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Abstract

Semiclassical periodic-orbit theory (POT) is applied te pysics of nuclear structures, with
the use of a realistic nuclear mean-field model given by tHerpower-law potential.

Evolution of deformed shell structures, which are respaadbr various nuclear deformations,
are clearly understood from the contribution of short dtzdgperiodic orbits (POSs).

Bifurcations of short POs, which imply underlying local @dymical symmetry, play significant
role there. The fect of the spin degree of freedom is also investigated ivaglee to the
pseudospin symmetry in spherical nuclei and the prolatatelasymmetry in shell structures of
nuclei with quadrupole-type deformations.

PACS numbers: 21.60.-n, 36.40.-c, 03.65.Sq, 05.45.Mt

1. Introduction classical orbit to be multiples of the Planck’s constant

X2
2[ p(x;ep)dx=nh, n=12.--. (1)
X1

Independent-particle picture is one of the most importasyt d
coveries in the history of nuclear structure physids [1,2¢- Here, p(x;€) = v2m(e— V(X)) represents the momentum of
cause of dominance of the single-particle motion in nucldhe particle moving along the axis with energye. The in-
dynamics, various low-energy (near-yrast) propertiesuniei tegration limitsx; and x, are given by the classical turning
are determined by the characters of the single-particletspe points satisfyingo(x;; €) = 0. Semiclassical periodic-orbit the-
Therefore, it is very important to understand the propsrtie ory (POT) based on the Feynman'’s path integral formalism has
the quantized independent-particle motion in the nuclezamm been developed since 1960s. Gutzwiller derived the famous
field potentials. In general, distribution of the singletjide trace formula[3] in which the quantum level density (density
energy eigenvalues shows a regularly oscillating grosgstrof states) is expressed in terms of the classical periodiitsor
ture, calledshell structureand, occasionally, a modulation in(POs). This formula gives a deep understanding on the origin
its amplitude into various kinds of beating patterns calied of quantum fluctuations. Even the individual quantum states
pershell structure Those structures are quite sensitive to th@n-integrable systems can be approximately construobea f
shapes of the potentials. As is well known, such gross stratassical dynamics by the use of the trace formula, but here a
tures in the quantum fluctuations play importantroles iraba tention will be focused on its important aspects in appioret
terizing the properties of many-fermion systems like nimtel to the gross shell and supershell structures.
microclusters. However, the origins of such gross strestare  In section[2, semiclassical theories for the single-plartic
not clear from purely guantum mechanical viewpoints. level densities and for the fluctuations in energies of many-
body systems are briefly outlined. We will discuss the role
Semiclassical theory provides us useful tools to invetigaf the classical POs, especially on the importance of the PO
those remarkable gross shell structures in quantum dysamiifurcations and their relation to the restorations of laba
It describes the properties of quantum systems in termseof tlamical symmetries. In sectigd 3, the radial power-law po-
classical dynamics. Speaking of a classical-quantum cotential model and its scaling property are presented. I sec
spondence, one may first think about the Ehrenfest theoréiom[4, we apply the semiclassical POT to the spherical power
which tells that the expectation values of quantum opesattaw potential model with spin-orbit coupling and study thie o
obey the classical equations of motion. Moreover, the iddivgin of the nuclear magic numbers and that of the dynamical
ual guantum states also have a close relation to the clédgicasymmetry known apseudo-spin symmetryn sectiorib, the
namics. In this relevance, one may recall the Bohr-Somrtkerfauclear exotic deformations (superdeformations and @dtup
guantization rule for a particle in one-dimensional patntdeformations) and the roles of PO bifurcations are analyzed
well V(x), where the energy eigenvalugs} are determined In sectior[ 6, the origin of prolate-shape dominance in rarcle
by the condition that the action integral along once aroiwed fground-state deformations is investigated taking the-spiit
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coupling into account. Sectign 7 is devoted to conclusiamns avidth y with appropriate order of curvature corrections is usu-

perspectives. ally employed:
_ 1 e-¢
2. Semiclassical theory of shell structure 9,(e) = ;fde’g(ef)f — ) (7a)
1

As one sees from the successes in the mean-field approachesf(x) =
to nuclear many-body problems, quantum fluctuations in phys

ical quantities are originated mainly from the shefeet dué pere the Mth order curvature corrections are given by the
to the quantized single-particle motions in the mean field A%guerre polynomial¥’?, and we take B = 6 in our numer-
tential. In this section, we first describe the Strutinskglsh;,| calculations. ForMa given, the smoothedmermi energies

correction method to extrashell energythe quctugtion partEF is defined thorough the particle-number condition
of the energy for many-body systems, from the single-plartic

ﬁe-xz L3202, (7b)

spectrum. It will be shown that the shell energy is expregsed *0) _
terms of the oscillating part of the single-particle levehdity. f 9y(€)de =N, (8)
Next, we give a brief introduction to the semiclassical fatan . .
for the level density and shell energy, whose oscillating p&nd the average part 6f(3) is obtained by
is expressed as the sum over contribution of the classical PO &(7)
We will emphasize the importance of PO bifurcations for the Esp(N;7y) = eg, (e)de. 9
enhancement of shelffect. -

The smoothing widthy is determined so theE_Sp satisfies the
2.1. Shell correction method so-callecblateau condition
In the independent particle picture for an interacting many iE_sp(N;y) ~0, (10)

fermion system, the constituent particle motion is quatiz dy

with the self-conS|ste_nt mean-field Hamlltonlan. Paf_B?‘*"e in order that the obtaineﬂ_sp(N) is less dependent on the phys-
arranged to the quantized states according to the Ferristitst . : . _
ically meaningless parametgr Insertingg(e) = g(e) + 5g(e)

so that they minimize the total energy. Due to the interagctio . - ;
y nergy . CTa0hto the particle-number condition for the exact Fermi gyer
total energy of the system considerablytelis from a simple .
. ; i er, one has the relation
sum of the single-particle energies

er
N 0= f g(e)de— N
Eso(N) = ) &y, @ o &
=1 = I {(e) + 5g(e)}de - I g(e)de

However, the oscillating part ds;, is found to successfully de- er e
scribe the energy fluctuation of the total many-particleeys = f ég(e)de + f_ g(e)de (11)
Strutinsky has derived the way with which one can unambigu- °° &
ously decomposEg; into the average and oscillating pafts [4,55hell energyE is then represented in termsdgf as
as o 5
- 6E=f ef{g(e) +¢6 e}de—f g(e)de
Esp(N) = Esp(N) + 6E(N). 3) o 9(e) + 59(e) o e9(©)
= €F

By employing the realistic mean field model and replacing the = f edg(e)de + ﬁ eg(e)de
average parEsp with more reliable semi-empirical formula, 7: &
e.g. the liquid drop model (LDM), ~ f (e—er)sg(e)de. (12)

E(N) = Ecom(N) + 6E(N), () In the last step, the firgtin the integrand of the second term is

_ . . replaced wither, assumingr — er to be suficiently small, and
one can systematically describe the observed nuclearrign hgn the rela};::i‘zr'l:(]ll) is l?;Fed efrhe last expreséﬁh (12)her t

energies in good precisions. . .. shell energy will be used in the derivation of its semicleaki
To calculate the oscillating pafE from the single-particle formula in the next subsection

spectree;j, one first decompose the single-particle level density

2.2. Level density in semiclassical approximation

e = ) de-e) (5)
j In the smallii limit, the quantum wave equation reduces to the
classical equation of motion. Inserting the wave functibtihe
formy(r,t) = €F"V/" into the Schrodinger equatiohdiy /ot =
) Hy(r,t) and expand® in powers ofi asF = Fo + iFy + - - -,
one has the classical Hamilton-Jacobi equatioriHpe S:

The average part is obtained by convolving the total one with
a smoothing functiorf, for which a normalized gaussian of -+ Ha(p=VS,r)=0 (13)

into the average and oscillating parts

g(e) = g(e) + og(e).
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in the leading order ofi, whereHq(p,r) = p?/2m+ V(r) is approximately as

the classical Hamiltonian. In the next-to-leading ordettipng oo i

Fa(r,t) = 4 logp(r, 1), one has the continuity equation for the | = A(q*)f dqg exp[g {S(a) + 3S"(@)(a- q*)z}]
probability density = || e

o = A(gF)&S@)n —2’”h . (21)
GV =0 (142) 7@

VS In general S(q) has several stationary points and equaiioh (21)
V= — (14 : . . )

m will be expressed in the sum over terms associated with all

those points. This approximation is good for an isolated sta
and one has a picture of fluid running according to the clabsigonary point. However, it becomes worse as the secondateriv
equations of motion. In this way, the quantum dynamics cantg& S”(q*) becomes smaller, and then one should consider
related to the classical dynamics in the semiclassicaledpr some higher order expansions of the act{g) aroundq®.
mation. Especially, classical POs are shown to play therakent Since the phase in equatidn{19) is the action integral along
role in the level density and shell ener@y[3.6,7]. In thédet the path, the stationary solutions are nothing but the icalss
ing, we shall briefly outline how the semiclassical formutas  trajectory satisfying Hamilton’s variational principl€hen, the
the level density and shell energy are derived from the Feystopagator is expressed as the sum over contributions ®f cla
man’s path integral representation for the quantum prapagasical trajectories. A detailed and clear derivation of teeni
and discuss the important aspects of the formulas in amayz¢lassical formula from the path integral representatidousid

gross shell structures. e.g., in section 7 of [8]. The result is expressed as
Energy level densitg(e) is given by the trace of the retarded 1 i iy
Green'’s functiorG*(r”, r’, €) as Ka(r”, r',t) = \/D, eXp[—Ra - _d} (22)
i Neo ) RY2
g(e) = Tré(e—- H) = 1 |mfdr G*(r,r,e), (15) which is known as the Van-Vleck formula. The sum in the
T right-hand side is taken over classical trajectorestarting
G (1,1, e = ("] 1 TN (16) fromr” and arriving atr” in time t. R, represents the action
e+in—H integral alongy,

wherer is a positive infinitesimal number. The Green's func- g _ ft L(r(t), Ft)dt, r@)=r, r{)=r" (23)
tion is given by the Laplace transform of the propag#tas 0
andD, is given by

1 0 -
G+(r”, r/’ e) == dt el(HIU)t/hK(rn’ r',t), (17) 5 . -1
i Jo D, = det(—ia Ri(r”. 1 ’t)) = det(ar ) (24)

arar op

which is related to the stability of the trajectory with respto

Connection between quantum and classical mechanics isthe-initial condition.v, counts the number afonjugate points
rived from the path integral representation for the propaigaalong the trajectoryy, where the semiclassical propagator en-
counters singularities in coordinate space. Such sinigjer

can be avoided by the Fourier transformation from the coor-
dinate to momentum space before it encounters the conjugate
) _ ) ... point and then inverse Fourier transformation into coaatin
where the integral is taken over arbitrary paths CONNeWIng 506 again after passing through the point. This can be also
tial point r’ and final pointr” in time t. D[r(Y] is the inte- coped with by the catastrophe theory [9]. In such procedure,

gration measure associateq with .the pdth andL is the La- ¢ generally has the delay of phasen§, as in the case of
grangian functhn. The. semmlassmgl formula of the Preay ne_dimensional WKB wave function at the classical turning
valid for small7i is obtained by carrying out the above path Nsoint.

tegral using the stationary phase method (SPM). Using the above semiclassical propaga€grin the Green'’s

For an introduction to the basic concept of the SPM, let §sction [17) and inserting it into equatidn{15), the lesteh-
consider a one-dimensional integral of the form sity is expressed in the form

K(r”, v, 1) = (rje iy, (18)

K(r”, r’,t)=f2)[r(t)] exp[% ft L(r, f)dt’}» (19)
0

1= [can@eson, @)  w@- [ erA\,(r;e)exp[%sa(r,r;e)—i;”v” . (25)

with A(q) andS(g) being moderate functions of Sincer is where the sum is now taken over the closed orbits which start
small, above integrand is a rapidly oscillating functiomaind " With energyeand return ta” again.S, is the Legendreé trans-
may have no noticeable contribution to the integral due éo form of the action integraR,, whose independent variable is
strong cancellation. Such cancellation is avoided in Vigiof ~transformed from timeto energye = —6R, /dt as

the stationary poing* of the functionS(q) satisfyingS’(q*) = Su(r",r';6) = et+ Ry (1", r',1)

0, and it makes a dominant contribution to the integral. & th " ”

standard SPMS(q) is expanded around the stationary point - f(H +Lydt = f p-dr. (26)
g* up to a quadratic order, and the above integral is evaluated 0 r
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For a while, we shall leave out the explicit form of the predfeic into equation[(IR) and evaluating the integral using theisem
A, for simplicity, just mentioning that it is related to thelsifa classical approximation, one obtaifs![10,11]
ity of the trajectory with respect to the initial conditiofinally,

the trace integral overis carried out with the use of the SPM. SE(N) = Z feF de(e - er)As(©) cos(lsﬁ(e) - E,uﬁ)
The stationary phase condition is expressed as 5 J-eo " 2

er
0S(r.1;9) _[0S(, ) 4S(r".r') ~ ) Agler) f de(e - er) cos|} {Sy(er)
or or” or’ Frefrer B o
=p’ -p=0 (27) S COICRES IR
2
Coincidence of initial and final momenf@ = p implies the = Z (%) As(er) cos(Ss(er) — Sup).- (31)
orbit to be periodic. Hence, the semiclassical level dgrisit 5

expressed in terms of POs as _ o _ )
From the first to second line ib.(B1), the fact is used thatitke i

_ 1 g tegrand in vicinity of the end poirt~ e makes the chief con-
9(e) = g(e) + Z Ag(€) co ﬁsﬁ(e) ~oHe| (28)  tribution to the integral because the integrand is a rapdbjl-
A lating function of energy due to the smallnessiand strong

The first termg(€) represents the average level density Whi(gﬁfs_etting dfect ari_s_es a little deep in;ide the integration_ region.
corresponds to the contribution of zero-length orbit. Tae-s OWing to the additional factory(T,)? in the last expression in
ond term gives the oscillating part of the level density. S €duation[(3), the contribution of longer POs are relayiseip-

is taken over all the POs (not only primitive ones but alsdrth®€ssed, compared to the trace formula for the level dersity
repetitions). Sy(e) = fi; p- dr is the action integral along the®ne usually needs only a small number of the shortest POs for

orbit 3, andy; is the so-called Maslov phase index related {ge study of shell energies.
the geometric properties of the orpit o o ) i
The prefactorAs(e) is also expressed in terms of the clag-3. Periodic-orbit bifurcation and local dynamical syninye

sical characteristic; of the ortgit S“C,h as the stability, periOdThere are several fierent ways of deriving PO expansion for-
and degeneracy. Since the actigy{€) is in general a monoton- 2 genending on the integrability of the system. For ayfull
ically increasing function of energg; each contribution of theintegrable (multiply-periodic) system, it is convenientuse

PO give_s andqscillatingfunct;cion ef whose successive minima[he action-angle variables, ¢}, where the action variables
appear in a distance given by are constants of motion and the Hamiltonian is independent o
ok 2h the angle varigble& .In an f.—dimen-sional.multiply—periodic
€= 45,/de” T, (29) system, generic classical trajectory is confined toras anf-
B A dimensional hypersurface in the phase space formed fongive

T, represents the period of the orjsit This implies that the values ofl with varyinge. In such a system, energy is quan-
shorter POs having smaller periois contribute to the level tized according to the EBK (Einstein-Brillouin-Keller) rtes
density oscillations of larger energy scales (having larg. duantization rule[7]
Therefore, the gross shell structure is determined by some
shortest PO4 [10,11]. Longer POs contribute to a finer struc- &
ture superimposed on the gross one. Since the contributions , . o . .
of the POs having dlierent periods give the terms oscillatinWthh S a gener_ahz_ahon of the one-glmenspnal Bphr-
Yommerfeld guantization rul€](1) to multi-dimensionaleint

with different4e, they will interfere and build a certain beat- rable svstems. Herd. is taken as the action intearal alon
ing pattern. The supershell structures, the modulatioshétl g y : k 9 9

) hekth irr ible | n th r which cann re-
structures, can be understood as the result of such m«adert ext educible loopl’y on the torus (which cannot be re

) : .duced to a point by any continuous deformation), apds the
effect. Balian and Bloch_[6] have found a remarkable beatlng P Y any co X ) aw
. . . . s@-called Maslov index which counts the caustic points aneo
pattern in the coarse-grained level density for spheriealt c

: o ) tered alongk. Based on this quantization rule, Berry and Ta-
gyl:ﬂg?e%at?ii: 'a;?iir;tgog;z tgg 'zgenrfﬁtr)igic: Ofmﬁi bor derived a formula for the level density expressed asithe s

q 9 q . ' over terms associated with the classical FO$ [13]. Creagh an
et alhave employed the semiclassical trace formula to aCCOEﬂgejohn have shown that the above Berry-Tabor formula ca

for the supershell structures in metallic clusters [12]eWhave e also derived from the phase-space path integral refieesen

applied the idea of Balian and Bloch to a more realistic Weods f th a4l E T b
Saxon (WS) type mean field model, and have shown that he © the quantum propagator [14]. For pgrna y intedea

o y%tems, some of the trace integrals are carried out exaotly
supershell structures observed in metallic clusters areess-

. . h ring a f r proportional to the phase- vol
fully understood as the interferenciert of the triangular andt ey bring a factor proportional to the phase-space voluce o

g . cupied by the PO family. Other integrals are carried out by
square—_type PO.S' This 1S can|dered as one of the greatest e SPM, and they bring a factor related to the stability ef th
cesses in physical applications of the POT.

- . . .
Let us next derive the semiclassical expression for thd shpe? [L4]. For a strongly chaotic system in which all the POs are

. ) . . iSolated, one obtains the Gutzwiller trace formula [3, 7
energysE(N). Inserting the semiclassical level density a3, 7]

B To(e)
_ 15,(e)- = - T
sg(e) = zﬁ: As(e) cos(2Sp(€) - Sup) (30) g(e) g(e)+zﬁ1 N D]

= H(lk = h(nk + %ak)), (nk = 0, 1, 2, o ) (32)

cos(%sﬁ(e) - %yﬁ). (33)
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S(a) quadr. approx. Sa)

& < Qyif

& = &if

Figure 1. lllustration of the Poincaré map(Z) defined by the phase
planeX, and the monodromy matrid associated with the PD.

Here, Mg represents the so-called monodromy matrix which
describes the linearized stability of the PO, é’lﬁjrepresents

the period of the primitive P in cases being its repeti- > it
tion. For a system with degree of freedoms, let us consider a
(2f —2)-dimensional phase plag&n the (2f — 1)-dimensional
energy surface. This phase plane defines a stroboscopic map-
ping known adPoicaré map If the energy surface is compact,
the trajectory starting at the poidton the phase plang will
certainly intersect the same plane again, say, at pintith

the same orientation as it starteff (see figuré1l). The map

P . 2 — X which transform& into Z/

Z' =P(2) (34) "Pitchfork” "Tangent”
according to the classical trajectory is called Poincaap niPO
Z* is nothing but the fixed point of the Poincaré map Figure 2. lllustration of PO bifurcation scenarios. Bifurcationspr
ceed from the top to lower panels. POs correspond to thestati
Z" =P(Z2), (35) pointsqg* of the actionS(q), and are indicated by dots. The number
of POs changes when the parameétpasses over the valdg; where
or more generally, the curvatureC = S”’(q") vanishes. The bifurcations shown in the left
and right columns are called “pitchfork bifurcation” anaifigent bi-
Z" = PY(Z) (36) furcation”, respectively, named after the shapes of thelgahown
in the bottom panel, where the stationary points are plaeélunc-
which returns to the initial point by theth intersection. tions of the parametef. The inverse processes (PO association or

The stability of the PO characterizes the behavior of adgnihilation) are also called “bifurcation” in a broad sens
cent trajectories with initial conditions infinitesimalghifted
from Z*. Expanding the Poincaré map around the ZQthe

monodromy matri*M is defined by the linear term as Figure[2 illustrates two typical scenarios of the PO bifurca

tions. As wee see in equatidn {27), POs correspond to the sta-
Z'+62 =P(Z +62)=Z" + M6Z + 0(522), (37a) tionary points of the action integr&i(q) along the closed orbit
92! which start fromqg and returns t@ again. Let us consider the
8_ZI<' (37b) situation in the top left panel in figuké 2 where a single stati
! ary point exists at|" and the curvatur€ is positive there. One

The factor detil; — 1) in equation[(3B) originates from the tracdas the factor proportional tq MC by the integration with the

integral in equatiori(15) carried out by the SPM, and thisdiac SPM- With varying a parameter in the Hamiltonian, say, the
is proportional to the curvature of the action integral deformation parameter actionS(q) will continuously change
and the curvatur€ may happen to vanish at = &y as il-

8%S lustrated in the 2nd-row panel. After passing over this poin

C= det(ﬁ) . (38) the sign of the curvatur€ = S”(q*) changes as illustrated in
* the 3rd-row panel, and one has new stationary points at both

The symbolL indicates that the derivatives are taken with raides of the original one. This is a scenario of the PO bifurca
spect to the coordinates perpendicular to the PO, or to tle mi#on which is known apitchfork bifurcation Another type of
ifold formed by the PO family under continuous symmetry. Asifurcation scenario callethngent bifurcatior(or saddle-node
mentioned above, the standard SPM breaks down if the cuvéidrcation) is shown in the right column of figuld 2, where
tureC vanishes. Let us show that a P@urcationis associated a pair of stable and unstable POs are newly produced at the
with this singularity. “bifurcation” deformation rather than emerging from akllga

Mij =

5
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existing ondl All the possible bifurcations in Hamiltonian sysand one has to work out several kinds of catastrophe integral

tems are classified into six basic types by the catastrogioeyth to obtain formula valid around those bifurcation pointsam

(see e.gl[15,16)). other approach, the improved SPM[L9, 20] is used in which
Due to the proportionality dei(s — 1) o« C, the monodromy the trace integration is carried out by expanding the phpse u

matrix M has a unit eigenvalue if the curvatu@vanishes. a quadratic order but with keeping the exact finite integrati

This unit eigenvalue suggests the formation of a local PO falinits. These approaches are applied to several integeatzle

ily around the bifurcating PO. IM has a unit eigenvalue, thehon-integrable systems and succeeded in reproducingumant

associated eigenvectdj satisfies the relation mechanical results. In the following sections, we will shibat
the shell &ects are considerably enhanced by tifeat of the
M(Z" + X)) ~Z" + cMX = Z" + cXy, (39) bifurcations of short POs, which play quite significant soie

characterizing various nuclear properties.
wherec is a small continuous parameter. Hengey cX; gives

the continuous family of quasi-periodic family in vicinitf the , ,
POZ* as shown in the 2nd-row panels of figlile 2. New PO(@')-I—herad""II power-law potential model

may emerge from this family. The PO bifurcation is thus assp- . . .
ciated with a vanishing curvature, or equivalently an erapcg th;n:]alrmomc oscillator (HO) r_]as been ex_ten_swely u_sed as
ple model of the mean-field for qualitative studies of

of unit eigenvalue in the monodromy matrix. . . .
: : - nuclear structures. It nicely explains the low-energy king
The formation of the above local PO family may indicate Sarticle spectra for light nuclei. It is also useful to urstand
local restoration of dynamical symmetry. In case where Sfﬁé a egrance of s% erdefor.med shell structures. However
tem has a continuous symmetry, each PO will form a contirHJ- PP P : W

eavier nuclei have sharper potential surface and it is ngdo

ous family generated by the symmetry transformation. Thep,” ™. .
the PO bifurcation may imply that a dynamical symmetry égescnbed by _the HO model. To cor_15|der_tlﬁﬁeet_0f th? sharp
rface, modified oscillator model is devised, in which anter

locally restored around the bifurcating PO and generates ) . .
y g 9 —vii1? (I being orbital angular momentum vector) is added to

above family of POs around it. To investigate which kind . . .
invariance is acquired at the bifurcation point, let us oders the HO potentlal. It despnbes Fhﬁect that the energies of the
states with larget, having major component around the sur-

the phase-space function face, are relatively lowered by sharpening the potentidbse.
D@2)=P2) -2 (40) Taking also the spin-orbit coupling terfygl - sinto account,
this model, known as thBlilsson modelis widely used as a
It represents the fierence of successive intersections on ti§@nvenient mean field which provides realistic singleiptat
phase plang by a classical trajectory, and is hence determint&yels for nucleil[1. 2, 21]. The square-well potential, athi
by the Hamiltonian flow. The P@- is the zero of above func-is further approximated by the infinite-well potential, is@a
tion, namely,D(Z*) = 0. If the monodromy matrix has a unitused for a qualitative description of heavy nuclei. A rdadis

eigenvalue and the corresponding eigenvectdsjone has ~ radial profile of the nuclear mean field potential is given by
the WS model having a finite surfacefdiseness. In this sec-

D(Z* + ¢X1) = P(Z" + cX1) — (Z" + cXq) tion, we propose a radial power-law poten¥gt) o« r* which
~CcMX; —cX =0 (41) Pprovides a good approximation to the WS potential and much
easier to treat in both classical and quantum mechanics than
for small continuous parameterThe local dynamical symme_the WS model. It includes HO and infinite-well models in its
try is thus expressed as the invariancé¢f) aroundz* with two limits @ — 2 ande — oo, respectively. We will discuss

respect to the continuous transformatibe Z* — Z* + ¢cX;:  the scaling property of the power-law potential model whgch
extremely useful in the analysis of both classical and quant
D .
9 o (42) dynamics.

(9_)(]_2*_

The quasi-periodic family formed around the bifurcating P&1- The Hamiltonian and its scaling properties
is expected to make a coherent contribution to the pathriategrha central part of the Woods-Saxon (WS) potential is wnitte
and brings about a significant sheftect in case it is formed
around a short PO. Such dynamical symmetry associated with
PO bifurcation sometimes exerts significaffeet on the level VIS (r) = — Vo
statistics[[17]. ¢ 1+ exp[(r — Raf(2;6))/a]’
To examine the féect of the bifurcation on the level den- )
sity, it might be useful if the semiclassical formula valiga WhereRa anda represent the nuclear mean radius and the sur-

in the vicinity of bifurcation points is available. Thefert of face difuseness, respectively. The shape funcfit@; 5) de-
going beyond the standard SPM to cope with the bifurcati8fibes the angular profile of the nuclear-surface shaseanit
problem has been made in several approaches. In the uniféifnvariables = (6, ) of the spherical coordinate and the
approximation[[18], action function is expanded up to apprgeformatlon parametér For suticiently stable nuclei, this po-

priate higher order terms. Those higher order terms have &ntial can be approximated by a simpler power-law (PL) po-
ferent function forms depending on the type of bifurcation§ntial

(43)

(03
1Change in the number of solutions are generally called tbiftion” in a PLL\ 1 r
wide sense. Ve'(n) =-Vo+ EVO Raf(Q;0) (44)

6
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60 ' . ' ' with energye — ce This means that if(t) is a solution of

/ / ; EOM at energye, cV/*r(c¥*-1/2t) gives a solution of EOM at

40t L/ &/ &7 the energyce. Therefore, one has the same set of POs at ar-
7 w/ bitrary energy, and the action integral along the ofbi ex-

20r S/ / / pressed in a simple function of energy as

0
Ss(e) = 9§ p-dr =natsS. (50)
20 B(e)

V(r) [MeV]

The last equation defines dimensionless variables whiclalle ¢

0 scaled periodrz andscaled energy:

-60 + 4

Buck-Pilt —— 1
power-law ----- 75 = —SE p-dr, (51a)
80 : : : : 1 Jpe=uo)
0 2 4 6 8 10 1241/a
e
r [fm] &= (_) (51b)
Uo
Figure 3. Radial profile of the radial power-law potential (brokeThe normal periody is related tors by
line) fitted to the Buck-Pilt potential (full line) for sewrvalues of
mass numbeA. Reproduced with permission frorm [24]. Copyright _dSg(e) d& 52
American Physical Society 2012. Ts=—4e ="rge (52)

. ) ) ~ Then, the Gutzwiller trace formule(B3) for scaled-eneryel
with a suitable choice of the power parametekVe determine gensijty becomes

the value ofx by minimizing the volume integral of the squared

difference of the two spherical potentigf® andV*": de
prefiea 9(6) = 9@ 5

Ra

d — T‘B
— drr2 [V (r: @) — V¥ (r)]? = O, 45 ~gE) + Y ————cos(15E — Zuz). 53
sl RIS \ECOR0! (45) 9+ ), =y o~ B) Y
- 1+ coshRa/a)
Vi = _Vocosh(/a) + coshRa/a)’ (46) The average pary is given approximately by the Thomas-

Fermi modelgre. For the power-law potential modedye is
Here, we use the Buck-Pilt (BP) potentil® [22,[23], which obtained analytically by
is essentially equivalent to the WS potential for surfadkude-
nessa suficiently smaller than the radiuR.. The advantage gre(e) = f
of the BP in contrast with the WS is the absence of singularity " (
at the origin, which is not critical at the present discusdiat , ) _
might be important for the analysis of classical POs interide WhereB(s t) represents the Euler’s beta function. This average
the future. Figurgl3 displays the radial profile of the potesy- densny is mdepgndent of deformation under the volume con-
potential fitted to the BP potential for several values ofitiess Servation condition
numberA. According to the universal WS parameter given 3
in [25], we take the potential depWy = 50 MeV, the radius dQf(2;6) = 4r. (55)
Ra = 1.3AY3 fm and the surface ffuseness = 0.7 fm. One
obtainsy = 4 ~ 7 corresponding to the medium to heavy nuclé&lence, the average part in equatibnl (53) is given by
A = 50 ~ 200. Removing the constant term in equation (44),

dpdr 1 _(33\&
o= =~8(23)% 64

we define the model Hamiltonian as g(&) :gTF(e)g_g = CoE2, (56a)
i ry 22 33
H= —+Uo|=—+—] . 47 =2 22

2m O(Rof(g;a)) (“7) Co=— B(1+a,2)- (56b)

Here,Ug andRy are constants used as the units of energy andJnder the existence of continuous symmetry, POs will be
length, respectively, anth is the nucleon mass. Since the pagenerally degenerate, namely, they form continuous family
tential depends ol andRy only in a formUo /RS, Up andRy  generated by the continuous symmetry transformations. In a
are not necessarily independent and welpyt hz/ml%. spherical potential, generic PO forms a three-parameter fa
Our Hamiltonian[{4l7) has the following scaling property ily generated by the three independent rotations. As the ex-
ceptions, families of diameter and circle POs bear only two-
H(c"?p,c"r) = cH(p. 1), (48) parameter degeneracy since they are mapped onto themselves
by one of the rotations. In an axially-symmetric potential,
regardless Ofdeformation, and the classical equation@ﬁbm generic PO forms a one-parameter fam||y generated by the ro-

(EOM) are invariant under the scaling transformation tation about the symmetry axis. The two exceptions are the
Yay A/2m a2 diameter PO along the symmetry axis and the circle PO in the
(r,pf)— (c™r.c’pc 0 (49)  plane perpendicular to the symmetry axis. In a system with no

7
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continuous symmetry, all the POs are isolated. In evalgatin
the trace integral with the SPM, one has the additional fackgble 1. The values of the parametets Ry, Uo = 7*/mR; andx in
proportional to 1 VS” « &2, Each continuous symmetry(&3), obtained by fitting to the WBP model for several values of the
avoids this factor and hence the contributionkofparameter Mass numbeA.

family has the energy fact@/? relative to those for isolated

POs. Taking account of this energy factor, semiclassical le 2AO 2a80 R%[gg] Uo?El\ng] 5 889
ity of th -| ial li Il : : ' :
a(Qdénsltyo the power-law potential model is generally expesl 100 523! 303 114 0.059

200 | 6.75| b5.06 0.72 0.049
9(E) = GE) + ), AE"/ costrps — Zpup), (57)

B

3.3. Spin-orbit li
with Az independent of energy. In systems with continuous pin-orbit cotpling

symmetries, there are POs havingfelient degeneracies andt is well known that the nuclear mean field potential has a
K; represents the degeneracy of the fargilfThe derivation of strong spin-orbit coupling. In the WS model, the spin-orbit
explicit forms of the amplitude factor under various contins term

symmetries is found, e.g., in[10,14]. 1

2(mag)?2

v Vo
1+ expl(r — Raf(Q;6))/a}

-(sxp) (62)

3.2. Fourier transformation techniques ) )
is added to the central potential. In the same manner as above

Due to the simple energy dependence of the acBpiin the we introduce the spin-orbit term in our power-law potential
power-law potential model, Fourier analysis of the quantufodel as
level density provides us a useful tool to investigate otads

guantum correspondence. Let us consider the Fourier tnansf H = ﬁ ( r )Q + 2¢[VVso(N] - (% P), (63)
of the level density with respect to scaled energy: 2m " ° Rof(£2;0) >
_ , with the spin-orbit potential
F(r) = f deg(E)e™e 042, (58)
1 S
Ved) = (i) (64)
The last Gaussian factor is introduced for the energy trunca m\Rof(€;6)

tion. With quantum mechanically calculated eigenvaluespey g gh the spin-orbit potential almost equivalent to tee-
trum{e;}, scaled-energy level density is given by tral one is used in the WS model, it might not be so bad to use
the power parameters, a little different frome in the central

\1/2+1/«
(&) = Z 5(E-&), &= (ﬂ) i (59) potential [4#%). Here we choosg, = 1 + a/2 in order to keep
j Uo the scaling relation
Inserting [[59) into[(58), one can evaludtér) as H(c"?p.cY*r,s) = cH(p.1,9). (65)
qmey _ 76 —(yEN2/2 Apparently, this scaling isféective only forfrozen-spinmo-
F(n) = Z SR (60) tions where spin vector is static. Fortunately, spin is émmn

. many important POs, and the above scaling turns out to be very

On the other hand, by inserting the semiclassical leveliteng!S€ful in our semiclassical analysis. The spin-orbit cmgpl

(7) into [58), ignoring the energy dependence of the anmpdit Strengthk is determined so that the spin-orbit potential in the
for simplicity, one obtains the semiclassical expression spherical limit takes the same value as that of the real§tc

model at the nuclear surface= Ra. The potential parame-
FCl(T) _ F_(T) + ”Z Aﬁefinﬂﬁ/zéy(T — 75). (61) _ters obtained for se\{eral values of mass nunfdare shown
7 in table[1. We obtairx = 0.05 ~ 0.06 « = 5.0 ~ 6.0 for
medium-mass regioA = 50 ~ 150.
Here,s,(x) represents the normalized Gaussian with width The EOM for the classical spin variables are derived by
Equation [(611) tells thaF(7) is a function having successivghe spin coherent-state path integral mettiod [26]. Oneulisef
peaks at the scaled periods of classical ROs 7; with the choice of the canonical variables for the spin degree of-free
corresponding heights proportional to the amplitdge Thus, dom isqs = ¢ and ps = scosi#, whered andy are polar and
one can extract information on the contribution of cladsicazimuthal angles in the spherical spin coordinates, respeéc
POs to the level density out of the quantum Fourier tranBae Cartesian spin components are given by
form (€0). The present method is very useful in examining

classical-quantum correspondence, especially when the se ~ Sx = SSin# cosy, (66a)
classical amplitudes areficult to obtain due to the hidden s, = ssing sing, (66b)
(exact or approximate) symmetries, bifurcations and solon. S, = SCOSY, (66¢)

obtain finer resolution (sma) of POs in the Fourier spectrum,
guantum spectra up to higher energy{ 1/v) is required in with the moduluss constant § = 7/2 for nucleon). One can
evaluating[(GD). prove the Poisson bracket relation between the classi@al sp

8
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variables in contrast to the orbital motion and the adiabatic apprexim
9s 9si s S; tion is applied. The Hamiltonian matrix of £2) spin channels
{s.sjlrs 23 _ 23 €ijk S, (67) is diagonalized to obtain two adiabatic Hamiltonians, amel t

9ds9ps  9ps 90s classical POs in those two Hamiltonians determine the semi-
which exactly corresponds to the commutation relation ef thlassical level density. It should be noted that the froggim-
guantum spin operators. The trace formula in extended phBS§¥s in our approach are equivalent to those obtained fatithe
space including the spin degree of freedom is formulatedahatic representations of Hamiltonians in the coupled-channel

[27]. WKB method [30].
Writing B = VVgq(r) x p, classical EOM is expressed as
oH p 4. Nuclear magic numbers and pseudospin symmetry
r= a—p = E - 2K(SX VVSO)» (68a)
oH Nuclear binding energies as functions of the particle numbe

p=—— = -VV.-%V(B-9), (68b) show remarkable fluctuation properties similar to thosengn t
_ or ionization potentials of atoms. They are both manifesteatib
S={s Hjps. = -2Bxs. (68¢) the shell structures for the quantized independent motfon o

constituent particles in the mean fields. In nuclear systems
quite distinct magic numbers are known for both protons and
neutrons:

Let us consider the case where the potental¥, andVye) are
axially symmetric. Frozen-spin orbits appear under thiofo!
ing conditions:

1. Meridian and equatorial orbits N,Z =2,8,20,28,50,82,126 -- -, (70)

Takingz axis as the symmetry axis of rotation, ConSIderf%r which nuclei show the extreme stabilities. These number

classical trajectory starting withandp both on the merid- . : .
. - ) are successfully explained by the mean-field model witmsgtro
ian plane (the plane containing the symmetry axis), say,. . g : : o .
. . . s¥iln-0rblt coupling, like Nilsson (modified oscillator) &S
the (x,2) plane, ands perpendicular to it, namely, in the .
direction. On the X, 2) plane,VV is perpendicular to potential models.
%/he axis énd then th’e vgctcB ,is araIFI)eI Ft)o they axis An approximate dynamical symmetry called pseudospin [or
Cor?/se uently. the-components gf all the terr?/s i 'th seudo SU(3)] symmetry plays role in this shell structure
q Y, g P {?2—-31-]. In the so-called pseudospin transformation, &rgu

right-hand sides of equatioris (68a) ad {68b) as well Mdomentum quantum numbers are reassigneld-ad + 1 for

the right-hand §|d§ of(GBc) vanlsh,.anq the _trajectory 5= | + 1 levels. The Nilsson Hamiltonian is transformed cor-
shown to remain in thex(2) plane with its spin frozen. 2,
r(ﬁspondlngly as

Hence one has the meridian-plane frozen-spin orbits.
the potential is also symmetric with respect to theyj Huiis = Huo — Visl - s— w12
plane (equatorial plane), the classical orbits in this @lan
with spin perpendicular to it are shown just as above to be
frozen-spin orbits.

— Finiis = Fro — (@vi — vis)T - 3= v T° = (2vi — V).
(71)

2. Diameter orbits Since the relatiorvis ~ 4v; holds well, spin-orbit coupling is

Consider a trajectory starting along the symmetry axisquenc;hed in the ps_eudospin representat_ion, and oneffinds Sys
axis) with spin parallel to the axis. On the symme-tématic degeneracies of the pseudo spin-orbit partners (

try axis, VV is parallel to thez axis and henc = 0. | + %). The same kind of level degeneracies are also found
Thus one easily sees from the EOM(68) that the trajée_more realistic WS potential model, where .the splittings o
tory remains on the axis with spin frozen, and one hagegenerate HO levels due to Fhe sh_arp potgntlal surfaceaare p
the frozen-spin diameter PO along the symmetry axis. tiflly compensated by the spin-orbit coupling. Those qhenc
the potential is symmetric with respect to they) plane, N9 of the_ pseudo spm_—orblt splitting is c0n5|_dered as a_lltes
one finds just as above the frozen-spin diameter orbitsGhaPproximate dynamical symmetry restoration, and might b

the equatorial plane with the spin parallel to the orbitdnderstood in relation to the PO bifurcations as discussed i
motion. sectior 2.B.
In the power-law potential model, surfacefdseness is con-
The reduced EOM for the frozen-spin PO in the orbital pla%”ed by the power paramete{ and the above development
have the same invariance against scaling transformdf@) (%f gross shell structure can be studied as the combinaftagte

and the action integral along the orbit is expressed as of the power parameter and the spin-orbit coupling strength
k. Figure[4 shows the single-particle level diagram whichiplo
9%( ) p-dr =t (69) single-particle scaled energies as functions of the spit-pa-
€)

rametek. The power parameter is takenas: 5.0 correspond-
Because of this simple energy dependence, equivalent toitigeto the medium-mass nuclei. Systematic degeneracies of
case without spin-orbit coupling, contributions of thogBsP levels are found around the realistic value of spin-oriérggth
to the level density can be also studied conveniently with th ~ 0.05, where a gross shelffect is considerably developed.
Fourier transformation technique. Level crossings of the pseudo spin-orbit partners are atelt

There is another semiclassical method to treat the spirededyy open dots. They occur at almost the same valuasanfd

of freedom, by making use of the coupled-channel WKB foaffect the gross shell structure. The magic numHberk (70) are
malism [28£31], where the spin is considered as a slow viariaborrectly reproduced there.
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Figure 5. Quantum Fourier spectt&™(7)| calculated for the power

==z 28 parameterr = 5.0 with three diferent values of the spin-orbit param-

0 0.02 0.04 0.06 0.08 0.1 eter:xk = 0, 0.03 and 0.06.

Figure 4. Single-particle level diagram for the spherical power-law
potential model with the power parameter= 5.0. Scaled-energy
levels&; = (g)/Uo)Y>Y are plotted as functions of the spin-orbit
parametek. The particle numbers of the closed-shell configurations,
where all the levels below the energy gap are occupied, diedted

in italics. Full and broken lines represent positive andatieg par-

ity levels, respectively. Open dots indicate the level sigs of the
pseudo spin-orbit partnefs= 1 + 1/2.

As discussed in sectidn 3.2, one can extract information leigure 6. Some shortest classical POs in the spherical power-law po-
PO contributions from the Fourier transform of scaled-ggertential model with spin-orbit coupling. The power paramete= 5.0
level density[(6D). Figurl5 shows the moduli of Fourier gran@nd the spin-orbit parameter= 0.06 are taken. In each panel, the
form |F(r; )| as functions ofr, for several values of the Spin_outgrmost circle. represents the boqndary of the cla§§;ieahgs§ible
orbit parametek. As expected from equation (61), the Fouridf9'on dashed lines repr.esent the gurgle orbﬁs@d th'Ck. SO“.d lines
amplitude shows successive peaks at the scaled periodssef éfprg_se?t the ?llanag_or:muls,(nd)). Spin is frozen in the direction per-
sical POsr = 75. Fork = 0, one finds peaks at= 5.1 and 58, pendicular toihe oroital piane.
which correspond to the diameter orbit (2,1) and the cirdbito
C, respectively. We label the POs by the number of osciltatio

T T T T T T T

n: in radial direction and number of rotationg about the ori- 1T a=504=0060y=050 . .

gin, and express them as (n,). The number of radial oscilla- , o5} " ﬂ /“ . } /\ A f\

tions cannot be assigned to the circle PO and we denote it as. | . 73 7Y 7 ﬁx Al f\i 0

With increasing spin-orbit parameterthe diameter orbit (2,1) 3 os ARV VRN v \/ v U \} v U ‘\j \Y
128

is deformed into an oval shape, and the circle orbit C bifiega quantum==--++ N=EQ

into Ct and C having orbital angular momentum parallel and -1 [ semiclassical 82
anti-parallel to the spin. At ~ 0.05, the circle orbit C under- * * * *
goes bifurcation and a new orbit (3,1) of triangular-typeh
emerges. These POsat 0.06 are displayed in figufd 6. As&
shown in the top panel of figufé 5, the contribution of the ol

! ! !

bits C" and (3,1) is strongly enhanced at= 0.06. This is Ar Sy
considered as the PO bifurcation enhancemgiatewhich we o 2 4 6 8 10 12 14 16
discussed in sectidn 2.2. Consequently, the semiclassigith £

of the development of remarkable shell structure at5.0 and
k = 0.05, corresponding to medium-mass nuclei, is shown to

be related to the emergence of the orbit (3,1) bifurcatechfréigure 7. Oscillating part of the scaled-energy level density for the

C* and the associated local dynamical symmetry. spherical power-law model witth = 5.0 and« = 0.06, coarse grained

L . . . to a widthy = 0.5. The upper panel compares the quantum result and
The contribution of unfrozen orbit cannot be investigated by . .o i classical fiE72). The lower panel shows the catioh of

the Fourier analysis because of the absence of the scalidg, i@gividual POs in the semiclassical level densifyl (73).
one can only study it by directly evaluating the semiclaasic

10
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level density. If the quantum level density is reproducely on
with the contribution of frozen-spin orbits, one may comsid
that the &ect of unfrozen orbits can be omitted. Let us consider
the oscillating part of the coarse-grained scaled-enezggl |
density with the averaging width,

&-& )2

y ’ ’ -
6,9(8) = r de sg(&)e (S 4% deformation
) spherical
_ Z 595(8) g rp)/4, (72)
B
595(8) =~ AﬁSKﬁ/Z costsE — Sup). (73) Figure8. lllustration of the mechanism of deformation induced by the

spontaneous symmetry breaking. Solid lines representespayticle
The exponential damping factor@s’/4 in (Z2), which ap- levelsand dots denote particles in the highest partiatiyapied levels.
pears due to the coarse-graining, suppresses the coiutritmt Broken line indicate Fermi energy. The self-bound systesefigos the

longer POs. Hence, the sum is dominated only by some shifgPe which makes level density at Fermi surface as low asijies

est POs. We know the scaled periagsand the degeneracie::t;O make the largest shell energy gain.

Ks, but unfortunately we have not succeeded in obtaining the _ _ o
semiclassical amplitudeX; as well as Maslov indicess. For It is a kind of spontaneous breaking of symmetry similar to
the present' we shall treAk and#ﬁ as free parameters and déhe Jahn-Teller ect known in the molecular SyStemS. In this
termine them by the least square fitting to the quantum le$€ction, we discuss some nuclear exotic deformations amd th
density. Figurél7 shows the result fer= 5.0 andx = 0.06. Semiclassical origins with the use of the POT.

We take account of the contributions of four shortest frezen

spin POs; (2,1), €and (3,1). In the upper panel, we compare 1. Superdeformations

the quantum level density with the semiclassical fitting.eO neerning nuclear deformations. one of the most excitisq d
will see that the quantum shell structure and its beating p cerning nuclear deformations, one ot In€ Most excri&g

tern are precisely reproduced. This seems to manifesthiat Ve 1S the so-callesuperdeformed states rapidly rotating

PO sum is dominated mostly by the contribution of frozemspri]u.(:le" having extremely large quadrupole deformation seno

POs. In the lower panel, contributions of individual POs a?'s ratio amounts to 2:LIBZ.B8]. Nuclei with such large

; : . . eformations are also found in the fission process as isomers
shown, and one will see that the bifurcating orbits+(3,1) ! -~
play the dominant role in this shell structure, as indicéted formed between the double-humped potential barfert LRo, 4

the Fourier spectra (figufé 5). Interference with the contri The search of the second minima having much larger defor-

tions of the other POs makes the beating pattern. Partiyulamat'on whose axis ratio close to 3:1, often referred tdips

one sees that the distinct magic numbers in the medium- deformed statess also a hot subject in the high-spin nu-

region,N = 50,82, 128, are established according to the COﬁ_ear physics for both theories and experiment$ [41]. Fohsu

structive interferenceffect of those POs. arge deformations to be realized, significant shell engajy

. : . should be provided particularly at those shapes in addttion
We have also found that the aboveIbifurcation play sig the macroscopic driving force like Coulomb repulsion and ro

nificant roles in the quadrupole deformed shell structudés.,
: . . . . tation.
might be an interesting subject to examine the role of the-sp . . .
In the following, let us investigate the emergence of the su-

orbit coupling for the properties of the deformed shell stru ) ] . :
bing brop rdeformed shell structures and their semiclassicalinsig

tures and their relations to the pseudo-spin symmetry in de- . . . e
formed nucleil[34=36]. (I&?ere, we neglect the spin-orbit coupling for simplicity. €rh

simplest model for describing the superdeformed shelkstru

_ _ _ o ) ture is the axially-symmetric harmonic oscillator (HO)
5. Bifurcations of classical periodic orbits and nuclear ex-
otic deformations P Mol (€ +Y?) + wiZ)

Huo = —
HO = om 2

B volume conservation conditian? w, = wg. Energy eigen-

(74)

In the classical regime, self-bound interacting many-begy .
tem favors the spherical shape, since the system prefers"YH ; X
shape whose surface area is as smaller as possible undeYaI4es are given analytically by
fixed volume. In the quantum regime, the quantum shell ef-
fects evoke various deformations to the system. These shell
effects are caused by the fluctuation in the single-particle-spand the simultaneous degeneracies of levels take placeg whe
tra. Nuclei show particular stability at the spherical sheynen the frequencies, andw, become commensurable. Figlie 9
the levels under the energy gap are completely occupied. Taplays the single-particle level diagram, in which thergy
magic numberd (710) correspond to such closed-shell configigenvalues are plotted as functions of the deformatioamar
rations. In situation where the degenerate levels at theiFeeter§ = log(w,/w;). Particularly, one sees prominent shell
energy are partially occupied, system tends to deform iemrdtructures ate= 2** (§ = +0.693) and & = 3* (§ = +1.099),

to lower the energy by splitting the degenerate levels bpdefwhich correspond to the superdeformed and hyperdeformed
mation, as illustrated in figufé 8. The way of the level spl§s shapes, respectively.

depends on the types of the deformations, and such shape thiatsemiclassical POT, those shell structures are undetst®o
makes the level density at the Fermi energy lower is prederréhe result of the emergence of the four-parametric PO famili

€nn, = fiw, (N, + 1) + hwy(n, + 1), (75)
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) ] ) ) ] Figure 11. Scaled periods; of the orbits C, X and Z plotted as func-
Figure 9. Single-particle level diagram for the axially deformed-hakjons of the spheroidal deformation parametdor the power param-
monic oscillator model. Energy eigenvalues are plotteduastions gtar, = 3.0 (lower panel) and 5.0 (upper panel). The orbit C makes
of deformation parametef. The particle numbers of the spherical, bridge between the orbits X and Z. Solid dots indicate therdzi-
closed-shell configurations, with the spin degeneracyfadeken into g, points. Those three POs far = 5.0 at several values af are
account, are indicated in italics. On the top of the diagrgmical displayed on the top.
classical POs at prolate and oblate super and hyper-defiosheges
are shown.

f in equation[(4l7) is given by
1
Ve$9cog g + ¥ sin? g

This model is integrable in the two limitsr = 2 (axially de-
formed HO) andr = o (spheroidal cavity), and nearly inte-
grable between them: a large portion of the classical phase
space is foliated with the KAM tori. Figure L0 shows the
single-particle level diagram of the power-law potentiaidal
with the power parameter = 5.0. One finds level bunchings
around the superdeformed regifgh ~ 0.7 although they are
less clear compared with the case of HO.
Let us analyze the properties of classical POs in the
08 -06 -04 -02 0 02 04 06 08 spheroidal power-law potential to investigate the cladsic
5 quantum correspondence. In the HO limit= 2, all the classi-
cal motions are periodic at the spherical shape (). Varying
a from the HO value, only the circle and diameter POs sur-
Figure 10. Single-particle level diagram for the spheroidal powev-lavive. If the potential is deformed into spheroidal shape, th
potential model with the power parameter= 5.0. Scaled-energy circle PO family bifurcate into the meridian oval family Cdan
levels&; = (g/Uo)Y**Y/* are plotted as functions of the deformatiothe isolated equatorial circle EC. The diameter PO alsa-bifu
parametep. The particle numbers of the closed-shell configuratiorate into the degenerate equatorial diameter family X aed th
at the spherical shape are indicated in italics. isolated symmetry-axis diameter Z. Figliré 11 shows thedcal
periods of those classical POs for several values a$ func-
_ _ _ _ tions of the deformation paramet&r With increasing prolate
at the deformations with rational frequency ratios. TypR@s geformations > 0, the meridian oval orbit C is continuously
at those deformations are shown in the top of fidure 9. In thgformed and finally submerge into symmetry-axis diameter Z
HO model, these degenerate PO families can exist only at fiertain deformation.. With increasing oblate deformation
deformations with rational axis ratios. § < 0, the orbit C is deformed in affierent way and finally sub-
On the other hand, realistic nuclear mean field potential lrasrge into the equatorial diameter X at the deformatiép
sharper surface with increasing mass number. Let us cansldehis way, the oval orbit family C make a bridge between the
the deformed shell structure in the radial power-law padénttwo bifurcations from the diameter orbits X and Z with vary-
model with spheroidal deformation, where the shape functimg deformation. We call such kind of bifurcation scenari a
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Figure 12. lllustration of the bridge-orbit bifurcation scenario. Br
ken lines represei8(q), the action integral along the closed orbit starts
from g and returns to the same pouytat several deformations in the
bifurcation process. Stationary points3if) give the POs. With vary-
ing deformatiors, a bridge orbit B emerges from the orbit P and then

submerge into the orbit Q. A family of quasi-periodic orbg$ormed
around the shaded area. Full lines drawn in &) plane are the ac-
tion integrals along the POs, and dots indicate the bifiongtoints.
Reproduced with permission froi [55]. Copyright Americdry§ical ‘ : -
Society 2014. IFl
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the bridge orbit bifurcation The classical and semiclassical

analyses of the bridge orbit bifurcations are giveriin [4&hw Figure 13. Color map of the quantum Fourier amplitu@&@™(z; 6)| in
various practical examples. It should be emphasized tleat tie @, 7) plane. The power parameter= 3.0 is taken. Lines represent
two orbits connected by the bridge are widely separated fréfta scaled periods;(5) of some classical POs as functionssofSolid
each other in the phase space. If the bridge is short enougﬁqﬁopen dots indicate the bifurcation points of the menididbits and
the deformation space, the dynamical symmetry restoredeat 8auatorial orbits, respectively. EC, X and Z represent teatrial
end of the bridge will be approximately kept along the britige circle, equatorial dla_meter and symmetry-axis orbitpeetively, and
the other end, and it may bring about a family of quasi—pécioc;EC’ 2X, 2z are their second repetitions.

orbits occupying much larger phase space volume than that in

case of simple bifurcations. _ _ ~ orbit might be less important as the above domain grows due to
_ F{gure[]]Z illustrates the scenario of the bridge-orbititid he preaking of the dynamical symmetry between the two ends
tion: of the bridge, and thus, shelifect is generally reduced as

(i) There are two dferent POs, P and Q, corresponding to tHRCreases.

two stationary points of the action functi®(q), which To investigate the contribution of these orbits to the level
are widely separated from each other. density, we calculate the Fourier transforms of the scaled-
(ii) With increasing deformatiod, the orbit P undergoes bi_enderg3'/:Ie\./eI dTn5|téQBO%. F|gui§|_]13 srjl%ws the Fourier ampl
furcation and a new orbit B emerges from it. One fin g esiF(r; (.5)| plotted in the ¢, 7) plane. '€ POWer parameter
2 familv of auasi-neriodic orbits around these stationaty™ 3.0, alittle Iarge_rthan the HO valu_e, is taken as anillustra-
amily ot q P A%n. The scaled periogk(6) of the classical POs are also drawn
points. . '
in the same plane. One finds an excellent correspondence be-
(i) Action integrals of P and Q orbits crosses in th&S) tween Fourier peaks and the classical POs. The Fourier am-
plane, and the quasi-periodic family extends from P gitudes take especially large values along the bridge®#gi-
Q, implying a development of large dynamical symmetipearing at each crossings of the repetitions of the equaatori
around them. and symmetry axis orbits. One may also note that the Fourier
(iv) The orbit B approaches the orbit Q and amplitudes along the orbitX (nth repetition of X) are larger
than those along the ortiZ. This is because the orbit X forms
a one-parametric family with respect to the rotation abbat t
In comparison to the simple bifurcations which may cau§¥mmetry axis, while the orbit Z is isolated. In the superde-
local dynamical symmetries only in vicinity of the singléuyi  formed regions ~ 0.6, the bridge orbits between the second
cating PO, we could expect the bridge orbit to give much mdgpetition of equatorial orbits and the primitive symmediyis
significant éfect on the quantum shellfect due to the large Orbit play importantrole.
phase-space volume of the quasi-periodic orbit family fedm In figure[14, we examine the Fourier spectra in superde-
around the bridge orbits. From figurel11, one will note thidrmed region in detail taking the power parameatee 5.0
existence domain-g., §c) for the bridge orbit C grows as thesuitable for medium-mass nuclei. In the superdeformearggi
power parametar becomes larger. The contribution of bridgéhe equatorial diameter X undergoes period-doubling béur

(v) finally submerges into the orbit Q.

13
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Figure 15. Contour map of the shell energy¥e(N; §) plotted in the
(6,N¥3) plane. Solid (red) and dashed (blue) contour lines repre-
sent negative and positiviE, respectively. Thick lines represent the

stant-action oneg_(B0) for some short classical POseipdition
where they make dominant contributions to the trace formula

Figure 14. Color map of the quantum Fourier amplituf™(z, 6)|
for @ = 5.0 in the superdeformed region. Lines represent the sc
periodstg(6) of the classical POs as functions&fand dots indicate
the bifurcation points. In each inserted figure, the PO isvdravith
thick solid line, and the boundary of the classically acitBssegion
is indicated by dotted ellipse(s). are satisfied. Using the Thomas-Fermi approximation (56),

Fermi energ\&g is approximately given as

%

368 (79a)

bits (2,1)s and (2,1)u emerge. Here, the meridian orbithén t
(X, 2) plane are labeled by the numbers of oscillations inxhe 3
andzdirections (i, n,). The above meridian orbits change their & ~ (ﬁ) . (79b)
shapes with increasing and finally, (2,1)u submerge into the Co

symmetry-axis orbit Z ab = 0.97, and (2,1)s submerge into

Z at§ = 1.28. Namely, there are two bridge orbits betwee-H1 e
equatorial diameter and symmetry-axis orbit. One also s&g§stant-action linegL1]

another bridge orbit between the second repetition of equat Co\M3 2N+ 1+ ps/2)m
rial circle orbit 2EC and symmetry-axis orbit Z around aditt N3 = (5) T )
larger deformation. The orbit EC undergoes period-dogplin i

bifurcation até = 0.69 and a new three-dimensional (3D) Ofy, the 6, N/3) plane. Figur&Tl5 shows contour map of the shell
bit (2,2,1) emerges. 3D orbits are labeled by the numbersegfergy(;E(N;é) in the © N%/3) plane. One sees regular and
oscillations (rotationsyy,, n,, n;) in the directions of the cylin- srong oscillations iBE(N) to develop around ~ 0.6, which
drical coordinate, ¢, ). With increasing, the orbit (2,2,1) js considered as theffect of the superdeformed shell struc-
first submerge into meridian orbit (2,1)s (the stable brasichy,re  Thick curves represent the constant-action liie} ¢80
the meridian bridges) at = 0.95 before finally submerge intogome short classical POs. Shell energy valleys in the region
the orbit Z até = 1.28. One sees Fourier amplitude greatly _ g 4 . 0.6 are nicely explained by the meridian (2,1) bridge
enhanced along these bridge orbits and they should play m@gfts and those in the regiah= 0.7 ~ 0.9 are by the 3D
significant roles in emergence of superdeformed sheIIE_Irac orbit (2,2,1), just as expected from Fourier analysis. Henc
Next, let us evaluate the shell energiXN) as functions e can conclude that the bridge orbit bifurcations betwaen t
of deformation, and examine théfect of above bifurcations. second repetition of equatorial and the primitive symmetxis
Suppose the situation where a single ofbitominates the PO qrpjts are responsible for the emergence of superdeforivedid s
sum in equatior{{31), namely, structure. This is a general consequence valid for any \aflue
a from HO to cavity valued[43], any other parametrization of

2
SE(N) ~ (Tﬁ?eF)) As(er) COS(%—S‘B(Q: _ g”ﬁ)' (77) Quadrupole shapes, with and without spin-orbit couplirg] [4

tion até = 0.46 and a pair of stable and unstable meridian or- .
N ~ f gre(€)dE =
0

erefore, the shell energy will present valleys along the

=0,1,2,-- (80)

Then, the shell energy takes minima where the conditions 5.2. Octupole deformations

7 The dfect of reflection-asymmetric octupole degrees of free-
5(0)E(N) - spp = (2n+ 1, n=0,12---  (78) domis also animportantissue in nuclear structure phygfs [

14



K. ARriTa Nuclear shell structures in terms of classical periodicitsb

IS
NN
g /NN \

N

Most of the nuclei are known to have reflection-symmetric

ground states, and the violation of this fundamental symynet Yo
may provide us with valuable information on the nuclear dy- «W%’:‘”lﬂi"“\‘:}:‘i\?\\&?\\\
namics. As reviewed ir [45], several static octupole-deien i i
states have been observed, e.g., through the low-lyingirega
parity states and the parity-doublet rotational bands eotau
with E1 and E3 transitions. It is also predicted that the texti
rotational states have quite unique nature when they ate bui
on the ground state having an octupole shape with the point
group symmetry such as the tetrahedral dne [46]. Since no Y32
driving forces towards reflection-asymmetric shapes anedo

in the classical dynamics, guantum shélkets are considered
as the exclusive origin of the octupole deformations.

The reflection asymmetries are also important in descriptio
of the asymmetric fission processes of heavy elements [R9, 47
The semiclassical POT is also useful in accounting for tie fo
mation of fission path towards the reflection-asymmetripska
[48].

Hamamotoet al have investigated the octupole deforme'g , . .
shell structures by considering four kinds of pure octutele |gu;e 16. Ifqouzpotentlal surfaces for octupole deformed potentials
formations added to the spherical potential [49]. They tban () forfan = 04
remarkable shell structure develops at finite-type deforma-
tion which has the tetrahedr} symmetry. The importance ofRy(8a) is determined by the volume conservation condition.
the tetrahedral deformation is also discussed for nucGiFH) Figure[16 displays the equi-potential surfaces for foues/p
and metallic clusters [52]. Here we are going to extend tBepurely octupole-deformed potentials at the octupol@par
analysis of[[49] to a more realistic power-law potential rﬂbdetersﬂgm = 0.4. Y30 shape has a continuous axial symmetry,
and investigate the semiclassical origins of octupolexeéd while the other shapes havefdrent kinds of discrete point-
shell structures. There are several ways of parametrizing group symmetried [53,54]. Those symmetries can be utilized
tupole shapes. In the WS model, the shape of the equi-patenti quantum calculations to classify the eigenstates adugid
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surface is usually parametrized as the irreps (irreducible representations) of the symmetoyp.
S The Y3; and Y33 shapes hav€,, and Dz, symmetries, respec-
=Ry(1 Y. . . - - g
' ?O( + BamYam), (812) tively, which have up to two-dimensional irreps. THe shape
Yam = V2 - 0mo R€Y3m. (81b) has the tetrahedral §) symmetry consists of 24 fierent sym-

s . etric transformations and has three-dimensional irrSpge
In the modified oscillator model employed by [49], octupol?%e degeneracy factor of the levels is equal to the dimerafion

potential is introduced in addition to the spherical cania the irrep, one generally find levels with three-fold degenias

tential as in the Ys,-deformed states. Due to this higher degeneracies, the
mw2r? ~ Y3, deformed states are expected to h t stiiedt
_ My 22 pected to have stronger e
V(D = 2 [1 - 2'83mY3m] ’ (82) than those with the other types of octupole shapes.

In addition to the above geometrical degenerafieat,
as Hamamotcet al have found a strong bunching of levels for fi-
. nite Y3, deformation, and the shell-energy gains wit de-
r = Ro[1 — 283mYam] /2 (83) formation may surpass those with quadrupole deformations i
certain particle number regions.
B Figure[1T shows the single-particle level diagram with the
r = Ro[1 + KB3mYam] ¥/ (84) power parametar = 6.0, where the single-particle scaled en-
. 3 3 ergiesS; are plotted as functions &h,-deformation parameter
Wh'dt]. colrreiﬁpnds t([@l.l) fj:rf_ 1 aTd t(.) KEBt)hfoz_ ;iﬁre- B32. The degenerate levels at the spherical shape split with in-
spectively. This generalized formula gives the identieze creasing octupole deformation, but they eventually formaa p
mdependentokupto the first order oy, while it gives con- nounced shell structure aroupd, = 0.4. Surprisingly, the
S'Ster.abtlﬁl difetr_ent sharf)es dependetn_t btrFor Iargeﬁgm..dTo rTﬁ)article numbers corresponding to the closed-shell cordigu
obtain the oplimum shape parametrization, we consider Myl 5 ¢ equivalent to those of spherical HO model [52]. Al-
Itmllf atio dn oft:]hef_are(;i of Ithe eqw-potegtlzl Sur{ace W']Erpm I:though the obtained shelffects here are not as strong as what
0 K under ?{hlxe Vo lf(mteh surrofun ed by, ? su:ﬁ[cet. k\% have obtained in [55] using the shape parametrizati@n-int
a glyenﬂ am Wi (;/(ar_ylgg H € sur afekargqi IS oou? 'to fa olating sphere and tetrahedron, qualitative featureg)aite
minimum arounck = ©. Hence we take thk = © ML O g9~ One finds no such remarkable shell structures fer th
equation[(84), which results in an exponential functioneith other types of octupole shapes

In this case, the shape of the equi-potential surface issspd

Above parametrizations can be generalized to a formula

our Hamiltonian is expressed as In figure[I8, we compare deformed shell energies for dif-
H o p? U r N 85 ferent types of octupole shapes, taking the power parameter
=omt Ro(Bam) €XpBamYam) | (85 - 6.0. Shell energiesE(N) are plotted as functions of the
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Figure 17. Single-particle level diagram of the octupole-deformed -10 vz ....... 3
power-law potential model with the power parametet 6.0. Scaled- -15 [ Y33 ‘ ‘ ]
energy eigenvalues are plotted as function¥sfdeformation param- 1 2 3 5 6 7

4
eterBs,. Red solid and dashed lines represent the one-dimensional N
irreps Ay and A, respectively, which have no degeneracies. Green
solid lines represent the two-dimensional ireevhich are doubly de- ] ) ]
generate. Blue solid and dashed lines represent the timemsional Figure 18. Shell energies as function of particle numiérfor sev-
irrepsF, andFy, respectively, which are triply degenerate. The parff@l octupole parametegs, with the power parameter = 6.0. Red
cle numbers of the closed-shell configurations arqd= 0.3 ~ 0.4  (Solid), green (dashed), blue (thick dotted) and magehta ¢totted)

are indicated in italics. lines represenYs, Ya1, Y32 andYss deformations, respectively.

particle numbeiN for several values of deformation parame- T T T Ty ——

ters. For smalBam, shell energies show supershell structures 01 Pan=04 . yg% ]

due to the interference of two groups of the POs: ones bi- = o Y33

furcated from the circle orbit and the others from the diame- = 200} i 1

ter orbit. As the octupole deformation parameter incretise, i

fluctuations in shell energies showfférent structures and am- 0 5

plitudes for diterent types of deformation. One finds that the 400 - Bsn=0.2 |

gross shell fects are remarkably enhanced for e defor- =

mation: It shows quite regular oscillations and are most de- % 599l 1

veloped aroungs, = 0.4, as expected from the level diagram A%

shown in figurél7. 0 ot Lt -
Figure 19 shows the Fourier specfifgr)| calculated for the — 400} P00 |

octupole deformation parametefg, = 0, 0.2 and 0.4. For the T

spherical shapgsm = 0, one sees two prominent peaks at - 2007 1

5.15 and 611 corresponding to the diameter and circle POs, 0 — \ —

respectively. These peaks rapidly decreases with incrgash 2 3 4 5 6 7 8 9 10

for m # 2, while the peak at ~ 6.0 remains large foliYs T

deformation. ABs, ~ 0.4, this peak is enhanced again and one

might expect that the corresponding PO will make significalg_t 19 wum Fouri — or th |
contribution to the level density at this deformation. gure 19. Quantum Fourier specti&™ (73 am)| for the power-law
potential models of spherical and various octupole shapés. bot-

To elucidate the origin of the emergence of this remarkalyg, middle and top panels are {84, = 0.0 (spherical), 0.2 and 0.4,
shell structure associated wit3, deformation, we examine inrespectively. The results for the fouridirent types of octupole shapes
figure[20 the correspondence between the distribution of g~ Ys; are plotted with red (solid), green (dashed), blue (thick do
Fourier peaks and the scaled-periods of the classical Pths inted) and magenta (thin dotted) lines, respectively.

(B32,7) plane. Some shortest POs are displayed in figute 21
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for B3, = 0.2. Here, we name each PO with two characters:
The first character “D”, “P” or “T” stands for diameter, plana
or three-dimensional; the second one is put alphabetidally
the order we've found them. With increasifigp, the diame-
ter orbit bifurcates into four dierent orbits: the diameter DA
along the three-fold rotation axis, the diameter DB alorg th
four-fold rotatory reflection axis, librational orbits PA& PB

in the mirror-symmetry plane. From the Fourier analysisijrth
contributions to the level density are monotonically restiic
with increasingBs,. The circle orbit bifurcates into three or-
bits: the isosceles triangular-type orbit PC in the mirrange,
the equilateral triangular-type orbit TA having threeefobta-
tional symmetry, and the square-type orbit TB having fald-
rotatory reflection symmetry. The orbit PC undergoes bdtrc
tion atB3, = 0.035 from which a 3D orbit TC emerges. The
orbits TA and TC undergo so-called touch-and-go bifurcatio
atBs, = 0.11. As a common property in these three orbits, the
monodromy matrix has an eigenvalue which is kept close to
unity up to large values g#s,. As we discussed in sectifn .3
a local family of quasi-periodic orbit is formed around sach

6.5

0=6.0 orbit and it makes coherent contribution to the trace irgkgr
45 ‘ ‘ j ‘ This explains the reason why the contribution of these srbit
0 0.1 0.2 0.3 0.4 0.5 remain large with increasings,. They undergo bifurcations

Bso almost simultaneously arourid, ~ 0.3 and yields new POs,
some of which make bridges between them. As we see in fig-
! ‘ ‘ _ IF| ures[ 19 and 20, significant enhancement of the Fourier peak
0 100 200 500 700 1000 corresponding to those bifurcations is found. Some details
these bifurcations are described in the appendix. Sincgethe
orbits have almost the same values of scaled perigdthey
Figure 20. Color map of the quantum Fourier amplitudé™(r; 832)]  bring about a quite regular shell structure. The approxmat
for @ = 6.0 plotted in the £3, 7) plane. Curves represent scaled pexoincidence of their actions and the almost simultaneocsrec
riods of the classical POs plotted as functions of octupal@meter rence of bifurcations generating the bridge-orbit netvsarsin-
Bz2, and dots indicate their bifurcation points. necting them strongly suggest the underlying dynamical-sym
metry. This symmetry restoration, caused almost simultane
ously around many ¢tierent POs and also mapped onto their
replicas generated by the 24 symmetry transformatiorig,; of
is considered to develop into in somewhat global one. Recall
ing the magic numbers @&, ~ 0.4 shown in figuré 17 which
are equivalent to those of spherical HO, one may surmise that
a restoration of the dynamical symmetry like SU(3) takesela
for the above specific combination of surfac&aseness and
tetrahedral-type octupole deformation. It raises an @stng
question on the relation between the symmetry restoratidn a
the tetrahedral deformation, and further studies are sacgs
to clarify it.

6. Nuclear prolate-shape dominance

Predominance of prolate shapes in nuclear ground-stabe-def
mation (which is referred to gsolate dominancéor short) is a
long-standing problem of nuclear structure phys€ic¢s [1]ly@n
Figure 21. Some shortest classical periodic orbits ¥ deformed few oblate ground states are found experimentally in medgum
state at the octupole paramefizs = 0.2 with the power parameterheavy nuclei. The microscopic mean-field theories alsostipp
« = 6.0. Their projections onto thex(y), (y,2) and & x) planes are this feature([56]. In this section, we try to explain this plar
also shown, with the boundaries of the classically acckssiigion.  property of nuclei from the semiclassical point of view wéth
realistic nuclear mean field model taking account of spimitor
coupling.
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6.1. Some earlier studies and remaining problems and the constant action lines behave as

Various approaches have been attempted aiming at a simple in  N(c p?F’) o #232 (92)
terpretation of the prolate dominance in nuclear grouatiest (L4772
deformations. It is generally recognized that the surfac@p which have negative slopes in the prolate regjon1.
erty of the mean-field potential has relevance to the defdrme The semiclassical analysis of spheroidal cavity has been
shell structures responsible for the prolate dominancee Thoroughly worked out by Frisk [57] using the Berry-Tabor
surface of the mean field potential becomes sharper with fface formula. The quantum mechanical shell energies are su
creasing mass number. The transition of the deformed shelsfully reproduced by the semiclassical formula as the su
structure from light to heavy nuclei are studied by Strdjns over PO contributions. He has remarked that the cufvés (92) i
et al [11] using the WS potential model with spheroidal dehe oblate region < 1 are rather flat, and correspondingly, the
formation. The deformation is parametrized by the axirathell energy valleys running along them are also flat. Hemze,
n = R/R. whereR; andR, (= R = R)) are semiaxes of thesignificant shell-energy gains are expected with oblaterdef
nuclear surface. They calculated the shell enéfgfN; ) as mations as nucleon numbers deviated from the sphericalmagi
functions of deformation and the particle numbed, and in- numbers. This explains the mechanism of the prolate domi-
vestigated its ridge-valley structures in thg ) plane. For nance very nicely.
the prolate deformatiom(> 1), the shell energy valleys have Hamamoto and Mottelson [58] have discussed the origin of
positive slopes in smaN region while they turn into negativethe prolate dominance from aftéirent point of view. They
slopes in largeN region. Such transition has been successfutympared the behaviors of the single-particle levels agaie-
explained using the POT. For smal| the surface diuseness formation in the cases of the HO and cavity (infinite well) po-
a is comparable with the nuclear radi& and the WS po- tential models. In axially deformed HO potential, the degren
tential can be approximated by the anisotropic HO potentiak levels at the spherical shape fan out freely with iningas
(74). Imposing the volume conservation conditiofw, = w3, deformation on both prolate and oblate sides. This is becaus
the oscillator frequencies are given as functions of axi® rathe shell oscillator number is a good quantum number in the
n=w,/w;, by HO model and interactions between levels frofietent major

. = w3 (86a) shells are absent. On the other hand, there are interatt®ns

+ o tween inter-shell levels in the cavity potential, and théget
wz = won 7>, (86b) the way of level fannings. Their behavior on the prolate and

In the normal deformation region, the two-parametric smlrt.Oblate sides show obvious asymmetry: the fannings of levels

equatorial orbit family makes the dominant contributiorthe ![n :Ee Oflftf S'?de arf' (;T?nrid?rabr% T\;Ilpt[irtlessr(]a(:‘ Ir\1/ comr;[]xanrsod
periodic-orbit sum. Its action integral is expressed as 0 e profate side. Hamamoto & otielson have compare

the dfects of the interactions between inter-shell levels on the
2rE  27E 87) prolate and oblate sides, and clarified the reason why tled lev
w, () w3 fannings show the above asymmetric behaviors on the prolate
Then, the constant-action linés180) behave as a_nd ob_Iate sides. The suppression of Igvel fannings in tlaeb
side might reduce the chance to acquire a reasonable shell en
N (e EE) o« n (88) ergy gain by oblate deformation. They considered the above
. ) asymmetry in level splittings as the origin of the prolatenilo
and they have positive slopes in thg) plane. On the other |\ o
hand, for largeN, the surface diuseness is much smaller gy there remain some questions to be answered. Firstly,
than the nuclear radius and the WS potential looks more ligg, the semiclassical point of view, the deformations are e
a squa_reTV\{eII potenual-, and it m!ght be further approx,matsentially determined by the shell energy in which only short
by the |nf|n|te—wgll (cavllty) potential. In the Sph?fOldMy, POs make contribution, and they are related to the grosé shel
shortest_ e_quatorlal orb_lts form a one-parametrlc famlllyllav structures. However, the way of level splittings might be re
the meridian-plane orbits form a two-parametric family d0i€ 410 1o rather fine structures of levels. One should conside
the specific symmetry of the system. Therefore, the meriflis asnect more carefully. Secondly, as suggested by @aiim
ian orbit families (triangular, quadrangular, ...) makeneant | 59760, prolate dominance shows strong correlation vieh t
gontrlbutlp_ns to the PO sum. Imposmg the volur_ne Consen@rangth of spin-orbit coupling, as well as the surfadéude-
tion condltlonRiRZ = R(s) the semi-axeR, of the equi-potential g of the potential. Thefect of spin-orbit coupling has not
surface are given by been studied in the above works. The argumerit of [58] applies

Sp(E;m) =

R(=R=R) = Ry /3, (89a) 0 the case of realistic spin-orbit coupling where one firs t
o2/3 b same kind of prolate-oblate asymmetry in the level fannings
Re = Ron™", (89b) but it cannot explain thescillationin the prolate dominance
and the length 5 of the meridian orbit, say, rhomboidal orbit igVith varying spin-orbit strength which Tajin al have found.
estimated as Let us consider these issues in the following part.
Ly = 4\RE + R = 4Ry °\[1+ 12 (90) 6.2. Gross shell structures in the power-law potential niede
Then the action integral is expressed as First, let us generalize the above analyses to a model having
more realistic radial dependence with finitéfdseness. Spin-
Sp(p) = pLg o« pRoy 3 {1+ 12 (91) orbit coupling is set aside for the moment. [n][24], we have

18



K. ARriTa Nuclear shell structures in terms of classical periodicitsb

6.5

55¢

0.1 -0.05 0 0.05 0.1

T
e

45+

4t
w
a=5.0

3.5 : ‘

-06 -04 0.2 0 0.2 0.4 0.6
10 L L 6
-0.1 -0.05 0 0.05 0.1

4 6.5

Figure 22. Splittings of the high} single-particle levels with

\‘ =
spheroidal deformation in power-law potential model foe frower /
parameterr = 5.0 and 11. Solid and dashed lines representathd 55¢ 1
1hlevels, respectively. Reproduced with permission fronj.[2bpy-
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made analysis of the spherical and deformed shell structure 4.5 ¢
for the power-law potentid¥ « r* with varying the power pa-
rameterr. Fora = 2, corresponding to the HO potential, level 4
splitting occur in the same uniform way on both prolate and \
oblate sides. The shell energy valleys in tha\) plain have 35 ) ‘ ‘ ‘
almost the same upward-right slopes on both sides. With in- 06 -04 02 0 02 04 06
creasingy, the suppression of level fannings on the oblate side o
manifests. Figure22 shows the level fannings of some liigh-
levels. In the upper panel for the power parametet 5.0, )

Figure 23. Contour map of the shell energfe(N; 6) in the @, NY/%)

corresponding to medium-mass nuclei, one clearly sees a 18

markable suppression of level fannings on the oblate side.piane.for the spheroidal power-law potential model withepit-orbit
the | | lculation far= 1.1 (alth hiti coupling. Upper and lower panels are the results for the pparame-
e lower panel, a calculation fer= 1.1 (althoughitis an un- tere = 5.0 and 11, respectively. Solid (red) and dashed (blue) contour

realistic \{alue for any nu?leus) is made, in Whlch_one fmd%iﬁes are drawn for negative and positie, respectively. Thick lines
suppression of level fannings on the prolate side, just A9 O0Prepresent the constant-action orieg (80) of the bridge Grbit
site to the case af > 2.

Figure 28 shows the contour maps of the shell energy o )
SE(N;6) plotted as a function of deformatiahand particle To examine if the prolgte shapes are really favored in energy
numberN for the above two values of the power parameter due to the above behaviors of the d.eformed s_h.ellle.nerg|es, we
Thick curves represent the constant action curies (80)eof flculate the ground-state deformatiops by minimizing the
POs which make dominant contribution to the trace formdigformation energy
(31). As we see in figure_11, the oval shape meridian-plane
orbit family C exists as the bridge orbit between equatatial Edef(N; 6) = E(N;6) — E(N; 6 = 0) (93)
ameter orbit X and symmetry-axis diameter orbit Z. This ped
orbit makes significant contribution to the level densityeas with respect to the deformation paramei@n each side of the
pected from the Fourier spectra in figliré 13. In the upperlpanblate ¢ < 0) and prolate{ > 0) shape, and compare the ener-
of figure[23 fora = 5.0, one finds that the constant-action linegies at the prolate and oblate minima. In evaluating the ¢ota
(B0) for the orbit C nicely explain the shell energy vallegs iergy E(N), sum of the single-particle energiks, = Zi’\ile. is
the normal deformation region. The slopes of the curves amaployed in[[58], but we shall make a little improvemeént [24]
steep in the prolate side while they are rather flat in thetebl&Vriting the mean-field Hamiltonian ds = f+ 0 with f and
side. This behavior of the shell energy valleys formed alofigbeing the kinetic energy and the mean-field potential, re-
the bridge orbit C can be considered as the semiclassical spiectively, average part of the total energy may be given by
gin of the prolate dominance. Thus, one sees that the argunten: (f) + %(0) if the mean field is a self-consistent one from
of [57] for the spheroidal cavity model can be generalized @ocertain two-body interaction. Usirigs, = (f) + (0) and the
more realistic potentials. Virial theorem({) = %(r-VU) = 5(0) for the power-law model,
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To summarize above results, the prolate dominance is

° strongly correlated with the behavior of shell energy vwalle
’g 2r and its origin is clearly understood as the contributionradrs
T4t | classical POs. Correlation between the level fannings hed t
u a=5.0 shape dominance is missing in the case ef 1.1. This might
6r ! ! ! 3 be because the level fannings are related to rather finer shel
0 ‘ ‘ ‘ ‘ structure associated with the contribution of longer POd an
2oL i their roles in the shell energids {31) are less important.
Sl |
uy 6.3. Hfect of spin-orbit coupling
-6
0 { Next, let us consider thefect of spin-orbit coupling. By means
~ of the systematic Strutinsky calculations over the whole nu
& 4 clear chart, Tajimaet al examined the occurrence of the pro-
E late dominance by varying the surfacdtfdseness and spin-
a=1.1 p(;g:g:g+ orbit strength of the mean-field potential [59] 60] in order t
-2 ' : ' : . ' single out the parameter which is playing the essential. role
3 3.5 4 N3 4.5 5 5.5 They have calculated the ground state deformations of all th

observed combinations oN(Z) in nuclear chart to extract the
ratio of the numbers of prolate and oblate ground states, and
Figure 24. Comparison of the deformation energy minirfial (93) on tttave examined its dependence on the strengti pbtential
prolate 6min > 0) and the oblates,, < 0) sides, plotted as functions(surface difuseness) and potential (spin-orbit strength) in the
of the cubic root of the particle numbé&t. Bottom, middle and top Nilsson (WS) model. As the results, they found a strong in-
panels show the results for the power parameter1.1, 2.0 and 5.0, terference between théfects of surface diuseness and spin-

respectively. orbit strength on the prolatblate ratio. Particularly, the pro-
late dominance disappears when the spin-orbit paramater is
one has duced to the half of its realistic value. Considering this re

sult, the analysis based on the model without taking account

() = 2 _Sp, (94a) Of spin-orbit coupling is giving us only partial understémgs
a+2 for the prolate-shape dominance of real nuclei. For a deeper
(= LE_SP, (94b) understanding of this feature, we make a semiclassicaysisal
@+2 of the prolate-oblate asymmetry taking the spin-orbit dimgp
E= a_JrlE_sp, (94c) into account.
@+2 Figure[25 shows the level diagram for the power parameter
and therefore a = 5.0 and spin-orbit parameter= 0.06, which are consid-
1o ered as realistic for medium-mass nuclei. The sphericalenag
E(N) = Z n 2Esp(N) + 6E(N). (95) numbers[(70) are correctly reproduced with those valueseof t

parameters. The behaviors of the level splittings withéasr
Figure[24 compares the deformation energy minEga(dmin) NG prolate and oblate sides look similar to the case without
on the prolate and oblate sides for several values of the po@Rin-orbit coupling: one sees the same suppression offavel
parameter. dmin is the deformation parameter where the d@ings on the oblate side as we see in the case without spih-orb
formation energy[{93) takes minimum on each of the prol@eupling (see the upper panel of figliré 22). Hence it seents tha
and oblate side. Far = 2.0 (HO), systems with single-particlethe argument in [58] also applies to the case of finite spbitor
orbits filled up to the lower half of the spherical shell pref&oupling.

prolate shapes while those up to the upper half prefer oblatélowever, behavior of the deformed shell energies show quite
shapes, and the numbers of systems that have the lowest etegng dependence on the spin-orbit parameter. Figure 26
gies at prolate and oblate shapes are comparablex F05.0 shows the contour maps of the shell energiegN; 6) as func-
where the potential surface is considerably sharper than Hions of the deformation parameteand the particle numbé,
prolate minima turn systematically lower than oblate ones afor the power parameter = 5.0. We compare the results for
they clearly show the prolate dominance. kot 1.1, where the case of realistic value of the spin-orbit parameter0.06

one sees the suppression of level fannings on the prolage sidd for the reduced value = 0.03 where Tajimeet al found
which may imply oblate-shape dominance, no essentffdrdi disappearance of the prolate dominance. One may notice the
ence between prolate and oblate minima are found in the-defdivious diference in the valley structures in the deformed shell
mation energies. Looking at the shell energy contour plot fenergies in those two maps, especially on the oblate side. Fo
a = 1.1 shown in the lower panel of figute]23, one sees that= 0.06 the valley lines on the oblate side are approximately
the constant-action lines for the orbit C have considerkitye flat, while forx = 0.03, one finds valleys with considerably
slopes on the prolate side as well as on the oblate side. THagge slopes.

constant-action lines nicely explain the behavior of thellsh  Figure[2Y compares the prolate and oblate deformation-
energy valleys, for which no remarkable prolate-oblatera@syenergy minimeEqes(N; 5min) for different values of with fixed
metry is expected. value of the power parameter= 5.0. The bottom panel for
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Figure 25. Single-particle level diagram for the power-law potential 55} +
model with the power parameter = 5.0 and spin-orbit parameter = ,"q,\\)
k = 0.06. Scaled-energy eigenvalugs = (e;/Uo)Y**¥/2 are plotted g 5l = |
as functions of spheroidal deformation parameterSolid and bro- < 5
ken lines represent positive and negative parity levelspeetively. o
The particle numbers of the closed-shell configurationsratieated 4.5 N
in italics. o
4+ k=003 _.-°
k = 0 is equivalent to the top panel of figurel 24. With increas-
ing «, the diferences between prolate and oblate energy minima 35 ‘ ‘ ‘ S
are reduced at = 0.03, the half of the realistic value, man- 06 -04 -02 0 02 04 06
ifesting the disappearance of prolate-shape dominance:- Ho o

ever, the dferences grow again for the realistic vakie 0.06
and the prolate minima become considerably lower than ﬁg

oblate ones, implying th&eylval of the prolate-shape dorT“_plane. Solid (red) and dotted (blue) contour lines repregennega-

nance. All these results nl_cel_y correspond to the t_)e_ha\florti% and positiveSE, respectively. Thick lines represent the constant-

shell energy valleys found in figutel26. Therefore, it is @5S€,¢tion ones{80) for some important short POs.

tial to describe the above behavior of the shell energy yslle

with varying spin-orbit strength for understanding thegariof

prolate dominance observed in real nuclei. deformations, becomes smaller and the orbit (2,1)S shrinks to
To understand the above changes in deformed shell sta@mall deformation domain (see appendix for some detailed

tures from semiclassical view point, we investigated tfiea¢ analyses on those bifurcations). On the other hand, the orbi

of spin-orbit coupling on the properties of the classicalsPd2,1)L survives for any larger deformation. With increagin

Figure[28 illustrates what kinds of changes are induceden thundergoes bifurcation and new triangular-type orbitd 8

shortest POs when the spin-orbit coupling is switched om. F&d (3,1)Z (which are symmetric with respect to thandz

k = 0, one has two diameter orbits X and Z, and the bridg&es, respectively) emerge from it at around 0.05 ~ 0.06,

orbits C connecting them at= +5. as one sees in figufell1depending on the deformati@n Therefore, the orbits (2,1)L

With increasing spin-orbit strengih the periods of the orbitsand (3,1)’'s have almost the same values of scaled periods at

C*, whose orbital angular momenta parallel and anti-paralieF 0.06. Those orbits should make coherent contribution to

to the spin, separate from each other into L and S (denotthg level density, and are expected to give significafeots

long and short, respectively). The changes in diametersdX & the deformed shell structures for wide range of deforonati

Z show peculiar dependence on the deformation. The left padue to the bifurcation enhancemeriteet discussed in sec-

(6 < —6¢) of X and the right partd > éc) of Z changes into tion[2.2.

oval orbit with orbital angular momenta parallel to the spid =~ Thanks to the scaling relation for those frozen-spin orbits

are continuously connected with L ab., while the right part we can make use of the Fourier analysis in investigating how

(6 > —6c) of X and the left partd < ;) of Z changes into thosetheir contributions change with varying Figure[29 shows the

having the opposite directions of orbital angular momenth amoduli of Fourier transformf-(t; )| of the quantum scaled-

cause tangent bifurcations with S&t +6.. One should also energy level densities, calculated foe 0.03 and 006. Thick

note that, with increasing spin-orbit paramaetghe bifurcation lines show the scaled periods of some shortest POs which are

e
gure 26. Contour map of the shell energ§e(N; ) in the @, N/3)
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respectively. -
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Figure 28. lllustration of the changes in the classical POs in the

spheroidal power-law potential model induced by the spbit@wou- _. . . Y
pling. The scaled periodsof some shortest POs are shown as fun('::-'%lrj]re 29. C|O|0r m?ﬁ of the quantum fou_rle_r a;gphtuéﬁ:ﬂh (r 6?'
tions of the deformation paramei@rArrows in the left panel indicate in the ¢,7) plane. € Power parameteras = 2.9 and the spin-

the directions of the changesrwith increasing spin-orbit strengih orbit pa.ramete.r i& = 0.06 and 03 for the upper and lower papels,
respectively. Lines represent the scaled periggs) of the classical

POs, and the dots indicate the bifurcation points.

displayed in figuré_30. One finds that the Fourier amplitudes
have peaks exactly along these meridian frozen-spin PGs. Th
cross sections along the vertical line at several defoonatare Side. As one sees in the upper panel of figuiie 26, the constant-
shown in figuré 31l in order to see the relative strengths of f@tion lines of (2,1)k(3,1) nicely explain the flat valleys in
Fourier amplitudes. shell energy on the oblate side. For= 0.03, the half of the

On the prolate side, one finds considerable Fourier peak&!iStic value, the shell energy valleys are explainechisyor-
the shortest orbit (2,1)X, and it is expected to make major c@it (2,1)X on both prolate and oblate sides. Those valleyg ma
tribution to the shell energy. On the oblate side, the skoce Py roles in establishing good oblate and prolate minimd, a
bit is (2,1)Z, but its contribution is smaller than that of{px. ©xplain the reason for the disappearance of prolate dorénan
This is because (2,1)Z occupies smaller phase-space vol@n#is value ofc. In this way, the change in prolate-oblate
since it is isolated in the — 0 limit. Thus the second shortesfSYmmetry with varying spin-orbit coupling can be cleanty u
(2,1)X play major role also in the oblate side. However, t¢rstood from the properties of the classical POs.
orbit (2,1)X reaches only up t6 ~ —0.2 for x = 0.06, and  In summary, we consider the behavior of the shell energy val-
it cannot contribute much to the shell structures on thetebléys in the §, N) plane which provides us the key to understand
side. At this realistic value of, the orbit (2,1)L causes a bifur-the origin of prolate-shape dominance in nuclear grouatest
cation from which triangular-type orbits (3,1) emerge as dideformations. These shell energy valleys have large slopes
cussed above. With this bifurcation enhancemdigot, their the prolate side while they are approximately flat in the tbla
contribution to the shell energy become dominant on theteblaide, and one has less possibility to acquire shell enermpgga
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7. Conclusions and per spectives

Applying the semiclassical POT to the radial power-law pete
tial models, emergence of a rich variety of nuclear shellcstr
tures are investigated from the view point of quantum-atass
correspondence. In our semiclassical analyses, we make ful
use of the scaling properties of the power-law potential @od
and the Fourier transformation techniques, which are diso e
fective under the existence of spin-orbit coupling. We have
emphasized the significant roles of the PO bifurcationster t
remarkable enhancement of sheflleets with varying the pa-
rameters like surface fluseness (controlled by the power pa-
rametera), deformations and spin-orbit coupling strength. At
Figure 30. Some shortest meridian orbits for the power paramef&}€ bifurcation points, a family of quasi-periodic orbifspears

@ = 5.0 and the spin-orbit parameter= 0.06 with several values of around the bifurcating PO, where an approximate dynamical
the deformation parametér The orbit (2,1)S causes pair annihilationsymmetry is locally restored. In the bridge-orbit bifuioat

with (2,1)X até = —0.23, and with (2,1)Z a# = 0.23. the above local family occupies a large volume of the phase-
space extending along the trail of the bridge which connects
two widely separated POs, and brings about a larger dynamica
symmetry compared to those for simple bifurcations. We have
found such peculiar bridge-orbit bifurcations play pilatdes

in exotic nuclear deformations such as superdeformatinds a

T

| a=5.0,k=0.06

_ 2,1)X +(3,1) tetrahedral deformations. It is also interesting to nos,tthe

T 0T 17 SU(3) symmetry of the spherical HO Hamiltonian, once bro-
20 f _ 1t ken for sharp potential surface with power parameter 2,
o el Moo is partially compensated by the spin-orbit coupling as we se

in sectior4, and also by the octupole deformatiorYgftype

as we see in sectidn $.2. Semiclassical analyses based on the
realistic model for nuclear mean field with spin-orbit cangl

taken into account provide us a deep understanding of the ori
gin of the prolate-shape dominance, which may show up under

| 0=5.0,k=0.03
Tl @LX 1L
S0 e

0 Pl e 5o YIS "
oo | a=50%=000 5202 —— ] [as0k=000 02 — ] @ delicate balance between thiéeet from the surface ffuse-
— -03 —--- c 8-3 . ness and that from the spin-orbit coupling.
E40t : 1 4o 1
= 20| i Analyses of other types of nuclear deformations using the
o J power-law potential model with and without spin-orbit cou-
2 3 8 9 1C pling are also intended. For instance, properties of sirelts

ture under reflection-asymmetric shapes by considering com
binations of dfferent types of the octupole deformations, also

Figure 3. Comparison of the quantum Fourier spedf&™(z; 5)| with the qugdrupole terms, shoulq be interesting, whichhinig
plotted for several values of the deformation paraméten the oblate P€ responsible for the systematics of ground-state deforma
(left panels) and prolate (right panels) sides. Bottom,dieicind top tions with reflection asymmetry, and also for the fragmengsna
panels are the results for the spin-orbit parameter0.00, 0.03 and asymmetries in nuclear fissions.

0.06, respectively, with the power paramatet 5.0. . . .
In this paper, we have used the semiclassical trace for-

mula to extract information on contributing classical P€sf

the quantum-mechanically calculated single-particlespdy

means of the Fourier transformation technique and the meth-
with oblate deformations. In practice, one sees nice cpoms ods of constant-action lines, but have not directly estmat
dence between the properties of the valley slopes and thettle-semiclassical level densities and shell energies irbthe
formed shell-energy gains. The features of the level fagsirfurcation region. It is a challenging subject to developlyina
should also have somdfects but seems to bear less importaahd numerical methods to evaluate semiclassical traceularm
roles in the gross shellffects. The way in which POs convalid under existence of continuous symmetries, bifuoce]
tribute to the shell energy is quite sensitive to the spinitorand coupling with spin degree of freedom. This becomes ac-
parameter. Although the shell energy valleys #o& 0O look tually important when we apply the semiclassical theorges t
similar to the case of realistic value= 0.06, the semiclassi- more general Hamiltonians without scaling, which would be
cal mechanisms for the enhancement of the PO contributioeguired, for instance, in descriptions of weekly bound nu-
are quite dfferent in both cases. Thus, above semiclassical @kei. Concerning the shell structures of such unstableanucl
terpretation gives us a deeper understanding on the orfgirgoenching of the spherical shell gaps might be one of the-inte
prolate dominance for realistic nuclear systems. esting subjects [61].
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Appendix: Analyses of periodic orbit bifurcations with -0.05
monodromy matrices

0.1 1 1 1 i
0.288 0.29 0.292 0.294 0.296 0.298 0.3

Classical PO changes their shapes continuously with varyin = g g0
potential parameter. The monodromy matfix](37) varies ac-
cordingly and one of the eigenvalues may coincides withyunit ~ 0-002f

which causes a bifurcation the orbit. Due to the symplectic 0 PC
property of the Hamiltonian dynamics, the monodromy matrix
i ic: -0.002 TA .
M is real and symplectic: oo T
0 I _0'004 1 1 1 1 1 1
MTIM = J, ‘]z(l _O) (A1) 0 002 004 006 008 01 012 014

Hence, the eigenvalues &l always appear in a conjugate-

N O N A

.

U
o | ¢
=
—
>
=

1

reciprocal pair either of - AN PC1

(i) e*V with realv (elliptic) - m .

(i) e*V with realu (hyperbolic) 4 L PC2N, .

. S . 1 2 . 4 .
(i) —e* with realu (hyperbolic with reflection) 0 0 0 Bar 03 0 03
or in a quartet
(iv) €= with realu andv (loxodromic). Figure 32. Stability factorst; (or Ret; for loxodromic stability) of

) ) ) ) some shortest POs as functions of the octupole deformatiampeter
The bifurcation takes place &t= 0 in the case (i) or al = 0 g,, Dots indicate the bifurcation points.

in the case (ii). The POs are stable if the monodromy matrix

has only elliptic eigenvalues, and otherwise unstable lsea

the deviations of the initial condition will grow exponeaity While they take complex valuds,t, = t; for the loxodromic
as time evolves. case (iv).

For the 2D systems, or the 3D systems with axial symme-As the first example, we shall discuss some details on the
try, generic PO has a (2 2) (symmetry reduced) monodromypifurcations found in the power-law potential witf, defor-
matrix and its eigenvalues appear in a pair either of (D__(iimation which we discussed in sectionl5.2. The planar trian-
The stability of a PO is uniquely determined by the value ef tigular orbit PC, and 3D triangular orbits TA and TC (see fig-

stability factort = TrM — 2 = —det(M - |) as ure[21) play the most important roles in deformed shell struc
_ ) ture. Figurd 3P displays the valuestpfor some shortest POs
(i) t=2cosv—2=-4sirf(v/2), -4<t<0 as functions of the deformation paramefgs. As one sees
(i) t=2coshu—2=4sinf(u/2)>0 in the bottom panel, one of thgs for the above three domi-
nant POs are very close to zero in<0833; < 0.3, and those
(iii) t=-2coshu—2=—-4cosK(u/2) < -4 POs undergo bifurcations almost simultaneouslgsat~ 0.3,

. . , where deformed shelffect is extremely enhanced. In the mid-
For 3D systems without continuous symmetry, generic PO I’?ﬂ‘é panel, expanded plots of those POs in the smaltegion

(4 4) monodromy matrz, and '}15 four eigenvalue_s_can be 9¢d¥e shown. The planar orbit PC undergoes pitchfork bifurca-
erally expressed asi{, 4;*, 42, 4;~). Then the stability of the tion atBs = 0.035 and the 3D orbit TC emerges. TC and

PO is determined by the two stability factaré = 1, 2) defined TA undergo touch-and-go bifurcation A, = 0.105. In the

by top panel, expanded plots around the bifurcation defoomati
t= A+ /li—l 2= (4 - 1)(/1;1 ~1). (A2) ,332_~ 0.29 are shown. The orbij[ PC undergoes pitc_hfork bifur-
cation ap3s» = 0.289 and 3D orbit TF emerges. A pair of 3D or-
With the relations bits TD and TE emerge via tangent bifurcatiorBgt = 0.292,
and TE causes a pair annihilation with TC just after its emer-
TI(M=-1) =t +t;, detM -1) = tstp, (A3) gence. The orbits TD and TA undergo touch-and-go bifurcatio

atBz; = 0.298. As described here, the above dominant POs are
connected with each other by the complicated network ofiguas
periodic families of orbits via bifurcations. This featlseems
2~ tTr(M — 1) + detM — 1) = 0. (Ad) peculiar to the tetrahedral-type deformatians [55].
For the second example, let us discuss the bifurcationsof th
If the monodromy matrix has two pairs of eigenvalues eitherarbits (2,1) in spheroidal power-law potential with spirid
(i)—(iii) above, botht; andt; take the real values as in 2D casespupling which we discussed in sectidn 6. We limit oursetees

the above stability factors are simply obtained as the tvadsro
of the quadratic equation
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