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Abstract
Semiclassical periodic-orbit theory (POT) is applied to the physics of nuclear structures, with
the use of a realistic nuclear mean-field model given by the radial power-law potential.
Evolution of deformed shell structures, which are responsible for various nuclear deformations,
are clearly understood from the contribution of short classical periodic orbits (POs).
Bifurcations of short POs, which imply underlying local dynamical symmetry, play significant
role there. The effect of the spin degree of freedom is also investigated in relevance to the
pseudospin symmetry in spherical nuclei and the prolate-oblate asymmetry in shell structures of
nuclei with quadrupole-type deformations.

PACS numbers: 21.60.-n, 36.40.-c, 03.65.Sq, 05.45.Mt

1. Introduction

Independent-particle picture is one of the most important dis-
coveries in the history of nuclear structure physics [1, 2].Be-
cause of dominance of the single-particle motion in nuclear
dynamics, various low-energy (near-yrast) properties of nuclei
are determined by the characters of the single-particle spectra.
Therefore, it is very important to understand the properties of
the quantized independent-particle motion in the nuclear mean-
field potentials. In general, distribution of the single-particle
energy eigenvalues shows a regularly oscillating gross struc-
ture, calledshell structureand, occasionally, a modulation in
its amplitude into various kinds of beating patterns calledsu-
pershell structure. Those structures are quite sensitive to the
shapes of the potentials. As is well known, such gross struc-
tures in the quantum fluctuations play important roles in charac-
terizing the properties of many-fermion systems like nuclei and
microclusters. However, the origins of such gross structures are
not clear from purely quantum mechanical viewpoints.

Semiclassical theory provides us useful tools to investigate
those remarkable gross shell structures in quantum dynamics.
It describes the properties of quantum systems in terms of the
classical dynamics. Speaking of a classical-quantum corre-
spondence, one may first think about the Ehrenfest theorem,
which tells that the expectation values of quantum operators
obey the classical equations of motion. Moreover, the individ-
ual quantum states also have a close relation to the classical dy-
namics. In this relevance, one may recall the Bohr-Sommerfeld
quantization rule for a particle in one-dimensional potential
well V(x), where the energy eigenvalues{en} are determined
by the condition that the action integral along once around the

classical orbit to be multiples of the Planck’s constanth:

2
∫ x2

x1

p(x; en)dx = nh, n = 1, 2, · · · . (1)

Here, p(x; e) =
√

2m(e− V(x)) represents the momentum of
the particle moving along thex axis with energye. The in-
tegration limitsx1 and x2 are given by the classical turning
points satisfyingp(xi ; e) = 0. Semiclassical periodic-orbit the-
ory (POT) based on the Feynman’s path integral formalism has
been developed since 1960s. Gutzwiller derived the famous
trace formula[3] in which the quantum level density (density
of states) is expressed in terms of the classical periodic orbits
(POs). This formula gives a deep understanding on the origin
of quantum fluctuations. Even the individual quantum statesin
non-integrable systems can be approximately constructed from
classical dynamics by the use of the trace formula, but here at-
tention will be focused on its important aspects in applications
to the gross shell and supershell structures.

In section 2, semiclassical theories for the single-particle
level densities and for the fluctuations in energies of many-
body systems are briefly outlined. We will discuss the role
of the classical POs, especially on the importance of the PO
bifurcations and their relation to the restorations of local dy-
namical symmetries. In section 3, the radial power-law po-
tential model and its scaling property are presented. In sec-
tion 4, we apply the semiclassical POT to the spherical power-
law potential model with spin-orbit coupling and study the ori-
gin of the nuclear magic numbers and that of the dynamical
symmetry known aspseudo-spin symmetry. In section 5, the
nuclear exotic deformations (superdeformations and octupole
deformations) and the roles of PO bifurcations are analyzed.
In section 6, the origin of prolate-shape dominance in nuclear
ground-state deformations is investigated taking the spin-orbit
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coupling into account. Section 7 is devoted to conclusions and
perspectives.

2. Semiclassical theory of shell structure

As one sees from the successes in the mean-field approaches
to nuclear many-body problems, quantum fluctuations in phys-
ical quantities are originated mainly from the shell effect due
to the quantized single-particle motions in the mean field po-
tential. In this section, we first describe the Strutinsky shell
correction method to extractshell energy, the fluctuation part
of the energy for many-body systems, from the single-particle
spectrum. It will be shown that the shell energy is expressedin
terms of the oscillating part of the single-particle level density.
Next, we give a brief introduction to the semiclassical formula
for the level density and shell energy, whose oscillating part
is expressed as the sum over contribution of the classical POs.
We will emphasize the importance of PO bifurcations for the
enhancement of shell effect.

2.1. Shell correction method

In the independent particle picture for an interacting many
fermion system, the constituent particle motion is quantized
with the self-consistent mean-field Hamiltonian. Particles are
arranged to the quantized states according to the Fermi statistics
so that they minimize the total energy. Due to the interaction,
total energy of the system considerably differs from a simple
sum of the single-particle energies

Esp(N) =
N

∑

j=1

ej . (2)

However, the oscillating part orEsp is found to successfully de-
scribe the energy fluctuation of the total many-particle system.
Strutinsky has derived the way with which one can unambigu-
ously decomposeEsp into the average and oscillating parts [4,5]
as

Esp(N) = Ēsp(N) + δE(N). (3)

By employing the realistic mean field model and replacing the
average partĒsp with more reliable semi-empirical formula,
e.g. the liquid drop model (LDM),

E(N) = ELDM (N) + δE(N), (4)

one can systematically describe the observed nuclear binding
energies in good precisions.

To calculate the oscillating partδE from the single-particle
spectraej , one first decompose the single-particle level density

g(e) =
∑

j

δ(e− ej) (5)

into the average and oscillating parts

g(e) = ḡ(e) + δg(e). (6)

The average part is obtained by convolving the total one with
a smoothing functionf , for which a normalized gaussian of

width γ with appropriate order of curvature corrections is usu-
ally employed:

ḡγ(e) =
1
γ

∫

de′g(e′) f

(

e− e′

γ

)

, (7a)

f (x) =
1
√
π

e−x2
L(1/2)

M (x2). (7b)

Here, the 2M th order curvature corrections are given by the
Laguerre polynomialL(1/2)

M , and we take 2M = 6 in our numer-
ical calculations. For a givenγ, thesmoothedFermi energies
ēF is defined thorough the particle-number condition

∫ ēF(γ)

−∞
ḡγ(e)de= N, (8)

and the average part of (3) is obtained by

Ēsp(N; γ) =
∫ ēF (γ)

−∞
eḡγ(e)de. (9)

The smoothing widthγ is determined so that̄Esp satisfies the
so-calledplateau condition

∂

∂γ
Ēsp(N; γ) ≈ 0, (10)

in order that the obtained̄Esp(N) is less dependent on the phys-
ically meaningless parameterγ. Insertingg(e) = ḡ(e) + δg(e)
into the particle-number condition for the exact Fermi energy
eF , one has the relation

0 =
∫ eF

−∞
g(e)de− N

=

∫ eF

−∞
{ḡ(e) + δg(e)}de−

∫ ēF

−∞
ḡ(e)de

=

∫ eF

−∞
δg(e)de+

∫ eF

ēF

ḡ(e)de (11)

Shell energyδE is then represented in terms ofδg as

δE =
∫ eF

−∞
e {ḡ(e) + δg(e)}de−

∫ ēF

−∞
eḡ(e)de

=

∫ eF

−∞
eδg(e)de+

∫ eF

ēF

eḡ(e)de

≈
∫ eF

−∞
(e− eF)δg(e)de. (12)

In the last step, the firste in the integrand of the second term is
replaced witheF , assumingeF − ēF to be sufficiently small, and
then the relation (11) is used. The last expression (12) for the
shell energy will be used in the derivation of its semiclassical
formula in the next subsection.

2.2. Level density in semiclassical approximation

In the small~ limit, the quantum wave equation reduces to the
classical equation of motion. Inserting the wave function of the
formψ(r, t) = eiF(r,t)/~ into the Schrödinger equation i~∂ψ/∂t =
Ĥψ(r, t) and expandF in powers of~ asF = F0 + ~F1 + · · · ,
one has the classical Hamilton-Jacobi equation forF0 = S:

∂S
∂t
+ Hcl(p = ∇S, r) = 0 (13)
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in the leading order of~, whereHcl(p, r) = p2/2m+ V(r) is
the classical Hamiltonian. In the next-to-leading order, putting
F1(r, t) = 1

2i logρ(r, t), one has the continuity equation for the
probability densityρ = |ψ|2:

∂ρ

∂t
+ ∇ · (ρv) = 0, (14a)

v =
∇S
m

(14b)

and one has a picture of fluid running according to the classical
equations of motion. In this way, the quantum dynamics can be
related to the classical dynamics in the semiclassical approxi-
mation. Especially, classical POs are shown to play the central
role in the level density and shell energy [3,6,7]. In the follow-
ing, we shall briefly outline how the semiclassical formulasfor
the level density and shell energy are derived from the Feyn-
man’s path integral representation for the quantum propagator,
and discuss the important aspects of the formulas in analyzing
gross shell structures.

Energy level densityg(e) is given by the trace of the retarded
Green’s functionG+(r′′, r′, e) as

g(e) = Tr δ(e− Ĥ) = −1
π

Im
∫

dr G+(r, r, e), (15)

G+(r′′, r′, e) ≡ 〈r′′| 1

e+ iη − Ĥ
|r′〉, (16)

whereη is a positive infinitesimal number. The Green’s func-
tion is given by the Laplace transform of the propagatorK as

G+(r′′, r′, e) =
1
i~

∫ ∞

0
dt ei(e+iη)t/~K(r′′, r′, t), (17)

K(r′′, r′, t) = 〈r′′|e−iĤt/~|r′〉. (18)

Connection between quantum and classical mechanics is de-
rived from the path integral representation for the propagator

K(r′′, r′, t) =
∫

D[r(t)] exp

[

i
~

∫ t

0
L(ṙ, r)dt′

]

, (19)

where the integral is taken over arbitrary paths connectingini-
tial point r′ and final pointr′′ in time t. D[r(t)] is the inte-
gration measure associated with the pathr(t), andL is the La-
grangian function. The semiclassical formula of the propagator
valid for small~ is obtained by carrying out the above path in-
tegral using the stationary phase method (SPM).

For an introduction to the basic concept of the SPM, let us
consider a one-dimensional integral of the form

I =
∫

dq A(q)eiS(q)/~, (20)

with A(q) andS(q) being moderate functions ofq. Since~ is
small, above integrand is a rapidly oscillating function ofq and
may have no noticeable contribution to the integral due to the
strong cancellation. Such cancellation is avoided in vicinity of
the stationary pointq∗ of the functionS(q) satisfyingS′(q∗) =
0, and it makes a dominant contribution to the integral. In the
standard SPM,S(q) is expanded around the stationary point
q∗ up to a quadratic order, and the above integral is evaluated

approximately as

I ≈ A(q∗)
∫ ∞

−∞
dq exp

[

i
~

{

S(q∗) + 1
2S′′(q∗)(q− q∗)2

}

]

= A(q∗)eiS(q∗)/~

√

2πi~
S′′(q∗)

. (21)

In general,S(q) has several stationary points and equation (21)
will be expressed in the sum over terms associated with all
those points. This approximation is good for an isolated sta-
tionary point. However, it becomes worse as the second deriva-
tive S′′(q∗) becomes smaller, and then one should consider
some higher order expansions of the actionS(q) aroundq∗.

Since the phase in equation (19) is the action integral along
the path, the stationary solutions are nothing but the classical
trajectory satisfying Hamilton’s variational principle.Then, the
propagator is expressed as the sum over contributions of clas-
sical trajectories. A detailed and clear derivation of the semi-
classical formula from the path integral representation isfound
e.g., in section 7 of [8]. The result is expressed as

Kcl(r′′, r′, t) =
1

√

(2π~)3

∑

α

√

Dα exp

[

i
~

Rα −
iπνα

2

]

, (22)

which is known as the Van-Vleck formula. The sum in the
right-hand side is taken over classical trajectoriesα starting
from r′ and arriving atr′′ in time t. Rα represents the action
integral alongα,

Rα =

∫ t

0
L(r(t′), ṙ(t′))dt′, r(0) = r′, r(t) = r′′ (23)

andDα is given by

Dα = det

(

−∂
2Rα(r′′, r′, t)
∂r′′∂r′

)

= det

(

∂r′′

∂p′

)−1

(24)

which is related to the stability of the trajectory with respect to
the initial condition.να counts the number ofconjugate points
along the trajectoryα, where the semiclassical propagator en-
counters singularities in coordinate space. Such singularities
can be avoided by the Fourier transformation from the coor-
dinate to momentum space before it encounters the conjugate
point and then inverse Fourier transformation into coordinate
space again after passing through the point. This can be also
coped with by the catastrophe theory [9]. In such procedure,
one generally has the delay of phase byπ/2, as in the case of
one-dimensional WKB wave function at the classical turning
point.

Using the above semiclassical propagatorKcl in the Green’s
function (17) and inserting it into equation (15), the levelden-
sity is expressed in the form

gcl(e) =
∫

dr
∑

α

Aα(r; e) exp

[

i
~

Sα(r, r; e) − iπ
2
να

]

, (25)

where the sum is now taken over the closed orbits which start
r with energyeand return tor again.Sα is the Legendré trans-
form of the action integralRα, whose independent variable is
transformed from timet to energye= −∂Rα/∂t as

Sα(r′′, r′; e) = et+ Rα(r′′, r′, t)

=

∫ t

0
(H + L)dt′ =

∫ r′′

r′
p · dr. (26)

3
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For a while, we shall leave out the explicit form of the prefactor
Aα for simplicity, just mentioning that it is related to the stabil-
ity of the trajectory with respect to the initial condition.Finally,
the trace integral overr is carried out with the use of the SPM.
The stationary phase condition is expressed as

∂S(r, r; e)
∂r

=

[

∂S(r′′, r′; e)
∂r′′

+
∂S(r′′, r′)

∂r′

]

r′=r′′=r
= p′′ − p′ = 0. (27)

Coincidence of initial and final momentap′′ = p′ implies the
orbit to be periodic. Hence, the semiclassical level density is
expressed in terms of POs as

g(e) = ḡ(e) +
∑

β

Aβ(e) cos

(

1
~

Sβ(e) − π
2
µβ

)

. (28)

The first term ¯g(e) represents the average level density which
corresponds to the contribution of zero-length orbit. The sec-
ond term gives the oscillating part of the level density. Thesum
is taken over all the POs (not only primitive ones but also their
repetitions).Sβ(e) =

∮

β
p · dr is the action integral along the

orbit β, andµβ is the so-called Maslov phase index related to
the geometric properties of the orbitβ.

The prefactorAβ(e) is also expressed in terms of the clas-
sical characteristics of the orbitβ, such as the stability, period
and degeneracy. Since the actionSβ(e) is in general a monoton-
ically increasing function of energye, each contribution of the
PO gives an oscillating function ofe, whose successive minima
appear in a distance given by

∆e=
2π~

dSβ/de
=

2π~
Tβ

. (29)

Tβ represents the period of the orbitβ. This implies that the
shorter POs having smaller periodsTβ contribute to the level
density oscillations of larger energy scales (having larger ∆e).
Therefore, the gross shell structure is determined by some
shortest POs [10, 11]. Longer POs contribute to a finer struc-
ture superimposed on the gross one. Since the contributions
of the POs having different periods give the terms oscillating
with different∆e, they will interfere and build a certain beat-
ing pattern. The supershell structures, the modulations inshell
structures, can be understood as the result of such interference
effect. Balian and Bloch [6] have found a remarkable beating
pattern in the coarse-grained level density for spherical cav-
ity model, and it is understood as the interference effect of the
equilateral triangular and square PO contributions. Nishioka
et al have employed the semiclassical trace formula to account
for the supershell structures in metallic clusters [12]. They have
applied the idea of Balian and Bloch to a more realistic Woods-
Saxon (WS) type mean field model, and have shown that the
supershell structures observed in metallic clusters are success-
fully understood as the interference effect of the triangular and
square-type POs. This is considered as one of the greatest suc-
cesses in physical applications of the POT.

Let us next derive the semiclassical expression for the shell
energyδE(N). Inserting the semiclassical level density

δg(e) =
∑

β

Aβ(e) cos
(

1
~
Sβ(e) − π

2µβ
)

(30)

into equation (12) and evaluating the integral using the semi-
classical approximation, one obtains [10,11]

δE(N) =
∑

β

∫ eF

−∞
de(e− eF)Aβ(e) cos

(

1
~
Sβ(e) − π

2µβ
)

≈
∑

β

Aβ(eF)
∫ eF

−∞
de(e− eF) cos

[

1
~

{

Sβ(eF)

+Tβ(eF)(e− eF )
}

− π
2µβ

]

=
∑

β

(

~

Tβ(eF )

)2
Aβ(eF) cos

(

1
~
Sβ(eF) − π

2µβ
)

. (31)

From the first to second line in (31), the fact is used that the in-
tegrand in vicinity of the end pointe≈ eF makes the chief con-
tribution to the integral because the integrand is a rapidlyoscil-
lating function of energy due to the smallness of~ and strong
offsetting effect arises a little deep inside the integration region.
Owing to the additional factor (~/Tβ)2 in the last expression in
equation (31), the contribution of longer POs are relatively sup-
pressed, compared to the trace formula for the level density, and
one usually needs only a small number of the shortest POs for
the study of shell energies.

2.3. Periodic-orbit bifurcation and local dynamical symmetry

There are several different ways of deriving PO expansion for-
mula depending on the integrability of the system. For a fully
integrable (multiply-periodic) system, it is convenient to use
the action-angle variables{I,ϕ}, where the action variablesI
are constants of motion and the Hamiltonian is independent of
the angle variablesϕ. In an f -dimensional multiply-periodic
system, generic classical trajectory is confined on atorus, an f -
dimensional hypersurface in the phase space formed for given
values ofI with varyingϕ. In such a system, energy is quan-
tized according to the EBK (Einstein-Brillouin-Keller) torus
quantization rule [7]

e{nk} = H(Ik = ~(nk +
1
4αk)), (nk = 0, 1, 2, · · · ) (32)

which is a generalization of the one-dimensional Bohr-
Sommerfeld quantization rule (1) to multi-dimensional inte-
grable systems. Here,Ik is taken as the action integral along
the k th irreducible loopΓk on the torus (which cannot be re-
duced to a point by any continuous deformation), andαk is the
so-called Maslov index which counts the caustic points encoun-
tered alongΓk. Based on this quantization rule, Berry and Ta-
bor derived a formula for the level density expressed as the sum
over terms associated with the classical POs [13]. Creagh and
Littlejohn have shown that the above Berry-Tabor formula can
be also derived from the phase-space path integral representa-
tion of the quantum propagator [14]. For partially integrable
systems, some of the trace integrals are carried out exactly, and
they bring a factor proportional to the phase-space volume oc-
cupied by the PO family. Other integrals are carried out by
the SPM, and they bring a factor related to the stability of the
PO [14]. For a strongly chaotic system in which all the POs are
isolated, one obtains the Gutzwiller trace formula [3,7]

g(e) = ḡ(e)+
∑

β

T0
β
(e)

π~
√

| det(Mβ − I )|
cos

(

1
~

Sβ(e) − π
2
µβ

)

. (33)

4
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Zδ
Z( )PZ’=

Z’=δ δZM

Z*

Z

Σ

Figure 1. Illustration of the Poincaré mapP(Z) defined by the phase
planeΣ, and the monodromy matrixM associated with the POZ∗.

Here, Mβ represents the so-called monodromy matrix which
describes the linearized stability of the PO, andT0

β
represents

the period of the primitive POβ0 in caseβ being its repeti-
tion. For a system withf degree of freedoms, let us consider a
(2 f −2)-dimensional phase planeΣ in the (2f −1)-dimensional
energy surface. This phase plane defines a stroboscopic map-
ping known asPoicaré map: If the energy surface is compact,
the trajectory starting at the pointZ on the phase planeΣ will
certainly intersect the same plane again, say, at pointZ′ with
the same orientation as it started off (see figure 1). The map
P : Σ 7→ Σ which transformsZ into Z′

Z′ = P(Z) (34)

according to the classical trajectory is called Poincaré map. PO
Z∗ is nothing but the fixed point of the Poincaré map

Z∗ = P(Z∗), (35)

or more generally,

Z∗ = Pn(Z∗) (36)

which returns to the initial point by then th intersection.
The stability of the PO characterizes the behavior of adja-

cent trajectories with initial conditions infinitesimallyshifted
from Z∗. Expanding the Poincaré map around the POZ∗, the
monodromy matrixM is defined by the linear term as

Z∗ + δZ′ = P(Z∗ + δZ) = Z∗ + MδZ +O(δZ2), (37a)

Mi j =
∂Z′i
∂Z j

. (37b)

The factor det(Mβ− I ) in equation (33) originates from the trace
integral in equation (15) carried out by the SPM, and this factor
is proportional to the curvature of the action integral

C = det

(

∂2S
∂r∂r

)

⊥
. (38)

The symbol⊥ indicates that the derivatives are taken with re-
spect to the coordinates perpendicular to the PO, or to the man-
ifold formed by the PO family under continuous symmetry. As
mentioned above, the standard SPM breaks down if the curva-
tureC vanishes. Let us show that a PObifurcationis associated
with this singularity.

S(q)

S(q)

q*

C > 0
δ < δbif

C = 0

S(q)

q*

C < 0

q*

δbif

δ = δbif

δ > δbif

S(q)

S(q)

q*

S(q)

δbif

q* q*

quadr. approx.

q

q

q

δ

"Pitchfork"

q

no POs

q

q

δ

"Tangent"

Figure 2. Illustration of PO bifurcation scenarios. Bifurcations pro-
ceed from the top to lower panels. POs correspond to the stationary
pointsq∗ of the actionS(q), and are indicated by dots. The number
of POs changes when the parameterδ passes over the valueδbif where
the curvatureC = S′′(q∗) vanishes. The bifurcations shown in the left
and right columns are called “pitchfork bifurcation” and “tangent bi-
furcation”, respectively, named after the shapes of the graphs shown
in the bottom panel, where the stationary points are plottedas func-
tions of the parameterδ. The inverse processes (PO association or
annihilation) are also called “bifurcation” in a broad sense.

Figure 2 illustrates two typical scenarios of the PO bifurca-
tions. As wee see in equation (27), POs correspond to the sta-
tionary points of the action integralS(q) along the closed orbit
which start fromq and returns toq again. Let us consider the
situation in the top left panel in figure 2 where a single station-
ary point exists atq∗ and the curvatureC is positive there. One
has the factor proportional to 1/

√
C by the integration with the

SPM. With varying a parameter in the Hamiltonian, say, the
deformation parameterδ, actionS(q) will continuously change
and the curvatureC may happen to vanish atδ = δbif as il-
lustrated in the 2nd-row panel. After passing over this point,
the sign of the curvatureC = S′′(q∗) changes as illustrated in
the 3rd-row panel, and one has new stationary points at both
sides of the original one. This is a scenario of the PO bifurca-
tion which is known aspitchfork bifurcation. Another type of
bifurcation scenario calledtangent bifurcation(or saddle-node
bifurcation) is shown in the right column of figure 2, where
a pair of stable and unstable POs are newly produced at the
“bifurcation” deformation rather than emerging from already

5
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existing one.1 All the possible bifurcations in Hamiltonian sys-
tems are classified into six basic types by the catastrophe theory
(see e.g. [15,16]).

Due to the proportionality det(Mβ − I ) ∝ C, the monodromy
matrix M has a unit eigenvalue if the curvatureC vanishes.
This unit eigenvalue suggests the formation of a local PO fam-
ily around the bifurcating PO. IfM has a unit eigenvalue, the
associated eigenvectorX1 satisfies the relation

M(Z∗ + cX1) ≃ Z∗ + cMX1 = Z∗ + cX1, (39)

wherec is a small continuous parameter. Hence,Z∗+cX1 gives
the continuous family of quasi-periodic family in vicinityof the
POZ∗ as shown in the 2nd-row panels of figure 2. New PO(s)
may emerge from this family. The PO bifurcation is thus asso-
ciated with a vanishing curvature, or equivalently an emergence
of unit eigenvalue in the monodromy matrix.

The formation of the above local PO family may indicate a
local restoration of dynamical symmetry. In case where sys-
tem has a continuous symmetry, each PO will form a continu-
ous family generated by the symmetry transformation. Then,
the PO bifurcation may imply that a dynamical symmetry is
locally restored around the bifurcating PO and generates the
above family of POs around it. To investigate which kind of
invariance is acquired at the bifurcation point, let us consider
the phase-space function

D(Z) ≡ P(Z) − Z. (40)

It represents the difference of successive intersections on the
phase planeΣ by a classical trajectory, and is hence determined
by the Hamiltonian flow. The POZ∗ is the zero of above func-
tion, namely,D(Z∗) = 0. If the monodromy matrix has a unit
eigenvalue and the corresponding eigenvector isX1, one has

D(Z∗ + cX1) = P(Z∗ + cX1) − (Z∗ + cX1)

≃ cMX1 − cX1 = 0 (41)

for small continuous parameterc. The local dynamical symme-
try is thus expressed as the invariance ofD(Z) aroundZ∗ with
respect to the continuous transformationZ = Z∗ → Z∗ + cX1:

∂D
∂X1

∣

∣

∣

∣

∣

Z∗
= 0. (42)

The quasi-periodic family formed around the bifurcating PO
is expected to make a coherent contribution to the path integral,
and brings about a significant shell effect in case it is formed
around a short PO. Such dynamical symmetry associated with
PO bifurcation sometimes exerts significant effect on the level
statistics [17].

To examine the effect of the bifurcation on the level den-
sity, it might be useful if the semiclassical formula valid also
in the vicinity of bifurcation points is available. The effort of
going beyond the standard SPM to cope with the bifurcation
problem has been made in several approaches. In the uniform
approximation [18], action function is expanded up to appro-
priate higher order terms. Those higher order terms have dif-
ferent function forms depending on the type of bifurcations,

1Change in the number of solutions are generally called “bifurcation” in a
wide sense.

and one has to work out several kinds of catastrophe integrals
to obtain formula valid around those bifurcation points. Inan-
other approach, the improved SPM [19, 20] is used in which
the trace integration is carried out by expanding the phase up to
a quadratic order but with keeping the exact finite integration
limits. These approaches are applied to several integrableand
non-integrable systems and succeeded in reproducing quantum
mechanical results. In the following sections, we will showthat
the shell effects are considerably enhanced by the effect of the
bifurcations of short POs, which play quite significant roles in
characterizing various nuclear properties.

3. The radial power-law potential model

The harmonic oscillator (HO) has been extensively used as
a simple model of the mean-field for qualitative studies of
nuclear structures. It nicely explains the low-energy single-
particle spectra for light nuclei. It is also useful to understand
the appearance of superdeformed shell structures. However,
heavier nuclei have sharper potential surface and it is no longer
described by the HO model. To consider the effect of the sharp
surface, modified oscillator model is devised, in which a term
−vll l2 (l being orbital angular momentum vector) is added to
the HO potential. It describes the effect that the energies of the
states with largerl, having major component around the sur-
face, are relatively lowered by sharpening the potential surface.
Taking also the spin-orbit coupling term−vlsl · s into account,
this model, known as theNilsson model, is widely used as a
convenient mean field which provides realistic single-particle
levels for nuclei [1, 2, 21]. The square-well potential, which
is further approximated by the infinite-well potential, is also
used for a qualitative description of heavy nuclei. A realistic
radial profile of the nuclear mean field potential is given by
the WS model having a finite surface diffuseness. In this sec-
tion, we propose a radial power-law potentialV(r) ∝ rα which
provides a good approximation to the WS potential and much
easier to treat in both classical and quantum mechanics than
the WS model. It includes HO and infinite-well models in its
two limits α → 2 andα → ∞, respectively. We will discuss
the scaling property of the power-law potential model whichis
extremely useful in the analysis of both classical and quantum
dynamics.

3.1. The Hamiltonian and its scaling properties

The central part of the Woods-Saxon (WS) potential is written
as

Vwsc (r) = − V0

1+ exp[(r − RA f (Ω; δ))/a]
, (43)

whereRA anda represent the nuclear mean radius and the sur-
face diffuseness, respectively. The shape functionf (Ω; δ) de-
scribes the angular profile of the nuclear-surface shape with an-
gle variablesΩ = (θ, ϕ) of the spherical coordinate and the
deformation parameterδ. For sufficiently stable nuclei, this po-
tential can be approximated by a simpler power-law (PL) po-
tential

Vplc (r) = −V0 +
1
2

V0

(

r
RA f (Ω; δ)

)α

(44)
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Figure 3. Radial profile of the radial power-law potential (broken
line) fitted to the Buck-Pilt potential (full line) for several values of
mass numberA. Reproduced with permission from [24]. Copyright
American Physical Society 2012.

with a suitable choice of the power parameterα. We determine
the value ofα by minimizing the volume integral of the squared
difference of the two spherical potentialsVpl andVbp:

d
dα

∫ RA

0
dr r 2 [

Vplc (r;α) − Vbp(r)
]2
= 0, (45)

Vbp(r) = −V0
1+ cosh(RA/a)

cosh(r/a) + cosh(RA/a)
. (46)

Here, we use the Buck-Pilt (BP) potentialVbp [22, 23], which
is essentially equivalent to the WS potential for surface diffuse-
nessa sufficiently smaller than the radiusRA. The advantage
of the BP in contrast with the WS is the absence of singularity
at the origin, which is not critical at the present discussion but
might be important for the analysis of classical POs intended in
the future. Figure 3 displays the radial profile of the power-law
potential fitted to the BP potential for several values of themass
numberA. According to the universal WS parameter given
in [25], we take the potential depthV0 = 50 MeV, the radius
RA = 1.3A1/3 fm and the surface diffusenessa = 0.7 fm. One
obtainsα = 4 ∼ 7 corresponding to the medium to heavy nuclei
A = 50 ∼ 200. Removing the constant term in equation (44),
we define the model Hamiltonian as

H =
p2

2m
+ U0

(

r
R0 f (Ω; δ)

)α

. (47)

Here,U0 andR0 are constants used as the units of energy and
length, respectively, andm is the nucleon mass. Since the po-
tential depends onU0 andR0 only in a formU0/Rα

0, U0 andR0

are not necessarily independent and we putU0 = ~
2/mR2

0.
Our Hamiltonian (47) has the following scaling property

H(c1/2p, c1/αr) = cH(p, r), (48)

regardless of deformation, and the classical equations of motion
(EOM) are invariant under the scaling transformation

(r, p, t)→ (c1/αr, c1/2p, c1/α−1/2t) (49)

with energye → ce. This means that ifr(t) is a solution of
EOM at energye, c1/αr(c1/α−1/2t) gives a solution of EOM at
the energyce. Therefore, one has the same set of POs at ar-
bitrary energy, and the action integral along the orbitβ is ex-
pressed in a simple function of energy as

Sβ(e) =
∮

β(e)
p · dr = ~τβE. (50)

The last equation defines dimensionless variables which we call
scaled periodτβ andscaled energyE:

τβ ≡
1
~

∮

β(e=U0)
p · dr, (51a)

E ≡
(

e
U0

)1/2+1/α

. (51b)

The normal periodTβ is related toτβ by

Tβ =
dSβ(e)

de
= ~τβ

dE
de
. (52)

Then, the Gutzwiller trace formula (33) for scaled-energy level
density becomes

g(E) = g(e)
de
dE

≃ ḡ(E) +
∑

β

τβ

π
√

| det(I − Mβ)|
cos

(

τβE − π
2µβ

)

. (53)

The average part ¯g is given approximately by the Thomas-
Fermi modelgTF. For the power-law potential model,gTF is
obtained analytically by

gTF(e) =
∫

dpdr
(2π~)3

δ(e− H(r, p)) =
1
πα

B

(

3
α
,
3
2

)

E3

e
, (54)

whereB(s, t) represents the Euler’s beta function. This average
density is independent of deformation under the volume con-
servation condition

∫

dΩ f 3(Ω; δ) = 4π. (55)

Hence, the average part in equation (53) is given by

ḡ(E) ≃gTF(e)
de
dE = c0E2, (56a)

c0 =
2
√

2
π

B

(

1+
3
α
,
3
2

)

. (56b)

Under the existence of continuous symmetry, POs will be
generally degenerate, namely, they form continuous family
generated by the continuous symmetry transformations. In a
spherical potential, generic PO forms a three-parameter fam-
ily generated by the three independent rotations. As the ex-
ceptions, families of diameter and circle POs bear only two-
parameter degeneracy since they are mapped onto themselves
by one of the rotations. In an axially-symmetric potential,
generic PO forms a one-parameter family generated by the ro-
tation about the symmetry axis. The two exceptions are the
diameter PO along the symmetry axis and the circle PO in the
plane perpendicular to the symmetry axis. In a system with no

7
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continuous symmetry, all the POs are isolated. In evaluating
the trace integral with the SPM, one has the additional factor
proportional to 1/

√
S′′ ∝ E−1/2. Each continuous symmetry

avoids this factor and hence the contribution ofK parameter
family has the energy factorEK/2 relative to those for isolated
POs. Taking account of this energy factor, semiclassical level
density of the power-law potential model is generally expressed
as

g(E) = ḡ(E) +
∑

β

AβEKβ/2 cos(τβE − π
2µβ), (57)

with Aβ independent of energy. In systems with continuous
symmetries, there are POs having different degeneracies and
Kβ represents the degeneracy of the familyβ. The derivation of
explicit forms of the amplitude factor under various continuous
symmetries is found, e.g., in [10,14].

3.2. Fourier transformation techniques

Due to the simple energy dependence of the actionSβ in the
power-law potential model, Fourier analysis of the quantum
level density provides us a useful tool to investigate classical-
quantum correspondence. Let us consider the Fourier transform
of the level density with respect to scaled energy:

F(τ) =
∫

dEg(E)eiτEe−(γE)2/2. (58)

The last Gaussian factor is introduced for the energy trunca-
tion. With quantum mechanically calculated eigenvalue spec-
trum {ej}, scaled-energy level density is given by

g(E) =
∑

j

δ(E − E j), E j =

(

ej

U0

)1/2+1/α

. (59)

Inserting (59) into (58), one can evaluateF(τ) as

Fqm(τ) =
∑

j

eiτE j e−(γE j )2/2. (60)

On the other hand, by inserting the semiclassical level density
(57) into (58), ignoring the energy dependence of the amplitude
for simplicity, one obtains the semiclassical expression

Fcl(τ) = F̄(τ) + π
∑

β

Aβe−iπµβ/2δγ(τ − τβ). (61)

Here,δγ(x) represents the normalized Gaussian with widthγ.
Equation (61) tells thatF(τ) is a function having successive
peaks at the scaled periods of classical POsτ = τβ with the
corresponding heights proportional to the amplitudeAβ. Thus,
one can extract information on the contribution of classical
POs to the level density out of the quantum Fourier trans-
form (60). The present method is very useful in examining
classical-quantum correspondence, especially when the semi-
classical amplitudes are difficult to obtain due to the hidden
(exact or approximate) symmetries, bifurcations and so on.To
obtain finer resolution (smallγ) of POs in the Fourier spectrum,
quantum spectra up to higher energy (E ∼ 1/γ) is required in
evaluating (60).

Table 1. The values of the parametersα, R0, U0 = ~
2/mR2

0 andκ in
(63), obtained by fitting to the WS/BP model for several values of the
mass numberA.

A α R0 [fm] U0 [MeV] κ

20 2.80 2.32 3.32 0.089
100 5.23 3.93 1.14 0.059
200 6.75 5.06 0.72 0.049

3.3. Spin-orbit coupling

It is well known that the nuclear mean field potential has a
strong spin-orbit coupling. In the WS model, the spin-orbit
term

λ

2(mc)2

[

∇
V0

1+ exp{(r − RA f (Ω; δ))/a}

]

· (s × p) (62)

is added to the central potential. In the same manner as above,
we introduce the spin-orbit term in our power-law potential
model as

H =
p2

2m
+ U0

(

r
R0 f (Ω; δ)

)α

+ 2κ [∇Vso(r)] · (s × p), (63)

with the spin-orbit potential

Vso(r) =
1
m

(

r
R0 f (Ω; δ)

)αso

. (64)

Although the spin-orbit potential almost equivalent to thecen-
tral one is used in the WS model, it might not be so bad to use
the power parameterαso a little different fromα in the central
potential (44). Here we chooseαso = 1+ α/2 in order to keep
the scaling relation

H(c1/2p, c1/αr, s) = cH(p, r, s). (65)

Apparently, this scaling is effective only for frozen-spinmo-
tions where spin vector is static. Fortunately, spin is frozen in
many important POs, and the above scaling turns out to be very
useful in our semiclassical analysis. The spin-orbit coupling
strengthκ is determined so that the spin-orbit potential in the
spherical limit takes the same value as that of the realisticWS
model at the nuclear surfacer = RA. The potential parame-
ters obtained for several values of mass numberA are shown
in table 1. We obtainκ = 0.05 ∼ 0.06 α = 5.0 ∼ 6.0 for
medium-mass regionA = 50∼ 150.

The EOM for the classical spin variables are derived by
the spin coherent-state path integral method [26]. One useful
choice of the canonical variables for the spin degree of free-
dom isqs = ϕ and ps = scosϑ, whereϑ andϕ are polar and
azimuthal angles in the spherical spin coordinates, respectively.
The Cartesian spin components are given by

sx = ssinϑ cosϕ, (66a)

sy = ssinϑ sinϕ, (66b)

sz = scosϑ, (66c)

with the moduluss constant (s = ~/2 for nucleon). One can
prove the Poisson bracket relation between the classical spin

8
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variables

{si , sj}P.B. =
∂si

∂qs

∂sj

∂ps
− ∂si

∂ps

∂sj

∂qs
= ǫi jk sk, (67)

which exactly corresponds to the commutation relation of the
quantum spin operators. The trace formula in extended phase
space including the spin degree of freedom is formulated in
[27].

Writing B = ∇Vso(r) × p, classical EOM is expressed as

ṙ =
∂H
∂p
=

p
m
− 2κ(s × ∇Vso), (68a)

ṗ = −∂H
∂r
= −∇Vc − 2κ∇(B · s), (68b)

ṡ = {s,H}P.B. = −2κB × s. (68c)

Let us consider the case where the potentialsV (Vc andVso) are
axially symmetric. Frozen-spin orbits appear under the follow-
ing conditions:

1. Meridian and equatorial orbits
Takingz axis as the symmetry axis of rotation, consider a
classical trajectory starting withr andp both on the merid-
ian plane (the plane containing the symmetry axis), say,
the (x, z) plane, ands perpendicular to it, namely, in the
y direction. On the (x, z) plane,∇V is perpendicular to
the y axis and then the vectorB is parallel to they axis.
Consequently, they-components of all the terms in the
right-hand sides of equations (68a) and (68b) as well as
the right-hand side of (68c) vanish, and the trajectory is
shown to remain in the (x, z) plane with its spin frozen.
Hence one has the meridian-plane frozen-spin orbits. If
the potential is also symmetric with respect to the (x, y)
plane (equatorial plane), the classical orbits in this plane
with spin perpendicular to it are shown just as above to be
frozen-spin orbits.

2. Diameter orbits
Consider a trajectory starting along the symmetry axis (z
axis) with spin parallel to thez axis. On the symme-
try axis, ∇V is parallel to thez axis and henceB = 0.
Thus one easily sees from the EOM (68) that the trajec-
tory remains on thez axis with spin frozen, and one has
the frozen-spin diameter PO along the symmetry axis. If
the potential is symmetric with respect to the (x, y) plane,
one finds just as above the frozen-spin diameter orbits in
the equatorial plane with the spin parallel to the orbital
motion.

The reduced EOM for the frozen-spin PO in the orbital plane
have the same invariance against scaling transformation (48),
and the action integral along the orbit is expressed as

∮

β(e)
p · dr = ~τβE. (69)

Because of this simple energy dependence, equivalent to the
case without spin-orbit coupling, contributions of those POs
to the level density can be also studied conveniently with the
Fourier transformation technique.

There is another semiclassical method to treat the spin degree
of freedom, by making use of the coupled-channel WKB for-
malism [28–31], where the spin is considered as a slow variable

in contrast to the orbital motion and the adiabatic approxima-
tion is applied. The Hamiltonian matrix of (2×2) spin channels
is diagonalized to obtain two adiabatic Hamiltonians, and the
classical POs in those two Hamiltonians determine the semi-
classical level density. It should be noted that the frozen-spin
POs in our approach are equivalent to those obtained for thedi-
abatic representations of Hamiltonians in the coupled-channel
WKB method [30].

4. Nuclear magic numbers and pseudospin symmetry

Nuclear binding energies as functions of the particle number
show remarkable fluctuation properties similar to those in the
ionization potentials of atoms. They are both manifestation of
the shell structures for the quantized independent motion of
constituent particles in the mean fields. In nuclear systems,
quite distinct magic numbers are known for both protons and
neutrons:

N,Z = 2, 8, 20, 28, 50, 82, 126, · · · , (70)

for which nuclei show the extreme stabilities. These numbers
are successfully explained by the mean-field model with strong
spin-orbit coupling, like Nilsson (modified oscillator) and WS
potential models.

An approximate dynamical symmetry called pseudospin [or
pseudo SU(3)] symmetry plays role in this shell structure
[32–34]. In the so-called pseudospin transformation, angular
momentum quantum numbers are reassigned asl̃ = l ± 1 for
j = l ± 1

2 levels. The Nilsson Hamiltonian is transformed cor-
respondingly as

HNils = HHO − vlsl · s − vll l2

→ H̃Nils = H̃HO − (4vll − vls) l̃ · s̃ − vll l̃
2 − (2vll − vls).

(71)

Since the relationvls ≈ 4vll holds well, spin-orbit coupling is
quenched in the pseudospin representation, and one finds sys-
tematic degeneracies of the pseudo spin-orbit partners (j̃ =
l̃ ± 1

2). The same kind of level degeneracies are also found
in more realistic WS potential model, where the splittings of
degenerate HO levels due to the sharp potential surface are par-
tially compensated by the spin-orbit coupling. Those quench-
ing of the pseudo spin-orbit splitting is considered as a result
of approximate dynamical symmetry restoration, and might be
understood in relation to the PO bifurcations as discussed in
section 2.3.

In the power-law potential model, surface diffuseness is con-
trolled by the power parameterα, and the above development
of gross shell structure can be studied as the combinatory effect
of the power parameterα and the spin-orbit coupling strength
κ. Figure 4 shows the single-particle level diagram which plots
single-particle scaled energies as functions of the spin-orbit pa-
rameterκ. The power parameter is taken asα = 5.0 correspond-
ing to the medium-mass nuclei. Systematic degeneracies of
levels are found around the realistic value of spin-orbit strength
κ ≈ 0.05, where a gross shell effect is considerably developed.
Level crossings of the pseudo spin-orbit partners are indicated
by open dots. They occur at almost the same values ofκ and
affect the gross shell structure. The magic numbers (70) are
correctly reproduced there.
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As discussed in section 3.2, one can extract information on
PO contributions from the Fourier transform of scaled-energy
level density (60). Figure 5 shows the moduli of Fourier trans-
form |F(τ; κ)| as functions ofτ, for several values of the spin-
orbit parameterκ. As expected from equation (61), the Fourier
amplitude shows successive peaks at the scaled periods of clas-
sical POsτ = τβ. Forκ = 0, one finds peaks atτ = 5.1 and 5.8,
which correspond to the diameter orbit (2,1) and the circle orbit
C, respectively. We label the POs by the number of oscillation
nr in radial direction and number of rotationsnϕ about the ori-
gin, and express them as (nr , nϕ). The number of radial oscilla-
tions cannot be assigned to the circle PO and we denote it as C.
With increasing spin-orbit parameterκ, the diameter orbit (2,1)
is deformed into an oval shape, and the circle orbit C bifurcates
into C+ and C− having orbital angular momentum parallel and
anti-parallel to the spin. Atκ ≃ 0.05, the circle orbit C+ under-
goes bifurcation and a new orbit (3,1) of triangular-type shape
emerges. These POs atκ = 0.06 are displayed in figure 6. As
shown in the top panel of figure 5, the contribution of the or-
bits C+ and (3,1) is strongly enhanced atκ = 0.06. This is
considered as the PO bifurcation enhancement effect which we
discussed in section 2.2. Consequently, the semiclassicalorigin
of the development of remarkable shell structure atα = 5.0 and
κ = 0.05, corresponding to medium-mass nuclei, is shown to
be related to the emergence of the orbit (3,1) bifurcated from
C+ and the associated local dynamical symmetry.

The contribution of unfrozen orbit cannot be investigated by
the Fourier analysis because of the absence of the scaling, and
one can only study it by directly evaluating the semiclassical

 0
 200
 400
 600
 800

 2  3  4  5  6  7  8  9  10

|F
(τ

)|

τ

α=5.0,κ=0

(2
,1

) C

 0

 200

 400

 600

 800

|F
(τ

)|

α=5.0,κ=0.03

(2
,1

)

C
−

C
+

 0

 200

 400

 600

 800

|F
(τ

)|

α=5.0,κ=0.06

(2
,1

)
C

− C
+
+

(3
,1

)

Figure 5. Quantum Fourier spectra|Fqm(τ)| calculated for the power
parameterα = 5.0 with three different values of the spin-orbit param-
eter:κ = 0, 0.03 and 0.06.

(3,1)

(2,1)
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tential model with spin-orbit coupling. The power parameter α = 5.0
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level density. If the quantum level density is reproduced only
with the contribution of frozen-spin orbits, one may consider
that the effect of unfrozen orbits can be omitted. Let us consider
the oscillating part of the coarse-grained scaled-energy level
density with the averaging widthγ,

δγg(E) =
γ
√
π

∫

dE′δg(E′)e−
(

E−E′
γ

)2

=
∑

β

δgβ(E) e−(γτβ)2/4, (72)

δgβ(E) ≃ AβEKβ/2 cos(τβE − π
2µβ). (73)

The exponential damping factor e−(γτβ)2/4 in (72), which ap-
pears due to the coarse-graining, suppresses the contribution of
longer POs. Hence, the sum is dominated only by some short-
est POs. We know the scaled periodsτβ and the degeneracies
Kβ, but unfortunately we have not succeeded in obtaining the
semiclassical amplitudesAβ as well as Maslov indicesµβ. For
the present, we shall treatAβ andµβ as free parameters and de-
termine them by the least square fitting to the quantum level
density. Figure 7 shows the result forα = 5.0 andκ = 0.06.
We take account of the contributions of four shortest frozen-
spin POs; (2,1), C± and (3,1). In the upper panel, we compare
the quantum level density with the semiclassical fitting. One
will see that the quantum shell structure and its beating pat-
tern are precisely reproduced. This seems to manifest that the
PO sum is dominated mostly by the contribution of frozen-spin
POs. In the lower panel, contributions of individual POs are
shown, and one will see that the bifurcating orbits C++(3,1)
play the dominant role in this shell structure, as indicatedin
the Fourier spectra (figure 5). Interference with the contribu-
tions of the other POs makes the beating pattern. Particularly,
one sees that the distinct magic numbers in the medium-mass
region,N = 50, 82, 128, are established according to the con-
structive interference effect of those POs.

We have also found that the above (3, 1) bifurcation play sig-
nificant roles in the quadrupole deformed shell structures.It
might be an interesting subject to examine the role of the spin-
orbit coupling for the properties of the deformed shell struc-
tures and their relations to the pseudo-spin symmetry in de-
formed nuclei [34–36].

5. Bifurcations of classical periodic orbits and nuclear ex-
otic deformations

In the classical regime, self-bound interacting many-bodysys-
tem favors the spherical shape, since the system prefers the
shape whose surface area is as smaller as possible under the
fixed volume. In the quantum regime, the quantum shell ef-
fects evoke various deformations to the system. These shell
effects are caused by the fluctuation in the single-particle spec-
tra. Nuclei show particular stability at the spherical shape when
the levels under the energy gap are completely occupied. The
magic numbers (70) correspond to such closed-shell configu-
rations. In situation where the degenerate levels at the Fermi
energy are partially occupied, system tends to deform in order
to lower the energy by splitting the degenerate levels by defor-
mation, as illustrated in figure 8. The way of the level splittings
depends on the types of the deformations, and such shape that
makes the level density at the Fermi energy lower is preferred.

deformation

e

spherical

Figure 8. Illustration of the mechanism of deformation induced by the
spontaneous symmetry breaking. Solid lines represent single-particle
levels and dots denote particles in the highest partially-occupied levels.
Broken line indicate Fermi energy. The self-bound system prefers the
shape which makes level density at Fermi surface as low as possible
to make the largest shell energy gain.

It is a kind of spontaneous breaking of symmetry similar to
the Jahn-Teller effect known in the molecular systems. In this
section, we discuss some nuclear exotic deformations and their
semiclassical origins with the use of the POT.

5.1. Superdeformations

Concerning nuclear deformations, one of the most exciting dis-
covery is the so-calledsuperdeformed statesin rapidly rotating
nuclei, having extremely large quadrupole deformation whose
axis ratio amounts to 2:1 [37, 38]. Nuclei with such large
deformations are also found in the fission process as isomers
formed between the double-humped potential barriers [39,40].
The search of the second minima having much larger defor-
mation whose axis ratio close to 3:1, often referred to ashy-
perdeformed states, is also a hot subject in the high-spin nu-
clear physics for both theories and experiments [41]. For such
large deformations to be realized, significant shell energygain
should be provided particularly at those shapes in additionto
the macroscopic driving force like Coulomb repulsion and ro-
tation.

In the following, let us investigate the emergence of the su-
perdeformed shell structures and their semiclassical origins.
Here, we neglect the spin-orbit coupling for simplicity. The
simplest model for describing the superdeformed shell struc-
ture is the axially-symmetric harmonic oscillator (HO)

HHO =
p2

2m
+

m{ω2
⊥(x2 + y2) + ω2

zz2}
2

(74)

with volume conservation conditionω2
⊥ωz = ω

3
0. Energy eigen-

values are given analytically by

en⊥nz = ~ω⊥(n⊥ + 1)+ ~ωz(nz+
1
2), (75)

and the simultaneous degeneracies of levels take places where
the frequenciesω⊥ andωz become commensurable. Figure 9
displays the single-particle level diagram, in which the energy
eigenvalues are plotted as functions of the deformation param-
eter δ = log(ω⊥/ωz). Particularly, one sees prominent shell
structures at eδ = 2±1 (δ = ±0.693) and eδ = 3±1 (δ = ±1.099),
which correspond to the superdeformed and hyperdeformed
shapes, respectively.

In semiclassical POT, those shell structures are understood as
the result of the emergence of the four-parametric PO families
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Figure 9. Single-particle level diagram for the axially deformed har-
monic oscillator model. Energy eigenvalues are plotted as functions
of deformation parameterδ. The particle numbers of the spherical
closed-shell configurations, with the spin degeneracy factor taken into
account, are indicated in italics. On the top of the diagram,typical
classical POs at prolate and oblate super and hyper-deformed shapes
are shown.
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Figure 10. Single-particle level diagram for the spheroidal power-law
potential model with the power parameterα = 5.0. Scaled-energy
levelsE j = (ej/U0)1/2+1/α are plotted as functions of the deformation
parameterδ. The particle numbers of the closed-shell configurations
at the spherical shape are indicated in italics.

at the deformations with rational frequency ratios. Typical POs
at those deformations are shown in the top of figure 9. In the
HO model, these degenerate PO families can exist only at the
deformations with rational axis ratios.

On the other hand, realistic nuclear mean field potential has
sharper surface with increasing mass number. Let us consider
the deformed shell structure in the radial power-law potential
model with spheroidal deformation, where the shape function
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Figure 11. Scaled periodsτβ of the orbits C, X and Z plotted as func-
tions of the spheroidal deformation parameterδ for the power param-
eterα = 3.0 (lower panel) and 5.0 (upper panel). The orbit C makes
a bridge between the orbits X and Z. Solid dots indicate the bifurca-
tion points. Those three POs forα = 5.0 at several values ofδ are
displayed on the top.

f in equation (47) is given by

f (θ; δ) =
1

√

e−
4
3δ cos2 θ + e

2
3δ sin2 θ

. (76)

This model is integrable in the two limits:α = 2 (axially de-
formed HO) andα = ∞ (spheroidal cavity), and nearly inte-
grable between them: a large portion of the classical phase
space is foliated with the KAM tori. Figure 10 shows the
single-particle level diagram of the power-law potential model
with the power parameterα = 5.0. One finds level bunchings
around the superdeformed region|δ| ∼ 0.7 although they are
less clear compared with the case of HO.

Let us analyze the properties of classical POs in the
spheroidal power-law potential to investigate the classical-
quantum correspondence. In the HO limit,α = 2, all the classi-
cal motions are periodic at the spherical shape (δ = 0). Varying
α from the HO value, only the circle and diameter POs sur-
vive. If the potential is deformed into spheroidal shape, the
circle PO family bifurcate into the meridian oval family C and
the isolated equatorial circle EC. The diameter PO also bifur-
cate into the degenerate equatorial diameter family X and the
isolated symmetry-axis diameter Z. Figure 11 shows the scaled
periods of those classical POs for several values ofα as func-
tions of the deformation parameterδ. With increasing prolate
deformationδ > 0, the meridian oval orbit C is continuously
deformed and finally submerge into symmetry-axis diameter Z
at certain deformationδc. With increasing oblate deformation
δ < 0, the orbit C is deformed in a different way and finally sub-
merge into the equatorial diameter X at the deformation−δc.
In this way, the oval orbit family C make a bridge between the
two bifurcations from the diameter orbits X and Z with vary-
ing deformation. We call such kind of bifurcation scenario as
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Figure 12. Illustration of the bridge-orbit bifurcation scenario. Bro-
ken lines representS(q), the action integral along the closed orbit starts
from q and returns to the same pointq, at several deformations in the
bifurcation process. Stationary points ofS(q) give the POs. With vary-
ing deformationδ, a bridge orbit B emerges from the orbit P and then
submerge into the orbit Q. A family of quasi-periodic orbitsis formed
around the shaded area. Full lines drawn in the (δ,S) plane are the ac-
tion integrals along the POs, and dots indicate the bifurcation points.
Reproduced with permission from [55]. Copyright American Physical
Society 2014.

the bridge orbit bifurcation. The classical and semiclassical
analyses of the bridge orbit bifurcations are given in [42] with
various practical examples. It should be emphasized that the
two orbits connected by the bridge are widely separated from
each other in the phase space. If the bridge is short enough in
the deformation space, the dynamical symmetry restored at one
end of the bridge will be approximately kept along the bridgeto
the other end, and it may bring about a family of quasi-periodic
orbits occupying much larger phase space volume than that in
case of simple bifurcations.

Figure 12 illustrates the scenario of the bridge-orbit bifurca-
tion:

(i) There are two different POs, P and Q, corresponding to the
two stationary points of the action functionS(q), which
are widely separated from each other.

(ii) With increasing deformationδ, the orbit P undergoes bi-
furcation and a new orbit B emerges from it. One finds
a family of quasi-periodic orbits around these stationary
points.

(iii) Action integrals of P and Q orbits crosses in the (δ,S)
plane, and the quasi-periodic family extends from P to
Q, implying a development of large dynamical symmetry
around them.

(iv) The orbit B approaches the orbit Q and

(v) finally submerges into the orbit Q.

In comparison to the simple bifurcations which may cause
local dynamical symmetries only in vicinity of the single bifur-
cating PO, we could expect the bridge orbit to give much more
significant effect on the quantum shell effect due to the large
phase-space volume of the quasi-periodic orbit family formed
around the bridge orbits. From figure 11, one will note that
existence domain (−δc, δc) for the bridge orbit C grows as the
power parameterα becomes larger. The contribution of bridge
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Figure 13. Color map of the quantum Fourier amplitude|Fqm(τ; δ)| in
the (δ, τ) plane. The power parameterα = 3.0 is taken. Lines represent
the scaled periodsτβ(δ) of some classical POs as functions ofδ. Solid
and open dots indicate the bifurcation points of the meridian orbits and
equatorial orbits, respectively. EC, X and Z represent the equatorial
circle, equatorial diameter and symmetry-axis orbits, respectively, and
2EC, 2X, 2Z are their second repetitions.

orbit might be less important as the above domain grows due to
the breaking of the dynamical symmetry between the two ends
of the bridge, and thus, shell effect is generally reduced asα
increases.

To investigate the contribution of these orbits to the level
density, we calculate the Fourier transforms of the scaled-
energy level density (60). Figure 13 shows the Fourier ampli-
tudes|F(τ; δ)| plotted in the (δ, τ) plane. The power parameter
α = 3.0, a little larger than the HO value, is taken as an illustra-
tion. The scaled periodτβ(δ) of the classical POs are also drawn
in the same plane. One finds an excellent correspondence be-
tween Fourier peaks and the classical POs. The Fourier am-
plitudes take especially large values along the bridge orbits ap-
pearing at each crossings of the repetitions of the equatorial
and symmetry axis orbits. One may also note that the Fourier
amplitudes along the orbitnX (n th repetition of X) are larger
than those along the orbitnZ. This is because the orbit X forms
a one-parametric family with respect to the rotation about the
symmetry axis, while the orbit Z is isolated. In the superde-
formed regionδ ≈ 0.6, the bridge orbits between the second
repetition of equatorial orbits and the primitive symmetry-axis
orbit play important role.

In figure 14, we examine the Fourier spectra in superde-
formed region in detail taking the power parameterα = 5.0
suitable for medium-mass nuclei. In the superdeformed region,
the equatorial diameter X undergoes period-doubling bifurca-
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Figure 14. Color map of the quantum Fourier amplitude|Fqm(τ, δ)|
for α = 5.0 in the superdeformed region. Lines represent the scaled
periodsτβ(δ) of the classical POs as functions ofδ, and dots indicate
the bifurcation points. In each inserted figure, the PO is drawn with
thick solid line, and the boundary of the classically accessible region
is indicated by dotted ellipse(s).

tion atδ = 0.46 and a pair of stable and unstable meridian or-
bits (2,1)s and (2,1)u emerge. Here, the meridian orbits in the
(x, z) plane are labeled by the numbers of oscillations in thex
andzdirections (nx, nz). The above meridian orbits change their
shapes with increasingδ, and finally, (2,1)u submerge into the
symmetry-axis orbit Z atδ = 0.97, and (2,1)s submerge into
Z at δ = 1.28. Namely, there are two bridge orbits between
equatorial diameter and symmetry-axis orbit. One also sees
another bridge orbit between the second repetition of equato-
rial circle orbit 2EC and symmetry-axis orbit Z around a little
larger deformation. The orbit EC undergoes period-doubling
bifurcation atδ = 0.69 and a new three-dimensional (3D) or-
bit (2,2,1) emerges. 3D orbits are labeled by the numbers of
oscillations (rotations) (nρ, nϕ, nz) in the directions of the cylin-
drical coordinate (ρ, ϕ, z). With increasingδ, the orbit (2,2,1)
first submerge into meridian orbit (2,1)s (the stable branchof
the meridian bridges) atδ = 0.95 before finally submerge into
the orbit Z atδ = 1.28. One sees Fourier amplitude greatly
enhanced along these bridge orbits and they should play most
significant roles in emergence of superdeformed shell structure.

Next, let us evaluate the shell energiesδE(N) as functions
of deformation, and examine the effect of above bifurcations.
Suppose the situation where a single orbitβ dominates the PO
sum in equation (31), namely,

δE(N) ≈
(

~

Tβ(eF)

)2

Aβ(eF) cos

(

1
~

Sβ(eF ) − π
2
µβ

)

. (77)

Then, the shell energy takes minima where the conditions

τβ(δ)EF(N) − π
2
µβ = (2n+ 1)π, n = 0, 1, 2, · · · (78)
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Figure 15. Contour map of the shell energyδE(N; δ) plotted in the
(δ,N1/3) plane. Solid (red) and dashed (blue) contour lines repre-
sent negative and positiveδE, respectively. Thick lines represent the
constant-action ones (80) for some short classical POs in the portion
where they make dominant contributions to the trace formula.

are satisfied. Using the Thomas-Fermi approximation (56),
Fermi energyEF is approximately given as

N ≈
∫ EF

0
gTF(E)dE = c0

3
E3

F , (79a)

EF ≈
(

3N
c0

)1/3

. (79b)

Therefore, the shell energy will present valleys along the
constant-action lines[11]

N1/3 =

(c0

3

)1/3 (2n+ 1+ µβ/2)π

τβ(δ)
, n = 0, 1, 2, · · · (80)

in the (δ,N1/3) plane. Figure 15 shows contour map of the shell
energyδE(N; δ) in the (δ,N1/3) plane. One sees regular and
strong oscillations inδE(N) to develop aroundδ ≈ 0.6, which
is considered as the effect of the superdeformed shell struc-
ture. Thick curves represent the constant-action lines (80) of
some short classical POs. Shell energy valleys in the region
δ = 0.4 ∼ 0.6 are nicely explained by the meridian (2,1) bridge
orbits, and those in the regionδ = 0.7 ∼ 0.9 are by the 3D
orbit (2,2,1), just as expected from Fourier analysis. Hence,
we can conclude that the bridge orbit bifurcations between the
second repetition of equatorial and the primitive symmetry-axis
orbits are responsible for the emergence of superdeformed shell
structure. This is a general consequence valid for any valueof
α from HO to cavity values [43], any other parametrization of
quadrupole shapes, with and without spin-orbit coupling [44].

5.2. Octupole deformations

The effect of reflection-asymmetric octupole degrees of free-
dom is also an important issue in nuclear structure physics [45].
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Most of the nuclei are known to have reflection-symmetric
ground states, and the violation of this fundamental symmetry
may provide us with valuable information on the nuclear dy-
namics. As reviewed in [45], several static octupole-deformed
states have been observed, e.g., through the low-lying negative
parity states and the parity-doublet rotational bands connected
with E1 and E3 transitions. It is also predicted that the excited
rotational states have quite unique nature when they are build
on the ground state having an octupole shape with the point
group symmetry such as the tetrahedral one [46]. Since no
driving forces towards reflection-asymmetric shapes are found
in the classical dynamics, quantum shell effects are considered
as the exclusive origin of the octupole deformations.

The reflection asymmetries are also important in description
of the asymmetric fission processes of heavy elements [39,47].
The semiclassical POT is also useful in accounting for the for-
mation of fission path towards the reflection-asymmetric shapes
[48].

Hamamotoet al have investigated the octupole deformed
shell structures by considering four kinds of pure octupolede-
formations added to the spherical potential [49]. They found a
remarkable shell structure develops at finiteY32-type deforma-
tion which has the tetrahedralTd symmetry. The importance of
the tetrahedral deformation is also discussed for nuclei [50,51]
and metallic clusters [52]. Here we are going to extend the
analysis of [49] to a more realistic power-law potential model
and investigate the semiclassical origins of octupole-deformed
shell structures. There are several ways of parametrizing oc-
tupole shapes. In the WS model, the shape of the equi-potential
surface is usually parametrized as

r =R0(1+ β3mỸ3m), (81a)

Ỹ3m =
√

2− δm0 ReY3m. (81b)

In the modified oscillator model employed by [49], octupole
potential is introduced in addition to the spherical central po-
tential as

V(r) =
mω2

0r2

2

[

1− 2β3mỸ3m

]

. (82)

In this case, the shape of the equi-potential surface is expressed
as

r = R0[1 − 2β3mỸ3m]−1/2. (83)

Above parametrizations can be generalized to a formula

r = R0[1 + kβ3mỸ3m]1/k (84)

which corresponds to (81) fork = 1 and to (83) fork = −2, re-
spectively. This generalized formula gives the identical shape
independent ofk up to the first order ofβ3m, while it gives con-
siderably different shapes dependent onk for large β3m. To
obtain the optimum shape parametrization, we consider min-
imization of the area of the equi-potential surface with respect
to k under the fixed volume surrounded by the surface. For
a givenβ3m with varying k, the surface area is found to take
minimum aroundk = 0. Hence we take thek → 0 limit of
equation (84), which results in an exponential function. Then,
our Hamiltonian is expressed as

H =
p2

2M
+ U

[

r

R0(β3m) exp(β3mỸ3m)

]α

. (85)

Y30 31Y

Y33Y32

Figure 16. Equi-potential surfaces for octupole deformed potentials
(85) forβ3m = 0.4.

R0(β3m) is determined by the volume conservation condition.
Figure 16 displays the equi-potential surfaces for four types

of purely octupole-deformed potentials at the octupole param-
etersβ3m = 0.4. Y30 shape has a continuous axial symmetry,
while the other shapes have different kinds of discrete point-
group symmetries [53, 54]. Those symmetries can be utilized
in quantum calculations to classify the eigenstates according to
the irreps (irreducible representations) of the symmetry group.
TheY31 andY33 shapes haveC2v andD3h symmetries, respec-
tively, which have up to two-dimensional irreps. TheY32 shape
has the tetrahedral (Td) symmetry consists of 24 different sym-
metric transformations and has three-dimensional irreps.Since
the degeneracy factor of the levels is equal to the dimensionof
the irrep, one generally find levels with three-fold degeneracies
in theY32-deformed states. Due to this higher degeneracies, the
Y32 deformed states are expected to have stronger shell effect
than those with the other types of octupole shapes.

In addition to the above geometrical degeneracy effect,
Hamamotoet al have found a strong bunching of levels for fi-
nite Y32 deformation, and the shell-energy gains withY32 de-
formation may surpass those with quadrupole deformations in
certain particle number regions.

Figure 17 shows the single-particle level diagram with the
power parameterα = 6.0, where the single-particle scaled en-
ergiesE j are plotted as functions ofY32-deformation parameter
β32. The degenerate levels at the spherical shape split with in-
creasing octupole deformation, but they eventually form a pro-
nounced shell structure aroundβ32 = 0.4. Surprisingly, the
particle numbers corresponding to the closed-shell configura-
tions are equivalent to those of spherical HO model [52]. Al-
though the obtained shell effects here are not as strong as what
we have obtained in [55] using the shape parametrization inter-
polating sphere and tetrahedron, qualitative features arequite
similar. One finds no such remarkable shell structures for the
other types of octupole shapes.

In figure 18, we compare deformed shell energies for dif-
ferent types of octupole shapes, taking the power parameter
α = 6.0. Shell energiesδE(N) are plotted as functions of the
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Figure 17. Single-particle level diagram of the octupole-deformed
power-law potential model with the power parameterα = 6.0. Scaled-
energy eigenvalues are plotted as functions ofY32 deformation param-
eterβ32. Red solid and dashed lines represent the one-dimensional
irreps A1 and A2, respectively, which have no degeneracies. Green
solid lines represent the two-dimensional irrepE which are doubly de-
generate. Blue solid and dashed lines represent the three-dimensional
irrepsF2 andF1, respectively, which are triply degenerate. The parti-
cle numbers of the closed-shell configurations aroundβ32 = 0.3 ∼ 0.4
are indicated in italics.

particle numberN for several values of deformation parame-
ters. For smallβ3m, shell energies show supershell structures
due to the interference of two groups of the POs: ones bi-
furcated from the circle orbit and the others from the diame-
ter orbit. As the octupole deformation parameter increase,the
fluctuations in shell energies show different structures and am-
plitudes for different types of deformation. One finds that the
gross shell effects are remarkably enhanced for theY32 defor-
mation: It shows quite regular oscillations and are most de-
veloped aroundβ32 = 0.4, as expected from the level diagram
shown in figure 17.

Figure 19 shows the Fourier spectra|F(τ)| calculated for the
octupole deformation parametersβ3m = 0, 0.2 and 0.4. For the
spherical shapeβ3m = 0, one sees two prominent peaks atτ =

5.15 and 6.11 corresponding to the diameter and circle POs,
respectively. These peaks rapidly decreases with increasingβ3m

for m , 2, while the peak atτ ∼ 6.0 remains large forY32

deformation. Atβ32 ∼ 0.4, this peak is enhanced again and one
might expect that the corresponding PO will make significant
contribution to the level density at this deformation.

To elucidate the origin of the emergence of this remarkable
shell structure associated withY32 deformation, we examine in
figure 20 the correspondence between the distribution of the
Fourier peaks and the scaled-periods of the classical POs inthe
(β32, τ) plane. Some shortest POs are displayed in figure 21
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Figure 18. Shell energies as function of particle numberN for sev-
eral octupole parametersβ3m with the power parameterα = 6.0. Red
(solid), green (dashed), blue (thick dotted) and magenta (thin dotted)
lines representY30, Y31, Y32 andY33 deformations, respectively.
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Figure 21. Some shortest classical periodic orbits forY32 deformed
state at the octupole parameterβ32 = 0.2 with the power parameter
α = 6.0. Their projections onto the (x, y), (y, z) and (z, x) planes are
also shown, with the boundaries of the classically accessible region.

for β32 = 0.2. Here, we name each PO with two characters:
The first character “D”, “P” or “T” stands for diameter, planar
or three-dimensional; the second one is put alphabeticallyin
the order we’ve found them. With increasingβ32, the diame-
ter orbit bifurcates into four different orbits: the diameter DA
along the three-fold rotation axis, the diameter DB along the
four-fold rotatory reflection axis, librational orbits PA and PB
in the mirror-symmetry plane. From the Fourier analysis, their
contributions to the level density are monotonically reduced
with increasingβ32. The circle orbit bifurcates into three or-
bits: the isosceles triangular-type orbit PC in the mirror plane,
the equilateral triangular-type orbit TA having three-fold rota-
tional symmetry, and the square-type orbit TB having four-fold
rotatory reflection symmetry. The orbit PC undergoes bifurca-
tion at β32 = 0.035 from which a 3D orbit TC emerges. The
orbits TA and TC undergo so-called touch-and-go bifurcation
at β32 = 0.11. As a common property in these three orbits, the
monodromy matrix has an eigenvalue which is kept close to
unity up to large values ofβ32. As we discussed in section 2.3
a local family of quasi-periodic orbit is formed around suchan
orbit and it makes coherent contribution to the trace integral.
This explains the reason why the contribution of these orbits
remain large with increasingβ32. They undergo bifurcations
almost simultaneously aroundβ32 ∼ 0.3 and yields new POs,
some of which make bridges between them. As we see in fig-
ures 19 and 20, significant enhancement of the Fourier peak
corresponding to those bifurcations is found. Some detailson
these bifurcations are described in the appendix. Since these
orbits have almost the same values of scaled periodsτβ, they
bring about a quite regular shell structure. The approximate
coincidence of their actions and the almost simultaneous occur-
rence of bifurcations generating the bridge-orbit networks con-
necting them strongly suggest the underlying dynamical sym-
metry. This symmetry restoration, caused almost simultane-
ously around many different POs and also mapped onto their
replicas generated by the 24 symmetry transformations ofTd,
is considered to develop into in somewhat global one. Recall-
ing the magic numbers atβ32 ≈ 0.4 shown in figure 17 which
are equivalent to those of spherical HO, one may surmise that
a restoration of the dynamical symmetry like SU(3) takes place
for the above specific combination of surface diffuseness and
tetrahedral-type octupole deformation. It raises an interesting
question on the relation between the symmetry restoration and
the tetrahedral deformation, and further studies are necessary
to clarify it.

6. Nuclear prolate-shape dominance

Predominance of prolate shapes in nuclear ground-state defor-
mation (which is referred to asprolate dominancefor short) is a
long-standing problem of nuclear structure physics [1]. Only a
few oblate ground states are found experimentally in mediumto
heavy nuclei. The microscopic mean-field theories also support
this feature [56]. In this section, we try to explain this peculiar
property of nuclei from the semiclassical point of view witha
realistic nuclear mean field model taking account of spin-orbit
coupling.
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6.1. Some earlier studies and remaining problems

Various approaches have been attempted aiming at a simple in-
terpretation of the prolate dominance in nuclear ground-state
deformations. It is generally recognized that the surface prop-
erty of the mean-field potential has relevance to the deformed
shell structures responsible for the prolate dominance. The
surface of the mean field potential becomes sharper with in-
creasing mass number. The transition of the deformed shell
structure from light to heavy nuclei are studied by Strutinsky
et al [11] using the WS potential model with spheroidal de-
formation. The deformation is parametrized by the axis ratio
η = Rz/R⊥ whereRz andR⊥(= Rx = Ry) are semiaxes of the
nuclear surface. They calculated the shell energyδE(N; η) as
functions of deformationη and the particle numberN, and in-
vestigated its ridge-valley structures in the (η,N) plane. For
the prolate deformation (η > 1), the shell energy valleys have
positive slopes in smallN region while they turn into negative
slopes in largeN region. Such transition has been successfully
explained using the POT. For smallN, the surface diffuseness
a is comparable with the nuclear radiusRA and the WS po-
tential can be approximated by the anisotropic HO potential
(74). Imposing the volume conservation conditionω2

⊥ωz = ω
3
0,

the oscillator frequencies are given as functions of axis ratio
η = ω⊥/ωz by

ω⊥ = ω0η
1/3, (86a)

ωz = ω0η
−2/3. (86b)

In the normal deformation region, the two-parametric shortest
equatorial orbit family makes the dominant contribution tothe
periodic-orbit sum. Its action integral is expressed as

Sβ(E; η) =
2πE
ω⊥(η)

=
2πE

ω0η1/3
. (87)

Then, the constant-action lines (80) behave as

N(∝ E3
F) ∝ η (88)

and they have positive slopes in the (η,N) plane. On the other
hand, for largeN, the surface diffuseness is much smaller
than the nuclear radius and the WS potential looks more like
a square-well potential, and it might be further approximated
by the infinite-well (cavity) potential. In the spheroidal cavity,
shortest equatorial orbits form a one-parametric family, while
the meridian-plane orbits form a two-parametric family dueto
the specific symmetry of the system. Therefore, the merid-
ian orbit families (triangular, quadrangular, ...) make dominant
contributions to the PO sum. Imposing the volume conserva-
tion conditionR2

⊥Rz = R3
0, the semi-axesRi of the equi-potential

surface are given by

R⊥(= Rx = Ry) = R0η
−1/3, (89a)

Rz = R0η
2/3, (89b)

and the lengthLβ of the meridian orbit, say, rhomboidal orbit is
estimated as

Lβ = 4
√

R2
⊥ + R2

z = 4R0η
−1/3

√

1+ η2. (90)

Then the action integral is expressed as

Sβ(p) = pLβ ∝ pR0η
−1/3

√

1+ η2 (91)

and the constant action lines behave as

N(∝ p3
F ) ∝ η

(1+ η2)3/2
, (92)

which have negative slopes in the prolate regionη > 1.
The semiclassical analysis of spheroidal cavity has been

thoroughly worked out by Frisk [57] using the Berry-Tabor
trace formula. The quantum mechanical shell energies are suc-
cessfully reproduced by the semiclassical formula as the sum
over PO contributions. He has remarked that the curves (92) in
the oblate regionη < 1 are rather flat, and correspondingly, the
shell energy valleys running along them are also flat. Hence,no
significant shell-energy gains are expected with oblate defor-
mations as nucleon numbers deviated from the spherical magic
numbers. This explains the mechanism of the prolate domi-
nance very nicely.

Hamamoto and Mottelson [58] have discussed the origin of
the prolate dominance from a different point of view. They
compared the behaviors of the single-particle levels against de-
formation in the cases of the HO and cavity (infinite well) po-
tential models. In axially deformed HO potential, the degener-
ate levels at the spherical shape fan out freely with increasing
deformation on both prolate and oblate sides. This is because
the shell oscillator number is a good quantum number in the
HO model and interactions between levels from different major
shells are absent. On the other hand, there are interactionsbe-
tween inter-shell levels in the cavity potential, and they affect
the way of level fannings. Their behavior on the prolate and
oblate sides show obvious asymmetry: the fannings of levels
in the oblate side are considerably suppressed in comparison
to the prolate side. Hamamoto and Mottelson have compared
the effects of the interactions between inter-shell levels on the
prolate and oblate sides, and clarified the reason why the level
fannings show the above asymmetric behaviors on the prolate
and oblate sides. The suppression of level fannings in the oblate
side might reduce the chance to acquire a reasonable shell en-
ergy gain by oblate deformation. They considered the above
asymmetry in level splittings as the origin of the prolate domi-
nance.

Still there remain some questions to be answered. Firstly,
from the semiclassical point of view, the deformations are es-
sentially determined by the shell energy in which only short
POs make contribution, and they are related to the gross shell
structures. However, the way of level splittings might be re-
lated to rather fine structures of levels. One should consider
this aspect more carefully. Secondly, as suggested by Tajimaet
al [59,60], prolate dominance shows strong correlation with the
strength of spin-orbit coupling, as well as the surface diffuse-
ness of the potential. The effect of spin-orbit coupling has not
been studied in the above works. The argument of [58] applies
to the case of realistic spin-orbit coupling where one finds the
same kind of prolate-oblate asymmetry in the level fannings,
but it cannot explain theoscillation in the prolate dominance
with varying spin-orbit strength which Tajimaet alhave found.
Let us consider these issues in the following part.

6.2. Gross shell structures in the power-law potential models

First, let us generalize the above analyses to a model havinga
more realistic radial dependence with finite diffuseness. Spin-
orbit coupling is set aside for the moment. In [24], we have
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Figure 22. Splittings of the high-j single-particle levels with
spheroidal deformation in power-law potential model for the power
parameterα = 5.0 and 1.1. Solid and dashed lines represent 1i and
1h levels, respectively. Reproduced with permission from [24]. Copy-
right Americal Physical Society 2012.

made analysis of the spherical and deformed shell structures
for the power-law potentialV ∝ rα with varying the power pa-
rameterα. Forα = 2, corresponding to the HO potential, level
splitting occur in the same uniform way on both prolate and
oblate sides. The shell energy valleys in the (δ,N) plain have
almost the same upward-right slopes on both sides. With in-
creasingα, the suppression of level fannings on the oblate side
manifests. Figure 22 shows the level fannings of some high-j
levels. In the upper panel for the power parameterα = 5.0,
corresponding to medium-mass nuclei, one clearly sees a re-
markable suppression of level fannings on the oblate side. In
the lower panel, a calculation forα = 1.1 (although it is an un-
realistic value for any nucleus) is made, in which one finds a
suppression of level fannings on the prolate side, just as oppo-
site to the case ofα > 2.

Figure 23 shows the contour maps of the shell energy
δE(N; δ) plotted as a function of deformationδ and particle
numberN for the above two values of the power parameterα.
Thick curves represent the constant action curves (80) of the
POs which make dominant contribution to the trace formula
(31). As we see in figure 11, the oval shape meridian-plane
orbit family C exists as the bridge orbit between equatorialdi-
ameter orbit X and symmetry-axis diameter orbit Z. This bridge
orbit makes significant contribution to the level density asex-
pected from the Fourier spectra in figure 13. In the upper panel
of figure 23 forα = 5.0, one finds that the constant-action lines
(80) for the orbit C nicely explain the shell energy valleys in
the normal deformation region. The slopes of the curves are
steep in the prolate side while they are rather flat in the oblate
side. This behavior of the shell energy valleys formed along
the bridge orbit C can be considered as the semiclassical ori-
gin of the prolate dominance. Thus, one sees that the argument
of [57] for the spheroidal cavity model can be generalized to
more realistic potentials.
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Figure 23. Contour map of the shell energyδE(N; δ) in the (δ,N1/3)
plane for the spheroidal power-law potential model withoutspin-orbit
coupling. Upper and lower panels are the results for the power parame-
terα = 5.0 and 1.1, respectively. Solid (red) and dashed (blue) contour
lines are drawn for negative and positiveδE, respectively. Thick lines
represent the constant-action ones (80) of the bridge orbitC.

To examine if the prolate shapes are really favored in energy
due to the above behaviors of the deformed shell energies, we
calculate the ground-state deformationsδmin by minimizing the
deformation energy

Edef(N; δ) = E(N; δ) − E(N; δ = 0) (93)

with respect to the deformation parameterδ on each side of the
oblate (δ < 0) and prolate (δ > 0) shape, and compare the ener-
gies at the prolate and oblate minima. In evaluating the total en-
ergyE(N), sum of the single-particle energiesEsp =

∑N
i=1 ei is

employed in [58], but we shall make a little improvement [24].
Writing the mean-field Hamiltonian aŝh = t̂ + û with t̂ and
û being the kinetic energy and the mean-field potential, re-
spectively, average part of the total energy may be given by
Ē ≃ 〈t̂〉 + 1

2〈û〉 if the mean field is a self-consistent one from
a certain two-body interaction. UsinḡEsp = 〈t̂〉 + 〈û〉 and the
Virial theorem〈t̂〉 = 1

2〈r ·∇û〉 = α
2 〈û〉 for the power-law model,
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respectively.

one has

〈û〉 = 2
α + 2

Ēsp, (94a)

〈t̂〉 = α

α + 2
Ēsp, (94b)

Ē =
α + 1
α + 2

Ēsp, (94c)

and therefore

E(N) =
α + 1
α + 2

Ēsp(N) + δE(N). (95)

Figure 24 compares the deformation energy minimaEdef(δmin)
on the prolate and oblate sides for several values of the power
parameterα. δmin is the deformation parameter where the de-
formation energy (93) takes minimum on each of the prolate
and oblate side. Forα = 2.0 (HO), systems with single-particle
orbits filled up to the lower half of the spherical shell prefer
prolate shapes while those up to the upper half prefer oblate
shapes, and the numbers of systems that have the lowest ener-
gies at prolate and oblate shapes are comparable. Forα = 5.0
where the potential surface is considerably sharper than HO,
prolate minima turn systematically lower than oblate ones and
they clearly show the prolate dominance. Forα = 1.1, where
one sees the suppression of level fannings on the prolate side
which may imply oblate-shape dominance, no essential differ-
ence between prolate and oblate minima are found in the defor-
mation energies. Looking at the shell energy contour plot for
α = 1.1 shown in the lower panel of figure 23, one sees that
the constant-action lines for the orbit C have considerablylarge
slopes on the prolate side as well as on the oblate side. These
constant-action lines nicely explain the behavior of the shell-
energy valleys, for which no remarkable prolate-oblate asym-
metry is expected.

To summarize above results, the prolate dominance is
strongly correlated with the behavior of shell energy valleys,
and its origin is clearly understood as the contribution of short
classical POs. Correlation between the level fannings and the
shape dominance is missing in the case ofα = 1.1. This might
be because the level fannings are related to rather finer shell
structure associated with the contribution of longer POs and
their roles in the shell energies (31) are less important.

6.3. Effect of spin-orbit coupling

Next, let us consider the effect of spin-orbit coupling. By means
of the systematic Strutinsky calculations over the whole nu-
clear chart, Tajimaet al examined the occurrence of the pro-
late dominance by varying the surface diffuseness and spin-
orbit strength of the mean-field potential [59, 60] in order to
single out the parameter which is playing the essential role.
They have calculated the ground state deformations of all the
observed combinations of (N,Z) in nuclear chart to extract the
ratio of the numbers of prolate and oblate ground states, and
have examined its dependence on the strength ofl2 potential
(surface diffuseness) andls potential (spin-orbit strength) in the
Nilsson (WS) model. As the results, they found a strong in-
terference between the effects of surface diffuseness and spin-
orbit strength on the prolate/oblate ratio. Particularly, the pro-
late dominance disappears when the spin-orbit parameter isre-
duced to the half of its realistic value. Considering this re-
sult, the analysis based on the model without taking account
of spin-orbit coupling is giving us only partial understandings
for the prolate-shape dominance of real nuclei. For a deeper
understanding of this feature, we make a semiclassical analysis
of the prolate-oblate asymmetry taking the spin-orbit coupling
into account.

Figure 25 shows the level diagram for the power parameter
α = 5.0 and spin-orbit parameterκ = 0.06, which are consid-
ered as realistic for medium-mass nuclei. The spherical magic
numbers (70) are correctly reproduced with those values of the
parameters. The behaviors of the level splittings with increas-
ing prolate and oblate sides look similar to the case without
spin-orbit coupling: one sees the same suppression of levelfan-
nings on the oblate side as we see in the case without spin-orbit
coupling (see the upper panel of figure 22). Hence it seems that
the argument in [58] also applies to the case of finite spin-orbit
coupling.

However, behavior of the deformed shell energies show quite
strong dependence on the spin-orbit parameter. Figure 26
shows the contour maps of the shell energiesδE(N; δ) as func-
tions of the deformation parameterδ and the particle numberN,
for the power parameterα = 5.0. We compare the results for
the case of realistic value of the spin-orbit parameterκ = 0.06
and for the reduced valueκ = 0.03 where Tajimaet al found
disappearance of the prolate dominance. One may notice the
obvious difference in the valley structures in the deformed shell
energies in those two maps, especially on the oblate side. For
κ = 0.06 the valley lines on the oblate side are approximately
flat, while for κ = 0.03, one finds valleys with considerably
large slopes.

Figure 27 compares the prolate and oblate deformation-
energy minimaEdef(N; δmin) for different values ofκ with fixed
value of the power parameterα = 5.0. The bottom panel for
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κ = 0 is equivalent to the top panel of figure 24. With increas-
ingκ, the differences between prolate and oblate energy minima
are reduced atκ = 0.03, the half of the realistic value, man-
ifesting the disappearance of prolate-shape dominance. How-
ever, the differences grow again for the realistic valueκ = 0.06
and the prolate minima become considerably lower than the
oblate ones, implying therevival of the prolate-shape domi-
nance. All these results nicely correspond to the behavior of
shell energy valleys found in figure 26. Therefore, it is essen-
tial to describe the above behavior of the shell energy valleys
with varying spin-orbit strength for understanding the origin of
prolate dominance observed in real nuclei.

To understand the above changes in deformed shell struc-
tures from semiclassical view point, we investigated the effect
of spin-orbit coupling on the properties of the classical POs.
Figure 28 illustrates what kinds of changes are induced in the
shortest POs when the spin-orbit coupling is switched on. For
κ = 0, one has two diameter orbits X and Z, and the bridge
orbits C connecting them atδ = ±δc as one sees in figure 11.
With increasing spin-orbit strengthκ, the periods of the orbits
C±, whose orbital angular momenta parallel and anti-parallel
to the spin, separate from each other into L and S (denoting
long and short, respectively). The changes in diameters X and
Z show peculiar dependence on the deformation. The left part
(δ < −δc) of X and the right part (δ > δc) of Z changes into
oval orbit with orbital angular momenta parallel to the spinand
are continuously connected with L at±δc, while the right part
(δ > −δc) of X and the left part (δ < δc) of Z changes into those
having the opposite directions of orbital angular momenta and
cause tangent bifurcations with S atδ = ±δc. One should also
note that, with increasing spin-orbit parameterκ, the bifurcation
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Figure 26. Contour map of the shell energyδE(N; δ) in the (δ,N1/3)
plane. Solid (red) and dotted (blue) contour lines represent the nega-
tive and positiveδE, respectively. Thick lines represent the constant-
action ones (80) for some important short POs.

deformationδc becomes smaller and the orbit (2,1)S shrinks to
a small deformation domain (see appendix for some detailed
analyses on those bifurcations). On the other hand, the orbit
(2,1)L survives for any larger deformation. With increasing κ,
it undergoes bifurcation and new triangular-type orbits (3,1)X
and (3,1)Z (which are symmetric with respect to thex andz
axes, respectively) emerge from it at aroundκ = 0.05 ∼ 0.06,
depending on the deformationδ. Therefore, the orbits (2,1)L
and (3,1)’s have almost the same values of scaled periods at
κ = 0.06. Those orbits should make coherent contribution to
the level density, and are expected to give significant effects
on the deformed shell structures for wide range of deformation
δ due to the bifurcation enhancement effect discussed in sec-
tion 2.2.

Thanks to the scaling relation for those frozen-spin orbits,
we can make use of the Fourier analysis in investigating how
their contributions change with varyingκ. Figure 29 shows the
moduli of Fourier transforms|F(τ; δ)| of the quantum scaled-
energy level densities, calculated forκ = 0.03 and 0.06. Thick
lines show the scaled periods of some shortest POs which are
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Figure 28. Illustration of the changes in the classical POs in the
spheroidal power-law potential model induced by the spin-orbit cou-
pling. The scaled periodsτ of some shortest POs are shown as func-
tions of the deformation parameterδ. Arrows in the left panel indicate
the directions of the changes inτ with increasing spin-orbit strengthκ.

displayed in figure 30. One finds that the Fourier amplitudes
have peaks exactly along these meridian frozen-spin POs. The
cross sections along the vertical line at several deformations are
shown in figure 31 in order to see the relative strengths of the
Fourier amplitudes.

On the prolate side, one finds considerable Fourier peak at
the shortest orbit (2,1)X, and it is expected to make major con-
tribution to the shell energy. On the oblate side, the shortest or-
bit is (2,1)Z, but its contribution is smaller than that of (2,1)X.
This is because (2,1)Z occupies smaller phase-space volume
since it is isolated in theκ → 0 limit. Thus the second shortest
(2,1)X play major role also in the oblate side. However, the
orbit (2,1)X reaches only up toδ ∼ −0.2 for κ = 0.06, and
it cannot contribute much to the shell structures on the oblate
side. At this realistic value ofκ, the orbit (2,1)L causes a bifur-
cation from which triangular-type orbits (3,1) emerge as dis-
cussed above. With this bifurcation enhancement effect, their
contribution to the shell energy become dominant on the oblate
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Figure 29. Color map of the quantum Fourier amplitude|Fqm(τ; δ)|
in the (δ, τ) plane. The power parameter isα = 5.0 and the spin-
orbit parameter isκ = 0.06 and 0.03 for the upper and lower panels,
respectively. Lines represent the scaled periodsτβ(δ) of the classical
POs, and the dots indicate the bifurcation points.

side. As one sees in the upper panel of figure 26, the constant-
action lines of (2,1)L+(3,1) nicely explain the flat valleys in
shell energy on the oblate side. Forκ = 0.03, the half of the
realistic value, the shell energy valleys are explained by the or-
bit (2,1)X on both prolate and oblate sides. Those valleys may
play roles in establishing good oblate and prolate minima, and
explain the reason for the disappearance of prolate dominance
at this value ofκ. In this way, the change in prolate-oblate
asymmetry with varying spin-orbit coupling can be clearly un-
derstood from the properties of the classical POs.

In summary, we consider the behavior of the shell energy val-
leys in the (δ,N) plane which provides us the key to understand
the origin of prolate-shape dominance in nuclear ground-state
deformations. These shell energy valleys have large slopeson
the prolate side while they are approximately flat in the oblate
side, and one has less possibility to acquire shell energy gains

22



K. Arita Nuclear shell structures in terms of classical periodic orbits

δ=0.0

(2,1)L
(2,1)X
(2,1)Z
(2,1)S

δ=−0.4 δ=−0.2 δ=0.2 δ=0.4

(2,1)L
(3,1)X
(3,1)Z

Figure 30. Some shortest meridian orbits for the power parameter
α = 5.0 and the spin-orbit parameterκ = 0.06 with several values of
the deformation parameterδ. The orbit (2,1)S causes pair annihilations
with (2,1)X atδ = −0.23, and with (2,1)Z atδ = 0.23.

 0

 20

 40

 60

 2  3  4  5  6  7  8  9  10

|F
(τ

)|

τ

α=5.0,κ=0.00 δ=−0.2
−0.3
−0.4

 0

 20

 40

 60

|F
(τ

)|

α=5.0,κ=0.03

 0

 20

 40

 60

|F
(τ

)|

α=5.0,κ=0.06 α=5.0,κ=0.06

α=5.0,κ=0.03

 2  3  4  5  6  7  8  9  10

τ

α=5.0,κ=0.00 δ=0.2
0.3
0.4

(2,1)X (2,1)L (2,1)L

(2,1)X

(2,1)X

(2,1)X

C
EC

X

C

(2,1)L
+(3,1)

(2,1)L
+(3,1)

Figure 31. Comparison of the quantum Fourier spectra|Fqm(τ; δ)|
plotted for several values of the deformation parameterδ on the oblate
(left panels) and prolate (right panels) sides. Bottom, middle and top
panels are the results for the spin-orbit parameterκ = 0.00, 0.03 and
0.06, respectively, with the power parameterα = 5.0.

with oblate deformations. In practice, one sees nice correspon-
dence between the properties of the valley slopes and the de-
formed shell-energy gains. The features of the level fannings
should also have some effects but seems to bear less important
roles in the gross shell effects. The way in which POs con-
tribute to the shell energy is quite sensitive to the spin-orbit
parameter. Although the shell energy valleys forκ = 0 look
similar to the case of realistic valueκ = 0.06, the semiclassi-
cal mechanisms for the enhancement of the PO contributions
are quite different in both cases. Thus, above semiclassical in-
terpretation gives us a deeper understanding on the origin of
prolate dominance for realistic nuclear systems.

7. Conclusions and perspectives

Applying the semiclassical POT to the radial power-law poten-
tial models, emergence of a rich variety of nuclear shell struc-
tures are investigated from the view point of quantum-classical
correspondence. In our semiclassical analyses, we make full
use of the scaling properties of the power-law potential model
and the Fourier transformation techniques, which are also ef-
fective under the existence of spin-orbit coupling. We have
emphasized the significant roles of the PO bifurcations for the
remarkable enhancement of shell effects with varying the pa-
rameters like surface diffuseness (controlled by the power pa-
rameterα), deformations and spin-orbit coupling strength. At
the bifurcation points, a family of quasi-periodic orbits appears
around the bifurcating PO, where an approximate dynamical
symmetry is locally restored. In the bridge-orbit bifurcation,
the above local family occupies a large volume of the phase-
space extending along the trail of the bridge which connects
two widely separated POs, and brings about a larger dynamical
symmetry compared to those for simple bifurcations. We have
found such peculiar bridge-orbit bifurcations play pivotal roles
in exotic nuclear deformations such as superdeformations and
tetrahedral deformations. It is also interesting to note that, the
SU(3) symmetry of the spherical HO Hamiltonian, once bro-
ken for sharp potential surface with power parameterα > 2,
is partially compensated by the spin-orbit coupling as we see
in section 4, and also by the octupole deformation ofY32 type
as we see in section 5.2. Semiclassical analyses based on the
realistic model for nuclear mean field with spin-orbit coupling
taken into account provide us a deep understanding of the ori-
gin of the prolate-shape dominance, which may show up under
a delicate balance between the effect from the surface diffuse-
ness and that from the spin-orbit coupling.

Analyses of other types of nuclear deformations using the
power-law potential model with and without spin-orbit cou-
pling are also intended. For instance, properties of shell struc-
ture under reflection-asymmetric shapes by considering com-
binations of different types of the octupole deformations, also
with the quadrupole terms, should be interesting, which might
be responsible for the systematics of ground-state deforma-
tions with reflection asymmetry, and also for the fragment mass
asymmetries in nuclear fissions.

In this paper, we have used the semiclassical trace for-
mula to extract information on contributing classical POs from
the quantum-mechanically calculated single-particle spectra by
means of the Fourier transformation technique and the meth-
ods of constant-action lines, but have not directly estimated
the semiclassical level densities and shell energies in thebi-
furcation region. It is a challenging subject to develop analytic
and numerical methods to evaluate semiclassical trace formula
valid under existence of continuous symmetries, bifurcations,
and coupling with spin degree of freedom. This becomes ac-
tually important when we apply the semiclassical theories to
more general Hamiltonians without scaling, which would be
required, for instance, in descriptions of weekly bound nu-
clei. Concerning the shell structures of such unstable nuclei,
quenching of the spherical shell gaps might be one of the inter-
esting subjects [61].
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Appendix: Analyses of periodic orbit bifurcations with
monodromy matrices

Classical PO changes their shapes continuously with varying
potential parameter. The monodromy matrix (37) varies ac-
cordingly and one of the eigenvalues may coincides with unity
which causes a bifurcation the orbit. Due to the symplectic
property of the Hamiltonian dynamics, the monodromy matrix
M is real and symplectic:

MT JM = J, J =

(

0 −I
I 0

)

. (A1)

Hence, the eigenvalues ofM always appear in a conjugate-
reciprocal pair either of

(i) e±iv with realv (elliptic)

(ii) e±u with realu (hyperbolic)

(iii) −e±u with realu (hyperbolic with reflection)

or in a quartet

(iv) e±u±iv with realu andv (loxodromic).

The bifurcation takes place atv = 0 in the case (i) or atu = 0
in the case (ii). The POs are stable if the monodromy matrix
has only elliptic eigenvalues, and otherwise unstable because
the deviations of the initial condition will grow exponentially
as time evolves.

For the 2D systems, or the 3D systems with axial symme-
try, generic PO has a (2× 2) (symmetry reduced) monodromy
matrix and its eigenvalues appear in a pair either of (i)–(iii).
The stability of a PO is uniquely determined by the value of the
stability factort = Tr M − 2 = − det(M − I ) as

(i) t = 2 cosv− 2 = −4 sin2(v/2), −4 ≤ t ≤ 0

(ii) t = 2 coshu− 2 = 4 sinh2(u/2) > 0

(iii) t = −2 coshu− 2 = −4 cosh2(u/2) < −4

For 3D systems without continuous symmetry, generic PO has
(4×4) monodromy matrix, and its four eigenvalues can be gen-
erally expressed as (λ1, λ

−1
1 , λ2, λ

−1
2 ). Then the stability of the

PO is determined by the two stability factorsti (i = 1, 2) defined
by

ti ≡ λi + λ
−1
i − 2 = −(λi − 1)(λ−1

i − 1). (A2)

With the relations

Tr(M − I ) = t1 + t2, det(M − I ) = t1t2, (A3)

the above stability factors are simply obtained as the two roots
of the quadratic equation

t2 − t Tr(M − I ) + det(M − I ) = 0. (A4)

If the monodromy matrix has two pairs of eigenvalues either in
(i)–(iii) above, botht1 andt2 take the real values as in 2D cases,
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Figure 32. Stability factorsti (or Reti for loxodromic stability) of
some shortest POs as functions of the octupole deformation parameter
β32. Dots indicate the bifurcation points.

while they take complex valuest1, t2 = t∗1 for the loxodromic
case (iv).

As the first example, we shall discuss some details on the
bifurcations found in the power-law potential withY32 defor-
mation which we discussed in section 5.2. The planar trian-
gular orbit PC, and 3D triangular orbits TA and TC (see fig-
ure 21) play the most important roles in deformed shell struc-
ture. Figure 32 displays the values ofti for some shortest POs
as functions of the deformation parameterβ32. As one sees
in the bottom panel, one of theti ’s for the above three domi-
nant POs are very close to zero in 0< β32 < 0.3, and those
POs undergo bifurcations almost simultaneously atβ32 ∼ 0.3,
where deformed shell effect is extremely enhanced. In the mid-
dle panel, expanded plots of those POs in the smallβ32 region
are shown. The planar orbit PC undergoes pitchfork bifurca-
tion at β32 = 0.035 and the 3D orbit TC emerges. TC and
TA undergo touch-and-go bifurcation atβ32 = 0.105. In the
top panel, expanded plots around the bifurcation deformation
β32 ∼ 0.29 are shown. The orbit PC undergoes pitchfork bifur-
cation atβ32 = 0.289 and 3D orbit TF emerges. A pair of 3D or-
bits TD and TE emerge via tangent bifurcation atβ32 = 0.292,
and TE causes a pair annihilation with TC just after its emer-
gence. The orbits TD and TA undergo touch-and-go bifurcation
atβ32 = 0.298. As described here, the above dominant POs are
connected with each other by the complicated network of quasi-
periodic families of orbits via bifurcations. This featureseems
peculiar to the tetrahedral-type deformations [55].

For the second example, let us discuss the bifurcations of the
orbits (2,1) in spheroidal power-law potential with spin-orbit
coupling which we discussed in section 6. We limit ourselvesto
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Figure 33. The stability factort of the frozen-spin meridian orbits
(2,1)L, (2,1)X, (2,1)Z and (2,1)S in spheroidal power-law potential as
functions of the deformation parameterδ. The results for the power
parameterα = 5.0 with three different values of the spin-orbit param-
eterκ = 0.03, 0.06 and 0.10 are shown. Dots indicate the bifurcation
points of (2,1)S.

the frozen-spin orbits in the meridian plane, and only consider
the bifurcation within a given meridian plane, e.g. the (x, z)
plane. Under this limitation, bifurcations of POs can be con-
sidered in terms of the reduced (2× 2) monodromy matrixM.
Figure 33 shows the values of the stability factort = Tr(M − I )
for four oval-shape orbits (2,1) as functions of spheroidaldefor-
mation parameterδ. For the spherical shapeδ = 0, the orbits
X and Z compose the same degenerate family. With increas-
ing oblate deformationδ < 0, orbit (2,1)X approaches (2,1)S
and they finally cause pair annihilation via tangent bifurcation
at the certain deformationδ = −δc. With increasing prolate de-
formationδ > 0, the orbit (2,1)Z approaches (2,1)S and they
cause pair annihilation via tangent bifurcation atδ = δc. The
value ofδc becomes smaller as increasing spin-orbit parameter
κ. The value oft for the orbit (2,1)L at|δ| . 0.2 is very close
to zero forκ = 0.06 since the orbit is close to the bifurcation
point from which the orbits (3,1) emerge. This indicates that
the (3,1) bifurcation makes significant effect on the deformed
shell structure for the realistic spin-orbit strengthκ = 0.06 in
rather wide range of the deformation parameterδ.
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