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Introduction

One of the typical research methods in the study of Riemannian manifolds is to in-

vestigate properties of geodesics on these manifolds. Many geometers obtained various

results on manifolds by investigating some properties on geodesics. If we give some

of the most fundamental results, we have Hopf-Rinow theorem, Rauch’s comparison

theorem on Jacobi fields, Toponogov’s theorem on geodesic triangles and so on.

The supervisor of the author T. Adachi considered to progress this study on Rie-

mannian manifolds with some additional geometric structures. If we study some prop-

erties on curves associated with a geometric structure on a Riemannian manifold, is it

possible to get the feature of this structure and properties of the underlying manifold?

In this context, he began to study Kähler manifolds by using trajectories for Kähler

magnetic fields. We say a smooth curve of unit speed to be a trajectory for a Kähler

magnetic field if its velocity vector and its acceleration vector form a complex line

in the tangent space at each point and if the norm of acceleration vector is constant

along this curve. Since geodesics are curves without accelerations, we may say that

trajectories are generalizations of geodesics and are closely related with the complex

structure of the underlying Kähler manifold. Though many studies on Kähler mani-

folds are based on complex geometry and not on real geometry, from curve-theoretic

point of view, this idea on studying Kähler manifolds by making use of trajectories

seems to be quite natural.

In this paper, we study Kähler manifolds of negative sectional curvature, more pre-

cisely, study the relationship between trajectories and ideal boundaries of Hadamard
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Kähler manifolds, which are simply connected Kähler manifolds of non-positive curva-

ture. Sectional curvatures of Riemannian manifolds give sufficiently precise informa-

tion on these manifolds. When they are flat, that is, they have null sectional curvatures

for all tangent 2-planes, they are quotients of Euclidean spaces. When a Riemannian

manifold is of positive sectional curvature then it is compact and its fundamental group

is finite by Myers Theorem. On the other hand, when a Riemannian manifold is of

non-positive sectional curvature then its universal covering space is diffeomorphic to a

Euclidean space by Cartan-Hadamard Theorem. Since this does not tells on topology

of manifolds of non-positive curvature, and as their geodesic flows on their unit tangent

bundles are of hyperbolic type and have many interesting properties, many geometers

are interested in such manifolds. In 1973, Eberlein and O’Neill [15] introduced the

notion of ideal boundaries of Hadamard manifolds. This boundary consists of asymp-

totic classes of geodesic rays (geodesic half-lines). Here, two geodesic rays of unit speed

are said to be asymptotic if the distance between them is bounded. For a Hadamard

manifold, we can define some different kinds of boundaries, this ideal boundary, an-

alytic boundary and so on. This geometric boundary shows many properties of the

interior part, the Hadamard manifold itself. For example, the Tit metric on the ideal

boundary shows the flatness of the Hadamard manifold ([9, 12]). Therefore, we are

interested in asymptotic behaviors of trajectories on a Hadamard Kähler manifold.

Our main result shows that when the strength of a Kähler magnetic field is less than

the square root of the absolute value of the upper bound of sectional curvatures of the

underlying Kähler manifold its trajectories form the same ideal boundary.

We here give the organization of this paper. In Chapter 1, we introduce some no-

tations, give some basic notions concerning Riemannian manifolds, and review some

fundamental results. In Chapter 2, we describe Kähler manifolds, especially complex

space forms which are simply connected Kähler manifolds of constant holomorphic

sectional curvature. Also, we give definitions of trajectories for Kähler magnetic fields.

We note that a closed 2-form on a Riemannian manifold is said to be a magnetic
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field because it can be regarded as a generalization of static magnetic field on a Eu-

clidean 3-space. Though we use physical terms, important thing is that trajectories

are curves showing a complex line spanned by velocity vector at each point. In order

to study properties of trajectories, we study in Chapter 3 magnetic Jacobi fields which

are obtained as differentials of variations of trajectories. Just like Rauch’s compari-

son theorem on Jacobi fields plays quite an important role in the study of geodesics,

comparison theorems on magnetic Jacobi fields play important role in the study of

trajectories. We give explicit expressions on magnetic Jacobi fields on complex space

forms and estimate norms of magnetic Jacobi fields on general Kähler manifolds by

comparing them to those on complex space forms. The core parts of this paper are

chapter 4 and chapter 5. To study the relationship between trajectories and geodesics

we consider trajectory-harps in Chapter 4, which are variations of geodesics associated

with trajectories. We regard a trajectory-segment and a geodesic segment joining two

ends of the trajectory-segment as a correspondence of a geodesic triangle. By applying

Rauch’s comparison theorem, we give comparison theorems on trajectory-harps. We

study string-lengths of trajectory-harps, which are lengths of geodesic segments joining

origins and other points of trajectories, and zenith angles of trajectory-harps, which

are lengths of curves formed by initial vectors of geodesic segments. We show that

trajectory-harps on a Kähler manifold of large sectional curvature are “shorter” and

“fatter” than those on a Kähler manifold of small sectional curvature. In Chapter 5, we

study asymptotic behaviors of trajectory half-lines. By applying a comparison theorem

on string-lengths of trajectory-harps, we can show under the condition on strengths of

Kähler magnetic fields that every magnetic exponential map is a diffeomorphism and

that every trajectory-half line converges to some point in the ideal boundary. In order

to study the relationship between asymptotic behaviors of geodesics and those of tra-

jectories, we introduce trajectory-horns, which are variations of trajectories associated

with geodesics. Corresponding to comparison theorems on trajectory-harps, we give

estimates on tube-lengths, lengths of trajectory segments joining the origin and other
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points of geodesics, and on embouchure angles, which are lengths of curves formed by

initial vectors of trajectory segments. With the aid of these comparison theorems, we

can show that trajectories have the same properties as of geodesics under the condition

on strengths of Kähler magnetic fields.

Here, the author would like to express his sincere gratitude to his supervisor, Pro-

fessor Toshiaki Adachi for his instructive advice and useful suggestions on his thesis.

In this thesis, we use some results due to him without refering his papers. Without his

help, this thesis would not have reached to its present form. Also, the author thanks

to Professor Hideya Hashimoto (Meijo University) for his advice on preparing the au-

thor’s paper [22] in Current Developments in Differential Geometry and its Related

Fields. Special express the author’s hearty thanks to the members of Ban BunTane

Scholarship organization. He does not think that he could obtain his degree success-

fully in three years without their help. In addition, the author would like to thanks to

his colleagues on their help and support. Finally, the author is indebted to his family

for their continuous support and encouragement.



CHAPTER 1

Riemannian manifolds

In this chapter, we introduce some notations and give some notions which are quite

familiar in the field of differential geometry. After recalling some fundamental results

on Riemannian manifolds, we give explicit formulas of circles on real space forms.

1. Notations and some fundamental results

Let M be an m-dimensional C∞–manifold. We denote by πM : TM → M its

tangent bundle. At each point p ∈ M we take an inner product gp : TpM × TpM →

R on the tangent space TpM at p. For a local coordinate neighborhood
(
U, φ =

(x1, . . . , xm)
)
around p ∈M and i, j with 1 ≤ i, j ≤ m, we define a function gij : U → R

by

gij(q) = gq

(( ∂

∂xi

)
q
,
( ∂

∂xj

)
q

)
.

Here, the vector field
∂

∂xi
on U is defined by( ∂

∂xi

)
q
f =

( ∂

∂xi
f ◦ φ−1

)(
φ(q)

)
for each smooth function f on U . When such functions gij : U → R are smooth for

an arbitrary local coordinate neighborhood (U,φ), we call a family of inner products

g = {gp}p∈M a C∞-Riemannian metric on M . In order to simplify the notation, we

denote a Riemannian metric just by ⟨ , ⟩. We say a pair
(
M, ⟨ , ⟩

)
of a smooth

manifold and a Riemannian metric to be a Riemannian manifold.

A smooth map σ : I → M of an interval I is called a smooth curve on M . For a

smooth curve σ : I →M and a, b ∈ I with a ≤ b, we set

length
(
σ|[a,b]

)
=

∫ b

a

∥σ′(t)∥dt =
∫ b

a

√
⟨σ′(t), σ′(t)⟩ dt

5



6 I. Riemannian manifolds

and call it the length of σ|[a,b]. A continuous map σ : [a, b] →M is said to be a piecewise

smooth curve from σ(a) to σ(b) if there is a division a = t0 < t1 < · · · < tK = b of

the interval [a, b] such that σ|(ti−1,ti) is a smooth curve and both limt↓ti−1
σ′(t) and

limt↑ti σ
′(t) exist for i = 1, · · · , K. For this curve, we set

length(σ) =
K∑
i=1

∫ ti

ti−1

∥σ′(t)∥dt.

For a piecewise smooth curve σ : [a, b] → M , we define a piecewise smooth curve

σ−1 : [a, b] → M by σ−1(t) = σ(a + b − t). For two piecewise smooth curve σ1 :

[a1, b1] →M and σ2 : [a2, b2] →M with σ1(b1) = σ2(a1), we define a piecewise smooth

curve σ1 · σ2 : [a1, b1 + b2 − a2] →M by

σ1 · σ2(t) =

{
σ1(t), when a1 ≤ t ≤ b1,

σ2(t− b1 + a2), when b1 ≤ t ≤ b1 + b2 − a2.

Then we have

length(σ−1) = length(σ), length(σ1 · σ2) = length(σ1) + length(σ2).

We call σ−1 the reversed curve of σ, and call σ1 · σ2 the join of σ1 and σ2.

Given two points p, q ∈ M , we denote by Cp,q(M) the set of all piecewise smooth

curves on M from p to q. When M is connected, we see Cp,q ̸= ∅ (see §A3). We define

d(p, q) by

d(p, q) = inf{length(σ)
∣∣ σ ∈ Cp,q(M)}.

If σ ∈ Cp,q(M) then σ−1 ∈ Cq,p(M) and if σ1 ∈ Cp,q(M), σ2 ∈ Cq,r(M) then σ1 ·

σ2 ∈ Cp,r(M). Since we have a constant map σ ∈ Cp,p(M), we find that this map

d :M ×M → R satisfies

(1) d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q,

(2) d(p, q) = d(q, p),

(3) d(p, q) + d(q, r) ≥ d(p, r).

Therefore this d is a distance function onM . In caseM is not connected, for two points

p, q which are not contained in a same connected component, we set d(p, q) = ∞. On
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a Riemannian manifold we usually consider this distance function induced by the

Riemannian metric.

We denote by C∞(M) the set of all smooth functions on M , and by X(M) the

set of all C∞–vector fields on M . We see that X(M) is a vector space and is a

C∞(M)−module.

Given a local coordinate neighborhood (U,φ), we see
{( ∂

∂x1

)
q
, · · · ,

( ∂

∂xm

)
q

}
is

a basis of TqM at each q ∈ U . Hence every vector field X ∈ X(M) is expressed on

U as X|U =
m∑
i=1

fi
∂

∂xi
with smooth functions f1, f2, · · · , fm on U . For vector fields

X, Y ∈ X(M), we define their bracket [X, Y ] ∈ X(M) by

[X,Y ]f = X(Y f)− Y (Xf)

for an arbitrary smooth function f ∈ C∞(M). On a local coordinate neighborhood

(U,φ), we note that this bracket satisfies[ ∂
∂xi

,
∂

∂xj

]
= 0.

On a Riemannian manifold M , we have a unique bilinear map

∇ : X(M)× X(M) ∋ (X, Y ) 7→ ∇XY ∈ X(M)

satisfying the following conditions for an arbitrary function f ∈ C∞(M) and arbitrary

vector fields X, Y, Z ∈ X(M) :

(1) ∇X+YZ = ∇XZ +∇YZ, ∇fXY = f∇XY ;

(2) ∇X(Y + Z) = ∇XY +∇XZ, ∇X(fY ) = (Xf)Y + f∇XY ;

(3) ∇XY −∇YX = [X,Y ];

(4) X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩.

We call this bilinear map the Riemannian connection or the Levi-Civita connection of

this Riemannian manifold M , and call ∇XY the covariant differentiation of Y by X.

Lemma 1.1 (Koszul formula). For arbitrary vector fields X, Y, Z ∈ X(M) we have

2⟨∇XY, Z⟩ = X⟨Y, Z⟩+ Y ⟨X,Z⟩ − Z⟨X,Y ⟩

+ ⟨[X,Y ], Z⟩ − ⟨[X,Z], Y ⟩ − ⟨[Y, Z], X⟩,
(1.1)
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Proof. By using the third and fourth properties of Riemannian connections we

see that the right hand side turns to

⟨∇XY, Z⟩+ ⟨∇YX,Z⟩+ ⟨[X,Y ], Z⟩ = ⟨∇XY, Z⟩+ ⟨∇YX,Z⟩+ ⟨∇XY, Z⟩ − ⟨∇YX,Z⟩

and get the conclusion. □

This lemma shows that Riemannian connection ∇ is defined by (1.1) (see Lemma

A1). Thus we see that the Riemannian connection is uniquely determined.

We take a local coordinate neighborhood
(
U,φ = (x1, . . . , xm)

)
of M . Since the

Riemannian connection ∇ on M is determined by Lemma1.1, we find (∇XY )|U =

∇X|UY |U . We denote as

∇ ∂
∂xi

∂

∂xj
=

m∑
k=1

Γ k
i j

∂

∂xk

and call the functions Γ k
i j on U the Christoffel’s symbols. These satisfy Γ k

ij = Γ k
ji. If

we express vector fields X, Y ∈ X(M) as X|U =
m∑
i=1

X i ∂

∂xi
and Y |U =

m∑
j=1

Y j ∂

∂xj
,

then we have

(∇XY )|U =
m∑
k=1

{ m∑
i=1

X i∂Y
k

∂xi
+

m∑
i=1

m∑
j=1

Γ k
i jX

iY j
} ∂

∂xk
.

This expression shows that if X1(p) = X2(p) then (∇X1Y )(p) = (∇X2Y )(p). Thus

we frequently denote it by ∇vY with v = X1(p) ∈ TpM . Let σ : (−ϵ, ϵ) → M

be a smooth curve satisfying σ(0) = p and
dσ

dt
(0) = v. If two vector fields Y1, Y2

satisfies Y1(σ(t)) = Y2(σ(t)) for −ϵ < t < ϵ, then the above expression shows that

∇vY1 = ∇vY2.

When N is a sub-manifold of a Riemannian manifold
(
M, ⟨ , ⟩

)
we can define a

metric on N by considering TqN ⊂ TqM at an arbitrary point q ∈ N ⊂ M and by

restricting ⟨ , ⟩ on
∪

q∈N
(
TqN×TqN

)
. We call this metric on N the induced metric,

and call N with this induced metric a Riemannian sub-manifold of M . When real

dimensions of N and M satisfy dim(M) = dim(N) + 1, we call N a real hypersurface

of M . If we take a (local) unit normal vector field N on N in M , that is a unit vector

field satisfying that Nq is orthogonal to all tangent vectors in TqN at each point q ∈ N ,
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then the Riemannian connections M∇, N∇ of M and N are related with each other

as

N∇XY = M∇XY − ⟨M∇XY,N⟩N

for arbitrary vector fields X,Y ∈ X(N), where we regard these vector fields as vector

fields defined on N(⊂M) which are tangent to N .

Generally, at an arbitrary point q ∈ N we decompose TqM orthogonally as TqM =

TqN ⊕ (TqN)⊥. We call TN⊥ = ∪q∈N(TqN)⊥ the normal bundle of N in M . For

X, Y ∈ X(N), we consider the tangential component (M∇XY )⊤ of M∇XY . Then

(M∇··)⊤ satisfies four conditions of Riemannian connections on N . Hence we have

(M∇XY )⊤ = N∇XY . We define S : TN × TN → TN⊥ by S(X,Y ) = (M∇XY )⊥ =

M∇XY − N∇XY , and call it the second fundamental form of N . As we have

S(X,Y )− S(Y,X) = (M∇XY − N∇XY )⊥ = ([X, Y ])⊥ = 0,

it is symmetric bilinear map. We call N is totally geodesic if S is the null map, that

is, S(X,Y ) = 0 for all X, Y ∈ X(N).

We define the Riemannian curvature tensor R : X(M) × X(M) × X(M) → X(M)

on M by

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

with the Riemannian connection ∇. For vector fields X, Y, Z,W ∈ X(M), the Rie-

mannian curvature tensor satisfies following properties :

(1) R(X, Y )Z = −R(Y,X)Z;

(2) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0;

(3) ⟨R(X, Y )Z,W ⟩+ ⟨R(X, Y )W,Z⟩ = 0;

(4) ⟨R(X, Y )Z,W ⟩ = ⟨R(Z,W )X,Y ⟩.

Lemma 1.2. For smooth functions f ∈ C∞(M) and vector fields X,Y, Z ∈ X(M),

the Riemannian curvature tensor satisfies following properties :

(1) R(fX, Y )Z = fR(X,Y )Z, R(X, fY )Z = fR(X, Y )Z;

(2) R(X, Y )(fZ) = fR(X, Y )Z.



10 I. Riemannian manifolds

Proof. (1) By the definition of the Riemannian curvature tensor, we have

R(fX, Y )Z = ∇fX∇YZ −∇Y∇fXZ −∇[fX,Y ]Z.

Also, by properties (1), (2) of Riemannian connections, we have

∇fX∇YZ = f∇X∇YZ,

∇Y∇fXZ = ∇Y (f∇XZ) = (Y f)∇XZ + f∇Y∇XZ,

∇[fX,Y ]Z = ∇f [X,Y ]−(Y f)XZ = f∇[X,Y ]Z − (Y f)∇XZ.

Then we get

R(fX, Y )Z = f∇X∇YZ − (Y f)∇XZ − f∇Y∇XZ − f∇[X,Y ]Z + Y (f∇XZ)

= f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= fR(X,Y )Z.

By use of the property (1) of curvature tensors, we have

R(X, fY )Z = −R(fY,X)Z = −fR(Y,X)Z = fR(X,Y )Z.

(2) By the definition of the Riemannian curvature tensor, we have

R(X, Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ).

Also, by properties (1), (2) of Riemannian connections, we have

∇X∇Y (fZ) = ∇X

(
(Y f)Z + f∇YZ

)
= (X(Y f))Z + (Y f)∇XZ + (Xf)∇YZ + f∇X∇YZ,

∇Y∇X(fZ) = (Y (Xf))Z + (Xf)∇YZ + (Y f)∇XZ + f∇Y∇XZ,

∇[X,Y ](fZ) = ([X,Y ]f)Z + f∇[X,Y ]Z.

We hence get

R(X, Y )(fZ) = (X(Y f))Z + (Y f)∇XZ + (Xf)∇YZ + f∇X∇YZ

− (Y (Xf))Z − (Xf)∇YZ − (Y f)∇XZ − f∇Y∇XZ

− (X(Y f))Z + (Y (Xf))Z − f∇[X,Y ]Z

= f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= fR(X, Y )Z.

We get the conclusion. □
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For smooth functions f, g, h ∈ C∞(M), by Lemma1.2, we have R(fX, gY )(hZ) =

fghR(X, Y )Z, hence we find that the curvature tensor is a C∞(M)−trilinear map.

Hence for tangent vectors u, v, w ∈ TpM at an arbitrary point p ∈ M , we can define

R(u, v)w.

For two linearly independent tangent vectors v, w ∈ TpM at p ∈M , we set

Riem(v, w) =
⟨R(v, w)w, v⟩

⟨v, v⟩⟨w,w⟩ − ⟨v, w⟩2

and call it the sectional curvature of the tangent plane spanned by v, w.

Lemma 1.3. Let ⟨ , ⟩ be a Riemannian metric on a manifold M . For a positive

constant λ we consider a new Riemannian metric ⟨ , ⟩′ = λ2⟨ , ⟩. Then their Rie-

mannian connections ∇, ∇′ and sectional curvatures Riem, Riem′ have the following

relations :

(1) ∇′
XY = ∇XY for arbitrary X, Y ∈ X(M);

(2) Riem′(v, w) = λ−2Riem(v, w) for arbitrary v, w ∈ TpM at an arbitrary point

p ∈M .

Proof. (1) By Lemma 1.1, for arbitrary X, Y, Z ∈ X(M) we have

2⟨∇′
XY, Z⟩′ = X⟨Y, Z⟩′ + Y ⟨X,Z⟩′ − Z⟨X,Y ⟩′

+ ⟨[X, Y ], Z⟩′ − ⟨[X,Z], Y ⟩′ − ⟨[Y, Z], X⟩′

= λ2X⟨Y, Z⟩+ λ2Y ⟨X,Z⟩ − λ2Z⟨X, Y ⟩

+ λ2⟨[X, Y ], Z⟩ − λ2⟨[X,Z], Y ⟩ − λ2⟨[Y, Z], X⟩

= λ2
{
X⟨Y, Z⟩+ Y ⟨X,Z⟩ − Z⟨X, Y ⟩

+ ⟨[X, Y ], Z⟩ − ⟨[X,Z], Y ⟩ − ⟨[Y, Z], X⟩
}

= 2λ2⟨∇XY, Z⟩ = 2⟨∇XY, Z⟩′
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Thus we have ⟨∇′
XY, Z⟩′ = ⟨∇XY, Z⟩′. It leads us to ∇′

XY = ∇XY .

(2) By definition of sectional curvatures, for arbitrary v, w ∈ TpM we have

Riem′(v, w) =
⟨R(v, w)w, v⟩′

⟨v, v⟩′⟨w,w⟩′ − ⟨v, w⟩′2
=

λ2⟨R(v, w)w, v⟩
λ4
{
⟨v, v⟩⟨w,w⟩ − ⟨v, w⟩2

}
=

⟨R(v, w)w, v⟩
λ2
{
⟨v, v⟩⟨w,w⟩ − ⟨v, w⟩2

} = λ−2Riem(v, w).

Thus, we get the conclusion. □

At an arbitrary point p ∈ M , we take an orthonormal basis {e1(p), . . . , em(p)} on

TpM . We call a C∞–differential m–form ω on M the volume element, if it satisfies

ωp

(
e1(p), . . . , em(p)

)
= 1.

On a local coordinate neighborhood
(
U,φ = (x1, . . . , xm)

)
, we set a function G on U

by G = det(gij). Since the matrix (gij) is symmetric and positive definite, we see that

G is a positive function. We then have

ω =
√
G dx1 ∧ dx2 ∧ · · · ∧ dxm

on U , where dxi denotes the dual 1-form of
∂

∂xi
on U , that is, the 1-form satisfying

dxi

( ∂

∂xi

)
= 1 and dxi

( ∂

∂xj

)
= 0 for j ̸= i. Here, ∧ denotes the wedge product, which

is defined as

(α ∧ β)(v1, . . . , vk+ℓ) =
1

k!ℓ!

∑
τ∈Sk+ℓ

(
sgn(τ)

)
α(vτ(1), . . . , vτ(k))β(vτ(k+1), . . . , vτ(k+ℓ))

for a k-from α and a ℓ-form β, where sgn(τ) denotes the signature of a permutation τ .

Let (M, ⟨ , ⟩) and (M ′, ⟨ , ⟩′) be two Riemannian manifolds, and let φ : M → M ′

be a diffeomorphism. This map φ : (M, ⟨ , ⟩) → (M ′, ⟨ , ⟩′) is called an isometry if its

differential map (dφ)p : TpM → TpM
′ keeps the inner product as

⟨v, w⟩ =
⟨
(dφ)p(v), (df)p(w)

⟩′
for arbitrary v, w ∈ TpM at each point p ∈M .
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2. Real space forms

When we study Riemannian manifolds, we may say that real space forms, which

are standard spheres, Euclidean spaces and real hyperbolic spaces, are most basic

manifolds. From the historical point of view, Euclid gave some postulates in his book

“Elements”. His fifth postulate is called the parallel postulate. It states that on a

plane for an arbitrary line γ and an arbitrary point p which does not lie on γ there

is a unique line which passes through p and that does not intersect γ. Negating

this postulate Lobachevsky and some geometers independently gave “new” geometry,

which are called non-Euclidean geometry. Such geometry were developed on hyperbolic

planes and on standard 2-spheres.

[1] Euclidean spaces.

For a Euclidean space Rm = {(x1, x2, . . . , xm) | xi ∈ R} we take its canonical inner

product. That is, at an arbitrary point p ∈ Rm, for arbitrary two tangent vectors v =

(v1, v2, . . . , vm), w = (w1, w2, . . . , wm) ∈ TpRm ∼= Rm, we set ⟨v, w⟩ =
∑m

i=1 viwi. The

Riemannian connection associated with this metric is the ordinary differentiation. By

using the coordinate (x1, x2, . . . , xm) on Rm, we express two vector fields X,Y on Rm

as Xp =
m∑
i=1

ai
( ∂
∂xi

)
p
, Yp =

m∑
j=1

bj
( ∂

∂xj

)
p
∈ X(Rm). Then the covariant differentiation

of Y by X is given as

∇XY (p) =
m∑
i=1

m∑
j=1

ai(p)
∂bj
∂xi

(p)
( ∂

∂xj

)
p
.

By direct computation we have R(X,Y )Z = 0 for arbitrary X, Y, Z ∈ X(Rm). Thus,

sectional curvatures of tangent planes of a Euclidean space are zero. We say a Rie-

mannian manifold to be flat if sectional curvatures of all tangent planes are zero. Thus,

an Euclidean space is a typical example of flat manifolds. Another typical example is

a flat torus Tm, which is a quotient manifold of Rm.
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[2] Standard spheres.

On a standard sphere

Sm[r] =
{
x = (x0, x1, . . . , xm) ∈ Rm+1

∣∣ x20 + x21 + · · ·+ x2m = r2
}

of radiu r, as it is a sub-manifold of Rm+1, we take the metric induced by the canonical

metric on Rm+1. We denote by N the unit outward normal vector field on Sm[r]. That

is, Np = (1/r)p by regarding a point p ∈ Sm[r] ⊂ Rm+1 as the position vector. This

identification shows ∇XN = (1/r)X for X ∈ X(Sm[r]), where ∇ is the Riemannian

connection on Rm+1. Thus, the Riemannian connections ∇,∇ on Sm[r] and on Rm+1

are related with each other as follows :

Lemma 1.4. For arbitrary X, Y ∈ X(Sm[r]), regarding them as vector fields defined

on Sm(⊂ Rm+1) tangent to Sm we have

∇XY = ∇XY +
1

r
⟨X, Y ⟩N.

Proof. As ⟨Y,N⟩ = 0, we have

0 = ⟨∇XY,N⟩+ ⟨Y,∇XN⟩ = ⟨∇XY,N⟩+ 1

r
⟨Y,X⟩.

Since Sm is a Riemannian sub-manifold, we see ∇XY is obtained by removing the

orthogonal component of ∇XY . Hence we have

∇XY = ∇XY − ⟨∇XY,N⟩N = ∇XY +
1

r
⟨X, Y ⟩N.

This completes the proof. □

Thus, we obtain

R(X, Y )Z =
1

r2
{
⟨Y, Z⟩X − ⟨X,Z⟩Y

}
(see [21], for example). We therefore find that sectional curvatures of all tangent

planes of Sm[r] are 1/r2. Standard spheres are typical examples of positively curved

Riemannian manifolds.

Since Sm[1] is of constant sectional curvature 1 with respect to ⟨ , ⟩, we have

another way of getting a Riemannian manifold of constant sectional curvature c (> 0).
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On Sm[1] we define a new Riemannian metric ⟨ , ⟩′ by ⟨ , ⟩′ = 1

c
⟨ , ⟩. By Lemma1.3,

we see that Sm[1] with this new metric is of constant sectional curvature c. We shall

denote this Riemannian manifold by Sm(c). Trivially, the map Sm[r] ∋ p 7→ (1/r)p ∈

Sm(1/r2) is an isometry.

[3] Real hyperbolic spaces.

We take a real hyperbolic space

Hm[r] =
{
x = (x0, x1, . . . , xm) ∈ Rm+1

∣∣ −x20 + x21 + · · ·+ x2m = −r2}.

On Rm+1, we define a bilinear form [⟨ , ⟩] by

[⟨x, y⟩] = −x0y0 + x1y1 + · · ·+ xmym

for x = (x0, x1, . . . , xm), y = (y0, y1, . . . , ym) ∈ Rm+1. At a point p = (p0, . . . , pm) ∈

Hm[r], the tangent space at p is given as

TpH
m[r] =

{
(p, v) ∈ {p} × Rm+1

∣∣ −p0v0 + p1v1 + · · ·+ pmvm = 0
} ∼= Rm,

where we denote v = (v0, . . . , vm). Therefore we have

[⟨v, v⟩] = −v20 + v21 + · · ·+ v2m

= −
(v1p1 + · · ·+ vmpm

p0

)2
+v21 + · · ·+ v2m

≥ (v21 + · · ·+ v2m)− (v21 + · · ·+ v2m)
p21 + · · ·+ p2m

p20
= (v21 + · · ·+ v2m)p

−2
0 > 0

and find that the restriction of [⟨ , ⟩] on to each tangent space of Hm[r] is positive

definite. Thus [⟨ , ⟩] induces a Riemannian metric on Hm[r]. Though [⟨ , ⟩] is not

positive definite on Rm+1(or more precisely it has signature (1,m)), we can define

a connection ∇ by the relation (1.1). We denote by N an outward normal vector

field of a real hyperbolic space Hm[r] in Rm+1 satisfying [⟨N,N⟩] = −1. That is, we

set Np = (1/r)p by regarding a point p ∈ Hm[r] ⊂ Rm+1 as the position vector.

This identification shows ∇XN = (1/r)X for X ∈ X(Hm[r]). Thus, the Riemannian

connection ∇ and the connection ∇ on Rm+1 corresponding to the indefinit metric on

Rm+1 are related with each other as follows:
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Lemma 1.5. For arbitrary vector fields X, Y ∈ X(Hm[r]), we have

∇XY = ∇XY − 1

r
[⟨X, Y ⟩]N.

Proof. As [⟨Y,N⟩] = 0, we have

0 = [⟨∇XY,N⟩] + [⟨Y,∇XN⟩] = [⟨∇XY,N⟩] + 1

r
[⟨Y,X⟩]

Therefore we get

∇XY = ∇XY − [⟨∇XY,N⟩]
[⟨N,N⟩]

N = ∇XY + [⟨∇XY,N⟩]N = ∇XY − 1

r
[⟨X,Y ⟩]N.

This completes the proof. □

Thus we obtain

R(X, Y )Z =
−1

r2
{
X⟨Y, Z⟩ − Y ⟨X,Z⟩

}
(see [21], for example). We therefore find that sectional curvatures of all tangent

planes of Hm[r] are −1/r2. A real hyperbolic space Hm[r] with this metric is a typical

example of Riemannian manifolds of sectional curvature −1/r2.

Since Hm[1] is of constant sectional curvature −1, we have another way of getting

a Riemannian manifold of constant sectional curvature c (< 0). On Hm[1] we define

a new Riemannian metric ⟨ , ⟩′ by ⟨ , ⟩′ = 1

|c|
⟨ , ⟩, where ⟨ , ⟩ denotes the canonical

metric on Hm[1]. By Lemma 1.3, we see that Hm[1] with this new metric is of constant

sectional curvature c. We shall denote this Riemannian manifold by Hm(c). Trivially,

the map Hm[r] ∋ p 7→ (1/r)p ∈ Hm(−1/r2) is an isometry.
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3. Geodesics and parallel displacements

Let σ : I → M be a smooth curve on a Riemannian manifold M defined on an

interval I. A smooth map I ∋ t 7→ Y (t) ∈ Tσ(t)M is said to be a vector field along σ.

As we see in §1.1, we can determine a new vector field ∇ dσ
dt
Y along σ. We call this the

covariant differentiation of Y along σ. We sometimes denote this also by ∇ ∂
∂t
Y .

A vector field Y along a smooth curve σ is said to be parallel along σ, if it satisfies

∇ ∂
∂t
Y ≡ 0. On a local coordinate neighborhood

(
U, (x1, . . . , xm)

)
, a vector field Y

along σ is parallel if and only if

(1.2)
dY i

dt
+

m∑
j=1

m∑
k=1

Γ i
j k

d(xj ◦ σ)
dt

Y k ≡ 0,

where Y |U∩σ(I) =
m∑
j=1

Y j ∂

∂xj
with smooth functions Y j : I → R (j = 1, . . . ,m). Since

(1.2) is a linear differential equation of order 1, for an arbitrary a ∈ I and for each

v ∈ Tσ(a)M we have a unique vector field Y along σ which is parallel along σ and that

satisfies Y (a) = v.

Let σ : I → M be a smooth curve on a Riemannian manifold. For a, b ∈ I, we

define a map P b
σ,a : Tσ(a)M → Tσ(b)M in the following manner: Given v ∈ Tσ(a)M ,

we take a parallel vector field Yv along σ, and define P b
σ,a(v) = Yv(b). We call this

a parallel displacement along σ from σ(a) to σ(b). As (1.2) is a linear differential

equation, parallel displacements are linear maps. Moreover, we find P a
σ,a is the identity

of Tσ(a)M and P a
σ,b =

(
P b
σ,a

)−1
. Since we have

d

dt

⟨
Yv(t), Yw(t)

⟩
=
⟨(

∇ dσ
dt
Yv
)
(t), Yw(t)

⟩
+
⟨
Yv(t),

(
∇ dσ

dt
Yw
)
(t)
⟩
≡ 0,

we have
⟨
Yv(a), Yw(a)

⟩
=
⟨
Yv(b), Yw(b)

⟩
. Thus, we see that P b

σ,a is a linear isomorphism

preserving the inner product.

Lemma 1.6. Given X, Y ∈ X(M) and a point p ∈ M , we take a smooth curve

σ : (−ϵ, ϵ) →M satisfying σ(0) = p and σ̇(0) = X(p). Then we have

∇XY (p) = lim
t→0

1

t

{
P 0
σ,t

(
Y
(
σ(t)

))
− Y (p)

}
.
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Proof. We take a local coordinate neighborhood
(
U,φ = (x1, . . . , xm)

)
around

p. We denote as X =
m∑
i=1

X i ∂

∂xi
and Y =

m∑
i=1

Y i ∂

∂xi
. We define functions aij(t) and

bij(t) by

P t
σ,0

(( ∂

∂xi

)
p

)
=

m∑
j=1

aij(t)
( ∂

∂xi

)
σ(t)

, P 0
σ,t

(( ∂

∂xi

)
σ(t)

)
=

m∑
j=1

bij(t)
( ∂

∂xi

)
p
.

Since P 0
σ,0 is the identity, we have aij(0) = δij and bij(0) = δij, where δij denotes the

Kronecker’s delta, that is, δii = 1 and δij = 0 for i ̸= j. By (1.2) we have

daij
dt

(t) +
m∑

α=1

m∑
β=1

Γ j
α β

(
σ(t)

)d(xα ◦ σ)
dt

(t)aiβ(t) ≡ 0.

In particular, we have

daij
dt

(0) +
m∑

α=1

Γ j
α i(p)X

α(p) = 0.

On the other hand, as P 0
σ,t =

(
P t
σ,0

)−1
, we have

m∑
k=1

aik(t)bkj(t) = δij. Differentiating

this equality, we obtain

m∑
k=1

{daik
dt

(t)bkj(t) + aik(t)
bkj
dt

(t)
}
= 0.

In particular, we have
daij
dt

(0) +
dbij
dt

(0) = 0. Hence we find that

dbij
dt

(0) =
m∑

α=1

Γ j
α i(p)X

α(p).

By using the above, we get

lim
t→0

1

t

{
P 0
σ,t

(
Y
(
σ(t)

))
− Y (p)

}
= lim

t→0

1

t

{
m∑
i=1

m∑
j=1

Y i
(
σ(t)

)
bij(t)

( ∂

∂xj

)
p
−

m∑
j=1

Y j(p)
( ∂

∂xj

)
p

}

= lim
t→0

1

t

{
m∑
i=1

m∑
j=1

{{
Y i
(
σ(t)

)
bij(t)− Y i(p)bij(t)

}
+
{
Y i(p)bij(t)− Y i(p)bij(0)

}}( ∂

∂xj

)
p

}
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=
m∑
j=1

{
dY j

(
σ(t)

)
dt

(0) +
m∑
i=1

Y i(p)
dbij
dt

(0)

}( ∂

∂xj

)
p

=
m∑
j=1

{
m∑
i=1

X i(p)
∂Y j

∂xi
(p) +

m∑
i=1

m∑
k=1

Y i(p)Γ j
k i(p)X

k(p)

}( ∂

∂xj

)
p
= ∇XY (p).

We get the conclusion. □

A smooth curve γ : I →M on a Riemannian manifold M defined on an interval I

is called a geodesic, if it satisfies the differential equation ∇γ̇ γ̇ = 0. By using a local

coordinate neighborhood
(
U, (x1, . . . , xn)

)
this equation turns to

d2(xk ◦ γ)
d2t

+
m∑
i=1

m∑
j=1

Γ k
i j

(
γ(t)

)d(xi ◦ γ)
dt

d(xj ◦ γ)
dt

≡ 0 (k = 1, . . . ,m).

Since this is a system of nonlinear differential equations, for given an arbitrary v ∈ TpM

at an arbitrary point p ∈ M there exists a neighborhood V (⊂ TM) of v and a

positive ϵ such that for each w ∈ V there exists a geodesic γw : (−ϵ, ϵ) →M satisfying

γ(0) = πM(w) and
dγ

dt
(0) = w. Here, ϵ depends on w. By general theory on differential

equations, we know that solutions of differential equations depend smoothly on initial

conditions, we therefore find that the geodesic γw depends smoothly on w.

Lemma 1.7. For a geodesic γ : [a, b] →M , the norm function
∥∥∥dγ
dt

∥∥∥ of its verocity

vectors is constant. Hence length(γ) =
∥∥∥dγ
dt

(a)
∥∥∥(b− a).

Proof. We have

d

dt

∥∥∥dγ
dt

(t)
∥∥∥2 = 2

⟨(
∇ dγ

dt

dγ

dt

)
(t),

dγ

dt
(t)
⟩
= 0

and get the conclusion. □

For a non-zero λ, we consider a smooth curve σ : (−ϵ/|λ|, ϵ/|λ|) → M by σ(t) =

γw(λt). Since
dσ

dt
(t) = λ

dγw
ds

(λt), we see

∇ dσ
dt

dσ

dt
= λ2∇ dγw

ds

dγw
ds

= 0,

and as we have σ(0) = πM(λw) and
dσ

dt
(0) = λw, we find γλw(t) = γw(λt).
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Given a point p ∈ M we define a smooth map expp : U → M of an open neigh-

borhood U of 0p ∈ TpM by expp(v) = γv(1). As a matter of fact, as the unit tangent

space UpM = {u ∈ TpM | ∥u∥ = 1} is diffeomorphic to a sphere Sn−1 and is compact,

there is positive ϵ satisfying that γu is defined on (−ϵ, ϵ) for all u ∈ UpM . Then for

every v ∈ Bϵ/2(p) we find that γv is defined on a interval including (−2, 2). Thus, we

can take U so that it includes Bϵ/2(p). As γv depends smoothly on v, we find that

this map is smooth. We call this map the exponential map at p. We note that expp

depends smoothly on p, that is, the map (u,w) 7→ expπM (u)(w) is smooth, because γv

depends smoothly on v.

Lemma 1.8. The differential (dexpp)0p : T0p(TpM) → TpM is the identity if we

identify T0p(TpM) with TpM .

Proof. Given a tangent vector u ∈ TpM (∼= Rm), we consider a curve c :

(−ρ, ρ) → TpM given by c(t) = tu. Then we have c(0) = 0p ∈ TpM and
dc

dt
(0) =

u ∈ T0p(TpM) by regarding u as a vector in T0p(TpM) (∼= Rm). We hence have

(dexpp)0p(u) =
d

dt
expp

(
c(t)
)∣∣∣

t=0
=

d

dt
γu(t)

∣∣
t=0

=
dγu
dt

(0) = u,

which shows the assertion. □

Since (dexpp)0p is invertible, by inverse mapping theorem there exists a positive δ

such that the restriction expp

∣∣
Bδ(0p)

: Bδ(p) → M of the exponential map to an open

ball Bδ(0p) = {v ∈ TpM | ∥v∥ < δ} in TpM is a diffeomorphism onto an open subset

U = expp

(
Bδ(0p)

)
of M . If we set φ =

(
expp

∣∣
Bδ(0p)

)−1
: U → TpM ∼= Rm, then

(U,φ) is a local coordinate neighborhood around p. We call this a normal coordinate

neighborhood centered at p.

A smooth map α : [a, b] × (−ϵ, ϵ) → M is said to be a variation of geodesics, if

for each s ∈ (−ϵ, ϵ) the map [a, b] ∋ t 7→ α(t, s) ∈ M is a geodesic. For a variation of

geodesic α : [a, b] × (−ϵ, ϵ) → M , we define a vector field Y along a geodesic γ given
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by γ(t) = α(t, 0) by Y (t) =
∂α

∂s
(t, 0). Then it satisfies

(1.3)
(
∇γ̇∇γ̇Y

)
(t) +R

(
Y (t), γ̇(t)

)
γ̇(t) ≡ 0.

As a matter of fact, as t 7→ α(t, s) are geodesics, we have

∇γ̇∇γ̇Y = ∇ ∂
∂t
∇ ∂

∂t

∂α

∂s
= ∇ ∂

∂t
∇ ∂

∂s

∂α

∂t

= ∇ ∂
∂s
∇ ∂

∂t

∂α

∂t
+R

(∂α
∂t
,
∂α

∂s

)∂α
∂t

= −R
(∂α
∂s
,
∂α

∂t

)∂α
∂t
.

A vector field Y along a geodesic γ satisfying the linear differential equation (1.3) is

called a Jacobi field. A Jacobi filed Y along a geodesic γ is defined uniquely if we give

initial condition Y (0) and
(
∇γ̇Y

)
(0). Therefore, the set Ja(γ) the set of all Jacobi

fields along γ is a 2 dim(M)-dimensional vector space.

Proposition 1.1 (Gauss Lemma). We take two tangent vectors u, v ∈ TpM at

an arbitrary point p ∈ M . Suppose the geodesic γu of initial vector u is defined on

an interval containing [0, ϵ]. Then for 0 < t < ϵ we have the following by identifying

Ttu(TpM) with TpM :

(1) (dexpp)tu(u) = γ̇u(t),

(2)
⟨
(dexpp)tu(v), γ̇u(t)

⟩
= ⟨v, u⟩, in particular, ∥(dexpp)tu(v)∥ = ∥v∥.

Proof. (1) Since the curve c(s) = (t+ s)u on Ttu(TpM) ∼= TpM satisfies c(0) = tu

and
dc

ds
(0) = u, we have

(dexpp)tu(u) =
d

ds
expp

(
c(s)

)∣∣
s=0

=
d

ds
γu(t+ s)

∣∣
s=0

=
dγu
ds

(t).

(2) We define a smooth map α : [−ϵ, ϵ] × (−δ, δ) → M with some positive δ by

α(t, s) = expp

(
t(u+ sv)

)
. Then it is a variation of geodesics. We set

Y (t) =
∂α

∂s
(t, 0) = (dexpp)tu(tv) = t(dexpp)tu(v),
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which is a Jacobi field along γu. It satisfies Y (0) = 0 and(
∇γ̇uY

)
(0) =

(
∇ ∂

∂s

∂α

∂t

)
(0, 0)

=
(
∇ ∂

∂s

(
(dexpp)t(u+sv)(u+ sv)

∣∣
t=0

))∣∣∣
s=0

=
(
∇ ∂

∂s

(
(dexpp)0p(u+ sv)

))∣∣∣
s=0

= ∇ ∂
∂s
(u+ sv)

∣∣
s=0

= v.

Since we have

d2

dt2

⟨
Y (t), γ̇(t)

⟩
=
⟨(

∇γ̇u∇γ̇uY
)
(t), γ̇u(t)

⟩
= −

⟨
R
(
Y (t), γ̇u(t)

)
γ̇u(t), γ̇u(t)

⟩
= 0,

because γu is a geodesic, we see⟨
Y (t), γ̇(t)

⟩
=
⟨
Y (0), γ̇(0)

⟩
+
⟨(
∇γ̇u

)
Y (0), γ̇(0)

⟩
t = ⟨v, u⟩t.

Thus we obtain ⟨
(dexpp)tu(v), γ̇u(t)

⟩
=
⟨1
t
Y (t), γ̇(t)

⟩
= ⟨v, u⟩t.

This complete the proof. □

We showed that a variation of geodesics induces a Jacobi field. On the other hand,

for a Jacobi filed Y along a geodesic γ we have a variation α of geodesics satisfying

α(t, 0) = γ(t) and
∂α

∂s
(t, 0) = Y (t) for all t. As a matter of fact, we set γ(0) = p, γ̇(0) =

u, Y (0) = v and ∇γ̇Y (0) = w. We take a curve σ : (−ϵ, ϵ) → M satisfying σ(0) = p

and σ′(0) = v. If we define a variation of geodesics by α(t, s) = expσ(s)

(
t(u + sw)

)
,

then we have α(t, 0) = expp(tu) = γ(t) and

∂α

∂s
(0, 0) =

( d
ds

expσ(s)(0σ(s))
)∣∣∣

s=0
=
dσ

ds
(0) = v.

Since (dexpσ(s))0σ(s)
is the identity, we have(

∇ ∂α
∂t

∂α

∂s

)
(0, 0) =

(
∇ ∂α

∂s

∂α

∂t

)
(0, 0) =

(
∇ ∂

∂s

(
(dexpσ(s))t(u+sw)(u+ sw)

∣∣
t=0

))∣∣∣
s=0

=
(
∇ ∂

∂s

(
(dexpσ(s))0σ(s)

(u+ sw)
))∣∣∣

s=0
=
(
∇ ∂

∂s
(u+ sw)

)∣∣
s=0

= w.

Thus we see the Jacobi field
∂α

∂s
(t, 0) along γ coincides with Y .

Let γ : (a, b) →M (a < 0 < b) be a geodesic and t0 ∈ (a, b). If there is a non-trivial

Jacobi field Y satisfying Y (0) = 0 and Y (t0) = 0, we say that γ(t0) is a conjugate point
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of γ(0) along γ, and say that t0 a conjugate value of γ(0) along γ. We call the minimum

positive conjugate value cσ(p) the first conjugate value of p along σ.

Lemma 1.9. Let γ be a geodesic. Suppose γ(t0) is not a conjugate point of γ(0)

along γ. For arbitrary v ∈ Tγ(0)M and w ∈ Tγ(t0)M , there exists a unique Jacobi field

Y along γ satisfying Y (0) = v and Y (t0) = w.

Proof. Since the set Ja(γ)0 =
{
Y ∈ Ja(γ)

∣∣ Y (0) = 0
}
is anm-dimensional linear

space and γ(t0) is not a conjugate point, we see the linear map Ja(γ)0 ∋ Y 7→ Y (t0) ∈

Tγ(t0)M is bijective, that is, it is a linear isomorphism. Thus, we have Y1 ∈ Ja(γ)0

satisfying Y1(t0) = w.

Let X be a Jacobi field along γ. We consider a geodesic γ̃ given by γ̃(t) = γ(t0− t).

If we set a vector field X̃ along γ̃, we have(
∇γ̃′∇γ̃′X̃

)
(t) +R

(
X̃(t), γ̃′(t)

)
γ̃′(t)

=
(
∇γ̇∇γ̇X

)
(t0 − t)−R

(
X(t0 − t),−γ̇(t0 − t)

)
γ̇(t0 − t) = 0,

hence X̃ is a Jacobi field along γ̃. By definition of conjugate points, we find that γ(0)

is not a conjugate point of γ(t0) along γ̃. Thus, above argument shows that we have

a Jacobi field Ỹ2 along γ̃ satisfying Ỹ (0) = 0 and Ỹ (t0) = v. Therefore, by setting

Y2(t) = Ỹ2(t0 − t), it is a Jacobi field along γ satisfying Y (0) = v and Y (t0) = 0. Thus

we find that the Jacobi field Y = Y1 + Y2 satisfies the desirable condition.

If we have another Jacobi field Z along γ satisfying Z(0) = v and Z(t0) = w, the

Jacobi field Y − Z satisfies (Y − Z)(0) = 0 and (Y − Z)(t0) = 0. Since γ(t0) is not a

conjugate point, we see Y − Z ≡ 0. We hence get the conclusion. □

By using Gauss Lemma (Proposition 1.1), we study the relationship between the

distance function and exponential maps.

Lemma 1.10. Suppose expp : Br(0p) → expp

(
Br(0p)

)
is an embedding. For v ∈

Br(0p), the geodesic γv : [0, 1] →M satisfies

d
(
p, expp(v)

)
= length(γv)

(
= ∥v∥

)
.
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Moreover, if a smooth curve c : [a, b] → M with c(a) = p, c(b) = expp(v) satisfies

length(c) = ∥v∥ then c([a, b]) = γv([0, 1]), and if γ is a geodesic of unit speed with

γ(0) = p and γ(∥v∥) = expp(v), then γv(t) = γ(∥v∥t) holds for t ∈ [0, 1]. In particular,

expp

(
Br(0p)

)
is a distance-ball Br(p) = {q | d(p, q) < r}.

Proof. First we take a smooth curve c : [a, b] →M in B := expp

(
Br(0p)

)
satisfy-

ing c(a) = p and c(b) = q := expp(v). Then we have a smooth curve µ : [a, b] → Br(0p)

with c(t) = expp

(
µ(t)

)
. We shall show length(c) ≥ ∥v∥. If there are a < t1 < t2 <

· · · < tK < b with c(tj) = p, we divid c into K + 1 curves c|[a,t1], c|[t1,t2], . . . , c|[tK , b].

We may hence suppose c(t) ̸= p for t > a. We set ρ(t) = ∥µ(t)∥ for a ≤ t ≤ b and

u(t) = µ(t)/ρ(t) ∈ UpM for a < t ≤ b. By Gauss Lemma (Proposition 1.1), we find∥∥(dexpp)µ(t)(u(t))
∥∥ = ∥γ̇u(t)(r(t))∥ = 1,⟨

(dexpp)µ(t)(u(t)), (dexpp)µ(t)

(du
dt

(t)
)⟩

=
⟨
u(t),

du

dt
(t)
⟩
=

1

2

d

dt
⟨u(t), u(t)⟩ = 0.

Therefore, as
dµ

dt
(t) =

dρ

dt
(t)u(t) + ρ(t)

du

dt
(t), we have∥∥∥dc

dt
(t)
∥∥∥ =

∥∥∥(dexpp)µ(t)

(dµ
dt

(t)
)∥∥∥ =

∥∥∥(dexpp)µ(t)

(dρ
dt

(t)u(t) + ρ(t)
du

dt
(t)
)∥∥∥

=

{∣∣∣dρ
dt

(t)
∣∣∣2∥∥(dexpp)µ(t)(u(t))

∥∥2 + ρ(t)2
∥∥∥(dexpp)µ(t)

(du
dt

(t)
)∥∥∥2}1/2

≥
∣∣∣dρ
dt

(t)
∣∣∣ = ∣∣∣⟨dµ

dt
(t), u(t)

⟩∣∣∣ = 1

ρ(t)

∣∣∣⟨dµ
dt

(t), µ(t)
⟩∣∣∣

=
∣∣∣ d
dt
∥µ(t)∥

∣∣∣ = ∣∣∣dρ
dt

(t)
∣∣∣.

(1.4)

Hence we find

length(c) =

∫ b

a

∥∥∥dc
dt
(t)
∥∥∥ dt ≥ ∫ b

a

∣∣∣dρ
dt

(t)
∣∣∣ dt

≥
∣∣∣∫ b

a

dρ

dt
(t) dt

∣∣∣ = ∣∣ρ(b)− ρ(a)
∣∣ = ∥v∥.

(1.5)

Next we take a curve c : [a, b] →M satisfying c(a) = p and c(b) = q which does not con-

tained in B. Then there is t0 > with a < t0 < b satisfying c(t) ∈ expp

(
B(r+∥v∥)/2(0p)

)
for a ≤ t < t0 and c(t0) ̸∈ expp

(
B(r+∥v∥)/2(0p)

)
. By the above argument we have
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length(c|[a,t0]) ≥ (r + ∥v∥)/2 > ∥v∥. We hence find d(p, q) ≥ ∥v∥. Since length(γv) =

∥v∥, we obtain d(p, q) = ∥v∥.

Next we take a smooth curve c : [a, b] → M with c(a) = p and c(b) = q which

satisfies length(c) = d(p, q)(= ∥v∥). Then we find that c([a, b]) is contained in B and

equalities hold in (1.4) and (1.5). Thus we see u(t) ≡ u ∈ UpM and dρ
dt

≥ 0. This

means c([a, b]) = γu([0, ∥v∥]). Since expp : Br(0p) → B is bijective, we have v = ∥v∥u

and c([a, b]) = γv([0, 1]).

Finally we study Br(p). It is clear that B ⊂ Br(p) by the assertion we showed in

the above. On the other hand, if we suppose that we have a point x ∈ Br(p) \B then

for every smooth curve c : [a, b] → M with c(a) = p and c(b) = x there is t0 with

a < t0 < b satisfying c(t) ∈ B and c(t0) ̸∈ B. Since length(c|[a,t0]) ≥ r as we see in

the above and length(c|[t0,b] ≥ d
(
c(t0), x) > 0, we find d(p, x) > r. We hence get the

conclusion. □

An open setW inM is called uniformly normal neighborhood if there exists positive

δ such that the following conditions hold at each point q ∈ W :

i) expq : Bq(0q) → expq

(
Bq(0q)

)
is an embedding;

ii) W ⊂ expq

(
Bq(0q)

)
.

Lemma 1.11 (Existence of uniformly normal neighborhoods). Given a point p ∈M

and a neighborhood U of p, there exists a uniformly normal neighborhood W of p

contained in U .

Proof. We take a neighbourhood V of p whose closure V is contained in U . Since

TM |V =
∪

q∈V
{
u ∈ TqM

∣∣ ∥u∥ = 1
}
is compact, there is positive ϵ satisfying that γu

is defined on (−ϵ, ϵ) for all u ∈ TM |V . Therefore we see that expq : Bϵ(0q) → M is

defined for each q ∈ V . By setting E =
{
u ∈ TM |V

∣∣ ∥u∥ < ϵ
}
, we define a smooth

map Φ : E →M ×M by Φ(u) =
(
πM(u), expπM (u)(u)

)
.

For a normal coordinate neighborhood
(
U ′, φ = (x1, . . . , xm)

)
of M centered at

p with U ′ ⊂ V , we have a corresponding coordinate neighborhood of TM given by
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(
Ũ ′, φ̃ = (x1, . . . , xn; ξ1, . . . , ξm)

)
which is defined as Ũ ′ = TM |U ′ and

Ũ ′ ∋
m∑
j=1

ξj

( ∂

∂xj

)
q
7−→

(
x1(q), . . . , xm(q), ξ1, . . . , ξm

)
∈ φ(U ′)× Rm.

Since we have

πM

(
ξj

( ∂

∂xj

)
q

)
= q and expp

( m∑
j=1

ξj

( ∂

∂xj

)
q

)
= φ−1

(
ξ1, . . . , ξm

)
,

We find that (dΦ)0p : T0pE → T(p,p)
(
M ×M

) ∼= TpM × TpM is given by the matrix

(DΦ)0p =


∂xj
∂xk

∂xj
∂ξk

∂(xj ◦ expp)

∂xk

∂(xj ◦ expp)

∂ξk

 =

(
E O
∗ E

)

by identifying T0pE = R2m and TpM×TpM = Rm×Rm = R2m. As (DΦ)0p is invertible,

by inverse mapping theorem, there is an open neighborhood V
(
⊂ E

)
of 0p such that

Φ|V : V → Φ
(
V
)
is a diffeomorphism.

There exist an open neighborhood U ′′ of p and a positive ϵ′ such that U ′′ ⊂ U ′ and

φ̃−1
(
U ′′ ×Bϵ′(0)

)
⊂ V. Since q 7→

(
∂

∂xj

)
q
is smooth, we can set

C∗ := min
{∥∥∥ m∑

j=1

aj

( ∂

∂xj

)
q

∥∥∥ ∣∣∣ aj ∈ R with
m∑
j=1

a2j = 1, q ∈ U ′′
}
,

C♯ := min
{∥∥∥ m∑

j=1

aj

( ∂

∂xj

)
q

∥∥∥ ∣∣∣ aj ∈ R with
m∑
j=1

a2j = 1, q ∈ U ′′
}
.

Then for arbitrary v ∈ TM |U ′′ we have C∗
∑n

j=1 ξj(v)
2 ≤ ∥v∥ ≤ C♯

∑n
j=1 ξj(v)

2. Thus,

if we put U :=
∪

q∈U ′′{v ∈ TqM | ∥v∥ < C∗ϵ
′}, then it is an open neighborhood of 0p

satisfying U ⊂ φ̃−1
(
U ′′ × Bϵ′(0)

)
. Since Φ|V : V → Φ

(
V
)
is a diffeomorphism, we can

take an open neighborhood W (⊂ U ′′) of p so that W ×W ⊂ Φ(U).

We shall show that W and δ := C∗ϵ
′ satisfy the conditions of uniform normal

neighborhood. We set W :=
∪

q∈W{v ∈ TqM | ∥v∥ < δ}. As W ⊂ U ⊂ V, the map

Φ|W : W → Φ
(
W
)
is a diffeomorphism.
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We take an arbitrary point q0 ∈ W . We define a map ψ : expq0

(
Bδ(0q0)

)
→ Bδ(0q0)

so that
(
Φ|W

)−1
(q0, y) = ψ(y). Then, for each v ∈ Tq0M with ∥v∥ < δ, we have

ψ ◦ expq0(v) =
(
Φ|W

)−1(
q0, expq0(v)

)
=
(
Φ|W

)−1 ◦ Φ(v) = v.

On the other hand, for arbitrary y ∈ M satisfying y = expq0(v) with some v ∈ Tq0M

with ∥v∥ < δ, we have

(
q0, expq0 ◦ ψ(y)

)
= Φ ◦

(
Φ|W

)−1
(q0, y) = (q0, y),

hence have expq0 ◦ ψ(y) = y. Thus, expq0

∣∣
Bδ(0q0 )

: Bδ(0q0) → expq0

(
Bδ(0q0)

)
is an

embedding.

We take arbitrary points q, y ∈ W . SinceW×W ∈ Φ(U), we take v =
(
Φ|U
)−1

(q, y)

∈ TqM . We note that ∥v∥ < δ and that v ∈ W because q ∈ W . As (q, y) = Φ(v) =(
q, expq(v)

)
, we find that y ∈ expq

(
Bδ(0q)

)
. Thus, we find that W is uniformly

normal. □

By Lemmas 1.10 and 1.11, for arbitrary points q1, q2 in a uniform normal neigh-

borhood W , there is a geodesic γ joining these points whose length is less than δ.

When a Riemannian manifold M is complete, by Hopf-Renow theorem every geo-

desic can be extended unlimitedly. That is, domains of geodesics are the set R of all

real numbers. We say a Riemannian manifold to be geodesically complete at p ∈M if

every geodesic of initial poit p is defined on R.

Theorem 1.1 (Hopf-Renow Theorem). For a connected Riemannian manifold M ,

the following conditions are mutually equivalent:

(1) At some point p ∈M , the manifold M is geodesically complete;

(2) M is geodesically complete;

(3) At some point p ∈ M , for every r > 0, the closed ball Br(p) := {q ∈

M ; d(p, q) ≤ r} is compact;

(4) For an arbitrary point p ∈M and every r > 0, the closed ball Br(p) is compact;
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(5) The distance space (M,d) is a complete distance space, that is, every Cauchy

sequence in M is a convergent sequence.

In the proof of this theorem we can show the following.

Proposition 1.2. Given two points p, q on a complete connected Riemannian

manifold, there exists a geodesic γ joining p and q with length(γ) = d(p, q).

The geodesic in Proposition 1.2 is called a minimizing geodesic joining p and q.

Proof of Theorem 1.1. (1) ⇒ (3). First, we show that the condition (1) guar-

antees that for every q ∈M there exists a minimizing geodesic joining p and q.

By Lemma 1.8 and by inverse mapping theorem, there is positive ϵ such that

expp : B2ϵ(0p) →M is an embedding intoM . By Lemma 1.10 each point q ∈ B2ϵ(p) =

expp

(
B2ϵ(0p)

)
can be joined by a unique minimal geodesic with p. We consider the

case d(p, q) ≥ 2ϵ. Since Bϵ(p) = expp

(
Bϵ(0p)

)
is compact, we can take q̄ ∈ ∂Bϵ(p)

satisfying d(p, q̄) + d(q̄, q) = d(p, q). In fact, for each positive integer j we have a

smooth curve cj : [0, 1] → M from p to q which satisfies length(cj) < d(p, q) + 1
j
. We

take tj so that cj(t) ∈ Bϵ(p) for 0 ≤ t < tj < 1 and d
(
p, cn(tn)

)
= ϵ. Then putting

qj = cj(tj) we have

d(p, qj) + d(qj, q) ≤ length(cj|[0,tj ]) + length(cj|[tj ,1]) = length(cj) < d(p, q) +
1

j
.

As qj ∈ ∂Bϵ(p) we can take a convergent subsequence {qjk}∞k=1. If we set q̄ =

limk→∞ qjk ∈ ∂Bϵ(p), we have

d(p, q̄) + d(q̄, q) = lim
k→∞

{d(p, qjk) + d(qjk , q)} ≤ d(p, q)

by the above inequality. On the other hand we have d(p, q) ≤ d(p, q̄) + d(q̄, q) by the

triangle inequality. Hence we have d(p, q̄) + d(q̄, q) = d(p, q).

We take a geodesic γ of unit speed with γ(0) = p and γ(ϵ) = q̄. Under the condition

(1), this geodesic is defined on R. We set

T =

{
t ∈ [0, d(p, q)]

∣∣∣∣∣ d
(
p, γ(t)

)
= t,

d
(
p, γ(t)

)
+ d
(
γ(t), q

)
= d(p, q)

}
,
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and put T := supT. Since γ|[0,ϵ] is the minimizing geodesic from p to q̄, we find

that t ∈ [0, ϵ] satisfies the conditions, hence T ≥ ϵ. We suppose T < d(p, q) and

set q′ = γ(T ). By definition of T , and continuity of the distance function d, we have

d(p, q′) = T and d(p, q′)+d(q′, q) = d(p, q). We take a positive δ so that 2δ < d(p, q)−T

and that B2δ(q
′) is contained in a uniform normal neighborhood W around q′. By the

same argument when we take q̄, by taking a sequence of smooth curve joining q′ and

q, we have a point q̄′ ∈ ∂Bδ(q
′) satisfying d(q′, q̄′) + d(q̄′, q) = d(q′, q). By definition

of T , we have a monotone increasing sequence {tk}∞k=1 ⊂ T with limk→∞ tk = T .

For sufficiently large k0 we have γ(tk0) ∈ Bϵ(q
′). We set p′ = γ(tk0). Then we have

d(p, q) = d(p, p′) + d(p′, q) = tk0 + d(p′, q). Thus we obtain

d(p′, q) = d(p, q)− tk0 = d(p, q′) + d(q′, q)− tk0

= d(q′, q) + T − tk0 = d(q′, q) + d(p′, q′),

because p′ and q′ are joined by a minimizing geodesic γ|[tk0 .T ]. By the triangle inequality

we have

d(p′, q̄′) ≤ d(p′, q′) + d(q′, q̄′) = d(p′, q′) + d(q′, q)− d(q̄′, q)

= d(p′, q)− d(q̄′, q) ≤ d(p′, q̄′),

hence have d(p′, q′) + d(q′, q̄′) = d(p′, q̄′). Since p′, q′, q̄′ ∈ W this equality shows that

the join of γ|[tk0 .T ] and the minimizing geodesic of unit speed from q′ to q̄′ is the minimal

geodesic of unit speed from p′ to q̄′. Hence it coincides with γ|[tk0 ,T+δ] because of the

uniqueness of geodesics of given initial vector. We therefore have γ(T +δ) = q̄′. Again,

by the triangle inequality we have

d(p, q̄′) ≤ d(p, q′) + d(q′, q̄′) = d(p, q′) + d(q′, q)− d(q̄′, q)

= d(p, q)− d(q̄′, q) ≤ d(p, q̄′),

hence have d(p, q̄′) = d(p, q′) + d(q′, q̄′) = T + δ. Moreover, we have

d(p, q̄′) + d(q̄′, q) = d(p, q′) + d(q′, q̄′) + d(q̄′, q) = d(p, q′) + d(q′, q) = d(p, q).

Thus, we find T + δ ∈ T, which is a contradiction. We hence find T = d(p, q). This

shows that γ is a minimal geodesic of unit speed joining p and q.
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Next we show the condition (3) holds under the condition that for every q ∈

M there exists a minimizing geodesic joining p and q. For an arbitrary sequence

{qk}∞k=1 ⊂ Br(p), we take uk ∈ UpM so that the geodesic of initial vector uk is a

minimal geodesic of unit speed from p to qk. Since UpM is compact and d(p, qk) ≤ r,

we can take a subsequence {qkj}∞j=1 so that both {ukj}∞j=1 and {d(p, qkj)}∞j=1 converge.

We set u = limj→∞ ukj and d = limj→∞ d(p, qkj) (≤ r). Since γu depends smoothly

on u, we find γu(d) = limj→∞ γukj

(
d(p, qkj)

)
= limj→∞ qkj . Thus {qkj}∞j=1 converges to

γu(d) ∈ Br(p). Hence Br(p) is compact.

(3) ⇒ (4). We take an arbitrary point q ∈ M . By triangle inequality, we see

Br(q) ⊂ Br+d(p,q)(p). Since Br+d(p,q)(p) is compact, its closed subset Br(q) is also

compact.

(4) ⇒ (5). We take a Caucy sequence {pj}∞j=1 in M with respect to the induced

distance function d. For a positive ϵ there is a number N such that d(pj, pk) < ϵ for

every j, k with j, k ≥ N the distance. If we set R = max{d(p1, pj) | 2 ≤ j ≤ N},

we have d(p1, pk) < d(p1, pN) + ϵ for k ≥ N . Thus we see {pj}∞j=1 ⊂ BR+ϵ(p1). Since

BR+ϵ(p1) is compact, we find that {pj}∞j=1 converges to a point in BR+ϵ(p1). Thus, M

is complete.

(5) ⇒ (2). We take a geodesic γ of unit speed. It is defined at least on the interval

(−ϵ, ϵ). We set T+ = sup{τ | γ is defined on (−ϵ, τ ]}. If we suppose T+ <∞, we take

a monotone increasing sequence {tj}∞j=1 with limj→∞ tj = T . As we have

d
(
γ(tj), γ(tk)

)
≤ length(γ|[tj ,tk]) = tk − tj

for arbitrary j, k with j ≤ k, and since {tj}∞j=1 is a convergent sequence, we find that

{γ(tj)}∞j=1 is a Cauchy sequence in M . We put q = limj→∞ γ(tj). We take a uniform

normal neighborhood W of q. There is j0 such that if j ≥ j0 we have γ(tj) ∈ W .

We take a geodesic σ : (−ϵ′, ϵ′) → M of unit speed which satisfies σ(0) = q and

σ
(
d(q, γ(tj0+1)

)
= γ(tj0+1) and that lies in W . Since

d
(
γ(tj), q

)
= lim

k→∞
d
(
γ(tj), γ(tk)

)
= lim

k→∞
|tk − tj| = T − tj,
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Since γ(tj) ∈ W for j ≥ j0, the geodesic γ|[tj0 ,tj0+1] is minimizing, hence

d
(
γ(tj0+1), γ(tj0)

)
= tj0+1 − tj0 .

Thus, we have

d
(
q, γ(tj0+1)

)
+ d
(
γ(tj0+1), γ(tj0)

)
= (T − tj0+1) + (tj0+1 − tj0) = T − tj0 = d

(
q, γ(tj0)

)
.

This means that the joined curve of γ|[tj0 ,tj0+1] and σ
−1 is a minimizing geodesic joining

γ(tj0) and q. If we consider a geodesic

γ̃(t) =

{
γ(t), when t ≤ tj0+1,

σ(T − t), when tj0+1 ≤ t < T + ϵ′,

then γ̃|[0,T ) = γ, because γ̇(tj0+1) = ˙̃γ(tj0+1). This is a contradiction to the definition

of T . Hence we find that γ is defined on (−ϵ,∞). Considering γ−1, we get γ is defined

on R. Thus we see M is geodesically complete. □
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4. Circles

A smooth curve γ : I →M on a Riemannian manifold M is said to be parameter-

ized by its arc-length if it satisfies ∥γ̇(t)∥ = 1 at each t, where γ̇ denotes the differential

of γ with respect to the parameter t. A smooth curve γ parameterized by its arc-length

is said to be a circle, if it satisfies the following system of differential equations:

(1.6)

{ ∇γ̇ γ̇ = kY,

∇γ̇Y = −kγ̇,

with a constant k(≥ 0) and a field Y of unit vectors along γ. We call the constant k

its geodesic curvature and {γ̇, Y } its Frenet frame. When M is complete, every circle

is defined on R.

Proposition 1.3. A smooth curve γ parameterized by its arc-length is a circle if

and only if it satisfies

(1.7) ∇γ̇∇γ̇ γ̇ + ∥∇γ̇ γ̇∥2γ̇ = 0.

Proof. First, we suppose a curve γ is a circle. Then we get

∇γ̇∇γ̇ γ̇ = ∇γ̇(kY ) = −k2γ̇ = −||∇γ̇ γ̇||2γ̇.

Next, we suppose a curve γ satisfies (1.7). As it is parameterized by its arc-length, we

have

0 = γ̇(∥γ̇∥2) = 2⟨γ̇,∇γ̇ γ̇⟩.

By (1.7), we obtain

γ̇(∥∇γ̇ γ̇∥2) = 2⟨∇γ̇∇γ̇ γ̇,∇γ̇ γ̇⟩ = −2∥∇γ̇ γ̇∥2⟨γ̇,∇γ̇ γ̇⟩ = 0,

hence we find that ∥∇γ̇ γ̇∥ is constant along γ. We put k = ∥∇γ̇ γ̇∥. When k = 0,

for an arbitrary parallel unit vector field Y along γ, it satisfies the equations of circle

(1.6). When k > 0, we set Y = (1/k)∇γ̇ γ̇. Then we find that (1.7) turns to

k∇γ̇Y + k2γ̇ = 0.

This shows that γ satisfies the system of equations (1.6). □
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Lemma 1.12. Let γ be circles of geodesic curvature k on (M, ⟨ , ⟩). For a positive

constant λ, we consider a new Riemannian metric ⟨ , ⟩′ = λ2⟨ , ⟩ . If we define a

curve σ by σ(t) = γ(t/λ). then it is a circle of geodesic curvature k/λ on (M, ⟨ , ⟩′).

Proof. We put a(t) = t/λ. We then have

dσ

dt
(t) =

d

dt
γ(a(t)) = a′(t)

dγ

dt
(a(t)) =

1

λ

dγ

dt
(a(t)).

Hence have ∥∥∥dσ
dt

∥∥∥′= 1

λ

∥∥∥dγ
dt

(a(t))
∥∥∥′= 1

λ
· λ
∥∥∥dγ
dt

(a(t))
∥∥∥= 1.

Thus σ is parameterized by its arc-length with respect to ⟨ , ⟩′. We put Y ′ =
1

λ
Y . We

then have ∥Y ′∥′ = 1

λ
∥Y ∥′ = ∥Y ∥ = 1.

By Lemma 1.3, we have

∇′
σ̇σ̇ = ∇σ̇σ̇ = ∇ 1

λ
γ̇

1

λ
γ̇ =

1

λ2
∇γ̇ γ̇ =

1

λ2
kY =

k

λ
× Y ′,

∇′
σ̇Y

′ = ∇σ̇Y
′ =

1

λ2
∇γ̇Y = − k

λ2
γ̇ = −k

λ
σ̇,

hence σ is a circle of geodesic curvature k/λ. We get the conclusion. □

For the sake of later use, we here study circles on real space forms.

[1] Circles on a Euclidean space

First we study circles on a Euclidean space Rm. Since the covariant differentiation

with respect to the Riemannian connection on Rm is the ordinary differentiation, the

equation (1.7) of a circle of geodesic curvature k turns to

γ′′′ + k2γ′ = 0.

Since its characteristic equation is λ3 + k2λ = 0, we find that γ is expressed as

γ(t) = A+Be
√
−1kt + Ce−

√
−1kt = A+B′ cos kt+ C ′ sin kt

with some A,B,C,B′, C ′ ∈ Rm. Under the initial conditions that γ(0) = p ∈ Rm and

γ′(0) = u, γ′′(0) = kv with u, v ∈ UpRm ⊂ TpRm ∼= Rm, we have

γ(t) = p+
1

k
(sin kt)u+

1

k2
(1− cos kt)v.
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Thus this circle is closed of minimal period 2π/k. Here, a curve γ parameterized by

its arclength is said to be closed if there is t0 ̸= 0 satisfying γ(t + t0) = γ(t) for all t.

The minimum positive t0 with this property is said to be the minimal period of this

closed curve. When γ is not closed it is said to be open.

[2] Circles on a standard sphere

Next we study circles on a standard sphere Sm(1). Regarding Sm(1) as a sub-

manifold of Rn+1, we denote Riemannian connections of Sm(1) and Rm+1 by ∇ and ∇̃,

respectively. We take a circle γ of geodesic curvature k whose Frenet frame is {γ̇, Y }.

We regard this curve as a curve in Rm+1. For the sake of simplicity we denote it also

by γ. For arbitrary vector fields X, Y ∈ X
(
Sm(1)

)
, we have ∇XY = ∇̃XY + ⟨X, Y ⟩N

(see §1.3). Hence, the system of differential equations (1.6) turns to ∇̃γ̇ γ̇ = kY − γ,

∇̃γ̇Y = −kγ̇.
We therefore get

∇̃γ̇∇̃γ̇ γ̇ = k∇̃γ̇Y − γ̇ = −(k2 + 1)γ̇,

which is equivalent to γ′′′ + (k2 + 1)γ′ = 0. Since its characteristic equation is λ3 +

(k2 + 1)λ = 0, we find that γ as a curve in Rm+1 is of the form

γ(t) = A+Be
√

−(k2+1) t + Ce−
√

−(k2+1) t = A+B′ cos
(√

k2 + 1 t
)
+ C ′ cos

(√
k2 + 1 t

)
with some A,B,C,B′, C ′ ∈ Rm+1. Under the initial conditions γ(0) = p ∈ Sm(1) ⊂

Rm+1 and γ̇(0) = u, ∇γ̇ γ̇(0) = kv with u, v ∈ UpS
m(1) ⊂ TpS

m(1) ⊂ TpRm+1 ∼= Rm+1,

which is equivalent to γ(0) = p, γ′(0) = u, γ′′(0) = kv + p, we obtain

γ(t) =
1

k2 + 1
(cos

√
k2 + 1t+k2)p+

1√
k2 + 1

sin
√
k2 + 1t u− k

k2 + 1
(cos

√
k2 + 1t−1)v.

Thus, we find that every circle of geodesic curvature k on Sm(1) is closed and of

minimal period 2π/
√
k2 + 1.

We here make mention of circles on Sm(c).

Let γ be a circle of constant geodesic curvature k on
(
Sm(c), ⟨ , ⟩′

)
. Here, the

metric ⟨ , ⟩′ is given by ⟨ , ⟩′ = 1

c
⟨ , ⟩ with the canonical metric ⟨ , ⟩ on a standard
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sphere Sm(1). If we define a curve σ on Sm(1) by σ(s) = γ(s/
√
c), then it is a circle

of geodesic curvature k/
√
c on (Sm(1), ⟨ , ⟩) by Lemma1.12. Hence it is expressed as

σ(s) =
1

(k/
√
c)2 + 1

(
cos

√
(k/

√
c)2 + 1 s+ (k/

√
c)2
)
p

+
1√

(k/
√
c)2 + 1

sin

√
(k/

√
c)2 + 1 s u

− (k/
√
c)

(k/
√
c)2 + 1

(
cos

√
(k/

√
c)2 + 1 s− 1

)
v

=
c

k2 + c

(
cos

√
(k/

√
c)2 + 1 s+ (k/

√
c)2
)
p+

√
c√

k2 + c
sin

√
(k/

√
c)2 + 1 s u

−
√
ck

k2 + c

(
cos

√
(k/

√
c)2 + 1 s− 1

)
v.

Here, we put t = s/
√
c. Since ∥σ̇(0)∥′ = 1/

√
c∥σ̇(0)∥ = u/

√
c, we have

γ(t) = σ(
√
ct) =

1

k2 + c

(
c cos

√
k2 + c t+ k2

)
p+

√
c√

k2 + c
sin

√
k2 + c t u

−
√
ck

k2 + c

(
cos

√
k2 + c t− 1

)
v

=
1

k2 + c

(
c cos

√
k2 + c t+ k2

)
p+

1√
k2 + c

sin
√
k2 + c t u

− k

k2 + c

(
cos

√
k2 + c t− 1

)
v.

As γ(t) = σ(
√
ct), if σ(s+ s0) = σ(s), we see

γ(t+ s0/
√
c) = σ(

√
ct+ s0) = σ(

√
ct) = γ(t).

Since σ is closed of minimal 2π/
√
(k/

√
c)2 + 1, we see that γ is closed of minimal

period 2π/
√
k2 + c.

[3] Circle on a real hyperbolic space

In the third place we study circles on a real hyperbolic space Hm(−1). Regarding

Hm(−1) as a sub-manifold of Rm+1, we denote Riemannian connections of Hm(−1)

and Rm+1 by ∇ and ∇̃, respectively. We take a circle γ of geodesic curvature k whose

Frenet frame is {γ̇, Y }. We regard this curve as a curve in Rm+1. We use the same

convention as in the case of Sm(1). For arbitrary vector feilds X, Y ∈ X
(
Hm(−1)

)
, we

have ∇XY = ∇̃XY − ⟨X,Y ⟩N (see §1.3). Hence the system of equations (1.6) turns
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to  ∇̃γ̇ γ̇ = kY + γ,

∇̃γ̇Y = −kγ̇.
We therefore get

∇̃γ̇∇̃γ̇ γ̇ = k∇̃γ̇Y + γ̇ = −(k2 − 1)γ̇,

which is equivalent to γ′′′+(k2−1)γ′ = 0. Since its characteristic equation is λ3+(k2−

1)λ = 0, we have three cases according to properties of its solutions. When k > 1 it

has two pure imaginary solutions and a real solution, when k = 1 all its solutions are

null, and when 0 ≤ k < 1 it has three real solutions. Thus, we find that γ as a curve

in Rm+1 is of the following form

γ(t) =



A+Be
√

−(k2−1) t + Ce−
√

−(k2−1) t

= A+B′ cos
(√

k2 − 1 t
)
+ C ′ sin

(√
k2 − 1 t

)
,

if k > 1,

A+Bt+ Ct2, if k = 1,

A+Be
√
1−k2t + Ce−

√
1−k2t

= A+B′ cosh
(√

1− k2 t
)
+ C ′ sinh

(√
1− k2 t

)
,

if 0 < k < 1.

with some A,B,C,B′, C ′ ∈ Rm+1. Under the initial conditions γ(0) = p ∈ Hm(−1) ⊂

Rm+1 and γ̇(0) = u, ∇γ̇ γ̇(0) = kv with u, v ∈ UpH
m(−1) ⊂ TpH

m(−1) ⊂ TpRm+1 ∼=

Rm+1, which is equivalent to γ(0) = p, γ′(0) = u, γ′′(0) = kv + p, we obtain

γ(t) =



1

k2 − 1

(
k2 − cos

√
k2 − 1 t

)
p+

1√
k2 − 1

sin
√
k2 − 1 t u

+
k

k2 − 1

(
1− cos

√
k2 − 1 t

)
v,

if k > 1,

(
1 +

t2

2

)
p+ tu+

t2

2
kv, if k = 1,

1

1− k2
(
cosh

√
1− k2 t− k2

)
p+

1√
1− k2

sinh
√
1− k2 t u

+
k

1− k2
(
cosh

√
1− k2 t− 1

)
v,

if 0 < k < 1.

Thus, we find that every circle of geodesic curvature k with k > 1 on Hm(−1) is closed

and is of length 2π/
√
k2 − 1. On the other hand, when k ≤ 1, every circle of geodesic

curvature k on Hm(−1) is unbounded.
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We here make mention of circles on Hm(c). Let γ be circles of geodesic curvature k

on
(
Hm(c), ⟨ , ⟩′

)
. Here, the metric ⟨ , ⟩′ is given by ⟨ , ⟩′ = 1

|c|
⟨ , ⟩ with the canonical

metric ⟨ , ⟩ on a Hm(−1). If we define a curve σ on Hm(−1) by σ(s) = γ(s/
√
|c|),

then it is a circle of geodesic curvature k/
√

|c| on (Hm(−1), ⟨ , ⟩) by Lemma 1.12.

Hence it is expressed as

σ(s) =



|c|
k2 − |c|

(k2
|c|

− cos

√
k2 − |c|√

|c|
s
)
p+

√
|c|√

k2 − |c|
sin

√
k2 − |c|√

|c|
s u

+

√
|c|k

k2 − |c|

(
1− cos

√
k2 − |c|√

|c|
s
)
v,

k > 1,

(
1 +

s2

2

)
p+ su+

s2

2

k√
|c|
v, k = 1,

|c|
|c| − k2

(
cosh

√
|c| − k2√

|c|
s− k2

|c|

)
p+

√
|c|√

|c| − k2
sinh

√
|c| − k2√

|c|
s u

+

√
|c|k

|c| − k2

(
cosh

√
|c| − k2√

|c|
s− 1

)
v,

0 < k < 1.

Here, we put t = s/
√
|c|. Since ∥σ(0)∥′ = 1/

√
|c|∥σ̇(0)∥ = u/

√
|c|, we have

γ(t) =



|c|
k2 − |c|

(k2
|c|

− cos

√
k2 − |c|√

|c|
s
)
p+

1√
k2 − |c|

sin

√
k2 − |c|√

|c|
s u

+
k

k2 − |c|

(
1− cos

√
k2 − |c|√

|c|
s
)
v,

k > 1,

(
1 +

s2

2

)
p+

s√
|c|
u+

s2

2

k

|c|
v, k = 1,

|c|
|c| − k2

(
cosh

√
|c| − k2√

|c|
s− k2

|c|

)
p+

1√
|c| − k2

sinh

√
|c| − k2√

|c|
s u

+
k

|c| − k2

(
cosh

√
|c| − k2√

|c|
s− 1

)
v,

0 < k < 1.

As γ(t) = σ(
√
|c|t), if σ(s+ s0) = σ(s), we see

γ(t+ s0/
√

|c|) = σ(
√

|c|t+ s0) = σ(
√

|c|t) = γ(t).

Since σ is closed of minimal period 2π
/√(

k/
√
|c|
)2
+1, we see γ is closed of minimal

period 2π/
√
k2 + |c|.





CHAPTER 2

Kähler magnetic fields

Our attempt is to study Kähler manifolds by using some smooth curves associated

with their complex structure. We define a family of smooth curves so that it include

all geodesics. In this section we introduce the notion of magnetic fields so that we can

define such a nice family of curves.

1. Kähler manifolds

We shall start by giving the definition of Kähler manifolds.

LetM be a Hausdorff topological space. We callM a complex manifold of complex

dimension n if we have a family {(Uα, ψα)}α∈A of pairs of an open set Uα of M and a

homeomorphism ψαUα → ψ(Uα) onto an open subset ψα of Cn satisfying the following

conditions:

i) M =
∪

α∈A Uα;

ii) When Uα ∩ Uβ ̸= ∅, the map

ψβ ◦ ψ−1
α : Cn ⊃ ψα(Uα ∩ Uβ) → ψβ(Uα ∩ Uβ) ⊂ Cn

is holomorphic isomorphism.

We call (Uα, ψα) a holomorphic local coordinate neighborhood. If we denote ψ(p) =(
z1(p), . . . , zn(p)

)
the family of these functions {z1, . . . , zn} is called a holomorphic

coordinate system.

We denote as zj = xj +
√
−1yj by using two real functions xj, yj on Uα. Then,

with
{(
Uα, (x1, y1, . . . , xn, yn)

)}
α∈A we see thatM is a real 2n-dimensional real analytic

manifold. Hence ( ∂

∂x1

)
q
,
( ∂

∂y1

)
q
, . . . ,

( ∂

∂xn

)
q
,
( ∂

∂yn

)
q

39
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are a basis of TqM at q ∈ Uα. We define an linear isomorphism Jq : TqM → TqM by

Jq

( ∂

∂xj

)
q
=
( ∂

∂yj

)
q
, Jq

( ∂

∂yj

)
q
= −

( ∂

∂xj

)
q

(1 ≤ j ≤ n).

We note that this linear isomorphism does not depend on the choice of holomorphic

coordinates. As a matter of fact, if
(
Uβ, (w1, . . . , wn)

)
is also a holomorphic coordinate

around q, we denote as wj = uj +
√
−1vj by using real functions uj, vj. By Caucy-

Riemann equations, we have

∂xj
∂uk

=
∂yj
∂vk

,
∂yj
∂uk

= −∂xj
∂vk

(1 ≤ j, k ≤ n)

on Uα ∩ Uβ. As we have( ∂

∂uk

)
q
=

n∑
j=1

{(∂xj
∂uk

)
(q)
( ∂

∂xj

)
q
+
( ∂yj
∂uk

)
(q)
( ∂

∂yj

)
q

}
,

( ∂

∂vk

)
q
=

n∑
j=1

{(∂xj
∂vk

)
(q)
( ∂

∂xj

)
q
+
(∂yj
∂vk

)
(q)
( ∂

∂yj

)
q

}
,

we find

Jq

( ∂

∂uk

)
q
=

n∑
j=1

{(∂xj
∂uk

)
(q)
( ∂

∂yj

)
q
−
( ∂yj
∂uk

)
(q)
( ∂

∂xj

)
q

}
=

n∑
j=1

{(∂yj
∂vk

)
(q)
( ∂

∂yj

)
q
+
(∂xj
∂vk

)
(q)
( ∂

∂xj

)
q

}
=
( ∂

∂vk

)
q
,

Jq

( ∂

∂vk

)
q
=

n∑
j=1

{(∂xj
∂vk

)
(q)
( ∂

∂yj

)
q
−
(∂yj
∂vk

)
(q)
( ∂

∂xj

)
q

}
=

n∑
j=1

{
−
( ∂yj
∂uk

)
(q)
( ∂

∂yj

)
q
−
(∂xj
∂uk

)
(q)
( ∂

∂xj

)
q

}
= −

( ∂

∂uk

)
q
.

Thus, the definition of Jq does not depend on the choice of holomorphic coordinates.

Clearly, we have J2
q = −IdTqM . We define an endomorphism J : TM → TM so that

its restriction onto TpM at each p ∈M is Jp, and call it the complex structure of M .

A Riemannian metric ⟨ , ⟩ on a complex manifold (M,J) with complex structure

J is said to be Hermitian if it satisfies ⟨Jv, Jw⟩ = ⟨v, w⟩ for arbitrary v, w ∈ TpM at

an arbitrary point p ∈M . We say a complex manifold with Hermitian metric to be a

Hermitian manifold. Given a Riemannian metric ⟨ , ⟩ on a complex manifold (M,J),
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if we define ⟨ , ⟩′ by

⟨v, w⟩′ = 1

2

{
⟨v, w⟩+ ⟨Jv, Jw⟩

}
,

then it is a Hermitian metric on M .

On a complex Riemannian manifold (M,J, ⟨ , ⟩) with complex structure J , we

define a 2-form BJ by BJ(u, v) = ⟨u, Jv⟩ for all u, v ∈ TpM at an arbitrary point

p ∈M . We say this 2-form BJ to be a Kähler form. When the Kähler form is closed,

we call ⟨ , ⟩ a Kähler metric. A complex Riemannian manifold with Kähler metric is

called a Kähler manifold.

On a smooth manifold M , we call a linear isomorphism J : TM → TM an almost

complex structure if it satisfies J2 = −IdTM .

Lemma 2.1. Let M be a Hermitian manifold with almost complex structure J .

(1) When J is parallel with respect to the Riemannian connection, then M is a

Kähler manifold.

(2) The complex structure J of a Kähler manifold M is parallel.

Proof. For arbitrary vector fields X,Y, Z ∈ X(M) on M , we have

(dBJ)(X, Y, Z) = (∇XBJ)(Y, Z)− (∇YBJ)(X,Z) + (∇ZBJ)(X,Y ).

Since we have

(∇XBJ)(Y, Z) = ∇X

(
BJ(Y, Z)

)
− BJ(∇XY, Z)− BJ(Y,∇XZ)

= ∇X⟨Y, JZ⟩ − ⟨∇XY, JZ⟩ − ⟨Y, J(∇XZ)⟩

= ⟨Y,∇X(JZ)⟩ − ⟨Y, J(∇XZ)⟩

= ⟨Y, (∇XJ)Z⟩,
we find

(dBJ)(X,Y, Z) = ⟨Y, (∇XJ)Z⟩ − ⟨X, (∇Y J)Z⟩+ ⟨X, (∇ZJ)Y ⟩.

Thus if J is parallel, then BJ is closed.

On the other hand, we shall show that
⟨
(∇uJ)v, w

⟩
= 0 for arbitrary vectors

u, v, w ∈ TpM at an arbitrary point p ∈ M . We extend u, v, w to a vector fields
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X,Y, Z which are defined in some neighborhood of p. That is, X,Y, Z are local vector

fields satisfying X(p) = u, Y (p) = v, Z(p) = w. We may suppose (by using local co-

ordinates) that [X,Y ] = [X,Z] = [X, JY ] = [X, JZ] = [Y, JZ] = [JY, Z] = 0. First,

we have

⟨(∇XJ)Y, Z⟩ = ⟨∇X(JY ), Z⟩ − ⟨J(∇XY ), Z⟩ = ⟨∇X(JY ), Z⟩+ ⟨∇XY, JZ⟩.

By using the Koszul formula (Lemma 1.1), we have

2⟨∇X(JY ), Z⟩ = X⟨JY, Z⟩+ JY ⟨X,Z⟩ − Z⟨X, JY ⟩

+ ⟨[X, JY ], Z⟩ − ⟨[X,Z], Y ⟩ − ⟨[JY, Z], X⟩

= X⟨JY, Z⟩+ JY ⟨X,Z⟩ − Z⟨X, JY ⟩

= −∇X

(
BJ(Y, Z)

)
−∇JY

(
BJ(X, JZ)

)
−∇Z

(
BJ(X,Y )

)
2⟨∇XY, JZ⟩ = X⟨Y, JZ⟩+ Y ⟨X, JZ⟩ − JZ⟨X, Y ⟩

+ ⟨[X, Y ], JZ⟩ − ⟨[X, JZ], Y ⟩ − ⟨[Y, JZ], X⟩

= X⟨Y, JZ⟩+ Y ⟨X, JZ⟩ − JZ⟨X, Y ⟩

= ∇X

(
BJ(JY, JZ)

)
+∇Y

(
BJ(X,Z)

)
+∇JZ

(
BJ(X, JY )

)
We hence obtain

2⟨(∇XJ)Y, Z⟩ = −
{
∇X

(
BJ(Y, Z)

)
−∇Y

(
BJ(X,Z)

)
+∇Z

(
BJ(X,Y )

)}
+
{
∇X

(
BJ(JY, JZ)

)
−∇JY

(
BJ(X, JZ)

)
+∇JZ

(
BJ(X, JY )

)}
= −(dBJ)(X, Y, Z) + (dBJ)(X, JY, JZ).

Thus if BJ is closed, then we have ⟨(∇uJ)v, w⟩ = 0 for arbitrary vectors u, v, w ∈ TpM

at an arbitrary point p ∈ M . Therefore we get (∇uJ)v = 0 for arbitrary vectors u, v

at an arbitrary point p ∈M , which shows that J is parallel. □
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2. Complex space forms

We here give complex space forms which correspond to real space forms. Complex

space forms are complex Euclidean spaces, complex projective spaces and complex

hyperbolic spaces.

[1] Complex Euclidean spaces.

We denote by C the field of all complex numbers. An n-dimensional complex

Euclidean space

Cn = {(z1, z2, . . . , zn) | zj ∈ C, j = 1, 2, . . . , n}

is a direct n-product of complex lines. On this space, we have a canonical Hermitian

inner product ⟨( , )⟩ given by

⟨(z, w)⟩ = z1w̄1 + z2w̄2 + · · ·+ znw̄n

for z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ Cn. Here, we denote by z̄ the complex

conjugate of a complex number z, that is, if we denote as z = x +
√
−1y with real

numbers x, y, we set z̄ = x−
√
−1y. The canonical Riemannian metric is the real part

of this Hermitian product : We set ⟨z, w⟩ = Re⟨(z, w)⟩. Here, for a complex number

z = x +
√
−1y we denote by Re(z) the real part of z, which means Re(z) = x. As a

Riemannian manifold, a complex Euclidean space Cn is isometric to a 2n-dimensional

Euclidean space R2n by the map

(z1, z2, . . . , zn) 7→ (x1, y1, x2, y2, . . . , xn, yn),

where we denote a complex number zj as zj = xj +
√
−1yj with two real numbers

xj, yj, because we have

⟨(z, w)⟩ =
(
x1 +

√
−1y1

)(
u1 −

√
−1v1

)
+ · · ·+

(
xn +

√
−1yn

)(
un −

√
−1vn

)
= {(x1u1 + y1v1) + · · ·+ (xnun + ynvn)}

+
√
−1{(y1u1 − x1v1) + · · ·+ (ynun − xnvn)},

where we denote as wj = uj +
√
−1vj with uj, vj ∈ R. Thus, the covariant differ-

entiation with respect to the Riemannian connection is the ordinary differentiation.
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As TpCn = {p} × Cn ∼= Cn at each point p ∈ Cn, we define J : TpCn → TpCn by

Jv =
√
−1v. Then it is a complex structure on Cn. Since it is clearly parallel with

respect to the canonical metric, we see Cn is a Kähler manifold.

[2] Complex projective spaces

We consider a unit sphere

S2n+1 =
{
z ∈ Cn+1

∣∣ ⟨(z, z)⟩ = 1
}
=
{
z ∈ Cn+1

∣∣ ∥z∥ = 1
}

in a complex Euclidean space Cn+1 with respect to the canonical Hermitian inner

product ⟨( , )⟩ . A unit circle S1 = {λ ∈ C
∣∣ |λ| = 1} acts on S2n+1 as λ · z := λz =

(λz0, λz1, · · ·, λzn). We denote by CP n the quotient space S2n+1/S1 of S2n+1 under this

action, and call it an n-dimensional complex projective space. Here, a quotient space of

the action means the following. We say two points z, w ∈ S2n+1 are equivalent to each

other if there is λ ∈ S1 with w = λz. The quotient space is the set of all equivalence

classes. We define a projection by

ϖ : S2n+1 ∋ z = (z0, z1, . . . , zn) 7→ [z] = [(z0, z1, . . . , zn)] ∈ CP n,

where [z] denotes the equivalence class containing z. We call the pair (S2n+1, ϖ) a Hopf

fibration. We note that we can construct a complex projective space as a quotient space

of Cn+1 \ {0}, where z, w ∈ Cn+1 \ {0} are equivalent to each other if and only if there

is α ∈ C \ {0} with w = αz. We can hence express a point of CP n as [z0, z1, . . . , zn]

with (z0, z1, . . . , zn) ∈ Cn+1 \ {0}. By definition we have

[z0, z1, . . . , zn] = [αz0, αz1, ..., αzn]

for an arbitrary α ∈ C \ {0}. We call this expression [z0, z1, . . . , zn] the homogeneous

coordinate of CP n.

We now introduce a Riemannian metric and a complex structure on this quotient

manifold. We express the tangent space TzS
2n+1 of a standard sphere S2n+1 in Cn+1

as

TzS
2n+1 =

{
(z, u) ∈ {z} × Cn+1 | ⟨z, u⟩ = 0

}
,
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where ⟨z, u⟩ = Re⟨(z, u)⟩ denotes the canonical Riemannian metric on Cn+1. We de-

compose it into horizontal and vertical subspaces as TzS
2n+1 = Hz ⊕ Vz with respect

to the projection ϖ. That is, the vertical space Vz is the tangent line generated by

the action of S1, hence is expressed as

Vz =
{
(z,

√
−1az) ∈ TzS

2n+1 | a ∈ R
}
,

and the horizontal space Hz is the orthogonal complement of the vertical space, hence

is expressed as

Hz =
{
(z, u) ∈ TzS

2n+1 | ⟨(z, u)⟩ = 0
}
.

The action of S1 onto S2n+1 induces an action on TS2n+1, which is given as (z, v) 7→

(λz, λv) for an arbitrary λ ∈ S1 ⊂ C.

The horizontal subspace Hz is a complex subspace of TzCn+1. That is to say,

for a horizontal tangent vector (z, v) ∈ Hz we see
√
−1 · (z, v) = (z,

√
−1v) is also

contained in Hz. Identifying Tϖ(z)CP n with Hz at each point z ∈ S2n+1, we define

J : Tϖ(z)CP n → Tϖ(z)CP n by Jdϖ((z, v)) = dϖ((z,
√
−1v)). Since we have λ

√
−1v =

√
−1λv for an arbitrary λ ∈ S1 ⊂ C, we find that J is well defined. As J2 = −I is

clear, we see this J is a complex structure on CP n.

We define a Riemannian metric of CP n by

⟨
[z, u], [z, v]

⟩
= Re⟨(u, v)⟩,

where (z, u), (z, v) ∈ Hz. We note that if (w, u′), (w, v′) ∈ Hz satisfy [(w, u′)] =

[(z, u)], [(w, v′)] = [(z, v)]. We have λ ∈ S1 with u′ = λu, v′ = λv. Thus, we have

Re⟨(u′, v′)⟩ = Re⟨(λu, λv)⟩ = Re(|λ|2⟨(u, v)⟩) = Re⟨(u, v)⟩

and find that our metric is well defined. This Riemannian metric on CP n is call the

Fubini-Study metric.

We denote by N the outward unit normal vector field of S2n+1(1) in Cn+1.
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Lemma 2.2. Let ∇ and ∇̃ the Riemannian connections of CP n with the Fubini-

Study metric and of S2n+1(1), respectively. For X, Y ∈ X(CP n) we take their horizon-

tal lifts X̃, Ỹ ∈ X(S2n+1(1)). Then the horizontal lift ∇̃XY of ∇XY satisfies

(2.1) ∇̃XY = ∇̃X̃ Ỹ − ⟨X, JY ⟩JN.

Hence if we denote by ∇ the Riemannian connection of Cn+1, we have

(2.2) ∇̃XY = ∇X̃ Ỹ + ⟨X, Y ⟩N − ⟨X, JY ⟩JN.

Proof. By definition of Hopf fibration, we see ∇̃XY is obtained by removing the

vertical component of ∇̃X̃ Ỹ . Since ⟨Ỹ , JN⟩ = 0 and Np̃ can be identified with the

position vector p̃ ∈ S2n+1, by Lemma 1.4 we have

0 = ⟨∇̃X̃ Ỹ , JN⟩+ ⟨Ỹ , ∇̃X̃(JN)⟩ = ⟨∇̃X̃ Ỹ , JN⟩+
⟨
Ỹ ,∇X̃(JN) + ⟨X̃, JN⟩N

⟩
= ⟨∇̃X̃ Ỹ , JN⟩+ ⟨Ỹ , J∇X̃N⟩ = ⟨∇̃X̃ Ỹ , JN⟩+ ⟨Ỹ , JX̃⟩ = ⟨∇̃X̃ Ỹ , JN⟩ − ⟨X̃, JỸ ⟩.

Thus we obtain

∇̃XY = ∇̃X̃ Ỹ − ⟨∇̃X̃ Ỹ , JN⟩JN = ∇̃X̃ Ỹ − ⟨X, JY ⟩JN.

The second relation follows directly from Lemma 1.4. □

Corollary 2.1. The complex structure J on CP n is parallel with respect to the

Fubini-Study metric.

Proof. We take arbitrary vector fields X, Y ∈ X(CP n). We denote by X̃, Ỹ their

horizontal lifts. By definition of the complex structure J on CP n we see that the

horizontal lift J̃Y of JY coincides with J̃ Ỹ , where J̃ denotes the complex structure

on Cn+1. By (2.2), we have

∇̃X(JY ) = ∇X̃(J̃Y ) + ⟨X, JY ⟩N + ⟨X, Y ⟩J̃N

= J̃∇X̃ Ỹ + ⟨X, JY ⟩N + ⟨X,Y ⟩J̃N

= J̃∇̃XY −
{
⟨X,Y ⟩J̃N + ⟨X, JY ⟩N

}
+ ⟨X, JY ⟩N + ⟨X, Y ⟩J̃N = J̃∇XY .

This shows that ∇X(JY ) = J∇XY . We hence find that J is parallel. □
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By using the relationship on connections we can express the curvature tensor of

CP n.

Lemma 2.3. The curvature tensor on a complex space form CP n satisfies

R(X,Y )Z = ⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ.

Proof. For vector fields X, Y, Z ∈ X(CP n), we denote their horizontal lifts on Sn

also by X, Y, Z for simplicity. By Lemma 2.2, we find

(2.3)

∇X∇YZ = ∇̃X(∇YZ)− ⟨X, J∇YZ⟩JN

= ∇̃X

(
∇̃YZ − ⟨Y, JZ⟩JN

)
−⟨X, J∇YZ⟩JN

= ∇̃X∇̃YZ −X⟨Y, JZ⟩JN − ⟨Y, JZ⟩JX − ⟨X, J∇YZ⟩JN,

where N denotes the outward unit normal of S2n+1(1) in Cn+1, and ∇̃ denotes the

Riemannian connection on S2n+1. Here, we note

∇̃X(JN) = ∇X(JN) + ⟨X, JN⟩N = J∇XN = JX.

We denote by [ , ]P and [ , ]S bracket products of CP n and S2n+1, respectively.

They are related with each other by the following equality :

[X, Y ]P = ∇XY −∇YX = ∇̃XY − ⟨X, JY ⟩JN − ∇̃YX + ⟨Y, JX⟩JN

= [X, Y ]S − 2⟨X, JY ⟩JN,

By using this, we have

∇[X,Y ]PZ = ∇Z [X,Y ]P +
[
[X, Y ]P , Z

]
P

= ∇̃Z [X,Y ]P −
⟨
Z, J [X, Y ]P

⟩
JN +

[
[X,Y ]P , Z

]
P

= ∇̃Z

(
[X, Y ]S − 2⟨X, JY ⟩JN

)
+
⟨
JZ, [X, Y ]P

⟩
JN +

[
[X,Y ]P , Z

]
P

= ∇̃[X,Y ]SZ −
[
[X, Y ]S, Z

]
S
−2∇̃Z

(
⟨X, JY ⟩JN

)
+
⟨
JZ, [X, Y ]P

⟩
JN +

[
[X, Y ]P , Z

]
S
−2
⟨
[X,Y ]P , JZ

⟩
JN
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Applying the properties of bracket product, we have

[X, Y ]P = ∇̃[X,Y ]SZ −
[
[X, Y ]P , Z

]
S
−2
[
⟨X, JY ⟩JN, Z

]
S
−2∇̃Z

(
⟨X, JY ⟩JN

)
+
⟨
JZ, [X,Y ]P

⟩
JN +

[
[X, Y ]P , Z

]
S
−2
⟨
[X,Y ]P , JZ

⟩
JN

= ∇̃[X,Y ]SZ − 2
(
⟨X, JY ⟩∇̃JNZ − ∇̃Z

(
⟨X, JY ⟩JN

))
−2∇̃Z

(
⟨X, JY ⟩JN

)
−
⟨
JZ, [X, Y ]P

⟩
JN

= ∇̃[X,Y ]SZ − 2⟨X, JY ⟩
(
JZ + [JN, Z]S

)
−
⟨
JZ, [X,Y ]P

⟩
JN.

Here, as we have

[JN, Z]S = ∇̃JNZ − ∇̃Z(JN)

= ∇JNZ −∇Z(JN) + (⟨JN, Z⟩ − ⟨Z, JN⟩)N = 0,

we find

(2.4) ∇[X,Y ]PZ = ∇̃[X,Y ]SZ −
⟨
JZ, [X,Y ]P

⟩
JN − 2⟨X, JY ⟩JZ

Therefore, by (2.3), (2.4) we obtain

R(X,Y )Z = ∇̃X∇̃YZ − (X⟨Y, JZ⟩ − ⟨X, J∇YZ⟩)JN − ⟨Y, JZ⟩JX

− ∇̃Y ∇̃XZ + (Y ⟨X, JZ⟩+ ⟨Y, J∇XZ⟩)JN + ⟨X, JZ⟩JY

− ∇̃[X,Y ]SZ + ⟨JZ, [X, Y ]P ⟩JN + 2⟨X, JY ⟩JZ

= ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]SZ

+
{
−X⟨Y, JZ⟩ − ⟨X, J∇YZ⟩+ Y ⟨X, JZ⟩

+ ⟨Y, J∇XZ⟩+ ⟨JZ, [X, Y ]P ⟩
}
JN

− ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ.

Here, as we see in [2] of §1.2, the curvature tensor R̃ of a standard sphere S2n+1(1) is

given as R̃(X, Y )Z = ⟨Y, Z⟩X − ⟨X,Z⟩Y . We hence get

R(X, Y )Z = ⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ.

This completes the proof. □

As a consequence of Lemma 2.3 for a unit tangent vector v ∈ UCP n we have

⟨R(v, Jv)Jv, v⟩ = ⟨Jv, Jv⟩⟨v, v⟩ − ⟨v, Jv⟩⟨Jv, v⟩ − ⟨Jv,−v⟩⟨Jv, v⟩

+ ⟨v,−v⟩⟨−v, v⟩+ 2⟨v,−v⟩⟨−v, v⟩ = 4.
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Thus CP n endowed with the Fubini-Study metric has constant holomorphic sectional

curvature 4. We hence denote this Kähler manifold by CP n(4). When we consider a

metric on CP n given by ⟨ , ⟩′ = 4

c
⟨ , ⟩ with a positive c and the Fubini-Study metric,

we see it has constant holomorphic sectional curvature c by Lemma 1.3. We denote

this Kähler manifold by CP n(c). The curvature tensor R of CP n(c) is hence expressed

as

(2.5) R(X,Y )Z =
c

4

{
⟨Y, Z⟩X−⟨X,Z⟩Y −⟨Y, JZ⟩JX+ ⟨X, JZ⟩JY +2⟨X, JY ⟩JZ

}
by Lemma 2.3.

If we take unit tangent vectors v, w ∈ TpCP n(4) which satisfy ⟨v, w⟩ = ⟨v, Jw⟩ = 0,

that is, v, w are orthonormal vectors which span a real vector subspace, we have

⟨R(v, w)w, v⟩ = ⟨w,w⟩⟨v, v⟩ − ⟨v, w⟩⟨w, v⟩ − ⟨w, Jw⟩⟨Jv, v⟩

+ ⟨v, Jw⟩⟨Jw, v⟩+ 2⟨v, Jw⟩⟨Jw, v⟩ = 1.

Hence for unit tangent vectors v, w ∈ TpCP n(c) which satisfy ⟨v, w⟩ = ⟨v, Jw⟩ = 0 we

have ⟨R(v, w)w, v⟩ = c/4.

Lemma 2.4. For an arbitrary point p ∈ CP n and an arbitrary unit tangent vector

v ∈ TpCP n we have a totally geodesic CP 1
(
⊂ CP n

)
satisfying p ∈ CP 1 and v ∈

TpCP 1.

Proof. Let ϖ : S2n+1 → CP n be a Hopf fibration of a unit sphere S2n+1 in Cn+1.

We take a point z ∈ S2n+1 and a horizontal vector (z, u) ∈ Hz ⊂ TzS
2n+1 ⊂ TzCn+1

so that they satisfy ϖ(z) = p and dϖ(z, u) = v. Since ∥z∥ = ∥u∥ = 1 and ⟨(z, u)⟩ = 0,

we see that the subset N̂ = {µz + νu | µ, ν ∈ C, |µ|2 + |ν|2 = 1} of S2n+1 is a

three dimensional standard sphere S3 in C2 = Cz ⊕ Cu ⊂ Cn+1. Thus we find that

N = ϖ(N̂) is CP 1 by its construction. As z ∈ N̂ and the horizontal part of TzN̂ is

Cu, we see p ∈ N and v ∈ TpN . Since the outward normal N is identified with p by

regarding it as a unit vector, by definition of covariant differentiations of N and CP n

we see N is totally geodesic in CP n. □
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Lemma 2.5. For arbitrary points p, p′ ∈ CP n and arbitrary unit tangent vectors

v ∈ TpCP n, v′ ∈ Tp′CP n we have a holomorphic isometry φ satisfying φ(p) = p′ and

dφ(v) = v′.

Proof. We take z, z′ ∈ S2n+1 ⊂ Cn+1 so that ϖ(z) = p, ϖ(z′) = p′. Also, we take

horizontal vectors (z, u) ∈ TzS
2n+1 and (z′, u′) ∈ Tz′S

2n+1 satisfying dϖ((z, u)) = v

and dϖ((z′, u′)) = v′. Then both the pairs {z, u} and {z′, u′} are C-linearly inde-

pendent. Thus we can take two sets of orthonormal vectors u2, . . . , un ∈ Cn+1 and

u′2, . . . , u
′
n ∈ Cn+1 so that both {z, u, u2, . . . , un} and {z′, u′, u′2, . . . , u′n} are C-linearly

independent and are orthonormal. If we express them by vertical vectors, then two

matrices (z, u, u2, . . . , un) and (z′, u′, u′2, . . . , u
′
n) are unitary. We set a unitary matrix

A ∈ U(n+ 1) by

A = (z′, u′, u′2, . . . , u
′
n) · (z, u, u2, . . . , un)−1.

As A(z, u, u2, . . . , un) = (z′, u′, u′2, . . . , u
′
n), this induces a C-linear transformation φ̂ :

Cn+1 → Cn+1 satisfying φ̂(z) = z′ and φ̂(u) = u′. Since A is unitary, we have

φ̂ ◦
√
−1 =

√
−1 ◦ φ̂ and φ̂(S2n+1) = S2n+1. We hence find that φ̂ induces a bijection

φ : CP n → CP n satisfying dφ ◦ J = J ◦ dφ. As φ̂ preserves the Hermitian inner

product ⟨( , )⟩ because A is unitary, we see that φ is an isometry. □

Remark 2.1. For arbitrary points p, p′ ∈ CP n and arbitrary unit tangent vectors

v ∈ TpCP n, v′ ∈ Tp′CP n we can construct an anti-holomorphic isometry φ satisfying

φ(p) = p′ and dφ(v) = v′.

Proposition 2.1. A complex projective line CP 1(c) is isomorphic to a standard

sphere S2(c).

Proof. We define φ : CP 1 → S2 ⊂ R3 by

φ
(
ϖ((z0, z1))

)
=
(
|z0|2 − |z1|2, 2Re(z̄0z1), 2Im(z̄0z1)

)
=
(
z̄0z0 − z̄1z1, z̄0z1 + z0z̄1,

√
−1(−z̄0z1 + z0z̄1)

)
.

To simplify notations by considering R3 = R× C we can express φ as

φ
(
ϖ((z0, z1))

)
=
(
|z0|2 − |z1|2, 2z̄0z1

)
.
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We adopt this expression in this proof. We note that

(|z0|2 − |z1|2)2 + 4|z̄1z2|2 = (|z0|2 + |z1|2)2 = 1.

We take a horizontal vector (z, u) ∈ TzS
3 ⊂ TzC2 ∼= C2 and denote u = (u0, u1). As

⟨(z, u)⟩ = 0, which means z0ū0 + z1ū1 = 0, we have

dφ
(
dϖ(z, u)

)
=
(
ū0z0 + z̄0u0 − ū1z1 − z̄1u1, 2ū0z1 + 2z̄0u1

)
= 2
(
ū0z0 − z̄1u1, ū0z1 + z̄0u1

)
∈ R× C.

Thus, for two horizontal vectors (z, u), (z, w) ∈ TzS
3 we have⟨

dφ
(
dϖ(z, u)

)
, dφ

(
dϖ(z, w)

)⟩
= 4Re

(
ū0w0|z0|2 + u1w̄1|z1|2 − ū0w̄1z0z1 − u1w0z̄0z̄1

+ ū0w0|z1|2 + u1w̄1|z0|2 + ū0w̄1z0z1 + u1w0z̄0z̄1
)

= 4Re
(
ū0w0 + u1w̄1

)
= 2
(
ū0w0 + u1w̄1 + u0w̄0 + ū1w1

)
= 4Re

(
u0w̄0 + u1w̄1

)
= ⟨dϖ(z, u), dϖ(z, w)⟩.

Here, we note that the standard metric on S3(1) induces the metric of CP 1(4). Our

computation shows that φ is an isometry of CP 1(4) to S2(4). We hence get the

conclusion. □

[3] Complex hyperbolic spaces

We take a Hermitian form ⟨⟨ , ⟩⟩ on Cn+1 given by

⟨⟨z, w⟩⟩ = −z0w̄0 + z1w̄1 + · · ·+ znw̄n

for z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1. We consider an anti-de Sitter

space

H2n+1
1 =

{
z ∈ Cn+1

∣∣ ⟨⟨z, z⟩⟩ = −1
}
=
{
z ∈ Cn+1

∣∣ ∥z∥ = −1
}
.

A unit circle S1 = {λ ∈ C
∣∣ |λ| = 1} acts on H2n+1

1 as λ · z = λz = (λz0, λz1, . . . , λzn).

We denote by CHn the quotient space H2n+1
1 /S1 of H2n+1

1 under this action, and call

it an n−dimensional complex hyperbolic space. We define a projection by

ϖ : H2n+1
1 ∋ z = (z0, z1, . . . , zn) 7→ [z] = [(z0, z1, . . . , zn)] ∈ CHn,
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where [z] denotes the equivalence class containing z. We call the pair (H2n+1
1 , ϖ) a

Hopf fibration.

With respect to the projection ϖ, we decompose the tangent space TzH
2n+1
1 at z

into horizontal and vertical subspaces as TzH
2n+1
1 = Hz ⊕Vz. Here, the tangent space

TzH
2n+1
1 is expressed as a subset of TzCn+1 as

TzH
2n+1
1 =

{
(z, u) ∈ {z} × Cn+1 | Re ⟨⟨z, u⟩⟩ = 0

}
,

and the vertical space Vz is the tangent line generated by the action of S1, hence is

expressed as

Vz = {(z,
√
−1az) ∈ TzH

2n+1
1 | a ∈ R},

and the horizontalspace Hz is the orthogonal complement of the vertical space, hence

is expressed as

Hz = {(z, u) ∈ TzH
2n+1
1 | ⟨⟨z, u⟩⟩ = 0}.

It is also clear that the action of S1 onto H2n+1
1 induces an action of S1 onto the

tangent bundle TH2n+1
1 , which is given as (z, u) 7→ (λz, λu). By the same way as

for the case of complex projective spaces, we can define a complex structure on CHn

which is induced by the canonical complex structure on Cn+1. That is, identifying

Tϖ(z)CHn with Hz at each point z ∈ S2n+1, we define J : Tϖ(z)CHn → Tϖ(z)CHn

by Jdϖ((z, w)) = dϖ((z,
√
−1w)). Since we have λ

√
−1v =

√
−1λv for an arbitrary

λ ∈ S1 ⊂ C, we find that J is well defined. As J2 = −I clearly holds, we see this J is

a complex structure on CHn.

We now define a Riemannian metric on CHn. By identifying Tϖ(z)CHn with Hz

at each point z ∈ H2n+1
1 , we set

⟨
dϖ((z, u)), dϖ((z, v))

⟩
= Re ⟨⟨u, v⟩⟩

for (z, u), (z, v) ∈ Hz. Since we have ⟨⟨λv, λw⟩⟩ = ⟨⟨v, w⟩⟩ for an arbitrary λ ∈ S1 ⊂ C,

and since dϖ((z, u)) = dϖ((z′, u′)) if and only if there is µ ∈ S1 ⊂ C with z′ = µz and
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u′ = µu, we find that this form on CHn is well defined. Moreover, as we have

⟨⟨v, v⟩⟩ = −|v0|2 + |v1|2 + · · ·+ |vn|2

= |v1|2 + · · ·+ |vn|2 − |v1z̄1 + · · ·+ vnz̄n|2|z0|−2

≥ |v1|2 + · · ·+ |vn|2 − (|v1||z1|+ · · ·+ |vn||zn|)2|z0|−2

≥ −(|v1|2 + · · ·+ |vn|2)(|z1|2 + · · ·+ |zn|2 − |z0|2)|z0|−2

= (|v1|2 + · · ·+ |vn|2)|z0|−2 ≥ 0,

for an arbitrary (z, v) ∈ Hz because ⟨⟨z, w⟩⟩ = 0, we find it is positive-definite. Hence

we get a Riemannian metric on CHn.

We denote by N the outward normal vector field of H2n+1
1 in Cn+1 satisfying

⟨⟨N,N⟩⟩ = −1.

Lemma 2.6. Let ∇ and ∇̃ be the Riemannian connections of CHn with respect

to the above metric and the canonical connection of H2n+1
1 , respectively. For X,Y ∈

X(CHn) we take their horizontal lifts X̃, Ỹ ∈ X(H2n+1
1 ). Then the horizontal lift ∇̃XY

of ∇XY satisfies

(2.6) ∇̃XY = ∇̃X̃ Ỹ + ⟨X, JY ⟩JN.

Hence if we denote by ∇ the cannonical connection of Cn+1, we have

(2.7) ∇̃XY = ∇X̃ Ỹ − ⟨X, Y ⟩N + ⟨X, JY ⟩JN,

Proof. Though an anti-de Sitter space is not a real hyperbolic space, the canonical

connections ∇̃ and ∇ on H2n+1
1 and on Cn+1 are related to each other by the same

relationship as that of Riemannian connections on Hn and Rn+1. If we take Z̃, W̃ ∈

X(H2n+1
1 ) we have

∇̃Z̃W̃ = ∇Z̃W̃ −
⟨⟨∇Z̃W̃ ,N⟩⟩
⟨⟨N,N⟩⟩

N.

As ⟨⟨W̃ ,N⟩⟩ = 0, we have

0 = ⟨⟨∇Z̃W̃ ,N⟩⟩+ ⟨⟨W̃ ,∇Z̃N⟩⟩ = ⟨⟨∇Z̃W̃ ,N⟩⟩+ ⟨⟨W̃ , Z̃⟩⟩,
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because we can identiy Np̃ with the position vector p̃ ∈ H2n+1. Thus we have

∇̃Z̃W̃ = ∇Z̃W̃ − ⟨⟨W̃ , Z̃⟩⟩N.

Since the horizontal lift of the covariant differentiation ∇̃XY is obtained by remov-

ing the vertical component of the covariant differential ∇̃X̃ Ỹ on H2n+1, we have

∇XY = ∇̃XY − ⟨⟨∇̃XY, JN⟩⟩
⟨⟨JN, JN⟩⟩

JN = ∇̃XY + ⟨⟨∇̃XY, JN⟩⟩JN.

As ⟨⟨Ỹ , JN⟩⟩ = 0 we have

0 = ⟨⟨∇̃X̃ Ỹ , JN⟩⟩+ ⟨⟨Ỹ , ∇̃X̃(JN)⟩⟩ = ⟨⟨∇̃X̃ Ỹ , JN⟩⟩+
⟨⟨
Ỹ ,∇X̃(JN)− ⟨X̃, JN⟩N

⟩
= ⟨⟨∇̃X̃ Ỹ , JN⟩⟩+ ⟨⟨Ỹ , J∇X̃N⟩⟩ = ⟨⟨∇̃X̃ Ỹ , JN⟩⟩+ ⟨⟨Ỹ , JX̃⟩⟩

= ⟨⟨∇̃X̃ Ỹ , JN⟩⟩ − ⟨⟨X̃, JỸ ⟩⟩,
hence we obtain

∇XY = ∇̃XY + ⟨X, JY ⟩JN.

We hence get the relationship between ∇ and ∇ by the above relationship between ∇̃

and ∇. □

Corollary 2.2. The complex structure J on CHn is parallel with respect to the

canonical metric.

Proof. We take arbitrary vector fields X, Y ∈ X(CHn). We denote by X̃, Ỹ their

horizontal lifts. By definition of the complex structure J on CHn, we see that the

horizontal lift J̃Y of JY coincides with J̃ Ỹ , where J̃ denotes the complex structure

on Cn+1. By (2.7), we have

∇̃X(JY ) = ∇X̃(J̃Y )− ⟨X, JY ⟩N − ⟨X,Y ⟩J̃N

= J̃∇X̃ Ỹ − ⟨X, JY ⟩N − ⟨X, Y ⟩J̃N

= J̃∇̃XY + ⟨X, Y ⟩J̃N + ⟨X, JY ⟩N − ⟨X, JY ⟩N − ⟨X,Y ⟩J̃N = J̃∇XY .

This shows that ∇X(JY ) = J∇XY . We hence find that J is parallel. □

By using the relationship on connections we can express the curvature tensor on a

complex hyperbolic space CHn.
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Lemma 2.7. The curvature tensor on a complex hyperbolic space CHn satisfies

R(X,Y )Z = −{⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ}.

Proof. For vector fields X, Y, Z ∈ X(CHn), we denote their horizontal lifts on

Hn also by X, Y, Z for simplicity. By Lemma 2.6, we find

(2.8)

∇X∇YZ = ∇̃X(∇YZ) + ⟨X, J∇YZ⟩JN

= ∇̃X

(
∇̃YZ + ⟨Y, JZ⟩JN

)
+⟨X, J∇YZ⟩JN

= ∇̃X∇̃YZ +X⟨Y, JZ⟩JN + ⟨Y, JZ⟩JX + ⟨X, J∇YZ⟩JN,

where N denotes the outward unit normal of H2n+1
1 in Cn+1, and ∇̃ denotes the Rie-

mannian connection on H2n+1
1 . Here, we note

∇̃X(JN) = ∇X(JN)− ⟨X,N⟩JN = J∇XN = JX.

We denote by [ , ]H and [ , ]H1 bracket products of CHn and H2n+1
1 ,respectively.

They are related with each other by the following equality :

[X, Y ]H = ∇XY −∇YX = ∇̃XY + ⟨X, JY ⟩JN − ∇̃YX − ⟨Y, JX⟩JN

= [X, Y ]H1 + 2⟨X, JY ⟩JN.

By using this, we have

∇[X,Y ]HZ = ∇Z [X, Y ]H +
[
[X, Y ]H , Z

]
H

= ∇̃Z [X, Y ]H +
⟨
Z, J [X,Y ]H

⟩
JN +

[
[X, Y ]H , Z

]
H

= ∇̃Z

(
[X,Y ]H1 + 2⟨X, JY ⟩JN

)
−
⟨
JZ, [X,Y ]H

⟩
JN +

[
[X,Y ]H , Z

]
H

= ∇̃[X,Y ]H1
Z −

[
[X,Y ]H1 , Z

]
H1
+2∇̃Z

(
⟨X, JY ⟩JN

)
−
⟨
JZ, [X, Y ]H

⟩
JN +

[
[X, Y ]H , Z

]
H

= ∇̃[X,Y ]H1
Z −

[
[X,Y ]H − 2⟨X, JY ⟩JN, Z

]
H1
+2∇̃Z

(
⟨X, JY ⟩JN

)
−
⟨
JZ, [X, Y ]H

⟩
JN +

[
[X, Y ]H , Z

]
H1
+2
⟨
[X, Y ]H , JZ

⟩
JN

= ∇̃[X,Y ]H1
Z + 2

[
⟨X, JY ⟩JN, Z

]
H1
+2∇̃Z

(
⟨X, JY ⟩JN

)
+
⟨
JZ, [X, Y ]H

⟩
JN.
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By the definition of bracket product [ , ], we have

= ∇̃[X,Y ]H1
Z + 2

(
⟨X, JY ⟩∇̃JNZ − ∇̃Z

(
⟨X, JY ⟩JN

))
+2∇̃Z

(
⟨X, JY ⟩JN

)
+ ⟨JZ, [X, Y ]H⟩JN

= ∇̃[X,Y ]H1
Z + 2⟨X, JY ⟩(JZ + [JN, Z]H1) + ⟨JZ, [X,Y ]⟩JN.

Here, as we have

[JN, Z]H1 = ∇̃JNZ − ∇̃Z(JN)

= ∇JNZ −∇Z(JN) + (⟨JN, Z⟩ − ⟨Z, JN⟩)N = 0,

we find

(2.9) ∇[X,Y ]HZ = ∇̃[X,Y ]H1
Z + ⟨JZ, [X, Y ]H⟩JN + 2⟨X, JY ⟩JZ

Therefore, by (2.8), (2.9) we obtain

R(X, Y )Z = ∇̃X∇̃YZ + (X⟨Y, JZ⟩+ ⟨X, J∇YZ⟩)JN + ⟨Y, JZ⟩JX

− ∇̃Y ∇̃XZ − (Y ⟨X, JZ⟩+ ⟨Y, J∇XZ⟩)JN − ⟨X, JZ⟩JY

− ∇̃[X,Y ]H1
Z − ⟨JZ, [X,Y ]H⟩JN − 2⟨X, JY ⟩JZ

= ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]H1
Z

+
{
X⟨Y, JZ⟩+ ⟨X, J∇YZ⟩ − Y ⟨X, JZ⟩

− ⟨Y, J∇XZ⟩ − ⟨JZ, [X,Y ]H⟩
}
JN

+ ⟨Y, JZ⟩JX − ⟨X, JZ⟩JY − 2⟨X, JY ⟩JZ.

Here, as we see in [3] of §1.2, the curvature tensor R̃ of an anti-de Sitter space H2n+1
1

is given as R̃(X,Y )Z = −⟨Y, Z⟩X − ⟨X,Z⟩Y . We hence get

R(X, Y )Z = −⟨Y, Z⟩X + ⟨X,Z⟩Y + ⟨Y, JZ⟩JX − ⟨X, JZ⟩JY − 2⟨X, JY ⟩JZ

= −{⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ}.
This completes the proof. □

As a consequence of Lemma 2.7 for a unit tangent vector v ∈ UCHn we have

⟨R(v, Jv)Jv, v⟩ = −{⟨Jv, Jv⟩⟨v, v⟩ − ⟨v, Jv⟩⟨Jv, v⟩ − ⟨Jv,−v⟩⟨Jv, v⟩

+ ⟨v,−v⟩⟨−v, v⟩+ 2⟨v,−v⟩⟨−v, v⟩} = −4.

Thus CHn endowed with the Riemannian metric through the fibration ϖ : H2n+1
1 →

CHn has constant holomorphic sectional curvature −4. We hence denote this Kähler
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manifold by CHn(−4). When we consider a metric on CHn given by ⟨ , ⟩′ = −4

c
⟨ , ⟩

with a positive c and the Riemannian metric, we see it has constant holomorphic

sectional curvature c by Lemma 1.3. We denote this Kähler manifold by CHn(c). The

curvature tensor R of CHn(c) is hence expressed as

(2.10)
R(X, Y )Z =

c

4

{
⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX

+ ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ
}

by Lemma 2.7.

If we take unit tangent vectors v, w ∈ TpCHn(−4) which satisfy ⟨v, w⟩ = ⟨v, Jw⟩ =

0, that is, v, w are orthonormal vectors which span a real vector subspace, we have

⟨R(v, w)w, v⟩ = −{⟨w,w⟩⟨v, v⟩ − ⟨v, w⟩⟨w, v⟩ − ⟨w, Jw⟩⟨Jv, v⟩

+ ⟨v, Jw⟩⟨Jw, v⟩+ 2⟨v, Jw⟩⟨Jw, v⟩} = −1.

Hence for unit tangent vectors v, w ∈ TpCHn(c) which satisfy ⟨v, w⟩ = ⟨v, Jw⟩ = 0 we

have ⟨R(v, w)w, v⟩ = c/4.

Lemma 2.8. For an arbitrary point p ∈ CHn and an arbitrary unit tangent vector

v ∈ TpCHn we have a totally geodesic CH1
(
⊂ CP n

)
satisfying p ∈ CH1 and v ∈

TpCH1.

Proof. Let ϖ : H2n+1
1 → CP n be a Hopf fibration of an anti-de Sitter spaceH2n+1

1

in Cn+1. We take a point z ∈ H2n+1
1 and a horizontal vector (z, u) ∈ Hz ⊂ TzH

2n+1
1 ⊂

TzCn+1 so that they satisfy ϖ(z) = p and dϖ(z, u) = v. Since ⟨⟨z, z⟩⟩ = −1, ∥u∥ = 1

and ⟨⟨z, u⟩⟩ = 0, we see that the subset N̂ = {µz + νu | µ, ν ∈ C, −|µ|2 + |ν|2 = −1}

of H2n+1
1 is an anti-de Sitter space in C2 = Cz ⊕ Cu ⊂ Cn+1. As a matter of fact, we

have

⟨⟨µz + νu, µz + νu⟩⟩ = |µ|2⟨⟨z, z⟩⟩+ |ν|2⟨⟨u, u⟩⟩ = −|µ|2 + |ν|2 = −1.

Thus we find that N = ϖ(N̂) is CH1 by its construction. As z ∈ N̂ and the horizontal

part of TzN̂ is Cu, we see p ∈ N and v ∈ TpN . Since the outward normal N is identified

with p by regarding it as a position vector, by definition of covariant differentiations

of N and CHn we see N is totally geodesic in CHn. □
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Lemma 2.9. For arbitrary points p, p′ ∈ CHn and arbitrary unit tangent vectors

v ∈ TpCHn, v′ ∈ Tp′CHn we have a holomorphic isometry φ of CHn satisfying φ(p) =

p′ and dφ(v) = v′.

Proof. We take z, z′ ∈ H2n+1
1 ⊂ Cn+1 so thatϖ(z) = p, ϖ(z′) = p′. Also, we take

horizontal vectors (z, u) ∈ TzH
2n+1
1 and (z′, u′) ∈ Tz′H

2n+1
1 satisfying dϖ((z, u)) = v

and dϖ((z′, u′)) = v′. Then both the pairs {z, u} and {z′, u′} are C-linearly in-

dependent. Thus we can take two sets of orthonormal vectors u2, . . . , un ∈ Cn+1

and u′2, . . . , u
′
n ∈ Cn+1 so that both {z, u, u2, . . . , un} and {z′, u′, u′2, . . . , u′n} are C-

linearly independent and satisfies that ⟨⟨z, z⟩⟩ = ⟨⟨z′, z′⟩⟩ = −1, ⟨⟨uj, uj⟩⟩ = ⟨⟨u′j, u′j⟩⟩ =

1, ⟨⟨z, uj⟩⟩ = ⟨⟨uj, uk⟩⟩ = 0 and ⟨⟨z′, u′j⟩⟩ = ⟨⟨u′j, u′k⟩⟩ = 0 (j ̸= k). If we express them by

vertical vectors, then two matrices (z, u, u2, . . . , un) and (z′, u′, u′2, . . . , u
′
n) are matrices

in U(n + 1, 1) (that is, “unitary” matrices with respect to ⟨⟨ , ⟩⟩). We set a matrix

A ∈ U(n+ 1, 1) by

A = (z′, u′, u′2, . . . , u
′
n) · (z, u, u2, . . . , un)−1.

As A(z, u, u2, . . . , un) = (z′, u′, u′2, . . . , u
′
n), this induces a C-linear transformation φ̂ :

Cn+1 → Cn+1 satisfying φ̂(z) = z′ and φ̂(u) = u′. Since A ∈ U(n + 1, 1), we have

φ̂◦
√
−1 =

√
−1◦φ̂ and φ̂(H2n+1

1 ) = H2n+1
1 . As a matter of fact, if we denote A = (aij)

we have

− a00ā00 +
n∑

ℓ=1

aℓ0āℓ0 = −1, −a0j ā0j +
n∑

ℓ=1

aℓj āℓj = 1 (j ≥ 1),

− a0j ā0k +
n∑

ℓ=1

aℓj āℓk = 0 (0 ≤ j, k ≤ n, j ̸= k).

For w = (w0, . . . , wn) ∈ H2n+1
1 we have Aw =

(∑
j a0jzj, . . . ,

∑
j anjzj

)
, hence have

⟨⟨Aw,Aw⟩⟩ = −
∑
j,k

a0jzj ā0kz̄k +
∑
j,k

a1jzj ā1kz̄k + · · ·+
∑
j,k

anjzj ā0nkz̄k

=
∑
j,k

{
−a0j ā0k + a1j ā1k + · · · anj ā0nk

}
zj z̄k

= −|z0|2 + |z1|2 + · · ·+ |zn|2 = −1.
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We hence find that φ̂ induces a bijection φ : CHn → CHn satisfying dφ ◦ J = J ◦ dφ.

Since we have

⟨⟨Au,Av⟩⟩ = −
∑
j,k

a0juj ā0kv̄k +
∑
j,k

a1juj ā1kv̄k + · · ·+
∑
j,k

anjuj ā0nkv̄k

=
∑
j,k

{
−a0j ā0k + a1j ā1k + · · · anj ā0nk

}
uj v̄k

= −u0v̄0 + u1v̄1 + · · ·+ unv̄n = ⟨⟨u, v⟩⟩,

φ̂ preserves the Hermitian inner product ⟨⟨ , ⟩⟩. Thus, we find that φ is an isometry. □

Remark 2.2. For arbitrary points p, p′ ∈ CHn and arbitrary unit tangent vectors

v ∈ TpCHn, v′ ∈ Tp′CHn we can construct an anti-holomorphic isometry φ satisfying

φ(p) = p′ and dφ(v) = v′.

Proposition 2.2. A complex projective line CH1(c) is isomorphic to a real hy-

perbolic space H2(c).

Proof. We define φ : CH1 → H2 ⊂ R3 by

φ
(
ϖ((z0, z1))

)
=
(
|z0|2 + |z1|2, 2Re(z̄0z1), 2Im(z̄0z1)

)
=
(
z̄0z0 + z̄1z1, z̄0z1 + z0z̄1,

√
−1(−z̄0z1 + z0z̄1)

)
.

To simplify notations by considering R3 = R× C we can express φ as

φ
(
ϖ((z0, z1))

)
=
(
|z0|2 + |z1|2, 2z̄0z1

)
.

We adopt this expression in this proof. We note that

−(|z0|2 + |z1|2)2 + 4|z̄1z2|2 = −(|z0|2 − |z1|2)2 = −1.

We take a horizontal vector (z, u) ∈ TzH
3
1 ⊂ TzC2 ∼= C2 and denote u = (u0, u1). As

⟨⟨z, u⟩⟩ = 0, which means −z0ū0 + z1ū1 = 0, we have

dφ
(
dϖ(z, u)

)
=
(
ū0z0 + z̄0u0 + ū1z1 + z̄1u1, 2ū0z1 + 2z̄0u1

)
= 2
(
ū0z0 + z̄1u1, ū0z1 + z̄0u1

)
∈ R× C.
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Thus, for two horizontal vectors (z, u), (z, w) ∈ TzH
3
1 we have⟨

dφ
(
dϖ(z, u)

)
, dφ

(
dϖ(z, w)

)⟩
= 4Re

(
−ū0w0|z0|2 − u1w̄1|z1|2 − ū0w̄1z0z1 − u1w0z̄0z̄1

+ ū0w0|z1|2 + u1w̄1|z0|2 + ū0w̄1z0z1 + u1w0z̄0z̄1
)

= 4Re
(
−ū0w0 + u1w̄1

)
= 2
(
−ū0w0 + u1w̄1 − u0w̄0 + ū1w1

)
= 4Re

(
−u0w̄0 + u1w̄1

)
= ⟨dϖ(z, u), dϖ(z, w)⟩.

Here, we note that the canonical form on H3
1 induces the metric of CH1(−4). Our

computation shows that φ is an isometry of CH1(−4) to H2(−4). We hence get the

conclusion. □
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3. Magnetic fields

A closed 2-form on a Riemannian manifold is said to be amagnetic field. In order to

explain why we say closed 2-forms to be magnetic fields, we here recall static magnetic

fields on a Euclidean 3-space R3. On R3, a vector valued function B⃗ = (B1, B2, B3) :

R3 → R3 is said to be a static magnetic field under the action of constant current if it

satisfies the Gauβ’s law

div(B⃗) :=
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
= 0.

Here, (x1, x2, x3) is the ordinary orthonormal coordinate system of R3. We regard B⃗

as a 1-form B1dx1 + B2dx2 + B3dx3. When we treat with magnetic fields in physics,

we need to consider the orientation which is called the right-hand system or left-hand

system. Therefore by use of duality we identifiy this 1-form with the 2-form

B = B1dx2 ∧ dx3 +B2dx3 ∧ dx1 +B3dx1 ∧ dx2.

Since we have

dB =
∂B1

∂x1
dx1 ∧ dx2 ∧ dx3 +

∂B2

∂x2
dx2 ∧ dx3 ∧ dx1 +

∂B3

∂x3
dx3 ∧ dx1 ∧ dx2

=
(∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3

)
dx1 ∧ dx2 ∧ dx3,

we find that the Gauβ’s law is equivalent to the property that B is closed.

Example 2.1. We take an orientable Riemann surface M and denote its volume

form by dvolM (see §1.1). Every 2-form is expressed as fdvolM with some function f

on M and is closed. We call this a surface magnetic field.

Example 2.2. We take a Kähler manifold (see §2.2 for definition). Since its Kähler

form BJ is closed, we see its constant multiple is also closed. For a constant k ∈ R we

denote as Bk = kBJ and call it a Kähler magnetic field.

Example 2.3. Let M be a real hypersurface, a real submanifold of dimension

2 dimC(M̃)−1 in a Kähler manifold M̃ , where dimC(M̃) denotes the complex dimension

of M̃ . We define ϕ : TM → TM by ϕ(v) = Jv + ⟨v, JN⟩N, where N is a unit normal
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vector field on M in M̃ . If we define a 2-form F on M by Fϕ by F(v, w) = ⟨v, ϕw⟩

then it is closed (see [11]). We say a constant multiple of this form to be a Sasakian

magnetic field.

Under the influence of a static magnetic field B⃗ on R3, a charged particle of mass

m and electricity e which moves in R3 gets a Lorentz force ev⃗ × B⃗ if we denote its

velocity vector by v⃗. Here, × denotes the vector product in R3. Therefore, its equation

of motion is given as

(2.11) m
d

dt
v⃗ = ev⃗ × B⃗.

If we set v⃗ = t(v1, v2, v3) we have

v⃗ × B⃗ = (v2B3 − v3B2, v3B1 − v1B3, v1B2 − v2B1) =

 0 B3 −B2

−B3 0 B1

B2 −B1 0

v1v2
v3

 .

Thus, by using a skew symmetric matrix

Ω =

 0 B3 −B2

−B3 0 B1

B2 −B1 0

 ,

we see (2.11) turns to m
d

dt
v⃗ = eΩv⃗.

We generalize (2.11). For a magnetic field B on a Riemannian manifold M , we

define an endomorphism ΩB : TM → TM of the tangent bundle TM by ⟨v,Ω(w)⟩ =

B(v, w) for arbitrary tangent vectors v, w ∈ TpM at an arbitrary point p ∈ M . Since

B(v, w) = −B(w, v), we find that ΩB is skew symmetric. We call a smooth curve γ

parameterized by its arclength a trajectory if it satisfies the differential equation

∇γ̇ γ̇ = ΩB(γ̇).

When B is a trivial magnetic field, that is, B is the null 2-form and is the case that there

are no influences of magnetic fields, then we find that the skew symmetric operator

is null operator. Hence a smooth curve γ is a trajectory for this magnetic field if

it satisfies ∇γ̇ γ̇ = 0, hence is a geodesic of unit speed. Therefore we may say that

trajectories are generalizations of geodesics.
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By the definition of the Kähler form, we find that the skew symmetric endomor-

phism of a Kähler magnetic field Bk is given as ΩBk
= kJ . Thus, a smooth curve γ

parameterized by its arclength is said to be a Bk-trajectory, if it satifies ∇γ̇ γ̇ = kJγ̇.

Generally, when the skew symmetric operator ΩB of a magnetic field B is parallel,

that is, its covariant differential ∇ΩB vanishes, this magnetic field is called uniform.

Clearly, Kähler magnetic fields are uniform magnetic fields.

The geodesic maintains the property of geodesic even if the speed is changed, but

we note that if we change speeds of trajectories, then they turn to trajectories of other

magnetic fields. More explicitely, we have the following.

Lemma 2.10. Let γ be a trajectory for a Kähler magnetic field Bk. If we change

its speed to λ−times of the orignal, it can be seen as a“trajectory” for Bλk.

Proof. For a constant λ(> 0), we put σ(t) = γ(λt). Considering the differential,

we get σ′(t) = λγ̇(λt). It leads us to

∇σ′σ′ = λ2∇γ̇ γ̇ = λ2kJγ̇ = λkJ(σ′).

Thus we find that σ satisfies the equation of trajectories for Bλk, though it is not of

unit speed. □

It is well known that geodesics on real space forms are expressed explicitly. Cor-

responding to this we give explicit representations of trajectories for Kähler magnetic

fields on complex space forms.

Since complex structure J of a Kähler manifold is parallel, we have{ ∇γ̇ γ̇ = kJγ̇,

∇γ̇(Jγ̇) = −kγ̇.

Hence we have the following.

Lemma 2.11. Let γ be a trajectory for a Kähler magnetic field. Then it is a circle

of geodesic curvature |k| and of Frenet frame {γ̇, sgn(k)Jγ̇}. Here, for a real number

k, we denote by sgn(k) its signature.
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For the sake of later use we here express the velocity vectors of a trajectory γ

by use of parallel displacement along γ. We set v = γ̇(0). We denote by P t
γ,0 :

Tγ(0)M → Tγ(t)M be the paralle displacement along γ. Since the complex structure

J on a Kähler manifold is parallel, we find that the vector field {JP t
γ,0(v)}t along

γ is parallel. As {P t
γ,0(Jv)}t is also a parallel vector field along γ and P 0

γ,0(Jv) =

Jv = JP 0
γ,0(v), we find JP t

γ,0(v) = P t
γ,0(Jv). Now we set a vector field X along γ by

X(t) = cos kt P t
γ,0(v) + sin kt P t

γ,0(Jv). We then find
(
∇γ̇X

)
(t) = −k sin kt P t

γ,0(v) + k cos kt P t
γ,0(Jv)

= k
{
sin kt P t

γ,0(v) + cos kt JP t
γ,0(v) = kJX(t),

X(0) = v,
(
∇γ̇X

)
(0) = kJv.

Thus we see X satisfies the same differential equation as of γ̇. Hence we find

(2.12) γ̇(t) = cos kt P t
γ,0(v) + sin kt P t

γ,0(Jv).

Lemma 2.12. Let M be a Kähler manifold. For a unit tangent vector v ∈ UM ,

there exists a unique trajectory γ : (−ϵ, ϵ) → M for Bk with initial vector v. If M is

complete, this curve is defined on a hole real line.

Proof. Since ∇γ̇ γ̇ = kJγ̇ is a linear differential equation, we get the existence

and the uniqueness on trajectories by general theory on differential equations. We

take the maximal interval I where γ is defined.

Suppose I is bounded from above. We set b the superimum of I. As ∥γ̇∥ ≡ 1,

we see the distance d(γ(t1), γ(t2)) between two points γ(t1), γ(t2) is not greater than

|t1 − t2|. Therefore the set {γ(t) | 0 ≤ t < b} is bounded. Since M is complete, we

have a limit point limt↑b γ(t) ∈ M . Becauce γ̇(t) is a unit tangent vector for each t,

we also have a limit unit tangent vector limt↑b γ̇(t) ∈ UM in the unit tangent space at

limt↑b γ(t). Thus we find b ∈ I. Applying the theorem on local existence of solutions

at γ(b) we find γ is defined on an interval I ∪ [b, b+ ϵ) for some positive ϵ. As we chose

I to be maximal, this is a contradiction.
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If we suppose I is bounded from below, along the same lines as above we have a

contradiction. Hence we get the conclusion. □

Lemma 2.13. Let γ be a trajectory for Bk. We define a smooth curve σ by σ(t) =

γ(t0 − t) with some t0. Then σ is a trajectory for B−k.

Proof. As we have σ̇(t) = −γ̇(t0 − t), we find

∇σ̇σ̇ =
(
∇γ̇ γ̇

)
(t0 − t).

Since γ is a trajectory, we have ∇γ̇ γ̇ = kJγ̇. Hence we see that

∇σ̇σ̇ =
(
∇γ̇ γ̇

)
(t0 − t) = kJγ̇(t0 − t) = −kJσ̇.

we get the conclusion. □

Example 2.4. Let γ be a trajectory for Bk on Cn with initial condition γ(0) =

p ∈ Cn and γ̇ = (p, v) ∈ TpCn. We consider a subset p + Cv in Cn. Since p + Cv ∼=

C = R2, we take a circle γ̂ on R2 with initial condition γ̂(0) = 0, γ̂′(0) = (1, 0)

and γ̂′′(0) = k(0, 1). If we regard this curve as a curve in Cn we see it satisfies

γ̂(0) = p + 0v = p, γ̂′(0) = v and γ̂′′(0) = kJv. Since a trajectory satisfies the same

differential equation as of γ̂ regarding as a curve in Cn, we find γ = γ̂. Thus, we have

γ(t) = p+
1

k
(sin kt)v +

1

k
(1− cos kt)Jv.

This shows that γ is closed of length 2π/|k|.

Example 2.5. Let γ be a trajectory for Bk on a complex projective space CP n(c) of

constant holomorphic sectional curvature c. We choose a totally geodesic CP 1(c) with

γ(0) ∈ CP 1(c) and γ̇(0) ∈ Tγ(0)CP 1(c) (see Lemma 2.4). If we consider a trajectory γ̂

for Bk on CP 1(c) with γ̂(0) = γ(0) and ˙̂γ(0) = γ̇(0), as CP 1(c) is totally geodesic, its

extrinsic shape ι ◦ γ̂ in CP n(c) is a trajectory for Bk. In view of initial conditions of

γ and ι ◦ γ̂, we find γ = ι ◦ γ̂. This means that γ lies on a totally geodesic CP 1(c).

Thus, as we see in §1.3, a trajectory γ for Bk is a “small” circle of radius 1/
√
k2 + c

on CP 1(c) = S2(c), hence it is closed of length 2π/
√
k2 + c.
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Example 2.6. Let γ be a trajectory for Bk on a complex hyperbolic space CHn(−c)

of constant holomorphic sectional curvature−c. We choose a totally geodesic CH1(−c)

with γ(0) ∈ CH1(−c) and γ̇(0) ∈ Tγ(0)CH1(−c). If we consider a trajectory γ̂ for Bk

on CH1(−c) with γ̂(0) = γ(0) and ˙̂γ(0) = γ̇(0), as CH1(−c) is totally geodesic, its

extrinsic shape ι ◦ γ̂ in CHn(−c) is a trajectory for Bk. In view of initial conditions of

γ and ι ◦ γ̂, we find γ = ι ◦ γ̂. This means that γ lies on a totally geodesic CH1(−c).

Thus, every trajectory for a Kähler magnetic field is a curve without self intersections

and lies on a totally geodesic CH1(−c) = H2(−c). Features of trajectories depend on

strengths of Kähler magnetic fields. When |k| >
√

|c|, a trajectory for Bk is closed of

length 2π/
√
k2 − c, and when |k| ≤

√
|c|, it is open and is unbounded.

We here note more on trajectories on complex space forms. We say two smooth

curves γ1, γ2 on a Riemannian manifold N parameterized by their arclengths to be

congruent to each other if there exist an isometry φ of N and a constant t0 satisfying

γ2(t) = φ◦γ1(t+t0) for all t. When we can take t0 = 0, we say that they are congruent

to each other in strong sense.

Proposition 2.3. On a complex space form CMn(c), two trajectories for Bκ are

congruent to each other in strong sense.

Proof. Let γ1, γ2 be trajectories for Bk. By Lemma 2.9, we have a holomorphic

isometry φ on CMn(c) satisifying φ(γ1(0)) = γ2(0) and dφ(γ̇1(0)) = γ̇2(0). We set

γ̃1 = φ ◦ γ1. Then, as φ is an isometry, we have

∇ ˙̃γ1

˙̃γ1 = dφ(∇γ̇1 γ̇1) = dφ(kJγ̇1) = kdφ(Jγ̇1)kJ ˙̃γ1.

Hence, γ̃1 is a trajectory for Bk with initial condition γ̃1(0) = γ2(0), ˙̃γ1(0) = γ̇2(0).

By Lemma 2.12, we see γ̃1 coincides with γ2. Hence we have γ2 = φ ◦ γ1 and get the

conclusion. □

On a Kähler manifold M , at a point p ∈M we define Bkexpp : TpM →M by

Bkexpp(v) =

{
γv/∥v∥(∥v∥) v ̸= 0p,

p v = 0p.
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Here, we denote by γv a Bk−trajectory with γ̇(0) = v and 0p ∈ TpM is origin of the

vector space. We call it the magnetic exponential map at p. When k = 0, the magnetic

exponential map B0expp is the ordinary exponential map expp.





CHAPTER 3

Comparison theorems on magnetic Jacobi fields

In order to describe the differential of magnetic exponential maps we introduce

magnetic Jacobi fields in this chapter. We study magnetic Jacobi fields for Kähler mag-

netic fields on complex space forms, and investigate results corresponding to Rauch’s

comparison theorem on Jacobi fields.

1. Magnetic Jacobi fields

Let γ be a trajectory for a uniform magnetic field B on a Riemannian manifold M .

We say a vector field Y along γ to be a magnetic Jacobi field for B if it satisfies

(3.1)

{∇γ̇∇γ̇Y −ΩB(∇γ̇Y ) +R(Y, γ̇)γ̇ = 0,

⟨∇γ̇Y, γ̇⟩ = 0.

Since the first equality in (3.1) is a linear differential equation, and since we have

∇γ̇⟨∇γ̇Y, γ̇⟩ = ⟨∇γ̇∇γ̇Y, γ̇⟩+ ⟨∇γ̇Y,ΩB(γ̇)⟩

= ⟨ΩB(∇γ̇Y ), γ̇⟩ − ⟨R(Y, γ̇)γ̇, γ̇⟩ − ⟨ΩB(∇γ̇Y ), γ̇⟩ = 0

we find that a magnetic Jacobi field Y is defined uniquely by the initial condition

Y (0), (∇γ̇Y )(0).

We here study the relationship between magnetic Jacobi fields and variations of

trajectories. We say a smooth map α : (−ϵ, ϵ)×R →M to be a variation of trajectories,

if the map α(s, ·) : {s} × R →M is a trajectory for B for each s.

Lemma 3.1. Let α : (−ϵ, ϵ)× R →M be a variation of B-trajectories.

(1) The vector field Ys defined by Ys(t) =
∂α

∂s
(s, t) is a magnetic Jacobi field for

B along a trajectory t 7→ α(s, t).

69



70 III. Comparison theorems on magnetic Jacobi fields

(2) On the other hand, given a magnetic Jacobi field Y for B along a B-trajectory

γ, there exists a variation α of B-trajectories satisfying α(0, t) = γ(t) and
∂α

∂s
(0, t) = Y (t).

Proof. (1) Since α : (−ϵ, ϵ)× R → M is a variation, we see αs : t 7→ α(s, t) is a

trajectory for B for each s. Then we have ∇ ∂α
∂t

∂α

∂t
= ΩB

∂α

∂t
. We take the differentials

of both sides of this equalities on s. As ΩB is parallel, we get

∇ ∂α
∂s

(
∇ ∂α

∂t

∂α

∂t

)
= ∇ ∂α

∂s

(
ΩB

∂α

∂t

)
=
(
∇ ∂α

∂s
ΩB

)(∂α
∂t

)
+ΩB

(
∇ ∂α

∂s

(∂α
∂t

))
= ΩB

(
∇ ∂α

∂t

(∂α
∂s

))
.

On the other hand, we have

∇ ∂α
∂s

(
∇ ∂α

∂t

∂α

∂t

)
= ∇ ∂α

∂t

(
∇ ∂α

∂s

∂α

∂t

)
+R
(∂α
∂t
,
∂α

∂s

)∂α
∂t

= ∇ ∂α
∂t

(
∇ ∂α

∂t

∂α

∂s

)
+R
(∂α
∂t
,
∂α

∂s

)∂α
∂t
.

Thus we find that Ys =
∂α

∂s
(s, ·) satisfies the first equality in (3.1). Moreover, since

αs is a trajectory, we have
∥∥∥∂α
∂t

∥∥∥= 1. Differentiating both sides of this equalities, we

obtain

0 =
∂α

∂s

⟨∂α
∂t
,
∂α

∂t

⟩
= 2
⟨
∇ ∂α

∂s

∂α

∂t
,
∂α

∂t

⟩
= 2
⟨
∇ ∂α

∂t

∂α

∂s
,
∂α

∂t

⟩
.

Therefore we find that Ys =
∂α

∂s
is a magnetic Jacobi field along αs.

(2) We put p = γ(0) and v = γ̇(0). We take a smooth curve σ : (−ϵ, ϵ) → TpM

satisfying σ(0) = p, σ̇(0) = Y (0), and take a smooth curve u : (−ϵ, ϵ) → TM satisfying

u(0) = v, u̇(0) = ∇γ̇Y (0), u(s) ∈ Uσ(s)M . We define a smooth map α : (−ϵ, ϵ)×R →M

by α(s, t) = Bexpσ(s)

(
tu(s)

)
. It is clear that this is a variation of trajectories for B.

We have also α(0, t) = Bexpp(tv) = γ(t). As α(s, 0) = Bexpσ(s)(0) = σ(s), we find
∂α

∂s
(0, 0) = σ̇(0) = Y (0). Moreover, if we denote by γv the B-trajectory with γ̇v(0) = v,

as
∂α

∂t
(s, t) = γ̇u(s)(t), we get

∇ ∂α
∂t

∂α

∂s
(0, 0) = ∇ ∂α

∂s

∂α

∂t
(0, 0) = ∇ ∂α

∂s
γ̇u(s)

∣∣
s=0

= ∇ ∂α
∂s
u(s)

∣∣
s=0

= u̇(0) = ∇γ̇Y (0).
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Thus
∂α

∂s
(0, t) satisfies the same initial condition as of Y (t). This means that Y (t) =

∂α

∂s
(0, t). We get the conclusion. □

We study more on magnetic Jacobi fields.

Lemma 3.2. Let Y and W be B-Jacobi fields along a B-trajectory γ. Then

⟨∇γ̇Y,W ⟩ − ⟨Y,∇γ̇W ⟩+ ⟨Y,ΩB(W )⟩

is constant along γ.

Proof. By taking the differential of ⟨∇γ̇Y,W ⟩−⟨Y,∇γ̇W ⟩+ ⟨Y,ΩB(W )⟩, we have
d

dt

(
⟨∇γ̇Y,W ⟩ − ⟨Y,∇γ̇W ⟩+ ⟨Y,ΩBW ⟩

)
= ⟨∇γ̇∇γ̇Y,W ⟩+ ⟨∇γ̇Y,∇γ̇W ⟩ − ⟨∇γ̇Y,∇γ̇W ⟩

− ⟨Y,∇γ̇∇γ̇W ⟩+ ⟨∇γ̇Y,ΩBW ⟩+ ⟨Y,ΩB(∇γ̇W )⟩

= ⟨∇γ̇∇γ̇Y,W ⟩ − ⟨Y,∇γ̇∇γ̇W ⟩+ ⟨∇γ̇Y,ΩBW ⟩+ ⟨Y,ΩB(∇γ̇W )⟩

= ⟨ΩB(∇γ̇Y )−R(Y, γ̇)γ̇,W ⟩ − ⟨Y,ΩB(∇γ̇W )−R(W, γ̇)γ̇⟩

+ ⟨∇γ̇Y,ΩB(W )⟩+ ⟨Y,ΩB(∇γ̇W )⟩

= 0.

We therefore get conclusion. □

A vector field Y along a geodesic is said to be a Jacobi field if it satisfies ∇γ̇∇γ̇Y +

R(Y, γ̇)γ̇ = 0. So, we do not need the second equality in (3.1). The difference comes

from the fact that we restrict trajectories to be of unit speed. Even if we change the

speed of a geodesic it is still a geodesic. While, as we see in Lemma 2.10, if we change

the speed of a trajectory, then it is seen as a “trajectory” for another magnetic field.

We hence need the second equality in the definition of magnetic Jacobi fields.

For a trajectory γ for B, we denote by Jγ the set of all magnetic Jacobi fields for

B along γ. Then it is a vector space of dimension 2dimR(M) − 1, because the first

equality in (3.1) is a linear differential equation. For a vector field X along γ, we set

X♯ = X − ⟨X, γ̇⟩γ̇, which is the component orthogonal to γ̇. In order to consider
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singularities of the map Φ : (0, r)×UpM →M with a constant r, we take a trajectory

γ for B with γ(0) = p. We call a constant tc a magnetic conjugate value of p along γ

if there is a non-trival magnetic Jacobi field Y along γ which satisfies Y ♯(0) = 0 and

Y ♯(tc) = 0. The point γ(tc) is said to be a magnetic conjugate point of p along γ. We

call the minimum positive magnetic conjugate value cγ(p) the first magnetic conjugate

value of p along γ. We set cγ(p) = ∞ when there are no positive magnetic conjugate

values along γ.

We now restrict ourselves to Kähler magnetic fields. Since ΩBk
= kJ , a C∞-vector

field Y along a Bk-trajectory is a magnetic Jacobi field for Bk, if it satisfies

(3.2)

{∇γ̇∇γ̇Y − kJ(∇γ̇Y ) +R(Y, γ̇)γ̇ = 0,

⟨∇γ̇Y, γ̇⟩ = 0.

For a vector field X along a trajectory γ for Bk, we divide it into three components

and denote as X = fX γ̇ + gXJγ̇ + X⊥ with smooth functions fX , gX and a vector

field X⊥ along γ which is orthogonal to both γ̇ and Jγ̇ at each point. We hence have

X♯ = gXJγ̇ +X⊥.

Lemma 3.3. The vector field X⊥ along γ satisfies ⟨∇m
γ̇ X

⊥, γ̇⟩ = ⟨∇m
γ̇ X

⊥, Jγ̇⟩ = 0

for an arbitrary positive m, where ∇m
γ̇ =

m︷ ︸︸ ︷
∇γ̇ · · · ∇γ̇.

Proof. For a vector field X along a trajectory γ for Bk, we have ⟨X⊥, γ̇⟩ =

⟨X⊥, Jγ̇⟩ = 0. Then we get

0 = ∇γ̇⟨X⊥, γ̇⟩ = ⟨∇γ̇X
⊥, γ̇⟩+ k⟨X⊥, Jγ̇⟩ = ⟨∇γ̇X

⊥, γ̇⟩

0 = ∇γ̇⟨X⊥, Jγ̇⟩ = ⟨∇γ̇X
⊥, Jγ̇⟩ − k⟨X⊥, γ̇⟩ = ⟨∇γ̇X

⊥, Jγ̇⟩.

By mathematical induction, for all integers m, we have

⟨∇m
γ̇ X

⊥, γ̇⟩ = ⟨∇m
γ̇ X

⊥, Jγ̇⟩ = 0,

and get the conclusion. □
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Lemma 3.4. A vector field X along a trajectory γ for Bk is a magnetic Jacobi field

if and only if it satisfies

(3.3)

{
f ′
X = kgX ,

(g′′X + k2gX)Jγ̇ +∇γ̇∇γ̇X
⊥ − kJ(∇γ̇X

⊥) +R(X, γ̇)γ̇ = 0.

Proof. We take a vector field X = fX γ̇ + gXJγ̇ + X⊥ along a Bk-trajectory γ.

By taking its covariant differentiation, we have

∇γ̇X = (f ′
X − kgX)γ̇ + (kfX + g′X)Jγ̇ +∇γ̇X

⊥.

Thus, we see ⟨∇γ̇X, γ̇⟩ = 0 if and only if f ′
X = kgX . The second covariant derivative

of X is given as

∇γ̇∇γ̇X =
{
(f ′

X−kgX)′−k(kfX+g′X)
}
γ̇+
{
k(f ′

X−kgX)+(kfX+g′X)
′}Jγ̇+∇γ̇∇γ̇X

⊥.

Under the assumption that ⟨∇γ̇X, γ̇⟩ = 0 it turns to

∇γ̇∇γ̇X = −k(kfX + g′X)γ̇ + (kf ′
X + g′′X)Jγ̇ +∇γ̇∇γ̇X

⊥.

Substituting the first and the second covariant differentiations into the left hand side

of the first equation in (3.2), we have

(left hand side) = −k(kfX + g′X)γ̇ + (kf ′
X + g′′X)Jγ̇ +∇γ̇∇γ̇X

⊥

− kJ
{
(kfX + g′X)Jγ̇ +∇γ̇X

⊥}+R(X, γ̇)γ̇

= (g′′X + k2gX)Jγ̇ +∇γ̇∇γ̇X
⊥ − kJ(∇γ̇X

⊥) +R(X, γ̇)γ̇.

Thus, we find that a vector field X along γ satisfying ⟨∇γ̇X, γ̇⟩ = 0 is a magnetic

Jacobi field if and only if it satisfies the second equation in (3.2). This completes the

proof. □

Remark 3.1. We note that R(X, γ̇)γ̇ does not have a component parallel to γ̇ and

R(X, γ̇)γ̇ = gXR(Jγ̇, γ̇)γ̇+R(X⊥, γ̇)γ̇. But we can not distinguish the components of

R(Jγ̇, γ̇)γ̇, R(X⊥, γ̇)γ̇ which are parallel to and orthogonal to Jγ̇.
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2. Magnetic Jacobi field on complex space forms

In this section we study magnetic Jacobi fields for Kähler magnetic fields on a

complex space form CMn(c) of constant holomorphic sectional curvature c. We note

that the curvature tensor R on a complex space form CMn(c) is expressed as

R(X,Y )Z =
c

4

{
⟨Y, Z⟩X − ⟨X,Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY ⟩JZ

}
for vector fields X, Y, Z ∈ X(CMn(c)). Thus, for a vector field Y = fY γ̇ + gY Jγ̇ + Y ⊥

along a Bk-trajectory γ, we have

R(Y, γ̇)γ̇ = −R(γ̇, Y )γ̇ = − c
4

{
fY γ̇ − Y − gY Jγ̇ − 2gY Jγ̇

}
= c
(
gJγ̇ +

1

4
Y ⊥
)
.

Therefore, by Lemma 3.4, we find that a vector field Y = fY γ̇ + gY Jγ̇ + Y ⊥ along γ

is a magnetic Jacobi field if and only if it satisfies

(3.4)


f ′
Y = kgY ,

g′′Y + (k2 + c)gY = 0,

∇γ̇∇γ̇Y
⊥ − kJ(∇γ̇Y

⊥) +
c

4
Y ⊥ = 0.

[1] Magnetic Jacobi fields on a complex Euclidean space

We study magnetic Jacobi fields along a trajectory γ for a Kähler magnetic field

Bk on Cn.

In this case the covariant differential is the ordinary differential. We therefore find

that (3.4) turns to 
f ′
Y = kgY ,

g′′Y + k2gY = 0,

(Y ⊥)′′ − kJ(Y ⊥)′ = 0.

By solving the second equality g′′Y + k2gY = 0, we get

gY (t) = c1 cos kt+ c2 sin kt

with some constants c1, c2 ∈ R. As f ′
Y = kgY , it leads us to

fY (t) = c1 sin kt− c2 cos kt+ c3
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with a constant c3 ∈ R. Also by solving (Y ⊥)′′ − kJ(Y ⊥)′ = 0, we get

Y ⊥(t) = (γ(t), A+Be
√
−1kt)

with some vectors A,B ∈ Cn which are orthogonal to both γ̇(0) and Jγ̇(0).

If we suppose Y (0) = 0, we then find that a magnetic Jacobi field Y on Cn is

expressed as

(3.5) Y (t) = a
{
(1− cos kt)γ̇(t) + (sin kt)Jγ̇(t)

}
+
(
γ(t), (1− e

√
−1kt)C

)
with a ∈ R, C ∈ Cn satisfying that C is orthogonal to both γ̇(0) and Jγ̇(0).

[2] Magnetic Jacobi fields on a complex projective space

We study magnetic Jacobi fields along a trajectory γ for a Kähler magnetic field

Bk on CP n(c). By solving the second equation g′′Y + (k2 + c)g = 0 in (3.4), we get

g(t) = c1 cos
√
k2 + c t+ c2 sin

√
k2 + c t

with constants c1, c2 ∈ R. As f ′
Y = kgY , it leads us to

fY (t) =
k√
k2 + c

(
c1 sin

√
k2 + c t− c2 cos

√
k2 + c t

)
+c3

with a constant c3 ∈ R.

Next, we study the third equation of (3.4). Since ∇γ̇Y
⊥ and ∇γ̇∇γ̇Y

⊥ are orthog-

onal to both γ̇ and Jγ̇ by Lemma 3.3, if we denote by Ỹ ⊥ the horizontal lift of Y ⊥

along a horizontal lift γ̃ of γ through the Hopf fibration ϖ : S2n+1 → CP n, we find

by (1) of Lemma 1.3 and Lemma 2.2 that ∇̃ ˙̃γỸ
⊥ and ∇̃ ˙̃γ∇̃ ˙̃γỸ

⊥ are horizontal lifts

∇̃γ̇Y ⊥, ˜∇γ̇∇γ̇Y ⊥ of ∇γ̇Y
⊥ and ∇γ̇∇γ̇Y

⊥, respectively. Here, ∇̃ denotes the Riemann-

ian connection of S2n+1. Hence we have ∇ ˙̃γỸ
⊥ = ∇̃γ̇Y ⊥ and ∇ ˙̃γ∇ ˙̃γỸ

⊥ = ˜∇γ̇∇γ̇Y ⊥

with the Riemannian connection∇ on Cn+1. Thus Ỹ ⊥ satisfies the differential equation

(Ỹ ⊥)′′ −
√
−1k(Ỹ ⊥)′ +

c

4
Ỹ ⊥ = 0.

By solving its characteristic equation λ2 − k
√
−1λ+ (c/4) = 0, we have

λ1 =
√
−1
(
k +

√
k2 + c

)
/2, λ2 =

√
−1
(
k −

√
k2 + c

)
/2.
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Thus, we get

Ỹ ⊥(t) = dϖ
(
γ̃(t), e

√
−1kt/2

(
A cos

√
k2 + c t

2
+B sin

√
k2 + c t

2

))
with some A,B ∈ Cn+1 which are orthogonal to γ̃(0), Jγ̃(0), ˙̃γ(0) and J ˙̃γ(0).

If we suppose that a magnetic Jacobi field Y satisfies Y (0) = 0, we then find that

it is expressed as

(3.6)
Y (t) = a

{
k(1− cos

√
k2 + c t)γ̇(t) +

√
k2 + c (sin

√
k2 + c t)Jγ̇(t)

}
+ dϖ

(
γ̃(t), Ce

√
−1kt/2 sin

1

2

√
k2 + c t

)
with some a ∈ R and C ∈ Cn+1 which is orthogonal to γ̃(0), Jγ̃(0), ˙̃γ(0) and J ˙̃γ(0).

[3] Magnetic Jacobi fields on a complex hyperbolic space

We study magnetic Jacobi fields along a trajectory γ for a Kähler magnetic field

Bk on CHn(c). Since k2+ c is positive, zero and negative according to |k| >
√

|c|, k =

±
√
|c| and |k| <

√
|c|, we need to study separately. First, by solving the second

equation g′′ + (k2 + c)g = 0 of (3.4), we get

gY (t) =


c1 cosh

√
k2 + c t+ c2 sinh

√
k2 + c t, if |k| <

√
|c|,

c1 + c2t, if k = ±
√

|c|,

c1 cos
√
k2 + c t+ c2 sin

√
k2 + c t, if |k| >

√
|c|,

with some constants c1, c2 ∈ R. As f ′
Y = kgY , it leads us to

fY (t) =



k√
k2 + c

(
c1 sinh

√
k2 + c t+ c2 cosh

√
k2 + c t

)
+c3, if |k| <

√
|c|,

c1 +
c2
2
t2 + c3, if k = ±

√
|c|,

k√
k2 + c

(
c1 sin

√
k2 + c t− c2 cos

√
k2 + c t

)
+c3, if |k| >

√
|c|,

with some constant c3 ∈ R.

Next, we consider the third equation of (3.4). In the case c = −4, we take a

horizontal lift Ỹ ⊥ of Y ⊥ along a horizontal lift γ̃ of γ. it is rewrited to the equation

in Cn+1 through the Hopf fibration ϖ : H2n+1(1) → CHn(−4). Since both Y ⊥ and

∇γ̇Y
⊥ are vertical to γ̇ and Jγ̇, the horizontal lift of Y ⊥ is expressed as

(Ỹ ⊥)′′ −
√
−1k(Ỹ ⊥)′ − Ỹ ⊥ = 0.
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By solving its characteristic equation λ2 − k
√
−1λ− 1 = 0, we have

λ1 =


(√

−1k +
√
4− k2

)
/2, k2 < 4,

√
−1k/2, k = ±2,

√
−1
(
k +

√
k2 − 4

)
/2, k2 > 4,

λ2 =


(√

−1k −
√
4− k2

)
/2, k2 < 4,

√
−1k/2, k = ±2,

√
−1
(
k −

√
k2 − 4

)
/2, k2 > 4.

Thus, we obtain

Ỹ ⊥(t) =



dϖ
(
γ̃(t), e

√
−1kt/2

(
A cosh

√
4− k2 t

2
+B sinh

√
4− k2 t

2

))
, |k| < 2,

dϖ
(
γ̃(t), e

√
−1kt/2(A+Bt)

)
, k = ±2,

dϖ
(
γ̃(t), e

√
−1kt/2

(
A cos

√
k2 − 4 t

2
+B sin

√
k2 − 4 t

2

))
, |k| > 2,

with A,B ∈ Cn+1, which are orthogonal to γ̃(0), Jγ̃(0), ˙̃γ(0) and J ˙̃γ(0). If we suppose

Y (0) = 0, we then have magnetic Jacobi fields on CHn are expressed as

Y (t) =



a
{
k(cosh

√
4− k2 t− 1)γ̇(t) +

√
4− k2(sinh

√
4− k2 t)Jγ̇(t)

}
+dϖ

(
γ̃(t), Ce

√
−1kt/2 sinh

√
4− k2 t

2

)
, k2 < 4,

a
{
2t2γ̇(t) + ktJγ̇(t)

}
+dϖ

(
(γ̃(t), Ce

√
−1kt/2)

)
, k = ±2,

a
{
k(1− cos

√
k2 − 4 t)γ̇(t) +

√
k2 − 4(sin

√
k2 − 4 t)Jγ̇(t)

}
+dϖ

(
γ̃(t), Ce

√
−1kt/2 sin

√
k2 − 4 t

2

)
, k2 > 4,

with a ∈ R and C ∈ Cn+1 which is orthogonal to γ̃(0), Jγ̃(0), ˙̃γ(0) and J ˙̃γ(0).

In general case, we make use of a homothetic change of metrics. If we change the

metric on CHn(c) homothetically to (
√

|c|/2)2⟨ , ⟩, then the curve σ(s) = γ(2s/
√

|c|)

is a trajectory for Bk′ = B
2k/

√
|c| on CHn(−4). If we set Z(s) = Y (2s/

√
|c|), it is a
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vector field along σ. We hence obtain

Z⊥(s) =



dϖ
(
σ̃(s), e

√
−1k′s/2

(
A cosh

√
4− k′2 s

2
+B sinh

√
4− k′2 s

2

))
, |k′| < 2,

dϖ
(
σ̃(s), e

√
−1k′s/2(A+Bs)

)
, k′ = ±2,

dϖ
(
σ̃(s), e

√
−1k′s/2

(
A cos

√
k′2 − 4 s

2
+B sin

√
k′2 − 4 s

2

))
, |k′| > 2.

Therefore we have

Y ⊥(t) = Z⊥(
√
|c|t/2)

=



dϖ
(
γ̃(t), e

√
−1kt
2

(
A cosh

√
4− 4k2

|c|

√
|c| t
2

2
+B sinh

√
4− 4k2

|c|

√
|c| t
2

2

))
, |k| <

√
|c|,

dϖ
(
γ̃(t), e

√
−1kt
2 (A+

√
|c|
2

Bt)
)
, k = ±

√
|c|,

dϖ
(
γ̃(t), e

√
−1kt
2

(
A cos

√
4k2

|c| − 4

√
|c| t
2

2
+B sin

√
4k2

|c| − 4

√
|c| t
2

2

))
, |k| >

√
|c|,

=



dϖ
(
γ̃(t), e

√
−1kt
2

(
A cosh

√
|c| − k2 t

2
+B sinh

√
|c| − k2 t

2

))
, |k| <

√
|c|,

dϖ
(
γ̃(t), e

√
−1kt
2 (A+Bt)

)
, k = ±

√
|c|,

dϖ
(
γ̃(t), e

√
−1kt
2

(
A cos

√
k2 + c t

2
+B sin

√
k2 + c t

2

))
, |k| >

√
|c|.

We note that the horizontal lift Ỹ ⊥ satisfies (Ỹ ⊥)′′−
√
−1k(Ỹ ⊥)′+

c

4
Ỹ ⊥ = 0 by Lemmas

1.3 and 2.10. We can get the expressions of Ỹ ⊥ directory by solving this differential

equation.

We here consider magnetic Jacobi fields under the condition that their initials are

null. By the condition gY (0) = 0, we get c1 = 0. Therefore, by the condition fY (0) = 0,

we find that

c3 =



−kc2√
|c| − k2

, |k| <
√

|c|,

0, k = ±
√

|c|,

kc2√
k2 + c

, |k| >
√

|c|.
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Also by the condition Y ⊥(0) = 0, we find that A = 0. Thus we get this magnetic

Jacobi field Y is expressed as follows :

(3.7) Y (t) =



a
{
k
(
cosh

√
|c| − k2 t− 1

)
γ̇(t)

+
√
|c| − k2

(
sinh

√
|c| − k2 t

)
Jγ̇(t)

}
+dϖ

(
γ̃(t), Ce

√
−1kt
2 sinh

√
|c| − k2 t

2

)
, |k| <

√
|c|,

a
{1
2
kt2γ̇(t) + tJγ̇(t)

}
+dϖ

(
γ̃(t), Ce

√
−1kt
2 t
)
, k = ±

√
|c|,

a
{
k
(
1− cos

√
k2 + c t

)
γ̇(t)

+
√
k2 + c

(
sin

√
k2 + c t

)
Jγ̇(t)

}
+dϖ

(
γ̃(t), Ce

√
−1kt
2 sin

√
k2 + c t

2

)
, |k| >

√
|c|,

with a constant a ∈ R and a horizontal vector C ∈ Cn+1 which is orthogonal to

γ̃(0), Jγ̃(0), ˙̃γ(0) and J ˙̃γ(0).

In order to treat magnetic Jacobi fields on a complex space form CMn(c) uniformly,

we define two functions

sk(t; c), tk(t; c) : [0, π/
√
k2 + c ) → [0,∞)

by

sk(t; c) =


(1/

√
k2 + c ) sin(

√
k2 + c t), when k2 + c > 0,

t, when k2 + c = 0,

(1/
√

|c| − k2 ) sinh(
√
|c| − k2 t), when k2 + c < 0,

tk(t; c) =
s′k(t; c)

sk(t; c)
=


√
k2 + c cot(

√
k2 + c t), when k2 + c > 0,

1/t, when k2 + c = 0,√
|c| − k2 coth(

√
|c| − k2 t), when k2 + c < 0.

Here, we regard π/
√
k2 + c in the domains of sk(t; c) and tk(t; c) as infinity when

k2 + c ≤ 0.
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Proposition 3.1. On a complex space form CMn(c) of constant holomorphic sec-

tional curvature c, every magnetic Jacobi field Y = fY γ̇+gY Jγ̇+Y
⊥ along a trajectory

γ for Bk with Y (0) = 0 satisfies the following properties for 0 ≤ t < π/
√
k2 + c :

1) |gY (t)| = |g′Y (0)|sk(t; c), ∥Y ⊥(t)∥ = ∥∇γ̇Y
⊥(0)∥ × 2sk(t/2; c);

2) g′Y (t) = gY (t)tk(t; c), ⟨∇γ̇Y
⊥(t), Y ⊥(t)⟩ = ∥Y ⊥(t)∥2 × (1/2)tk(t/2; c).

Proof. By (3.5), (3.6) and (3.7), we have

gY (t) =


a
√

|c| − k2 sinh
√

|c| − k2 t, when k2 + c < 0,

at, when k2 + c = 0,

a
√
k2 + c sin

√
k2 + c t, when k2 + c > 0,

Y ⊥(t) =


e
√
−1kt/2 sinh

(√
|c| − k2 t/2

)
E(t), when k2 + c < 0,

e
√
−1kt/2t E(t), when k2 + c = 0,

e
√
−1kt/2 sin

(√
k2 + c t/2

)
E(t), when k2 + c > 0,

with some constant a and a parallel vector field E along γ whose initial E(0) is or-

thogonal to both γ̇(0) and Jγ̇(0). By taking the differentiations of gY (t) and Y
⊥(t),

we have

g′Y (t) =


a(|c| − k2) cosh

√
|c| − k2 t, when k2 + c < 0,

a, when k2 + c = 0,

a(k2 + c) cos
√
k2 + c t, when k2 + c > 0,

∇γ̇Y
⊥(t) =



1

2
e
√
−1kt/2

{√
−1k sinh 1

2

√
|c| − k2 t

+
√

|c| − k2 cosh 1
2

√
|c| − k2 t

}
E(t), when k2 + c < 0,

e
√
−1kt/2

{√−1k

2
t+ 1

}
E(t), when k2 + c = 0,

1

2
e
√
−1kt/2

{√
−1k sin 1

2

√
k2 + c t

+
√
k2 + c cos 1

2

√
k2 + c t

}
E(t), when k2 + c > 0.

In particular, we have

g′Y (0) =


a(|c| − k2), when k2 + c < 0,

a, when k2 + c = 0,

a(k2 + c) when k2 + c > 0,
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∇γ̇Y
⊥(0) =


1

2

√
|c| − k2E(0), when k2 + c < 0,

E(0), when k2 + c = 0,

1

2

√
k2 + cE(0), when k2 + c > 0.

We hence get the conclusion. □

Lemma 3.5. These functions sk(t; c) and tk(t; c) satisfy the following properties for

0 < t < π/
√
k2 + c :

(1) If |k1| < |k2|, then tk1(t; c) > tk2(t; c);

(2) sk(t; c) is strictly increasing (i.e. s′k(t; c) > 0) on (0, π/2
√
k2 + c);

(3) sk(t; c) < 2sk(t/2; c) when k
2 + c > 0,

sk(t; c) > 2sk(t/2; c) when k
2 + c < 0;

(4) 2tk(t; c) < tk(t/2; c) when k
2 + c > 0,

2tk(t; c) > tk(t/2; c) when k
2 + c < 0.

Proof. (1) We are enough to consider the case k2 > k1 ≥ 0. Since we have

tk(t; c) =


√
k2 + c cot(

√
k2 + c t), when k2 + c > 0,

1/t, when k2 + c = 0,√
|c| − k2 coth(

√
|c| − k2 t), when k2 + c < 0,

we consider the differential of tk(t; c) with respect to k for 0 < k < +∞.

When k2 + c > 0, we have

d

dk
tk(t; c) =

k
{
sin(2

√
k2 + c t)− 2

√
k2 + c t

}
2
√
k2 + c sin(

√
k2 + c t)2

.

Here, fixing t(> 0) we put Ft(k) = sin(2
√
k2 + c t)− 2

√
k2 + c t. We then have

d

dk
Ft(k) =

−2kt√
k2 + c

+
2kt cos(2

√
k2 + c t)√

k2 + c

=
2kt√
k2 + c

{
cos(2

√
k2 + c t)− 1

}
< 0.

and Ft(0) = sin(2
√
ct) − 2

√
ct < 0 for t > 0. Thus, we find that Ft(k) is a monotone

decreasing negative function when 0 < k < ∞ for each t > 0. Therefore, we have

tk(t; c) is monotone decreasing with respect to k for 0 < k <∞.
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When k2 + c < 0,

d

dk
tk(t; c) =

k
{
t
√
|c| − k2 − (1/2) sinh(2

√
|c| − k2 t)

}√
|c| − k2 sinh(

√
|c| − k2 t)2

.

Here, fixing t(> 0) we put Gt(k) = t
√
|c| − k2 − (1/2) sinh(2

√
|c| − k2 t). We then

have
d

dk
Gt(k) =

−2kt√
|c| − k2

+
2kt cosh(2

√
|c| − k2 t)√

|c| − k2

=
2kt√
|c| − k2

{
cosh(2

√
|c| − k2 t)− 1

}
> 0,

and Gt(
√

|c|) = 0. Thus, we find that
d

dk
tk(t; c) is a monotone increasing negative

function when 0 < k <
√
|c| for each t > 0. Therefore, we have tk(t; c) is monotone

decreasing with respect to k for 0 < k <
√

|c|.

Moreover, by de L’Hopital’s rule we have

lim
k↓
√

|c|
tk(t; c) = lim

k↓
√

|c|

√
k2 + c

tan
√
k2 + c t

= lim
k↓
√

|c|

cos2
√
k2 + c t

t
=

1

t
,

lim
k↑
√

|c|
tk(t; c) = lim

k↑
√

|c|

√
|c| − k2

tanh
√

|c| − k2 t
= lim

k↑
√

|c|

cosh2
√

|c| − k2 t

t
=

1

t
.

Therefore we get the conclusion.

(2) We have

s′k(t; c) =


cosh(

√
|c| − k2 t), when k2 + c < 0,

1, when k2 + c = 0,

cos(
√
k2 + c t), when k2 + c > 0.

Thus we see s′k(t; c) > 0 for 0 < t < π/
(
2
√
k2 + c

)
when k2 + c > 0 and for 0 < t <∞

when k2 + c ≤ 0. Hence, we find that sk(t; c) is strictly increasing on that interval.

(3) We define a smooth function F (t; c) :
(
0, π/

√
k2 + c

)
→ R by

F (t; c) = sk(t; c)
/(

2sk(t/2; c)
)
.

When k2 + c > 0, we have

F (t; c) =
sk(t; c)

2sk(t/2; c)
=

(
2/
√
k2 + c

)
sin(

√
k2 + c t/2) cos(

√
k2 + c t/2)(

2/
√
k2 + c

)
sin(

√
k2 + c t/2)

= cos(
√
k2 + c t/2).
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Hence we see 0 < F (t; c) < 1 for 0 < t < π/
√
k2 + c, which shows sk(t; c) < 2sk(t/2; c)

for 0 < t < π/
√
k2 + c.

When k2 + c < 0, we have

F (t; c) =

(
2/
√
|c| − k2

)
sinh(

√
|c| − k2 t/2) cosh(

√
|c| − k2 t/2)(

2/
√
|c| − k2

)
sinh(

√
k2 + c t/2)

= cosh(
√
|c| − k2 t/2) > 1.

Hence we find that sk(t; c) < 2sk(t/2; c) for t > 0.

(4) We define a smooth function G(t; c) :
(
0, π/

√
k2 + c

)
→ R by

G(t; c) = 2tk(t; c)/tk(t/2; c).

When k2 + c > 0, we have

G(t; c) =
2 cos(

√
k2 + c t)

sin(
√
k2 + c t)

× sin(
√
k2 + c t/2)

cos(
√
k2 + c t/2)

=
2 cos2(

√
k2 + c t/2)− 1

cos2(
√
k2 + c t/2)

= 2− 1

cos2(
√
k2 + c t/2)

As 0 < cos2(
√
k2 + c t/2) < 1, we have G(t; c) < 1, which shows 2tk(t; c) < tk(t/2; c).

When k2 + c < 0, we have

G(t; c) =
2 cosh(

√
|c| − k2 t)

sinh(
√
|c| − k2 t)

×
cosh(

√
|c| − k2 t/2)

sinh(
√

|c| − k2 t/2)

=
cosh2(

√
|c| − k2 t/2 + sinh2(

√
|c| − k2 t/2)

cosh2(
√
|c| − k2 t/2)

= 1 + tanh2(
√
|c| − k2 t/2) > 1

Hence we have 2tk(t; c) > tk(t/2; c) for t > 0. □

For the sake of later use, we here note more on these functions sk(t; c), tk(t; c).

We have

tk/2(t; c) =


√
k2 + 4c/2 cot

(√
k2 + 4c/2 t

)
, when k2 + 4c > 0,

1/t, when k2 + 4c = 0,√
4|c| − k2/2 coth

(√
4|c| − k2/2 t

)
, when k2 + 4c < 0,

and tk/2(t; c) = (1/2)tk(t/2; 4c).
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In order to estimate norms of magnetic Jacobi fields on a complex space form

CMn(c) we need the following technical inequalities.

Lemma 3.6. For constants β, δ and positive constants B,D, we have

min
{ β
B
,
δ

D

}
≤ β + δ

B +D
≤ max

{ β
B
,
δ

D

}
.

Proof. Without loss of generality we may suppose
β

B
≤ δ

D
. Since B,D are

positive, we have βD ≤ δB. As we have δ(B + D) − D(β + δ) = δB − βD ≥ 0

and D,B + D are positive, we get
δ

D
≥ β + δ

B +D
, which shows the second inequality.

Similarly, as we have (β+δ)B−β(B+D) = δB−βD ≥ 0, and B,B+D are positives,

we get
β + δ

B +D
≥ δ

B
, which shows the first inequality. □

Proposition 3.2. On a complex space form CMn(c) with n ≥ 2, every magnetic

Jacobi field Y = fY γ̇ + gY Jγ̇ + Y ⊥ along a trajectory γ for Bk with Y (0) = 0 satisfies

the following properties on Y ♯ = gY Jγ̇ + Y ⊥.

(1) When k2 + c > 0, we have

∥∇γ̇Y
♯(0)∥sk(t; c) ≤ ∥Y ♯(t)∥ ≤ ∥∇γ̇Y

♯(0)∥ × 2sk(t/2; c),

tk(t; c) ≤
⟨∇γ̇Y

♯(t), Y ♯(t)⟩
∥Y ♯(t)∥2

≤ 1

2
tk(t/2; c)

for 0 ≤ t < π/
√
k2 + c.

(2) When k2 + c = 0, we have

∥Y ♯(t)∥ = ∥∇γ̇Y
♯(0)∥t, ⟨∇γ̇Y

♯(t), Y ♯(t)⟩
∥Y ♯(t)∥2

=
1

t

for t ≥ 0.

(3) When k2 + c < 0, we have

∥∇γ̇Y
♯(0)∥ × 2sk(t/2; c) ≤ ∥Y ♯(t)∥ ≤ ∥∇γ̇Y

♯(0)∥sk(t; c),

1

2
tk(t/2; c) ≤

⟨∇γ̇Y
♯(t), Y ♯(t)⟩

∥Y ♯(t)∥2
≤ tk(t; c)

for t ≥ 0.
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Proof. Since Y ♯ = gY Jγ̇ + Y ⊥, we have ∇γ̇Y
♯ = −kgY γ̇ + g′Y Jγ̇ + ∇γ̇Y

⊥. By

the conditon Y (0) = 0, that is, fY (0) = gY (0) = 0 and Y ⊥(0) = 0, we see ∇γ̇Y
♯(0) =

g′Y (0)Jγ̇(0)+∇γ̇Y
⊥(0). As Y ⊥ is orthogonal to both γ̇ and Jγ̇, we have ⟨∇γ̇Y

⊥, Jγ̇⟩ =

0 by Lemma 3.3. We hence have ∥∇γ̇Y
♯(0)∥2 = |g′Y (0)|2 + ∥∇γ̇Y

⊥(0)∥2. As Jγ̇ and

Y ⊥ are perpendicular to each other, we obtain ∥Y ♯(t)∥2 = {gY (t)}2 + ∥Y ⊥(t)∥2. Thus

by Proposition 3.1 we have

∥Y ♯(t)∥2 = |g′Y (0)|2sk(t; c)2 + 4∥∇γ̇Y
⊥(0)∥2sk(t/2; c)2.

By Lemma 3.5 (3), we have

∥Y ♯(t)∥2 =
{
|g′Y (0)|2 + ∥∇γ̇Y

⊥(0)∥2
}
t2 = ∥∇γ̇Y

♯(0)∥2t2, when k2 + c = 0,

∥∇γ̇Y
♯(0)∥2sk(t; c)2 ≤ ∥Y ♯(t)∥2 ≤ 4∥∇γ̇Y

♯(0)∥2sk(t/2; c)2 when k2 + c > 0,

4∥∇γ̇Y
♯(0)∥2sk(t/2; c)2 ≤ ∥Y ♯(t)∥2 ≤ ∥∇γ̇Y

♯(0)∥2sk(t; c)2 when k2 + c < 0.

These gurantee the estimate on ∥Y ♯(t)∥.

As we have ⟨∇γ̇Y
♯(t), Y ♯(t)⟩ = g′Y (t)gY (t)+⟨∇γ̇Y

⊥(t), Y ⊥(t)⟩, by applying Lemma

3.6 we get

⟨∇γ̇Y
♯(t), Y ♯(t)⟩

∥Y ♯(t)∥2
=
g′Y (t)gY (t) + ⟨∇γ̇Y

⊥(t), Y ⊥(t)⟩
{gY (t)}2 + ∥Y ⊥(t)∥2

≥ min
{g′Y (t)
gY (t)

,
⟨∇γ̇Y

⊥(t), Y ⊥(t)⟩
∥Y ⊥(t)∥2

}
,

⟨∇γ̇Y
♯(t), Y ♯(t)⟩

∥Y ♯(t)∥2
=
g′Y (t)gY (t) + ⟨∇γ̇Y

⊥(t), Y ⊥(t)⟩
{gY (t)}2 + ∥Y ⊥(t)∥2

≤ max
{g′Y (t)
gY (t)

,
⟨∇γ̇Y

⊥(t), Y ⊥(t)⟩
∥Y ⊥(t)∥2

}
.

Since
g′Y (t)

gY (t)
= tk(t; c) and

⟨∇γ̇Y
⊥(t), Y ⊥(t)⟩

∥ Y ⊥(t) ∥2
=

1

2
tk(t/2; c),

Lemma 3.5 (4) leads us to the assertion on ⟨∇γ̇Y
♯(t), Y ♯(t)⟩/∥Y ♯(t)∥2. □
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3. Comparison theorems on magnetic Jacobi fields

In this section we estimate norms of magnetic Jacobi fields. Our results correspond

to Rauch’s comparison theorem on Jacobi fields. First we recall this theorem.

Theorem 3.1 (Rauch’s comparison theorem). Let M1,M2 be two Riemannian

manifolds and σ1 : [0, T ] → M1, σ2 : [0, T ] → M2 be geodesics of unit speed. We set

pi = σi(0) (i = 1, 2). Assume dim(M1) ≥ dim(M2) and

max
{
Riem(v, σ̇1(t))

∣∣ v ∈ Tσ1(t)M1, v ⊥ σ̇1(t)
}

≤ min
{
Riem(w, σ̇2(t))

∣∣ w ∈ Tσ2(t)M2, w ⊥ σ̇2(t)
}
.

We assume that T is not greater than the first conjugate value cσ2(p2) of p2 along σ2.

We then have the following.

(1) cσ1(p1) ≥ T .

(2) If a Jacobi field Y ⊥
1 along σ1 which is orthogonal to σ̇1 and a Jacobi field

Y ⊥
2 along σ2 which is orthogonal to σ̇2 satisfy Y ⊥

1 (0) = 0, Y ⊥
2 (0) = 0 and

∥∇σ̇1Y
⊥
1 (0)∥ = ∥∇σ̇2Y

⊥
2 (0)∥, then the following assertions hold :

(a) the function t 7→ ∥Y ⊥
1 (t)∥/∥Y ⊥

2 (t)∥ is monotone increasing for 0 < t < T ;

(b)
⟨∇σ̇1Y

⊥
1 (t), Y ⊥

1 (t)⟩
∥Y ⊥

1 (t)∥2
≥ ⟨∇σ̇2Y

⊥
2 (t), Y ⊥

2 (t)⟩
∥Y ⊥

2 (t)∥2
for 0 < t < T ;

(c) ∥Y ⊥
1 (t)∥ ≥ ∥Y ⊥

2 (t)∥ for 0 < t < T .

Moreover, if there exists t0 with 0 < t0 < cσ2(p2) such that equality holds in

the inequality in (b) or in (c), then we have

i) equalities hold in (b) and (c) for 0 < t ≤ t0;

ii) Riem
(
σ̇1(t), Y

⊥
1 (t)

)
= Riem

(
σ̇2(t), Y

⊥
2 (t)

)
for 0 < t ≤ t0;

iii) Y ⊥
1 (t)/∥Y ⊥

1 (t)∥ is parallel along σ1 and Y ⊥
2 (t)/∥Y ⊥

2 (t)∥ is parallel along

σ2 for 0 < t ≤ t0.

Remark 3.2. Under the assumption on sectional curvatures for the case T =

cσ2(p2) we find cσ1(p1) ≥ cσ2(p2).

Let γ be a trajectory for Bk and T be a constant satisfying 0 ≤ T ≤ cγ(γ(0)), where

cγ(γ(0)) denotes the first magnetic conjugate value of γ(0) along γ. For a vector field
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X along γ which is orthogonal to γ̇, denoting X as X = gXJγ̇ + X⊥, we define its

index IndT
0 (X) by

IndT
0 (X) =

∫ T

0

{
g′X

2 − k2g2X + ⟨∇γ̇X
⊥ − kJX⊥, ∇γ̇X

⊥⟩ − ⟨R(X, γ̇)γ̇, X⟩
}
dt.

Along the same way as for ordinary Jacobi fields we have the following.

Lemma 3.7. Let Y = fY γ̇ + gY Jγ̇ + Y ⊥ be a magnetic Jacobi field along γ. Then

for Y ♯ = gY Jγ̇ + Y ⊥ we have Ind T
0 (Y ♯) = ⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ⟨∇γ̇Y
♯(0), Y ♯(0)⟩.

Proof. By direct computation we have

IndT
0 (Y

♯) =

∫ T

0

{
g′Y

2 − k2g2Y + ⟨∇γ̇Y
⊥ − kJY ⊥,∇γ̇Y

⊥⟩ − ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩
}
dt

=

∫ T

0

{
(gY g

′
Y )

′ − gY (g
′′
Y + k2gY ) +

d

dt
⟨∇γ̇Y

⊥ − kJY ⊥, Y ⊥⟩

− ⟨∇γ̇∇γ̇Y
⊥ − kJ∇γ̇Y

⊥, Y ⊥⟩ − ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩
}
dt

=

∫ T

0

{
(gY g

′
Y )

′ − gY (g
′′
Y + k2gY ) +

d

dt
⟨∇γ̇Y

⊥, Y ⊥⟩

− ⟨∇γ̇∇γ̇Y
⊥ − kJ∇γ̇Y

⊥, Y ⊥⟩ − ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩
}
dt

=
[
gY g

′
Y + ⟨∇γ̇Y

⊥, Y ⊥⟩
]T
0

−
∫ t

0

{
gY (g

′′
Y + k2gY ) + ⟨∇γ̇∇γ̇Y

⊥ − kJ∇γ̇Y
⊥, Y ⊥⟩+ ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩

}
dt

Here, for a vector field X = gXJγ̇+X
⊥ which is orthogonal to γ̇, as ∇γ̇X = −kgX γ̇+

g′XJγ̇+∇γ̇X
⊥, we have ⟨∇γ̇X,X⟩ = gXg

′
X+⟨∇γ̇X

⊥, X⊥⟩. Since J∇γ̇Y
⊥ and∇γ̇∇γ̇Y

⊥

are orthogonal to Jγ̇, continuing calculation by make use of the second equation in

(3.3) in Lemma 3.4, we have

=
[
⟨∇γ̇Y

♯, Y ♯⟩
]T
0

−
∫ T

0

⟨(
g′′Y + k2gY

)
Jγ̇ +∇γ̇∇γ̇Y

⊥ − kJ∇γ̇Y
⊥ +R(Y ♯, γ̇)γ̇, Y ♯

⟩
dt

=
[
⟨∇γ̇Y

♯, Y ♯⟩
]T
0
= ⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ⟨∇γ̇Y
♯(0), Y ♯(0)⟩.

□
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Lemma 3.8. Let Y be a magnetic Jacobi field along a trajectory γ for Bk on a

Kähler manifold M satisfying Y (0) = 0 and X be a vector field along γ which is

orthogonal to γ̇ and satisfies X(0) = 0. If we have no magnetic conjugate points of p

along γ([0, T ]) and X(T ) = Y ♯(T ), then we have IndT0 (X) ≥ IndT0 (Y
♯). The equality

holds if and only if X ≡ Y ♯.

Proof. We put n = dimCM , the complex dimension M . We choose linearly

independent magnetic Jacobi field Y1, ..., Y2n−1 along γ so that Yi(0) = 0 (1 ≤ i ≤

2n−1). Since we have no magnetic conjugate points of γ(0), which means T ≤ cγ(γ(0)),

we have that Y ♯
1 (t), ..., Y

♯
2n−1(t) are also linearly independent for 0 < t < T . Hence we

take smooth functions τ1, ..., τ2n−1 so that it satisfies X =
∑2n−1

i=1 τiY
♯
i . As usual, we

denote as X = gXJγ̇+X
⊥ and Y ♯

i = giJγ̇+Y
⊥
i . Then we have gX =

∑2n−1
i=1 τigi, X

⊥ =∑2n−1
i=1 τiY

⊥
i . We hence have

IndT0 (X) =

∫ T

0

{
g′X

2 − k2g2X + ⟨∇γ̇X
⊥ − kJX⊥,∇γ̇X

⊥⟩ − ⟨R(X, γ̇)γ̇, X⟩
}
dt

=

∫ T

0

{(2n−1∑
i=1

(τ ′igi + τig
′
i)
)2
−k2

(2n−1∑
i=1

τigi

)2
+
⟨2n−1∑

i=1

τ ′iY
⊥
i + τi∇γ̇Y

⊥
i − kτiJY

⊥
i ,

2n−1∑
j=1

τ ′jY
⊥
j + τj∇γ̇Y

⊥
j

⟩
−
⟨
R
(2n−1∑

i=1

τi(giJγ̇ + Y ⊥
i ), γ̇

)
γ̇,

2n−1∑
j=1

τj(gjJγ̇ + Y ⊥
j )
⟩}

dt

=

∫ T

0

{(2n−1∑
i=1

τ ′igi

)2
+
(2n−1∑

i=1

τig
′
i

)2
+2

2n−1∑
i,j=1

(
τ ′iτjgig

′
j

)
−k2

(2n−1∑
i=1

τigi

)2
+
∥∥∥2n−1∑

i=1

τ ′iY
⊥
i

∥∥∥2+⟨2n−1∑
i=1

τ ′iY
⊥
i ,

2n−1∑
j=1

τj∇γ̇Y
⊥
i

⟩
+
⟨2n−1∑

i=1

τi∇γ̇Y
⊥
i ,

2n−1∑
j=1

τ ′jY
⊥
j

⟩
−
⟨2n−1∑

i=1

kτiJY
⊥
i ,

2n−1∑
j=1

τj∇γ̇Y
⊥
j

⟩
−
⟨2n−1∑

i=1

kτiJY
⊥
i ,

2n−1∑
j=1

τ ′jY
⊥
j

⟩
+
∥∥∥2n−1∑

i=1

τi∇γ̇Y
⊥
i

∥∥2
−
⟨
R
(2n−1∑

i=1

τi(giJγ̇ + Y ⊥
i ), γ̇

)
γ̇,

2n−1∑
j=1

τj(gjJγ̇ + Y ⊥
j )
⟩}

dt
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By making partial integration on 2

∫ T

0

2n−1∑
i,j=1

τ ′iτjgig
′
jdt and

∫ T

0

2n−1∑
i,j=1

τ ′iτj⟨Y ⊥
i ,∇γ̇Y

⊥
j ⟩dt,

we have

2
2n−1∑
i,j=1

∫ T

0

τ ′iτjgig
′
jdt =

2n−1∑
i,j=1

∫ T

0

τ ′iτjgig
′
jdt+

[ 2n−1∑
i,j=1

τiτjgig
′
j

]T
0

−
2n−1∑
i,j=1

∫ T

0

τiτ
′
jgig

′
Jdt−

2n−1∑
i,j=1

τiτj(g
′
ig

′
j + gig

′′
j )dt,

and
2n−1∑
i,j=1

∫ T

0

τ ′iτj⟨Y ⊥
i ,∇γ̇Y

⊥
j ⟩dt =

[∑
i,j=1

τiτj⟨Y ⊥
i ,∇γ̇Y

⊥
j ⟩
]T
0
−

2n−1∑
i,j=1

∫ T

0

τiτ
′
j⟨Y ⊥

i ,∇γ̇Y
⊥
j ⟩dt

−
2n−1∑
i,j=1

∫ T

0

τiτj
(
⟨∇γ̇Y

⊥
i ,∇γ̇Y

⊥
j ⟩+ ⟨Y ⊥

i ,∇γ̇∇γ̇Y
⊥
j ⟩
)
dt.

Hence we have

IndT0 (X) =
[ 2n−1∑
i,j=1

τiτj
(
gig

′
j + ⟨Y ⊥

i ,∇γ̇Y
⊥
j ⟩
)]T

0
+

∫ T

0

∥∥∥2n−1∑
i=1

τ ′iY
♯
i

∥∥∥2dt
+

∫ T

0

(2n−1∑
i,j=1

τ ′iτj
(
gig

′
j − g′igj − ⟨∇γ̇Y

⊥
i , Y

⊥
j ⟩+ ⟨Y ⊥

i ,∇γ̇Y
⊥
j ⟩ − k⟨Y ⊥

i , JY
⊥
j ⟩
))
dt

−
∫ T

0

{2n−1∑
i,j=1

τiτj

(
gi(g

′′
j + k2gj) + ⟨Y ⊥

i ,∇γ̇∇γ̇Y
⊥
j ⟩ − k⟨Y ⊥

i , J∇γ̇Y
⊥
j ⟩

+ ⟨R
(
(giJγ̇ + Y ⊥

i ), γ̇
)
γ̇, (gjJγ̇ + Y ⊥

j )⟩
)}
dt

By Lemma 3.2, we see that

gig
′
j − g′igj−⟨∇γ̇Y

⊥
i , Y

⊥
j ⟩+ ⟨Y ⊥

i ,∇γ̇Y
⊥
j ⟩ − k⟨Y ⊥

i , JY
⊥
j ⟩

= ⟨∇γ̇Y
♯
i , Y

♯
j ⟩ − ⟨Y ♯

i ,∇γ̇Y
♯
j ⟩+ ⟨Y ♯

i , kJY
♯
j ⟩

= ⟨∇γ̇Yi, Yj⟩ − ⟨Yi,∇γ̇Yj⟩+ ⟨Yi, kJYj⟩

is constant along γ. Hence it equals to 0, because its initial value is 0. Thus, we have

IndT0 (X) =
⟨2n−1∑

i=1

τi(g
′
iJγ̇ +∇γ̇Y

⊥
i ),

2n−1∑
j=1

τj(gjJγ̇ + Y ⊥
j )
⟩∣∣∣t=T

t=0
+

∫ T

0

∥∥∥2n−1∑
i=1

τ ′iY
♯
i

∥∥∥2dt
−
∫ T

0

⟨2n−1∑
i=1

τi

(
(g′′i + k2gi)Jγ̇ +∇γ̇∇γ̇Y

⊥
i − kJ∇γ̇Y

⊥
i +R(Y ♯

i , γ̇)γ̇
)
,

2n−1∑
j=1

τjY
♯
j

⟩
dt.
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Since
2n−1∑
i=1

τi(T )Yi(0) = 0 and
2n−1∑
i=1

τi(T )Yi(T ) = X(T ) = Y (T ), we have Y =
2n−1∑
i=1

τi(T )Yi.

As X(0) =
2n−1∑
i=1

τi(0)Y
⊥
i (0) = 0 and the definition of the magnetic Jacobi field, we get

IndT0 (X) =
⟨2n−1∑

i=1

τi(∇γ̇Y
♯
i ),

2n−1∑
j=1

τjY
♯
j

⟩∣∣∣t=T

t=0
+

∫ T

0

∥∥∥2n−1∑
i=1

τ ′iY
♯
i

∥∥∥2dt.
By Lemma 3.7, we see

IndT0 (X) = IndT0 (Y
♯) +

∫ T

0

∥∥∥2n−1∑
i=1

τ ′iY
♯
i

∥∥∥2dt ≥ IndT0 (Y
♯).

Since the last inequality holds if and only if all τ ′i vanish along γ, we obtain the

conclusion. □

We here give estimates on norms of vertical components of magnetic Jacobi fields.

First, we give an estimate from below. We define a function ck(t; c) : [0, π/
√
k2 + c ] →

R by

ck(t; c) =


cos(

√
k2 + ct), k2 + c > 0,

1, k2 + c = 0,

cosh(
√
|c| − k2t), k2 + c < 0,

which is the differential of sk(t; c). As usual, we regard π/
√
k2 + c as infinity when

k2 + c ≤ 0.

Theorem 3.2. Let γ be a trajectory for Bk on a Kähler manifold M and ℓ be

a positive number with ℓ ≤ π/
√
k2 + c. We suppose sectional curvatures satisfy

max
{
Riem(v, γ̇(t))

∣∣ v ∈ Tγ(t)M, v ⊥ γ̇(t)
}
≤ c with some constant c for 0 < t ≤ ℓ.

We then have the following.

(1) cγ(γ(0)) ≥ ℓ.

(2) Every magnetic Jacobi field Y along a trajectory γ for Bk with Y (0) = 0

satisfies the following properties for 0 < t < ℓ :

(a) The function t 7→ ∥Y ♯(t)∥/sk(t; c) is monotonic increasing ;

(b) ∥Y ♯(t)∥ ≥ ∥∇γ̇Y
♯(0)∥ sk(t; c) ;

(c)
⟨
∇γ̇Y

♯(t), Y ♯(t)
⟩
≥ ∥Y ♯(t)∥2tk(t; c).
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Moreover, if there exists t0 with 0 < t0 < ℓ such that one of the equality holds

in the inequalities in (b) and (c), then we have

i) Both of the equalities hold in (b) and (c) for 0 < t ≤ t0 ;

ii) The magnetic Jacobi field Y is Y ♯(t) = ±∥∇γ̇Y
♯(0)∥sk(t; c)Jγ̇(t) ;

iii) The sectional curvature satisfies ⟨R(Jγ̇, γ̇)γ̇, Jγ̇⟩ = c for 0 ≤ t ≤ t0.

Remark 3.3. Under the assumption on sectional curvatures for the case T =

π/
√
k2 + c we find cγ(γ(0)) ≥ π/

√
k2 + c.

Corollary 3.1. If sectional curvatures of a Kähler manifoldM satisfy RiemM ≤ c

with some constant c, then the first magnetic conjugate value ck(M) satisfies ck(M) ≥

π/
√
k2 + c. In particular, when RiemM ≤ c ≤ 0 and k2 + c ≤ 0 there are no magnetic

conjugate points for Bk on M .

Proof of Theorem 3.2. We take a complex space form M̂ = CMn(4c) and a

trajectory γ̂ for Bk on M̂ . We denote by P t
γ : Tγ(t)M → Tγ(0)M and P̂ t

γ̂ : Tγ̂(0)M̂ →

Tγ̂(t)M̂ parallel transformations along γ and γ̂, respectively. Let I : Tγ(0)M → Tγ̂(0)M̂

be a holomorphic linear isometry which preserves the inner product and satisfies

I
(
γ̇(0)

)
= ˙̂γ(0) and I

(
Jγ̇(0)

)
= J ˙̂γ(0). We define a vector field X̂ along γ̂ by X̂(t) =

P̂ t
γ̂ ◦ I ◦ P t

γ

(
Y ⊥(t)

)
. As I preserves the inner product and the complex structure J is

parallel, we find that ⟨X̂, ˙̂γ⟩ = ⟨X̂, J ˙̂γ⟩ = 0. Thus we find that X̂ satisfies X̂ = X̂⊥.

We take a positive number T with T ≤ ℓ. By the condition on sectional curvatures,

we have

(3.8)

IndT
0 (Y

♯) =

∫ T

0

{
g′Y

2 − k2g2Y + ⟨∇γ̇Y
⊥ − kJY ⊥,∇γ̇Y

⊥⟩ − ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩
}
dt

≥
∫ T

0

{
g′Y

2 − k2g2Y + ⟨∇γ̇Y
⊥ − kJY ⊥,∇γ̇Y

⊥⟩ − c∥Y ♯∥2
}
dt



92 III. Comparison theorems on magnetic Jacobi fields

As ∥Y ♯∥2 = g2Y + ∥Y ⊥∥2, we have

IndT
0 (Y

♯) =

∫ T

0

{
g′Y

2 − k2g2Y + ⟨∇γ̇Y
⊥ − kJY ⊥,∇γ̇Y

⊥⟩ − c(g2Y + ∥Y ⊥∥2)
}
dt

=

∫ T

0

{
g′Y

2
+ g2Y (−k2 − c)

}
dt+

∫ T

0

{
⟨∇ ˙̂γX̂ − kJX̂,∇ ˙̂γX̂⟩ − c∥X̂∥2

}
dt

= IndT
0 (gY J ˙̃γ) + IndT

0 (X̂),

where γ̃ denots a trajectory for Bk on CM1(c).

Since T ≤ π/
√
k2 + c, we can take a magnetic Jacobi field Ỹ = f̃ ˙̃γ + g̃J ˙̃γ for Bk

along γ̃ satisfying g̃(0) = 0, g̃(T ) = gY (T ) and a magnetic Jacobi field Ŷ for Bk along

γ̂ satisfying Ŷ = Ŷ ⊥, Ŷ (0) = 0 and Ŷ (T ) = X̂(T ).

By lemma 3.8 we have IndT
0 (X̂) ≥ IndT

0 (Ŷ ). Therefore by Proposition 3.1 and

Lemma 3.7, we obtain

(3.9)

⟨∇γ̇Y
♯(T ), Y ♯(T )⟩ = IndT0 (Y

♯) ≥ IndT0 (gY J ˙̃γ) + IndT0 (X̂)

≥ IndT0 (g̃J ˙̃γ) + IndT0 (Ŷ )

= ⟨g̃′(T )J ˙̃γ(T ), g̃(T )J ˙̃γ(T )⟩+ ⟨∇ ˙̂γŶ (T ), Ŷ (T )⟩

= ⟨g̃(T )tk(T ; c)J ˙̃γ(T ), g̃(T )J ˙̃γ(T )⟩+ ⟨∇ ˙̂γŶ (T ), Ŷ (T )⟩

= |g̃(T )|2 tk(T ; c) + ∥Ŷ (T )∥2 × 1

2
tk(T/2; 4c)

= |g̃(T )|2tk(T ; c) + ∥Ŷ (T )∥2tk/2(T ; c)

≥ |gY (T )|2tk(T ; c) + ∥X̂(T )∥2tk(T ; c)

= |gY (T )|2tk(T ; c) + ∥Y ⊥(T )∥2tk(T ; c)

= ∥Y ♯(T )∥2tk(T ; c).

Since T is an arbitrary positive number with T < ℓ, we have

⟨∇γ̇Y
♯(t), Y ♯(t)⟩ ≥ ∥Y ♯(t)∥2tk(t; c)

for 0 < t < ℓ.

We here consider a function h(t) = ∥∇γ̇Y
♯(0)∥2s2k(t; c). It satisfies

h′(t) = 2∥∇γ̇Y
♯(0)∥2sk(t; c)ck(t; c) = ∥∇γ̇Y

♯(0)∥2sk(2t; c),

h′′(t) = 2∥∇γ̇Y
♯(0)∥2ck(2t; c).
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Thus we have

(3.10)

d

dt

(∥Y ♯(t)∥2

h(t)

)∣∣∣
t=T

=
1

h(T )

(
2⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ∥Y ♯(T )∥2h
′(T )

h(T )

)
=

2

h(T )

(
⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ∥Y ♯(T )∥2tk(T ; c)
)
≥ 0.

As sk(T ; c) > 0, this shows
d

dt

(∥Y ♯(t)∥
sk(t; c)

)∣∣∣
t=T

> 0. Since T is an arbitrary positive

number with T < ℓ, we find that the function t 7→ ∥Y ♯(t)∥/sk(t; c) is monotone

increasing for 0 < t < ℓ.

As the function h satisfies h(0) = h′(0) = 0 and h′′(0) = 2∥∇γ̇Y
♯(0)∥2, and as

Y ♯(0) = 0, we have the following by de l’Hopital’s rule:

lim
t↓0

∥Y ♯(t)∥2

h(t)
= lim

t↓0

2⟨∇γ̇Y
♯(t), Y ♯(t)⟩
h′(t)

= 2 lim
t↓0

⟨∇γ̇∇γ̇Y
♯(t), Y ♯(t)⟩+ ∥∇γ̇Y

♯(t)∥2

h′′(t)
= 1.

Since
d

dt

(∥Y ♯(t)∥2

h(t)

)∣∣∣
t=T

> 0 for every T with 0 < T < ℓ, we get ∥Y ♯(t)∥2/h(t) ≥ 1 and

obtain ∥Y ♯(t)∥ ≥ ∥∇γ̇Y
♯(0)∥sk(t; c) for 0 ≤ t < ℓ.

We now consider the case that equalities hold. First we consider the case that

the equality holds in (2-b). We suppose ∥Y ♯(t0)∥ = ∥∇γ̇Y
♯(0)∥sk(t0; c) at some t0

with 0 < t0 < ℓ. We then find that ∥Y ♯(t0)∥2/h(t0) = 1. As ∥Y ♯(0)∥2/h(0) = 1

and ∥Y ♯(t)∥2/h(t) is monotone increasing, we have ∥Y ♯(t)∥ = ∥∇γ̇Y
♯(0)∥sk(t; c) for

0 < t ≤ t0. Since ∥Y ♯(t)∥2 = ∥∇γ̇Y
♯(0)∥2s2k(t; c), by considering the differentiations of

both sides we have

2⟨∇γ̇Y
♯(t), Y ♯(t)⟩

∥Y ♯(t)∥2
=

2∥∇γ̇Y
♯(0)∥2sk(t; c)ck(t; c)

∥∇γ̇Y ♯(0)∥2s2k(t; c)
,

which shows that

⟨∇γ̇Y
♯(t), Y ♯(t)⟩ = ∥Y ♯(t)∥2tk(t; c).

Therefore we may only consider the case that the equality holds in (2-c). We suppose

⟨∇γ̇Y
♯(t0), Y

♯(t0)⟩ = ∥Y ♯(t0)∥2tk(t0; c) at some t0 with 0 ≤ t0 < ℓ. Then we see

equalities hold in (3.9) with T = t0. The third inequality in (3.9) should be an

equality. As we have tk/2(t; c) > tk(t; c) for 0 < t < π/
√
k2 + c by Lemma 3.5,
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this shows Ŷ (t0) = 0. Since every non-trivial magnetic Jacobi field along γ̂ which is

orthogonal to both ˙̂γ and J ˙̂γ does not vanish for 0 < t < π/
√
k2 + c, we obtain Ŷ ≡ 0.

As the second inequality in (3.9) should be an equality, we have Ind t0
0 (X̂) = Ind t0

0 (Ŷ )

and Ind t0
0 (gY J ˙̃γ) = Ind t0

0 (g̃J ˙̃γ). Hence by Lemma 3.8, we find X̂ ≡ Ŷ ≡ 0 and

g̃ ≡ gY . We therefore obtain Y ⊥ ≡ 0. Since the first inequality in (3.9) should be an

equality, which means that in (3.8) the inequality on Ind t0
0 (Y ♯) should be an equality,

we find ⟨R(Y ♯, γ̇)γ̇, Y ♯⟩ ≡ c∥Y ♯∥2 for 0 < t ≤ t0. As we showed that Y ⊥ = 0, by the

expressions of magnetic Jacobi fields on a complex sapce form CM1(c), we get

Y ♯(t) = ±∥∇γ̇Y
♯(0)∥sk(t; c)Jγ̇(t).

We therefore get the conclusion. □

Next, we give an estimate of norms of magnetic fields from above.

Theorem 3.3. Let γ be a trajectory for Bk on a Kähler manifold M and ℓ be a

positive number with ℓ ≤ cγ(γ(0)). We suppose sectional curvatures satisfy

min
{
Riem(v, γ̇(t))

∣∣ v ∈ Tγ(t)M, v ⊥ γ̇(t)
}
≥ c for 0 < t ≤ ℓ.

We then have the following.

(1) cγ(γ(0)) ≤ 2π/
√
k2 + 4c.

(2) Every magnetic Jacobi field Y along a trajectory γ for Bk with Y (0) = 0

satisfies the following properties for 0 < t < ℓ :

(a) The function t 7→ ∥Y ♯(t)∥/sk/2(t; c) is monotonic decreasing ;

(b) ∥Y ♯(t)∥ ≤ ∥∇γ̇Y
♯(0)∥ sk/2(t; c) ;

(c) ⟨∇γ̇Y
♯(t), Y ♯(t)⟩ ≤ ∥Y ♯(t)∥2tk/2(t; c).

Moreover, if there exists t0 with 0 < t0 < ℓ such that one of the equality holds

in the inequalities in (b) and (c), then we have

i) Both of the equalities hold in (b) and (c) for 0 < t ≤ t0 ;

ii) The magnetic Jacobi field Y is of the form

Y ♯(t) = Y ⊥(t) = ∥∇γ̇Y
⊥(0)∥sk/2(t; c)

{
cos(kt/2)E(t) + sin(kt/2)JE(t)

}
with a parallel vector field E satisfying E(0) = ∇γ̇Y

⊥(0)/∥∇γ̇Y
⊥(0)∥ ;
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iii) The sectional curvature satisfy ⟨R(Y ⊥, γ̇)γ̇, Y ⊥⟩ = c∥Y ⊥∥2 for 0 ≤ t ≤ t0.

Remark 3.4. Under the assumption on sectional curvatures for the case ℓ =

cγ(γ(0)) we find cγ(γ(0)) ≤ 2π/
√
k2 + 4c.

Proof of Theorem 3.3. We take a trajectory γ̃ for Bk on CM1(c) and a tra-

jectory γ̂ for Bk on CMn(4c). We denote by P t
γ : Tγ(t)M → Tγ(0)M and P̂ t

γ̂ :

Tγ̂(0)M̂ → Tγ̂(t)M̂ the parallel transformations along γ and γ̂, respectively. Let

I : Tγ(0)M → Tγ̂(0)M̂ be a holomorphic linear isometry which preserves the inner

product and satisfies I
(
γ̇(0)

)
= ˙̂γ(0) and I

(
Jγ̇(0)

)
= J ˙̂γ(0). For an arbitrary positive T

with T ≤ ℓ, we take a magnetic Jacobi field Ŷ for Bk along γ̂ which satisfies Ŷ (0) = 0

and Ŷ (T ) = P̂ T
γ̂ ◦ I ◦ P T

γ (Y
⊥(T )). We also take a magnetic Jacobi field f̃ ˙̃γ + g̃J ˙̃γ for

Bk along γ̃ satisfying g̃(0) = 0 and g̃(T ) = gY (T ). We define a vector field X along γ

by X(t) = g̃(t)Jγ̇(t) +
(
P̂ t
γ̂ ◦ I ◦ P t

γ

)−1(
Ŷ (t)

)
. We then have

X(T ) = g̃(T )Jγ̇(T ) +
(
P̂ T
γ̂ ◦ I ◦ P T

γ

)−1(
Ŷ (T )

)
= gY (T )Jγ̇(T ) + Y ⊥(T ) = Y ♯(T ).

Since tk/2(T ; c) = 1/2tk(T/2; 4c), by Lemma 3.5 we obtain

(3.11)

∥Y ♯(T )∥2tk/2(T ; c) = |gY (T )|2tk/2(T ; c) + ∥Y ⊥(T )∥2tk/2(T ; c)

≥ |gY (T )|2tk(T ; c) + ∥Y ⊥(T )∥2tk/2(T ; c)

= |gY (T )|2tk(T ; c) + ∥Ŷ (T )∥21
2
tk(T/2; 4c)

=
⟨
g̃(T )tk(T ; c)J ˙̃γ, g̃(T )J ˙̃γ

⟩
+∥Ŷ (T )∥21

2
tk(T/2; 4c).

Thus we find ∥Y ♯(T )∥2tk/2(T ; c) ≥ ⟨g̃′(T )J ˙̃γ, g̃(T )J ˙̃γ⟩ + ⟨∇γ̂Ŷ (T ), Ŷ (T )⟩ by Proposi-

tion 3.1. Since g̃(0) = 0, Ŷ (0) = 0, by Lemma 3.7 we continue our calculation and

get

⟨g̃′(T ), g̃(T )⟩+ ⟨∇γ̂Ŷ (T ), Ŷ (T )⟩

= IndT0 (g̃J ˙̃γ) + IndT0 (Ŷ (T ))

=

∫ T

0

{
g̃′2 − k2g̃2 + ⟨∇ ˙̂γŶ − kJŶ ,∇ ˙̂γŶ ⟩ − c(g̃2 + ∥Ŷ ∥2)

}
dt

=

∫ T

0

{
g̃′2 − k2g̃2 + ⟨∇ ˙̂γŶ − kJŶ ,∇ ˙̂γŶ ⟩ − c(∥X∥2)

}
dt.
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By the condition on sectional curvatures and by Lemma 3.8, we obtain

(3.12)
≥
∫ T

0

{
g̃′2 − k2g̃2 + ⟨∇ ˙̂γŶ − kJŶ ,∇ ˙̂γŶ ⟩ − ⟨R(X, γ̇)γ̇, X⟩

}
dt

= IndT0 (X) ≥ IndT0 (Y
♯) = ⟨∇γ̇Y

♯(T ), Y ♯(T )⟩.

Thus we get ∥Y ♯(T )∥2tk/2(T ; c) ≥ ⟨∇γ̇Y
♯(T ), Y ♯(T )⟩ for arbitrary T with 0 < T ≤ ℓ,

which is the assertion (2–c).

We consider a function h(t) = ∥∇γ̇Y
♯(0)∥2s2k/2(t; c). It satisfies

h′(t) = 2∥∇γ̇Y
♯(0)∥2sk/2(t; c)ck/2(t; c) = ∥∇γ̇Y

♯(0)∥2sk/2(2t; c),

h′′(t) = 2∥∇γ̇Y
♯(0)∥2ck/2(2t; c).

Since we have

d

dt

(∥Y ♯(t)∥2

h(t)

)∣∣∣
t=T

=
1

h(T )

(
2⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ∥Y ♯(T )∥2h
′(T )

h(T )

)
=

2

h(T )

(
⟨∇γ̇Y

♯(T ), Y ♯(T )⟩ − ∥Y ♯(T )∥2tk/2(T ; c)
)
≤ 0

for arbitrary T with 0 < T < ℓ, we find that the function t 7→ ∥Y ♯(t)∥/sk/2(t; c) is

monotonic decreasing.

As the function h satisfies h(0) = h′(0) = 0 and h′′(0) = 2∥∇γ̇Y
♯(0)∥2, and as

Y ♯(0) = 0, we have the following by de l’Hopital’s rule:

lim
t↓0

∥Y ♯(t)∥2

h(t)
= lim

t↓0

2⟨∇γ̇Y
♯(t), Y ♯(t)⟩
h′(t)

= 2 lim
t↓0

⟨∇γ̇∇γ̇Y
♯(t), Y ♯(t)⟩+ ∥∇γ̇Y

♯(t)∥2

h′′(t)
= 1.

Since
d

dt

(∥Y ♯(t)∥2

h(t)

)∣∣∣
t=T

≤ 0 for every T with 0 < T < ℓ, we get ∥Y ♯(t)∥2/h(t) ≤ 1 and

obtain ∥Y ♯(t)∥ ≤ ∥∇γ̇Y
♯(0)∥sk/2(t; c) for 0 ≤ t < ℓ.

We now consider the case that equalities hold. First we consider the case that the

equality holds in (2-c). That is, we suppose ⟨∇γ̇Y
♯(t0), Y

♯(t0)⟩ = ∥Y ♯(t0)∥2tk/2(t0; c)

at some t0 with 0 < t0 < ℓ. Then we find that equalities hold in (3.11) and (3.12)

with T = t0. The second inequality in (3.12) should be an equality. Since Indt00 (X) =

Indt00 (Y
♯), we have X = Y ♯ by Lemma 3.8. Moreover the inequality in (3.11) should

be an equality. As tk/2(t0; c) ≥ tk(t0; c), we have gY (t0) = 0. It leads us to g̃ ≡ 0

because f̃ ˙̃γ+ g̃J ˙̃γ is a magnetic Jacobi field. By the structure of X, we have X = X⊥.
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Therefore we find that Y ♯ = X is orthogonal to Jγ̇. Since the first inequality in (3.12)

should be an equality, we have that ⟨R(X, γ̇)γ̇, X⟩ ≡ c∥X∥2 for 0 < t ≤ t0. This shows

⟨R(X, γ̇)γ̇, X⟩ = ⟨R(Y ⊥, γ̇)γ̇, Y ⊥⟩ ≡ c∥Y ⊥∥2.

By the expressions of magnetic Jacobi fields on CMn(4c), we get

Y ♯(t) = Y ⊥(t) = ∥∇γ̇Y
⊥(0)∥sk/2(t; c)

{
cos(kt/2)E(t) + sin(kt/2)JE(t)

}
,

where we express e
√
−1ktE(t) as cos(kt/2)E(t) + sin(kt/2)JE(t). Next, we consider

the case that the equality holds in (2-b). We suppose ∥Y ♯(t0)∥ = ∥∇γ̇Y
♯(0)∥sk/2(t0; c)

at some t0 with 0 < t0 < ℓ. Then we find that ∥Y ♯(t0)∥2/h(t0) = 1 for 0 < t ≤ t0.

As ∥Y ♯(0)∥2/h(0) = 1 and ∥Y ♯(t)∥2/h(t) is monotone decreasing, we have ∥Y ♯(t)∥ =

∥∇γ̇Y
♯(0)∥sk/2(t; c) for 0 < t ≤ t0. Since ∥Y ♯(t)∥2 = ∥∇γ̇Y

♯(0)∥2s2k/2(t; c), by consid-

ering the differentiation on both sides we have

2⟨∇γ̇Y
♯(t), Y ♯(t)⟩

∥Y ♯(t)∥2
=

2∥∇γ̇Y
♯(0)∥2sk/2(t; c)ck/2(t; c)

∥∇γ̇Y ♯(0)∥2s2k/2(t; c)
,

which shows that

⟨∇γ̇Y
♯(t), Y ♯(t)⟩ = ∥Y ♯(t)∥2tk/2(t; c).

We get the conclusion. □

In view of our proofs of Theorems 3.2, 3.3, we study magnetic Jacobi fields by

decomposing them into components parallel to Jγ̇ and components orthogonal to both

γ̇ and Jγ̇ for each trajectory γ. Therefore, we can not compare magnetic Jacobi fields

on two general Kähler manifolds. We should note that our proof stands for ordinary

Jacobi fields on Kähler manifolds.





CHAPTER 4

Comparison theorems on trajectory-harps

In this chapter we study trajectories for Kähler magnetic fields in connection with

geodesics. A trajectory-harp consists of a trajectory and a variation of geodesics. We

compare trajectory-harps on a general Kähler manifold with those on a complex space

form, and give some results corresponding to Toponogov’s theorem on triangles.

We recall Toponogov’s comparison theorem, which is a powerful global general-

ization of Rauch’s comparison theorem. Given three distinct points p1, p2, p3 on a

Riemannian manifold M , we take geodesic segments γi : [0, ℓi] → M (i = 1, 2, 3)

joining pi+1 and pi+2, where indices are considered by modulo 3. We call the triangle

∆(p1p2p3) formed by γ1, γ2, γ3 a geodesic triangle. Set αi = ∠
(
−γ̇i+1(ℓi+1), γ̇i+2(0)

)
,

the angle between −γ̇i+1(ℓi) and γ̇i+2(0).

Theorem 4.1 (Toponogov’s compariosn theorem). Let M be a complete Riemann-

ian manifold. We suppose that sectional curvatures satisfy RiemM ≥ c with some con-

stant c. We set RM2(c) a 2-dimensional real space form of constant sectional curvature

c. Let ∆(p1p2p3) be a geodesic triangle in M . We suppose γ1, γ2 are minimal, and sup-

pose ℓ3 = length(γ3) ≤ π/
√
c, when c > 0. Then we have ℓ ≤ 2π/

√
c and there exists

a geodesic triangle ∆(p̃1p̃2p̃3) in RM2(c) such that length(γi) = lenth(γ̃i) (1 = 1, 2, 3)

and α1 ≥ α̃1, α2 ≥ α̃2. Here, we set ℓ := ℓ1 + ℓ2 + ℓ3. If ℓ < 2π/
√
c, the triangle in

RM2(c) is uniquely determined up to isometries. Moreover, if there exists a geodesic

triangle with ℓ = 2π/
√
c, then M is congruent to Sm(c).

1. Trajectory-harps

Let (M,J) be a complete Kähler manifold with complex structure J . Since M

is complete, as we see in Lemma 2.12, every trajectory for Kähler magnetic fields is

99
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defined on the whole line R. For a trajectory γ : R → M , we call its restriction

γ|[T1,T2] to a closed interval [T1, T2] a trajectory-segment, and call its restriction γ|[T,∞)

or γ|(−∞,T ] to a closed unbounded interval [T,∞) or (−∞, T ] a trajectory half-line. For

the sake of simplicity, we sometimes call γ : [0, T ] →M with 0 < T ≤ ∞ a trajectory.

This means that it is a trajectory-segment when T is finite and that it is a trajectory

half-line when T is infinity. Given a trajectory γ : [0, T ] →M for a non-trivial Kähler

magnetic field Bk satisfying γ(t) ̸= γ(0) for 0 < t < T , we say a smooth variation

αγ : [0, T ]×R →M of geodesics to be a trajectory-harp associated with γ if it satisfies

the following conditions:

i) αγ(t, 0) = γ(0),

ii) when t = 0, the curve s 7→ αγ(0, s) is the geodesic of initial vector γ̇(0),

iii) when t > 0, the curve s 7→ αγ(t, s) is the geodesic of unit speed joining γ(0)

and γ(t).

We call the geodesic segment s 7→ αγ(t, s) from γ(0) to γ(t) the string of αγ at t, and

call the trajectory γ its arch.

When γ([0, T ]) is contained in the ball Bιp(p) of radius ιp of injectivity at p = γ(0)

centered at p, joining γ(t) and γ(0) by the unique minimal geodesic, we can get a

trajectory-harp. Thus we have the following.

Lemma 4.1. When a trajectory γ satisfies that its image γ([0, T ]) is contained in the

ball Bcp(p) of radius cp of the minimum of conjugate values along geodesics emanating

from p = γ(0), we can construct a trajectory-harp associated with γ.

Proof. When p and γ(t) is joined by a unique minimal geodesic for 0 < t < ϵ,

in particular when γ([0, ϵ]) is contained in the ball Bιp(p), by using these minimal

geodesics we can construct a trajectory-harp for 0 ≤ t ≤ ϵ. Here, the initial vector
∂αγ

∂s
(ϵ, 0) of the geodesic s 7→ αγ(ϵ, s) is given as limt↑ϵ

∂αγ

∂s
(t, 0), even if γ(ϵ) is a cut

point of p, that is, there are at least two minimal geodesics joining p and γ(ϵ). We

suppose γ(ϵ) is not a conjugate point of p along the geodesic s 7→ αγ(ϵ, s). Then we
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have a Jacobi field Y along this geodesic with Y (0) = 0 and Y
(
ℓγ(ϵ)

)
= γ̇(ϵ). Since

∂αγ

∂t
(ϵ, ·) = limt↑ϵ

∂αγ

∂t
(t, ·) is a Jacobi field along the geodesic satisfying the same

condition, we have
∂αγ

∂t
(ϵ, s) = Y (s). Thus, if we take a variation α′ : (−δ, δ) × R →

M (δ < ϵ) of geodesics generated by Y , we have α′|(−δ,0)×R = αγ|(ϵ−δ,ϵ)×R. Thus we

can extend αγ beyond this cut point. □

For t > 0, we denote by ℓγ(t) the length of the geodesic segment s 7→ αγ(t, s) of

γ(0) to γ(t). We set ℓγ(0) = 0. We call ℓγ(t) to be the string-length at γ(t). As

trajectory γ is parameterized by its arc-length, it is clear that it satisfies ℓγ(t) ≤ t

for 0 < t ≤ T . We set δγ(t) :=
⟨
γ̇(t),

∂αγ

∂s

(
t, ℓγ(t)

)⟩
, which is the cosine of the angle

formed by the tangent vector of the string at t and the tangent vector of trajectory at

t, and call it its string-cosine at γ(t).

We here study some fundamental properties of string-lengths and string-cosines.

Lemma 4.2. For a trajectory-harp αγ associated with a trajectory γ : [0, T ] → M

for a Kähler magnetic field on M , its string-length and its string-cosine satisfy ℓ′γ(t) =

δγ(t) for 0 < t < T . We hence have limt↓0 ℓ
′
γ(t) = δγ(0).

Proof. We define α̂ : [0, T ] × R → M by α̂(t, u) = α
(
t, ℓγ(t)u

)
. We then have

α̂(t, 0) = γ(0) and

ℓ2γ(t) =
∥∥∥∂α̂
∂u

(t, u)
∥∥∥2= ∫ 1

0

∥∥∥∂α̂
∂u

(t, u)
∥∥∥2 du.

Considering the differential of this function, we have
d

dt

(
ℓ2γ(t)

)
= 2ℓγ(t)ℓ

′
γ(t) and

d

dt

(
ℓ2γ(t)

)
=

d

dt

∫ 1

0

⟨∂α̂
∂u

(t, u),
∂α̂

∂u
(t, u)

⟩
du =

∫ 1

0

d

dt

⟨∂α̂
∂u

(t, u),
∂α̂

∂u
(t, u)

⟩
du

= 2

∫ 1

0

⟨(
∇ ∂

∂t

∂α̂

∂u

)
(t, u),

∂α̂

∂u
(t, u)

⟩
du = 2

∫ 1

0

⟨(
∇ ∂

∂u

∂α̂

∂t

)
(t, u),

∂α̂

∂u
(t, u)

⟩
du

= 2

∫ 1

0

{
d

du

⟨∂α̂
∂t

(t, u),
∂α̂

∂u
(t, u)

⟩
−
⟨∂α̂
∂t

(t, u),
(
∇ ∂

∂u

∂α̂

∂u

)
(t, u)

⟩}
du.
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As u 7→ α̂γ(t, u) is a geodesic for each t and ∂α̂
∂t
(t, 0) = 0 because α̂γ(t, 0) = γ(0), we

have

= 2

∫ 1

0

d

du

⟨∂α̂
∂t

(t, u),
∂α̂

∂u
(t, u)

⟩
du = 2

⟨∂α̂
∂t

(t, u),
∂α̂

∂u
(t, u)

⟩∣∣∣1
0

= 2
⟨∂α̂
∂t

(t, 1),
∂α̂

∂u
(t, 1)

⟩
= 2
⟨
γ̇(t),

∂α̂

∂u
(t, u)

∣∣∣
u=1

⟩
= 2
⟨
γ̇(t), ℓγ(t)

∂α

∂s
(t, s)

∣∣∣
s=ℓγ(t)

⟩
= 2ℓγ(t)

⟨
γ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
= 2ℓγ(t)δγ(t).

Since ℓγ(t) > 0 for t > 0 and δγ is smooth with respect to t by definition, we get the

conclusion. □

Lemma 4.3. For a trajectory γ for Bk on a Kähler manifold, we have the following

properties : ℓγ(0) = 0, δγ(0) = 1, limt↓0 δ
′
γ(t) = 0 and limt↓0 δ

′′
γ(t) = −k2/4.

Proof. By definitions of string-lengths and of string-cosines, we get ℓγ(0) = 0 and

δγ(0) =
⟨
γ̇(0),

∂α

∂s
(0, 0)

⟩
= 1. For the third equality, we compute the differential of

the string-cosine. Since s 7→ αγ(t, s) is a geodesic for each t, we have

δ′γ(t) =
⟨
∇γ̇ γ̇(t),

∂α

∂s
(t, ℓγ(t))

⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+ ℓ′γ(t)

⟨
γ̇(t),

(
∇ ∂

∂s

∂α

∂s

)(
t, ℓγ(t)

)⟩
=
⟨
∇γ̇ γ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
=
⟨
kJγ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
= k
⟨
Jγ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
.

As
∥∥∥∂α
∂s

(t, s)
∥∥∥ = 1, by taking the differentiation of both sides of this equality we get⟨

∇ ∂
∂t

∂α

∂s
,
∂α

∂s

⟩
≡ 0. Since we have γ̇(0) =

∂α

∂s
(0, 0), we get the third equality in the
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following manner:

lim
t↓0

δ′γ(t) = lim
t↓0

{
k
⟨
Jγ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩}
= k
⟨
Jγ̇(0),

∂α

∂s
(0, 0)

⟩
+
⟨
γ̇(0),

(
∇ ∂

∂t

∂α

∂s

)
(0, 0)

⟩
= k
⟨
J
∂α

∂s
(0, 0),

∂α

∂s
(0, 0)

⟩
+
⟨∂α
∂s

(0, 0),
(
∇ ∂

∂t

∂α

∂s

)
(0, 0)

⟩
= 0.

To get the fourth equality, we need to compute the differential of δ′γ(t). As we see

δ′γ(t) = k
⟨
Jγ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
,

we have

δ′′γ(t) = k
{⟨

J∇γ̇ γ̇(t),
∂α

∂s

(
t, ℓγ(t)

)⟩
+
⟨
Jγ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
+ℓ′γ(t)

(
∇ ∂

∂s

∂α

∂s

)(
t, ℓγ(t)

)⟩}
+
⟨
∇γ̇ γ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
+ℓ′γ(t)

(
∇ ∂

∂s
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
= −k2

⟨
γ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+2k

⟨
Jγ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+ℓ′γ(t)

⟨
γ̇(t),

(
∇ ∂

∂s
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
.

Since γ(t) = α
(
t, ℓγ(t)

)
, we see γ̇(t) =

∂α

∂t

(
t, ℓγ(t)

)
+ℓ′γ(t)

∂α

∂s

(
t, ℓγ(t)

)
. By definition of

trajectories, we have

kJγ̇(t) = ∇γ̇ γ̇(t)

=
(
∇ ∂

∂t

∂α

∂t

)(
t, ℓγ(t)

)
+ℓ′γ(t)

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
+ℓ′′γ(t)

∂α

∂s

(
t, ℓγ(t)

)
+ ℓ′γ(t)

{(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
+ℓ′γ(t)

(
∇ ∂

∂s

∂α

∂s

)(
t, ℓγ(t)

)}
=
(
∇ ∂

∂t

∂α

∂t

)(
t, ℓγ(t)

)
+2ℓ′γ(t)

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
+ℓ′′γ(t)

∂α

∂s

(
t, ℓγ(t)

)
.

Since
∂α

∂t
(t, 0) = 0, we have ∇ ∂α

∂t

∂α

∂t
(0, 0) = 0. We therefore obtain

kJγ̇(0) = 2 lim
t↓0

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)
,
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because limt↓0 ℓ
′
γ(t) = δγ(0) = 1 and limt↓0 ℓ

′′
γ(t) = limt↓0 δ

′
γ(t) = 0. As we have∥∥∥∂α

∂s

∥∥∥ = 1, we see

(4.1) 0 =
d

dt

⟨
∇ ∂

∂t

∂α

∂s
,
∂α

∂s

⟩
=
∥∥∥∇ ∂

∂t

∂α

∂s

∥∥∥2+⟨∇ ∂
∂t
∇ ∂

∂t

∂α

∂s
,
∂α

∂s

⟩
.

Thus, by noticing that s 7→ αγ(t, s) is a geodesic for each t, we get

lim
t↓0

δ′′γ(t) = lim
t↓0

{
−k2

⟨
γ̇(t),

∂α

∂s

(
t, ℓγ(t)

)⟩
+2k

⟨
Jγ̇(t),

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+ ℓ′γ(t)

⟨
γ̇(t),

(
∇ ∂

∂s
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩}
= −k2

⟨
γ̇(0),

∂α

∂s
(0, 0)

⟩
+k
⟨
Jγ̇(0), 2 lim

t↓0

(
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
⟨
γ̇(0), lim

t↓0

(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
(
lim
t↓0

ℓ′γ(t)
)⟨
γ̇(0), lim

t↓0

(
∇ ∂

∂s
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
= −k2⟨γ̇(0), γ̇(0)⟩+ k⟨Jγ̇(0), kJγ̇(0)⟩

+
⟨∂α
∂s

(0, 0), lim
t↓0

(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
+
⟨
γ̇(0), lim

t↓0

(
∇ ∂

∂t
∇ ∂

∂s

∂α

∂s

)(
t, ℓγ(t)

)⟩
−
⟨
γ̇(0), lim

t↓0
R
(∂α
∂t

(
t, ℓγ(t)

)
,
∂α

∂s

(
t, ℓγ(t)

))∂α
∂s

(
t, ℓγ(t)

)⟩
= −k2 + k2 + lim

t↓0

⟨∂α
∂s

(
t, ℓγ(t)

)
,
(
∇ ∂

∂t
∇ ∂

∂t

∂α

∂s

)(
t, ℓγ(t)

)⟩
−
⟨
γ̇(0), R

(∂α
∂t

(0, 0),
∂α

∂s
(0, 0)

)∂α
∂s

(0, 0)
⟩
.

By using (4.1) we obtain

= − lim
t↓0

∥∥∥(∇ ∂
∂t

∂α

∂s

)(
t, ℓγ(t)

)∥∥∥2 − ⟨γ̇(0), R(∂α
∂t

(0, 0), γ̇(0)
)
γ̇(0)

⟩
= −

∥∥∥k
2
Jγ̇(0)

∥∥∥2
= −k

2

4
.

This completes the proof. □
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2. Trajectory-harps on a complex space form

We say two trajectory-harps αγ1 , αγ2 : [0, T ]×R →M on a Kähler manifoldM to be

congruent to each other if there is an isometry φ ofM satisfying αγ2(t, s) = φ◦αγ1(t, s)

for all (t, s) ∈ [0, T ] × R. On a complex space form CMn(c) of constant holomorphic

sectional curvature c, as we see in Proposition 2.3 two trajectories γ1, γ2 for a Kähler

magnetic field Bk are congruent to each other in strong sense. Since each trajectory

lies on some totally geodesic complex line CM1(c), we see that the trajectory-harp

associated with this trajectory lies on this CM1(c). Therefore we find the following.

Proposition 4.1. On a complex space form CMn(c) two trajectory-harps associ-

ated with trajectories γ1, γ2 : [0, T ] → CMn(c) for Bk are congruent to each other.

By this proposition, string-lengths and string-cosines for trajectory-harps for a

Kähler magnetic field Bk on CMn(c) do not depend on the choice of trajectory-harps.

We therefore denote them by ℓk(t; c) and δk(t; c). These functions are given in the

following.

[1] Trajectory-harps on a complex Euclidean space

On a complex Euclidean space Cn, as the covariant differentiation is the ordinary

differentiation, a trajectory γ for Bk is a circle of radius 1/|k| in the sense of Euclidean

geometry, hence is closed of length 2π/|k|.

Proposition 4.2. For 0 ≤ t ≤ 2π/|k|, we have the following :

(1) The string-length is given as ℓk(t; 0) = (2/|k|) sin(|k|t/2);

(2) Every trajectory for Bk emanating from an arbitrary point p ∈ Cn and the

corresponding chord make the angle θk(t; 0) = |k|t/2. Hence the string-cosine

is given as δk(t; 0) = cos(|k|t/2).

Proof. Let γ be a trajectory for Bk. We set p = γ(0). We consider a circular arc

γ([0, t]), which is inferior when 0 < t ≤ π/|k| and is superior when π/|k| ≤ t < 2π/|k|.

The geodesic-segment joining γ(0) and γ(t) is a sub-tense for this circular arc. We
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take a triangle of vertices p, γ(t) and the center o of the circle. As it is an isosceles

triangle with d(p, o) = d(γ(t), o), we find that the distance between γ(0) and γ(t) is

(2/|k|) sin(|k|t/2). Since the angle θk(t; 0) coincides with the angle of circumference

over γ([0, t]), hence is equal to the half of the angle |k|t of the sector of circular arc

γ([0, t]). □

As we see in Lemma 2.13, when γ is a trajectory for Bk then the curve γ̃ defined

by γ̃(s) = γ(t − s) is a trajectory for B−k. If a geodesic σ satisfies σ(0) = γ(0) and

σ(ℓ) = γ(r), we see that the angle between γ̇(0) and σ̇(0) coincides with the angle

between ˙̃γ(0) and ˙̃σ(0), where σ̃ is given by σ̃(s) = σ(ℓ− s). Thus θk(t; 0) also shows

the angle between γ̇(0) and σ̇(0).

Lemma 4.4. The functions ℓk(t; 0) and δk(t; 0) satisfy the following properties :

(1) ℓk(t; 0) = ℓ−k(t; 0), δk(t; 0) = δ−k(t; 0);

(2) The function ℓk(· ; 0) : [0, 2π/|k|] → R is monotone increasing in the interval

[0, π/|k|] and is monotone decreasing in the interval [π/|k|, 2π/|k|];

(3) The function δk(· ; 0) : [0, 2π/|k|] → R is monotone decreasing.

Proof. The first assertion is trivial by their expressions in Proposition 4.2. Since

ℓk(t; 0) = (2/|k|) sin(|k|t/2), we have

d

dt
ℓk(t; 0) = cos(|k|t/2) = δk(t; 0),

d

dt
δk(t; 0) = −(|k|t/2) sin(|k|t/2).

We get the conclusion. □

Proposition 4.3. The string-lengths and the string-cosines on Cn with respect to

|k| satisfies the following :

(1) The function ℓk(·; 0) : [0, π/|k|] → R is monotone decreasing with respect to

|k|;

(2) The function δk(·; 0) : [0, π/|k|] → R is monotone decreasing with respect to

|k|.
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Proof. We are enough to study the case k > 0.

By differentiating of the string-length ℓk(t; 0) and the string-cosine δk(t; 0), we have

d

dk
ℓk(t; 0) = − t

k2
cos

kt

2
< 0,

d

dk
δk(t; 0) = − t

2
sin

kt

2
< 0.

We hence get the conclusion. □

[2] Trajectory-harps on a complex projective space

We take a trajectory γ for Bk on a complex projective space CP n(c) of constant

holomorphic sectional curvature c. As we see in §2.3, a trajectory γ for Bk is a “small”

circle of radius 1/
√
k2 + c on a totally geodesic CP 1(c) = S2(c), hence it is closed of

length 2π/
√
k2 + c. We note that the injectivity radius ιCPn(c) of CP n(c) is equal to

π/
√
c.

Proposition 4.4. For 0 < t < 2π/
√
k2 + c, we have the following :

(1) The string-length is given by
√
k2 + c sin

(√
cℓk(t; c)/2

)
=

√
c sin

(√
k2 + c t/2

)
;

(2) The string-cosine is given by

δk(t; c) =

√
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

) .
Proof. Since every trajectory lies on some totally geodesic CP 1(c), we are enough

to study the case n = 1. As we see in §2.3, CP 1(c) is isomorphic to S2(c), we hence

use the expression of trajectories on S2(c) ⊂ R3. We take a trajectory γ for Bk with

γ(0) = p ∈ S2 ⊂ R3, γ̇(0) = u ∈ TpS
2 ⊂ TpR3 ∼= R3 and ∇γ̇ γ̇(0) + cγ(0) = v. Then, if

we regard γ as a curve in R3, it is expressed as

γ(t) =
1

k2 + c

(
k2 + c cos

√
k2 + c t

)
p+

1√
k2 + c

(
sin

√
k2 + c t

)
u

+
1

k2 + c

(
1− cos

√
k2 + c t

)
v.

Also we take a geodesic σ on S2(c) with σ(0) = p and σ̇(0) = u′ ∈ TpS
2 ⊂ TpR3 ∼= R3,

which is expressed as σ(t) = cos
√
c tp +

1√
c
sin

√
c tu′ as a curve in R3. We take an
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arbitrary positive r with r < 2π/
√
k2 + c and suppose γ(r) = σ(ℓk(r; c)). Since p is

orthogonal to u, v and u′, and p, u, v span R3, this equality shows

(4.2) k2 + c cos
√
k2 + c r = (k2 + c) cos

√
cℓk(r; c),

(4.3)
1√
c
sin
(√

cℓk(r; c)
)
u′ =

1√
k2 + c

(
sin

√
k2 + c r

)
u+

1

k2 + c

(
1− cos

√
k2 + c r

)
v.

Applying the double angle formula to (4.2), we have

k2 + c
(
1− 2 sin2(

√
k2 + c r/2)

)
= (k2 + c)

(
1− 2 sin2(

√
cℓk(r; c)/2)

)
,

which shows the first assertion because r < 2π/
√
k2 + c and ℓk(r; c) ≤ r. As u is

orthogonal to v, and ⟨u′, u⟩ = δk(r; c), ∥u∥ = 1, by taking the inner products of both

sides of (4.3) with u, we get

δk(r; c)√
c

sin
(√

cℓk(r; c)
)
=

sin
√
k2 + c r√
k2 + c

.

Again, by using the double angle formula and the first assertion, we get

δk(r; c) =

√
c sin

√
k2 + c r√

k2 + c sin
(√

cℓk(r; c)
)

=

√
c sin

(√
k2 + c r/2

)
cos
(√

k2 + c r/2
)

√
k2 + c sin

(√
cℓk(r; c)/2

)
cos
(√

cℓk(r; c)/2
)

=
cos
(√

k2 + c r/2
)

cos
(√

cℓk(r; c)/2
) =

√
k2 + c cos

(√
k2 + c r/2

)√
k2 + c cos2

(√
k2 + c r/2

) .
This completes the proof. □

Lemma 4.5. When c > 0, the functions ℓk(t; c) and δk(t; c) satisfy the following

properties :

(1) ℓk(t; c) = ℓ−k(t; c), δk(t; c) = δ−k(t; c) ;

(2) The function ℓk(· ; c) :
[
0, 2π/

√
k2 + c

]
→ R is monotone increasing in the in-

terval
[
0, π/

√
k2 + c

]
and is monotone decreasing in the interval

[
π/

√
k2 + c,

2π/
√
k2 + c

]
;

(3) The function δk(· ; c) :
[
0, 2π/

√
k2 + c

]
→ R is monotone decreasing.
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Proof. The first assertion is trivial by their expressions in Proposition 4.4.

Since we have

d

dt
ℓk(t; c) = δk(t; c) =

√
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

)
and

d

dt
δk(t; c) =

d

dt

( √
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

)
)

= − k2(k2 + c) sin(
√
k2 + c t/2)

2
{
k2 + c cos2(

√
k2 + c t/2)

}3/2 .
We get the conclusion. □

Proposition 4.5. The string-lengths and the string-cosines on CP n(c) satisfies

the following :

(1) The function ℓk(t; c) is monotone decreasing with respect to |k|;

(2) The function δk(t; c) is monotone decreasing with respect to |k|.

Proof. We are enough to study the case k > 0.

By differentiating of the string-length ℓk(t; c) and the string-cosine δk(t; c), we have

d

dk
ℓk(t; c) =

tk
(
cos(

√
k2 + c t/2)− 1

)
(k2 + c) cos

(√
cℓk(t; c)/2

) < 0,

and

d

dk
δk(t; c) = −

k sin
(√

k2 + c t/2
)(
k2
√
k2 + c t+ c sin

(√
k2 + c t

))
2
√
k2 + c

(
k2 + c cos

(√
k2 + c t/2

)2)3/2 < 0.

We hence get the conclusion. □

[3] Trajectory-harps on a complex hyperbolic space

We take a trajectory γ for Bk on a complex hyperbolic space CHn(c) of con-

stant holomorphic sectional curvature c. As we see in §2.3, a trajectory γ for a

Kähler magnetic field is a curve without self-intersections and lies on a totally ge-

odesic CH1(c) = H2(c). In particular, when |k| >
√
|c|, a trajectory is a circle of

radius 1/
√
k2 + c and when |k| ≤

√
|c|, it is open and is unbounded.
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Proposition 4.6. When c < 0, for 0 < r < 2π/
√
k2 + c, we have the following :

(1) The string-length ℓk(r; c) satisfies the following relations ;

√
|c| − k2 sinh

(√
|c|ℓk(r; c)/2

)
=
√
|c| sinh

(√
|c| − k2 r/2

)
, if |k| <

√
|c|,

2 sinh
(√

|c|ℓk(r; c)/2
)
=
√

|c|r, if k = ±
√
|c|,

√
k2 + c sinh

(√
|c|ℓk(r; c)/2

)
=
√

|c| sin
(√

k2 + c r/2
)
, if |k| >

√
|c|.

(2) The string-cosine δk(r; c) is given by

δk(r; c) =



√
|c| − k2 cosh

(√
|c| − k2 r/2

)√
|c| cosh2

(√
|c| − k2 r/2

)
−k2

, if |k| <
√
|c|,

2√
|c|r2 + 4

, if k = ±
√
|c|,

√
k2 + c cos

(√
k2 + c r/2

)√
k2 + c cos2

(√
k2 + c r/2

) , if |k| >
√
|c|.

Proof. Since every trajectory lies on some totally geodesic CH1, we may consider

the case n = 1.

First we study the case |c| > k2. On CH1(c) = H2(c), we take trajectory γ for Bk

with γ(0) = p ∈ H2 ⊂ R3, γ̇(0) = u ∈ TpH
2 ⊂ TpR3 ∼= R3 and ∇γ̇ γ̇(0) − |c|γ(0) = v.

Then if we regard it as a curve in R3, it is expressed as

γ(t) =
1

|c| − k2
(
|c| cosh

√
|c| − k2 t− k2

)
p+

1

|c| − k2
(
cosh

√
|c| − k2 t− 1

)
v

+
1√

|c| − k2

(
sinh

√
|c| − k2 t

)
u.

Also we take a geodesic σ on H2(c) with σ(0) = p and σ̇(0) = u′ ∈ TpH
2 ⊂ TpR3 ∼= R3,

which is expressed as σ(t) = cosh
√
|c| tp + 1√

|c|
sinh

√
|c| tu′ as a curve in R3. We

take an arbitrary positive r with r < 2π/
√
k2 + c and suppose γ(r) = σ(ℓk(r; c)). Since

p is orthogonal to u, v and u′, and p, u, v span R3, this equality shows

(4.4) |c| cosh
√

|c| − k2 r − k2 = (|c| − k2) cosh
(√

|c|ℓk(r; c)
)
,
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(4.5)

1√
|c|

sinh
(√

|c|ℓk(r; c)
)
u′ =

1

|c| − k2
(
cosh

√
|c| − k2 r − 1

)
v

+
1√

|c| − k2

(
sinh

√
|c| − k2 r

)
u.

Applying the double angle formula to (4.4), we have√
|c| − k2 sinh

(√
|c|ℓk(r; c)/2

)
=
√

|c| sinh
(√

|c| − k2 r/2
)
.

As u is orthogonal to v, ⟨u, u′⟩ = δk(r; c) and ∥u∥ = 1, by taking inner products of

both sides of (4.5) with u, we get

δk(r; c) =

√
|c| sinh

(√
|c| − k2 r

)√
|c| − k2 sinh

(√
|c|ℓk(r; c)

)
=

√
|c| sinh

(√
|c| − k2 r/2

)
cosh

(√
|c| − k2 r/2

)√
|c| − k2 sinh

(√
|c|ℓk(r; c)/2

)
cosh

(√
|c|ℓk(r; c)/2

)
=

cosh
(√

|c| − k2 r/2
)

cosh
(√

|c|ℓk(r; c)/2
) =

√
|c| − k2 cosh

(√
|c| − k2 r/2

)√
|c| cosh2

(√
|c| − k2 r/2

)
−k2

.

Next we study the case |c| = k2. On CH1(c) = H2(c), we take a trajectory γ for Bk

with γ(0) = p, γ̇(0) = u and ∇γ̇ γ̇(0)− |c|γ(0) = v. If we regard it as a curve in R3, it

is expressed as

γ(t) =
(
1 +

|c|t2

2

)
p+

t2

2
v + tu.

Also we take a geodesic σ on H2(c) with σ(0) = p and σ̇(0) = u′ ∈ TpH
2 ⊂ TpR3 ∼= R3,

which is expressed as σ(t) =
(
cosh

√
|c| t

)
p +

1√
|c|
(
sinh

√
|c| t

)
u′ as a curve in R3.

We take an arbitrary positive r and suppose γ(r) = σ(ℓk(r; c)). Since p is orthogonal

to u, v and u′, and p, u, v span R3, this equality shows

(4.6) 1 +
|c|r2

2
= cosh

(√
|c|ℓk(r; c)

)
,

(4.7)
1√
|c|

sinh
(√

|c|ℓk(r; c)
)
u′ =

r2

2
v + ru.

Applying the double angle formula to (4.6), we have

2 sinh
(√

|c|ℓk(r; c)/2
)
=
√
|c|r.
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As u is orthogonal to v, ⟨u, u′⟩ = δk(r; c) and ∥u∥ = 1, by taking inner products of

both sides of (4.7) with u, we get

δk(r; c) =

√
|c| r

sinh
(√

|c|ℓk(r; c)
)

=

√
|c| r

2 sinh
(√

|c|ℓk(r; c)/2
)
cosh

(√
|c|ℓk(r; c)/2

)
=

1

cosh
(√

|c|ℓk(r; c)/2
) =

2√
4 + |c|r2

.

Finally we study the case |c| < k2. On CH1(c) = H2(c), we take a trajectory γ for Bk

with γ(0) = p, γ̇(0) = u and ∇γ̇ γ̇(0)− |c|γ(0) = v. If we regard it as a curve in R3, it

is expressed as

γ(t) =
1

k2 − |c|
(
k2 − |c| cos

√
k2 − |c| t

)
p

+
1

k2 − |c|
(
1− cos

√
k2 − |c| t

)
v

+
1√

k2 − |c|
(
sin
√
k2 − |c| t

)
u.

Also we take a geodesic σ on H2(c) with σ(0) = p and σ̇(0) = u′ ∈ TpH
2 ⊂ TpR3 ∼= R3,

which is expressed as σ(t) =
(
cosh

√
|c| t

)
p +

1√
|c|
(
sinh

√
|c| t

)
u′ as a curve in R3.

We take an arbitrary positive r and suppose γ(r) = σ(ℓk(r; c)). Since p is orthogonal

to u, v and u′, and p, u, v span R3, this equality shows

(4.8) k2 − |c| cos
√
k2 − |c| r = (k2 − |c|) cosh(

√
|c|ℓk(r; c)),

(4.9)

1√
|c|

sinh
(√

|c|ℓk(r; c)
)
u′ =

1

k2 − |c|
(
1− cos

√
k2 − |c| r

)
v

+
1√

k2 − |c|
(
sin
√
k2 − |c| r

)
u.

Applying the double angle formula to (4.8), we have

√
k2 + c sinh

(√
|c|ℓk(r; c)/2

)
=
√
|c| sin

(√
k2 + c r/2

)
.
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As u is orthogonal to v, ⟨u, u′⟩ = δk(r; c) and ∥u∥ = 1, by taking inner products of

both sides of (4.7) with u, we get

δk(r; c) =

√
|c| sin

√
k2 − |c| r√

k2 − |c| sinh
(√

|c|ℓk(r; c)
)

=

√
|c| sin

(√
k2 − |c| r/2

)
cos
(√

k2 − |c| r/2
)√

k2 − |c| sinh
(√

|c|ℓk(r; c)/2
)
cosh

(√
|c|ℓk(r; c)/2

)
=

cos
(√

k2 − |c| r/2
)

cosh
(√

|c|ℓk(r; c)/2
) =

√
k2 + c cos

(√
k2 + c /2

)√
k2 + c cos2

(√
k2 + c r/2

) .
This completes the proof. □

We here show some properties of string-lengths and string-cosines of trajectory-

harps on a complex hyperbolic space.

Lemma 4.6. When c < 0, the functions ℓk(· ; c) and δk(· ; c) satisfy the following

properties.

(1) ℓk(t; c) = ℓ−k(t; c), δk(t; c) = δ−k(t; c);

(2) The function ℓk(t; c) :
[
0, 2π/

√
k2 + c

]
→ R is monotone increasing in the in-

terval
[
0, π/

√
k2 + c

]
and is monotone decreasing in the interval

[
π/

√
k2 + c,

2π/
√
k2 + c

]
. Here, when we regard π/

√
k2 + c and 2π/

√
k2 + c as infinity,

and do not consider the interval [π/
√
k2 + c, 2π/

√
k2 + c];

(3) The function δk(t; c) :
[
0, 2π/

√
k2 + c

]
→ R is monotone decreasing.

Proof. The first assertion is trivial by their expressions in Proposition 4.6. Since

we have

d

dt
ℓk(t; c) = δk(t; c) =



√
|c| − k2 cosh

(√
|c| − k2 t/2

)√
|c| cosh2

(√
|c| − k2 t/2

)
−k2

, if |k| <
√

|c|,

2√
4 + |c|t2

, if |k| =
√

|c|,

√
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

) , if |k| >
√

|c|,
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and

d

dt
δk(t; c) =



−
k2(|c| − k2) sinh

(√
|c| − k2 t/2

)
2
(
k2 + |c| cosh2(

√
|c| − k2 t/2)

)3/2 , if |k| <
√
|c|,

− 2|c|t
(4 + |c|t2)3/2

, if |k| =
√
|c|,

− k2(k2 + c) sin(
√
k2 + c t/2)

2
(
k2 + c cos2(

√
k2 + c t/2)

)3/2 , if |k| >
√
|c|.

We get the conclusion. □

Proposition 4.7. The string-lengths and the string-cosines on CHn(c) satisfies

the following:

(1) ℓk(t; c) is monotone decreasing with respect to |k|;

(2) δk(t; c) is monotone decreasing with respect to |k|.

Proof. By the expressions of ℓk or δk, we are enough to study the case k ≥ 0.

(1) When |k| <
√
|c|, the string-length ℓk(t; c) satisfies√

|c| − k2 sinh
(√

|c|ℓk(t; c)/2
)
=
√

|c| sinh
(√

|c| − k2 t/2
)
.

Differentiating both sides of this equality, we have

d

dk
ℓk(t; c) =

tk
(
1− cosh(

√
|c| − k2 t/2)

)
(|c| − k2) cosh

(√
|c|ℓk(t; c)/2

) < 0.

Similarly, when |k| >
√
|c|, the string-length ℓk(t; c) satisfies

√
k2 + c sinh

(√
|c|ℓk(t; c)/2

)
=
√

|c| sin
(√

k2 + c t/2
)
.

We hence have

d

dk
ℓk(t; c) =

cos
(√

k2 + c t/2
)
−1

(k2 + c) cosh(
√
|c|ℓk(t; c)/2)

< 0.

Next we consider that the case |k| =
√
|c|. By de l’Hopital’s rule, we have

lim
k↑
√

|c|

sinh
(√

|c| − k2 t/2
)√

|c| − k2
= lim

k↑
√

|c|

t

2
cosh

(√
|c| − k2 t/2

)
=
t

2

lim
k↓
√

|c|

sin(
√
k2 + c t/2)√
k2 + c

= lim
k↓
√

|c|

t

2
cos
(√

k2 + c t/2
)
=
t

2
.
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We find

lim
k↑
√

|c|

2√
|c|

sinh−1

(√
|c| sinh

(√
|c| − k2 t/2

)√
|c| − k2

)

= lim
k↓
√

|c|

2√
|c|

sinh−1

(√
|c| sin

(√
k2 + c t/2

)
√
k2 + c

)

=
2√
|c|

sinh−1

(√
|c|
2

t

)
,

we find that ℓk(t; c) is monotone decreasing with respect to k.

(2) When |k| <
√

|c|, the string-cosine expressed as

δk(t; c) =

√
|c| − k2 cosh

(√
|c| − k2 t/2

)√
|c| cosh2

(√
|c| − k2 t/2

)
−k2

.

By direct computation, we have

d

dk
δk(t; c) = −

k sin
(√

|c| − k2 t/2
)(
k2
√

|c| − k2 t+ |c| sin
(√

|c| − k2 t
))

2
√

|c| − k2
(
k2 + |c| cos

(√
|c| − k2 t/2

)2)3/2 < 0.

Similarly, when |k| >
√
|c|, the string-cosine expressed as

δk(t; c) =

√
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

)
Then we have

d

dk
δk(t; c) = −

k sin
(√

k2 + c t/2
)(
k2
√
k2 + c t+ c sin

(√
k2 + c t

))
2
√
k2 + c

(
k2 + c cos

(√
k2 + c t/2

)2)3/2 < 0.

Next we consider the case |k| =
√
|c|. Since we have

|c| − k2

|c| cosh2
(√

|c| − k2 t/2
)
−k2

=
|c| − k2

|c| sinh2
(√

|c| − k2 t/2
)
+|c| − k2

,

by applying de l’Hopital’s rule, we have

lim
k↑
√

|c|

|c| sinh2
(√

|c| − k2 t/2
)

|c| − k2
= lim

k↑
√

|c|

(|c|t/2) sinh
(√

|c| − k2 t
)

2
√

|c| − k2

= lim
k↑
√

|c|

|c|t2 cosh
(√

|c| − k2 t
)

4
=

|c|t2

4
.
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Therefore we have

lim
k↑
√

|c|
δk(t; c) = lim

k↑
√

|c|

√
|c| − k2 cosh

(√
|c| − k2 t/2

)√
|c| cosh2

(√
|c| − k2 t/2

)
−k2

=
1√

(|c|t2)/4 + 1

=
2√

|c|t2 + 4
.

Similarly, as we have

k2 + c

k2 + c cos2
(√

k2 + c t/2
) =

k2 + c

k2 + c− c sin2
(√

k2 + c t/2
) ,

by applying de l’Hopital’s rule, we have

lim
k↓
√

|c|

|c| sin2
(√

k2 + c t/2
)

k2 + c
= lim

k↓
√

|c|

(|c|t/2) sin
(√

k2 + c t
)

2
√
k2 + c

= lim
k↓
√

|c|

|c|t2 cos
(√

k2 + c t
)

4
=

|c|t2

4
.

Therefore we have

lim
k↓
√

|c|
δk(t; c) = lim

k↓
√

|c|

√
k2 + c cos

(√
k2 + c t/2

)√
k2 + c cos2

(√
k2 + c t/2

)
=

1√
(|c|t2)/4 + 1

=
2√

|c|t2 + 4
.

We find that δk(t; c) is monotone decreasing correspond to k. We get the conclusion.

□

Summarizing Propositions 4.2, 4.4 and 4.6 up we have the following.

Proposition 4.8. For 0 < t < 2π/
√
k2 + c, we have

(1) s0
(
ℓk(t; c)/2; c

)
= sk(t/2; c).

(2) δk(t; c) = ±

√
1− (k2 + c)sk(t/2; c)

2

1− csk(t/2; c)2
, where the double sign takes positive

when 0 ≤ t ≤ π/
√
k2 + c and takes negative when π/

√
k2 + c < t ≤ 2π/

√
k2 + c.
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3. Comparison theorems on string-lengths and string-cosines

of trajectory-harps

In this section we give estimates of string-lengths and of string-cosines of trajectory-

harps on a general Kähler manifold M under some condition on sectional curvatures.

For a trajectory-harp αγ associated with a trajectory γ : [0, T ] →M , we set

Rγ = sup{t ∈ [0, T ] | δγ(τ) > 0 for 0 < τ < t}

and call it the maximal arch-length of αγ. On a complex space form CMn(c), for a

trajectory-harp αγ associated with a trajectory γ : [0, T ] → M for Bk, the maximal

arch-length is given as

R(k; c) =

{
π/

√
k2 + c, if k2 + c > 0,

∞, if k2 + c ≤ 0,

if T ≥ R(k; c).

We define a positive Tγ(c) as follows. If there is t∗ satisfying 0 < t∗ ≤ T and

ℓγ(t∗) = ℓk
(
R(k; c); c

)
we set Tγ(c) = min{t∗} and in other case we set Tγ(c) = T .

Since ℓγ(t) ≤ t, we see Tγ(c) ≥ min{T, ℓk
(
R(k; c); c

)
}. We note that

ℓk
(
R(k; c); c

)
=



(
2/
√
c
)
sin−1

√
c/(k2 + c), if c > 0,

2/|k|, if c = 0,(
2/
√

|c|
)
sinh−1

√
|c|/(k2 + c), if c < 0 and k2 + c > 0,

∞, if c < 0 and k2 + c ≤ 0.

Given a trajectory-harp αγ for Bk associated with a trajectory γ : [0, T ] →M , for

0 ≤ a < b ≤ T , we set HBγ(a, b) = {αγ(t, s)|a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t)} and call it

the harp-body of αγ. We denote HBγ(0, b) by HBγ(b). By Lemmas 4.4, 4.5 and 4.6,

the function ℓk(· ; c) :
[
0, π/

√
k2 + c

]
→ R is monotone increasing. We hence define a

function τk(· ; c) :
[
0, ℓk(π/

√
k2 + c; c)

]
→ R as the inverse function of ℓk(· ; c).

First we give estimates from below when sectional curvatures are bounded from

above.
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Theorem 4.2. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →

M for a non-trivial Kähler magnetic field Bk on a Kähler manifold M . Suppose sec-

tional curvatures of planes tangent to its harp-body HBγ(T ) are not greater than a

constant c. We then have the following :

(1) ℓγ(t) ≥ ℓk(t; c) for 0 < t ≤ min{Rγ, 2R(k; c)}.

(2) δγ(t) ≥ δk
(
τk(ℓγ(t); c); c

)
for 0 < t ≤ Tγ(c).

In particular, we have Rγ ≥ Tγ(c) and R(k; c) ≥ Tγ(c).

Moreover, we have the following when equalities hold in the above assertion.

(1) If δγ(t0) = δk
(
τk(ℓγ(t0); c); c

)
at some t0 with 0 < t0 ≤ Tγ(c), then we have

1) the derivatives of string-cosines satisfy δ′γ(t0) = δ′k
(
τk(ℓγ(t0); c); c

)
.

2) the vector
∂αγ

∂t
(t0, s) is parallel to J

∂αγ

∂s
(t0, s) for 0 ≤ s ≤ ℓγ(t0).

3) the sectional curvature Riem
(∂αγ

∂t
(t0, s),

∂αγ

∂s
(t0, s)

)
of the tangent plane

spanned by
∂αγ

∂t
(t0, s) and

∂αγ

∂s
(t0, s) is equal to c for 0 < s ≤ ℓγ(t0).

(2) If ℓγ(t0) = ℓk(t0; c) at some t0 with 0 < t0 ≤ Tγ(c), then the harp-body HBγ(t0)

is totally geodesic, holomorphic and of constant sectional curvature c. In

particular, we have ℓγ(t) = ℓk(t; c) and δγ(t) = δk(t; c) for 0 ≤ t ≤ t0.

Remark 4.1. We note that ℓk(t; c) is defined for 0 ≤ t ≤ 2R(k; c).

Remark 4.2. It is likely that Rγ ≥ R(k; c) holds under the assumption of Theorem

4.2. But our result does not guarantees this.

To show this we need the following local estimates.

Lemma 4.7. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →M

for a non-trivial Kähler magnetic field Bk on M . When we take a positive k̂ satisfying

|k| < k̂, there exists positive ϵ such that the following properties hold for 0 < t ≤ ϵ :

δ′′γ(t) < 0, δ′
k̂
(t; c) < δ′γ(t) < 0, δk̂(t; c) < δγ(t), ℓk̂(t; c) < ℓγ(t).
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Proof. We define a smooth function F by F (t) = δ′γ(t)− δ′
k̂
(t; c). By Lemma 4.3

we have

F (0) = δ′γ(0)− δ′
k̂
(0; c) = 0− 0 = 0,

F ′(0) = δ′′γ(0)− δ′′
k̂
(0; c) = −k2/4− (−k̂2/4) = (k̂2 − k2)/4 > 0.

If we apply Taylor’s theorem to F , we see there exists a small positive ϵ1 satisfying

F (t) = F (0) + F ′(0)t+ 0(t2) > 0

for 0 < t ≤ ϵ1. We have δ′γ(t) > δ′
k̂
(t; c) for 0 < t ≤ ϵ1.

We define another function G by G(t) = δγ(t)− δk̂(t; c). We then have

G(t) =

∫ t

0

F (s)ds+G(0).

Since Lemma 4.3 guarantees

G(0) = δγ(0)− δk̂(0; c) = 1− 1 = 0,

we have G(t) > 0 for 0 < t ≤ ϵ1.

We define one more function H by H(t) = ℓγ(t)− ℓk̂(t; c). We then have

H(t) =

∫ t

0

G(s)ds+H(0)

by Lemma 4.2. As H(0) = ℓγ(0)− ℓk̂(0; c) = 0, we have H(t) > 0 for 0 < t ≤ ϵ1.

As δ′′γ(0) = −k2/4 < 0 and δγ is smooth, there is a positive ϵ2 satisfying that

δ′′
k̂
(t; c) < 0 for 0 ≤ t ≤ ϵ2. Since δ′γ(0) = 0 we see δ′γ(t) < 0 for 0 ≤ t ≤ ϵ2. By

choosing ϵ = min{ϵ1, ϵ2}, we get the conclusion. □

Proof of Theorem 4.2. We take a positive k̂ so that |k| < k̂. First we study

near the origin. By Lemma 4.7 we see δk̂(t; c) < δγ(t) and ℓk̂(t; c) < ℓγ(t) for 0 < t ≤ ϵ.

Since τk̂(· ; c) is monotone increasing, we have τk̂
(
ℓγ(t); c

)
> τk̂

(
ℓk̂(t; c); c

)
= t. As δk̂(·; c)

is monotone decreasing, we find δγ(t) > δk̂(t; c) > δk̂
(
τk̂(ℓγ(t); c); c

)
.

We take a maximal positive Tk̂ (≤ T ) so that the conditions

i) ℓγ(t) ≤ ℓk̂(R(k̂; c); c),

ii) δγ(t) ≥ δk̂
(
τk̂(ℓγ(t); c); c

)
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hold for 0 ≤ t ≤ Tk̂. The above study guarantees that Tk̂ is positive.

We shall show that if Tk̂ < T then we have ℓγ(Tk̂) = ℓk̂(R(k̂; c); c). To do this we

suppose Tk̂ < T and ℓγ(Tk̂) < ℓk̂(R(k̂; c); c). As ℓγ, δγ, ℓk̂(·; c) and δk̂(·; c) are smooth,

by the maximality of Tk̂ we see δγ(Tk̂) = δk̂
(
τk̂(ℓγ(Tk̂; c); c); c

)
. We study the derivative

of δγ at Tk̂. By direct computation we have

(4.10)
dδγ
dt

(Tk̂) = k
⟨
Jγ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
+
⟨
γ̇(Tk̂),

(
∇ ∂

∂t

∂αγ

∂s

)(
Tk̂, ℓγ(Tk̂)

)⟩
.

By definition of δγ, we have

1 =
∥∥∥∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)∥∥∥2
≥
⟨
γ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩2
+
⟨
Jγ̇(Tk),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩2
=
{
δγ(Tk̂)

}2
+
⟨
Jγ̇(Tk),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩2
,

hence the first term of the right-hand side of (4.10) satisfies

k
⟨
Jγ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
≥ −|k|

√
1− {δγ(Tk̂)}2.

As |k| < k̂ and δγ(Tk̂) = δk̂
(
τk̂(ℓγ(Tk̂); c); c

)
< 1, we see

k
⟨
Jγ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
> −k̂

√
1−

{
δk̂
(
τk̂(ℓγ(Tk̂); c); c

)}2
.

In order to estimate the second term of the right-hand side of (4.10), we put

Zt(s) =
∂αγ

∂t
(t, s), which is a Jacobi field along a geodesic s 7→ αγ(t, s). As s 7→ αγ(t, s)

is of unit speed for each t, it satisfies
⟨
Zt(s),

∂αγ

∂s
(t, s)

⟩
= 0 for each t. This guarantees

that
⟨
∇ ∂αγ

∂s

Zt(s),
∂αγ

∂s
(t, s)

⟩
= 0 because

0 =
d

ds

⟨
Zt(s),

∂αγ

∂s
(t, s)

⟩
=
⟨
∇ ∂αγ

∂s

Zt(s),
∂αγ

∂s
(t, s)

⟩
+
⟨
Zt(s),

(
∇ ∂αγ

∂s

∂αγ

∂s

)
(t, s)

⟩
=
⟨
∇ ∂αγ

∂s

Zt(s),
∂αγ

∂s
(t, s)

⟩
.

We take a trajectory-harp α̂γ̂ associated with a trajectory γ̂ :
[
0, R(k̂; c)

]
→ CM1(c)

for Bk̂ on CM1(c), and put Ẑt(s) =
∂α̂γ̂

∂t
(t, s), which is a Jacobi field along a geodesic

s 7→ α̂γ̂(t, s). We note that CM1(c) is congruent to a real space form of constant sec-

tional curvature c (see Propositions 2.1, 2.2). Since we have ℓk̂
(
Tk̂; c

)
< Tk̂ ≤ R(k; c) <
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π/
√
c, we do not have conjugate points of γ̂(0) along the geodesic s 7→ αγ̂(Tk̂, s). As

γ(t) = αγ(t, ℓγ(t)), we have

γ̇(t) =
∂αγ

αt

(
t, ℓγ(t)

)
+δγ(t)

∂αγ

∂s

(
t, ℓγ(t)

)
= Zt

(
ℓγ(t)

)
+δγ(t)

∂αγ

∂s

(
t, ℓγ(t)

)
.

By applying Rauch’s comparison theorem on Jacobi fields, we have

⟨
γ̇(Tk̂),

(
∇ ∂

∂t

∂αγ

∂s

)(
Tk̂, ℓγ(Tk̂)

)⟩
=
⟨
γ̇(Tk̂),

(
∇ ∂

∂s

∂αγ

∂t

)(
Tk̂, ℓγ(Tk̂)

)⟩
=
⟨
ZT

k̂

(
ℓγ(Tk̂)

)
+δγ(Tk̂)

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)
,∇ ∂

∂s
ZT

k̂

(
ℓγ(Tk̂)

)⟩
=
⟨
ZTk̂

(
ℓγ(Tk̂)

)
,∇ ∂αγ

∂s

ZTk̂

(
ℓγ(Tk̂)

)⟩
= ∥ZTk̂

(
ℓγ(Tk̂)

)
∥2 ×

⟨
ZTk̂

(
ℓγ(Tk̂)

)
,∇ ∂αγ

∂s

ZTk̂

(
ℓγ(Tk̂)

)⟩
∥ZTk̂

(
ℓγ(Tk̂)

)
∥2

≥ ∥ZTk̂

(
ℓγ(Tk̂)

)
∥2 ×

⟨
Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)
,∇ ∂αγ̂

∂s

Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)⟩
∥Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)
∥2

=
∥ZTk̂

(
ℓγ(Tk̂)

)
∥2

∥Ẑτ
k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)
∥2

×
⟨
Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)
,∇ ∂α̂γ̂

∂s

Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)⟩
.

As we have Zt(ℓγ(t)) = γ̇(t)− δγ(t)
∂αγ

∂s

(
t, ℓγ(t)

)
, the Jacobi field Zt satisfies Zt(0) = 0

and ∥Zt

(
ℓγ(t)

)
∥2 = 1− {δγ(t)}2, because we have

1 = ∥γ̇(t)∥2 =
∥∥∥Zt

(
ℓγ(t)

)
+δγ(t)

∂αγ

∂s
(t, ℓγ(t))

∥∥∥2
= ∥Zt

(
ℓγ(t)

)
∥2 + 2δγ(t)

⟨
Zt

(
ℓγ(t)

)
,
∂αγ

∂s
(t, ℓγ(t))

⟩
+δ2γ(t)

∥∥∥∂αγ

∂s

(
t, ℓγ(t)

)∥∥∥2
= ∥Zt

(
ℓγ(t)

)
∥2 + δ2γ(t).

By same computation we have
∥∥Ẑt

(
ℓk̂(t; c)

)∥∥2 = 1− {δk̂(t; c)}2.

As δγ
(
Tk̂
)
= δk̂

(
τk̂(ℓγ(Tk̂); c); c

)
, we have

∥∥ẐTk̂

(
ℓk̂(Tk̂; c)

)∥∥ =
∥∥Zτγ(ℓk̂(Tk̂;c))

(
ℓk̂(Tk̂; c)

)∥∥.
Continuing our computation on the second term of the right-hand side of (4.10), we
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have⟨
γ̇(Tk̂),∇ ∂

∂t

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
≥
⟨
Ẑτ

k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)
,∇ ∂α̂γ̂

∂s

Ẑτ
k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)⟩
=
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂s

∂α̂γ̂

∂t

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
=
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
.

Thus, we obtain

dδγ
dt

(Tk̂) > −k̂
√

1− {δk̂
(
τk̂(ℓγ(Tk̂); c)

)
}2

+
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
= k̂
⟨
J ˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,
∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
+
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
=

d

dt
δk̂
(
τk̂(ℓγ(Tk̂); c); c

)
=

d

du
δk̂
(
τk̂(ℓγ(u); c); c

)∣∣∣
u=Tk̂

.

By the maximality of Tk̂, we find that it is a contradiction, because we have δγ(Tk̂) >

δk̂
(
τk̂(ℓγ(Tk̂); c); c

)
for 0 ≤ Tk̂ < ϵ3. Thus, we find that if Tk̂ < T then ℓγ(Tk̂) =

ℓk̂(R(k̂; c); c) holds. This means that either Tk̂ = T holds or Tk̂ < T and ℓγ(Tk̂) =

ℓk̂(R(k̂; c) ; c) holds.

We take a monotone decreasing sequence {k̂j}∞j=1 with k̂j > |k| and limj→∞ k̂j = |k|.

Taking a subsequence, if we need, the above argument shows that one of the following

conditions holds for all j:

1) Tk̂j = T ,

2) Tk̂j < T and ℓγ(Tk̂j) = ℓk̂j(R(k̂j; c) ; c).

In the first case it is clear that limj→∞ Tk̂j = T . By definition of Tk̂ we find

ℓγ(T ) ≤ lim
j→∞

ℓk̂j(R(k̂j; c); c) = ℓ|k|(R(|k|; c); c) = ℓk(R(k; c); c),

and have Tγ(c) = T . In the second case, as we have ℓ′γ(t) = δγ(t) > 0 in the interior of

∪j[0, Tk̂j ] because δk̂
(
τk̂(ℓγ(t); c); c

)
> 0, the function ℓγ is monotone increasing on this

domain. Since the sequence {ℓk̂j(R(k̂j; c); c)}
∞
j=1 is monotone increasing by Lemmas

4.4, 4.5, 4.6 and Propositions 4.3, 4.5, 4.7. Because we have ℓγ(Tk̂j) = ℓk̂j(R(k̂j; c); c),
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we see the sequence {ℓγ(Tk̂j)}
∞
j=1 is monotone increasing. As ℓγ is monotone increas-

ing on ∪j[0, Tk̂j ], we find that {Tk̂j}
∞
j=1 is a monotone increasing sequence. Hence

limj→∞ Tk̂j exists including the case limj→∞ Tk̂j = ∞. We set limj→∞ Tk̂j = T∗. We

then have

ℓγ(T∗) = lim
j→∞

ℓγ(Tk̂j) = lim
j→∞

ℓk̂j(R(k̂j; c); c) = ℓ|k|(R(|k|; c) : c),

which shows T∗ = Tγ(c). In each case, as limk̂→|k| δk̂
(
τk̂(ℓγ(t); c); c

)
= δk

(
τk(ℓγ(t); c); c

)
for each t, we obtain δγ(t) ≥ δk

(
τk(ℓγ(t); c); c

)
for 0 ≤ t ≤ Tγ(c). Since δk

(
τk(ℓγ(t); c); c

)
> 0 for 0 ≤ t < Tγ(c), we see Rγ ≥ Tγ(c).

We next compare ℓγ(t) and ℓk(t; c). For a positive k̂ with |k| < k̂ we take a maximal

positive Sk̂ ≤ min{T,R(k̂; c)} satisfying ℓγ(t) ≥ ℓk̂(t; c) for 0 < t ≤ Sk̂. We shall show

that Sk̂ = min{T,R(k̂; c)}. If we suppose Sk̂ < min{T,R(k̂; c)}, by the maximality

of Sk̂, we get ℓγ(Sk̂) = ℓk̂(Sk̂; c). Since ℓk̂(Sk̂; c) ≤ ℓk̂(R(k̂; c); c) < ℓk(R(k; c); c), we

find Sk̂ < Tγ(c). Hence by the above argument on string-cosines, we have δγ(Sk̂) ≥

δk
(
τk(ℓγ(Sk̂); c); c

)
. By Propositions 4.3, 4.5 and 4.7, we have

δγ(Sk̂) ≥ δk
(
τk(ℓγ(Sk̂); c); c

)
= δk

(
τk(ℓk̂(Sk̂; c); c); c

)
≥ δk

(
τk(ℓk(Sk̂; c); c); c

)
= δk(Sk̂; c) > δk̂(Sk̂; c).

By the maximality of Sk̂, we see that it is a contradiction. We hence have Sk̂ =

min{T,R(k̂; c)}. We take a monotone decreasing sequence {k̂j}∞j=1 satisfying k̂j > |k|

and limj→∞ k̂j = |k|. Since limj→∞R(k̂j; c) = R(k; c), when T < R(k; c) we may

suppose T < R(k̂j; c). Thus we have Sk̂j
= T in this case. As limj→∞ ℓk̂j(t; c) =

ℓk(t; c), we have ℓγ(t) ≥ ℓk(t; c) for 0 ≤ t ≤ T in this case. When T ≥ R(k; c), as

R(k; c) > R(k̂j; c), we have Sk̂j
= R(k̂j; c). In this case, we obtain ℓγ(t) ≥ ℓk(t; c) for

0 ≤ t ≤ R(k; c) = limj→∞R(k̂j; c). In this case, if R(k; c) < Rγ ≤ 2R(k; c), then for

R(k; c) < t ≤ Rγ we have ℓγ(t) > ℓγ(R(k̂; c)) ≥ ℓk(R(k; c); c) ≥ ℓk(t; c).

We now check the relationship between R(k; c) and Tγ(c). When T ≥ R(k; c) we

have ℓγ(t) ≥ ℓk(t; c) for 0 ≤ t ≤ R(k; c). Thus we have Tγ(c) ≤ R(k; c).

Next we study the case that equalities hold. First we study the case that δγ(t0) =

δk
(
τk(ℓγ(t0); c); c

)
holds. Along the same lines as above estimate on the derivative of
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δγ, by taking a trajectory-harp α̂γ̂ associated with a trajectory γ̂ for Bk on CMn(c)

and by changing Tk̂ to t0, we have

(4.11)

dδγ
dt

(t0) = k
⟨
Jγ̇(t0),

∂αγ

∂s

(
t0, ℓγ(t0)

)⟩
+
⟨
γ̇(t0),

(
∇ ∂

∂t

∂αγ

∂s

)(
t0, ℓγ(t0)

)⟩
≥ −|k|

√
1− δγ(t0)2

+
⟨
˙̂γ
(
τk̂(ℓγ(t0); c)

)
,
(
∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

)(
τk(ℓγ(t0); c), ℓγ(t0)

)⟩
=
dδk
dt

(
τk(ℓγ(t0); c); c

)
=
dδk
du

(
τk(ℓγ(u); c); c

)∣∣∣
u=t0

.

If we suppose
dδγ
dt

(t0) >
dδk
du

(
τk(ℓγ(u); c); c

)∣∣∣
u=t0

, we have

dδγ
dt

(t) >
dδk
du

(
τk(ℓγ(u); c); c

)∣∣∣
u=t

for t0 − ε ≤ t ≤ t0 with some positive ε. As δγ(t) ≥ δk
(
τk(ℓγ(t); c); c

)
, we have

δγ(t0) =

∫ t0

t0−ε

dδγ
dt

(t) dt+ δγ(t0 − ε) >

∫ t0

t0−ε

dδk
du

(
τk(ℓγ(u); c); c

)
du+ δγ(t0 − ε)

≥
∫ t0

t0−ε

dδk
du

(
τk(ℓγ(u); c); c

)
du+ δk

(
τk(ℓγ(t0 − ε); c); c

)
= δk

(
τk(ℓγ(t0); c); c

)
.

Hence we see
dδγ
dt

(t0) =
dδk
du

(
τk(ℓγ(u); c); c

)∣∣∣
u=t0

. Thus, we find that the equality holds

in the inequality in (4.11). This means that both of the following equalities hold :

(4.12) k
⟨
Jγ̇(t0),

∂αγ

∂s

(
t0, ℓγ(t0)

)⟩
= −|k|

√
1− δγ(t0)2.

(4.13)

⟨
γ̇(t0),

(
∇ ∂

∂t

∂αγ

∂s

)(
t0, ℓγ(t0)

)⟩
=
⟨
˙̂γ
(
τk̂(ℓγ(t0); c)

)
,
(
∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

)(
τk(ℓγ(t0); c), ℓγ(t0)

)⟩
.

The equality (4.12) shows that
∂αγ

∂s

(
t0, ℓγ(t0)

)
is contained in the complex line in

Tγ(t0)M spanned by γ̇(t0). Since γ̇(t0) = Zt0

(
ℓγ(t0)

)
+δγ(t0)

∂αγ

∂s

(
t0, ℓγ(t0)

)
with the Ja-

cobi field Zt0(s) =
∂αγ

∂t
(t0, s), this means that Zt0

(
ℓγ(t0)

)
is parallel to J

∂αγ

∂s

(
t0, ℓγ(t0)

)
because Zt0

(
ℓγ(t0)

)
is orthogonal to

∂αγ

∂s

(
t0, ℓγ(t0)

)
. As we used Rauch’s comparison



§4.3. Comparison theorems on string-lengths and string-cosines of trajectory-harps 125

theorem to obtain (4.11), the equality (4.13) and Rauch’s comparison theorem (Theo-

rem 3.1) gurantee that Zt0(s)/∥Zt0(s)∥ is parallel along the geodesic s 7→ αγ(t0, s) for

0 ≤ s ≤ ℓγ(t0) and that Riem
(∂αγ

∂t
(t0, s),

∂αγ

∂s
(t0, s)

)
≡ c for 0 ≤ s ≤ ℓγ(t0).

We finally study the case that ℓγ(t0) = ℓk(t0; c) holds. We have t0 = τk
(
ℓγ(t0); c).

As we have δγ(t) ≥ δk
(
τk(ℓγ(t); c); c

)
for 0 ≤ t ≤ Tγ(c), we find

t0 =

∫ t0

0

d

dt
τk
(
ℓγ(t); c) dt =

∫ t0

0

δγ(t)

δk
(
τk(ℓγ(t); c); c

) dt ≥ ∫ t0

0

dt = t0.

Thus we obtain δγ(t) = δk
(
τk(ℓγ(t); c); c

)
for 0 ≤ t ≤ t0. Hence we find by the above

argument that Riem
(∂αγ

∂t
(t, s),

∂αγ

∂s
(t, s)

)
≡ c and that

∂αγ

∂t
(t, s) = ψ(t, s)J

∂αγ

∂s
(t, s)

for 0 ≤ s ≤ ℓγ(t) and 0 ≤ t ≤ t0 with a smooth function ψ. We then obtain

∇ ∂αγ
∂s

∂αγ

∂s
= 0,

∇ ∂αγ
∂s

∂αγ

∂t
=
∂ψ

∂s
J
∂αγ

∂s
,

∇ ∂αγ
∂t

∂αγ

∂t
=
∂ψ

∂t
J
∂αγ

∂s
+ ψJ∇ ∂αγ

∂s

∂αγ

∂t
=
∂ψ

∂t
J
∂αγ

∂s
− ψ

∂ψ

∂s

∂αγ

∂s
.

Hence HBγ(t0) is totally geodesic. This completes the proof. □

Next we give estimates from above under a condition that sectional curvatures of

underlying manifolds are bounded from below along the same lines as in the proof of

Theorem 4.2. For a trajectory-harp αγ associated with a trajectory γ : [0, T ] → M ,

by putting p = γ(0) we set

Cγ = sup{t ∈ [0, T ] | ℓγ(τ) ≤ c
HBγ(T )
0 (p) for 0 ≤ τ ≤ t},

where c
HBγ

0 (p) denotes the minimum of first conjugate values of p along geodesics

{s 7→ αγ(t, s) | 0 < t ≤ T}. We say αγ is holomorphic at its arch if
∂αγ

∂s

(
t, ℓγ(t)

)
is

contained in the complex line spanned by γ̇(t) for 0 < t ≤ Rγ. WhenM is an orientable

Riemann surface, by regarding it as a Kähler manifold, we see every trajectory-harp

is holomorphic at its arch.

Theorem 4.3. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →

M for a non-trivial Kähler magnetic field Bk on a Kähler manifold M . Suppose that
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it is holomorphic at its arch and sectional curvatures tangent to its harp-body HBγ(T )

are not smaller than a constant c. We then have

ℓγ(t) ≤ ℓk(t; c) and δγ(t) ≤ δk
(
τk(ℓγ(t); c); c

)
for 0 < t ≤ min{Cγ, Rγ}.

Moreover, we have the following if equalities hold in the above estimates.

(1) If δγ(t0) = δk
(
τk(ℓγ(t0); c); c

)
holds at some t0 with 0 < t0 ≤ min{Rγ, Cγ},

then we have the following :

a) the derivatives of string-cosine satisfy δ′γ(t0) = δ′k
(
τk(ℓγ(t0); c); c

)
;

b) The vector
∂αγ

∂t
(t0, s) is parallel to J

∂αγ

∂s
(t0, s) for 0 ≤ s ≤ ℓγ(t0);

c) The sectional curvature of the tangent plane spanned by
∂αγ

∂t
(t0, s) and

∂αγ

∂s
(t0, s) is equal to c for 0 ≤ s ≤ ℓγ(t0).

(2) If ℓγ(t0) = ℓk(t0; c) holds at t0 with 0 < t0 ≤ min{Rγ, Cγ}, then the harp-body

HBγ(t0) is totally geodesic, holomorphic and of constant sectional curvature

c. In particular, ℓγ(t) = ℓk(t; c) and δγ(t) = δk(t0; c) hold for 0 ≤ t ≤ t0.

To show this we need the following local estimations.

Lemma 4.8. For a trajectory-harp αγ associated with a trajectory γ : [0, T ] → M

for a non-trivial Kähler magnetic field Bk on M , and for a positive k̂ satisfying |k| >

k̂, there exists sufficiently small positive ϵ such that the following properties hold for

0 ≤ t ≤ ϵ :

δ′′
k̂
(t; c) < 0, δ′γ(t) < δ′

k̂
(t; c) < 0, δγ(t) < δk̂(t; c), ℓγ(t) < ℓk̂(t; c).

Proof. We define a smooth function F by F (t) = δ′
k̂
(t; c)− δ′γ(t). By Lemma 4.3

we have

F ′(0) = δ′
k̂
(0; c)− δ′γ(0) = 0− 0 = 0,

F ′′(0) = δ′′
k̂
(0; c)− δ′′γ(0) = −k̂2/4− (−k2/4) = (k2 − k̂2)/4 > 0.

If we apply Taylor’s theorem to F , we see that there exists a small positive ϵ1 satisfying

F (t) = F (0) + F ′(0)t+ 0(t2) > 0
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for 0 < t ≤ ϵ1. We hence have δ′
k̂
(t; c) > δ′γ(t) for 0 < t ≤ ϵ1.

We define another function G by G(t) = δk̂(t; c)− δγ(t). We then have

G(t) =

∫ t

0

F (s)ds+G(0).

Since Lemma 4.3 guarantees

G(0) = δk̂(0; c)− δγ(0) = 1− 1 = 0,

hence we have G(t) > 0 for 0 < t ≤ ϵ1.

We define one more function H by H(t) = ℓk̂(t; c)− ℓγ(t). We then have

H(t) =

∫ t

0

G(s)ds+H(0)

by Lemma 4.2. As H(0) = ℓk̂(0; c)− ℓγ(0) = 0, we have H(t) > 0 for 0 < t ≤ ϵ1.

As δ′′k(0) = −k̂2/4 and δk̂(· ; c) is smooth, there is a positive ϵ2 satisfying that

δ′′
k̂
(t; c) < 0 for 0 ≤ t ≤ ϵ2. By choosing ϵ = min{ϵ1, ϵ2}, we get the conclusion. □

Proof of Theorem 4.3. We take a positive k̂ so that 0 < k̂ < |k|. We estimate

δγ and ℓγ by δk̂(t; c) and ℓk̂(t; c) from above, respectively.

First we study near the origin. By Lemma 4.8, we have ℓγ(t) < ℓk̂(t; c) and δγ(t) <

δk̂(t; c) for 0 < t < ϵ. Since τk(· ; c) is monotone increasing, we have τk̂
(
ℓγ(t); c

)
<

τk̂
(
ℓk̂(t; c); c

)
= t for 0 < t < ϵ. As δk̂(· ; c) is monotone decreasing, we find δγ(t) <

δk̂(t; c) < δk̂
(
τk̂(ℓγ(t); c); c

)
for 0 < t < ϵ.

We take a maximal positive Tk̂
(
≤ min{Rγ, Cγ}

)
so that the following conditions

i) ℓγ(t) ≤ ℓk̂
(
R(k̂; c); c

)
,

ii) δγ(t) ≤ δk̂
(
τk̂(ℓγ(t); c); c

)
hold for 0 ≤ t ≤ Tk̂. The above argument guarantees that Tk̂ is positive. We show

Tk̂ = min{Rγ, Cγ}. To do this we shall show that if we suppose Tk̂ < min{Rγ, Cγ}

then ℓγ(t) = ℓk̂
(
R(k̂; c); c

)
holds. We here suppose that both Tk̂ < min{Rγ, Cγ} and

ℓγ(t) < ℓk̂
(
R(k̂; c); c

)
hold. By maximality of Tk̂, we have δγ

(
Tk̂
)
= δk̂

(
τk̂(ℓγ(Tk̂); c); c

)
.

We compute the derivative of δγ at Tk̂ :

(4.14)
dδγ
dt

(Tk̂) = k
⟨
Jγ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
+
⟨
γ̇(Tk̂),∇ ∂

∂t

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
.
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Since αγ is holomorphic at its arch, by definition of δγ̂(t), the first term of the right-

hand side of (4.14) is estimated as⟨
Jγ̇(Tk̂),

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
= −|k|

√
1− {δγ(Tk̂)}2 < −k̂

√
1− {δγ(Tk̂)}2

because 0 < k̂ < |k|.

In order to estimate the second term of (4.14), we take a trajectory-harp α̂γ̂ as-

sociated with a trajectory γ̂ :
[
0, R(k̂; c)

]
→ CM1(c) for Bk̂ on CM1(c). We set

Zt(s) =
∂αγ

∂t
(t, s) and Ẑt(s) =

∂α̂γ̂

∂t
(t, s), which are Jacobi fields along geodesics

s 7→ αγ(t, s) and s 7→ α̂γ̂(t, s), respectively. Since each geodesic s 7→ αγ(t, s) is of

unit speed, we see
⟨
Zt(s),

∂α

∂s
(t, s)

⟩
= 0. As we have γ(t) = αγ

(
t, ℓγ(t)

)
, we have

Zt(ℓγ(t)) = γ̇(t) − δγ(t)
∂αγ

∂s

(
t, ℓγ(t)

)
. Thus the Jacobi field satisfies Zt(0) = 0 and

∥Zt

(
ℓγ(t)

)
∥2 = 1− {δγ(t)}2 because we have

1 = ∥γ̇(t)∥2 = ∥Zt

(
ℓγ(t)

)
+δγ(t)

∂αγ

∂s
(t, ℓγ(t))∥2

= ∥Zt

(
ℓγ(t)

)
∥2 + {δγ(t)}2

∥∥∥∂αγ

∂s

(
t, ℓγ(t)

)∥∥∥2
+ 2δγ(t)

⟨
Zt

(
ℓγ(t)

)
,
∂αγ

∂s
(t, ℓγ(t))

⟩
= ∥Zt

(
ℓγ(t)

)
∥2 + {δγ(t)}2.

Similarly, the Jacobi field Ẑt satisfies Ẑt(0) = 0 and
∥∥Ẑt

(
ℓk̂(t; c)

)∥∥2= 1 − {δk̂(t; c)}2.

As δγ
(
Tk̂
)
= δk̂

(
τk̂(ℓγ(Tk̂); c); c

)
, we have ∥Zt

(
ℓγ(Tk̂)

)
∥ =

∥∥Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)∥∥. Since

Tk̂ ≤ Cγ, by Rauch’s comparison theorem, we have ℓγ
(
Tk̂
)
< c

HBγ(T )
0 (γ(0)) ≤ π/

√
c,

thus we do not have conjugate points of γ(0) along the geodesic s 7→ αγ(Tk̂, s). By

applying Rauch’s comparison theorem on Jacobi fields, we have⟨
γ̇(Tk̂),∇ ∂αγ

∂t

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)⟩
=
⟨
ZT

k̂

(
ℓγ(Tk̂)

)
+δγ(Tk̂)

∂αγ

∂s

(
Tk̂, ℓγ(Tk̂)

)
,∇ ∂αγ

∂s

ZT
k̂

(
ℓγ(Tk̂)

)⟩
=
⟨
ZTk̂

(
ℓγ(Tk̂)

)
,∇ ∂αγ

∂s

ZTk̂

(
ℓγ(Tk̂)

)⟩
=
∥∥ZTk̂

(
ℓγ(Tk̂)

)∥∥2 × ⟨ZTk̂

(
ℓγ(Tk̂)

)
,∇ ∂αγ

∂s

ZTk̂

(
ℓγ(Tk̂)

)⟩
∥ZTk̂

(
ℓγ(Tk̂)

)
∥2
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≤
∥∥ZT

k̂

(
ℓγ(Tk̂)

)∥∥2 ×
⟨
Ẑτ

k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)
,∇ ∂α̂γ̂

∂s

Ẑτ
k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)⟩
∥Ẑτk̂(ℓγ(Tk̂);c)

(
ℓγ(Tk̂)

)
∥2

=
⟨
Ẑτ

k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)
,∇ ∂α̂γ̂

∂s

Ẑτ
k̂
(ℓγ(Tk̂

);c)

(
ℓγ(Tk̂)

)⟩
=
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂s

∂α̂γ̂

∂t

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
=
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂); c)

)
,∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
.

Thus, we get

dδγ
dt

(Tk̂) < −k̂
√

1− {δk̂
(
τk̂(ℓγ(Tk̂); c); c

)
}2

+
⟨
˙̂γ
(
τk̂(ℓγ(Tk̂))

)
,∇ ∂α̂γ̂

∂t

∂α̂γ̂

∂s

(
τk̂(ℓγ(Tk̂); c), ℓγ(Tk̂)

)⟩
=
dδk̂
dt

(
τk̂(ℓγ(Tk̂); c); c

)
=
dδk̂
du

(
τk̂(ℓγ(u); c); c

)∣∣∣
u=Tk̂

.

As we supposed ℓγ(Tk̂) < ℓk̂
(
R(k̂; c); c

)
, by the maximality of Tk̂, we find that it is a

contradiction. Thus, if we suppose Tk̂ < min{Rγ, Cγ}, then ℓγ(Tk̂) = ℓk̂
(
R(k̂; c); c

)
.

But this shows

δγ(Tk̂) ≤ δk̂
(
τk̂(ℓγ(Tk̂); c); c

)
= δk̂(R(k̂; c); c) = 0,

which tells us Tk̂ ≥ Rγ. Thus it is again contradict to Tk̂ < min{Rγ , Cγ}. We hence

find that Tk̂ = min{Rγ, Cγ}.

Let {k̂j}∞j=1 be a monotone increasing sequence of positive constants satisfying

k̂j < |k| and limj→∞ k̂j = |k|. Since limj→∞ δk̂j
(
τk̂j(ℓγ(t); c); c

)
= δk

(
τk(ℓγ(t); c); c

)
, we

have δγ(t) ≤ δk̂
(
τk̂(ℓγ(t); c); c)

)
for 0 ≤ t ≤ min{Rγ, Cγ}.

We next compare ℓγ(t) and ℓk(t; c). For k̂ satisfying 0 < k̂ < |k| we take a maximal

positive Sk̂

(
≤ min{Rγ, Cγ}

)
which satisfies ℓγ(t) ≤ ℓk̂(t; c) for 0 ≤ t ≤ Sk̂. We shall

show that Sk̂ = min{Rγ, Cγ}. To do this we suppose Sk̂ < min{Rγ, Cγ}. We then

have ℓγ(Sk̂) = ℓk̂(Sk̂; c). Therefore, by Proposition 4.7, we find

δγ(Sk̂) ≤ δk
(
τk(ℓγ(Sk̂); c); c

)
< δk̂

(
τk(ℓγ(Sk̂); c); c

)
< δk̂

(
τk̂(ℓγ(Sk̂); c); c

)
= δk̂

(
τk̂(ℓk̂(Sk̂; c); c); c

)
= δk̂(Sk̂; c).

By the maximality of Sk̂, also we find a contradiction. Thus Sk̂ = min{Rγ , Cγ}. As

limk̂→|k| ℓk̂(t; c) = ℓk(t; c), we get ℓγ(t) ≤ ℓk(t; c) for 0 ≤ t ≤ min{Rγ, Cγ}.
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We here consider the case that δγ(t0) = δk
(
τk(ℓγ(t0); c); c

)
holds. Along the same

lines as in the above, by taking a trajectory-harp α̂γ̂ associated with a trajectory γ̂ for

Bk on CM1(c), we have

dδγ
dt

(t0) = −|k|
√
1− δγ(t0)2 +

⟨
Zt0

(
ℓγ(t0)

)
,∇ ∂αγ

∂s

Zt0

(
ℓγ(t0)

)⟩
≤ −|k|

√
1− δk

(
τk(ℓγ(t0); c); c

)2
+
⟨
Ẑτk(ℓγ(t0);c)

(
ℓγ(t0)

)
,∇ ∂α̂γ̂

∂s

Ẑτk(ℓγ(t0);c)

(
ℓγ(t0)

)⟩
=

d

du
δk
(
τk(ℓγ(u); c); c

)∣∣∣
u=t0

,

(4.15)

where Ẑt(s) =
∂α̂γ̂

∂t
(t, s). If we suppose

dδγ
dt

(t0) <
dδk
du

(
τk(ℓγ(u); c); c

)∣∣
u=t0

, then there

is a positive ε satisfying that
dδγ
dt

(t) <
dδk
du

(
τk(ℓγ(u); c); c

)∣∣
u=t

for t0 − ε ≤ t ≤ t0. As

we have δγ(t) ≤ δk
(
τk(ℓγ(t); c); c

)
, we have

δγ(t0) =

∫ t0

t0−ε

dδγ
dt

(t) dt+ δγ(t0 − ε) <

∫ t0

t0−ε

dδk
dt

(
τk(ℓγ(t); c); c

)
dt+ δγ(t0 − ε)

≤
∫ t0

t0−ε

dδk
dt

(
τk(ℓγ(t); c); c

)
dt+ δk

(
τk(ℓγ(t0 − ε); c); c

)
= δk

(
τk(ℓγ(t0); c); c

)
Thus, we see

dδγ
dt

(t0) =
dδk
du

(
τk(ℓγ(u); c); c

)∣∣
u=t0

. Therefore (4.15) shows that⟨
Zt0

(
ℓγ(t0)

)
,∇ ∂αγ

∂s

Zt0

(
ℓγ(t0)

)⟩
=
⟨
Ẑτk(ℓγ(t0);c)

(
ℓγ(t0)

)
,∇ ∂α̂γ̂

∂s

Ẑτk(ℓγ(t0);c)

(
ℓγ(t0)

)⟩
.

Rauch’s comparison theorem guarantees that Zt0/∥Zt0∥ is parallel along s 7→ αγ(t0, s)

and Riem
(
Zt0(s),

∂αγ

∂s
(t0, s)

)
≡ c for 0 ≤ s ≤ ℓγ(t0). Since αγ is holomorphic at its

arch, Zt0

(
ℓγ(t0)

)
is contained in the complex line spanned by γ̇(t0). Hence Zt0

(
ℓγ(t0)

)
is parallel to J

∂αγ

∂s

(
t0, ℓγ(t0)

)
.

We finally study the case that ℓγ(t0) = ℓk(t0; c) holds. By this condition we have

τk
(
ℓγ(t0); c

)
= τk

(
ℓk(t0; c); c

)
= t0. As 0 < δγ(t) ≤ δk

(
τk(ℓγ(t); c); c

)
for 0 ≤ t ≤ t0, we

have

t0 =

∫ t0

0

d

dt
τk
(
ℓγ(t); c

)
dt =

∫ t0

0

δγ(t)

δk
(
τk(ℓγ(t); c); c

)dt ≤ ∫ t0

0

dt = t0.

Hence we find δγ(t) = δk
(
τk(ℓγ(t); c); c

)
for 0 ≤ t ≤ t0. Thus we obtain that

∂αγ

∂t
(t, s)

is parallel to J
∂αγ

∂s
(t, s) and Riem

(∂αγ

∂t
(t, s),

∂αγ

∂s
(t, s)

)
≡ c for 0 ≤ t ≤ t0 and
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0 ≤ s ≤ ℓγ(t). Since s 7→ αγ(t, s) is a geodesic of unit speed for each t, we have
∂αγ

∂t
(t, s) = ψ(t, s)J

∂αγ

∂s
(t, s) with a smooth function ψ. We hence find

∇ ∂αγ
∂s

∂αγ

∂s
= 0,

∇ ∂αγ
∂s

∂αγ

∂t
=
∂ψ

∂s
J
∂αγ

∂s
,

∇ ∂αγ
∂t

∂αγ

∂t
=
∂ψ

∂t
J
∂αγ

∂s
+ ψJ∇ ∂αγ

∂s

∂αγ

∂t
=
∂ψ

∂t
J
∂αγ

∂s
− ψ

∂ψ

∂s

∂αγ

∂s
.

Hence HBγ(t0) is totally geodesic. □
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4. Volumes of trajectory-balls

As an application of comparison theorems on string-lengths of trajectory-harps,

we give estimates on volumes of trajectory-balls. By using magnetic exponential map

Bkexpp : TpM →M defined in §3.1, we set

Bk
r (p) =

{
Bkexpp(tv)

∣∣ 0 ≤ t < r, v ∈ UpM
}

and call it a trajectory-ball of arc-radius r centered at p. Since B0expp is the ordinary

exponential map expp, we see that B0
r (p) is a geodesic-ball of radius r.

At an arbitrary point p ∈M , we define the Bk-injectivity radius ιk(p) at p by

ιk(p) = sup
{
r > 0

∣∣ Bkexpp|Br(0p) is injective
}
,

where Br(0p)
(
⊂ TpM

)
is a ball of radius r centered at the origin 0p of TpM ∼= R2n.

Clearly, ι0(p) is the ordinary injectivity radius at p. For a positive c and a constant k,

we defined in §3.2 a function sk(t; c) : R → R by

sk(t; c) =


(1/

√
k2 + c) sin(

√
k2 + c t), when k2 + c > 0,

t, when k2 + c = 0,

(1/
√

|c| − k2) sinh(
√
|c| − k2 t), when k2 + c < 0.

In order to simplify the expression of our computation, we put its derivative as ck(t; c),

that is, we set a function ck(t; c) : R → R by

ck(t; c) =


cos(

√
k2 + c t), when k2 + c > 0,

1, when k2 + c = 0,

cosh(
√
|c| − k2 t), when k2 + c < 0.

These functions satisfy the relation

(k2 + c){sk(t; c)}2 + {ck(t; c)}2 = 1.

We note also

s0(t; c) =


(1/

√
c) sin(

√
ct), when c > 0,

t, when c = 0,

(1/
√

|c|) sinh(
√

|c|t), when c < 0,
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and

c0(t; c) =


cos(

√
ct), when c > 0,

1, when c = 0,

cosh(
√

|c|t), when c < 0.

Therefore, these functions satisfy the following.

Lemma 4.9. The functions s0(t; c) and c0(t; c) satisfy

s0(t; c) = 2s0(t/2; c)c0(t/2; c),

for 0 < t < π/
√
k2 + c.

For geodesic-balls we have following estimates on their volumes studied by Bishop.

Theorem 4.4 (Bishop’s comparison theorem 1). Let M be a Riemannian mani-

fold of dimension m. For an arbitrary unit tangent vector u ∈ UM , we take a ge-

odesic σu with σ̇u(0) = u. If sectional curvatures satisfy max{⟨R(σ̇(t), v)v, σ̇(t)⟩|v ∈

Uσ(t)M, v⊥σ̇(0)} ≤ c with some constant c for 0 ≤ t < cσ(σ(0)), where cσ(σ(0)) is the

first conjugate value along σ. Then we have

(1) the function t 7→ Θ(t, u)/{s0(t, c)}m−1 is monotone decreasing for 0 ≤ t ≤

cσ(σ(0)).

(2) Θ(t, u) ≥ {s0(t, c)}m−1 for 0 ≤ t ≤ cσ(σ(0)).

In particular, the volume of geodesic-ball Bℓ(p) of radius ℓ is estimated as

vol
(
Bℓ(p)

)
≥ ωm−1

∫ ℓ

0

{s0(s; c)}m−1ds,

where ωm−1 denotes the volume of a standard unit sphere Sm−1(1).

Theorem 4.5 (Bishop’s comparison theorem 2). Let M be a Riemannian mani-

fold of dimension m. For an arbitrary unit tangent vector u ∈ UM , we take a ge-

odesic σu with σ̇u(0) = u. If sectional curvatures satisfy min{⟨R(σ̇(t), v)v, σ̇(t)⟩|v ∈

Uσ(t)M, v⊥σ̇(0)} ≥ c with some constant c for 0 ≤ t < cσ(σ(0)). Then we have

(1) the function t 7→ Θ(t, u)/{s0(t, c)}m−1 is monotone increasing for 0 ≤ t ≤

cσ(σ(0)).
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(2) Θ(t, u) ≤ {s0(t, c)}m−1 for 0 ≤ t ≤ cσ(σ(0)).

In particular, the volume of geodesic-ball Bℓ(p) of radius ℓ is estimated as

vol
(
Bℓ(p)

)
≤ ωm−1

∫ ℓ

0

{s0(s; c)}m−1ds.

For a trajectory-harp αγ associated with a trajectory γ : [0, T ] →M for Bk, we set

Ikγ = sup{t | ℓγ(τ) ≤ ι0(γ(0)) for 0 ≤ τ ≤ t},

and set Ik(p) = inf Ikγ , where infimum is taken over the set of all trajectory-harps

associated with trajectories emanating from p. When r ≤ ι0(p), for each trajectory γ :

[0, r] →M with γ(0) = p we can take a trajectory-harp associated with γ and ℓγ(τ) ≤

τ ≤ r for 0 ≤ τ ≤ r, we see Ik(p) ≥ ι0(p). We set Rk(p) = inf Rγ, where infimum is

taken over the set of all trajectory-harps associated with trajectories emanating from

p. When sectional curvatures of M satisfy RiemM ≤ c with some constant c, then we

have Rk(p) ≥ ℓk(R(k; c); c) by Theorem 4.2.

Theorem 4.6. LetM be a Kähler manifold of complex dimension n whose sectional

curvatures satisfy RiemM ≤ c with some constant c. For an arbitrary r with 0 < r ≤

min{c0(p), Ik(p), Rk(p)}, we have

vol
(
Bk

r (p)
)
≥ ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1{
1− c s2k(t/2; c)

}n−1
ck(t/2; c) dt.

Proof. For an arbitrary point q ∈ Bk
r (p) we have a trajectory γ : [0, r] → M

satisfying γ(0) = p and γ(tq) = q with some tq with 0 ≤ tq < r. Theorem 4.2 guarantees

that a trajectory-ball Bk
γ(p) contains a geodesic-ball Bℓk(r;c)(p). As r ≤ ιk(p), we see

ℓk(r; c) ≤ ι0(p). Hence we find that

vol
(
Bk

r (p)
)
≥ vol

(
Bℓk(r;c)(p)

)
.

By applying Bishop’s comparison Theorem 4.4 with ℓ = ℓk(t; c), we obtain

vol
(
Bk

r (p)
)
≥ vol

(
Bℓk(r;c)(p)

)
≥ ω2n−1

∫ ℓk(r;c)

0

{
s0(s; c)

}2n−1
ds.
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By Lemma 4.9, we have

ω2n−1

∫ ℓk(r;c)

0

{
s0(s; c)

}2n−1
ds

= ω2n−1

∫ ℓk(r;c)

0

{
2s0(s/2; c) · c0(s/2; c)

}2n−1
ds

= ω2n−1

∫ ℓk(r;c)

0

{
2s0(s/2; c)

}2n−1×
{
1− cs0(s/2; c)

2
} 2n−1

2 ds

= ω2n−1

∫ r

0

{
2s0
(
ℓk(t; c)/2; c

)}2n−1
{
1− c

{
s0
(
ℓk(t; c)/2; c

)}2} 2n−1
2 dℓk

dt
dt

By Proposition 4.8, we have

= ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1
{
1− c

{
sk(t/2; c)

}2} 2n−1
2

√
1− (k2 + c)s2k(t/2; c)

1− cs2k(t/2; c)
dt

= ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1
{
1− cs2k(t/2; c)

}n−1{
1− (k2 + c)s2k(t/2; c)

}1/2

dt.

Thus we get the conclusion. □

When M is compact, we can give another estimate on volumes of trajectory-balls

by making use of the following Gromov’s comparison theorem on volumes of geodesic

balls.

Theorem 4.7 (Gromov). LetMm be a complete Riemannian manifold whose Ricci

curvatures satisfy RicciM ≥ (m− 1)c. Then for arbitrary positive r, R with r < R, we

have

vol
(
BR(p)

)/
vol
(
Br(p)

)
≤
∫ R

0

{
s0(s; c)

}m−1
ds
/∫ r

0

{
s0(s; c)

}m−1
ds.

When sup{d(p, q)|p, q ∈M} <∞, we call this constant the diameter of M .

Theorem 4.8. Let M be a compact Kähler manifold of diameter R and of complex

dimension n. Suppose its sectional curvatures satisfy c1 ≤ RiemM ≤ c2 with some

constants c1, c2. Then at an arbitrary point p ∈ M , for an arbitrary r with 0 < r ≤

max{c0(p), Ik(p), Rk(p)}, the volume of a trajectory-ball Bk
r (p) of arc-radius r for a
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non-trivial Kähler magnetic field Bk is estimated from below as follows:

vol
(
Bk

r (p)
)
≥ vol(M)∫ R

0

{s0(s; c1)}2n−1ds

∫ ℓk(r;c2)

0

{s0(t; c1)}2n−1 dt.

Proof. As the diameter of M is R, we have M = BR(p) for arbitrary p ∈M . By

applying Theorems 4.2, 4.7, we have

vol
(
Bk

r (p)
)
≥ Vol

(
Bℓk(r;c2)(p)

)
≥ vol(M)∫ R

0

{s0(s; c1)}2n−1ds

∫ ℓk(r;c2)

0

{s0(t; c1)}2n−1 dt.

This completes the proof. □

Next, we give an estimate of volumes of trajectory-balls from above.

Theorem 4.9. Let k be a non-zero constant andM be a Kähler manifold of complex

dimension n whose sectional curvatures satisfy RiemM ≥ c with some constant c. We

take an arbitrary point p ∈ M and an arbitrary r with 0 < r ≤ min{Rk(p), Ck(p)}.

Suppose that every trajectory-harp associated with γ : [0, r] →M for Bk with γ(0) = p

is holomorphic at its arch. Then the volume of a trajectory-ball Bk
r (p) of arc-radius r

for Bk is estimated from above as following :

vol
(
Bk

r (p)
)
≤ ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1{
1− cs2k(t/2; c)

}n−1
ck(t/2; c) dt.

Proof. For an arbitrary point q ∈ Bk
r (p) we have a trajectory γ satisfying γ(0) = p

and γ(tq) = q with some tq with 0 ≤ tq < r. As r ≤ min{Rk(p), Ck(p)}, the trajectory-

ball Bk
r (p) is contained in the geodesic-ball Bcp(p), we can take a trajectory-harp

associated with γ. By Theorem 4.3 we have d(p, q) ≤ ℓγ(tq) ≤ ℓk(tq; c) < ℓk(r; c).

Thus, Bk
r (p) is contained in the geodesic-ball Bℓk(r;c)(p) of radius ℓk(r; c). We put

ℓ = ℓk(r; c). We then have

ds =
dℓk
dt
dt =

ck(t/2; c)√
1− cs2k(t/2; c)

dt =

√
1− (k2 + c)s2(t/2; c)√

1− cs2k(t/2; c)
dt.

Therefore, by applying Bishop’s comparison theorem (Theorem 4.5) and by using the

relation s0
(
ℓk(t/2; c); c

)
= sk(t/2; c), we obtain
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vol
(
Bk

r (p)
)
≤ vol

(
Bℓk(r;c)(p)

)
≤ ω2n−1

∫ ℓk(r;c)

0

{
s0(s; c)

}2n−1
ds

= ω2n−1

∫ ℓk(r;c)

0

{
2s0(s/2; c)

}2n−1{
1− c{s0(s/2; c)}2

} 2n−1
2 ds

= ω2n−1

∫ r

0

{
2s0
(
ℓk(t; c)/2; c

)}2n−1
{
1− c

{
s0
(
ℓk(t; c)/2; c

)}2} 2n−1
2 dℓk

dt
dt

= ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1
{
1− c

{
sk(t/2; c)

}2} 2n−1
2

√
1− (k2 + c)s2k(t/2; c)

1− cs2k(t/2; c)
dt

= ω2n−1

∫ r

0

{
2sk(t/2; c)

}2n−1
{
1− cs2k(t/2; c)

}n−1{
1− (k2 + c)s2k(t/2; c)

}1/2

dt

we get the conclusion. □

For the sake of comparison, we here recall results by Bai and Adachi ([10]).

Proposition 4.9. Let M be a complete Kähler manifold of complex dimension n.

Suppose its sectional curvatures satisfy RiemM ≤ c with some constant c. Then at an

arbitrary point p ∈ M , for an arbitrary r with 0 < r ≤ max{c0(p), Ik(p), Rk(p)}, we

have

vol
(
Bk

r (p)
)
≥ ω2n−1

∫ r

0

sk(t; c){sk/2(t; c)}2n−2dt

= ω2n−1

∫ r

0

22n−2sk(t; c){sk(t/2; 4c)}2n−2dt.

Bai and Adachi ([10]) also gave an estimate from above under a condition that

sectional curvatures are bounded from below.

Proposition 4.10. Let M be a complete Kähler manifold of complex dimension

n. Suppose its sectional curvatures satisfy RiemM ≥ c with some constant c. Then at

an arbitrary point p ∈ M , for an arbitrary r with 0 < r ≤ max{c0(p), Ik(p), Rk(p)},

we have

vol
(
Bk

r (p)
)
≤ ω2n−1

∫ r

0

sk(t; c){sk/2(t; c)}2n−2dt

= ω2n−1

∫ r

0

22n−2sk(t; c){sk(t/2; 4c)}2n−2dt.
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We note that the assumption on r for Proposition 4.9 is weaker than the assumption

in Theorem 4.6. But we can not say clearly which estimate is sharper.
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5. Comparison theorems on zenith angles and lengths of sector-arcs

In this section we study “fatness” of trajectory-harps. For a trajectory-harp αγ

associated with a trajectory γ : [0, T ] →M and constants a, b with 0 ≤ a < b ≤ T , the

restriction αa,b
γ : [a, b] × [0, ℓγ(a)] → M of αγ is said to be a harp-sector. We call the

length ϑγ(a, b) of the curve [a, b] ∋ t 7→ ∂αγ

∂s
(t, 0) ∈ Uγ(0)M in the unit tangent space

Uγ(0)M the zenith angle of this harp-sector, and call the curve [a, b] ∋ t 7→ αγ

(
t, ℓγ(a)

)
∈

M in M the sector-arc of this harp-sector. We denote by sℓγ(a, b) the length of this

sector-arc. We say the restriction αγ|[a,b]×R of αγ on [a, b] × R to be a sub-harp. We

call the curve [a, b] ∋ t 7→ αγ

(
t, ℓγ(t)

)
∈ M the harp-arc of this sub-harp. Generally,

we have ϑγ(a, b) ≥ ∠
(∂αγ

∂s
(a, 0),

∂αγ

∂s
(b, 0)

)
.

Since a trajectory-harp α̂γ̂ associated with an arbitrary trajectory γ̂ for Bk on a

complex space form CMn(c) lies on a totally geodesic CM1(c), the zenith angle of a

harp-sector α̂a,b
γ̂ is the angle between

∂α̂γ̂

∂s
(a, 0) and

∂α̂γ̂

∂s
(b, 0), hence is given by

ϑk(a, b; c) = cos−1 δk(b; c)− cos−1 δk(a; c).

Therefore, the arc-length of the sector-arc is given as ϑk(a, b; c)sk
(
ℓk(a; c); c

)
if 0 ≤

a < b ≤ 2π/
√
k2 + c.

We here study the relationship between zenith angles and string-cosines. When

a = 0, we take a trajectory σ for B−k given as σ(t) = γ(b − t). Suppose we have a

trajectory-harp associated with σ. Also, we suppose that the restriction [0, ℓγ(b)] ∋

s 7→ αγ(b, s) ∈ M is the reversed geodesic segment of the restriction [0, ℓσ(b)] ∋ s 7→

ασ(b, s) ∈ M of the string of ασ at σ(b). Such case occurs when γ(b) is contained in

Bι0(p), for example. We then have

ϑγ(0, b) ≥ ∠
(
γ̇(0),

∂αγ

∂s
(b, 0)

)
= ∠

(
−γ̇(0), ∂ασ

∂s

(
b, ℓσ(b)

))
= cos−1 δσ(b).

When a ̸= 0, the zenith angle of a harp-sector αa,b
γ is not smaller than the angle

between
∂αγ

∂s
(a, 0) and

∂αγ

∂s
(b, 0), hence is estimated by

ϑγ(a, b) ≥ cos−1 δσ(b; c)− cos−1 δσ(a; c).
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We now estimate zenith angles and lengths of sector-arcs under some assumption

on sectional curvatures of the underlying manifold.

First we study the case that sectional curvatures are bounded from above.

Theorem 4.10. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →

M for Bk on a Kähler manifoldM . Suppose that sectional curvatures of planes tangent

to the harp-body HBγ(T ) are not greater than a constant c. Then, for arbitrary a, b

with 0 ≤ a < b ≤ min{Rγ, Cγ}, by setting â = τk
(
ℓγ(a); c

)
and b̂ = τk

(
ℓγ(b); c

)
we

have the following :

(1) The zenith angle satisfies ϑγ(a, b) ≤ ϑk(â, b̂; c);

(2) The length of the sector-arc satisfies sℓγ(a, b) ≤ ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
;

(3) The length of the harp-arc satisfies b− a ≤ b̂− â.

Moreover, if an equality holds in one of the above inequalities, then we have the fol-

lowing :

1)
∂αγ

∂t
(t, s) is parallel to J

∂αγ

∂s
(t, s) for a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t);

2) Riem
(∂αγ

∂s
(t, s),

∂αγ

∂t
(t, s)

)
= c for a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t);

3) The body HBγ(a, b) is totally geodesic and holomorphic.

Proof. We put Zt(s) =
∂αγ

∂t
(t, s), which is a Jacobi field along s 7→ αγ(t, s). By

definition, we have

ϑγ(a, b) =

∫ b

a

∥∥∥(∇ ∂αγ
∂t

∂αγ

∂s

)
(t, 0)

∥∥∥ dt = ∫ b

a

∥∥∥(∇ ∂αγ
∂s

Zt

)
(0)
∥∥∥ dt.

Since the sectional curvature of the plane spanned by Zt(s) and
∂αγ

∂s
(t, s) is not greater

than c for 0 ≤ s ≤ ℓγ(t), by Rauch’s comparison theorem on Jacobi fields, we have

∥Zt(s)∥ ≥
∥∥(∇ ∂αγ

∂s

Zt)(0)
∥∥sk(s; c). We take a trajectory-harp α̂γ̂ associated with a

trajectory γ̂ for Bk on CM1(c) and set Ẑt(s) =
∂α̂γ̂

∂t
(t, s). As we see ∥Zt

(
ℓγ(t)

)
∥2 =

1−δ2γ(t) in the proof of Theorem 4.2, and as δγ(t) ≤ δk
(
τk(ℓγ(t); c); c

)
by the comparison
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theorem on string-cosines (Theorem 4.2), we have

ϑγ(a, b) ≤
∫ b

a

∥Zt

(
ℓγ(t)

)
∥

sk
(
ℓγ(t); c

) dt = ∫ b

a

√
1− δγ(t)2

sk
(
ℓγ(t); c

) dt

≤
∫ b

a

√
1− δk

(
τk(ℓγ(t); c); c

)2
sk
(
ℓγ(t); c

) dt =

∫ b

a

∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(t)

)∥∥
sk
(
ℓγ(t); c

) dt.

We put u = τk
(
ℓγ(t); c

)
. We then have

du

dt
=

δγ(t)

δk
(
τk(ℓγ(t); c); c

) ≥ 1.

Therefore, as â = τk
(
ℓγ(a); c

)
, b̂ = τk

(
ℓγ(b); c

)
, we obtain

ϑγ(a, b) ≤
∫ b̂

â

∥∥Ẑu

(
ℓγ(t)

)∥∥
sk
(
ℓk(u; c); c

) du =

∫ b̂

â

∥∥∥(∇ ∂α̂γ̂
∂s

Ẑu

)
(0)
∥∥∥du = ϑγ̂(â, b̂; c)

because ℓk(u; c) = ℓγ(t).

Next we study the lengths of sector-arcs. By the comparison theorems on string-

cosines (Theorem 4.2), we have

∥Zt

(
ℓγ(t)

)
∥ =

√
1− δγ(t)2 ≤

√
1− δγ

(
τk(ℓγ(t); c); c

)2
=
∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(t)

)∥∥.
As the sectional curvature of the plane spanned by Zt(s) and

∂αγ

∂s
(t, s) is not greater

than c for 0 ≤ s ≤ ℓγ(t), by Rauch’s comparison theorem we find that the function s 7→

∥Zt(s)∥/∥Zτk(ℓγ(t);c)(s)∥ is monotone increasing. Hence we have ∥Zt(s)∥/∥Zτk(ℓγ(t);c)(s)∥

≤ 1 for 0 ≤ s ≤ ℓγ(t). This means that ∥Zt(s)∥ ≤
∥∥Ẑτk(ℓγ(t);c)(s)

∥∥ for an arbitrary s

with 0 < s ≤ ℓγ(t). We therefore obtain by putting u = τk
(
ℓγ(t); c

)
that

sℓγ(a, b) =

∫ b

a

∥Zt

(
ℓγ(a)

)
∥ dt ≤

∫ b

a

∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(a)

)∥∥ dt
≤
∫ b̂

â

∥∥Ẑu(ℓγ(a))
∥∥ dt
du
du ≤

∫ b̂

â

∥∥Ẑu

(
ℓγ(a)

)∥∥ du
=

∫ b̂

â

∥∥Ẑu

(
ℓγ̂(â)

)∥∥ du = sℓγ̂(â, b̂) = ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
.
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At last we study the lengths of harp-arcs. Since ∥γ̇∥ = ∥ ˙̂γ∥ = 1, we have

b− a =

∫ b

a

∥γ̇(t)∥ dt =
∫ b

a

∥∥ ˙̂γ(τk(ℓγ(t); c))∥∥ dt = ∫ b̂

â

∥∥ ˙̂γ(u)∥∥ dt
du
du

=

∫ b̂

â

∥∥ ˙̂γ(u)∥∥ δk(u; c)

δγ
(
τγ(ℓk(u; c))

)du ≤
∫ b̂

â

∥∥ ˙̂γ(u)∥∥ du = b̂− â.

We here study the case that one of the three equalities ϑγ(a, b) = ϑk(â, b̂; c), b−a =

b̂−â and sℓγ(a, b) = ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
holds. Our proof guarantees that this holds

if and only if δγ(t) = δk
(
τk(ℓγ(t); c); c

)
holds for a ≤ t ≤ b. Thus, by Theorem 4.2, we

get the conclusion. □

Corollary 4.1. Let M be a Hadamard Kähler manifold of sectional curvature

RiemM ≤ c < 0. If |k| <
√

|c|, then for an arbitrary trajectory half-line γ for Bk, the

trajectory-harps αγ associated with γ satisfies

∠
(∂α
∂s

(t1, 0),
∂α

∂s
(t2, 0)

)
<

∫ t2

t1

√
|c| − k2

sinh
√
|c| − k2 t

dt

for all t2 > t1 > 0.

In particular, we have a limit limt→∞
∂αγ

∂s
(t, 0) ∈ Uγ(0)M of initial vectors of harp-

strings.

Proof. We take a trajectory-harp αγ associated with γ. Since limt→∞ ℓk(t; c) =

∞, we see γ is unbounded.

We set Zt(s) =
∂αγ

∂t
(t, s), which is a Jacobi field along the geodesic s 7→ αγ(t, s).

We consider another Jacobi field Ẑt(s) = A cosh
(√

|c| s
)
˙̂σ(s)+B sinh

(√
|c| s

)
J ˙̂σ along

a geodesic σ̂ on CH1(c) satisfying Ẑt(0) = 0, where A,B ∈ R constants. As Ẑt(0) = 0,

we see A = 0. Therefore the Jacobi field on CH1(c) is of the form

Ẑt(s) =

∥∥∇ ∂αγ
∂s

Ẑt(0)
∥∥√

|c|
sinh

(√
|c| s

)
J ˙̂σ(s).

By Rauch’s comparison theorem on Jacobi field, if RiemM ≤ c < 0, we have

∥Zt(s)∥ ≥
∥∥Ẑt(s)

∥∥= ∥∥∇ ∂αγ
∂s

Zt(0)
∥∥× 1√

|c|
sinh

√
|c| s

if
∥∥∇ ∂αγ

∂s

Zt(0)
∥∥= ∥∥∇ dσ̂

ds
Ẑt(0)

∥∥.
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For a trajectory-harp αγ, as γ(t) = αγ(t, ℓγ(t)), we have

γ̇(t) = Zt

(
ℓγ(t)

)
+δγ(t)

∂αγ

∂s

(
t, ℓγ(t)

)
.

Hence, we have ∥Zt

(
ℓγ(t)

)
∥2 = 1− δγ(t)

2 ≤ 1. Considering the case s = ℓγ(t), we have

∥∥∇ ∂αγ
∂s

Zt(0)
∥∥≤ √

|c|
∥∥Zt

(
ℓγ(t)

)∥∥
sinh

(√
|c| ℓγ(t)

) <

√
|c|

sinh
(√

|c| ℓγ(t)
) ≤

√
|c|

sinh
(√

|c| ℓk(t; c)
) .

When |k| <
√

|c|, as sinh
(√|c| ℓk(t; c)

2

)
=

√
|c| sinh

(√
|c| − k2 t/2

)√
|c| − k2

, we have

sinh
(√

|c|ℓk(t; c)
)
= 2 sinh

(√|c| ℓk(t; c)
2

)
cosh

(√|c| ℓk(t; c)
2

)

= 2 sinh
(√|c| ℓk(t; c)

2

)√
1 + sinh2

(√|c| ℓk(t; c)
2

)

=
2
√

|c| sinh
(√

|c| − k2 t/2
)√

|c| − k2

√
1 +

|c| sinh2
(√

|c| − k2 t/2
)

|c| − k2

We therefore obtain by noticing |c| − k2 < |c| that∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt = ∫ t2

t1

∥∥∇ ∂αγ
∂s

Zt(0)
∥∥dt ≤ ∫ t2

t1

√
|c|

sinh
√

|c| ℓk(t; c)
dt

=

∫ t2

t1

√
|c|

2
√

|c| sinh
(√

|c| − k2 t/2
)√

|c| − k2

√
1 +

|c| sinh2
(√

|c| − k2 t/2
)

|c| − k2

dt

<

∫ t2

t1

√
|c| − k2

2 sinh(
√
|c| − k2 t/2)

√
1 +

(|c| − k2) sinh2(
√

|c| − k2 t/2)

|c| − k2

dt

=

∫ t2

t1

√
|c| − k2

2 sinh(
√
|c| − k2 t/2)

√
1 + sinh2(

√
|c| − k2 t/2)

dt

=

∫ t2

t1

√
|c| − k2

sinh
√

|c| − k2 t
dt

for all t2 > t1 > 0.
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Since we have

∠
(∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

)
≤ ϑk(t1, t2) =

∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt,
we get the estimate. Our estimate shows that when t > log 2/2(|c| − k2), we have

sinh
(√

|c| − k2 t
)
≥ exp

(√
|c| − k2 t

)
/4. Hence we can estimate ϑk(t1, t2) from above

as ∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt < ∫ t2

t1

4
√

|c| − k2

exp
(√

|c| − k2 t
)dt

≤ 4

exp
(√

|c| − k2 t1
) − 4

exp
(√

|c| − k2 t2
) .

When t2 > t1 > log 2/2(|c| − k2), we get that limt1,t2→∞ ∠
(∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

)
= 0.

Since Uγ(0)M is compact, we find that this Caushy sequence
{∂αγ

∂s
(t, 0)

}
t>0

converges.

We hence get the conclusion. □

We here give an alternative estimate which is uniform with respect to k.

Proposition 4.11. Let M be a Hadamard Kähler manifold of sectional curvature

RiemM ≤ c < 0. If |k| <
√

|c|, then for an arbitrary trajectory half-line γ for Bk, the

trajectory-harps αγ associated with γ satisfies

∠
(∂α
∂s

(t1, 0),
∂α

∂s
(t2, 0)

)
<

∫ t2

t1

2√
|c| t2

dt

for all t2 > t1 > 0.

Proof. We take a trajectory-harp αγ associated with γ.

By the proof of Corollary 4.1, we have

∠
(∂α
∂s

(t1, 0),
∂α

∂s
(t2, 0)

)
=

∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt
=

∫ t2

t1

1

2 sinh
(√

|c| − k2 t/2
)√

|c| − k2

√
1 +

|c| sinh2
(√

|c| − k2 t/2
)

|c| − k2

dt.

We here show

1 +
|c| sinh2

(√
|c| − k2 t/2

)
|c| − k2

>
|c| t2

4
.
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We take a function F (t) = 1+
|c| sinh2

(√
|c| − k2 t/2

)
|c| − k2

− |c| t2

4
. By differentiating F (t),

we have

F ′(t) =
|c|

2
√

|c| − k2
sinh

(√
|c| − k2 t

)
−|c| t

2
.

F ′′(t) =
|c|
2

(
cosh(

√
|c| − k2 t)− 1

)
.

As F ′′(0) = 0, F ′(t) is monotone increasing. Since F ′(0) = 0, F ′(t) > 0 for t > 0.

Hence, F (t) is monotone increasing. As F (0) = 1, we find F (t) > 0 for t ≥ 0.

We take one more function G(t) =
2√

|c| − k2
sinh

(√|c| − k2 t

2

)
−t. By differenti-

ating G(t), we have

G′(t) = cosh
(√|c| − k2 t

2

)
−1 > 0,

for t > 0. As G(0) = 0, we find G(t) > 0 for t > 0.

We therefore find

∠
(∂α
∂s

(t1, 0),
∂α

∂s
(t2, 0)

)
<

∫ t2

t1

1

t

√
|c| t2

4

dt =

∫ t2

t1

2√
|c| t2

dt.

We get the conclusion. □

We give an estimate in the case |k| =
√
|c|.

Corollary 4.2. Let M be a Hadamard Kähler manifold of sectional curvature

RiemM ≤ c < 0. If |k| =
√
|c|, then for an arbitrary trajectory half-line γ for Bk, the

trajectory-harps αγ associated with γ satisfies

∠
(∂α
∂s

(t1, 0),
∂α

∂s
(t2, 0)

)
<

∫ t2

t1

2√
|c| t2

dt

for all t2 > t1 > 0.

In particular, we have a limit limt→∞
∂αγ

∂s
(t, 0) ∈ Uγ(0)M of initial vectors of harp-

strings.

Proof. We take a trajectory-harp αγ associated with γ. Since limt→∞ ℓk(t; c) =

∞, we see γ is unbounded.
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We set Zt(s) =
∂αγ

∂t
(t, s), which is a Jacobi field along the geodesic s 7→ αγ(t, s).

We consider another Jacobi field Ẑt(s) = A cosh
(√

|c| s
)
˙̂σ(s)+B sinh

(√
|c| s

)
J ˙̂σ along

a geodesic σ̂ on CH1(c) satisfying Ẑt(0) = 0, where A,B ∈ R constants. As Ẑt(0) = 0,

we see A = 0. Therefore the Jacobi field on CH1(c) is of the form

Ẑt(s) =

∥∥∇ ∂αγ
∂s

Ẑt(0)
∥∥√

|c|
sinh

(√
|c| s

)
J ˙̂σ(s).

By Rauch’s comparison theorem on Jacobi field, if RiemM ≤ c < 0, we have

∥Zt(s)∥ ≥
∥∥Ẑt(s)

∥∥= ∥∥∇ ∂αγ
∂s

Zt(0)
∥∥× 1√

|c|
sinh

√
|c| s

if
∥∥∇ ∂αγ

∂s

Zt(0)
∥∥= ∥∥∇ dσ̂

ds
Ẑt(0)

∥∥.
For a trajectory-harp αγ , as γ(t) = αγ(t, ℓγ(t)), we have

γ̇(t) = Zt

(
ℓγ(t)

)
+δγ(t)

∂αγ

∂s

(
t, ℓγ(t)

)
.

Hence, we have ∥Zt

(
ℓγ(t)

)
∥2 = 1− δγ(t)

2 ≤ 1.

Considering the case s = ℓγ(t), we have∥∥∇ ∂αγ
∂s

Zt(0)
∥∥≤ √

|c|
∥∥Zt

(
ℓγ(t)

)∥∥
sinh

(√
|c| ℓγ(t)

) <

√
|c|

sinh
(√

|c| ℓγ(t)
) ≤

√
|c|

sinh
(√

|c| ℓk(t; c)
) .

When |k| =
√

|c|, as sinh
(√|c| ℓk(t; c)

2

)
=

√
|c|
2

t, we have

sinh
(√

|c|ℓk(t; c)
)
= 2 sinh

(√|c| ℓk(t; c)
2

)
cosh

(√|c| ℓk(t; c)
2

)

= 2 sinh
(√|c| ℓk(t; c)

2

)√
1 + sinh2

(√|c| ℓk(t; c)
2

)
=

√
|c| t
√

4 + |c|t2
2

We therefore obtain∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt = ∫ t2

t1

∥∥∇ ∂αγ
∂s

Zt(0)
∥∥dt ≤ ∫ t2

t1

√
|c|

sinh
(√

|c| ℓk(t; c)
) dt

=

∫ t2

t1

2

t
√
4 + |c|t2

dt <

∫ t2

t1

2√
|c|t2

dt

for all t2 > t1 > 0.
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Since we have

∠
(∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

)
≤ ϑk(t1, t2) =

∫ t2

t1

∥∥∥∇ ∂αγ
∂t

∂αγ

∂s
(t, 0)

∥∥∥dt,
we get the estimate.

Since limt1,t2→∞ ∠
(∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

)
= 0 and Uγ(0)M is compact, we find that

this Caushy sequence
{∂αγ

∂s
(t, 0)

}
t>0

converges. We hence get the conclusion. □

We shall call the geodesic half-line σγ of initial vector limt→∞
∂αγ

∂s
(t, 0) the limit

string of a trajectory-harp αγ.

Next we study the case that sectional curvatures are bounded from below.

Theorem 4.11. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →

M for Bk on a Kähler manifold M . Suppose that it is holomorphic at its arch and

that sectional curvatures of planes tangent to the harp-body HBγ(T ) are not smaller

than a constant c. Then, for arbitrary a, b with 0 ≤ a < b ≤ min{Rγ, Cγ}, by setting

â = τk
(
ℓγ(a); c

)
and b̂ = τk

(
ℓγ(b); c

)
we have the following :

(1) The zenith angle satisfies ϑγ(a, b) ≥ ϑk(â, b̂; c);

(2) The length of the sector-arc satisfies sℓγ(a, b) ≥ ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
;

(3) The length of the harp-arc satisfies b− a ≥ b̂− â.

Moreover, if an equality holds in one of the above inequalities, then we have the fol-

lowing :

1)
∂αγ

∂t
(t, s) is parallel to J

∂αγ

∂s
(t, s) for a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t).

2) Riem
(∂αγ

∂s
(t, s),

∂αγ

∂t
(t, s)

)
= c for a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t).

3) The body HBγ(a, b) is totally geodesic and is holomorphic.

Proof. We put Zt(s) =
∂αγ

∂t
(t, s), which is a Jacobi field along s 7→ αγ(t, s). By

definition, we have

ϑγ(a, b) =

∫ b

a

∥∥∥(∇ ∂αγ
∂t

∂αγ

∂s

)
(t, 0)

∥∥∥ dt = ∫ b

a

∥∥∥(∇ ∂αγ
∂s

Zt

)
(0)
∥∥∥ dt.
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Since the sectional curvature of the plane spanned by Zt(s) and
∂αγ

∂s
(t, s) is not smaller

than c for 0 ≤ s ≤ ℓγ(t), by Rauch’s comparison theorem on Jacobi fields, we have

∥Zt(s)∥ ≤ ∥(∇ ∂αγ
∂s

Zt)(0)∥sk(s; c). We take a trajectory-harp α̂γ̂ associated with a

trajectory γ̂ for Bk on CMn(c) and set Ẑt(s) =
∂α̂γ̂

∂t
(t, s). As we see ∥Zt

(
ℓγ(t)

)
∥2 =

1−δ2γ(t) in the proof of Theorem 4.3, and as δγ(t) ≤ δk
(
τk(ℓγ(t); c); c

)
by the comparison

theorem on string-cosines (Theorem 4.3), we have

ϑγ(a, b) ≥
∫ b

a

∥ Zt

(
ℓγ(t)

)
∥

sk
(
ℓγ(t); c

) dt =

∫ b

a

√
1− δγ(t)2

sk
(
ℓγ(t); c

) dt

≥
∫ b

a

√
1− δk

(
τk(ℓγ(t); c); c

)2
sk
(
ℓγ(t); c

) dt =

∫ b

a

∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(t)

)∥∥
sk
(
ℓγ(t); c

) dt.

We put u = τk
(
ℓγ(t); c

)
. We then have

du

dt
=

δγ(t)

δk
(
τk(ℓγ(t); c); c

) ≤ 1.

Therefore, as â = τk
(
ℓγ(a); c

)
, b̂ = τk

(
ℓγ(b); c

)
, we obtain

ϑγ(a, b) ≥
∫ b̂

â

∥∥Ẑu

(
ℓγ(t)

)∥∥
sk
(
ℓk(u; c); c

) du =

∫ b̂

â

∥∥∥(∇ ∂α̂γ̂
∂s

Ẑu

)
(0)
∥∥∥du = ϑγ̂(â, b̂; c),

because ℓk(u; c) = ℓγ(t).

Next we study lengths of sector-arcs. By the comparison theorems on string-

cosines, we have

∥Zt

(
ℓγ(t)

)
∥ =

√
1− δγ(t)2 ≥

√
1− δγ

(
τk(ℓγ(t); c); c

)2
=
∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(t)

)∥∥.
As the sectional curvature of the plane spanned by Zt(s) and

∂αγ

∂s
(t, s) is not smaller

than c for 0 ≤ s ≤ ℓγ(t), by Rauch’s comparison theorem we find that ∥Zt(s)∥ ≥∥∥Ẑτk(ℓγ(t);c)(s)
∥∥ for an arbitrary s with 0 < s ≤ ℓγ(t). We therefore obtain

sℓγ(a, b) =

∫ b

a

∥Zt

(
ℓγ(a)

)
∥ dt ≥

∫ b

a

∥∥Ẑτk(ℓγ(t);c)

(
ℓγ(a)

)∥∥ dt ≥ ∫ b̂

â

∥∥Ẑu

(
ℓγ(a)

)∥∥ du
=

∫ b̂

â

∥∥Ẑu

(
ℓγ̂(â)

)∥∥ du = sℓγ̂(â, b̂) = ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
,

where u = τk
(
ℓγ(t); c

)
.
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At last we study lengths of harp-arcs. Since ∥γ̇∥ = ∥ ˙̂γ∥ = 1, we have

b− a =

∫ b

a

∥γ̇(t)∥ dt =
∫ b

a

∥∥ ˙̂γ(τk(ℓγ(t); c))∥∥ dt
=

∫ b̂

â

∥∥ ˙̂γ(u)∥∥ δk(u; c)

δγ
(
τγ(ℓk(u; c))

)du ≥
∫ b̂

â

∥∥ ˙̂γ(u)∥∥ du = b̂− â.

We here study the case that one of the three equalities ϑγ(a, b) = ϑk(â, b̂; c), sℓγ(a, b)

= ϑk(â, b̂; c)sk
(
ℓk(â; c); c

)
and b−a = b̂− â holds. Our proof guarantees that this holds

if and only if δγ(t) = δk
(
τk(ℓγ(t); c); c

)
holds for a ≤ t ≤ b. Thus, as we see in the

proof of Theorem 4.3, we get the conclusion. □





CHAPTER 5

Ideal boundary of a Hadamard Kähler manifold

In this chapter we study asymptotic behaviors of unbounded trajectories on a

Hadamard Kähler manifold, a simply connected Kähler manifold of non-positive cur-

vature.

1. Hadamard manifold

First we study the topology of a Riemannian manifold of non-positive curvature.

Theorem 5.1 (Cartan-Hadamard). Let M be a complete Riemannian manifold

of non-positive curvature. At an arbitrary point p ∈ M , the exponential map expp :

TpM → M is a covering map. Hence the universal covering space of M is diffeomor-

phic to Rm, where m is the real dimension of M .

Corollary 5.1. A complete simply connected Riemannian manifold of non-positive

curvature is diffeomorphic to a Euclidean space.

A map φ : M → N between Riemannian manifolds is said to be a local isometry

if each point p ∈ M has a neighborhood U such that the restriction φ|U : U → N is

an isometry onto an open subset φ(U) of N .

In order to show those results, we need the following.

Proposition 5.1. Let M and N be m-dimensional connected Riemannian mani-

folds. Suppose M is complete. If φ :M → N is a local isometry, then it is a covering

map. That is, φ is a surjective continuous map such that for each q ∈ N there exists

an open neighborhood V of q satisfying the following conditions :

i) φ−1(V ) =
∪

λ∈Λ Uλ is a disjoint union of open sets in M ;

151
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ii) φ|Uλ
: Uλ → V is an isometry for each λ.

Proof. First, we show φ is surjective. We take an arbitrary p ∈M and put φ(p) =

q. Since N is complete, for each q′ ∈ N we have a geodesic ρ on N satisfying ρ(0) = q

and ρ(t0) = q′ with some t0. As φ is a local isometry between Riemannian manifolds

of same dimension, the differential map (dφ)p : TpλM → TqN is a linear isometry. we

put u =
(
(dφ)p

)−1(
ρ̇(0)

)
and take a geodesic σ on M with σ̇(0) = u. Since φ is a local

isometry, we see φ◦σ is a geodesic on N . As (φ◦σ)′(0) = (dφ)p
(
σ̇(0)

)
= ρ̇(0), we find

that ρ = φ ◦ σ. Therefore we have q′ = ρ(t0) = φ
(
σ(t0)

)
and find that φ is surjective.

For an arbitrary q ∈ N , we take a small positive r satisfying r < ι0(q). We put

φ−1(q) = {pλ}λ∈Λ. Since φ is a local isometry, every geodesic σ on M with σ(0) = p is

mapped to a geodesic φ◦σ on N with φ◦σ(0) = q. Thus we have φ
(
Br(pλ)

)
⊂ Br(q),

and have

expq ◦ (dφ)pλ = φ ◦ exppλ
: Br(0pλ) → Br(q).

Br(0pλ)
(dφ)pλ−−−−→ Br(0q)

exppλ

y yexpq

Br(pλ) −−−→
φ

Br(q)

Here, as (dφ)pλ : TpλM → TqN is a linear isometry, we see (dφ)pλ : Br(0pλ) → Br(0q)

is bijective. Since r < ι0(q), the map expq : Br(0q) → Br(q) is bijective, and exppλ
:

Br(0pλ) → Br(pλ) is surjective. Thus, for each q
′ ∈ Br(q), by taking u ∈ Br(0pλ) with

q′ = expq ◦ (dφ)pλ(u), we find q′ = φ
(
exppλ

(u)
)
. This shows φ|Br(pλ) : Br(pλ) → Br(q)

is surjective. Also, if p′, p′′ ∈ Br(pλ) satisfiy φ(p
′) = φ(p′′), then taking u′, u′′ ∈ Br(0pλ)

satisfying exppλ
(u′) = p′ and exppλ

(u′′) = p′′, as expq ◦(dφ)pλ(u′) = expq ◦(dφ)pλ(u′′) =

φ(p′), we see u′ = u′′, which shows p′ = p′′. Thus φ|Br(pλ) : Br(pλ) → Br(q) is injective

Therefore we find that φ|Br(pλ) : Br(pλ) → Br(q) is an isometry.

As we see φ
(
Br(pλ)

)
⊂ Br(q), we have

∪
λ∈ΛBr(pλ) ⊂ φ−1

(
Br(q)

)
. On the other

hand, for p′ ∈ φ−1
(
Br(q)

)
we set q′ = φ(p′) ∈ Br(q) and take v ∈ Br(0q) with

expq(v) = q′. Then ρ(t) = expq(1 − t)v is a geodesic from q′ to q. If we set σ(t) =

expp′

(
t(dφ)−1

p′ (ρ̇(0))
)
, then it is a geodesic satisfying σ(0) = p′. Since ∥ρ̇(0)∥ = ∥v∥ < r

and we have expq′ ◦ (dφ)p′ = φ ◦ expp′ : Br(0p′) → Br(q
′) because the above argument
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holds for arbitrary q, we see φ
(
σ(1)

)
= ρ(1) = q. This means that σ(1) = pλ0 with

some λ0 ∈ Λ. As d
(
σ(1), p′

)
< r, we find p′ ∈ Br(pλ0). Thus we have φ−1

(
Br(q)

)
⊂∪

λ∈ΛBr(pλ), and get
∪

λ∈ΛBr(pλ) = φ−1
(
Br(q)

)
.

We finally show that Br(pλ) ∩ Br(pλ′) = ∅ if λ ̸= λ′. Suppose there exists p′ ∈

Br(pλ)∩Br(pλ′). We then have u1 ∈ Br(0pλ) and u2 ∈ Br(0pλ′ ) satisfying exppλ
(u1) =

p′ = exppλ′
(u2). Considering geodesic segments σ1 = exppλ

(tu1) joining pλ and p′ and

σ2 = exppλ′
(tu2) joining pλ′ and p′, we see φ◦σ1 and φ◦σ2 are geodesic segments joining

q and φ(p′) which are contained in Br(q). Since r < ι0(q), we have φ ◦ σ1 = φ ◦ σ2. As

exppλ
(u1) = exppλ′

(u2), we obtain σ1 = σ2, which means that pλ = pλ′ . Therefore we

find φ is a covering map. □

Proof of Theorem 5.1. By Corollary 5.1, we have no conjugate points on M .

Therefore, expp : TpM →M is regular, that is, for an arbitrary u ∈ TpM , its differen-

tial (dexpp)u : Tu(TpM) → Texpp(u)M is surjective (hence is bijective) linear map. We

define ⟨ , ⟩R by use of the Riemannian metric ⟨ , ⟩ on M as

⟨ξ, η⟩R =
⟨
(dexpp)u(ξ), (dexpp)u(η)

⟩
.

Thus, we see expp is a local isometry with respect to ⟨ , ⟩R and ⟨ , ⟩.

We take an arbitrary u ∈ TpM and consider a line ℓu on TpM emanating from

0p which is given by ℓu(t) = tu. As σ(t) = expp(ℓu(t)) is a geodesic, ℓu(t) =(
expp

)−1
(σ(t)), and

(
expp

)−1
is a local isometry, we see ℓu is a geodesic on (TpM, ⟨ , ⟩R).

As ℓu is defined on R and u is arbitrary, we find that (TpM, ⟨ , ⟩R) is complete by

Theorem 1.1(Hopf-Renow). Thus, Proposition 5.1 guarantees that expp is a covering

map. □

Following to Cartan-Hadamard theorem (Theorem 5.1) we say a simply connected

Riemannian manifold of non-positive curvature to be a Hadamard manifold. We here

study some properties on geodesics on a Hadamard manifold.

Proposition 5.2. Let M be a complete Riemannian manifold of non-positive cur-

vature. We take an arbitrary point p ∈M
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(1) For arbitrary v ∈ TpM and ξ ∈ Tv(TpM), we have ∥(dexpp)v(ξ)∥ ≥ ∥ξ∥, where

we induce the standard Euclidean metric on Tv(TpM).

(2) For an arbitrary smooth curve µ : [a, b] → TpM in TpM , we have length(µ) ≤

length(expp ◦ µ). In particular, if M is simply connected, then we have

d
(
expp(v), expp(w)

)
≥ ∥v − w∥.

Proof. (1) Let (−ϵ, ϵ) ∋ s 7→ v(s) ∈ TpM be a smooth curve with v(0) = v

and v′(0) = ξ. We take a variation α(t, s) = expp

(
tv(s)

)
of geodesics and set Y (t) =

∂α

∂s
(t, 0), which is a Jacobi field along a geodesic t 7→ expp(tv). We then have

Y (t) =
∂α

∂s
(t, 0) = (dexpp)tv(s)(tv

′(s))|s=0 = t(dexpp)tv(ξ),

hence obtain Y (1) = (dexpp)v(ξ). Since RiemM ≤ 0, we know by Rauch’s compar-

ison theorem that ∥Y (t)∥/t is monotone increasing. As we have ξ = (dexpp)0(ξ) =

limt↓0(1/t)Y (t), we get

∥ξ∥ ≤ ∥Y (1)∥ = ∥(dexpp)v(ξ)∥.

(2) By the first assertion we have

length(µ) =

∫ b

a

∥∥∥dµ
ds

(s)
∥∥∥ ds ≤ ∫ b

a

∥∥∥(dexpp

)
µ(s)

(dµ
ds

(s)
)∥∥∥ ds

=

∫ b

a

∥∥∥( d
ds

(
expp ◦ µ

))
(s)
∥∥∥ ds = length(expp ◦ µ).

Since expp is bijective, there exsits a curve µ : [0, 1] → TpM such that expp ◦ µ is the

unique minimal geodesic segment from expp(v) to expp(w). Thus, we have

d
(
expp(v), expp(w)

)
= length(expp ◦ µ) ≥ length(µ) ≥ ∥v − w∥

because ∥v − w∥ is the Euclidean distance between v and w. □

Corollary 5.2. Let p, q, r ∈ M are distinct points of a Hadamard manifold M .

We denote by σpq, σpr, σqr the minimal geodesics of unit speed from p to q, from p to r

and from q to r, respectively. We put a = length(σpq), b = length(σrp), c = length(σqr)

and C = ∠
(
σ′
pq(0), σ

′
pr(0)

)
, A = ∠

(
σ′
pr(b), σ

′
qr(c)

)
, B = ∠

(
−σ′

pq(a), σ
′
qr(0)

)
. Then we

have
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(1) c2 ≥ a2 + b2 − 2ab cosC (Low of cosines);

(2) c ≤ b cosA+ a cosB (Double low of cosines);

(3) A+B + C ≤ π.

Proof. (1) We take v, w ∈ TpM so that expp(v) = q and expp(w) = r. By the

second assertion of Proposition 5.2, we have

c2 ≥ ∥v − w∥2

= ∥v∥2 + ∥w∥2 − 2⟨v, w⟩

= ∥v∥2 + ∥w∥2 − 2∥v∥∥w∥ cosC

= a2 + b2 − 2ab cosC.

(2) By using the law of cosines, we have

a2 ≥ b2 + c2 − 2bc cosA and b2 ≥ a2 + c2 − 2ac cosB.

Adding both sides of these inequalities, we get the second assertion.

(3) By triangle inequality we have c ≤ a+ b, where the equality holds in the case that

r is an intermediate point on σpq. Thus, if c = a+ b we have A+B+C = π. Similarly

we get the same equality when either b = c+ a or a = b+ c holds. We next study the

case that these equalities do not hold. In this case we have a triangle on a Euclidean

plane R2 whose edges have lengths a, b, c. We denote its angles by A′, B′ and C ′. For

this triangle we have c2 = a2 + b2 − 2ab cosC ′ and obtain C ≤ C ′. Similarly we have

A ≤ A′ and B ≤ B′. Thus we find A+B + C ≤ A′ +B′ + C ′ = π. □

Proposition 5.3. For two geodesics σ1, σ2 on a Hadamard manifold M , the func-

tion t 7→ d
(
σ1(t), σ2(t)

)
is a convex function. When M is strictly negative, that is

RiemM ≤ c < 0, then this function is strictly convex.

Proof. First we study this function f(t) = d
(
σ1(t), σ2(t)

)
at a point t0 satisfying

σ1(t0) ̸= σ2(t0). We then have σ1(t) ̸= σ2(t) for t0 − ϵ < t < t0 + ϵ with some positive

ϵ. We take a geodesic segment γt : [0, 1] →M satisfying γ(0) = σ1(t) and γ(1) = σ2(t)
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for t0 − ϵ < t < t0 + ϵ. Since length(γt) = ∥γ′t(s)∥, by putting α(t, s) = γt(s), we have

f ′(t) =
d

dt
length(γt) =

d

dt

∫ 1

0

∥γ′t(s)∥ ds

=

∫ 1

0

1

∥γ′t(s)∥

⟨(
∇ ∂α

∂t

∂α

∂s

)
(t, s),

∂α

∂s
(t, s)

⟩
ds

=
1

f(t)

∫ 1

0

⟨(
∇ ∂α

∂s

∂α

∂t

)
(t, s),

∂α

∂s
(t, s)

⟩
ds.

Therefore we have

f ′′(t)f(t) + f ′(t)2 =
d

dt

∫ 1

0

⟨
∇ ∂α

∂s

∂α

∂t
,
∂α

∂s

⟩
ds =

∫ 1

0

d

dt

⟨
∇ ∂α

∂s

∂α

∂t
,
∂α

∂s

⟩
ds.

Here, we have

d

dt

⟨
∇ ∂α

∂s

∂α

∂t
,
∂α

∂s

⟩
=
⟨
∇ ∂α

∂t
∇ ∂α

∂s

∂α

∂t
,
∂α

∂s

⟩
+
∥∥∥∇ ∂α

∂s

∂α

∂t

∥∥∥2
=
⟨
∇ ∂α

∂s
∇ ∂α

∂t

∂α

∂t
,
∂α

∂s

⟩
+
⟨
R
(∂α
∂t
,
∂α

∂s

)∂α
∂t
,
∂α

∂s

⟩
+
∥∥∥∇ ∂α

∂s

∂α

∂t

∥∥∥2
=

d

ds

⟨
∇ ∂α

∂t

∂α

∂t
,
∂α

∂s

⟩
−
⟨
∇ ∂α

∂s

∂α

∂t
,∇ ∂α

∂s

∂α

∂s

⟩
−
⟨
R
(∂α
∂s
,
∂α

∂t

)∂α
∂t
,
∂α

∂s

⟩
+
∥∥∥∇ ∂α

∂s

∂α

∂t

∥∥∥2.
We put Yt =

∂α

∂t
(t, s), which is a Jacobi field along the geodesic γt, and take its

component Y ⊥
t = Yt − f(t)−2⟨Yt, γ′t⟩γ′t vertical to γ′t. We then have

∇ ∂α
∂s
Y ⊥ = ∇ ∂α

∂s
Y − 1

f(t)2

⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩
γ′t,⟨

∇ ∂α
∂s
Y ⊥
t , γ

′
t

⟩
=

∂

∂s

⟨
Y ⊥
t , γ

′
t

⟩
≡ 0,

∂

∂s

⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩
=
⟨
∇ ∂α

∂s
∇ ∂α

∂s

∂α

∂t
, γ′t

⟩
=
⟨
∇ ∂α

∂t
∇ ∂α

∂s

∂α

∂s
,
∂α

∂s

⟩
+
⟨
R
(∂α
∂s
,
∂α

∂t

)∂α
∂s
,
∂α

∂s

⟩
= 0,

hence obtain ∥∥∥∇ ∂α
∂s

∂α

∂t

∥∥∥2 = ∥∥∇ ∂α
∂s
Y ⊥∥∥2 + 1

f(t)2
⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩2
.
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As γt(s) = α(t, s) is a geodesic for each t, we obtain

f ′′(t)f(t) + f ′(t)2

=
⟨(

∇ ∂α
∂t

∂α

∂t

)
(t, 1),

∂α

∂s
(t, 1)

⟩
−
⟨(

∇ ∂α
∂t

∂α

∂t

)
(t, 0),

∂α

∂s
(t, 0)

⟩
+

∫ 1

0

{∥∥∥∇ ∂α
∂s

∂α

∂t

∥∥∥2 − ⟨R(∂α
∂s
,
∂α

∂t

)∂α
∂t
,
∂α

∂s

⟩}
ds

=

∫ 1

0

{∥∥∇ ∂α
∂s
Y ⊥
t

∥∥2 + 1

f(t)2
⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩2 − ⟨R(γ′t, Y ⊥
t )Y ⊥

t , γ
′
t

⟩}
ds,

because t 7→ α(t, 0) and t 7→ α(t, 1) are also geodesics. As
⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩
is constant

along γt, we have

1

f(t)2

∫ 1

0

⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩2
ds =

1

f(t)2
⟨
∇ ∂α

∂s
Yt, γ

′
t

⟩2
= f ′(t)2.

Therefore, as RiemM ≤ 0, we obtain

f ′′(t) =
1

f(t)

∫ 1

0

{∥∥∇ ∂α
∂s
Y ⊥
t

∥∥2 − ⟨R(γ′t, Y ⊥
t )Y ⊥

t , γ
′
t

⟩}
ds ≥ 0.

Here, when RiemM ≤ c < 0 we have f ′′(t) > 0.

Next we study at a point t0 with σ1(t0) = σ2(t0). If σ1(t) = σ2(t) for t0− ϵ < t ≤ t0

or for t0 ≤ t < t0 + ϵ, we see σ1 = σ2. Thus we are enough to consider the case that

σ1(t) ̸= σ2(t) for t0 − ϵ < t ≤ t0 + ϵ, t ̸= t0. The above argument show that f ′′(t) ≥ 0

for t0 − ϵ < t ≤ t0 + ϵ, t ̸= t0. Hence f takes a minimal value 0 at t0 in the interval

(t− ϵ0, t+ ϵ0). Continuity of f ′′ shows that f ′′(t) ≥ 0. We hence get the assertion. □

As a Hadamard manifoldM is homeomorphic to a Euclidean space by Corollary 5.1,

we consider its compactification. We say two geodesic half-lines σ1, σ2 : [0,∞) →M of

unit speed on a Hadamard manifold M to be asymptotic to each other if the distance

function t 7→ d(σ1(t), σ2(t)) is a bounded function. We denote σ1 ∼ σ2 in this case.

This asymptotic relation ∼ on the family G(N) of all geodesic half-lines on M is an

equivalence relation. This is because we have

i) d(σ(t), σ(t)) ≡ 0;

ii) d(σ1(t), σ2(t)) = d(σ2(t), σ1(t));
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iii) if t 7→ d(σ1(t), σ2(t)) and t 7→ d(σ2(t), σ3(t)) are bounded functions, then the

triangle inequality d(σ1(t), σ3(t)) ≤ d(σ1(t), σ2(t))+ d(σ2(t), σ3(t)) shows that

t 7→ d(σ1(t), σ3(t)) is also a bounded function.

For a unit tangent vector u ∈ UM we denote by σu the geodesic of initial vector

σ̇(0) = u. For distinct two unit tangent vectors u, v ∈ TpM at an arbitrary point p on a

Hadamard manifoldM , by Corollary 5.2 we have d
(
σu(t), σv(t)

)
≥ 2t2−2t2 cos∠(u, v),

hence find that σu and σv are not asymptotic to each other. We denote by ∂M or by

M(∞) the set G/∼ of equivalence classes of geodesic half-lines on M . We call ∂M the

ideal boundary ofM . By the above argument we have an injection ∂expp : UpM → ∂M

defined by u 7→ σu(∞), for arbitrary p ∈M .

Proposition 5.4. The map ∂expp : UpM → ∂M is a bijection for arbitrary p ∈M .

Proof. We are enough to show that it is surjective. For arbitrary z ∈ ∂M we take

a geodesic half-line σ of unit speed with σ(∞) = z. For each positive t, we denote by ρt

the geodesic half-line of unit speed with ρ(0) = p and ρ(ℓt) = σ(t). By Proposition 5.3

we find that d
(
ρ(s), σ(s)

)
≤ d
(
p, σ(0)

)
for 0 ≤ s ≤ ℓt. We set ut = ρ̇t(0). First we take

a sequence {tj}∞j=1 so that {ℓtj}∞j=1 is monotone increasing. Taking its subsequence we

get a convergent sequece {utji}
∞
i=1 in UpM . We set u∞ = limi→∞ utji . Since σ is not

bounded, we see limi→∞ ℓtji = ∞. As we have

d
(
σu∞(s), σ(s)

)
= lim

i→∞
d
(
ρtji (s), σ(s)

)
≤ d
(
p, σ(0)

)
for 0 ≤ s < limi→∞ ℓtji = ∞, we find that σu∞ is asymtotic to σ. Thus we obtain that

∂expp : UpM → ∂M is surjective. □

For a geodesic half-line σ, we denote by σ(∞) the asymptotic class containing σ.

We put M = M ∪ ∂M . We here introduce a topology on M so that its restriction

onto M coincides with the original topology of M . We take every open set in M as an

open set in M . In order to define an open set containing elements of ∂M , we define

a fundamental system B of open neighborhoods. For an arbitrary point p ∈ M and
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arbitrary positive ϵ, R, we take u ∈ UpM so that σ̇u(∞) = z and set a set by

Oz(p, ϵ, R) =
{
expp(tv), σv(∞)

∣∣ v ∈ UpM, ∠(v, u) < ϵ, t > R
}

and define B =
{
Oz(p, ϵ, R)

∣∣ z ∈ ∂M, p ∈M and ϵ > 0, R ≥ 0
}
. Since expp is a

diffeomerphism, we see O(p, ϵ, R)∩M is an open subset of M . We shall show that Bz

is a basis Bz of open neighborhoods around z.

To do this we need the following lemmas. Given distinct three points p, q1, q2 ∈M ,

we put ∠p(q1, q2) = ∠
(
σ̇pq1(0), σ̇pqj(0)

)
, where σpqj is the geodesic satisfying σpqj(0) = p

and σpqj(rj) = qj with some positive rj.

Lemma 5.1. Let σ : [0,∞) → M be a geodesic half-line. We put σ(∞) = z. If

t1 ≤ t2, ϵ1 ≥ ϵ2 and ϵ2 < π/2, then Oz

(
σ(t2), ϵ2, R

)
⊂ Oz

(
σ(t1), ϵ1, R

)
.

Proof. We may suppose t1 < t2. If p ∈ Oz

(
σ(t2), ϵ2, R

)
, we have ∠σ(t2)(p, z) < ϵ2

and ∠σ(t2)(σ(t1), p) > π − ϵ2. Hence we see

∠σ(t1)(p, z) = ∠σ(t1)(p, σ(t2)) ≤ π − (π − ϵ2)− ∠p(σ(t1), σ(t2)) < ϵ2 ≤ ϵ1

by Corollary 5.2 (3). By Corollary 5.2 (1), we have

d(p, σ(t1))
2 ≥ d(p, σ(t2))

2 + (t2 − t1)
2 − 2(t2 − t1)d(p, σ(t2)) cos∠σ(t2)(σ(t1), p)

> d(p, σ(t2))
2 > R2,

because ∠σ(t2)(σ(t1), p) > π/2, we find p ∈ Oz

(
σ(t1), ϵ1, R

)
. □

Lemma 5.2. Given Oz

(
p, ϵ, R

)
and q ∈M, w ∈ Oz

(
p, ϵ, R

)∩
∂M , we denote by ρ

be the geodesic half-line of unit speed with ρ(0) = q and ρ(∞) = w. Then, there are

positive T and ϵ′ satisfying Ow

(
ρ(t), ϵ′, 0

)
⊂ Oz

(
p, ϵ, R

)
.

Proof. Let σ be a geodesic half-line of unit speed satisfying σ(0) = p and σ(∞) =

w. Since σ and ρ are asymptotic to each other, we have

2t2 cos∠p(σ(t), ρ(t)) ≥ 2t2 − d(σ(t), ρ(t))2

by law of cosines (Corollary 5.2 (1)), and limt→∞ ∠p(σ(t), ρ(t)) = 0. Similarly, we have

2t{t+ d(p, q)} cos∠ρ(t)(p, q) ≥ 2td(p, ρ(t)) cos∠ρ(t)(p, q)

≥ t2 + d(p, ρ(t))2 − d(p, q)2 ≥ t2 + (t− d(p, q))2 − d(p, q)2,
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hence limt→∞ ∠ρ(t)(p, q) = 0.

We set ϵ′ = min{(ϵ − ∠p(z, w))/3, π/4}. We take a sufficiently large positive T

so that ∠p(σ(t), ρ(t)) < ϵ′, ∠ρ(t)(p, q) < ϵ′ and d(p, ρ(t)) > R for t ≥ T . We take

a point x ∈ Ow

(
ρ(t), ϵ′, 0

)
. Since ∠ρ(t)(p, w) = π − ∠ρ(t)(p, q) > π − ϵ′, we have

∠ρ(t)(p, x) ≥ ∠ρ(t)(p, w) − ∠ρ(t)(w, x) > π − 2ϵ′. Applying Corollary 5.2 (3), we find

∠p(ρ(t), x)+∠ρ(t)(p, x) ≤ π−∠x(ρ(t), p) ≤ π, hence obtain ∠p(ρ(t), x) < 2ϵ′. Therefore

we have
∠p(w, x) ≤ ∠p(w, ρ(t)) + ∠p(ρ(t), x) = ∠p(σ(t), ρ(t)) + ∠p(ρ(t), x)

< 3ϵ′ < ϵ− ∠p(z, w)

and find that ∠p(z, x) ≤ ∠p(z, w) + ∠p(w, x) < ϵ. By the law of cosines, we have

d(p, x)2 ≥ d(p, ρ(t))2 + d(ρ(t), x)2 − 2d(p, ρ(t))× d(ρ(t), x) cos∠ρ(t)(p, x)

> d(p, ρ(t))2 > R2,

because ∠ρ(t)(p, x) > π/2. We hence find x ∈ Oz

(
p, ϵ, R

)
. □

We are now in the position to show that the family B is a fundamental sys-

tem of open neighborhoods. We take Oz

(
p, ϵ, R

)
, Oz′

(
p′, ϵ′, R′), and choose a point

w ∈ Oz

(
p, ϵ, R

)
∩Oz′

(
p′, ϵ′, R′)∩ ∂M if Oz

(
p, ϵ, R

)
∩Oz′

(
p′, ϵ′, R′) is not an empty set.

We denote by ρ a geodesic half-line of unit speed satisfying ρ(0) = p′ and ρ(∞) = w.

We set ϵ′′ = (ϵ′ − ∠p′(z
′, w))/2. By Lemma 5.2, there exist positive t0, δ satisfy-

ing δ < min{ϵ, ϵ′′} and Ow

(
ρ(t0), δ, 0

)
⊂ Oz

(
p, δ, R

)
. On the other hand, we have

Ow(p
′, ϵ′′, R′) ⊂ Oz′(p

′, ϵ′, R′). As Ow

(
ρ(t0), δ, R

′) ⊂ Ow

(
p′, ϵ′′, R′) by Lemma 5.1, we

see Ow

(
ρ(t0), δ, R

′) ⊂ Oz

(
p, ϵ, R

)
∩ Oz′

(
p′, ϵ′, R′). This guarantees that B is a funda-

mental system of open neighborhoods.

We call the topology on M determined by B the cone topology.

We show that M is a compactification of M .

Proposition 5.5. At an arbitrary point p of a Hadamard manifold M , the map

f : B1(0p) =
{
v ∈ TpM

∣∣ ∥v∥ ≤ 1
}
→M defined by

f(v) =

expp

(
∥v∥

1−∥v∥v
)
, when ∥v∥ < 1,

σv(∞), when ∥v∥ = 1
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is a homeomorphism. In particular, M is compact.

Proof. Since [0, 1) ∋ s → s/(1 − s) ∈ [0,∞) is a homeomorphism, we find that

B1(0p) ∋ v 7→ expp

( ∥v∥
1−∥v∥v

)
∈ M is a homeomorphism. Thus we are enough to study

at the boundary S1(0p) = ∂B1(0p) = UpM .

As σv(∞) ̸= σw(∞) for v, w ∈ UpM with v ̸= w, we find that f is injective. On the

other hand, we take an arbitrary z ∈ ∂M . There is a geodesic half-line σ : [0,∞) →M

of unit speed satisfying σ(∞) = z. We take a geodesic σn of unit speed joining p and

σ(n), that is, σn(0) = p and σn(sn) = σ(n) with some sn. By the triangle inequality,

we have |sn − n| = |d(p, σ(n)) − d(σ(n), σ(0))| ≤ d(p, σ(0)). In particular, we have

limn→∞ sn = ∞. Since the function t 7→ d(σn(t), σ(t)) is convex by Proposition 5.3,

for 0 < s < sn we have

d(σn(s), σ(s)) ≤ max
{
d(σn(0), σ(0)), d(σn(sn), σ(sn))

}
= max

{
d(p, σ(0)), d(σn(sn), σ(sn))

}
.

As we have σn(sn) = σ(n), we see d(σn(sn), σ(sn)) = |sn − n| ≤ d(p, σ(0)), hence find

d(σn(s), σ(s)) ≤ d(p, σ(0)). As {σ̇n(0)}n ⊂ UpM , we have a convergent subsequence

{σ̇nj
(0)}∞j=1. We take a geodesic γ with γ̇(0) = limj→∞ σ̇nj

(0). Then we have

d(γ(s), σ(s)) = lim
j→∞

d(σnj
(s), σ(s)) ≤ d(p, σ(0))

for all s ≥ 0. Thus, we find that there is a bijection of UpM to ∂M . Hence f is

bijective.

We take an arbitrary u ∈ UpM . For positive ϵ and r with 0 < r < 1, the set

U(ϵ, r) =
{
v ∈ B1(0p)

∣∣ ∠(v, u) < ϵ, ∥v∥ > r
}

=
{
v ∈ TpM

∣∣ ∠(v, u) < ϵ, ∥v∥ > r
}∩

B1(0p)

is an open set in B1(0p). Clearly we have f
(
U(ϵ, r)

)
= O(p, ϵ, r/(1−r)). As B1(0q) and

B1(0p) are homeomorphic to each other for every q ∈M , we see f−1
(
O(q, ϵ, R)

)
is an

open set in B1(0p). Since {U(ϵ, r) | ϵ > 0, 0 < r < 1} is a basis of open neighborhood

of u, we see f is a homeomorphism. □
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We now show the relationship between exponential maps of a Hadamard manifold

and its ideal boundary.

Theorem 5.2. Let M be a Hadamard manifold. Given arbitrary points p ∈ M

and z ∈ ∂M , we have a unique geodesic half-line σ satisfying σ(0) = p and σ(∞) = z.

Proof. First we show the uniqueness. If we have two geodesic half-lines σ1, σ2 :

[0,∞) →M satisfying σ1(0) = σ2(0) = p and σ1(∞) = σ2(∞) = z, then by the law of

cosine (Corollary 5.2) we have

d
(
σ1(t), σ2(t)

)2 ≥ 2t2
{
1− cos

(
σ̇1(0), σ̇2(0)

)}
.

Hence d
(
σ1(t), σ2(t)

)
is bounded if and only if σ̇1(0) = σ̇2(0), which means σ1 = σ2.

Next we show the existence. We take a geodesic half-line γ whose asymptotic class

is z (i.e. γ(∞) = z). Let σt denotes the geodesic of unit speed joining p and γ(t). That

is, if we set dt = d
(
p, γ(t)

)
, the geodesic σt satisfies σt(0) = p and σt(dt) = γ(t). By

Proposition 5.3 we have

d
(
γ(s), γt(dts/t)

)
≤ t− s

t
d
(
γ(0), σt(0)

)
+
s

t
d
(
γ(t), σt(dt)

)
=
t− s

t
d
(
γ(0), p

)
≤ d
(
γ(0), p

)
for 0 ≤ s ≤ t. Since {σ̇t(0)}t ⊂ UpM and UpM is compact, we can choose a convergent

sequence {σ̇tj(0)}∞j=1 with monotone increasing sequence {tj}∞j=1 satisfying limj→∞ tj =

∞. We put limj→∞ σ̇tj(0) = v ∈ UpM and take a geodesic half-line σ satisfying

σ̇(0) = v. By the triangle inequality we have

t− d(p, γ(0)) ≤ dt ≤ t+ d(p, γ(0)),

hence find limt→∞ dt/t = 1. We hence have

d
(
γ(s), σ(s)

)
= lim

j→∞
d
(
γ(s), σtj(dtjs/tj)

)
≤ d
(
γ(0).p

)
for s ≥ 0. Thus we see σ(∞) = γ(∞) = z. This completes the proof. □
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By this theorem we find that for an arbitrary point p on a Hadamard manifold

expp : TpM →M induces a bijective map ∂expp : UpM → ∂M defined by u 7→ σu(∞),

where σu is the geodesic with σ̇u(0) = u.



164 V. Ideal boundary of a Hadamard Kähler manifold

2. Asymptotic behaviors of trajectories on a Hadamard manifold

Let M be a Hadamard Kähler manifold whose sectional curvatures are bounded

from above as RiemM ≤ c with some negative constant c. We take a Kähler magnetic

field Bk satisfying k2 ≤ |c|. In this section, we show that every trajectory half-line is

unbounded and converges to a point in the ideal boundary of M .

Theorem 5.3. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0 with some constant c, and Bk be a Kähler magnetic field whose

strength satisfies |k| ≤
√
|c|. Then each trajectory half-line γ : [0,∞) → M for Bk is

unbounded and limt→∞ γ(t) exists in ∂M .

Since a Hadamard manifold M is diffeomorphic to Rn through each exponential

map,M has no conjugate points. Therefore, for each trajectory half-line γ for Bk which

is not closed and does not have γ(0) as self-intersection point, we have a trajectory-

harp αγ associated with γ by Lemma 4.1. Under the assumption of Theorem 5.3, by

Theorem 4.2 its string-length and string-cosine satisfy

ℓγ(t) ≥ ℓk(t; c) and δγ(t) ≥ δk
(
τk(ℓγ(t); c); c

)
for t ≥ 0.

As

δk(t; c) =

√
|c| sinh

√
c− k2 t√

|c| − k2 sinh
(√

|c| ℓk(t; c)
) ,

we see δk(t; c) > 0. Hence δγ(t) > 0, and we find that ℓγ is a monotone increasing

function. Thus, we see that γ(0) is not a self-intersection points of γ.

Since

(|c| − k2) cosh
(√

|c|ℓk(t; c)
)
= |c| cosh

√
|c| − k2 t− k2,

we see limt→∞ ℓk(t; c) = ∞. Hence we find that ℓγ(t) is not a bounded function. This

means that γ is not bounded.

We are now in the position to show Theorem 5.3. We denote by zγ ∈ ∂M the point

at infinity of the limit string σγ of the trajectory-harp αγ. For arbitrary positive ϵ, R, if

we take sufficiently large T we have ℓγ(t) ≥ R and ∠
(∂αγ

∂s
(t, 0), σ̇γ(0)

)
< ϵ for t ≥ T .
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This means that γ(t) ∈ Ozγ

(
γ(0), ϵ, R

)
for t ≥ T . Thus, we find limt→∞ γ(t) = zγ and

get the conclusion of Theorem 5.3.

We here study more on the behavior of trajectories. Given a trajectory or a trajec-

tory half-line γ for Bk, we denote by U(γ, r) the tube
{
p ∈M

∣∣ d(p, γ) ≤ r
}
of radius

r around γ. Here, we set d(p, γ) = inf{d(p, q)|q ∈ Image(γ)}. Similarly, we denote by

U(σγ, r) the tube
{
p ∈M

∣∣ d(p, σγ) ≤ r
}
of radius r around the limit-string σγ of the

trajectory-harp associated with γ. For a negative c and a constant k with |k| <
√

|c|,

we set ρ(k; c) = |k|π/
(
2
√

|c|(|c| − k2)
)
.

Theorem 5.4. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0 and k be a real number with |k| <
√
|c|. For each trajectory

half-line γ for Bk, the harp-body HBγ of the trajectory-harp αγ associated with γ is

contained in the tube U
(
γ, ρ(k; c)

)
around γ, and is contained in the tube U

(
σγ, ρ(k; c)

)
around the limit-string σγ.

Proof. We take arbitrary a, b with a < b. By Theorem 4.10 the length of the

sector-arc of the harp-sector αa,b
γ satisfies

sℓγ(a, b) ≤ ϑk

(
τk(ℓγ(a); c), τk(ℓγ(b); c); c

)
sk
(
ℓγ(a); c

)
=

sinh
√

|c| ℓγ(a)√
|c|

∠
(∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

)
,
∂αγ̂

∂s

(
τk(ℓγ(b); c), 0

))
,

where γ̂ is a trajectory for Bk on CHn(c). Since ∠
(∂αγ̂

∂s
(u, 0),

∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

))
is

monotone increasing for u ≥ τk(ℓγ(a); c), we have

∠
(∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

)∂αγ̂

∂s

(
τk(ℓγ(b); c), 0

))
< lim

u→∞
∠
(∂αγ̂

∂s
(u, 0),

∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

))
= lim

u→∞

{
cos−1 δk(u; c)− cos−1 δk

(
τk(ℓγ(a); c); c

)}
.

As

δk(u; c) =

√
|c| − k2 cosh(

√
|c| − k2 u/2)√

|c| cosh2(
√
|c| − k2 u/2)− k2

,
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we have

∠
(∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

)∂αγ̂

∂s

(
τk(ℓγ(b); c), 0

))
= lim

u→∞

{
cos−1

√
|c| − k2 cosh(

√
|c| − k2 u/2)√

|c| cosh2(
√

|c| − k2 u/2)− k2
− cos−1 δk

(
τk(ℓγ(a); c); c

)}

≤ lim
u→∞

{
cos−1

√
|c| − k2 cosh(

√
|c| − k2 u/2)√

|c| cosh2(
√
|c| − k2 u/2)

− cos−1 δk
(
τk(ℓγ(a); c); c

)}

= cos−1

√
|c| − k2√

|c|
− cos−1 δk

(
τk(ℓγ(a); c); c

)
.

As θ ≤ (π/2) sin θ for 0 ≤ θ ≤ π/2, we have

∠
(∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

)∂αγ̂

∂s

(
τk(ℓγ(b); c), 0

))
≤ π

2
sin

{
cos−1

√
|c| − k2√

|c|
− cos−1 δk

(
τk(ℓγ(a); c); c

)}

=
π

2

{
sin
(
cos−1

√
|c| − k2√

|c|

)
δk
(
τk(ℓγ(a); c); c

)
−
√

|c| − k2√
|c|

sin
{
cos−1 δk

(
τk(ℓγ(a); c); c

)}}

=
π

2

{
|k|√
|c|
δk
(
τk(ℓγ(a); c); c

)
−
√
|c| − k2√

|c|

√
1− δ2k

(
τk(ℓγ(a); c); c

)}

=
π|k|

√
|c| − k2

2
√
|c|

√
|c| cosh2

(√|c| − k2

2
τk(ℓγ(a); c)

)
−k2

×

{
cosh

(√|c| − k2

2
τk(ℓγ(a); c)

)
− sinh

(√|c| − k2

2
τk(ℓγ(a); c)

)}
Since √

|c| − k2 sinh
(√|c|ℓγ(t)

2

)
=
√

|c| sinh
(√|c| − k2 t

2

)

cosh
(√|c| − k2 ℓγ(t)

2

)
=

√
1 +

|c| − k2

|c|
sinh2

(√|c| − k2 ℓγ(t)

2

) ,
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we have

∠
(∂αγ̂

∂s

(
τk(ℓγ(a); c), 0

)∂αγ̂

∂s

(
τk(ℓγ(b); c), 0

))
=

π|k|
√

|c| − k2

2|c| cosh
(√|c| ℓγ(a)

2

)
×

{√
|c|

|c| − k2
+ sinh2

(√|c| ℓγ(a)
2

)
− sinh

(√|c| ℓγ(a)
2

)}

=

π|k|
√
|c| − k2 × |c|

|c| − k2

2|c| cosh
(√|c| ℓγ(a)

2

){√ |c|
|c| − k2

+ sinh2
(√|c| ℓγ(a)

2

)
+ sinh

(√|c| ℓγ(a)
2

)}

≤ |k|π
2
√
|c| − k2

× 1

sinh
√
|c| ℓγ(a)

.

Then we have

sℓγ(a, b) ≤
sinh

√
|c| ℓγ(a)√
|c|

|k|π
2
√

|c| − k2
× 1

sinh
√
|c| ℓγ(a)

=
|k|π

2
√
|c|
√

|c| − k2
.

Hence we find

d
(
αγ(t, ℓγ(a)), γ

)
≤ sℓγ(a, t) ≤ ρ(k; c) and d

(
αγ(t, ℓγ(a)), σγ

)
≤ ρ(k; c),

for t ≥ a. Since a is a arbitrary, we get the conclusion. □

For a trajectory-harp αγ, we denote by σt
γ the geodesic half-line s 7→ αγ(t, s).

Remark 5.1. Under the same conditions as in Theorem 5.4, its proof shows that

d
(
σt1
γ (s), σ

t2
γ (s)

)
≤ ρ(k; c) for 0 < t1 < t2 and 0 < s ≤ ℓγ(t1). This guarantees

d
(
σt
γ(s), σγ(s)

)
≤ ρ(k; c) for t > 0 and 0 < s ≤ ℓγ(t).
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3. Magnetic exponential maps on Hadamard manifolds

In this section we generalize Hopf-Renow theorem (Theorem 1.1) and Cartan-

Hadamard theorem (Theorem 5.1) to trajectories for Kähler magnetic fields following

to [5]. For arbitrary distinct points p, q on a connected complete Riemannian manifold

there is a minimizing geodesic joining them (Hopf-Renow Theorem). We consider

this property for trajectories for Kähler magnetic fields. Since trajectories for non-

trivial Kähler magnetic fields on a complex Euclidean space are circles and are closed,

we see that this property can not be generalized to general Kähler manifolds. As

we showed in §5.2 that on a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0 trajectories for Bk with |k| ≤
√

|c| are unbounded, we study

the property of Hopf-Renow type under such assumptions.

Theorem 5.5 ([5]). Let Bk be a Kähler magnetic field on a connected complete

Kähler manifold M whose sectional curvatures satisfy RiemM ≤ c < 0. If |k| ≤
√
|c|,

for arbitrary distinct points p, q ∈ M , there is a minimizing trajectory for Bk which

goes from p to q. In particular, when M is simply connected, there exists a unique

trajectory for Bk of p to q.

Theorem 5.6 ([5]). Let Bk be a Kähler magnetic field on a connected complete

Kähler manifold M whose sectional curvatures satisfy RiemM ≤ c < 0. If |k| ≤
√
|c|,

every magnetic exponential map Bkexpp : TpM →M is a covering map. In particular,

when M is simply connected, every magnetic exponential map is a diffeomorphism.

Proof of Theorem 5.5 (Existence). First we consider the case that M is a

Hadamard Kähler manifold. Given a point p ∈ M we shall show that the magnetic

exponential map Bkexpp : TpM → M is surjective. To show this, we are enough

to show that the image of Bkexpp is an open set and a closed set, because M is a

connected manifold and as expp(0p) = p the image is not an empty set. Since we

do not have magnetic conjugate points for Bk with |k| ≤
√

|c|, by implicit function

theorem, we see that the image of Bkexpp is an open set. On the other hand, when
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a sequence of points {qj}∞j=1

(
⊂ Bkexpp(R)

)
converges to a point q ∈ M (p ̸= p),

we denote as qj = Bkexpp(rjvj) with unit tangent vectors vj ∈ UpM and rj > 0.

Since limj→∞ d(p, qj) = d(p, q), we have a positive ℓ with d(p, qj) ≤ ℓ for all j. For

each trajectory-segment γvj for Bk given by γvj = Bkexpp(tvj) for 0 ≤ t ≤ rj, we

consider its trajectory-harp. Since M is a Hadamard manifold, its string at qj is the

unique geodesic of unit speed joining p and qj, hence we have ℓγvj (rj) = d(p, qj). By

Theorem 4.2 we have ℓγvj (rj) ≥ ℓk(rj; c) and ℓγvj is monotone increasing. We hence

have rj ≤ τk(ℓ; c) for all j, where τk(·; c) is the inverse function of ℓk(·; c). We hence

find that {rj}∞j=1 is bounded from above. We note rj ≥ d(p, qj) > 0. Thus {rj}∞j=1 is

a bounded sequence.

Since UpM is compact, there is a subsequence {jk}∞k=1 such that both {vjk}∞k=1

and {rjk}∞k=1 converge. We set v0 = limk→∞ vjk and r0 = limk→∞ rjk . We then have

q = Bkexpp(r0v0), We hence find that the image of Bkexpp is closed. Thus the connect-

edness of M guarantees that Bkexpp is surjective. Therefore, for an arbitrary point

q ∈M , we have a trajectory-segment for Bk from p to q.

Given distinct points p, q ∈M , when we have finite trajectory segments for Bk from

p to q, we can take the trajectory-segment of minimizing length. When we have infinite

trajectory segments for Bk from p to q, we take a sequence {γj}∞j=1 of such trajectory-

segments such that limj→∞ length(γj) shows the infimum of lengths of such trajectory-

segments. We set γ̇j(0) = uj and define rj by γj(rj) = q. Since rj = length(γj) > 0, we

see that {rj}∞j=1 is bounded (at least rj ≤ τk
(
d(p, q); c)). Thus we have a subsequence

{jk}∞k=1 such that both {ujk}∞k=1 and {rjk}∞k=1 converge. Putting u0 = limk→∞ ujk and

r0 = limk→∞ rjk , we have q = Bkexpp(r0u0). As rjk = length(γjk), we find that the

trajectory-segment t 7→ Bkexpp(tu0) (0 ≤ t ≤ r0) is a minimal trajectory-segment from

p to q.

Next we study the case that M is not simply connected. We take its universal

covering ϖ : M̃ → M , which is a Hadamard Kähler manifold. We note that for a

trajectory γ for Bk on M , every smooth curve γ̃ satisfying γ(t) = ϖ ◦ γ̃, which is
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called a covering trajectory, is a trajectory for Bk on M̃ , because of the uniqueness of

solutions for differential equations.

Given distinct points p, q ∈ M we choose a point p̃0 ∈ M̃ with ϖ(p̃0) = p. For

each q̃λ ∈ ϖ−1(q), we have a minimal trajectory-segment γλ from p̃0 to q̃λ. We show

that L = {length(γλ) | λ} takes the minimum value. Suppose we have a sequence

γλj
satisfying limj→∞ length(γλj

) = inf L. As above, we set γ̇λj
(0) = wj and rj =

length(γλj
). We choose a convergent subsequence and put w0 = limk→∞wjk and

r0 = limk→∞ rjk . Since ϖ(q̃λ) = q, we have

ϖ
(
Bkexpp̃0(r0w0)

)
= ϖ

(
lim
j→∞

Bkexpp̃0(rjkwjk)
)

= lim
j→∞

ϖ
(
Bkexpp̃0(rjkwjk)

)
= lim

j→∞
ϖ(q̃λjk

) = q.

This shows that the trajectory segment γ̃0 given by t 7→ Bkexpp̃0(w0) (0 ≤ t ≤ r0)

is a minimal trajectory-segment from p̃0 to some q̃λ. Therefore ϖ ◦ γ̃0 is a minimal

trajectory-segment from p to q. □

Proof of Theorem 5.6. We are enough to consider the case thatM is a Hadam

-ard Kähler manifold. Since there are no magnetic conjugate points for Bk by Corol-

lary 3.1, we see Bkexpp : TpM → M is regular, that is,
(
dBkexpp

)
v
: Tv(TpM) →

TBkexpp(v)M is a linear isomorphism at each v ∈ TpM . We define an inner product

⟨ , ⟩R on Tv(TpM) by

⟨ξ, η⟩R =
⟨(
dBkexpp

)
v
(ξ),

(
dBkexpp

)
v

⟩
,

and a linear map JR : by JR(ξ) =
((
dBkexpp

)
v

)−1(
J
(
dBkexpp

)
v
(ξ)
)
. Then Bkexpp is

a local holomorphic isometry with respect to (⟨ , ⟩R, JR) and (⟨ , ⟩, J). We denote

by ∇R the Riemannian connection on TpM with respect to ⟨ , ⟩R. As Bkexpp is a

local isometry, for arbitrary vector fields X̂, Ŷ ∈ X(TpM) and arbitrary v ∈ TpM ,

considering an open neighborhood U if v and a neighborhood U of Bkexpp(v) we have(
∇R

X̂
Ŷ
)
(v) =

((
dBkexpp

)
v

)−1((
∇XY

)(
Bkexpp(v)

))
,
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where X, Y ∈ X(U) is defined by

X(q) =
(
dBkexpp

)
wq

(
X̂(wq)

)
and Y (q) =

(
dBkexpp

)
wq

(
Ŷ (wq)

)
with wq :=

(
Bkexpp

∣∣
U

)−1
(q). Since we have

JRŶ (v) =
((
dBkexpp

)
v

)−1
(
J
((
dBkexpp

)
v

(
Ŷ (v)

)))
=
((
dBkexpp

)
v

)−1(
JY (Bkexpp(v)

))
,

we obtain (
∇R

X̂
(JRŶ )

)
(v) =

((
dBkexpp

)
v

)−1((
∇X(JY )

)(
Bkexpp(v)

))
=
((
dBkexpp

)
v

)−1(
J
(
∇XY

)(
Bkexpp(v)

))
= JR

(((
dBkexpp

)
v

)−1(
J
(
∇XY

)(
Bkexpp(v)

)))
= JR

((
∇R

X̂
Ŷ
)
(v)
)
,

hence find that TpM is a Kähler manifold with respect to (⟨ , ⟩, JR).

We take an arbitrary u ∈ TpM and consider a line γ̂u on TpM from 0p defined by

γ̂u(t) = tu. If we set γ(t) = Bkexpp

(
γ̂u(t)

)
, then we have(

∇R
˙̂γ
˙̂γ
)
(t) =

((
dBkexpp

)
γ̂(t)

)−1((
∇γ̇ γ̇

)
(t)
)
=
((
dBkexpp

)
γ̂(t)

)−1(
kJγ̇(t)

)
= kJR

(((
dBkexpp

)
γ̂(t)

)−1(
γ̇(t)

))
= kJR ˙̂γ(t),

hence find that γ̂ is a trajectory for Bk on TpM . We show that the origin 0p ∈ TpM

and su ∈ TpM with s > 0 is joined by a unique geodesic-segment of unit speed on

(TpM, ⟨ , ⟩R). First we suppose there are two geodesic-segment σ̂1, σ̂2 on TpM of

unit speed from 0p to su. Then Bkexpp ◦ σ̂j (j = 1, 2) are geodesic on M from p to

Bkexpp(su). SinceM is a Hadamard manifold, we find that Bkexpp◦ σ̂1 and Bkexpp◦ σ̂2
coincide with each other. In particular, we have

d

dt

(
Bkexpp ◦ σ̂1

)∣∣
t=0

=
d

dt

(
Bkexpp ◦ σ̂2

)∣∣
t=0
,

which is equivalent to(
dBkexpp

)
0p

(
˙̂σ1(0)

)
=
(
dBkexpp

)
0p

(
˙̂σ2(0)

)
.
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As
(
dBkexpp

)
0p

is bijective, we see ˙̂σ1(0) = ˙̂σ2(0). By the uniqueness of solutions of

differential equations, we find σ̂1 = σ̂2. Thus we need to show the existence. Since

Bkexpp is a local isometry, there is positive ϵ such that when 0 < t < ϵ we can join 0p

and tu by a geodesic-segment of unit speed. We set t∗ the maximal positive number

satisfying that for all 0 < t < t∗ we have a geodesic-segment joining 0p and su. Suppose

t∗ < ∞. We take a trajectory γu for Bk on M . Since M is a Hadamard manifold, we

have a unique trajectory-harp αγu associated with γu. We take positive ϵ′. Since the

set {αγu(t, s) | 0 ≤ t ≤ t∗ + ϵ′, 0 ≤ s ≤ ℓγu(t)} is compact, it is covered by finite open

subsets Uj, j = 1, . . . , N in M such that Bkexpp|Uj
: Uj → Uj is an isometry on some

open subset Uj in TpM . Here, we take Uj so that
∪

j Uj contains the geodesic on TpM

which joins 0p and tu for all 0 < t < t∗ and that
∪N

j=1Uj is connected. We can then

take a geodesic σ̂t on TpM satisfying Bkexpp ◦ σ̂t(s) = αγu(t, s) for t∗ − ϵ′ < t < t+ ϵ′

and 0 ≤ s ≤ ℓγu(t) by taking the inverse images of s 7→ αγu(t, s) through some of

Bkexpp|Uj
’s. Thus we have a geodesic-segment of unit speed which joins 0p and tu for

t∗ ≤ t < t∗+ ϵ
′. This is a contradiction to the choice of t∗. Hence we find that t∗ = ∞.

We now show that TpM is complete. We take a Cauchy sequence {wj}∞j=1 ⊂ TpM

with respect to the distance function dR induced by ⟨ , ⟩. We may suppose wj ̸= 0p.

We take the unique geodesic segment σ̂j of unit speed on TpM from 0p to wj. By the

above argument we have such a geodesic. We set ûj := ˙̂σj(0) ∈ T0p(TpM) and take rj

so that σ̂j(rj) = wj. Since {wj}∞j=1 is a Cauchy sequence with respect to dR, we find

that {rj}∞j=1 is bounded. So there is a positive ℓ with rj ≤ ℓ for all j. As γ̂j = γ̂wj/∥wj∥

defined by t 7→ twj/∥wj∥ (0 ≤ t ≤ ∥wj∥) is a trajectory-segment for Bk on TpM ,

we can consider its trajectory-harp by joining 0p and twj/∥wj∥ by a geodesic which

we showed in the above. As rj is the string-length of this trajectory-harp at wj and

∥wj∥ is the length of this trajectory-segment, we have ∥wj∥ ≤ τk(ℓ; c) by Theorem 4.2,

where τk(·; c) is the inverse function of ℓk(·; c). Thus {wj}∞j=1 is bounded with respect

to ordinary norm on TpM ∼= Cn. Since U0p(TpM) is compact, we have a subsequence

{jk}∞k=1 satisfying the following conditions:
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i) {rjk}∞k=1 converges,

ii) {ûjk}∞k=1 converges in U0p(TpM),

iii) {wjk}∞k=1 converges in TpM with respect to the ordinary norm.

Since wjk = σ̂jk(rjkujk), we see {wjk}∞k=1 also converges with respect to dR. Thus,

we find that {wjk}∞k=1 converges in TpM with respect to dR. As {wj}∞j=1 is a Cauchy

sequence with respect to dR, it converges in TpM . Hence we find that TpM is complete

with respect to dR.

Thus we find that Bkexpp : (TpM, ⟨ , ⟩R) → (M, ⟨ , ⟩) is a local isometry between

complete connected Riemannian manifolds, it is a covering map by Proposition 5.1.

This complete the proof. □

Proof of Theorem 5.5 (Uniquness). When M is a Hadamard Kähler man-

ifold, for given a point p ∈ M , the magnetic exponential map Bkexpp : TpM → M

is a diffeomorphism by Theorem 5.6, for each q ∈ M with q ̸= p there is a unique

v ∈ TpM with v ̸= 0p satisfying Bkexpp(v) = q. Thus the trajectory-segment

t 7→ Bkexpp(tv/∥v∥) (0 ≤ t ≤ ∥v∥) is the unique trajectory-segment from p to q.

This complete the proof of Theorem 5.5. □
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4. Trajectory-horn

In order to study the behavior of trajectories, we studied trajectory-harps in Chap-

ter IV. A trajectory-harp consists of a trajectory and geodesics. To study more on

trajectories we study a family of trajectories associated with a given geodesic.

Let M be a Hadamard manifold whose sectional curvatures satisfy RiemM ≤ c < 0

with some constant c. Given a geodesic half-line σ : [0,∞) →M we define a variation

βσ,k : [0,∞)×R →M of trajectories for Bk with |k| ≤
√

|c| by the following condition:

1) βσ,k(0, s) = σ(0) for every s;

2) when s = 0, the curve t 7→ βσ,k(t, 0) is the trajectory for Bk with initial vector

σ̇(0);

3) when s > 0, the curve t 7→ βσ,k(t, s) is the trajectory for Bk joining σ(0) and

σ(s).

We note that as M is a Hadamard manifold we have σ(s) ̸= σ(0) for s > 0 and that

by Theorem 5.5 there exists a unique trajectory which joins σ(0) and σ(s). Therefore

we can define such a variation of trajectories uniquely. We call this the trajectory-

horn for Bk associated with σ, and call a trajectory t 7→ βσ(t, s) a horn-tube of this

trajectory-horn.

In order to measure the size of a trajectory-horn βσ,k we consider the following

quantities. We denote by rσ,k(s) the arc-length of the trajectory segment t 7→ βσ(t, s)

from σ(0) to σ(s), and call it a tube-length at s. Since for each s the geodesic-segment

σ|[0,s] is the minimal geodesic joining σ(0) and σ(s), we have rσ,k(s) ≥ s. We set

ϵσ,k(s) =
⟨
σ̇(s),

∂βσ
∂t

(
s, rσ,k(s)

)⟩
and call it a tube-cosine at σ(s).

For a trajectory-horn βσ,k for Bk associated with a geodesic half-line σ on a Hadamard

manifold M , we denote by γs the trajectory half-line t 7→ βσ,k(t, s). As M is a

Hadamard manifold, its injectivity radius is ι(M) = ∞, we can define a trajectory-

harp αγs associated with γs and find that its harp-string at s coincides with σ. Thus

we have
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s = ℓγs
(
rσ,k(s)

)
and ϵσ,k(s) = δγs

(
rσ,k(s)

)
,

where ℓγs and δγs are the string-length and string-cosine of αγs (see §4.1).

We here study trajectory-horns for Bk with |k| ≤
√

|c| on a complex hyperbolic

space CHn(c). Given a geodesic half-line σ we take a totally geodesic CH1(c) con-

taining the image of σ. Since this CH1 is totally geodesic, we see that all tubes of

the trajectory-horn lie on this CH1. Thus, we find that two trajectory-horns for Bk

are congruent to each other by a holomorphic isometry (Proposition 2.2). We hence

express by rk(s; c) and ϵk(s; c) tube-lengths and tube-cosines of trajectory-horns for Bk

on CHn(c). As we see in Proposition 4.6, functions of string-length and string-cosine

of trajectory-harps for Bk on CHn(c) are given by

ℓk(t; c) =


2√
|c|

sinh−1

√
|c| sinh

(√
|c| − k2 t/2

)√
|c| − k2

, if |k| <
√
|c|,

2 sinh−1(
√
|c| t/2)√

|c|
, if k = ±

√
|c|,

and

δk(t; c) =



√
|c|−k2 cosh

(√
|c|−k2 t/2

)√
|c| cosh2

(√
|c|−k2 t/2

)
− k2

, if |k| <
√
|c|,

2√
|c|t2 + 4

, if k = ±
√

|c|.

Therefore those functions rk(s; c), ϵk(s; c) are given as

rk(s; c) =


2√

|c| − k2
sinh−1

{√
|c| − k2 sinh

(√
|c| s/2

)/√
|c|
}
, if |k| <

√
|c|,

2√
|c|

sinh
(√

|c| s/2
)
, if k = ±

√
|c|,

and

ϵk(s; c) =



√
1− k2

|c|
tanh2

√
|c|
2

s, if |k| <
√
|c|,

1

cosh

√
|c|
2

s

, if k = ±
√

|c|.

We note that rk(s; c) coincides with the inverse function τk(s; c) of the function ℓk(t; c).
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By using these functions we can estimate tube-lengths and tube-cosines as follows.

Proposition 5.6. Let σ be a geodesic on a Hadamard Kähler manifold M whose

sectional curvature satisfy RiemM ≤ c < 0 for some constant c. We take the trajectory-

horn βσ,k for Bk with |k| ≤
√
|c| which is associated with σ. We then have the following

for s ≥ 0 :

(1) Tube-length satisfies s ≤ rσ,k(s) ≤ τk(s; c);

(2) Tube-cosine satisfies ϵσ,k(s) ≥ ϵk(s; c).

Proof. We denote by γs the trajectory half-line t 7→ βσ,k(t, s). Since M is a

Hadamard manifold, we have a trajectory-harp αγs associated with γs. The harp-

string of αγs at s coincides with σ. By the comparison theorem on trajectory-harps

(Theorem 4.2), we have

ℓk
(
τk(s; c); c

)
= s = ℓγs

(
rσ,k(s)

)
≥ ℓk

(
rσ,k(s); c

)
.

As ℓk(·; c) is monotone increasing, we get the first assertion.

By Theorem 4.2 we have

ϵσ,k(s) = δγs
(
rσ,k(s)

)
≥ δk

(
τk(ℓγs(rσ,k(s)); c); c

)
= δk

(
τk(s; c); c

)
= ϵk(s; c)

and get the conclusion. □

For 0 ≤ a < b <∞, we call the restriction of βσ,k to [0,∞)× [a, b] a sub-horn. The

arc-length of the curve [a, b] ∋ s 7→ ∂βσ
∂t

(0, s) ∈ Uσ(0)M the embouchure-angle of this

sub-horn and is denoted by θσ,k(a, b). We estimate angles between two horn-tubes at

the origin and show that every trajectory-horn has a limit tube.

Theorem 5.7. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0 with some constant c. If |k| <
√
|c|, then for an arbitrary

geodesic half-line σ, the trajectory-horn βσ : [0,∞)×R →M for Bk associated with σ
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satisfies

∠
(∂βσ
∂t

(0, s1),
∂βσ
∂t

(0, s2)
)
≤
∫ s2

s1

√
|c| − k2

sinh
√

|c| − k2 s
ds

= log

(
exp
(√

|c|−k2 s2 − 1
)(
exp
(√

|c|−k2 s1 + 1
)(

exp
(√

|c|−k2 s2 + 1
)(
exp
(√

|c|−k2 s1 − 1
) ,

for all s2 > s1 > 0. In particular, it has a limit lims→∞
∂βσ
∂t

(0, s) ∈ Uβ(0,0)M of initial

vectors of horn-tubes.

Proof. We denote by γs the horn-tube t 7→ βσ(t, s). We set Ys(t) =
∂βσ
∂s

(t, s),

which is a magnetic Jacobi field for Bk along a horn-tube γs. We denote Ys = fγ̇s +

gJγ̇s + Y ⊥
s and put Y ♯

s = gJγ̇s + Y ⊥
s . Since βσ(0, s) = βσ(0, 0), we have Ys(0) = 0.

Thus we see f(0) = g(0) = 0, hence we have(
∇ ∂βσ

∂t
Ys
)
(0) =

(
kf(0) + g′(0)

)
Jγ̇s(0) +

(
∇ ∂βσ

∂t
Y ⊥
s

)
(0) =

(
∇ ∂βσ

∂t
Y ♯
s

)
(0).

By the comparison theorem on magnetic Jacobi field (Theorem 3.2), we have

∥Y ♯
s (t)∥ ≥ ∥∇γ̇sY

♯(0)∥ × (1/
√

|c| − k2) sinh
√
|c| − k2 t,

hence we obtain∫ s2

s1

∥∥∇ ∂βσ
∂t
Y (0)

∥∥ds = ∫ s2

s1

∥∥∇ ∂βσ
∂t
Y ♯(0)

∥∥ds ≤ ∫ s2

s1

∥Y ♯(t)∥
√

|c| − k2

sinh
√
|c| − k2 rσ,k(s)

ds.

As σ(s) = βσ(rσ,k(s), s), we see

σ̇(s) =
∂βσ
∂s

(
rσ,k(s), s

)
+
∂βσ
∂t

(
rσ,k(s), s

)
r′σ,k(s)

= Ys(rσ,k(s)) + r′σ,k(s)γ̇s
(
rσ,k(s)

)
.

This shows Ys(rσ,k(s)) = σ̇(s)− r′σ,k(s)γ̇s
(
rσ,k(s)

)
.

In order to study Y ♯
s = Ys − ⟨Ys, γ̇s⟩γ̇s, we first compute ⟨Ys, γ̇s⟩.⟨

Ys
(
rσ,k(s)

)
, γ̇
(
rσ,k(s)

)⟩
=
⟨
σ̇(s)− r′σ,k(s)γ̇s

(
rσ,k(s)

)
, γ̇s
(
rσ,k(s)

)⟩
=
⟨
σ̇(s), γ̇s

(
rσ,k(s)

)⟩
−r′σ,k(s)∥γ̇

(
rσ,k(s)

)
∥2

= ϵσ,k(s)− r′σ,k(s)
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Thus we see Y ♯
s

(
rσ,k(s)

)
= σ̇(s)− ϵσ,k(s)γ̇s

(
rσ,k(s)

)
. We hence find that

∥Y ♯
s

(
rσ,k(s)

)
∥2 = ∥σ̇(s)∥2 − 2ϵσ,k(s)

⟨
σ̇(s), γ̇s

(
rσ,k(s)

)⟩
+ ϵσ,k(s)

2∥γ̇s
(
rσ,k(s)

)
∥2

= 1− ϵσ,k(s)
2.

This leads us to the following:

∥Y ♯(rσ,k(s))∥
√
|c| − k2

sinh
√
|c| − k2 rσ,k(s)

≤

√
1− ϵ2σ,k(s)

√
|c| − k2

sinh
√

|c| − k2 rσ,k(s)
≤

√
|c| − k2

sinh
√
|c| − k2 rσ,k(s)

.

As rσ,k(s) ≥ s, we see∫ s2

s1

∥∥∇ ∂βσ
∂s
Ys(0)

∥∥ds ≤ ∫ s2

s1

√
|c| − k2

sinh
√
|c| − k2 rσ,k(s)

ds

≤
∫ s2

s1

√
|c| − k2

sinh
√
|c| − k2 s

ds

= log

(
exp
(√

|c|−k2 s2 − 1
)(
exp
(√

|c|−k2 s1 + 1
)(

exp
(√

|c|−k2 s2 + 1
)(
exp
(√

|c|−k2 s1 − 1
) .

Since we have

∠
(∂βσ
∂t

(0, s1),
∂βσ
∂t

(0, s2)
)
≤ θσ,k(s1, s2) =

∫ s2

s1

∥∥∇ ∂βσ
∂s
Ys(0)

∥∥ds,
we get the estimate.

Our estimate shows that {γ̇s(0)|s ≥ 0} is a Cauchy sequence. More clearly, when

s > log 2/(2
√
|c| − k2), we have sinh

(√
|c|−k2 s

)
≥ exp

(√
|c|−k2 s

)
/4, hence we can

estimate θσ,k(s1, s2) from above as∫ s2

s1

√
|c| − k2

sinh
√

|c| − k2 s
ds =

∫ s2

s1

4
√

|c| − k2

exp(
√

|c| − k2 s)
ds

≤ 4

exp(
√

|c| − k2 s1)
− 4

exp(
√
|c| − k2 s2)

.

which guarantees lims1,s2→∞ ∠(γ̇s1 , γ̇s2) = 0. As Uβ(0,0)M is compact we get the con-

clusion. □

We shall call the trajectory half-line γσ with initial vector lims→∞
∂βσ
∂t

(s, 0) the

limit horn-tube of a trajectory-horn βσ.

Given a trajectory-horn βσ for Bk associated with a geodesic half-line σ, we set

HRσ = {βσ(t, s) | s ≥ 0, 0 ≤ t ≤ rσ,k(s)} and call it the horn-body of βσ.
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Proposition 5.7. Let M be a Hadamard Kähler manifold whose sectional cur-

vature satisfy RiemM ≤ c < 0 and k be a real number with |k| <
√

|c|. For each

geodesic half-line σ, the horn-body HRσ of a trajectory-horn for Bk on M is contained

in the tube U
(
γσ, ρ(k; c)

)
around the limit horn-tube γσ, and is contained in the tube

U
(
σ, ρ(k; c)

)
around σ, where ρ(k; c) = |k|π/2

√
|c|(|c| − k2).

Proof. For each trajectory t 7→ βσ(t, s), the geodesic σ can be regarded as a string

of the trajectory-harp associated with this trajectory. We denote it by γs. By Remark

5.1, for each s > 0 we have d
(
γs(t), σ(ℓγs(t))

)
≤ |k|π/

(
2
√
|c|(|c| − k2)

)
for 0 ≤ t ≤

rσ,k(s). Since lims→∞ γs(t) = γσ(t) and since ℓγv is smooth with respect to v ∈ UpM

because M is Hadamard, we obtain d
(
γσ(t), σ(ℓγσ(t))

)
≤ |k|π/

(
2
√

|c|(|c| − k2)
)
and

get the conclusion. □
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5. Trajectories and its ideal boundary on a Hadamard manifold

In this section we study the existence of the trajectory joining an arbitrary point

on a Hadamard Kähler manifold and a point on the ideal boundary.

On a Hadamard manifold M satisfying RiemM ≤ c < 0, for each trajectory half-

line γ for Bk with |k| ≤
√
|c|, Theorem 5.3 guarantees that γ is unbounded and that

γ has its point at infinity γ(∞) := limt→∞ γ(t) ∈ ∂M . In this section we show the

following main result in this paper.

Theorem 5.8. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0 with some constant c. We take a Kähler magnetic field Bk on

M with |k| ≤
√

|c|.

(1) For arbitrary points p ∈M and z ∈ ∂M , there exists a trajectory γ satisfying

γ(0) = p and limt→∞ γ(t) = z. Moreover when |k| <
√
|c|, such a trajectory

is uniquely determined.

(2) When |k| <
√
|c|, for arbitrary distinct points z, w ∈ ∂M , there exists a

trajectory γ satisfying limt→−∞ γ(t) = z and limt→∞ γ(t) = w.

If M is a Hadamard Kähler manifold whose sectional curvatures satisfy RiemM ≤

c < 0 and, if |k| ≤
√

|c|, by Theorem 5.7 the magnetic exponential map Bkexpp :

TpM →M is bijective. Since every trajectory half-line has its point at infinity, we see

that at arbitrary point p the magnetic exponential map Bkexpp : TpM → M induces

a map ∂Bkexpp : UpM → ∂M , which is defined by UpM ∋ u 7→ γu(∞) ∈ ∂M , where

γu denote the trajectory for Bk with γ̇u(0) = u. First assertion in Theorem 5.8 is

equivalent to the assertion that this induced map is surjective when |k| ≤
√

|c| and is

bijective when |k| <
√

|c|.

First, we study that the induced map is surjective.

Proposition 5.8. Let M be a Hadamard Kähler manifold whose sectional curva-

tures satisfy RiemM ≤ c < 0. If |k| ≤
√

|c|, the induced map ∂Bkexpp : UpM → ∂M

at p is surjective.
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Proof. First, we consider the case |k| <
√

|c|.

We take an arbitrary infinity point z ∈ ∂M and choose a geodesic half-line σ :

[0,∞) 7→ M satisfying σ(0) = p and σ(∞) = z. We consider the trajectory-horn βσ

for Bk associated with σ. We can take its limit horn-tube γσ by Theorem 5.7. For this

trajectory γσ for Bk, we take an associated trajectory-harp αγσ . By Corollary 4.1, it

has limit string σγσ .

By Proposition 5.7, we have d
(
σ(ℓγσ(t)), γσ(t)

)
≤ |k|π/

(
2
√

|c|(|c| − k2)
)
, and by

Theorem 5.4 we have d
(
γσ(t), σγσ(ℓγσ(t))

)
≤ |k|π/

(
2
√

|c|(|c| − k2)
)
. Since ℓγσ is mono-

tone increasing, we find that d
(
σ(s), σγσ(s)

)
≤ |k|π/

√
|c|(|c| − k2). Therefore we find

σ = σγk
σ
and γkσ(∞) = σ(∞) = z. Thus we obtain that ∂Bkexpp is surjective.

Next we study the case k = ±
√

|c|. We take a sequence {kj}∞j=1 satisfying

limj→∞ kj = k and |kj| <
√

|c|. We take wj ∈ Uσ(0)M so that γj(∞) = z, where

γj denotes the trajectory for Bkj with γ̇j(0) = wj. Since Uσ(0)M is compact, then

we have a convergent subsequence {wji}∞i=1. We put w∞ = limi→∞wji . We take the

trajectory γw∞ for Bk and put z′ = γw∞(∞). We suppose z′ ̸= z and take v ∈ Uσ(0)M

satisfying σv(∞) = z′. We take positive R, ϵ, so that Oz(p, 2ϵ, R) ∩ Oz′(p, 2ϵ, R) = ∅,

where Oz(p, 2ϵ, R) is an open neighborhood of z in M = M ∪ ∂M given in §5.1.

We set TR = (2/
√

|c|) sinh(
√

|c|R/2). By the comparison theorem on string-lengths

(Theorem4.2) and by Proposition 4.7, for t ≥ TR, we have

ℓγj(t) ≥ ℓkj(t; c) ≥ ℓ√|c|(t; c) ≥ ℓ√|c|(TR; c) = R,

and ℓγω∞ (t) ≥ ℓ√|c|(t; c) ≥ R. We take the geodesic σ∞ of unit speed with σ∞(0) = p

and σ∞(∞) = z′. By Proposition 4.11 and Corollary 4.2, we have

∠
(
σ̇(0),

∂αγj

∂s
(t, 0)

)
≤ 2√

|c|t
and ∠

(
v,
∂αγw∞

∂s
(t, 0)

)
≤ 2√

|c|t
.

When t ≥ max
{
TR, 2/

√
|c|ϵ
}
, we find γj(t) ∈ Oz(p, ϵ, R) and γw∞(t) ∈ Oz′(p, ϵ, R).

But as we have limi→∞ γji(t) = γw∞(t), it is contradiction. Hence γw∞(∞) = z.

Therefore we obtain that ∂B±
√

|c|expp is also surjective. □
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When a Hadamard manifold M satisfies RiemM ≤ c < 0, for a constant k with

|k| ≤
√

|c|, we define a map Φk
p : UpM → UpM by w 7→ v = σ̇γw(0), where γw

denotes the trajectory half-line for Bk with initial vector w and σγw denotes the limit

harp-string of the trajectory-harp associated with γw. By Corollary 4.1, we have the

following.

Corollary 5.3. When a Hadamard manifold M satisfies RiemM ≤ c < 0, for a

constant k with |k| ≤
√

|c|, the map Φk
p : UpM → UpM satisfies the point at infinity

of the trajectory half-line γw with γ̇w(0) = w coincides with the point at infinity of the

geodesic half-line σΦk
p(w) with σ̇Φk

p(w)(0) = Φk
p(w), that is γw(∞) = σΦk

p(w)(∞).

When a Hadamard manifold M satisfies RiemM ≤ c < 0, for a constant k with

|k| <
√

|c|, we define a map Ψk
p : UpM → UpM by v → γ̇σv(0), where σv denotes the

geodesic with σ̇v(0) = v and γσv denotes the limit horn-tube of the trajectory-horn for

Bk associated with σv. Since we take a subsequence to get a trajectory γ for B±
√

|c|

satisfying γ(∞) = σ(∞) in the proof of Proposition 5.8, we can not say that we can

define such a map for k = ±
√
|c|. By Theorem 5.7, we have the following.

Corollary 5.4. When a Hadamard manifold M satisfies RiemM ≤ c < 0, for a

constant k with |k| <
√

|c|, a map Ψk
p : UpM → UpM satisfies the point at infinity

of the geodesic half-line σv with σ̇v(0) = v coincides with the point at infinity of the

trajectory half-line γΨk
p(v)

with γ̇Ψk
p(v)

(0) = Ψk
p(v), that is σv(∞) = γΨk

p(v)
(∞).

Lemma 5.3. When a Hadamard manifold M satisfies RiemM ≤ c < 0, for a

constant k with |k| <
√
|c|, we have that the composition Φk

p ◦ Ψk
p : UpM → UpM is

the identity.

Proof. For a v ∈ UpM , we put w = Ψk
p(v), u = Φk

p ◦ Ψk
p(v). We then have

σv(∞) = γw(∞) = σu(∞). As ∂expp : UpM → UpM is bijective, we have v = u. That

is the composition Φk
p ◦Ψk

p is the identity. Therefore we get the conclusion. □

Next, we study the injectivity of the induced map ∂Bkexpp.
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Proposition 5.9. Let M be a Hadamard Kähler manifold whose sectional curva-

tures satisfy RiemM ≤ c < 0. If |k| <
√

|c|, then the induced map ∂Bkexpp : UpM →

∂M is injective.

Proof. For unit tangent vectors v, w ∈ UM , we denote by σv the geodesic with

σ̇v(0) = v and by γw the trajectory for Bk with γ̇w(0) = w.

In order to show the assertion we are enough to show that the map Φk
p : UpM →

UpM is bijective. Since Φk
p ◦ Ψk

p is the identity by Lemma 5.3, to show that Φk
p is

bijective we only need to show that the composition Ψk
p ◦ Φk

p is the identity.

We take a trajectory γw for w ∈ UpM and a constant t. For a geodesic σt of unit

speed which joins γw(0) and γw(t), we consider a trajectory-horn βt : [0,∞)×R →M

associated with σt. For an arbitrary s, we find that u 7→ βt(s, u) is the trajectory for

Bk joining σt(0) = γw(0) and σt(s). We denote by rt(s) the tube-length of βt at s and

set ws
t =

∂βt
∂u

(s, 0) ∈ UpM . By Proposition 5.6, we have rt(s) ≤ τk(s; c). We have a

subsequence {tj}∞j=1 depending on s which satisfies that both {ws
tj
}∞j=1(⊂ UpM) and

{rtj(s)}∞j=1(⊂ R) converge. We set ws
∞ = limj→∞ws

tj
and r∞(s) = limj→∞ rtj(s).

By Corollary 4.1, the trajectory-harp αγw : [0,∞) × R → M associated with the

trajectory γw has a limit. Then we find that limt→∞ σt(s) = σΦk
p(w)(s) with Φk

p(w) =

limt→∞ σ̇t(0). As σt(s) = βt
(
s, rt(s)

)
= γws

t
(rt(s)), we have

σΦk
p(w)(s) = lim

j→∞
γws

tj

(
rtj(s)

)
= γws

∞

(
r∞(s)

)
.

Therefore, we see that each γws
∞ is a tube of trajectory-horn associated with σΦk

p(w).

By Theorem 5.7, we have

∠(ws
t , w) ≤

∫ ℓγw (t)

s

√
|c| − k2

sinh
√
|c| − k2 u

du,

for s ≤ ℓγw(t) and arbitrary t, because γw is a horn-tube of a trajectory-horn βt.

Therefore we have

∠(ws
t , w) ≤

∫ ∞

s

√
|c| − k2

sinh
√

|c| − k2 u
du,
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and hence we obtain

∠(ws
∞, w) ≤

∫ ∞

s

√
|c| − k2

sinh
√
|c| − k2 u

du <∞.

Thus we find that lims→∞ws
∞ = w. This shows Ψk

p(Φ
k
p(w)) = w. We therefore get the

conclusion. □

Remark 5.2. We take an arbitrary geodesic half-line σ of unit speed emanating

from p ∈M . The condition Φp ◦Ψp = Id means that for the limit horn-tube γσ of the

trajectory-horn for Bk associated with σ, the limit harp-string σγσ of the trajectory-

harp associated with γσ is σ. On the other hand, we take an arbitrary trajectory

half-line γ for Bk which is emanating from p ∈M . The condition Ψp ◦Φp = Id means

that for the limit harp-string σγ of the trajectory-harp associated with γ the limit

horn-tube γσγ of the trajectory-horn associated with σγ is γ.

Finally we study trajectories joining distinct points in the ideal boundary.

Proposition 5.10. Let M be a Hadamard Kähler manifold satisfying RiemM ≤

c < 0. If k satisfies |k| <
√

|c|, then for distinct points z, w ∈ ∂M there exists at least

one trajectory γ with γ(−∞) = z and γ(∞) = w.

To show Proposition 5.10, we need a result corresponding to geodesics.

Theorem 5.9. Let M be a Hadamard manifold satisfying RiemM ≤ c < 0. For

distinct points z, w ∈ ∂M , there exists a unique geodesic σ of unit speed with σ(−∞) =

z and σ(∞) = w.

To show this, we recall Gauss-Bonnet theorem.

Theorem 5.10 (Gauss-Bonnet). Let M be a 2-dimensional orientable compact

Riemannian manifold with boundary ∂M . Suppose ∂M is piecewise smooth. Then we

have ∫
M

RiemMdvolM +
L∑
i=1

ki∑
j=1

{∫
γij

kγi(s)ds+
⟨
γ̇ij(ℓij), γ̇j+1(0)

⟩}
= 2πX(M).
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Here, each component of ∂M is the join γi1 ·γi2 · · · γiki of smooth curves with γij(ℓij) =

γj+1(0), L is the number of components of ∂M and X(M) denotes the Euler charac-

teristic of M .

Proof of Theorem 5.9. We take an arbitrary point p ∈ M and take geodesic

half-line γ1, γ2 satisfying γ1(0) = γ2(0) = p, γ1(∞) = z and γ2(∞) = w. Let σt be the

geodesic of unit speed with σt(0) = γ1(t) and σt(ℓt) = γ2(t) for some positive ℓt. Since

M is strictly negative, by Proposition 5.3, we see s 7→ d(p, σt(s)) is a strictly convex

function. As we have

d(p, σt(0)) = t = d(p, σt(ℓt)),

there is rt with 0 < rt < ℓt such that d(p, σt(rt)) = min{d(p, σt(s))|s}. Let St denotes

a Riemann surface consists of all geodesic segments from p to σt(s) with 0 ≤ s ≤ ℓt.

The boundary of St consists of the geodesic segments γ1|[0,t], γ2|[0,t] and σt|[0,ℓt]. By

Gauss-Bonnet theorem, we have∫
St

RiemStdvolSt+cos−1⟨−γ̇1(0), γ̇2(0)⟩+cos−1⟨γ̇1(t), σ̇t(0)⟩+cos−1⟨σ̇t(ℓt),−γ̇2(t)⟩ = 2π.

Therefore, we have

π ≥ −
∫
St

RiemStdvolSt ≥ |c|vol(St),

because RiemM ≤ c < 0. On the other hand, comparing volumes of sectors of angle

∠
(
γ̇1(0), γ̇2(0)

)
and of radius d(p, σt(rt)) in M and in R2, as St is contained in this

sector in M , we have vol(St) ≥
1

2
d(p, σt(rt))

2×∠
(
γ̇1(0), γ̇2(0)

)
by Rauch’s comparison

theorem. We hence have

d(p, σt(rt))
2 ≤ 2π

|c|∠
(
γ̇1(0), γ̇2(0)

) .
□

Proof of Proposition 5.10. We take a geodesic σ satisfying z = limt→−∞ γ(t)

and w = limt→∞ γ(t). For each positive s, we take a trajectory γs for Bk joining σ(−s)

and σ(s). We take the parameter of γs so that γs(0) = σ(−s) and γs(ts) = σ(s)
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with some positive ts. As a restriction of σ is a harp-string of the trajectory-harp αγs

associated with γs for each s, Remark 5.1 guarantees the following :

1) If we take positive rs satisfying s = ℓγs(rs), we have

d
(
σ(0), γs(rs)

)
< |k|π/

(
2
√

|c|(|c| − k2)
)
.

2) For 0 ≤ t ≤ ts we have d
(
γs(t), σ

)
≤ |k|π/

(
2
√
|c|(|c| − k2)

)
.

We set B a geodesic-ball of radius |k|π/
(
2
√
|c|(|c| − k2)

)
centered at σ(0). As

γs(rs) ∈ B, we can choose a sequence sj so that {γ̇sj(rsj)}j ⊂ UM |B converges. We

denote by γ∞ the trajectory whose initial is limj→∞ γ̇sj(rsj). By perturbation theory

of differential equations we see that Bkexpp is smooth with respect to p. Therefore, we

find d
(
γ∞(t), σ

)
is not greater than |k|π/

(
2
√
|c|(|c| − k2)

)
for each t. This shows that

limt→−∞ γ∞(t) = z and limt→∞ γ∞(t) = w. Thus we get conclusion. □
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Appendix

We here give some general results which we used in this paper.

1. Dual linear maps

Let V be a real vector space. A bilinear form p of V is a map p : V × V → R

satisfying that

i) p(λ1v1 + λ2v2, w) = λ1p(v1, w) + λ2p(v2, w),

ii) p(v, µ1w1 + µ2w2) = µ1p(v, w1) + µ2p(v, w2),

for arbitrary v1, v2, v, w1, w2, w ∈ V and λ1, λ2, µ1, µ2 ∈ R. We say it is symmetric if it

satisfies p(v, w) = p(w, v) for all v, w ∈ V . We call p a non-degenerate if p(v, w) = 0

for all w ∈ V shows v = 0. When V is a complex vector space, we say a bilinear form

p : V × V → C Hermitian if it satisfies p(v, w) = p(w, v) for all v, w ∈ V , where z of a

complex number z is the complex conjugate of z.

Lemma A.1. Let p be a non-degenerate bilinear form on a finite dimensional vector

space V over an algebra F. If v, v′ ∈ V satisfy p(v, w) = p(v′, w) for all w ∈ V , then

v = v′.

This lemma shows that if we know p(v, w) for all w ∈ V and they satisfy linearity

with respect to w then we have a unique v ∈ V having these relations.

Proof of Lemma A.1. By the definition of p, we note

0 = p(v, w)− p(v′, w) = p(v − v′, w).

Then we have v − v′ = 0. Therefore we can get the conclusion. □

187
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2. Inverse mapping theorem

In this section we give inverse mapping theorem following to [17]. This is quite

important in the study of Riemannian manifolds.

For a linear map L : Rm → Rn we set

∥L∥ = max{∥Lu∥ | u ∈ Rm, ∥u∥ = 1}.

Trivially, we have ∥L∥ = 0 if and only if L = O, and have ∥Lv∥ ≤ ∥L∥∥v∥ for all

v ∈ Rm because when v ̸= 0 we see

∥Lv∥ =
∥∥∥L(∥v∥ v

∥v∥

)∥∥∥ =
∥∥∥∥v∥L( v

∥v∥

)∥∥∥ = ∥v∥ ×
∥∥∥L( v

∥v∥

)∥∥∥ ≤ ∥L∥∥v∥.

When L : Rm → Rn and M : Rn → Rs be linear maps, then for the linear map

M ◦ L : Rm → Rs we have ∥M ◦ L∥ ≤ ∥L∥ ∥M∥, because

∥M ◦ L(u)∥ =M
(
L(u)

)
∥ ≤ ∥M∥∥L(u)∥ ≤ ∥M∥∥L∥∥u∥.

Given a differentiable mapping F : U (⊂ Rm) → Rn and an arbitrary point p ∈ U ,

by denoting as F = (f1, . . . , fn) with functions yj = fj(x1, . . . , xm) (j = 1, . . . , n), we

define its differential DF (p) : Rm → Rn at p as the linear map defined by the matrix
∂f1
∂x1

(p) · · · ∂f1
∂xm

(p)

...
...

∂fn
∂x1

(p) · · · ∂fn
∂xm

(ξ)

.
Lemma A.2. Let U be a convex subset of Rm and F : U → Rn be a differentiable

mapping. If K := supp∈U ∥DF (p)∥ <∞, for arbitrary p, q ∈ U we see ∥F (p)−F (q)∥ ≤

K∥p− q∥.

Proof. By mean-value theorem, we have F (q) = F (p) +DF (ξ)(q − p) with some

ξ ∈ Rm which lies on the line from p to q. If we rewrite it, we have
f1(q)
...
...

fn(q)

 =


f1(p)
...
...

fn(p)

+


∂f1
∂x1

(ξ) · · · ∂f1
∂xm

(ξ)

...
...

∂fn
∂x1

(ξ) · · · ∂fn
∂xm

(ξ)



q1−p1

...

...
qm−pm

 ,
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where p = (p1, . . . , pm). q = (q1, . . . , qm). Thus we find

∥F (p)− F (q)∥ = ∥DF (ξ)(p− q)∥ ≤ ∥DF (ξ)∥ ∥p− q∥ ≤ K∥p− q∥,

and get the conclusion. □

Theorem A.1 (Inverse mapping theorem). Let F = (f1, . . . , fm) be a C1-mapping

of an open subset D of Rm to Rm. If the Jacobian of F satisfies ∂(f1,...,fm)
∂(x1,...,xm)

(p0) ̸= 0

at a point p0 ∈ D, then there exist open subsets U, V of Rm satisfying the following

conditions:

i) p0 ∈ U ⊂ D and V = F (U),

ii) the restriction F |U : U → V is a bijection,

iii) the inverse map (F |U)−1 : V → U of F |U is also C1-mapping.

Proof. Here, we only show that we can take open subsets satisfying the conditions

i) and ii). We put λ = 1/(2∥
(
DF (p0)

)−1∥) = ∥DF (p0)∥/2 (> 0). Since F is of C1, we

see that its Jacobian ∂(f1,...,fm)
∂(x1,...,xm)

: D → R is continuous and that p 7→ ∥DF (p)−DF (p0)∥

is also continuous. As ∂(f1,...,fm)
∂(x1,...,xm)

(p0) ̸= 0, there is a positive ϵ such that ∂(f1,...,fm)
∂(x1,...,xm)

(p) ̸= 0

and ∥DF (p)−DF (p0)∥ < λ for every p ∈ Bϵ(p0) in a open ball centered at p0.

First we show that F is injective near the point p0. By applying mean-value

theorem, we have

(A.1) F (p+ h) = F (p) +DF (ξ)h,

where ξ is a point on the line from p to p + h. We here suppose F (p + h) = F (p) for

p, p + h ∈ Bϵ(p0). By (A.1) we see DF (ξ)h = 0. As the matrix DF (ξ) is invertible

because ∂(f1,...,fm)
∂(x1,...,xm)

(ξ) ̸= 0, this shows h = 0, which means p + h = p. Thus, we see F

is injective on Bϵ(p0).

Next we show that V := F
(
Bϵ(p0)

)
is an open subset of Rm. We take a point

y0 ∈ V0 and choose a point x0 ∈ Bϵ(p0) so that y0 = F (x0). We set r = {ϵ−d(x0, p0)}/2.

If we can show that Bλr(y0) ⊂ V0, we find that V0 is open. We hence show Bλr(y0) ⊂ V0.
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We take an arbitrary point y ∈ Bλr(y0) and define a map Gy : Bϵ → Rm by

Gy(p) = p+
(
DF (p0)

)−1(
y − F (p)

)
.

Since Gy(x0) = x0 +
(
DF (p0)

)−1
(y − y0) we have

∥Gy(x0)− x0∥ ≤ ∥
(
DF (p0)

)−1∥ ∥y − y0∥ <
1

2λ
× λr =

r

2
.

On the other hand, by chain rule we have

DGy(p) = I −
(
DF (p0)

)−1
DF (p) =

(
DF (p0)

)−1(
DF (p0)−DF (p)

)
.

Hence we obtain

∥DGy(p)∥ ≤
∥∥(DF (p0))−1∥∥∥∥DF (p0)−DF (p)

∥∥ ≤ 1

2λ
λ∥p− x0∥ =

1

2
.

By Lemma A.2 for arbitrary p, q ∈ Bϵ(p0) we have

(A.2) ∥Gy(p)−Gy(q)∥ ≤ 1

2
∥p− x0∥,

In particular, we have ∥Gy(p)−Gy(x0)∥ <
r

2
. Thus we see

∥Gy(p)− x0∥ ≤ ∥Gy(x)−Gy(x0)∥+ ∥Gy(x0)− x0∥ < r,

and find that Gy(p) ∈ Br(x0) This shows that the restriction Gy|Br(x0)
of Gy onto the

closure Br(x0)
(
⊂ Bϵ(p0)

)
of Br(x0) is a contraction map. Since Br(x0) is compact

hence is complete, the map Gy|Br(x0)
has a fixed point x ∈ Br(x0) by Theorem A.2

below. This means that x = Gy(x) = x+
(
DF (p0)

)−1(
y−F (x)

)
. We therefore obtain

y = F (x) and find that Bλr(y0) ⊂ V . This shows that V is an open subset of Rm.

By putting U = Bϵ(p0) we find that F |U : U → V is a bijection and U, V are open

sets. □

Since manifolds are locally congruent to Euclidean spaces we can extend the above

to manifolds.

Corollary A.1. Let M and N be a manifold of same dimension and φ :M → N

be a C1-map. If the differential map (dφ)p0 : Tp0M → Tφ(p0)N is invertible, then there

exist an open neighborhood U of p0 in M and an open neighborhood V of φ(p0) in N

satisfying the following conditions:
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i) V = φ(U),

ii) the restriction φ|U : U → V is a bijection,

iii) the inverse map (φ|U)−1 : V → U of φ|U is also C1-mapping.

Let (X, d) be a metric space. A map f : X → X is said to be a contraction if

there is ρ (0 < ρ < 1) such that d
(
f(p), f(q)

)
≤ ρd(p, q) for all p, q ∈ X. Clearly a

contraction is a continuous map.

Theorem A.2 (Fixed point theorem). Let f : X → X be a contraction of a

complete metrix space X. Then there exists a unique fixed point of f , that is p∗ ∈ X

with f(p∗) = p∗.

Proof. We take an arbitrary point p0 ∈ X and define a sequence {pj}∞j=0 ⊂ X

inductively by pj+1 = f(pj). As we have

d(xn+1, xn) = f
(
f(xn).f(xn−1)

)
≤ ρd(xn, xn−1)

for n ≥ 1, we find inductively that d(xn+1, xn) ≤ ρnd(x1, x0). Thus we have for

arbitrary positive integers j, k with j < k that

d(pj, pk) ≤ d(pj, pj+1) + · · ·+ d(pk−1, pk)

≤
(
ρj + ρj+1 + · · ·+ ρk−1

)
d(x0, x1) ≤

ρj

1− ρ
d(x0, x1).

Thus we see {pn}∞j=0 is a Caucy sequence. If we set p∗ = limj→infty pj then

f(p∗) = f( lim
j→∞

pj) = lim
j→∞

f(pj) = lim
j→∞

pj+1 = p∗.

Thus we have a fixed point.

If we have two fixed points p:, q∗ ∈ X then we have

d(p∗, q∗) = d
(
f(p∗), f(q∗)

)
≤ ρd(p∗, q∗).

Since 0 < ρ < 1, this is a contradiction. Hence we get the uniqueness. □
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3. Connectedness and compactness

In this section we recall some fundamental results on topological spaces.

[1] Connectedness

A topological space X is sad to be connected if there are no pairs (U, V ) of

nonempty open subsets satisfying U ∪ V = X and U ∩ V = ∅.

Lemma A.3. A topological space X is connected if and only if its open and closed

subset is either X itself or an empty set ∅.

Proof. (⇒) Suppose we have an open and closed nonempty subset U with U ̸= X.

Then V = X \ U is also an open and closed nonempty subset. Since X = U ∪ V and

U ∩ V = ∅, we see X is not connected.

(⇐) When X is not connected, we have two open nonempty subsets U, V satisfying

U ∪ V and U ∩ V = ∅. As U = X \ V , we see U is an open and closed nonempty set

with U ̸= X. □

It is well-known that R is connected. A topological space consists of one point is

connected.

Lemma A.4. Let φ : X → Y be a continuous map of a connected topological space

to a topological space. Then φ(X) is a connected subspace of Y with respect to the

induced topology on φ(X).

Proof. If we suppose φ(X) is not connected, then there exist open subsets U, V

of Y satisfying

U ′ ∪ V ′ = φ(X), U ′ ∩ V ′ = ∅, U ′ ̸= ∅, V ′ ̸= ∅,

where U ′ = U ∩ φ(X) and V ′ = V ∩ φ(X). Since φ is continuous, we see φ−1(U) and

φ−1(V ) are open subsets of X. As we have

φ−1(U) ∪ φ−1(V ) = φ−1(U ′) ∪ φ−1(V ′) = X,

φ−1(U) ∩ φ−1(V ) = φ−1(U ′ ∩ V ′) = ∅,

φ−1(U) = φ−1(U) ̸= ∅, φ−1(V ) = φ−1(V ) ̸= ∅,
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we find that X is not connected, which is a contradiction. □

Lemma A.5. Let S1, S2 be two subsets of a topological space X. If S1, and S2 are

connected and S1 ∩ S2 ̸= ∅, then S1 ∪ S2 is connected.

Proof. Suppose S := S1 ∪S2 is not connected. Then there are nonempty subsets

U, V of X with

S ⊂ U ∪ V, U ∩ V ∩ S = ∅, U ∪ S ̸= ∅, V ∪ S ̸= ∅.

If S1 ∩ U ̸= ∅, then S1 ∩ V = ∅ because S1 is connected. This leads us to S2 ∩ V ̸= ∅

and hence S2 ∩ U = ∅. Thus we have

(U ∪ V ) ∩ (S1 ∩ S2) = (U ∩ S1 ∩ S2) ∪ (V ∩ S1 ∩ S2) = ∅.

On the other hand, as we have S ⊂ U ∪ V , we have (U ∪ V ) ∩ (S1 ∩ S2) = S1 ∩ S2.

Thus we find S1 ∩ S2 = ∅, which is a contradiction. □

Given two points p, q in a topological space X, we denote p ∼ q if there is a

connected subset of X containing both p and q. Since {p} is connected, we have

p ∼ p. It is clear that p ∼ q shows q ∼ p by definition. When p ∼ q and q ∼ r, then

there are connected subsets S1, S2 of X such that S1 contains p, q and S2 contains q, r.

Since S1∩S2 ∋ q we know that S1∪S2 is connected by Lemma A.5. As p, r ∈ S1∪S2 we

see p ∼ r. Therefore, this relation ∼ is an equivalence relation. We call an equivalence

class with respect to ∼ a connected component of X.

A topological space is arc-wisely connected if for arbitrary distinct points p, q ∈ X

there is a continuous curve c : [0, 1] → X with c(0) = p and c(1) = q.

Lemma A.6. If X is arc-wisely connected, then it is connected.

Proof. Suppose X is not connected. Then there are nonempty open sets U, V

with U ∪ V = X, U ∩ V = ∅. We take points p ∈ U and q ∈ V . Since X is

arc-wisely connected, there is a curve c : [0, 1] → M with c(0) = p and c(1) = q.

Since c is continuous, we see c([0, 1]) is connected by Lemma A.4. As c([0, 1]) ⊂
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U ∪ V, c([0, 1]) ∩ U ∩ V = ∅ and c([0, 1]) ∩ U ∋ p, c([0, 1]) ∩ U ∋ q, we find c([0, 1]) is

not connected. This is a contradiction. Hence X is connected. □

LetM be a manifold. Given two points p, q ∈M we denote p ⋊⋉ q if there is a curve

c : [0, 1] →M with c(0) = p and c(1) = q. Considering a constant curve we have p ⋊⋉ p.

If p ⋊⋉ q, considering the reversed curve c−1 of c[0, 1] → M with c(0) = p, c(1) = q

which is given by c−1(t) = c(1− t), we find c−1(0) = q and c−1(1) = p, hence q ⋊⋉ p. If

p ⋊⋉ q and q ⋊⋉ r, we take curves c1, c2 : [0, 1] → M with c1(0) = p, c1(1) = q = c2(0)

and c2(1) = r. Considering their join c1 · c2 : [0, 1] →M given by

c1 · c2(t) =

{
c1(2t), when 0 ≤ t ≤ 1/2,

c2(2t− 1), when 1/2 ≤ t ≤ 1,

it is a curve with c1 · c2(0) = p and c1 · c2(1) = r. Thus we have p ⋊⋉ r. Therefore ⋊⋉ is

an equivalence relation.

Lemma A.7. A connected manifold M is arc-wisely connected.

Proof. We decompose M into components, equivalence classes, with respect to

the relation ⋊⋉ as M =
∪

λ∈ΛKλ. We show that Kλ is an open set. We take a point

p ∈ Kλ ⊂ M and a local coordinate neighborhood (U,φ) around p with φ(U) = Rm

and φ(p) = 0. Because every open subset of Rm is homeomorphic to Rm, we may

suppose this. For each v ∈ Rm we have a curve c̃v : [0, 1]toRm defined by c̃v(t) = tv.

Since φ is a homeomorphism, each q ∈ U and p is joined by a curve φ−1 ◦ c̃φ(q). Hence

U ⊂ Kλ. Thus Kλ is an open set.

Suppose Kλ0 is not an empty set. Then
∪

λ∈Λ\{λ0}Kλ is an open set, hence Kλ0 is

an open and closed set. Hence Kλ0 =M . Thus M is arc-wisely connected. □

[2] Compactness

A topological space X is said to be compact if it satisfies the following condition:

If a family {Uλ}λ∈Λ of open subsets of X satisfies X =
∪

λ∈Λ Uλ, then there

exist finite Uλ1 , . . . , UλN
with X =

∪N
j=1 Uλj

.
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Such a family {Uλ}λ∈Λ of open sets of X with X =
∪

λ∈Λ Uλ is called an open covering

of X. A subset K of a topological space X is compact, that is, it is compact with

respect to the induced topology, if and only if each family {Uλ}λ∈Λ of open subsets of

X satisfying K ⊂
∪

λ∈Λ Uλ has a finite subfamily {Uλj
}Nj=1 satisfying K ⊂

∪N
j=1 Uλj

.

A topological spaceX is said to be sequentially compact if each sequence {pj}∞j=1 (⊂

X) has a convergent subsequence {pji}∞i=1.

Let (X, d) be a metric space. A sequence {pj}∞j=1 (⊂ X) is said to be a Cauchy

sequence if for each positive ϵ there is j0 such that for every j, k with j, k ≥ j0 the

distance between pj, pk satisfies d(pj, pk) < ϵ. A metric space is said to be complete if

every Cauchy sequence converges.

Given a subset U of a metric space X, we set diam(U) = sup{d(p, q) | p, q ∈ U}

and call it the diameter of U . A metric space is said to be totally bounded or said to

be precompact if for each positive ϵ there exists finite open subsets U1, . . . , UN such

that X =
∪N

j=1 Uj and diam(Uj) < ϵ.

Lemma A.8. For a metric space (X, d) the following conditions are mutually equiv

-alent:

(1) X is compact;

(2) X is sequentially compact;

(3) X is totally bounded and complete.

In order to show this we need some lemmas. A subset S of a topological space X

is said to be dense if the closure S of S coincides with X. We call a topological space

X separable if there is a countable dense subset S of X.

Lemma A.9. A totally bounded metric space (X, d) is separable.

Proof. Given a positive ϵ we take a finite covering U1, . . . , UNϵ ofX with diam(Uj)

< ϵ. From each j we take a point aj ∈ Uj and set Aϵ = {a1, . . . , aNϵ}. For an

arbitrary p ∈ X, we take j0 with x ∈ Uj0 . Then we have d(p, aj0) < ϵ. Thus we see

d(p,A) = min{d(p, aj) | j = 1, . . . , Nϵ} < ϵ.
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We set A =
∪∞

ℓ=1A1/ℓ, which is a countable or finite set. We then for an arbitrary

p ∈ X we have d(p,A) ≤ d(p,A1/ℓ) < 1/ℓ for every ℓ. Thus p ∈ A. We obtain A = X

and find that X is separable. □

A family B of open sets of a topological space is said to be an basis ot the topology

if for each open set U and each point p ∈ U there is W ∈ B with x ∈ W ⊂ U .

We say a topological space X to be second countable if there is a countable family

B = {Uj | j = 1, 2, . . .} of open sets which is a basis of the topology.

Lemma A.10. Every metric space (X, d) is a second countable space.

Proof. SinceX is separable by Lemma A.9, we can take a countable subset S ofX

with S = X. We define a countable family of open subsets by B = {Br(p) | p ∈ S, r ∈

Q}. For an arbitrary open set U and an arbitrary point p ∈ U we choose positive ϵ so

that B2ϵ(p) ⊂ U . Since S is dense, we have q ∈ S with d(p, q) < ϵ. We choose rp so that

d(p, q) < r < ϵ and consider Br(q). As we have d(p, x) ≤ d(p, q)+d(q, x) < 2r < 2ϵ for

every x ∈ Br(q), we find p ∈ Br(q) ⊂ B2ϵ(p) ⊂ U . Hence B is a basis of the topology.

Hence X is second countable. □

We note that a second countable topological space is separable. Hence a metric

space is separable if and only if it is second countable.

Lemma A.11. Let X be a second countable space, For an arbitrary open covering

U = {Uλ}λ∈Λ of X we can choose a countable open sub-covering {Uλj
}∞j=1 of X.

Proof. We take a countable baisis B of the topology. For each W ∈ B, we set

a family UW by UW = {Uλ | W ⊂ Uλ, and define a subfamily B′ of B by B′ = {W |

W ∈ B,UW ̸= ∅}. This family is countable. For each W ∈ B′ we choose Uλ ∈ UW

and denote it UW . For an arbitrary point p ∈ X we have Uλ with p ∈ Uλ. Then there

is W ∈ B with p ∈ W ⊂ Uλ. Thus W ∈ B′. Hence p ∈ W ⊂ UW . Therefore we have

X =
∪

W∈B′ UW . Thus, {UW}W∈B′ is a countable open covering of X. □



§A.3. Connectedness and compactness 197

Proof of Lemma A.8. (1) ⇒ (2). We take an arbitrary sequence {pj}∞j=1 of X.

We suppose {pj}∞j=1 does not have accumulation points. In particular, {pj}∞j=1 contains

infinitely many distinct points. That is, for each q ∈ X we have a positive ϵq such that

the cardinality of the set {j | pj ∈ Bϵq(q)} is finite. As X =
∪
Bϵq(q), we can take

finite points q1, . . . , qN ∈ X with X =
∪N

k=1Bϵqk
(qk). Since we have

♯
(
{pj | j ≥ 1}

)
= ♯
(
{pj | j ≥ 1}∩

( N∪
k=1

Bϵqk
(qk)

))
≤

N∑
k=1

♯
(
{pj | j ≥ 1}∩Bϵqk

(qk)
)
<∞,

where ♯(S) for a set S denotes the cardinality of the set S, we find a contradiction.

Thus, we have a point q0 such that {j | pj ∈ Bϵ(q0)} is an infinite set for every

positive ϵ. We take j1 so that pj1 ∈ B1(q0), and inductively, we take jk+1 so that

jk+1 > jk and pjk ∈ B1/k(q0). Then the subsequence {pjk}∞k=1 converges to q0 because

d(pjk , q0) < 1/k. Thus X is sequentially compact.

(2) ⇒ (3). First we shall show that X is complete. We take an arbitrary Cauchy

sequence {pj}∞j=1. Since X is sequentially compact, we have a convergent subsequence

{pjk}∞k=1, where {jk}∞k=1 is monotone increasing. We set p∞ = limk→∞ pjk ∈ X. For

every positive ϵ, there is a positive number Kϵ and Nϵ such that d(p∞, pjk) < ϵ/2)

for k ≥ Kϵ and d(pj, pℓ) < ϵ/2 for j, ℓ ≥ Nϵ. Thus if ℓ ≥ max{Kϵ, Nϵ}, we have

d(p∞, pℓ) ≤ d(p∞, pjℓ) + d(pjℓ , pℓ) < ϵ. Hence we see limj→∞ pj = p∞. Thus, X is

complete.

Next we shall show that X is totally bounded. To do this we suppose X is not

totally bounded. There exist a positive ϵ0 such that for an arbitrary finite subset S of

X the open set
∪

p∈S B2ϵ0(p) does not cover X. We take an arbitrary point p1 ∈ X. We

inductively take pj+1 ∈ X \
(∪j

k=1Bϵ0(pk)
)
. Since

∪j
k=1Bϵ0(pk) ⊂

∪j
k=1B2ϵ0(pk) ̸= X,

we can take such a point. Clearly we have d(pj+1, pk) ≥ ϵ0 for k = 1, . . . , j. This shows

that d(pj, pk) ≥ ϵ0 if j ̸= k. Thus {pj}∞j=1 does not have Cauchy subsequences. This

shows that X is not sequentially compact, which is a contradiction.

(3) ⇒ (2). Given a positive ϵ we take a finite covering U1, . . . , UN of X with

diam(Uj) < ϵ. Then for each sequence {pj}∞j=1 in X, there is Ui0 such that it contains
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infinitely many points of {pj | j}. Hence we can take a subsequence {pjk}∞k=1 ⊂ Ui0 .

This sequence satisfy d(pjk , pjk′ ) < ϵ.

Under this consideration, we take an arbitrary sequence {qj}∞j=1 in X. We can take

a subsequence {q(1)j }∞j=1 of this sequence with d(q
(1)
j , q

(1)
j′ ) < 1. For this new sequence

we take a subsequence {q(2)j }∞j=1 of with d(q
(2)
j , q

(2)
j′ ) < 1/2. Inductively we take a

subsequence {q(ℓ)j }∞j=1 of {q(ℓ−1)
j }∞j=1 with d(q

(ℓ)
j , q

(ℓ)
j′ ) < 1/ℓ. We set aj = p

(j)
j , and

construct a subsequence {aj}∞j=1 of {qj}∞j=1. Then, when j, j
′ ≥ j0 we have d(aj, aj′) <

1/j0, because aj, aj′ are contained in {q(j0)j }∞j=1. Hence we find that {aj}∞j=1 of {qj}∞j=1

is a Cauchy sequence. Hence it converges to some point in X. Thus X is sequentially

compact.

(3) ⇒ (1). Since X id totally bounded, every open covering {Uλ}λ∈Λ of X contains

a countable open subcovering {Uλj
}∞j=1 by Lemmas A.9, A.10 and A.11. If we suppose

that {Uλj
}∞j=1 does not have finite open sub-covering, we can take a point pj ∈ X \(∪j−1

k=1 Uλk

)
. Since X is sequentially compact because conditions (2) and (3) are

equivalent, we have a convergent subsequence {pjk}∞k=1 where {jk}∞k=1 is monotone

increasing. We set p∞ = limk→∞ pjk . For each ℓ, if we take k ≥ ℓ we have jk ≥

k ≥ ℓ. Hence we have pjk ∈ X \
(∪jk−1

i=1 Uλi

)
⊂ X \

(∪ℓ−1
i=1 Uλi

)
for k ≥ ℓ. Since

X \
(∪ℓ−1

i=1 Uλi

)
is a closed set, we see p∞ ∈ X \

(∪ℓ−1
i=1 Uλi

)
. Thus we find p∞ ∈∩∞

ℓ=1

(
X \

(∪ℓ−1
i=1 Uλi

))
= X \

(∪∞
i=1 Uλi

)
. But {Uλj

}∞j=1 is an open covering of X, it

is a contradiction. □



Refrences

[1] T. Adachi, Kähler magnetic flows on a manifold of constant holomorphic sectional curvature,
Tokyo J. Math. 18 (1995), 473–483.

[2] , A comparison theorem for magnetic Jacobi fields, Proc. Edinburgh Math. Soc., 125
(1997), 1197 – 1202.

[3] , Kähler magnetic flows for a product of complex space forms, Topol. Appl. 146–147
(2005), 201 – 207.

[4] , Magnetic Jacobi fields for Kähler magnetic fields, in Recent Progress in Differential
Geometry and its Related Fields, 41–53, T. Adachi, H. Hashimoto and M. Hristov eds, World
Scientific, Singapore, 2015.

[5] , A theorem of Hadamard-Cartan type for Kähler magnetic fields, J. Math. Soc. Japan 64
(2012), 1–21.

[6] , A comparison theorem on harp-sectors for Kähler magnetic fields, Southeast Asian Bull.
Math. 38 (2014), 619 – 626.

[7] , A study on harp-horns for Kähler magnetic fields, in Contemporary Perspectives in
Differential Geometry and its Related Fields, 95–112, T. Adachi, H. Hashimoto and M. Hristov
eds, World Scientific, Singapore, 2017.

[8] , Accurate trajectory-harps for Kähler magnetic fields, to appear in J. Math. Soc. Japan.
[9] T. Adachi and F. Ohtsuka, The Euclidean factor of a Hadamard manifold, Proc. A.M.S. 113

(1991), 209 – 213.
[10] P. Bai and T. Adachi, Volumes of trajectory-balls for Kähler magnetic fields, J. Geom. 105 (2014),

369–389.
[11] T. Bao and T. Adachi, Circular trajectories on real hypersurfaces in a nonflat complex space

form, J. Geom. 96 (2009), 41–55.
[12] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Progress in

Math. 61, Birkhäuser, Boston, Basel and Stuttgart 1985.
[13] J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian geometry, North-Holland math-

ematical library, vol.9 1975.
[14] P.B. Eberlein, Geometry of nonpositivelu curved manifolds, The University of Chicago Press,

Chicago and London 1996.
[15] P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45 – 109.
[16] K. Matsuzaka, Introduction to sets and topologies (in Japanese), Iwanami Shoten 1968.
[17] , Introduction to calculas 3, 4 (in Japanese), Iwanami Shoten 1998.
[18] S. Murakami, Manifolds, Kyoritsu Shuppan 1989 (in Japanese).
[19] K. Nomizu and K. Yano, On circles and spheres in Riemannian geometry, Math. Ann. 210 (1974),

163–170.
[20] T. Sakai, Riemannian geometry, Shokabo 1992 (in Japanese) and Translations Math. Monographs

149, A.M.S. 1996.
[21] Q. Shi, Comparison theorems on trajectory-harps for surface magnetic fields (in Japanese) Master

thesis, Nagoya Institute of Technology 2014.
[22] , Magnetic Jacobi fields for surface magnetic fields, in Current Development in Geometry

and its Related fields, 215–224, T. Adachi, H. Hashimoto and M. Hristov eds, World Scientific,
Singapore, 2016.

199



200 A. Appendix

[23] , Estimates on arc-lengths of trajectory-fronts for surface magnetic fields, Note di Matem-
atica 37(2017) suppl.1, 131–140.

[24] Q. Shi and T. Adachi, An estimate on volumes of trajectory-balls for Kähler magnetic fields,
Proc. Japan Acad. Sci. 92 Ser. A (2016), 47 – 50.

[25] , Trajectory-harps and horns applied to the study of the ideal boundary of a Hadamard
Kähler manifold, Tokyo Journal of Mathematics.VOL.40, NO.1(2017), 223–236.

[26] , Comparison theorem on trajectory-harps for Kähler magnetic fields which are holomor-
phic at their arches, to appear in Hokkaido Math. J..

[27] T. Sunada, Magnetic flows on a Riemann surface, Proc. KAIST Math. Workshop 8(1993), 93–
108.

Division of Mathematics and Mathematical Science,
Department of Computer Science and Engineering
Graduate School of Engineering,
Nagoya Institute of Technology,
Nagoya, 466-8555, JAPAN



201

Index

A
asymptotic, 157

B
Bishop’s comparison theorem, 133

C
Caratan Hadamard theorem, 151
circle, 32
complex Euclidean space, 43
complex hyperbolic space, 51
complex manifold, 39
complex projective space, 44
complex space form, 43
complex structure, 40
cone topology, 160
congruent, 66
conjugate point, 22

D
distance function, 6

E
embouchure angle, 176
Euclidean space, 13
exponential map, 20

F
first magnetic conjugate value, 72
fixed point theorem, 191
Frenet frame, 32
Fubini-Study metric, 45

G
Gauss Bonnt theorem, 184
geodesic, 19
geodesically complete, 27
geodesic ball, 132
geodesic curvature, 32
Gromov’s comparison theorem, 135

H
Hadamard manifold, 153
harp arc, 139
harp body, 117
harp sector, 139
Hermitian, 40
holomorphic at arch, 125
Hopf fibration, 44
Hopf-Renow theorem, 27
horn body, 178

I
ideal boundary, 158
injectivity radius, 132

J
Jacobi field, 21

K
Kähler form, 41
Kähler magnetic field, 61
Kähler manifold, 39

L
limit horn tube, 178
limit string, 147

M
magnetic conjugate point, 72
magnetic conjugate value, 72
magnetic exponential map, 67
magnetic field, 61
magnetic Jacobi field, 69

N
normal coordinate neighborhood, 20

P
parallel, 17
— displacement, 17



202

Q
quotient manifold, 13

R
Rauch’s comparison theorem, 86
real hyperbolic space, 13
real space form, 13
Riemannian connection, 7
Riemannian curvature tensor, 9
Riemannian manifold, 5
Riemannian metric, 5

S
sectional curvature, 11
sector arc, 139
standard sphere, 13
static magnetic field, 61
string cosine, 101
string length, 101
surface magnetic field, 61

T
Toponpgov’s comparison theorem, 99
totally geodesic, 49
trajectory,62
— ball, 132
— harp, 100
— horn, 174

tube cosine, 174
tube length, 174

U
uniformly normal neighborhood, 25

V
variation of geodesics, 20
variation of trajectories, 69
volume element, 12
Z
zenith angle, 139



203

Index of Theorems

Chapter 1

Lemma
Lemma 1- 1, 7
Lemma 1- 2, 9
Lemma 1- 3, 11
Lemma 1- 4, 14
Lemma 1- 5, 16
Lemma 1- 6, 17
Lemma 1- 7, 19
Lemma 1- 8, 20
Lemma 1- 9, 23
Lemma 1- 10, 23
Lemma 1- 11, 25
Lemma 1- 12, 33

Proposition
Proposition 1- 1, 21
Proposition 1- 2, 28
Proposition 1- 3, 32

Theorem
Theorem 1- 1, 27

Chapter 2

Lemma
Lemma 2- 1, 41
Lemma 2- 2, 46
Lemma 2- 3, 47
Lemma 2- 4, 49
Lemma 2- 5, 50
Lemma 2- 6, 53
Lemma 2- 7, 55
Lemma 2- 8, 57
Lemma 2- 9, 58
Lemma 2- 10, 63
Lemma 2- 11, 63
Lemma 2- 12, 64
Lemma 2- 13, 65

Proposition
Proposition 2- 1, 50
Proposition 2- 2, 59
Proposition 2- 3, 66

Corollary
Corollary 2- 1, 46
Corollary 2- 2, 54

Chapter 3

Lemma
Lemma 3- 1, 69
Lemma 3- 2, 71
Lemma 3- 3, 72
Lemma 3- 4, 72
Lemma 3- 5, 80
Lemma 3- 6, 83
Lemma 3- 7, 87
Lemma 3- 8, 88

Proposition
Proposition 3- 1, 79
Proposition 3- 2, 84

Theorem
Theorem 3- 1, 86
Theorem 3- 2, 90
Theorem 3- 3, 94

Corollary
Corollary 3- 1, 91

Chapter 4

Lemma
Lemma 4- 1, 100
Lemma 4- 2, 101
Lemma 4- 3, 102
Lemma 4- 4, 106



204

Lemma 4- 5, 108
Lemma 4- 6, 113
Lemma 4- 7, 118
Lemma 4- 8, 126
Lemma 4- 9, 133

Proposition
Proposition 4- 1, 105
Proposition 4- 2, 105
Proposition 4- 3, 106
Proposition 4- 4, 107
Proposition 4- 5, 109
Proposition 4- 6, 110
Proposition 4- 7, 114
Proposition 4- 8, 116
Proposition 4-9, 137
Proposition 4-10, 137
Proposition 4-11, 144

Theorem
Theorem 4- 1, 99
Theorem 4- 2, 118
Theorem 4- 3, 125
Theorem 4- 4, 133
Theorem 4- 5, 133
Theorem 4- 6, 134
Theorem 4- 7, 135
Theorem 4- 8, 135
Theorem 4- 9, 136
Theorem 4- 10, 140
Theorem 4- 11, 147

Corollary
Corollary 4- 1, 142
Corollary 4- 2, 145

Chapter 5

Lemma
Lemma 5- 1, 159
Lemma 5- 2, 159
Lemma 5- 3, 182

Proposition
Proposition 5- 1, 151
Proposition 5- 2, 153
Proposition 5- 3, 155
Proposition 5- 4, 158
Proposition 5- 5, 160
Proposition 5- 6, 176
Proposition 5- 7, 179
Proposition 5- 8, 180

Proposition 5- 9, 183
Proposition 5- 10, 184

Theorem
Theorem 5- 1, 151
Theorem 5- 2, 162
Theorem 5- 3, 164
Theorem 5- 4, 165
Theorem 5- 5, 168
Theorem 5- 6, 168
Theorem 5- 7, 176
Theorem 5- 8, 180
Theorem 5- 9, 184
Theorem 5- 10, 184

Corollary
Corollary 5- 1, 151
Corollary 5- 2, 154
Corollary 5- 3, 182
Corollary 5- 4, 182

Appendix

Lemma
Lemma A- 1, 187
Lemma A- 2, 188
Lemma A- 3, 192
Lemma A- 4, 192
Lemma A- 5, 193
Lemma A- 6, 193
Lemma A- 7, 194
Lemma A- 8, 195
Lemma A- 9, 195
Lemma A- 10, 196
Lemma A- 11, 196

Theorem
Theorem A- 1, 189
Theorem A- 2, 191

Corollary
Corollary A- 1, 190


