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ABSTRACT 

We developed a novel method for measuring the dynamic surface tension of liquids 

using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the 

shape of the deformed droplet was fitted by numerical analysis, taking into account the 

force balance at the drop surface and the momentum equation. The surface tension was 

determined by optimizing four parameters: the surface tension, the droplet’s height, the 

radius of the droplet-substrate contact area, and the horizontal symmetrical position of 

the droplet. The accuracy and repeatability of the proposed method were confirmed using 

drops of distilled water as well as viscous aqueous glycerol solutions. The vibration 

frequency had no influence on surface tension in the case of pure liquids. However, for 

water-soluble surfactant solutions, the dynamic surface tension gradually increased with 

vibration frequency, which was particularly notable for low surfactant concentrations 

slightly below the critical micelle concentration. This frequency dependence resulted 

from the competition of two mechanisms at the drop surface: local surface deformation 

and surfactant transport towards the newly generated surface. 
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INTRODUCTION 

 Surface tension is one of the most important physical properties of liquids affecting the 

performance of liquid-based products1, such as coating and spraying agents2,3, pesticides4, 

inks, and cosmetics. For many liquid-based products, surfactants are dispersed in the 

solvent to facilitate spreading of the liquid on the target surface and to keep the surface 

wet for an extended period. 

 In the presence of a surfactant, the surface tension of a liquid will be influenced by the 

dynamic process of wetting. Bleys et al.5 note that when the area of the liquid surface 

changes rapidly, the thermodynamic equilibrium of the surfactants between the surface 

and bulk solution is broken. Then, surfactants diffuse from the bulk to the surface and 

adsorb on the surface. In the short time span from the generation of a new surface to the 

surfactants’ attaining thermodynamic equilibrium, the surface tension varies as a function 

of time, owing to the depletion of the surfactants. This apparent surface tension is referred 

to as dynamic surface tension6,7.  

 In processes that involve a rapid increase in the liquid surface area, interface phenomena 

are affected by the dynamic surface tension. For example, the droplet impact on a solid 

surface is accompanied by spreading and recoiling8,9. Gatne et al.10 found that the 

maximum spreading diameter and strength of the recoiling process are governed by the 

dynamic surface tension variation, rather than the equilibrium surface tension. Similarly, 

the generation of bubbles in a surfactant solution is accompanied by the rapid emergence 



of a new interface. The ease of bubble nucleation and the bubble growth rate are affected 

by the dynamic surface tension, which has a crucial influence on the heat transfer 

efficiency during the boiling of liquids11,12. 

 There are several methods for measuring the dynamic surface tension, e.g., the 

maximum bubble pressure method13,14, the pendant-drop method15–18, the dynamic 

oscillation method19, and the jet reaction method20. In these methods, the interfacial area 

is rapidly increased at a selected rate to induce a non-uniform distribution of surfactants 

at the interface. However, these methods have their shortcomings. In the case of the 

maximum bubble pressure technique, the setup can be relatively expensive, because the 

pressure sensor in the bubbling system needs to have high sensitivity and high time 

resolution. The pendant-drop method uses a capillary and special care is required to keep 

it clean throughout the measurements, especially in the case of viscous liquids. A 

correction factor is required in order to calculate the maximum volume at the critical 

condition just dropping off from bottom of the capillary, which is difficult to determine 

for highly viscous liquids. The characteristic frequency in these methods is limited to 50 

Hz owing to liquid or bubble coalescence. In addition, they typically require at least a few 

hundred milliliters. They are not suitable for measuring precious samples such as 

synthesized derivatives. Therefore, it is desirable to develop a measurement method that 

uses only a small amount of sample, that is easy to set up, and that can be applied to 

various types of liquids. 
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 In this study, we observed droplets placed on a flat horizontal plate under a sinusoidal 

vibration in the vertical direction. The deformed droplet was monitored using a high-

speed camera, and its shape was predicted by a statistical model under certain 

assumptions. The dynamic surface tension was determined by optimizing the parameters 

used in the analysis until the calculated droplet shape agreed well with the experimentally 

observed shape. This method involves a simple procedure and a simple setup. It requires 

only a small amount of sample solution, i.e., 1 or 2 L for a single measurement. The 

effect of inertial forces can be neglected owing to the small size of the droplet. 

Furthermore, this method can be applied to liquids with high viscosity. Using aqueous 

surfactant droplets, we demonstrated how the dynamic surface tension depends on such 

parameters as vibration frequency, surfactant concentration, and the diffusivity of the 

surfactants.  

 

EXPERIMENTAL AND THEORETICAL METHODS 

Materials 

Solutions of three types of water-soluble surfactants in distilled water were used, viz., 

sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), and 

Polyethylene Glycol-p-isooctylphenyl Ether (Triton X-100), all purchased from Wako 

Industries (Japan). These surfactants have different molecular weights. Their relevant 

physical properties at room temperature (25°C) are listed in Table 1. Each surfactant was 



placed in distilled water, stirred for 24 h, and then left for an additional 24 h. Molar 

concentrations of these surfactants are in order of 10-3 mol/L, which are very dilute 

solutions. Therefore, the physical properties such as density, viscosity and elasticity are 

almost the same as those of pure water except surface tension. 

 

Experimental Procedure and Apparatus 

 Figure 1 illustrates the experimental apparatus. A droplet of the sample liquid was placed 

on an acrylic substrate that was mounted on a vibrating platform (Wave Maker 05, Asahi 

Factory Corp.). The volume of the droplet was 2 L. Prior to droplet deposition, a thin 

circular PVC (Polyvinyl chloride) film (2 mm in diameter, 0.1 mm in thickness) was 

attached to the acrylic substrate (Figure 1(b)). The droplet was deposited on the film, 

below which the three-phase contact line lies on the film’s edge. The film’s edge exhibits 

a large contact angle hysteresis21, therefore, the contact line is kept pinned during the 

vibration cycle. The entire system was placed in a vessel under constant N2 circulation at 

25°C. Evaporation of the liquid sample was negligible. 

Then, a sinusoidal vibration was applied to the plate. The amplitude and frequency of 

the vibration were controlled by a feedback control system inside the vibrating platform. 

 The shape of the vibrated droplet was captured by a high-speed video camera system 

(VW-6000 System, Keyence Co., Ltd.) from the side with a 50× close-up lens. A cold 

light source was placed behind the droplet to obtain an image with good contrast. The 
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frame rate of the high-speed camera was set at 500 fps with a shutter speed of 1/30,000 s. 

A set of images of the droplet was captured for several vibration cycles. The droplet image 

at the lowest position in the vibration cycle was extracted from the video data for use in 

the numerical analysis. 

Methods 

 The mathematical analysis uses the spherical polar coordinate system (r, , ), as shown 

in Figure 2. The origin is defined as the center of the three-phase contact line. The radial 

distance f is a function of the zenith angle . The contact angle is denoted by . Assuming 

quasi steady-state conditions, the equation of motion can be written as  

  (1) 

where p is the pressure,  is the density of the droplet,   is the gradient operator, and 

'g  is the acceleration acting on the droplet, expressible as 

  2 sing A t   zg' e   . (2) 

 The dynamic boundary condition at the liquid-gas interface is given by the force balance 

     2G Gp p H     0n n τ τ n  (3) 

 where n is a normal vector pointing inward, and 2H represents the mean curvature. 

 From Eqs. (1) to (3), the following third-order ordinary differential equation can be 

derived: 

p   'g



        
3

2 2 2 2 2 2 22 1 cot ' sin cos
d f

f f f f f f f f g f f
fd


        


             
    

   , (4) 

 where f represents the differential of f with respect to . The same notation is used in 

the sections titled “RESULTS AND DISCUSSION” and “CONCLUSIONS.” Equation 

(4) can be transformed into the standard form of Eqs. (5) to (7) for numerical calculation. 

 in Eq. (7) denotes a kind of mean curvature that is equivalent to the square brackets in 

Eq. (4). F is defined as F f/ f. 

 df
fF

d
  (5) 
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 

      (6) 

 2'
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d g
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d

    
 

    (7) 

 The following boundary conditions are applied: 

 
 0
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0   at  0

assumed   at 0

  at   2

f b

F

f a




  

 

 
  
  
  

 (8) 

 These equations can be solved by the Runge-Kutta-Gill method. The calculation starts 

from (f, F,) = (b, 0, ) at  = 0 for the given parameters (a, b, ). If a suitable is 

provided, the final value of f is equal to the radius of the contact circle a at = /2. 

However, the initial value usually contains a certain level of error. Therefore, the starting 

value  should be numerically corrected by the shooting method until the fourth 
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boundary condition in Eq.(8), f = a at= /2,  is satisfied. The Regula-Falsi method is 

used in the correction process. 

 Once the shooting method is successfully applied, the objective function defined by the 

equation 

  
   

 

2

e x p

e x p

1
, , , nn

n

f f
E a b S

N f


 
 
 
 

  (9) 

can be evaluated, as the summation of the root mean square of the relative errors in the 

droplet shape, expressible as the difference between the experimentally obtained radial 

distance ( fexp )n and the simulation result ( f )n at the same zenith angle n. The 

experimental droplet coordinates are manually extracted from the video images and may 

thus contain a certain level of error. Therefore, we introduced an additional parameter S, 

referred to as the shift factor. All of the droplet coordinates are shifted from (xi, yi) to (xi+S, 

yi) in order to minimize the horizontal errors in the droplet coordinate data. The shift 

factor is determined using the simplex method. 

 In this study, the simplex method is also used to minimize the object function E. Figure 

3 shows a flow chart of the calculation procedure. We have used two criteria for 

optimization process, one (a) has been used in the shooting method and the other one (s) 

has been used in the simplex method. The tolerance (a) has been much strict such as 10-

10, because this is a simple subroutine for tuning the parameter  at =0 to get f = a (at 

= /2) by the shooting method. However, the tolerance for the simplex method is s =10-



8, which has been defined as the difference between the maximum and minimum of 

objective functions. The objective function at the optimum point is order of 10-3 as the 

experimental coordinates may contain a certain level of error. After the optimization 

process, the dynamic surface tension can be determined. 

 

RESULTS AND DISCUSSION 

Accuracy check of numerical method with a static droplet 

 To determine the accuracy of the numerical simulation, we used a droplet of mercury on 

a ZrO2 plate under static conditions (no vibration was applied). The numerical results and 

droplet image are compared in Figure 422. The coordinates used in the numerical 

prediction are plotted as filled squares. The solid line indicates the numerical results, 

which clearly show good agreement with the experimental results. The calculated surface 

tension was 482.46 mN/m (Relative standard error E(a, b, , S)=0.0074), which agrees 

well with the value from the literature, 482.1 mN/m23.  

 

Droplet deformation under sinusoidal vibration  

 After our successful experiment under static conditions, we measured a droplet on the 

vibrating plate. The vibration amplitude of the plate was set at 1 mm and the frequency 

was varied from 5 to 35 Hz. Figure 5 shows the periodic change in the droplet shape 

during a single cycle for 1.1 mM CTAB (aq.) under a vibration field (fv = 30 Hz). The 
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numbers in the open squares indicate the phase in the cycle. The droplet shape changed 

significantly owing to the apparent gravity, while the contact line did not move during the 

cycle.  

 To compare the droplet deformation at different stages of the vibration cycle, two images 

of the identical droplet were superposed in Figure 6: one acquired at the highest position 

of the vibration (shown in blue), the other at the lowest position (shown in red). The 

surface of the droplet can be divided into upper and lower regions, as indicated by the 

dotted line (c)-(c)’. Above and below this line, bulging of the surface occurred during 

opposite half cycles. Assuming an axial symmetry about the vertical direction, the areas 

of the upper and lower surfaces can be directly calculated from the images. The results 

are summarized in Table 2. As the plate moved from its highest to lowest position, the 

lower surface area increased by 5% and the upper surface area decreased by 9%. However, 

the overall surface area of the droplet Su + Sl remained almost constant. This sudden local 

increase in surface area disrupted the uniform adsorption of surfactants on the droplet 

surface.  

 The largest change in the mean curvature of the droplet surface occurred at the lowest 

plate position. Therefore, in the present analysis, the dynamic surface tension was 

measured when the droplet was at the lowest position of the vibration. At the lowest plate 

position, the droplet was taken to be in a stationary state (i.e., momentarily no change in 

droplet shape and negligible flow inside the droplet). 



 

Dynamic surface tension: pure liquids and surfactant solutions 

 Figure 7 plots dynamic surface tension vs. vibration frequency. Data for distilled water 

and CTAB solutions with three different concentrations are shown. 

 For the distilled water droplet, the calculated surface tension was independent of the 

vibration frequency and close to the value of 71.5 mN/m reported in the literature. We 

also measured the surface tension for higher-viscosity liquids (aqueous solutions of 50 

wt% and 85 wt% glycerol) by the proposed method between 0 and 30 Hz. The viscosities 

of these samples were 5.9 mPa  s24 and 112.9 mPa  s25, respectively. The equilibrium 

surface tensions for the 50 wt% and 85 wt% glycerol solutions were 69.9 and 66.1 mN/m, 

respectively. These results are in good agreement with the literature, i.e., 70 mN/m for an 

aqueous solution of 50 wt% glycerol24 and 66 mN/m for an aqueous solution of 85 wt% 

glycerol25. For all the pure liquids we measured, the calculated surface tensions showed 

no dependence on vibration frequency. 

 In the presence of CTAB, the situation changed entirely. Under static conditions, i.e., fv 

= 0 Hz, the surface tension for a CTAB concentration of 0.5 mM was higher than that for 

1.1 and 2.0 mM. The surface tension decreased with increasing CTAB concentration until 

it reached the critical micelle concentration (cmc), i.e., 0.96 mM.  

 When vibration was applied to the CTAB solution droplet, the surface tension gradually 

increased with vibration frequency. Vibration induces a rapid increase in surface area. On 
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the other hand, the adsorption of surfactants to a newly generated surface is limited by 

their diffusion rates. Such competition increases the dynamic surface tension. In particular, 

for the dilute CTAB solution droplet (0.5 mM), the surface tension reached nearly the 

same level as that of distilled water.  

 An increase in surface tension was also observed for droplets of higher CTAB 

concentrations (1.1 and 2.0 mM), but the increase was less marked. When the surfactant 

concentration was close to or higher than the cmc, sufficient amounts of surfactant 

monomers demicellized from micelle were present in the bulk phase adjacent to the 

surface, as well as in the micelle. As soon as the new surface was created, the surfactants 

rapidly adsorbed on it26,27.  

 To investigate the effect of the molecular weight of the surfactant, we compared the 

dynamic surface tension of three different aqueous surfactants (Figure 8): CTAB, SDS 

and Triton X-100. The concentration of each surfactant solution was adjusted to be close 

to the cmc (1.1 mM for CTAB, 8.7 mM for SDS, and 0.33 mM for Triton-X). Although 

the surface tension increased with frequency in each case, the slopes were different, owing 

to differences in the mobility of the surfactant, which depends on its molecular weight. In 

general, surfactants with higher molecular weight diffuse more slowly10. This effect is 

simply evaluated by calculating the Peclet number via 

                           
2

vf A
Pe

D
 ,    (10) 

where A is the vibration amplitude and D is the diffusion coefficient of the surfactants. 



This dimensionless number compares the rate of generation of new surface with the 

surfactant diffusion toward that surface. In the inset in Figure 8, the dynamic surface 

tension is replotted as a function of Pe, where the diffusion coefficients are taken from 

Ref. 28. A similar trend was observed for all the surfactants.  

 Finally, we compared our results with data from previous publications in order to verify 

the accuracy of our methodology.  Using the maximum bubble pressure technique, 

Gatne et al. and Zhang et al.10,12 investigated how the dynamic surface tension relaxes to 

the equilibrium surface tension as a function of the surface age  . The surface age 

corresponds to the time elapsed to generate the surface and is defined as the inverse of 

the rate of bubble generation. Looking back at the images in Figure 5, the bulge in the 

surface occurs during a half cycle in which the droplet’s position goes from highest to 

lowest. Therefore, half a vibration period (0.5 T) can be regarded as the characteristic 

time for surface generation. In Figure 9, we compare the 0.5 T values obtained in our 

measurements and the surface age  data in Ref. 10, which yielded the same measured 

surface tension. In the case of CTAB, the data are well correlated and a linear dependence 

is obtained for all the surfactants. The slope is highest in the case of Triton X-100, which 

may reflect its ability to be adsorbed on the surface and its diffusion rate in the bulk liquid. 

These results indicate that the vibration half period is almost equivalent to the surface age 

measured by the maximum bubble pressure method, which verifies the accuracy and 

reproducibility of the present method. 
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CONCLUSIONS 

 By probing the surface deformation of a sessile droplet under mechanical vibration, we 

successfully developed a method for measuring the dynamic surface tension of pure 

liquids and aqueous surfactant solutions. Pinning the droplet at the edge of a circular film 

enabled stable cyclical deformation under a vibrating field. In this approach, parameter 

optimization was carried out until the theoretically predicted droplet shape agreed well 

with the experimentally observed shape. This technique requires only about 2 L of 

sample solution, and can be applied to even highly viscous liquids. 

 Measurements were carried out for aqueous solutions of three types of surfactants with 

different molecular weights. The dynamic surface tension exhibited a sharp increase with 

vibration frequency, which depended on the surfactant concentration and molecular 

weight. In particular, when a fast vibration was applied to a dilute surfactant droplet, the 

surface tension increased, approaching that of pure water.  

 Our results suggest that the dynamic surface tension results from the competition of two 

mechanisms: the depletion of surfactants at the newly generated liquid surface due to the 

surface expansion and the transport of surfactants between the surface and bulk. In 

addition, we have confirmed that our measured value agrees well with those obtained by 

other available methods. In our setup, the characteristic time for surface generation 

corresponds to half the vibration period. 



 

APPENDIX A 

Derivation of governing equations 

 The governing equations can be derived from the equations for motion and force balance 

acting on a gas-liquid interface as follows: 

A1.1 Mean curvature on the gas-liquid interface 

 The shape of a droplet on a flat plate is assumed to have axial symmetry about the z-

axis, as shown in Figure 10. The position vector of an arbitrary point P on the interface 

can be expressed by the following equation in the spherical coordinate system 

( ): 

 ( ) rf R e , (A1) 

where  is the polar angle, f() is the radial distance of point P from the origin, and er is 

the radial unit vector. 

 The two tangential vectors, 2g  and 3g , in Figure 10 are covariant basis vectors, which 

can be defined with respect to the polar and azimuth directions. The covariant basis 

vectors ig  can be obtained through the definition : 

  2 ( ) r rf f f 



  


g e e e , (A2) 

and  3 ( ) sinrf f  



 


g e e . (A3) 

 These covariant basis vectors agreed with the independent vectors defined on the surface 

   1 2 3, , , ,x x x r  

i
i x  g R
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curve. The normal vector n can be obtained by the cross product of the covariant vectors: 

  (A4), 

where  is defined as: 

 
2 2f f    (A5) 

 The contravariant basis vectors (g2, g3) are obtained by utilizing the definitions 

i i
j j g g  and Eqs. (A2) and (A3): 

  2
2

1
rf f 

 g e e ;
3 1

sinf 
g e  (A6) 

 Therefore, the surface gradient operator s  along the surface is given by the following 

equation: 

 
 2 3

2 3 2 sin
r

s
f f

fx x

 

  

   
    

  

ee e
g g  (A7) 

 The mean curvature of the curved surface is obtained via 

 2 sH  n , (A8) 

and       
 

2
2

sin
rf f

H
f
   



 
  

e ne e n
, (A9) 

where (n, n) are derivatives with respect to the  and  component, respectively. They 

are obtained by the following equations (see Appendix C for detailed derivation): 

 3 2

3 2

rf f 




 


e eg g
n

g g



  (A10a) 

  1
sin cosf f   


 n e   .  (A10b) 

 Substituting Eqs. (A10a), (A10b), and (A5) into Eq. (A9), we obtain 

 
 

 

2 2 2 2

3
2 2 2

2 1 cot

2

f
f f f f f f

f
H

f f


  



          



.   (A11) 

A1.2 Basic equation 

A1.2.1 Force balance equation for the interface 

 As seen from Figure 11, we denote the total stress on the interface, deviatoric stress, 

pressure at the interface, and a unit tensor by , , p*, and , respectively. The total stress 

tensor for interfaces can be expressed by the following equations: 

 Liquid phase interface: 

 p δ τ  (A12a) 

 Gas phase interface: 

 G G Gp δ τ  (A12b) 

 The following three forces are acting on the interface:  

 A force acting from the gas phase fluid:  

 A force acting from the liquid phase fluid:  

     3

1 1
2 r rf f f f f f f f        

              n e e e e

 G  n

 n
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 A surface tension force:   

 

 These three forces are in equilibrium at the interface: 

   2G H     0n n n  . (A13) 

 Substituting Eqs. (A12a) and (A12b) into Eq. (A13), and applying  δ n n, one obtains 

     2G Gp p H       0n τ τ n n . (A14) 

 Assuming a quasi-static fluid ( G τ τ 0 ), Eq. (A14) can be simplified: 

   2 0Gp p H     (A15) 

A1.2.2 Equation of motion 

 The equation of motion for the liquid phase can be expressed as follows: 

 '
D

p
Dt

      
v

g τ  (A16) 

 In the case of a static fluid, by applying 0, 0 v τ  to Eq. (A16), we obtain 

 'p   g  (1) 

 The apparent gravity vector can be defined as 

 ' ' zg g e , (A17) 

 2' sing g A t   , (A18) 

where g is the acceleration of gravity (in the case of a static fluid, 'g g ) and ze  is 

expressed in terms of the spherical coordinate system (see Appendix D for details): 

 cos sinz r   e e e  (A19) 

 We rearrange Eq. (1) using Eq. (A19): 

2Hn



  1 1
' cos sin

sinr r
p p p

g
r r r    

  
  

    
  

e e e e e  (A20) 

 Thus, the following equations are obtained for each component: 

 'cos ,  ' sin ,  0
p p p

g g r
r

   
 

  
   

  
 (A21 a, b, c) 

 As can be seen from Eq. (A21c), the pressure p is independent of the azimuth angle . 

Therefore, we can ignore the  component, and consider only Eqs. (A21a) and (A21b). 

 

A1.3 Introduction of the governing equation of the interface shape 

 As seen from Figure 12, the integral of Eq. (A21a) from point P at the interface to an 

arbitrary point Q in the liquid phase is 

  'cosp p g r f     (A22) 

 Substituting Eq. (A22) into Eq. (A21b), we obtain 

  ' sin cos 0
p

g f f  



  


, (A23) 

where p  is given by Eq. (A15): 

 2Gp p H    .  (A24) 

 The static pressure at the top of the droplet (height: b) in Figure 11 is p0. Because of the 

assumption of a static fluid, we can presume the presence of a pressure head between the 

top of the droplet and the gas-liquid interface. This yields the equation 

  ,   (A25)  0 ' cosG Gp p g b f    
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 where G  is the density of the gas phase. Substituting Eq. (A25) into Eq. (A24), we 

obtain 

 . (A26) 

 By substituting Eq. (A26) into Eq. (A23), we can rearrange the terms as follows: 

  .  (A27) 

 By substituting Eq. (A11) of the mean curvature into the left-hand side of Eq. (A27), the 

governing equations along the interface (Eq. (A28)) can eventually be obtained. In 

addition, because the mean curvature is a function of only the polar angle , we can 

rewrite the partial differential equation as the following ordinary differential equation:  

 

 
   

2 2 2 2

3
2 2 2

2 1 cot

' sin cosG

f
f f ff f f

fd
g f f

d
f f


  






 

 
 

               
 
 
  

, (4) 

where we assume  G = 0 in the body manuscript, because  G is much smaller than . 

 The boundary conditions can be taken to be as follows: 

B.C. 

  at 0

0   at  0

  at  2

f b

f

f a




 

 
  
  

   (A28) 

Appendix B 

Conversion into the standard form 

 To convert Eq. (4) into coupled first-order ordinary differential equations, we can 

 0 ' cos 2Gp p g b f H      

     2 '
sin cosGH g

f f
 

 
 

 
 





introduce a new variable F: 

  (B1) 

 Thus, we can write the following equations: 

 
 

2

2 2 2 2

;

;

1 .

f fF

f f F fF f F F

f f f F



   




   

  

 

 Substituting these equations into Eq. (4), we get 

 
  

 
   

2

3
2 2

1 2 cot
' sin cos

1

G
F F Fd

g f F
d

f F

  
 

 

 
    
   
 

  

. (B2) 

 We also introduce a new variable :  

 
  

 

2

3
2 2

1 2 cot

1

F F F

F




 
   
 
 

  

 (B3) 

 The relationship between  and the mean curvature 2H is as follows: 

 2H f . (B4) 

 We solve Eq. (B3) in terms of F and obtain 

     
3

2 2 21 2 cot 1F F F F       . (B5) 

 Substituting Eq. (B3) into Eq. (B2), 

 
   2' sin cosG g f F F
 

   



   . (B6) 

F f f
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 In summary, the standard system is obtained as follows: 

 
df

fF
d

               (5) 

     
3

2 2 21 2 cot 1
dF

F F F
d

 

                (6) 

 
   2Gd

g' f sin F cos F
d

    
 


            (7) 

 
        0

B.C. 0        0
          2

f b at
F at
f a at



 

   
 

. (8) 

 Finally, by solving the first-order ordinary differential equations, it is possible to 

determine the droplet shape by obtaining the radius f(). 

 

Appendix C 

Calculation of  

 When Eq. (A5), which defines , is differentiated with respect to  and , the following 

equation is obtained: 

  1
f f f  


  ; 0   . (C1) 

 Differentials of the unit vectors  , ,r  e e e  can be expressed as follows: 

 , r   e e ; ,r  e e ; , sinr  e e , cos  e e          (C2) 

 By using Eqs. (B5) and (B6), we differentiate the unit normal vector n with respect to  

and and obtain Eqs. (A10a) and (A10b). 

Appendix D 

 , n n



Expression of unit vector ez in a spherical coordinate system 

 We define a unit vector z rA B C   e e e e  and find the solutions (A, B, C) to this 

equation. If two vectors are perpendicular to each other, the inner product of these vectors 

is zero. Therefore, we can calculate three inner products by applying three unit vectors in 

the spherical coordinate system  , ,r  e e e  to both sides: 

 cosz rA   e e   

  cos 2 sinzB         e e            (D1) 

  cos 2 0zC     e e  

 Thus, we obtain 

 cos sinz r   e e e        (D2) 

 

Nomenclature 

 A [m] amplitude of vibration platform 

 a [m] radius of three-phase contact circle 

 b [m] height of liquid droplet 

 er [-] unit vector in the r-direction 

       ez [-] unit vector in the z-direction 

 f [m] radial distance 

 fv [Hz] vibration cycle 

       F      [-]      the derivative of f 



25 
 

 g [m/s2] gravitational acceleration 

       g      [m/s2]   gravitational acceleration vector 

  [m-1] mean curvature 

 n [-] normal vector 

 p [Pa] pressure 

 Gp  [Pa] pressure of gas phase 

       r      [m]   distance from a origin point 

 S [m] horizontal origin shift 

       t       [s]    time 

       T      [Pa]    total stress tensor 

             [-]     variable defined in Eq.(A5) 

             [rad]    angle in spherical coordinate system 

             [rad]    three phase contact angle defined in Fig.2 

             [rad]     radial angle in spherical coordinate system defined in Fig.2 

  [kg/m3] density 

  [N/m] surface tension 

  [s] surface age 

  [Pa] deviatoric stress tensor 

  [rad/s] angular velocity 

             [-]    variable defined in Eq.(B3) 



 

Subscripts and Superscripts 

       a      Radial of three phase contact circle 

       s      Simplex method 

 G  Gas phase 

 H Highest position 

 L Lowest position 

 u Upper side 

 l Lower side 

 

REFERECES 

1 J. C. Berg, An Introduction to Interfaces & Colloids: The Bridge to Nanoscience, World 

Scientific (2010). 

2 A. A. Tracton, Coatings Technology Handbook, Third Edition, CRC Press (2005). 

3 B. Noziere., “The Dynamic Surface Tension of Atmospheric Aerosol Surfactants 

Reveals New Aspects of Cloud Activation,” Nat. Commun. 5, 3335 (2014). 

4 P. Berger., “Dynamic Surface Tensions of Spray Tank Adjuvants, New Concepts and 

Techniques in Surfactants,” ACS Sym. Ser. 371, 142-150 (1988). 

5 G.Bleys, “Adsorption Kinetics of Bolaform Surfactants at the Air/Water Interface,” J. 

Phys. Chem., 89, 1027-1032 (1985). 



27 
 

6 Hermann Lange, “DYNAMIC SURFACE TENSION OF DETERGENT SOLUTIONS 

AT CONSTANT AND VARIABLE SURFACE AREA,” J. Colloid Sci., 20, 50-61 (1965). 

7 Milton J. Rosen, SURFACTANT AND INTERFACIAL PHENOMENA, John Wiley & 

Sons, Inc., 3rd ed. (2004). 

8 X. Zhang, “Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface,” 

J. Colloid and Int. Sci., 187, 166-178 (1997). 

9 N.Mourougou-Candoni, “Influence of Dynamic Surface Tension on the Spreading of 

Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate,” J. 

Colloid and Int. Sci., 192, pp.129-141 (1997). 

10 Gatne, K.P., “Surfactant-Induced Modification of Low Weber Number Droplet Impact 

Dynamics,” Langmuir, 25(14), 8122-8130 (2009). 

11 Zhang, J., “Effect of Ethoxylation and Molecular Weight of Cationic Surfactants on 

Nucleate Boiling in Aqueous Solutions,” J. Heat. Transfer, 126, 34-42 (2004). 

12 Zhang, J., “Additive Adsorption and Interfacial Characteristics of Nucleate Pool 

Boiling in Aqueous Surfactant Solutions,” J. Heat. Transfer, 127, 684-691 (2005). 

13 Sugden, S., “XCVII.-The Determination of Surface Tension from the Maximum 

Pressure in Bubbles,” J. Chem. Soc., 121, 858-866 (1922). 

14 Mysels, K. J., “The Maximum Bubble Pressure Method of Measuring Surface Tension, 

Revisited,” Colloids and Surfaces, 43, 241-262 (1990). 

15 Ferguson, A., “On the measurement of the surface tension of a small quantity of liquid,” 



Proceedings of the Physical Society of London, 36, 37-44 (1923). 

16 Garanet, J. P., “Considerations on the Pendant Drop Method: A New Look at Tate’s Law 

and Harkins’ Correction Factor,” J. Colloid and Interface Sci., 165, 351-354 (1994). 

17 del Rio, O., I., “Axisymmetric Drop Shape Analysis: Computational Methods for the 

Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and 

Sessile Drops,” J. Colloid and Interface Sci., 196, 136-147 (1997).  

18 A. Bonfillon, “Dynamic Surface Tension of Ionic Surfactant Solutions,” J. Coll. Int. 

Sci., 168, 497–504 (1994). 

19 Neus, L., “Dynamic Properties of Cationic Diacyl-Glycerol-Arginine-Based 

Surfactant / Phospholipid Mixtures at the Air / Water Interface,” Langmuir, 26(4), 2559-

2566 (2009). 

20 Hasegawa, T., “A Simple Method for Measuring Elastic Stresses by Jet Thrust and 

Some Characteristics of Tube Flows,” J. Soc. Rheology, Japan, 31(4), 243-252 (2003). 

21 Gibbs, J. W., Scientific Papers, Dover Reprint (Dover, New York, 1961), Vol. 1, p. 326. 

22 Iwata, S., “Measurement of Surface Tension and Contact Angle by Analysis of Force 

Balance along a Bubble/Droplet Surface,” Kagaku Kogaku Ronbunshu, 36(5), 441–448 

(in Japanese) (2010).  

23 M. E. Nicholas, “The effect of various gases and vapors on the surface tension of 

mercury,” J. Phys. Chem., 65 (8), pp 1373–1375 (1961) 

24 Regan Crooks, “The role of dynamic surface tension and elasticity on the dynamics of 



29 
 

drop impact,” Chem. Eng. Sci., 56, 5575-5592 (2001). 

25 Xiaoguang Zhang, “Measurement of synamic Surface Tension by a Growing Drop 

Technique,” J. Colloid and Interface Sci., 168, 47-60 (1994). 

26 E. Tllaerts and P. Joos, “Rate of Demicellization from Dynamic Surface Tensions of 

Micellar Solutions,” J. Phys. Chem, 86, 3471-3478 (1982). 

27 Xiaohong Cui,”Mechanism of Surfactant Micelle Formation,” Langmuir 2008, 24, 

10771-10775 (2008). 

28 Mark A. Hink, “Dynamics of Phospholipid Molecules in Micells: Characterization 

with Fluorescence Correlation Spectroscopy and Time-Resolved Fluorescence 

Anisotropy,” Langmuir, 15, 992-997 (1999). 

 

Acknowledgements 

This study was partially supported by JST “Intellectual Property Utilization Support 

Program (Grant No. HWY2012-1-177).” We thank Mr. Fumihiko Nakamura and Mr. 

Hironori Suzuki for their assistance in carrying out many experiments and numerical 

analyses. 

 



Table 1. Physical properties of surfactants 

 

 

 

 

 

 

Surfactant Ionic nature MW[-] cmc.[mM] 

SDS Anionic 288.3 ~8.67 

CTAB Cationic 364.5 ~0.96 

Triton X-100 Nonionic 624(av.) ~0.321 



Table 2. Surface areas at highest and lowest plate positions (1.1 mM CTAB aq. under a vibration field (fv = 30 

Hz)) 

 

 Upper surface area 

Su [mm2] 

Lower surface area 

Sl [mm2] 

Total Su+Sl 

[mm2] 

Highest Position(H) 
SHu 

2.02 

SHl 

7.49 

SH  (SHu+SHl) 

9.51 

Lowest Position(L) 
SLu 

1.83 

SLl 

7.83 

SL (SLu+SLl) 

9.66 

Ratio SL/SH 
SLu/SHu 

0.91 

SLl/SHl 

1.05 

SL/SH 

1.02 



 

 

 

FIG. 1(a). Schematic of the experimental apparatus. A sessile drop is placed on an acrylic plate 

mounted on a vibration platform under N2 atomosphere. While applying mechanical vibration, the 

shape of the droplet is monitored using a high-speed camera (500 fps).  

(b) Detailed schematic of the substrate and droplet deposition. A circular PVC film was attached 

onto an acrylic plate; then, the droplet was deposited on that film. The three-phase contact line is 

located on the film’s edge, therefore, the large contact angle hysteresis keeps the contact line 

immobile during the vibration cycle. 
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FIG. 2. Geometry and coordinates of the droplet used in the numerical analysis. 

 



 

 

FIG. 3. Calculation flow chart. 



 

 

 

 

 

 

FIG. 4. Comparison of the observed profile of a static sessile droplet (Mercury/ZrO2 at 24.0°C) and 

the numerically predicted profile. 
 

 

 



 

FIG. 5. Periodic change in the droplet shape during a single vibration cycle (fv = 30 Hz). A 

droplet of 1.1 mM CTAB solution was used. The droplet shape changes owing to the variation 

in the apparent gravity g’. 

 



 

 

 

 

 

 

 

 

 

 

FIG. 6. Superposed images of the same droplet at different stages of the oscillation. The blue 

image corresponds to the drop’s highest position, while the red image corresponds to its lowest 

position. The surface area increase and decrease are indicated in the upper and lower sections.  

( 1.1 mM CTAB aq. under a vibration field (fv = 30 Hz)) 



 

FIG. 7. Dynamic surface tension as a function of vibration frequency. Data for distilled water and 

CTAB solutions with three different concentrations are plotted.  denotes the normalized 

concentration, C/cmc. 6 to 8 images were averaged for each data point. 
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FIG. 8. Effect of molecular weight of surfactant on dynamic surface tension. 6 to 8 images were 

averaged for each data point. 
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FIG. 9. Relationship between half the vibration period 1/2 T and surface age parameter  (data 

are taken from Gatne et al.10) which yields the same value for the surface tension. 

 

0 0.1 0.2
0

0.1

0.2

SDS aq.

CTAB aq.

TritonX−100 aq.

  
  

  
 S

ur
fa

ce
 a

ge
 

[s
]

 (M
ax

im
um

 b
ub

bl
e 

pr
es

su
re

 m
et

ho
d)

1
2―T [s] (This study)



 

 

 

 

 

 

 

 

 

FIG. 10. A droplet in the coordinate system. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 11. Three kinds of forces acting on the gas-liquid interface. 



 

 

 

 

 

 

 

 

 

 

FIG. 12. Integration over the interval [ f, r] 
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