Surfactant-Free Fabrication of SiO₂-Coated Negatively Charged Polymer Beads and Monodisperse Hollow SiO₂ Particles

4

Author Names: Wanghui Chen, Chika Takai, Hadi Razavi, Masayoshi Fuji*, Takashi Shirai
Author Affiliation: Advanced Ceramics Research Center, Nagoya Institute of Technology,
Honmachi 3-101-1, Tajimi, Gifu, 507-0033, Japan

8 *Corresponding Author E-mail address: fuji@nitech.ac.jp

9

Abstract: SiO₂ shells have been evenly constructed on the surface of negatively charged polymer 10 beads (n-PBs) in a stöber-like process. The reaction system for SiO₂ coating was surfactant-free, 11 which only contained TEOS as the precursor, ethanol as the solvent, NH₃ as the catalyst, and water. 12 Besides, monodisperse hollow SiO₂ particles (HSPs) with the size of around 400nm and the shell 13 thickness of 15~25nm have been fabricated after burning polymer cores away from the SiO₂-coated 14 n-PBs. The as-fabricated HSPs are aggregation-free and fairly robust. Moreover, the following two 15 prerequisites for successful coating of SiO_2 on n-PBs have been revealed: (1) the surface charge 16 density of n-PBs is high; (2) the concentration of water in reaction system is on a low level. We 17 have proposed a reasonable mechanism for the un-expected coating of SiO₂ on n-PBs. NH₃ (NH₄⁺) 18 is believed to play multiple rules in the process of coating, as it not only catalyzed the generation of 19 SiO₂, reduced the energetic barrier for SiO₂ coating n-PBs, but also had the hydrolysis of TEOS and 20 related condensation process occurring on the surface of n-PBs. 21

22 Keywords: SiO₂ coating; Hollow SiO₂ particles; Negatively charged; Polymer beads

2 **1. Introduction**

In the past several years, because of their potential applications in optical ^[1, 2], loading-3 releasing ability ^[3], heat insulation ^[4], low k-dielectrics ^[5], etc., hollow SiO₂ particles (HSPs) 4 composed of solid SiO₂ shells and hollow interiors have attracted considerable research attention. 5 Templating method is the general synthetic strategy for HSPs, although recently template-free 6 approaches have also been developed ^[6]. In a typical process of templating method, SiO₂ was firstly 7 coated on templates to form core-shell particles, and then templates were removed away from the 8 core-shell particles to obtain HSPs^[7]. More specifically, Stöber process^[8] is commonly adopted for 9 SiO_2 coating in the templating method, where the generation rate of SiO_2 can be well controlled. On 10 the other hand, there are a variety of chemicals can be used as the template, such as CNTs ^[9], 11 polymer ^[10, 11], micelles ^[12], gas bubbles ^[13], etc. In particular, it's possible to fabricate HSPs with 12 narrow size distribution by using monodisperse polymer beads (PBs) as the template. Since 13 monodisperse HSPs can be further applied in the areas of photonic crystals ^[14] and plasmonics 14 derives^[15], the using of monodisperse PBs in the fabrication of HSPs has been paid close attention. 15 To our knowledge, monodisperse SiO₂-coated PBs, as well as monodisperse HSPs, with tunable 16 size, shell thickness, and porosity have been successfully fabricated ^[16, 17]. 17

Normally, PBs used for the fabrication of HSPs have positive surface, since SiO₂ generated in the Stöber process carries negative charges, oppositely ^[18, 19]. In this case, SiO₂ coating could be attributed to the electrostatic attraction between SiO₂ and positively charged polymer beads (p-PBs). However, with respect to negatively charged polymer beads (n-PBs), p-PBs are much harder to obtain, as expensive cationic initiators (e. g., AIBA) and/or surface modification steps are necessary 1 ^[20]. Even worse, the use of p-PBs will probably result in aggregated HSPs ^[21]. The reason is, at the 2 initial stage of SiO₂ coating, the apparent surface charge of p-PBs is reduced by immobilized SiO₂ 3 particles, so that electrostatic repulsive force between p-PBs is too small to prevent the generation 4 of aggregates. Although the use of surfactants in the process of SiO₂ coating can improve the 5 dispersibility of SiO₂-coated p-PBs and related HSPs, it also increases the complexity of reaction 6 system and post treatment ^[22].

7 Obviously, replacing p-PBs by n-PBs in the fabrication of monodisperse HSPs is expected to eliminate the above two drawbacks. However, few attempts have been done on the fabrication of 8 HSPs with using n-PBs as the template. It was even believed that n-PBs carrying negative charges 9 are not advantageous for SiO₂ particles (also negatively charged) to coating on [23]. It may be true 10 that electrostatic repulsive force is unfavorable of SiO₂ coating, nonetheless, much more factors, 11 such as the surface charge density of n-PBs, the reaction parameters, etc., need to be taken into 12 consideration before making an appropriate conclusion on whether SiO₂ coating can achieve on the 13 surface of n-PBs or not. In fact, there have been some observations indirectly suggested the 14 possibility of SiO₂ coating on n-PBs. Graf et. al. ^[13] reported a versatile approach to construct SiO₂ 15 shells on various kinds of particles including n-PBs. Although in that work, SiO₂-coated n-PBs 16 could only be obtained by the assistance of surfactant, the negative property of the surface of n-PBs 17 had not been changed, since the surfactant (PVP) used was nonionic. Deng et. al. ^[14] most recently 18 obtained n-PB@Vinyl-SiO₂ core-Shell particles with using a special precursor of SiO₂ (VTMS). 19 They have also proved the high yield of SiO₂ coating on n-PBs. Unfortunately, both of the above 20 two works have not discussed on the process of SiO₂ coating on n-PBs, as well as its corresponding 21 22 mechanism in detail.

1	In this work, monodisperse HSPs have been successfully obtained with using n-PBs as the
2	template. The fabrication process is simple and surfactant-free, although there are some additional
3	requirements need to meet, either for the employed n-PBs or for the reaction parameters in SiO_2
4	coating. In this work, n-PBs were obtained by the emulsifier-free polymerization with using anionic
5	initiator KPS, the cost of which is much lower than that for p-PBs. Besides, the merit brought by the
6	use of n-PBs to the dispersibility of obtained HSPs has also been proved by experimental results. In
7	addition, we have proposed a reasonable mechanism for the process of SiO ₂ coating on n-PBs,
8	which is different with that for SiO ₂ coating on p-PBs.
9	
10	2. Experimental
11	
11 12	2.1. Materials.
11 12 13	2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with
11 12 13 14	2.1. Materials.Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for
11 12 13 14 15	 2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with 5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for 4 times respectively, followed by distilling under reduced pressure. All the following chemicals
111 12 13 14 15 16	 2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with 5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for 4 times respectively, followed by distilling under reduced pressure. All the following chemicals were used as received without further purification: Acrylic acid (AA, 98.5%), K₂S₂O₈ (KPS, 98.0%)
111 12 13 14 15 16 17	 2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with 5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for 4 times respectively, followed by distilling under reduced pressure. All the following chemicals were used as received without further purification: Acrylic acid (AA, 98.5%), K₂S₂O₈ (KPS, 98.0%) from Kanto Chemical Co., Inc. Japan; Tetraethyl orthosilicate (TEOS, 95.0%), Ethanol (99.5%),
11 12 13 14 15 16 17 18	 2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with 5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for 4 times respectively, followed by distilling under reduced pressure. All the following chemicals were used as received without further purification: Acrylic acid (AA, 98.5%), K₂S₂O₈ (KPS, 98.0%) from Kanto Chemical Co., Inc. Japan; Tetraethyl orthosilicate (TEOS, 95.0%), Ethanol (99.5%), Ammonia solution (25.0 %) from Wako Pure Chemical Industries, Ltd. Japan. DI water was
111 12 13 14 15 16 17 18 19	 2.1. Materials. Styrene (St) was from Kanto Chemical Co., Inc. Japan. Before using, St was first washed with 5.0 wt. % NaOH (Wako Pure Chemical Industries, Ltd. Japan) solution for 4 times and DI water for 4 times respectively, followed by distilling under reduced pressure. All the following chemicals were used as received without further purification: Acrylic acid (AA, 98.5%), K₂S₂O₈ (KPS, 98.0%) from Kanto Chemical Co., Inc. Japan; Tetraethyl orthosilicate (TEOS, 95.0%), Ethanol (99.5%), Ammonia solution (25.0 %) from Wako Pure Chemical Industries, Ltd. Japan. DI water was produced by RFD250NB distilled water system (Toyo Roshi Kaisha, Ltd. Japan).

2.2. Synthesis of n-PBs

22 Three kinds of negatively charged polymer beads (n-PBs), PS, P(St-co-2.5%AA) and

P(St-co-5.0%AA) beads, have been synthesized by a reported emulsifier-free polymerization ^[15] 1 with using an anionic initiator KPS (see Table 1). For the as-synthesized P(St-co-AA) beads, the 2 percentage in name denotes the volume ratio of AA to St before polymerization. For the 3 emulsifier-free polymerization, briefly, 170mL DI water, 15mL St and a certain volume of AA were 4 first poured into a 4-neck flask which equipped with a condenser, a thermometer, a gas inlet pipe 5 and a PTFE stirrer. Then N₂ was bubbled into the monomer-water mixture for 20min. Afterward, 6 the system was closed and placed in an oil bath to heat to 70°C. During the heating, stirring was 7 started and controlled at 340rpm. Polymerization was started by pouring 10mL 1.5 wt. % KPS 8 aqueous solution (pre-heated to 70°C) in. The emulsifier-free polymerization lasted for 24h at 70°C 9 with continuous stirring. After the reaction, n-PBs were collected by centrifugation at 6000rpm and 10 washed with DI water for several times. Finally, the well cleaned n-PBs were dried in vacuum at 40 11 °C for 24h. 12

13

14 2.3. Synthesis of SiO₂-coated n-PBs

SiO₂-coated n-PBs were synthesized in a reported stöber process ^[9] with some modifications. 15 In a typical synthesis, 0.414g n-PBs were added into a mixture of 30ml ethanol, 0.5ml water and 16 1mL 25.0 wt. % ammonia solution, followed by a 30min ultrasonic treatment. Then the above 17 suspension was stirred by a magnetic stirrer (600rpm). Meanwhile, 18.5mL TEOS solution (5.4 18 vol. % in ethanol) was poured in. The reaction was allowed to proceed for 12h at room temperature 19 with the same magnetic stirring. The resulting particles were collected by centrifugation at 6000rpm, 20 and followed by washing with ethanol and DI water for several times. Finally, the particles were 21 22 dried in vacuum at 40 °C for 24h.

A supporting experiment was carried out only for the purpose of illustrating the mechanism of *SiO*₂ coating on n-PBs. In this experiment, n-PBs (P(St-co-5.0%AA)) were preparatory immersed in KCl solution (5.0 wt.%) to absorb a number of K⁺ ions on their surface, and then used as the templates for SiO₂ coating. The reaction parameters for SiO₂ coating in this experiment were exactly same with the typical experiment described before. The production was named as "S-KCl".

- 6
- 7

2.4. Fabrication of HSPs from SiO₂-coated n-PBs

8 HSPs were obtained by burning n-PBs away from SiO₂-coated n-PBs. Briefly, in an electric
9 oven, SiO₂-coated n-PBs were heated to 600°C at a rate of 5°C/min. The calcination lasted for 5h in
10 air.

11

12 **2.5. Characterizations**

Scan electron microscopy (SEM) and scanning transmission electron microscope (STEM) images were taken by a JSM-7600F (JEOL Ltd. Japan). Transmission electron microscopy (TEM) images and Energy dispersive X-ray spectroscopy (EDS) mappings were taken by a JEM-z2500 (JEOL Ltd. Japan). Thermogravimetric (TG) curves were recorded by a thermo plus TG-8120 (Rigaku. Co. Japan). Zetasizer nano-ZS (Malvern Ltd. UK) was used to measure the Zeta potential and particle size. IR spectra were retrieved from a FT/IR-6000 (Jasco Co., LTD. Japan). pH was measured by a SG8 SevenGo pH meter (Mettler-Toledo GmbH)

20

21 **3. Result and Discussion**

3.1. SiO₂ coating on n-PBs with different surface charge density

Three kinds of n-PBs have been successfully synthesized by emulsifier-free polymerizations. 2 Table 1 lists the zeta potential (in water) and size of the as-synthesized PS, P(St-co-2.5%AA) and 3 P(St-co-5.0%AA) beads. As seen, all kinds of PBs are negatively charged, while their zeta 4 potentials vary with the change of the addition amount of AA. The negative surface of PS beads is 5 attributed to the SO₃- end-groups, since anionic radical initiator KPS was used for the 6 polymerization. However, because of the low ratio of initiator-to-monomer (0.011 w/w) in the 7 polymerization, the density of SO_3^- groups on the surface of PS beads was low, as what the low zeta 8 potential (-1.1mV) revealed. Table 1 also indicates the low surface charge density can be improved 9 by copolymerizing St with AA, since the negative charges on the surface of P(St-co-AA) beads 10 were not only from the SO₃⁻ end-groups but also from the COO⁻ groups brought by AA. Moreover, 11 Figure 1a clearly shows the negative shift of the zeta potential distribution histograms of n-PBs 12 caused by the addition of AA. In addition, the existence of COO⁻ groups in P(St-co-AA) beads has 13 been proved by IR spectra (supplementary information). On the other hand, the addition of AA 14 reduced the size of PBs (Table 1). In fact, because of the additional electrostatic repulsive force 15 supplied by COO- groups, P(St-co-AA) beads were much easier to reach a steady state, at which 16 they could no longer merge to larger beads, than PS beads in emulsifier-free polymerization. 17 However, the addition of AA has not affected the shape and dispersibility of PBs, as all the three 18 kinds of n-PBs are spherical and aggregation-free (supplementary information). 19

All kinds of the obtained n-PBs have been used as the templates for SiO₂-coating to observe the influence of surface charge density. **Figure 1b~d** show the morphology of PS, P(St-co-2.5%AA) and P(St-co-5.0%AA) beads after SiO₂ coating, respectively. As seen, although immobilized *SiO₂*

1	particles can be found in all samples, SiO_2 achieved complete coating only on the n-PBs that have
2	high surface charge density: there are numerous free SiO_2 particles can be found in the SiO ₂ -coated
3	PS beads, while only a small proportion of SiO_2 particles have been immobilized on the surface of
4	templates; free SiO_2 particles can still be found in SiO_2 -coated P(St-co-2.5%AA), but the number of
5	immobilized SiO_2 particles has significantly increased; there are no free SiO_2 particles in the sample
6	of SiO_2 -coated P(St-co-5.0%AA) beads, and the surface of cores has been fully occupied by
7	immobilized SiO ₂ . In addition, the high dispersibility of SiO ₂ -coated P(St-co-5.0%AA) beads can
8	also be seen in the SEM image. Furthermore, EDS mapping has proved the core-shell structure of
9	SiO ₂ -coated P(St-co-5.0%AA) beads (Figure 2). As seen, carbon element only distributes inside
10	composite particles while both of the silicon and oxygen content are maximal at the edge.
11	Meanwhile, the TEM image indicates SiO ₂ shells formed on P(St-co-5.0%AA) beads are uniform
12	and complete, and their thickness is around 15nm.

 Table 1. As-synthesized n-PBs and their zeta potential and size

		Size / IIII
0	-1.1	599±9
2.5	-23.7	392±6
5.0	-45.6	350±6
	0 2.5 5.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 1. (a) zeta potential (in water) distribution histograms of the as-synthesized n-PBs; SEM images of PS (b), P(St-co-2.5%AA) (c) and P(St-co-5.0%AA) (d) beads after SiO₂ coating; inserts in (b)~(c) are high-magnification SEM images.

Figure 2. TEM image of SiO₂-coated P(St-co-5.0%AA) beads (a); corresponding EDS mapping of

Carbon (b), Silicon (c) and Oxygen (d) respectively.

1 3.2. The Mechanism of SiO₂ Coating on n-PBs

In order to have a better understanding of the SiO₂ coating on n-PBs, intermediate productions 2 at different coating times were collected sequentially for SEM observations and zeta potential 3 measurements. Figure 3 shows the SEM images of un-coated P(St-co-5.0%AA) beads and the 4 intermediate productions collected at 10min, 90min, 3h, 6h, and 9h after the SiO₂ coating. It's found 5 SiO₂ particles started to form on the surface of n-PBs at the beginning of reaction (within 10min), 6 and their amount increased with the time elapsing. Moreover, after 3h of the reaction, the surface of 7 n-PBs had been totally occupied by SiO_2 particles (Figure 3d). From then on, immobilized SiO_2 8 particles merged with each other, and the size of SiO₂-coated n-PBs started to increase. It's 9 noteworthy that there was no freestanding SiO_2 particle could be found in the whole process of SiO_2 10 coating on n-PBs, implying the immobilized SiO₂ particles formed on the surface of n-PBs directly. 11 On the other hand, as seen in Figure 4, "surface charge reversal" phenomenon, which always 12 occurred in the process of SiO₂ coating on p-PBs, was absent in the process of SiO₂ coating on 13 n-PBs. The above observations suggest the mechanism of SiO₂ coating on n-PBs is different with 14 that on p-PBs, and it's important to find out the driving force of SiO2 coating on n-PBs. Apparently, 15 electrostatic attraction force can't be use to explain the coating of SiO2 on n-PBs, since both of 16 them are negatively charged, and even n-PBs with high surface charge density are advantageous for 17 18 SiO₂ coating.

Figure 3. SEM images of P(St-co-5.0%AA) beads without SiO₂ coating (a), and intermediate productions collected at 10min (b), 90min (c), 3h (d), 6h (e) and 9h (f); each scale bar represents 100nm.

0 -5 Ammonia addition Reaction start Zeta potential/ mV -10 10min -15 -20 -25 90min -30 3h 12h 6h ٥ -35 0 200 400 600 800 t/ min

Figure 4. The change of zeta potential (in ethanol) before and in the course of SiO_2 -coating; P(St-co-5.0%AA) beads were used.

Table 2. pH measured in supporting experiment (I) and the calculated concentration of NH_4^+ .pH² $C(NH_4^+) / mM^3$ $\Delta C(NH_4^+) / mM$ Original solution ¹11.75.01--

Supernatant of P(St-co-5.0% AA)	10.2	0.16	-4.85
Supernatant of P(St-co-2.5% AA)	11.3	2.00	-3.01
Supernatant of PS	11.6	3.99	-1.02
¹ The solution is a mixture of 30ml ethano	l, 0.5ml	water and 1mL 25.0 wt.	% ammonia solution; ²
measured after 30min ultrasonication; ³ log	$10C(NH_4)$	$^{+}) = \log_{0}C(OH) = pH-14.$	

In fact, it shouldn't ignore the adsorption of NH4+ on the surface of n-PBs. As seen in **Figure** 4, the surface charge of n-PBs was partly screened after the addition of ammonia solution, implying the adsorption of cationic NH4⁺ on them. The adsorption of NH4⁺ on n-PBs has been further proved by investigating the concentration of NH4⁺ in solution. Because of the existence of the following equilibrium (eq. 1) in the solution containing ammonia, the concentration of NH4⁺ in solution can be obtained by the pH measurement.

NH_3 .	H_2O	\leftrightarrow	NH_4^+	+ OH
----------	--------	-------------------	----------	------

(1)

As seen in **Table 2**, the concentration of NH_4^+ in the solution sharply decreases from 5.01 to 8 9 0.16mM after n-PBs (P(St-co-5.0%AA)) were added in, indicating there have been a considerable amount of NH₄⁺ adsorbed on the surface of n-PBs. Besides, the adsorption of NH₄⁺ shows a close 10 relation with the surface charge of n-PBs, as P(St-co-2.5% AA) and PS can hardly make the NH4+ 11 accumulate on them efficiently. Moreover, it seems the adsorption of NH4⁺ ions further caused the 12 transferring of OH⁻ ions to the surface of n-PBs, as the pH also decreased after the dispersion of 13 n-PBs. In fact, we believe an electric double layer containing NH4⁺ and OH⁻ ions formed on the 14 surface of n-PBs. 15

As we know, the generation of *SiO*₂ in the *stöber* process can be described by the following
two reactions ^[16]:

TEOS hydrolysis:

$$\equiv Si - O(C_2H_5) + H_2O \qquad \Longleftrightarrow \qquad \equiv Si - OH + C_2H_5OH \tag{2-1}$$

Condensation:

$$\equiv Si - OH + HO - Si \equiv \qquad \leftrightarrow \qquad \equiv Si - O - Si \equiv +H_2O \tag{2-2}$$

Since both of these two reactions are nucleophilic, in which silicon atom is attacked by OH-, the 1 generation of SiO_2 can be catalyzed by ammonia solution, from which the OH⁻ ions derived. In 2 other words, the generation of SiO_2 mainly occurs in where OH⁻ and NH_4^+ accumulated. Therefore, 3 in the process of SiO_2 coating on n-PBs, adsorbed NH_4^+ ions made the hydrolysis of TEOS and 4 condensation of silanol directly on the surface of polymer beads, and followed by the 5 immobilization of the generated SiO_2 . Especially in the case of P(St-co-5.0%AA) beads used, the 6 high surface charge density made the distribution of NH_4^+ and OH⁻ so concentrated on the surface 7 of n-PBs that SiO₂ can hardly generate in bulk solution but on the surface of n-PBs. Therefore, all 8 the generated SiO₂ particles were immobilized on the surface of n-PBs, and followed by the 9 formation of SiO₂ shells. On contrary, when P(St-co-2.5%AA) beads or PS beads was used for 10 SiO₂-coating, there were still a considerable amount of NH_4^+ and OH⁻ in bulk solution for 11 catalyzing the generation of SiO₂. Therefore, both immobilized and freestanding SiO₂ can be found 12 in productions. In addition, it's found in the supporting experiment that if the adsorption of NH4⁺ 13 and OH⁻ was suppressed by other ions (i. e. K+, Cl-), freestanding SiO2 particles generated even 14 P(St-co-5.0%AA) beads was used (Supplementary information). 15

Based on the above discussion, we propose a mechanism for the SiO2 coating on n-PBs, as given in **Scheme 1**. This mechanism is reasonable, since it not only illustrate the SiO2 coating can be achieved on the surface of n-PBs, but also explains why the n-PBs with high surface charge density are advantageous for SiO2 coating. We believe the electrostatic repulsive force still exists between SiO2 and n-PBs, as it suppressed the transferring of SiO2 particles generated in bulk solution onto the surface of n-PBs. Nonetheless, when n-PBs with high surface charge density were used, the
influence of electrostatic repulsive force could be neglected according to the mechanism, and it was
even weakened by the adsorption of NH₄⁺ to a large extent (i. e., surface charge screening).

Scheme 1 Mechanism of SiO₂-coating on n-PBs with high (up) or low (down) surface charge density.

4 3.3. Monodisperse HSPs from SiO₂-coated n-PBs

Since SiO₂ shell has been successfully constructed on the surface of n-PBs, as proved by above 5 observations, the obtained SiO2-coated n-PBs can be further used for the fabrication of HSPs. 6 FT-IR spectra in Figure 5 indicate polymeric templates of SiO₂-coated n-PBs (P(St-co-5.0%AA) 7 beads) has been completely removed by calcination (5h at 600°C), as all the characteristic peaks of 8 P(St-co-AA) beads, including that for aromatic C=C (1700-1500 cm⁻¹), aromatic C-H (860-680 9 cm⁻¹), alkyl C-H (2921 cm⁻¹) and carboxylic C=O (1731 cm⁻¹), disappeared after the calcination. On 10 contrary, characteristic peaks of SiO₂ (at 799, 942 and 1089cm⁻¹) maintained after the calcination. 11 Furthermore, SEM and STEM images in Figure 5b and 5c intuitively indicate the hollow structure 12 and high monodispersibility of the HSPs obtained by calcining SiO₂-coated P(St-co-5.0%AA) 13 14 beads. Since there are no collapsed hollow particles or fragments of SiO₂ shell can be found in the

obtained HSPs, it's believed SiO2 shells exhibited sufficient mechanical strength for sustaining
their spherical shape while polymer cores was being burning away, though they are ultra-thin.
Moreover, the high dispersibility of obtained HSPs has also been demonstrated by DLS
measurements (Figure 5d), as the corresponding poly-dispersity index is only 0.085. In addition, a
visible Mie scattering phenomenon could be observed when place the obtained HSPs on a black
background with illumination (insert of Figure 5c), which is possibly attributed by the high
monodispersibility and ultra-thin shells of HSPs [].

Figure 5 FTIR spectra of P(St-co-5.0%AA) beads, SiO₂-coated P(St-co-5.0%AA) beads and HSPs (a); SEM (a) and STEM (b) images of HSPs obtained by calcining SiO2-coated P(St-co-5.0%AA) beads; size distribution histograms of P(St-co-5.0%AA) beads, SiO₂-coated P(St-co-5.0%AA) beads and HSPs in water (d); The insert of (c) is the digital photograph of the HSPs taken with a dark background.

9

10 3.4. The influence of C_{NH3} and C_{H20}

In the process of SiO2 coating on n-PBs, the SiO₂ yield closely associated with the concentration of NH₃ (C_{NH3}) and the concentration of water (C_{H2O}) in reaction system. **Table 2** lists seven different experimental conditions for *SiO*₂ coating, in which C_{NH3} and C_{H2O} are varied independently. The polymer beads used in all those experiments were P(St-co-5.0%AA). SiO₂ yields (Y_{SiO2} /%) were calculated with following equations,

$$Y_{SiO_2}(\%) = \frac{W_{SiO_2}}{W_{thero-SiO_2}} *100\%$$
(3-1)

$$W_{theor-SiO_2} = \frac{V_{TEOS} * \rho_{TEOS} * M_{SiO_2} / M_{TEOS}}{m_{n-PBs} + V_{TEOS} * \rho_{TEOS} * M_{SiO_2} / M_{TEOS}}$$
(3-2)

where W_{SiO2} is the weight percent of SiO₂ in SiO₂-coated n-PBs, which is calculated from the 6 corresponding TG curve (Figure 6a, 7a); $W_{\text{theor-SiO2}}$ is the theoretical value of W_{SiO2} with assuming 7 that the conversion rate of TEOS is 100%; m_{n-PBs} (0.414g) is the weight of n-PBs, V_{TEOS} (1ml) is the 8 volume of TEOS, pTEOS is 0.933g/ml, MSiO2 is 60.08g/mol, and MTEOS is 208.33g/mol. The 9 calculated SiO2 yields are also listed in **Table 2** for reference. By analyzing the plot of Y_{SiO2} vs. 10 C_{NH3} (insert of Figure 6a), it's clear that the SiO₂ yield increases linearly with the increasing of 11 C_{NH3} . For instance, the SiO₂ yield was only 60.6% when the C_{NH3} was 0.29M, but it increased to 12 87.5% when the C_{NH3} reached to 0.49M. Furthermore, the improvement of SiO₂ yield was also 13 reflected in the shell thickness of HSPs. In Figure 6b~d, HSPs with different shell thickness have 14 been obtained by varying the C_{NH3} from 0.29 to 0.49, and the positive correlation between SiO₂ 15 shell thickness and C_{NH3} is significant. On the other hand, increasing C_{H2O} in the reaction system 16 has also improved the SiO₂ yield (Figure 7a). However, it was found that an excessively high C_{H2O} 17 would exert negative influence on the SiO₂ coating. Typically, when C_{H2O} was 3.06M in reaction 18 19 system, despite the SiO₂ yield reached to 90.4%, SiO₂ shells did not formed on the surface of PBs,

as the immobilized SiO_2 particles only connected loosely with each other (Figure 7b). 1 Correspondingly, HSPs fabricated from this kind of SiO₂-coated n-PBs was so fragile that even 2 couldn't endure the ultrasonic treatment during SEM sampling. Although it needs, of course, further 3 experiments (out of the scope of this paper) to address the incomplete coating of SiO₂ on n-PBs 4 under high C_{H2O}, we give a probable explanation here: since polymer beads owned hydrophobic 5 surface, the high concentration of water in reaction system increased the difficulty of the 6 transferring of SiO_2 precursors from bulk solution to the surface of cores; therefore, SiO_2 precursors 7 preferred to participate in the growth of already immobilized SiO_2 particles, which oppositely 8 owned hydrophilic surface, rather than form new nucleation on the surface of polymer beads; as a 9 result, the SiO_2 -coating under this condition was incomplete but with a high yield of SiO_2 . 10

11

Sample	V _{water} / ml	V25.0 wt. % ammonia/ ml	Cwater/M	C _{NH3} /M	SiO ₂ Yield/%		
A1	0.50	1.0	1.4	0.29	60.6		
A2	0.27	1.3	1.4	0.38	72.6		
A3	0	1.7	1.4	0.49	87.5		
B1	0	1.0	0.8	0.29	2.43		
B2	1.0	1.0	1.9	0.29	78.7		
B3	1.5	1.0	2.5	0.29	87.2		
B4	2.0	1.0	3.0	0.29	90.4		
¹ The concentration of TEOS in all the reaction was 95mM; ² P(St-co-5.0%AA) beads were used.							

Figure 6 TG curves of SiO₂-coated n-PBs synthesized with different C_{NH3} (a); the insert of

plots Y_{SiO2} vs. C_{NH3}; STEM images of HSPs obtained from the sample A1 (a), A2 (b) and A3 (c).

Figure 7 TG curves of *SiO*₂-coated n-PBs synthesized with different C_{H2O} (a); the insert of plots Y_{SiO2} vs. C_{H2O}; SEM and STEM images of sample B4 synthesized with C_{H2O}=3.0 (b); STEM image of HSPs obtained from sample B4 (c).

2 4. CONCLUSION

In summary, we have demonstrated n-PBs can be used as the template for the fabrication of 3 HSPs. Quality SiO₂-coated n-PBs and HSPs with high dispersibility and monodisperse size have 4 been obtained in a simple and surfactant free process. With the using of n-PBs instead of p-PBs, the 5 cost for fabricating HSPs has been reduced and the dispersibility of HSPs has been improved. 6 Furthermore, in the process of SiO₂ coating on n-PBs, the influence of the surface charge density of 7 n-PBs, concentrations of NH₃ and water in reaction system have been discussed in detail, and the 8 prerequisites for successful SiO2 coating has also been point out. The prerequisites are: (1) the 9 surface charge density of n-PBs is high; (2) the concentration of water in reaction system is on a 10 low level. Moreover, we have proposed a reasonable mechanism for explaining the coating of SiO₂ 11 on n-PBs, in which the adsorption of NH4+ is emphasized. 12

This work suggest PBs that suitable for SiO_2 coating can be extended to a wider range, without considering if their surface is positively charged or negatively charged. Even more importantly, our discussion on the mechanism of SiO_2 -coating on negatively charged polymer beads revealed the multi-rule of NH₃ (NH₄⁺) plays and its interaction with target cores, which is helpful for better understanding the coating of SiO_2 in a stöber-like method. In addition, we believe constructing a "no surface charge reversal" process for SiO_2 coating can be seen as a practical synthetic strategy for hollow particles with high dispersibility in future works.

20

21 *Corresponding Author

22 Tel.: +81 572 24 8110; Fax: +81 572 24 8109.

- 1 E-mail address: fuji@nitech.ac.jp
- 2

3 Acknowledgment

4	This	study	was	supported	by	the	Advanced	Low	Carbon	Technology	Research	and
5	Developm	ent Pro	gram	(ALCA) of	the	Japaı	n Science an	d Tech	nology A	agency (JST).		
6												
7												
8												
9												
10	REFERE	NCE										

- [1] Andrés Guerrero-Martínez, Jorge Pérez-Juste, Luis M. Liz-Marzán, Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials, Adv. Mat. 22 (2010) 1182-1195; *doi:* 10.1002/adma.200901263.
- [2] Hua Zou, Shishan Wu, Jian Shen, Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev. 108 (2008) 3893-3957; doi: 10.1021/cr068035q.
- [3] Chika Takai; Hideo Watanabe; Takuya Asai; Masayoshi Fuji. Determine Apparent Shell Density for Evaluation of Hollow Silica Nanoparticle, *Colloids Surf.*, A 404 (2012) 101-105; *doi: 10.1016/j.colsurfa.2012.04.019.*
- [4] Masayoshi Fuji; Takahiro Shirai; Hideo Watanabe; Takashi Takei. Shape-controlled HollowSilica Nanoparticles Synthesized by An Inorganic Particle Template Method, Adv. Powder

Technol. 2012, 23, 562-565.

- [5] Markus Retsch; Marcus Schmelzeisen; Hans-Jürgen Butt; Edwin L. Thomas, Visible Mie Scattering in Nonabsorbing Hollow Sphere Powders, Nano Lett. 11 (2011) 1389-1394; *doi:* 10.1021/nl2002445.
- [6] Lee A. Fielding; Oleksandr O. Mykhaylyk; Andreas SchmidL, Diego Pontoni, Steven P. Armes, Patrick W. Fowler., Visible Mie Scattering from Hollow Silica Particles with Particulate Shells, *Chem. Mater.* 26 (2014) 1270-1277; *doi: 10.1021/cm4039347*.
- [7] Jaemoon Yang, Jaewon Lee, Jinyoung Kang, Kwangyeol Lee, Jin-Suck Suh, Ho-Geun Yoon, Yong-Min Huh, Seungjoo Haam. Hollow Silica Nanocontainers as Drug Delivery Vehicles, Langmuir 24 (2008) 3417-3421; *doi: 10.1021/la701688t*.
- [8] Linn Ingunn C. Sandberg, Tao Gao, Bjørn Petter Jelle, Arild Gustavsen, Synthesis of Hollow Silica Nanospheres by Sacrificial PS Templates for Thermal Insulation Applications. Adv. in Mater. Sci. Eng. 2013, Article ID 483651; doi: http://dx.doi.org/10.1155/2013/483651.
- [9] Werner Stöber, Arthur Fink. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci. 26 (1968) 62-69; *doi: 10.1016/0021-9797(68)90272-5*.
- [10]Asep Bayu Dani Nandiyanto, Yui Akane, Takashi Ogi, Kikuo Okuyama, Mesopore-free hollow silica particles with controllable diameter and shell thickness via additive-free synthesis, Langmuir 28 (2012) 8616-8624; doi: 10.1021/la301457v.
- [11]Yu Lu, Joe McLellan, Younan Xia, Synthesis and crystallization of Hybrid Spherical Colloids composed of polystyrene cores and silica shells, Langmuir 20 (2004) 3464-3470; doi: 10.1021/la036245h.

- [12]G.H. Bogush; M.A. Tracy, C.F. Zukoski IV, Preparation of Monodisperse Silica Particles:
 Control of Size and Mass Fraction. J. Non-Cryst. Solids 104 (1988) 95-106; *doi:* 10.1016/0022-3093(88)90187-1.
- [13]Christina Graf; Dirk L. J. Vossen; Arnout Imhof; Alfons van Blaaderen. A General Method to Coat Colloidal Particles with Silica. *Langmuir 19* (2003) 6693-6700; *doi: 10.1021/la0347859*.
- [14]Tian-Song Deng, Frank Marlow, Synthesis of monodisperse polystyrene@vinyl-SiO2 core-shell particles and hollow SiO2 spheres, Chem. Mater. 24 (2012) 536-542; doi: 10.1021/cm203099m.
- [15]Naser Sharifi-Sanjani, Morteza Soltan-Dehghan, Nader Naderi, Ali Ranji, Emulsifier-Free Emulsion Polymerization of Styrene, J. Appl. Polymer. Sci. 94 (2004) 1898-1904; *doi:* 10.1002/app.20893.
- [16]C.J. Brinker, hydrolysis and condensation of silicates: effects on structure, J. Non-crystaline solids 100 (1988) 31-50; doi: 10.1016/0022-3093(88)90005-1.
- [17]Hua Zou, Shishan Wu, Qianping Ran, Jian Shen, A Simple and Low-Cost Method for the Preparation of Monodisperse Hollow Silica Spheres, J. Phys. Chem. C 112 (2008) 11623-11629; doi: 10.1021/jp800557k.
- [18]Lijuan Zhang , Maria D'Acunzi , Michael Kappl , Günter K. Auernhammer, Doris Vollmer, Hollow Silica Spheres: Synthesis and Mechanical Properties, Langmuir, 25 (2009) 2711-2717; doi: 10.1021/la803546r.
- 1

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			