glass samples were pulverized to the powder for solid-state ³¹ P magic angle
14	spinning nuclear magnetic resonance (MAS-NMR) spectra. ³¹ P MAS-NMR spectra were

16 rotor that was spinning at 5 kHz (Varian UNITY Inova 400 plus). A single pulse 17 experiment with 5 μ s pulse width, 60 s recycle delay, and a cumulative number of 64, was 18 performed for each sample. The chemical shift was referenced to the signal of NH₄H₂PO₄

15

measured to determine the phosphate structures in the glasses at 161.906 MHz in a 8 mm

1 as 1.0 ppm. The theoretical network connectivity (NC_{theor}) , which is defined as the number 2 of bridging oxygens per network forming element [12], was calculated using the 3 following equation,

,

4
$$NC_{theor} = \frac{3[P_2O_5] - [CaO] - (2[TiO_2] \text{ or } 3[Nb_2O_5])}{[P_2O_5]}$$

6 where $[P_2O_5]$, [CaO], $[TiO_2]$, and $[Nb_2O_5]$ are the molar fractions of phosphate, calcium 7 oxide, titanium dioxide, and niobium pentoxide, respectively. The experimental network 8 connectivity (NC_{exp}) was calculated based on the deconvolution of ³¹P MAS-NMR spectra, 9 assuming the presence of Q_p^0 and Q_p^1 units.

10 The glasses density were measured by the Archimedes' method using water as 11 immersion fluid at room temperature: the glass fractures were prepared 100 ~ 300 mg and 12 the water temperature was 25°C (n = 3). The oxygen density was calculated, to allow the 13 calculation of the compactness of the glass network using the following equation [13,14]: 14 $\rho_{oxygen} = \frac{M(0) \times \{[Ca0] + 5[P_2O_5] + (2[TiO_2] \text{ or } 5[Nb_2O_5])\}}{M(glass)}$, (2)

15 where M(O) and M(glass) are the atomic weight of oxygen and the molar weight of the 16 glass, respectively; [CaO], [P₂O₅], [TiO₂], and [Nb₂O₅] are the molar fractions of 17 phosphate, calcium oxide, titanium dioxide, and niobium pentoxide, respectively; and 18 ρ_{glass} is the experimental density of the glass.

2	2.4 Characterization of dissolution in a Tris buffer solution
3	Glass samples were pulverized and sieved to provide particle sizes between 125
4	and 300 μ m. A Tris buffer solution was prepared by dissolving 6.118 g of
5	tris(hydroxymethyl)aminomethane (NH ₂ C(CH ₂ OH) ₃ , Kishida Chemical Co., Japan) in 1
6	L of distilled water at 37°C, and adjusting the pH to 7.4. Fifteen milligrams of the glass
7	powders was soaked in 15 mL of the Tris buffer solution at 37° C for 7 days (n = 3). The
8	concentrations of Ca^{2+} , P^{5+} , Ti^{4+} , and Nb^{5+} ions in the solution were measured using ICP-
9	AES.
10	
11	
12	3. Results
13	3.1 Glass formation
14	Optically clear glasses were obtained in the composition region with a Ca/P ratio
15	of < 1.10 (nominal composition), while partially crystallized glasses were obtained with
16	Ca/P ratios of \geq 1.10. In the subsequent experiments, crystalline (opaque) parts were
17	removed manually. ICP-AES analysis showed that the composition of the Ti-IGs was very
18	close to the nominal composition, as shown in Table 1. The Nb-IGs, however, could not

1	be analyzed using ICP-AES, because the glass powders turned into a gel in acids such as
2	1N HCl and 1N HNO ₃ . The compositions of the Nb-IGs were therefore analyzed using
3	EDX (Table 1); the amount of phosphorus was reasonably close to that shown in the
4	nominal composition, and the amounts of calcium and niobium varied by approximately
5	2.5 mol%. Because the phosphorus $K\alpha$ (2.013 eV) and niobium $L\alpha$ (2.166 eV) peaks
6	overlapped, it was difficult to accurately determine the composition. Hereafter, the glass
7	codes (Ca/P ratio) estimated from the nominal compositions, are used in the discussion
8	of the results.
9	
10	3.2 Thermal properties
11	Figure 1 shows results for T_g , T_c , and the glassification degree for the glasses. T_g
12	and T_c showed increasing trends with increases in the Ca/P ratio; the T_g values varied in
13	the region of 646°C to 684°C and 645°C to 684°C for the Ti-IGs and Nb-IGs, respectively,
14	and the T_c values varied in the region of 714°C to 735°C and 722°C to 737°C for the Ti-
15	IGs and Nb-IGs, respectively. The glassification degree showed decreasing trends with
16	increases in the Ca/P ratio; the values for the Ti-IGs varied between 0.05 and 0.08, and

17 the values for the Nb-IGs varied between 0.06 and 0.09.

3.3 Glass structures

2	The phosphate groups in the glasses showed Raman bands corresponding to Q_p^0
3	and Q_p^{l} groups, as shown in Fig. 2 (a, b), including the POP _{sym} stretching mode of the
4	bridging oxygen in Q_p^{l} (750 cm ⁻¹), the (PO ₄) _{sym} stretching mode of the non-bridging
5	oxygen in Q_p^0 (950 cm ⁻¹), the (PO ₃) _{sym} stretching vibrations of the non-bridging oxygen
6	in Q_p^l (1040 cm ⁻¹) [15], and the P-O stretching of the Q_p^l chain terminator (1115 cm ⁻¹)
7	[16]. The Ti-IGs showed bands corresponding to the Ti-O stretching vibrations of TiO_6
8	octahedrons (640 cm ⁻¹), the Ti-O stretching vibrations of TiO ₄ tetrahedrons (875 cm ⁻¹)
9	[17], and P-O-Ti bonds (993 cm ⁻¹) [1,18,19]. The Nb-IGs showed bands corresponding
10	to the Nb-O vibrations of NbO ₆ octahedrons corner-linked in a three-dimensional network
11	(640 cm ⁻¹) [20,21], the Nb-O vibrations of NbO ₄ tetrahedrons (845 cm ⁻¹) [21], the Nb-O
12	bond vibrations in isolated NbO ₆ octahedral units (910 cm ⁻¹) [20,21], and the Nb=O
13	stretching vibration mode of the NbO ₄ terminal bond (990 cm ⁻¹) [22]. The experimental
14	Raman bands were simulated, assuming Gaussian lines. The integrated peak intensities
15	of the deconvoluted bands were calculated; the integrated peak intensities of the
16	phosphate, Ti-O, and Nb-O group bands were normalized by the sums $I(POP_{sym})$ +
17	$I((PO_4)_{sym}) + I(P-O-Ti) + I((PO_3)_{sym}) + I(P-O \text{ stretch } Q_p^{-1} \text{ chain terminator}), \text{ and } I(TiO_6) + I(PO_4)_{sym} + I(PO_4)_{sym} + I(PO_4)_{sym}) + I(PO_4)_{sym} + I(PO$
18	$I(TiO_4) + I(P-O-Ti)$ and $I(NbO_{6_3D}) + I(NbO_4) + I(NbO_{6_isolated}) + I(Nb=O bond of$

1	NbO _{4_terminal}), respectively (Fig. 2 (c-f)), where I denotes each peak amplitude. With
2	increases in the Ca/P ratio in the Ti-IGs, the integrated peak intensities associated with
3	the $Q_p^{\ 0}$ group and the P-O-Ti bonds increased, and those associated with the $Q_p^{\ 1}$ group
4	decreased (Fig. 2 (c)). With increases in the Ca/P ratio in the Nb-IGs, the integrated peak
5	intensities associated with the Q_p^0 group increased, and those associated with the Q_p^1
6	group decreased (Fig. 2 (d)). With increases in the Ca/P ratio in the Ti-IGs, the peak
7	intensity associated with the TiO4 tetrahedrons showed no significant changes, the peak
8	intensity associated with the P-O-Ti bonds increased, and the peak intensity associated
9	with the TiO ₆ octahedrons decreased (Fig. 2 (e)); with increases in the Ca/P ratio in the
10	Nb-IGs, the peak intensity associated with the NbO4 tetrahedrons increased, and the peak
11	intensity associated with the NbO ₆ octahedrons decreased (Fig. 2 (f)).
12	³¹ PMAS-NMR spectra of the glasses are shown in Fig. 3 (a, b). The center peaks
13	between 10 and -25 ppm were assigned to Q_p^0 and Q_p^1 units, and the remaining peaks
14	observed on both sides of the center peaks were associated with spinning side bands. The
15	experimental spectra were simulated, assuming Gaussian lines for the Q_p^0 and Q_p^1 units.
16	With increases in the Ca/P ratio, the fractured peak top positions of Q_p^0 low-field shifted
17	from 0.8 to 2.0 ppm and from 0.6 to 2.2 ppm for the Ti-IGs and the Nb-IGs, respectively,
18	and the fractured peak top positions of Q_p^l low-shifted from -6.9 to -2.7 ppm and from

1	-7.0 to -2.1 ppm for the Ti-IGs and the Nb-IGs, respectively, as shown in Fig. 3 (c, d).
2	The peak integrated portions associated with the Q_p^0 and Q_p^l groups in the glasses
3	increased and decreased linearly, respectively, with increases in the Ca/P ratio. With
4	increases in the Ca/P ratio, the Q_p^0 contents in the Ti-IGs and Nb-IGs increased from 33%
5	to 66% and from 33% to 67%, respectively, and the Q_p^{l} contents in the Ti-IGs and Nb-
6	IGs decreased from 67% to 34% and from 67% to 33%, respectively, as shown in Fig. 3
7	(e, f).
8	Figure 4 shows the experimental and theoretical network connectivities of the
9	glasses. With increases in the Ca/P ratio, NCtheor for the Ti-IGs and the Nb-IGs decreased
10	from 0.33 to -0.23 and from 0.51 to -0.21, respectively, and NC_{exp} for the Ti-IGs and the
11	Nb-IGs decreased from 0.67 to 0.34 and from 0.67 to 0.33, respectively.
12	
13	3.4 Density of the glasses
14	The density of the Ti-IGs and the Nb-IGs increased from 3.00 to 3.05 $g \cdot cm^{-3}$ and
15	from 3.08 to 3.15 g·cm ⁻³ , respectively, with increases in the Ca/P ratio, as shown in Fig.
16	5 (a). No significant difference in the oxygen density of the glasses was observed, only a
17	slight decrease; the oxygen density in the Ti-IGs varied between 1.29 and 1.32 g·cm ⁻³ ,
18	and that in the Nb-IGs varied between 1.18 and 1.21 g \cdot cm ⁻³ .

2 **3.5 Dissolution behaviors of the glasses**

4	Figure 6 shows ion-release percentages from the glasses into the Tris buffer
	solution, relative to the original amount in the glasses. The solubility of the glasses was
5	very low; less than 5% and 7% of all of the components were released from the Ti-IGs
6	and the Nb-IGs, respectively, even after 7 days. With increases in the Ca/P ratio, the ion-
7	release percentage for the Ti-IGs and Nb-IGs decreased from 5.0% to 3.5% and from
8	7.0% to 5.0%, respectively.

9

10

11 4. Discussion

12 **4.1 Glassification degree**

 T_g and T_c increased for the Ti-IGs and the Nb-IGs—and their glassification degree decreased—with increases in the Ca/P ratio. The glasses showed low glassification degrees; a value of 0.05 was determined for the Ti-IGs (Ca/P = 1.24), and a value of 0.06 was determined for the Nb-IGs (Ca/P = 1.30). The glassification degree is an indication of the glass-forming ability; Ouchetto *et al.* reported a glassification degree of approximately 0.25 for a zinc metaphosphate glass, and a low value of approximately

1 0.07 for an invert glass [11]. The results obtained here showed that the Ti-IGs and Nb- $\mathbf{2}$ IGs had a tendency to induce crystallization during quenching, owing to insufficient amounts of a glass network former (*i.e.*, phosphate). 3 With increases in the Ca/P ratio, the integrated peak intensity associated with the 4 $Q_p{}^{0}$ group increased, and that associated with the $Q_p{}^{1}$ group decreased. The peak $\mathbf{5}$ integrated portions for the phosphate groups (determined from the ³¹P MAS-NMR spectra 6 for the Ti-IGs and Nb-IGs) showed that the Q_p^0 content increased to 66% and 67%, and 7the $Q_p^{\ l}$ content decreased to 34% and 33%, respectively, with increases in the Ca/P ratio. 8 The laser Raman and ³¹P MAS-NMR spectra indicated a similar tendency; that is, 9 increases in the Q_p^0 group content and decreases in the Q_p^1 group content. The Ca/P ratio 10of the glasses with $Q_p^0/Q_p^1 = 1$ in the integrated peak portion for Ti-IGs or Nb-IGs was 11 121.10 or 1.14, respectively. As shown in Fig. 1, the glasses containing larger amounts of Q_p^0 group than Q_p^1 group (*i.e.*, Ti-IGs with Ca/P \geq 1.10, and Nb-IGs with Ca/P \geq 1.14) 13 showed a glassification degree of $0.05 \sim 0.07$; nearly clear glasses with partially 14crystallized portions were obtained. 15

16

17 **4.2 Glass structure**

18

The glass density increased with increases in the Ca/P ratio, despite the decrease

1 in M(glass), and the oxygen density of the glasses showed very little change (or decreased 2 slightly). These results indicated that the glass networks became more densely packed 3 with increases in the Ca/P ratio. Intermediate oxides—*i.e.*, TiO₂, and Nb₂O₅—would have 4 assisted in the formation of the glass network structure, even in the glasses containing 5 numerous Q_p^0 group, although predictably their glass network would change to be less 6 densely packed.

The NC_{theor} values calculated using equation (1) were less than 0 with Ca/P ratios 7of > 1.13 and > 1.21 for the Ti-IGs and Nb-IGs, respectively; this meant that, theoretically, 8 no glass network structure could form in these composition regions. That is, the 9 intermediate oxides helped to form the glass network structure. The NCexp values were 10 0.34 and 0.33 for the Ti-IGs and Nb-IGs, respectively. Polyhedral TiOn or NbOn would 11 12have cross-linked the phosphate groups. Our previous work showed that Ti-IGs contain P-O-Ti bonds, and that the peak intensity in the Raman spectra increased with increases 13in the TiO₂ content [1]. Brow et al. and Segawa et al. reported P-O-Ti bonds in binary 14TiO₂-P₂O₅ glasses [18] and TiO₂-ZnO-P₂O₅ glasses [19]. Jazouli et al. and Mazali et al. 15reported P-O-Nb bonds in Na₂O-P₂O₅ glasses modified with a small amount of Nb₂O₅ 16 [23], and in niobophosphate glasses containing predominantly Q_p^0 and Qp^1 groups [24]. 17In the present glass system, the integrated peak intensity associated with the P-O-Ti bonds 18

1 ir

 $\mathbf{2}$

increased with increases in the Ca/P ratio in the Ti-IGs; it is possible that the formation of P-O-Nb bonds increased with increases in the Ca/P ratio in the Nb-IGs.

3	T_g values of the glasses were increased with increasing the Ca/P ratio, <i>i.e.</i> , $NC_{theoret}$
4	and NC_{exp} were decreased. A similar trend has been observed for the glasses in the P ₂ O ₅ -
5	MgO [25] and the P ₂ O ₅ -CaO-Na ₂ O [26] system. Mandlule <i>et al.</i> reported, this trend can
6	be explained by an increasing ionic contribution in the glass structure [26]. Glasses with
7	low phosphate content, <i>i.e.</i> , invert glasses, formed their network by interactions between
8	short phosphate units and modifier ions [26]. Brow reported, invert glasses do not have a
9	continuous random network and their structure consist of short phosphate unit and
10	modifier ions linked through non-bridging oxygens [27]. The structures of the invert
11	glasses were more influenced by P-O ⁻ Me ⁺ (Me ⁺ being a modifier oxide) inter-chain
12	cross-links than P-O-P bond [26,27]. Q_p^0 group in the glasses were increased with
13	increasing the Ca/P ratio, i.e., number of non-bridging oxygen in the glasses were
14	increased. The increasing number of non-bridging oxygen in the glasses caused the
15	increase in their T_g , due to increase ionic contribution.

As shown in Fig. 3, the fractured peak top position associated with the phosphate groups showed a low-field shift with increases in the Ca/P ratio, which indicated a decrease in the electron density. Electrons belonging to the Q_p^0 and Q_p^1 groups were pulled to the titanium or niobium side; the electron densities of the Q_p^0 and Q_p^1 groups therefore decreased with increases in the Ca/P ratio. Because the amount of P-O-Ti or P-O-Nb bonds in the glasses increased, the Q_p^0 and Q_p^1 groups had more chance to be influenced by the titanium or niobium, which have larger field strengths compared with calcium (Nb : 1.73, Ti : 1.04, Ca : 0.33 valence/Å²) [28].

The integrated intensities associated with TiO₄ showed no significant difference 6 when the Ca/P ratio in the Ti-IGs was increased; in contrast, the intensity associated with 7P-O-Ti increased, and that associated with TiO₆ decreased. The linking of the TiO₄ to the 8 phosphate groups might have increased as a result of the decreases in the intensity 9 10associated with TiO₆. Brow et al. and Segawa et al. reported that titania linking to phosphate groups takes TiO₆ octahedron structure [18,19] in the CaO-TiO₂-P₂O₅ and 11TiO₂-ZnO-P₂O₅ glasses, respectively, consisting of Q_p^2 and Q_p^1 groups. Li *et al.* reported 12that, in P₂O₅-CaO-Na₂O-TiO₂ pyrophosphate glasses, titania enters the glass network as 13TiO₄ tetrahedrons connected to phosphate groups through P-O-Ti bonds [29]. Nagarjuna 14et al. reported that Ti⁴⁺ ions enter the glass network as TiO₄ units and form the linkage of 1516 P-O-Ti bonds [30]. In the Nb-IGs, the integrated intensity associated with NbO₆ decreased with increases in the Ca/P ratio, and that associated with NbO4 increased. Niobate linking 17to P-O-Nb bond takes NbO₆ octahedron structure, when the glasses were composed of 18

 Q_p^2 and Q_p^1 groups [23,24,31]. Chu et al. and Hsu et al. reported that P-O-Nb bonds 1 formed, and the partial NbO₆ octahedron structure gradually turned into a NbO₄ $\mathbf{2}$ tetrahedron structure, with decreases in the content of P_2O_5 in the glasses [21,32]. The 3 present glasses consisted of Q_p^0 and Q_p^1 groups; with Ca/P ratios ≥ 1.10 in the Ti-IGs and 4 \geq 1.14 in the Nb-IGs, they consisted predominantly of Q_p^0 groups. In the glasses with a $\mathbf{5}$ Ca/P ratio of ~1.00, which consisted predominantly of Q_p^{l} groups, TiO₆ or NbO₆ 6 octahedrons cross-linked the phosphate groups to form P-O-Ti/Nb bonds. In Q_p^0 -7predominant compositions, *i.e.*, in Ti-IGs with $Ca/P \ge 1.10$ and Nb-IGs with $Ca/P \ge 1.14$, 8 the intermediate oxides took the form of tetrahedrons and cross-linked the phosphate 9 10groups. 11

12 **4.3 Dissolution behaviors of the glasses**

The glasses showed good chemical durability (up to 5% or 7% dissolution from the Ti-IGs or Nb-IGs after 1 week, respectively). Brauer *et al.* and Kishioka *et al.* reported that the chemical durability of P₂O₅-CaO-MgO-Na₂O-TiO₂ and Na₂O/K₂O-TiO₂-P₂O₅ glasses was improved by increases in the TiO₂ content, because the formed P-O-Ti bonds impeded the hydration of the phosphate groups [12,33]. Mazali *et al.* reported that the chemical durability of Li₂O-Nb₂O₅-CaO-P₂O₅ glasses was improved by the formation of

1	P-O-Nb bonds [24]. Masai <i>et al.</i> reported that the chemical durability of SrO-BaO-Nb ₂ O ₅ -
2	P ₂ O ₅ glasses was improved by increasing the Q_p^0 content in the glasses, as a result of
3	delocalization of the P=O groups [34]. The chemical durability of the glasses was
4	improved when the Ca/P ratio was increased, because the number of P-O-Ti/Nb bonds
5	and delocalized P=O bonds increased with increases in the Q_p^0 content in the glasses. All
6	of the components in the glasses dissolved at similar rates; the glasses showed congruent
7	dissolution, which indicated that no selective ion leaching occurred. It is expected that it
8	will be facile to control the ion dissolution behavior of the present glasses, because of
9	their excellent chemical durability.

11

12 **5. Conclusion**

The structures and dissolution behaviors of glasses containing TiO₂ or Nb₂O₅ and large amounts of CaO were investigated. Glasses with a Ca/P ratio of ≥ 1.00 were successfully prepared using a conventional melt-quenching method. In the glasses with compositions of Ca/P > 1.10 in the Ti-IGs and Ca/P > 1.14 in the Nb-IGs, the amount of Q_p^0 group was larger than the amount of Q_p^1 group. In the glasses with high Q_p^0 contents, the intermediate oxides (TiO₂, Nb₂O₅) took the form of tetrahedrons (a shape similar to

1	that of the Q_p^0 group), and cross-linked the phosphate groups. The chemical durability of
2	the glasses increased with increases in the Ca/P ratio, because the number of P-O-Ti/Nb
3	bonds and Q_p^0 groups, which delocalized the P=O bonds, increased. The present glass
4	system shows potential as a candidate for the preparation of thin films on metal surfaces
5	via RF-sputtering, because of its excellent chemical durability.
6	

 $\overline{7}$

8 Acknowledgments

9 This work was supported in part by Japan Society for the Promotion of Science

10 KAKENHI Grant Numbers 25249094, 26289238, and 267992.

1 References

2	[1] T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania, J. Non-
3	Cryst. Solids 243 (1999) 70–74.
4	[2] T. Kasuga, Y. Hosoi, M. Nogami, M. Niinomi, Apatite formation on calcium
5	phosphate invert glasses in simulated body fluid, J. Am. Ceram. Soc. 84 (2001) 450-
6	452.
7	[3] T. Kasuga, T. Hattori, M. Niinomi, Phosphate glasses and glass-ceramics for
8	biomedical applications, Phosphorus Res. Bull., 26 (2012) 8–15.
9	[4] T. Kasuga, M. Nogami, M. Niinomi, Joining of calcium phosphate invert glass-
10	ceramics on a β -type titanium alloy, J. Am. Ceram. Soc. 86 (2003) 1031–1033.
11	[5] H. Maeda, T. Miyajima, S. Lee, A. Obata, K. Ueda, T. Narushima, T. Kasuga,
12	Preparation of calcium pyrophosphate glass-ceramics containing Nb ₂ O ₅ , J. Ceram. Soc.
13	Jpn. 122 (2014) 122–124.
14	[6] A. Obata, Y. Takahashi, T. Miyajima, K. Ueda, T. Narushima, T. Kasuga, Effects of
15	niobium ions released from calcium phosphate invert glasses containing Nb ₂ O ₅ on
16	osteoblast-like cell functions, ACS Appl. Mater. Interfaces 4 (2012) 5684-5690.

1	[7] M. Tamai, K. Isama, R. Nakaoka, T. Tsuchiya, Synthesis of a novel β -tricalcium
2	phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and
3	evaluation of its osteogenic properties, J. Artif. Organs 10 (2007) 22-28.
4	[8] T. Narushima, K. Ueda, T. Goto, H. Masumoto, T. Katsube, H. Kawamura, C. Ouchi,
5	Y. Iguchi, Preparation of calcium phosphate films by radiofrequency magnetron
6	sputtering, Mater. Trans. 46 (2005) 2246–2252.
7	[9] U. Kyosuke, T. Narushima, T. Goto, T. Katsube, H. Nakagawa, H. Kawamura, M.
8	Taira, Evaluation of calcium phosphate coating films on titanium fabricated using RF
9	magnetron sputtering, Mater. Trans. 48 (2007) 307-312.
10	[10] U. Kyosuke, N. Takayuki, G. Takashi, T. Masayuki, K. Tomoyuki, Fabrication of
11	calcium phosphate films for coating on titanium substrates heated up to 773 K by RF
12	magnetron sputtering and their evaluations, Biomed. Mater. 2 (2007) S160-S166.
13	[11] M.Ouchetto, B. Elouadi, S. Parke, Study of lanthanide zinc phosphate glasses by
14	differential thermal analysis, Phys. Chem. Glasses 32 (1991) 22-28.
15	[12] D.S. Brauer, N. Karpukhina, R.V. Law, R.G. Hill, Effect of TiO ₂ addition on
16	structure, solubility and crystallisation of phosphate invert glasses for biomedical
17	applications, J. Non-Cryst. Solids 356 (2010) 2626–2633.

1 [[13]	N.H. Ray,	Comp	osition-	property	^r relationshi	ps in	inorganic	oxide	glasses, J	l. Non-
	_							0			

- 2 Cryst. Solids 15 (1974) 423–434.
- 3 [14] M. Tylkowski, D.S. Brauer, Mixed alkali effects in Bioglass[®] 45S5, J. Non-Cryst.
- 4 Solids 376 (2013) 175–181.
- 5 [15] M.A. Karakassides, A. Saranti, I. Koutselas, Preparation and structural study of
- 6 binary phosphate glasses with high calcium and/or magnesium content, J. Non-Cryst.
- 7 Solids 347 (2004) 69–79.
- 8 [16] R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer, The short-range structure of zinc
- 9 polyphosphate glass, J. Non-Cryst. Solids 191 (1995) 45–55.
- 10 [17] S. Sakka, F. Miyaji, K. Fukumi, Structure of binary K₂O·TiO₂ and Cs₂O·TiO₂
- 11 glasses, J. Non-Cryst. Solids 112 (1989) 64–68.
- 12 [18] R.K. Brow, D.R. Tallant, W.L. Warren, A. McIntyre, D.E. Day, Spectroscopic
- 13 studies of the structure of titanophosphate and calcium titanophosphate glasses, Phys.
- 14 Chem. Glasses 38 (1997) 300–306.
- 15 [19] H. Segawa, N. Akagi, T. Yano, S. Shibata, Properties and structures of TiO₂-ZnO-
- 16 P₂O₅ glasses, J. Ceram. Soc. Jpn. 118 (2010) 278–282.

1	[20] A. Flambard, J.J. Videau, L. Delevoye, T. Cardinal, C. Labrugère, C.A. Rivero, M.
2	Couzi, L. Montagne, Structure and nonlinear optical properties of sodium-niobium
3	phosphate glasses, J. Non-Cryst. Solids 354 (2008) 3540-3547.
4	[21] S.M. Hsu, J.J. Wu, S.W. Yung, T.S. Chin, T. Zhang, Y.M. Lee, C.M. Chu, J.Y. Ding,
5	Evaluation of chemical durability, thermal properties and structure characteristics of
6	Nb-Sr-phosphate glasses by Raman and NMR spectroscopy, J. Non-Cryst. Solids 358
7	(2012) 14–19.
8	[22] J.M. Jehng, I.E. Wachs, Structural chemistry and Raman spectra of niobium oxides,
9	Chem. Mater. 3 (1991) 100–107.
10	[23] A. El Jazouli, J.C. Viala, C. Parent, G. Le Flem, P. Hagenmuller, Structural
11	investigation of glasses belonging to the Na2O-Nb2O5-P2O5 system, J. Solid State
12	Chem. 73 (1988) 433–439.
13	[24] I. Mazali, L. Barbosa, O. Alves, Preparation and characterization of new
14	niobophosphate glasses in the Li ₂ O-Nb ₂ O ₅ -CaO-P ₂ O ₅ system, J. Mater. Sci. 39 (2004)
15	1987–1995.
16	[25] G. Walter, J. Vogel, U. Hoppe, P. Hartmann, Structural study of magnesium

17polyphosphate glasses, J. Non-Cryst. Solids 320 (2003) 210-222.

1	[26] A. Mandlule, F. Döhler, L. van Wüllen, T. Kasuga, D.S. Brauer, Changes in structure
2	and thermal properties with phosphate content of ternary calcium sodium phosphate
3	glasses, J. Non-Cryst. Solids 392–393 (2014) 31–38.
4	[27] R.K. Brow, Review: the structure of simple phosphate glasses, J. Non-Cryst. Solids
5	263–264 (2000) 1–28.
6	[28] A. Dietzel, Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen,
7	zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Ztschr.
8	Elektrochem. 48 (1942) 9–23.
9	[29] Y. Li, W. Weng, J.D. Santos, A.M. Lopes, Structural studies of Na ₂ O-TiO ₂ -CaO-P ₂ O ₅
10	system glasses investigated by FTIR and FT-Raman, Phys. Chem. Glasses - Eur. J.
11	Glass Sci. Technol. Part B 49 (2008) 41-45.
12	[30] M. Nagarjuna, T. Satyanarayana, Y. Gandhi, N. Veeraiah, Influence of Ag ₂ O on
13	some physical properties of LiF-TiO ₂ -P ₂ O ₅ glass system, J. Alloys Compd. 479 (2009)
14	549–556.
15	[31] F.F. Sene, J.R. Martinelli, L. Gomes, Synthesis and characterization of niobium
16	phosphate glasses containing barium and potassium, J. Non-Cryst. Solids 348 (2004)

17 30–37.

1	[32] C.M. Chu, J.J. Wu, S.W. Yung, T.S. Chin, T. Zhang, F.B. Wu, Optical and structural
2	properties of Sr-Nb-phosphate glasses, J. Non-Cryst. Solids 357 (2011) 939–945.
3	[33] A. Kishioka, M. Haba, M. Amagasa, Glass formation in multicomponent phosphate
4	systems containing TiO ₂ , Bull. Chem. Soc. Japan 47 (1974) 2493–2496.
5	[34] H. Masai, R. Shirai, K. Yoshida, Y. Takahashi, R. Ihara, T. Fujiwara, Y. Tokuda, T.
6	Yoko, ³¹ P NMR and IR Study of highly water-stable SrO-BaO-Nb ₂ O ₅ -P ₂ O ₅ glass and
7	glass-ceramics, Chem. Lett. 42 (2013) 1305–1307.

1 Figure and table captions

 $\mathbf{2}$

3	Figure 1: Glass transition temperature (T_g) , crystallization temperature (T_c) , and
4	glassification degree $((T_c - T_g)/T_g)$ for (a) Ti-IGs, and (b) Nb-IGs.
5	Figure 2: Laser Raman spectra for (a) Ti-IGs, and (b) Nb-IGs, and normalized integrated
6	peak intensities corresponding to phosphate groups of (c) Ti-IGs, and (d) Nb-IGs, (e)
7	Ti-O groups of Ti-IGs, and (f) Nb-O groups of Nb-IGs, as a function of the Ca/P ratio
8	in the glass.
9	Figure 3: ³¹ P MAS-NMR spectra for (a) Ti-IGs, and (b) Nb-IGs, fractured peak top
10	positions for (c) Ti-IGs, and (d) Nb-IGs, and peak integrated portions of phosphate
11	groups for (e) Ti-IGs, and (f) Nb-IGs, as a function of the Ca/P ratio in the glass.
12	Figure 4: Experimental and theoretical network connectivities of (a) Ti-IGs, and (b) Nb-
13	IGs, as a function of the Ca/P ratio in the glass.
14	Figure 5: (a) Densities of Ti-IGs and Nb-IGs, and (b) calculated oxygen densities of Ti-
15	IGs and Nb-IGs, as a function of the Ca/P ratio in the glass.
16	Figure 6: Percentage of ions released into the Tris buffer solution, relative to the total
17	amount in (a–c) Ti-IGs, and (d–f) Nb-IGs, for (a, d) Ca^{2+} , (b, e) P^{5+} , (c) Ti^{4+} , and (f)
18	Nb ⁵⁺ ions, as a function of the Ca/P ratio in the glass.

- Table 1: Nominal and analyzed glass compositions, and nominal Ca/P ratios of the glasses
 (glass code). The analyzed compositions are shown in round brackets with standard
- 3 deviation.

1 Figures

 $\mathbf{2}$

3 Fig. 4

3 Fig. 5

1 Table

2 Table 1

	Ca/P ratio		Composit	ion / mol%			Compositio	n / atom%	
(G	Glass code)	CaO	P_2O_5	TiO ₂	Nb_2O_5	Са	Р	Ti	Nb
CaO-P	2 ₂ O ₅ -TiO ₂ Glasses (Ti-IGs)								
	1.00	60	30	10	-	46	46	8	-
		(60.3±1.9)	(29.4±0.9)	(10.2±0.2)					
	1.04	61	29	10	-	47	45	8	-
		(61.6±1.3)	(27.9±0.4)	(10.5±0.2)					
	1.09	62	28	10	-	48	44	8	-
		(62.6±1.4)	(27.0±0.4)	(10.4±0.2)					
↑	1.14	62.5	27.5	10	-	49	43	8	-
I		(63.1±1.3)	(26.4±0.5)	(10.5±0.2)					
ized	1.16	63	27	10	-	49.5	42.5	8	-
rystal		(62.7±1.3)	(26.6±0.4)	(10.7±0.2)					
ally c	1.19	63.5	26.5	10	-	50	42	8	-
Parti		(63.7±1.2)	(25.7±0.4)	(10.6±0.2)					
	1.24	64	26	10	-	51	41	8	-
\downarrow		(63.6±1.3)	(25.8±0.4)	(10.6±0.3)					
CaO-P ₂	O ₅ -Nb ₂ O ₅ Glasses (Nb-IGs)								
	1.00	63	31.5	-	5.5	46	46	-	8
		(62.1±1.5)	(30.5±0.8)		(7.3±0.6)				
	1.09	65	29.5	-	5.5	48	44	-	8
		(63.5±1.2)	(29.1±0.7)		(7.4±0.5)				
↑	1.16	66.5	28	-	5.5	49.5	42.5	-	8
ized		(63.4±0.5)	(28.6±0.4)		(8.0±0.1)				
ystall	1.24	67.5	27	-	5.5	51	41	-	8
lly Cr		(64.7±1.7)	(27.2±0.9)		(8.0±0.8)				
Jartia	1.30	68.5	26	-	5.5	52	40	-	8
 ↓		(64.8±0.3)	(26.9±0.1)		(8.2±0.1)				

Analyzed compositions of Ti-IGs and Nb-IGs were obtained by ICP-AES and EDS, respectively.