A modified sol-gel method using acetone-ethanol mixed 2 solvent for fast constructing nanometric TiO₂ shells

Author name: Wanghui Chen, Chika Takai, Hadi Razavi Khosroshahi, Masayoshi Fuji*,
Takashi Shirai

Author affiliation: Advanced Ceramics Research Center, Nagoya Institute of Technology,
Honmachi 3-101-1, Tajimi, Gifu, 507-0033, Japan

*Corresponding author: E-mail: fuji@nitech.ac.jp; Tel.: +81 572 24 8110; Fax: +81 572
24 8109.

9 **Abstract:** We successfully constructed uniform and complete TiO₂ shells on SiO₂ cores in a short reaction time (2h) and obtained the core-shell particles with high dispersibility. In this 10 modified sol-gel method, the adopting of ethanol-acetone mixed solvent was critical and 11 advantageous for the fast formation of TiO₂ shells. When acetone was controlled at an optimum 12 fraction in solvent (acetone: ethanol=1.2:1 v/v), it not only increased the hydrolysis rate of 13 precursor (i. e., titanium (IV) tetrabutoxide) and the condensation rate of titanium oligomers, 14 but also regulated these two sub-reactions of TiO₂ formation to be in balance — and thus 15 suppressed the occurrence of agglomeration during TiO₂ coating. In addition, the influence of 16 the concentration of catalyst NH₃ and precursor titanium (IV) tetrabutoxide was also 17 investigated. Furthermore, the thickness of TiO₂ shells on 366nm SiO₂ cores was varied from 18 30 to 107 nm by simply adjust the addition volume of precursor, as the regulation role of acetone 19 was widely applicable for different concentration of precursor. Finally, the obtained TiO₂ 20 shells were proved to be able to crystallize to anatase shells by calcination, while the core-shell 21 22 structure showed high stability at high temperature.

23 **Keywords:** Core-shell; D. TiO₂; D. Glass; A. Sol-gel processes.

2 Introduction

In the past several years, ceramic core-shell particles (including x@ceramic, ceramic@x 3 and ceramic@ceramic; x=polymer, metal, carbon, etc.) have received significant research 4 attention, because of their potential applications in energy conversion, heterogeneous catalysis, 5 drug delivery, bio-compatible material, thermal insulation, etc ^[1-10]. The competitiveness of this 6 class of composite particles comes from their novel hetero-structure, which combines two or 7 more materials in one unit—and thus brings the multifunctionality and synergistic effect ^[11-13]. 8 To date, a number of synthetic strategies have been developed for ceramic core-shell particles, 9 such as sol-gel method ^[14-17], layer-by-layer approach ^[18], hydrothermal reaction ^[19, 20], etc. 10 Among them, sol-gel method was commonly adopted for constructing most kinds of ceramic 11 shells, in the advantages of its short production cycle and feasibility under moderate condition. 12 Representatively, SiO₂ shell was constructed on various kinds of core materials, including 13 polymers, metals and ceramics, by conducting the hydrolysis of tetraethyl orthosilicate (TEOS) 14 and related condensation in core suspensions, with the catalyzing of NH₃^[21]. 15

There is no doubt the performance of ceramic core-shell particles in applications is closely 16 related to their dispersibility, as well as the uniformity and completeness of their shells. 17 Concerning these points, to the best of our knowledge, it remains a great challenge for 18 constructing uniform TiO₂ shells and obtaining the core@TiO₂ particles with high dispersibility 19 by the conventional sol-gel process, as conducting the hydrolysis reaction of titanium alkoxides 20 and related condensations in ethanol with the presence of ammonia. Different with that for SiO₂ 21 22 shells, the concentration of titanium oligomers in the reaction solution could hardly be controlled on an appropriate level for heterogeneous nucleation, due to the ultra-high hydrolysis 23

speed of their precursors (i. e., titanium alkioxides). Instead, there were a certain number of 1 freestanding TiO₂ particles generated in bulk solution by homogeneous nucleation, and 2 subsequently reduced the yield rate of TiO₂ coating. Even worse, those TiO₂ particles would 3 possibly form necks between core-shell particles, and then caused particle agglomeration. 4 Although Wei Li et al ^[22] most recently reported the concentration of titanium oligomers could 5 be well controlled on an appropriate level for the heterogeneous nucleation by precisely 6 adjusting the concentration of NH₃ (played as the catalyst) to a low level, such a low 7 concentration of NH₃ also led to a low yielding rate of TiO₂. Therefore, a long reaction time 8 and certain heating were required in their synthesis. Meanwhile, the thickness of TiO2 shells in 9 that work could only be tuned by varying the yield rate of TiO₂, which was not as advantageous 10 as by adjusting the amount of precursor on the basis of a high yield rate of TiO₂. 11

Herein, we introduce a modified sol-gel method to fast constructing uniform TiO₂ shells 12 and fabricate core@TiO₂ particles with high dispersibility. The key point of this method is 13 adding acetone, which is known as a cheap and commonly used chemical, into the conventional 14 reaction solution of ethanol/NH₃/water/TBOT and controlling it in an appropriate fraction. For 15 easily analyzing the formation of TiO₂ shells and measuring the shell thickness, monodisperse 16 SiO₂ microspheres were chosen as the core material. Meanwhile, a commonly used titanium 17 alkioxide-titanium (IV) tetrabutoxide (TBOT) was used as the precursor of TiO2. The obtained 18 SiO₂@TiO₂ core-shell particles (STcsps) showed high dispersibility and were found uniform in 19 shell thickness. In contribution of the role of acetone, it was also possible to tuning the TiO₂ 20 shell thickness by the concentration of TBOT in reaction solution. It is also noteworthy that 21 22 surfactants were unnecessary in this method and the reaction could be finished in a short time with reaching to a high yield rate of TiO₂ coating. 23

3

2 2. Experimental

2.1 Materials

Tetraethyl orthosilicate (TEOS, 95.0%), Ethanol (99.5%), Ammonia solution (28.0 %),
Titanium (IV) Tetrabutoxide (TBOT, 95.0%), Acetone (99.5%) were from Wako Pure Chemical
Industries, Ltd. (Japan). All the chemicals were used as received and without further
purification. DI water was produced by RFD250NB distilled water system (Toyo Roshi Kaisha,
Ltd., Japan).

9

2.2 Synthesis of SiO₂ cores

SiO₂ cores were synthesized by the Stöber method using TEOS as the precursor and NH₃ as the catalyst ^[23]. Briefly, 10ml 28.0% ammonia solution was added into a mixture of 36ml ethanol and 20ml DI water under vigorous stirring (600rpm). After 20min, 35.6 ml TEOS solution (15.7 vol. % in ethanol) was poured into the above mixture to initiate the sol-gel process for SiO₂. After 8h, resulting particles were collected by centrifugation at 3000rpm (using H-9R, Kokusan co. Ltd. Japan) and washed with ethanol and DI water for several times. These particles were finally dried in vacuum at 80°C for 12h.

17

2.3 Fabrication of STcsps

18 Reaction solution for the fabrication STcsps contained ethanol, acetone, NH₃, water, TBOT, 19 and SiO₂ cores. All the recipes for these fabrications are listed in **Table 1**. In a typical process 20 (recipe 4), an amount of 0.025g SiO₂ cores was dispersed in a mixture of acetone (28.50ml), 21 ethanol (16.50ml) and ammonia solution (28.0%, 0.15ml). Then the suspension was treated by 22 ultrasound for 30min to improve its uniformity. After that, 5ml TBOT solution (2.0 vol. % in 23 ethanol) was poured in under vigorous stirring (600rpm). Then the reaction lasted for 2h at

1	room temperature with the same stirring. Productions were collected by centrifugation at
2	3000rpm (using H-9R, Kokusan co. Ltd., Japan) and then washed with ethanol and DI water
3	for 6 times in sequence. Finally, the production was dried in vacuum at 80°C for 12h.
4	Calcinations of STcsps were carried out in air at 500, 550 and 600°C, respectively. All the
5	calcinations lasted for 5h and with the heating rate of 5°C/min.
6	
7	2.4 Characterization
8	Scan electron microscopy (SEM) images were taken by a JSM-7600F (JEOL Ltd., Japan).
9	Transmission electron microscopy (TEM) images and Energy dispersive X-ray spectroscopy
10	(EDS) mapping were taken by a JEM-z2500 (JEOL Ltd., Japan). Thermogravimetry (TG-DTA)
11	curves were recorded by a thermo plus TG-8120 (Rigaku. Co., Japan). X-ray diffraction patterns
12	were recorded by a Ultima IV (Rigaku co., Japan) with Cu K α radiation (λ =1.5418 Å). Dynamic
13	Light Scattering (DLS) measurements were conducted on a Zetasizer nano-zs (Malvern Ltd.,
14	UK) for analyzing particle size distribution. FT-IR spectra were retrieved from a FT/IR-6000
15	(Jasco Co., Ltd., Japan).
16	
17	3. Result and discussion
18	3.1 Formation of TiO ₂ shells with the presence of acetone
19	The as-synthesized SiO ₂ microspheres (i. e., cores for TiO ₂ coating) showed uniform size
20	and good dispersibility in their SEM image (Figure 1a). The mean size of SiO_2 cores was
21	calculated to 366±3nm by evaluating 100 particles in SEM image (magnification: 20,000).
22	Meanwhile, the size distribution curve of SiO ₂ cores (in Figure 1h), with the polydispersity
23	index (PDI) as low as 0.012, further indicates their high monodispersibility.
	5

1	Figure 1b~g demonstrate a typical formation process of STcsps in the adopted reaction
2	solution of ethanol/acetone/ NH_3 /water/TBOT (recipe 4). The intermediate productions for
3	SEM observations were collected at 2, 10, 20, 40, 60 and 120min, respectively. As seen, TiO_2
4	started to deposit on the surface of SiO_2 cores soon after the initiation of TiO_2 coating reaction
5	(2min), with leading to a much rougher particle surface. After reacting for 10min, the surface
6	of SiO_2 cores was completely covered by immobilized TiO_2 particles. Then the particle size
7	rapidly increased and reached to a stable stage after 1h. In the end of the reaction, the mean size
8	of produced STcsps was calculated to 536±5nm, much larger than that of the corresponding
9	SiO_2 cores. Moreover, it was clear that the high monodispersibility of SiO_2 cores was
10	maintained well in the course of size increasing, indicating the uniformity of TiO_2 shells.
11	Meanwhile, the absence of freestanding TiO ₂ particles implied the high yield of TiO ₂ coating
12	(the free TiO ₂ nanoparticles in Figure 1b were possibly caused by the ultrasound treatment
13	during sampling). Agglomeration was also well suppressed in this course, as there is only one
14	peak appeared between 100 and 10000nm in the size distribution curve of every intermediate
15	production (Figure 1h). It should be point out that although the mean size of STcsps only
16	showed a slight increasing after 1h, as indicated by both SEM observations and DLS
17	measurements, an appropriate extension on the reaction time was necessary in practical
18	operations for the aging of TiO ₂ .

19 Core-shell structure of the obtained STcsps was further confirmed by TEM observation. 20 Since TiO₂ and SiO₂ show different contrast under electron beam, one can easily distinguish 21 the shell and core parts of STcsps in the dark-field TEM image. As seen in **Figure 2a**, a complete 22 and uniform TiO₂ shell formed on the surface of every SiO₂ core. Meanwhile, the interface 23 between TiO₂ shell and SiO₂ core could be observed in the high-magnification TEM image

1	(Figure 2b). It's also found the formed TiO ₂ shells were composed by numerous closely-staking
2	TiO ₂ particles. EDS mapping is also an intuitive evidence for the core-shell structure of STcsps,
3	as seen in Figure 2c, Ti element (c1) accumulated near the edge of STcsps while Si element
4	(c2) was rich in the interior of particle. O element (c3) uniformly distributed in the whole STcsps,
5	because of the similar chemical formula between SiO_2 and TiO_2 . Other evidences for the
6	composition of SiO_2 and TiO_2 , such as EDS point spectra and FT-IR spectra, were given in the
7	supplementary material (s1~s3).

- 8
- 9

3.2 The role of acetone

On the basis of above observations, STcsps with high dispersiblity and uniform shells 10 could be successfully obtained when the volume ratio of acetone to ethanol (Ra/e) was controlled 11 12 at 1.2 (Figure 1g). To analyze the influence of acetone, other batches of STcsps were fabricated with controlling R_{a/e} at 0, 0.4, 0.8, 1.6 and 2.0, respectively. In brief, the yield rate of TiO₂ 13 14 coating increased with increasing R_{a/e}, while particle agglomeration occurred when R_{a/e} was excessively high. When low $R_{a/e}$ (≤ 0.4) was adopted (Figure 3a), there was no TiO₂ yielded 15 within the specified reaction time (2h), indicating the low hydrolysis rate of TBOT under this 16 condition. When R_{a/e} reached to 0.80 (Figure 3b), flocculent TiO₂ generated and adhered on 17 18 the surface of cores, though their amount was far from enough to form complete shells. The amount of yielded TiO₂ significantly increased when R_{a/e} was further increased to 1.2 (Figure 19 1g), and thus immobilized TiO_2 particles were able to form uniform and complete shells. 20 However, when R_{a/e} was increased to 1.6, necks and freestanding TiO₂ particles appeared 21 22 accompanying with the formation of TiO_2 shells (Figure 3c), and correspondingly, the high dispersibility of STcsps could not be maintained any longer. If Ra/e was controlled at 2.00 or 23

- 1 even higher, only irregular aggregates could be found in the production (Figure 3d).
- As we know, the sol-gel process from TBOT to TiO₂ can be described by following two
 sub-reactions ^[24]:
- 4 (i) Hydrolysis of TBOT (R=C₄H₉),

$$\equiv Ti-O-R+H_2O \rightarrow \equiv Ti-O-H+ROH$$
(1-1)

5 (ii) Condensation of titanium oligomers

$$\equiv Ti - O - H + H - O - Ti \equiv \rightarrow \equiv Ti - O - Ti \equiv + H_2 O$$
(2-1)

6 or

$$\equiv Ti-O-H+R-O-Ti \equiv \rightarrow \equiv Ti-O-Ti \equiv +ROH$$
(2-2)

According to LaMer theory ^[25], the concentration of titanium oligomers (C_{to}) in reaction 7 solution determined whether TiO₂ would form or not. In general, Cto first increased along with 8 the hydrolysis of TBOT and condensation of titanium monomers until it reached to a critical 9 concentration. Once a sufficient number of titanium oligomers containing certain numbers of 10 structure units (i. e., -O-Ti-O-) had been yielded, polymerized TiO₂ networks (i. e., 11 polyoxoalcoxides) formed along with further condensations, followed by the precipitation of 12 TiO₂ from bulk solution(TiO₂ nuclei) ^[24]. Apparently, the condensation process in this stage 13 could be seen as the consumption of titanium oligomers, and its rate determined if the Cto in 14 reaction solution would continuously increase or not. Moreover, the nucleation type of TiO₂ 15 was also determined C_{to}, as if it was only exceeded the critical concentration for heterogeneous 16 nucleation (C_{he}) or even exceeded that for homogeneous nucleation (C_{ho}). In the latter case, 17 TiO₂ nuclei formed by both heterogeneous and homogeneous nucleation. Obviously, for 18 19 obtaining the TiO₂-coated particles with desirable morphology: (i) the hydrolysis rate should be high enough to yield sufficient amount of titanium oligomers for initiating the nucleation of 20

TiO₂; (ii) the condensation rate of titanium oligomers should be high enough to ensure C_{to} would
not exceed C_{ho}.

In this work, it is clear the hydrolysis of TBOT was accelerated by the addition of acetone, 3 and thus C_{to} was sufficiently high to initiate the nucleation event of TiO₂, though there was only 4 a small fraction of NH₃ catalyst contained in the reaction solution. When R_{a/e}=1.2, the 5 heterogeneous nucleation was maintained for a considerable long period to yield a sufficient 6 number of TiO₂ nuclei for complete coating, whereas homogeneous nucleation and its related 7 agglomeration were well suppressed. Obviously, C_{to} in this case was lower than C_{ho} but higher 8 than Che. Therefore, it is rational that the condensation process of titanium oligomers was also 9 promoted by acetone —only then could it be in balance with the accelerated TBOT hydrolysis 10 and to maintain the appropriate level of Cto. However, it seems the balance no longer existed 11 with further increasing R_{a/e} to 1.6 or higher, as indicated by the freestanding TiO₂ particles and 12 agglomeration. In this case, since the kinetic rate of both the hydrolysis rate of TBOT and the 13 condensation rate of titanium oligomers had been greatly enhanced by such a high fraction of 14 acetone, the two sub-reactions of TiO₂ formation possibly became diffusion-controlled. 15 Obviously, since the condensation reaction (eq. 2-1 or 2-2) involves the mass diffusion of two 16 titanium oligomers, its apparent rate is much lower than that of the hydrolysis reaction. 17 Therefore, Cto would keep increasing after it exceeded Che, and followed by exceeding Cho to 18 initiate the homogeneous nucleation of TiO₂. It should be point out if acetone was absent in the 19 reaction solution, STcsps with uniform TiO₂ shells and high dispersibility might also be 20 obtained by precisely controlling the fraction of ammonia ^[22]. Nevertheless, it seems the 21 22 hydrolysis rate of TBOT and condensation rate of titanium oligomers could only balance with each other when both of them were low. Therefore, the production cycle would be much longer 23

1 than that adopted in this work (2h).

The mechanism of acetone promoting both the hydrolysis of TBOT and the condensation 2 of titanium oligomers could be classified to an issue on solvent effect. As we know, both of the 3 hydrolysis reaction of TBOT and the condensation of titanium oligomers under base condition 4 are nucleophilic substitution reactions. However, as a protic solvent, ethanol would possibly 5 hydrogen bond with hydroxyl ions (i. e., catalysts) in hydrolysis reaction and with nucleophilic 6 deprotonated silanols in condensation reaction, and thus retard the processing rate of these two 7 nucleophilic substitution reactions. Apparently, the presence of acetone, as a typical aprotic 8 9 hydrolysis and titanium oligomers condensation were therefore increased. Furthermore, on the 10 increasing of condensation rate, the polarity of solvent should also be taken into consideration. 11 Since the dielectric constant of acetone (21.0) is lower than that of ethanol (24.5), the solvation 12 effect of generated titanium oligomers (or monomers) was weakened after the appearance of 13 acetone. In other words, titanium oligomers (or monomers) in ethanol-acetone mixture were 14 not as "solvable" as that in ethanol. Therefore, they were more likely to conduct condensation 15 and then precipitate from liquid phase. Last but not the least, the addition of acetone also 16 reduced the viscosity of the reaction solution, as the viscosity of acetone $(3.06 \times 10^{-4} \text{ pa} \cdot \text{s})$ is 17 about one-third to that of ethanol $(1.074 \times 10^{-3} \text{ pa} \cdot \text{s})$. Since a low viscosity is obviously 18 advantageous for the mass transference of reactive species, the reduction of viscosity could also 19 be seen one of rational reasons for the promoting of both the hydrolysis of TBOT and the 20 condensation of titanium oligomers. 21

Although there still need much more experiments to analyze its actual mechanism, the regulation role of the regulation role of acetone towards the formation of TiO₂ has also been proved by synthesizing monodisperse TiO₂ microspheres (s4). To our knowledge, monodisperse
TiO₂ microspheres could hardly be synthesized by conventional sol-gel method with only using
ethanol as the solvent, since the hydrolysis rate of TBOT in that case was always higher than
the condensation rate of titanium oligomers ^[26].

5

6

3.3 Effect of NH₃

Figure 4a shows the SEM image of STcsps fabricated without the presence of NH₃ in 7 reaction solution (recipe 7). For this fabrication, all parameters were kept the same with recipe 8 4 except replacing the added 0.15ml 28.0% ammonia solution with 0.11ml DI water for 9 excluding NH₃ but maintaining the concentration of water in reaction solution. The morphology 10 of STcsps formed under this condition was unfavorable, as there were a number of necks formed 11 between particles. Even worse, the surface of SiO₂ cores was not completely covered. Instead, 12 immobilized TiO₂ particles only formed a loose and porous layer on every SiO₂ core. To explain 13 this phenomenon, the repulsive force between SiO₂ cores and titanium oligomers should be 14 taken into consideration. If NH₃ was absent in reaction solution, since both the SiO₂ cores and 15 titanium oligomers carried negative charges, it was hard for titanium oligomers overcoming the 16 energetic barrier to conduct heterogeneous nucleation. Instead, freestanding TiO₂ particles 17 would be yielded in the bulk solution due to the ongoing increasing of C_{to}. On contrary, when 18 a certain amount of NH₃ was added in, energetic barrier for the heterogeneous nucleation of 19 TiO₂ was reduced by the absorbed NH_4^+ ions on the surface of SiO₂ cores. Therefore, the yield 20 and uniformity of TiO₂ coating was improved. 21

Although the presence of NH₃ in the reaction solution is a prerequisite for achieving a successful TiO₂ coating, the morphology of STcsps was sensitive to addition volume of

ammonia solution-severe agglomeration occurred even when the addition volume of ammonia 1 solution was slightly increased to 0.25ml (Figure 4b). This result showed good agreement with 2 that of previous works ^[22], and could be attributed to the excessively high hydrolysis rate of 3 TBOT at high pH. Apparently, the formation rate of TiO₂ in the reaction solution of 4 ethanol/acetone/NH₃/water/TBOT was determined by both R_{a/e} (i. e., fraction of acetone) and 5 the concentration of NH₃. There might still be an optimum R_{a/e} with such a high concentration 6 of NH₃, but to find this optimum R_{a/e} is already out of the scope of this paper. Nevertheless, it 7 should be point out that regulating the TiO_2 formation by $R_{a/e}$ is much more convenience and 8 practical than that by controlling the concentration of NH₃ in reaction solution, because of the 9 small usage volume and high volatility of ammonia solution. 10

- 11
- 12

3. 4 Constructing TiO₂ shells with various thickness

Figure 1g and 5a~e show SEM images STcsps fabricated with different concentration of 13 TBOT (C_{TBOT}) while fixing $R_{a/e}$ at 1.2 and the addition volume of ammonia solution at 0.15ml. 14 The size information of all these STcsps were calculated by evaluating 100 particles in SEM 15 images (magnification: 20,000) and listed following their corresponding recipes (4, 9~13) in 16 Table 1. As seen, the average size of STcsps could be varied from 426 to 692nm by varying 17 C_{TBOT} from 0.2 to 1.0 vol. %, indicating TiO₂ shells with different thickness had been 18 constructed on SiO₂ cores. Moreover, the obtained STcsps showed high dispersibility when 19 CTBOT was controlled lower than 0.75 vol. %, whereas some necks formed when CTBOT reached 20 to 1.00 vol. % (Figure 5e). 21

22 The thickness of TiO_2 shell (T/nm) was calculated by the following equation:

$$T = \left(d_{STcsps} - d_{cores}\right)/2 \tag{3}$$

1 Mean while, the thickness of TiO₂ shells were also calculated theoretically (i. e., T_{theo}/nm) by

2 the following equations with assuming the conversion rate of TBOT reached to100%:

$$2T_{theo} = d_{cores} \cdot \sqrt[3]{\left(m_{TiO_2} / \rho_{TiO_2} + m_{SiO_2} / \rho_{SiO_2}\right) / \left(m_{SiO_2} / \rho_{SiO_2}\right)} - d_{cores}$$
(4-1)

$$m_{TiO_2} = M_{TiO_2} \cdot C_{TBOT} \cdot V_{Total} \cdot \rho_{TBOT} / M_{TBOT}$$
(4-2)

where $m_{SiO2}=0.025g$, $\rho_{TiO2}=2.9g/cm^3$, $\rho_{TBOT}=0.996g/cm^3$, $V_{total}=50ml$ and $\rho_{SiO2}=2.648g/cm^3$. As 3 seen in Figure 5f, both T and Tthero increased with increasing CTBOT in reaction solution, and 4 showed good agreement with each other when $C_{TBOT} \leq 0.75$ vol. %, indicating the high 5 conversion rate of TBOT and the high yield of TiO₂ coating in this method. Particle 6 agglomeration was well prevented in a considerably wide range of C_{TBOT} (0.20 to 0.75 vol. %), 7 indicating the regulation role of acetone remained effective in this range. Especially, 8 9 monodisperse STcsps with 107nm in their TiO₂ shells could be obtained by controlling C_{TBOT} at 0.75 vol. % (Figure 5d). However, T was significantly larger than the corresponding T_{thero} 10 when C_{TBOT} was further increased to 1.00 vol. %. Apparently, the formation of necks (marked 11 in Figure 5e) with such a high C_{TBOT} decreased the effective surface area for TiO₂ coating, and 12 thus led to unusually thick TiO₂ shells. In fact, it was hard to construct a thick (~100nm) TiO₂ 13 shell on the surface of cores by simply increasing C_{TBOT} in the conventional reaction solution 14 15 of ethanol/NH₃/TBOT, since a higher C_{TBOT} led a higher hydrolysis rate of TBOT—and thus a higher risk for particle agglomeration. Instead, multiple coating with adopting low C_{TBOT} in 16 every step and/or surfactants-assisted fabrication was usually applied ^[27, 28]. While in the present 17 experiments, profiting from the regulation role of acetone, the hydrolysis rate of TBOT and the 18 condensation rate of titanium oligomers were able to balance with each other at different C_{TBOT}. 19 Therefore, the thickness of TiO₂ shells became tunable within a considerable wide range by 20

varying the addition volume of TBOT. Although there still was an upper limit on C_{TBOT} for
maintaining the dispersibility of the resulting core-shell particles, thick TiO₂ shells (e. g. 107nm)
could be constructed on cores evenly in a one-pot synthesis.

- 4
- 5

3.5 Crystallization of TiO₂ shells

Considering the crystallized TiO₂, especially the anatase TiO₂, is much more desirable than 6 amorphous one in applications, we investigated the crystallization process of the obtained TiO₂ 7 shells. TG-DTA curves of STcsps (T=85nm) and SiO₂ cores in the temperature range of 8 20~800°C are compared in Figure 6a. As seen, both TG curves kept declining with temperature 9 increasing until they reached to a platform at around 500°C. However, due to the new portion 10 of water and organic residues brought by TiO₂ coating, the total weight loss of STcsps (26%) 11 was much higher than that of SiO₂ cores (9%). Besides, no peaks could be found in the DTA 12 curve of SiO₂ cores, whereas there were a number of exothermic peaks appeared in that of 13 STcsps (300~450°C), which were caused by the combustion of organic residuals. It should be 14 point out the amount of organic residuals in the obtained STcsps was considerably low, as 15 revealed by the small difference between TG curves obtained with and without nitrogen 16 protection (s5). Noteworthy, all those exothermic peaks are not about to the crystallization 17 process, since XRD measurement (Figure 6b) indicated the TiO₂ shell were still amorphous 18 after calcining STcsps in air at 500°C for 5h. It is found in Figure 6b that TiO₂ shell started to 19 crystallize at around 550°C, as a small diffraction peak appeared in the corresponding XRD 20 pattern (2θ =25.4°). When the calcination temperature was increased to 600°C, the intensity of 21 22 that peak significantly increased, indicating TiO₂ shell increased in its crystallinity. Meanwhile, more diffraction peaks appeared in the XRD pattern, all of which could be well indexed to the 23

standard XRD diffraction pattern of anatase TiO₂ (JCPDS No. 21-1272). Normally, the typical calcination temperature for obtaining anatase TiO₂ is 500°C ^[26], but it was insufficient for the crystallization of TiO₂ shells in this work, suggesting the phase transformation of TiO₂ was possibly inhibited by compositing with SiO₂ cores. Furthermore, the grain size of the formed anatase shells (600°C, 5h) was calculated to 9nm by Scherrer equation. Such a small grain size indicated the high nucleation rate of TiO₂ in the coating process.

7 On the morphology of STcsps with crystallized TiO2 (anatase) shells, **Figure 6c and 6d** 8 show the low- and high-magnification TEM images of calcined (600°C) STcsps, respectively. 9 As seen, the crystallized TiO₂ shells remained complete and uniform on the surface of SiO₂ 10 cores, no new necks or aggregates formed in calcination. In addition, the anatase type of the 11 crystallized TiO₂ shells could also be confirmed by the lattice fringes shown in the high-12 magnification TEM image (insert of **Figure 6d**), as the distance between two fringes (0.35nm) 13 was close to the spacing of (101) lattice of anatase TiO₂ (0.3514nm).

14

15

4. Conclusion

In summary, we have demonstrated a facile method for constructing uniform TiO₂ shells. 16 Two common issues in the TiO₂ coating by conventional sol-gel method, as one about the 17 uniformity of TiO₂ shells and another one on the dispersibility of core-shell particles, have 18 been successfully addressed. Even more importantly, the TiO₂ coating by this method could 19 reach to a high yield rate within a short time and the corresponding shell thickness could be 20 simply tuned by the usage amount of precursor TBOT. As observed, uniform and complete 21 22 TiO_2 shells with a tunable thickness from 30 to 107nm could be constructed on SiO_2 cores (366±3nm) in 2h to form SiO₂@TiO₂ core-shell particles with high dispersibility. All 23

1	advantages of this method could be attributed to the presence of acetone in the reaction
2	system with an appropriate fraction, as it not only promoted the yielding of TiO_2 , but also
3	regulated the concentration of titania oligomers to a desirable level for the heterogeneous
4	nucleation of TiO ₂ . In this method, the presence of NH ₃ was also important for the formation
5	of complete TiO_2 shells, though the concentration of NH_3 had to be controlled at low. In
6	addition, the obtained TiO ₂ shells could be further crystallized to anatase shells by calcining
7	in air at 600°C, and thus to meet practical applications.
8	We believe this method can be extended for various core materials, as the formation rate
9	of TiO_2 could be well controlled by optimizing the fraction of acetone in reaction solution
10	even without cores (the fabrication of monodisperse TiO ₂ microspheres). Moreover, the
11	success of this method suggests much more attention should be devoted to the solvent effect
12	in the sol-gel process of ceramic core-shell particles. In the following works, it is also worthy
13	to comparing the interaction between acetone and titanium oligomers to that between ethanol
14	and titanium oligomers for better understanding the regulation role of acetone towards TiO_2
15	coating.
16	
17	Acknowledgment
18	This study was supported by the Advanced Low Carbon Technology Research and
19	Development Program (ALCA) of the Japan Science and Technology Agency (JST).
20	
21	Reference

[1] Suying Wei, Qiang Wang, Jiahua Zhu Luyi Sun, Hongfei Line, Zhanhu Guo,

Multifunctional composite core-shell nanoparticles, Nanoscale 3 (2011) 4474-4502.

- [2] Hiroaki Tada, Musashi Fujishima, Hisayoshi Kobayashi, Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion, Chem. Soc. Rev. 40 (2011) 4232-4243.
- [3] Jifa Qi, Xiangnan Dang, Paula T. Hammond, Angela M. Belcher, Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure, ACS Nano 5 (2011) 7108–7116.
- [4] Jiang Du, Jian Qi, Dan Wang, Zhiyong Tang, Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency, Energy Environ. Sci. 5 (2012) 6914-6918.
- [5] Suim Son, Sun Hye Hwang, Chanhoi Kim, Ju Young Yun, Jyongsik Jang, Designed synthesis of SiO₂/TiO₂ core/shell structure as light scattering material for highly efficient dye-sensitized solar cells, ACS Appl. Mater. Interfaces 5 (2013) 4815-4820.
- [6] Jianping Ge, Qiao Zhang, Tierui Zhang, Yadong Yin, Core–Satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability, Angew. Chem., Int. Ed. 47 (2008) 8924-8928.
- [7] F H Chen, Q Gao, J Z Ni, The grafting and release behavior of doxorubincin from Fe₃O₄@SiO₂ core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery, Nanotechnol. 19 (2008) 165103-165112.
- [8] I. I. Slowing, B. G. Trewyn, S. Giri, V. S.-Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications, Adv. Funct. Mater. 17 (2007) 1225-1236.

- [9] Wolfgang Schärtl, Current directions in core-shell nanoparticle design, Nanoscale 2 (2010) 829-843.
- [10] Jing Yuan, Zhenguo An, Bing Li, Jingjie Zhang, Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO₂ core/shell composite hollow spheres, Particuology 10 (2012) 475-479.
- [11] Vladimir V. Srdić, Bojana Mojić, Milan Nikolić, Stevan Ognjanović, Recent progress on synthesis of ceramics core/shell nanostructures, Process. Appl. Ceramics 7 (2013) 45-62.
- [12] Yao Qin, Yanjie Zhou, Jie Li, Jie Ma, Donglu Shi, Junhong Chen, Jinhu Yang, Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications, J. Colloid Interface Sci. 418 (2014) 171-177.
- [13] Li Zhang, Douglas A. Blom, Hui Wang, Au–Cu₂O core–shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties, Chem. Mater., 23 (2011) 4587-4598.
- [14] Yong Wang, Xiaowen S , Panshuang Ding, Shan L , Huaping Yu, Shape-controlled synthesis of hollow silica colloids, Langmuir 29 (2013) 11575-11581.
- [15] Tian-Song Deng, Frank Marlow, Synthesis of monodisperse polystyrene@vinyl-SiO₂ core–shell particles and hollow SiO₂ spheres, Chem. Mater. 24 (2012) 536-542.
- [16] C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol-gel synthesized Mndoped TiO₂/ZnO core-shell nanoparticles, Superlattices Microstruct. 64, (2013) 569-

580.

- [17] Jong Min Kim, Sang Mok Chang, Sungkook Kim, Kyo-Seon Kim, Jinsoo Kim, Woo-Sik Kim, Design of SiO₂/ZrO₂ core–shell particles using the sol–gel process, Ceram.
 Int. 35 (2009) 1243-1247.
- [18] F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13 (2001) 11-22.
- [19] Hui Liu, , Tingting Liu, Xiaonan Dong, Rui Hua, Zhenfeng Zhu, Preparation and enhanced photocatalytic activity of Ag-nanowires@SnO₂ core-shell heterogeneous structures, Ceram. Int. 40 (2014) 16671-16675.
- [20] Guozhi Zhang, Feng Teng, Changhui Zhao, Lulu Chen, Peng Zhang, Youqing Wang, Chengshi Gong, Zhenxing Zhang, Erqing Xie, Enhanced photocatalytic activity of TiO₂/carbon@TiO₂ core-shell nanocomposite prepared by two-step hydrothermal method, Appl. Surf. Sci. 311 (2014) 384-390.
- [21] Christina Graf, Dirk L. J. Vossen, Arnout Imhof, Alfons van Blaaderen, A general method to coat colloidal particles with silica, Langmuir 19 (2003) 6693–6700.
- [22] Wei Li, Jianping Yang, Zhangxiong Wu, Jinxiu Wang, Bin Li, Shanshan Feng, Yonghui Deng, Fan Zhang, Dongyuan Zhao, A versatile kinetics-controlled coating method to construct uniform porous TiO₂ shells for multifunctional core–shell structures, J. Am. Chem. Soc. 134 (2012) 11864-11867.
- [23] Werner Stöber, Arthur Fink. Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.
- [24] Morten E. Simonsen, Erik G. Søgaard, Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the

resulting products, J. Sol-Gel Sci. Technol. 53 (2010) 485-497.

- [25] Victor K. LaMer, Robert H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (1950) 4847-4854.
- [26] Xuchuan Jiang, Thurston Herricks, Younan Xia, Monodisperse spherical colloids of titania: synthesis, characterization, and crystallization, Adv. Mater. 15 (2003) 1205-1209.
- [27] J.W. Lee, M.R. Othman, Y. Eomc, T.G. Lee, W.S. Kim, J. Kim, The effects of sonification and TiO₂ deposition on the micro-characteristics of the thermally treated SiO₂/TiO₂ spherical core–shell particles for photo-catalysis of methyl orange, Micropor Mesopor Mater. 116 (2008) 561-568.
- [28] Ji Bong Joo, Qiao Zhang, Ilkeun Lee, Michael Dahl, Francisco Zaera, Yadong Yin, Mesoporous anatase titania hollow nanostructures though silica-protected calcination, Adv. Funct. Mater. 22 (2012) 166-174.

1

No.	$R_{a/e}{}^{1,2}$	$V_{28\% \ ammonia}/ml$	C _{TBOT} /vol.%	Dispersibility	d ⁴ /nm
1	0	0.15	0.60	Good	366±3
2	0.4	0.15	0.60	Good	366±3
3	0.8	0.15	0.60	Good	392±14
4	1.2	0.15	0.60	Good	536±5
5	1.6	0.15	0.60	Necks	NA ⁵
6	2.0	0.15	0.60	Agglomeration	NA
7	1.2	06	0.60	Necks	NA
8	1.2	0.25	0.60	Agglomeration	NA
9	1.2	0.15	0.20	Good	426±5
10	1.2	0.15	0.30	Good	466±4
11	1.2	0.15	0.45	Good	510±8
12	1.2	0.15	0.75	Good	580±6
13	1.2	0.15	1.00	Necks	692±9
¹ the volume ratio of acetone to ethanol; ² total volume=50ml; ³ mean size of resulting					
particles, calculated by evaluating100 particles in SEM image; ⁴ not applicable due to particle					

agglomeration; ⁶ replacing 0.15ml 28% ammonia solution with 0.11ml DI water.

 Table 1 Recipes for the fabrication of STcsps.

Figure 1. SEM images of SiO₂ cores (a) and intermediate productions of STcsps after TiO₂
coating for 2min (b), 10min (c), 20min (d), 40min (e), 60min (f), and 120min (g); (h) shows
the corresponding size distribution curves obtained from DLS measurements; in this
synthesis, R_{a/e}, addition volume of ammonia solution and C_{TBOT} were controlled at 1.2, 0.15ml
and 0.6 vol.% respectively (recipe 4).

	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c
2	Figure 4. SEM image of (a) SiO ₂ /TiO ₂ composite particles formed fabricated without the
4	presence of NH ₃ (recipe 7), (b) STcsps fabricated with adding 0.25ml 28% ammonia solution
5	into the reaction solution.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
T0	
17	
18	

1	
2	Supplementary Materials
3	
4	A Modified Sol-Gel Method for Fast Constructing Uniform TiO ₂
5	Shells with Tunable Thickness to Fabricate Monodisperse $SiO_2@TiO_2$
6	Core-Shell Particles
7	
8	Author name: Wanghui Chen, Chika Takai, Hadi Razavi Khosroshahi, Masayoshi Fuji*,
9	Takashi Shirai
10	Author affiliation: Advanced Ceramics Research Center, Nagoya Institute of Technology,
11	Honmachi 3-101-1, Tajimi, Gifu, 507-0033, Japan
12	*Corresponding author: E-mail: fuji@nitech.ac.jp; Tel.: +81 572 24 8110; Fax: +81 572
13	24 8109.
14	
15 16	
_0 17	
18	
19	

Figure S1. EDS point spectra of SiO₂ cores.

Figure S2. EDS point spectra of STcsps.

Figure S3. FT-IR spectra of SiO₂ cores and STcsps.

* The decreasing on the intensity of the peak for Si-O-H stretching indicates most

isolated silanols on the surface of SiO_2 cores were replaced by Si-O-Ti after $\rm TiO_2$ coating.

Figure S4. low- (a) and high-magnification (b) SEM of obtained monodisperse TiO2 microspheres.

Recipe: R_{a/e}=1.5; total volume=50ml; C_{TBOT}=0.5vol. %; V_{28% ammonia solution}=0.15ml; time reaction=2h

Figure S5. TG-DTA curves of STcsps (T=85nm) with and without the protection of N_2 ; heating rate: 5°C/min.

