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Introduction

One of the typical research methods in the study of Riemannian manifolds is to in-
vestigate properties of geodesics on these manifolds. Many geometers obtained various
results on manifolds by investigating some properties on geodesics. If we give some
of the most fundamental results, we have Hopf-Rinow theorem, Rauch’s comparison
theorem on Jacobi fields, Toponogov’s theorem on geodesic triangles and so on.

The supervisor of the author T. Adachi considered to progress this study on Rie-
mannian manifolds with some additional geometric structures. If we study some prop-
erties on curves associated with a geometric structure on a Riemannian manifold, is it
possible to get the feature of this structure and properties of the underlying manifold?
In this context, he began to study Kahler manifolds by using trajectories for Kéhler
magnetic fields. We say a smooth curve of unit speed to be a trajectory for a Kéhler
magnetic field if its velocity vector and its acceleration vector form a complex line
in the tangent space at each point and if the norm of acceleration vector is constant
along this curve. Since geodesics are curves without accelerations, we may say that
trajectories are generalizations of geodesics and are closely related with the complex
structure of the underlying Kéhler manifold. Though many studies on Kéhler mani-
folds are based on complex geometry and not on real geometry, from curve-theoretic
point of view, this idea on studying Kahler manifolds by making use of trajectories
seems to be quite natural.

In this paper, we study Kéhler manifolds of negative sectional curvature, more pre-

cisely, study the relationship between trajectories and ideal boundaries of Hadamard



Kahler manifolds, which are simply connected Kahler manifolds of non-positive curva-
ture. Sectional curvatures of Riemannian manifolds give sufficiently precise informa-
tion on these manifolds. When they are flat, that is, they have null sectional curvatures
for all tangent 2-planes, they are quotients of Euclidean spaces. When a Riemannian
manifold is of positive sectional curvature then it is compact and its fundamental group
is finite by Myers Theorem. On the other hand, when a Riemannian manifold is of
non-positive sectional curvature then its universal covering space is diffeomorphic to a
Euclidean space by Cartan-Hadamard Theorem. Since this does not tells on topology
of manifolds of non-positive curvature, and as their geodesic flows on their unit tangent
bundles are of hyperbolic type and have many interesting properties, many geometers
are interested in such manifolds. In 1973, Eberlein and O’Neill [15] introduced the
notion of ideal boundaries of Hadamard manifolds. This boundary consists of asymp-
totic classes of geodesic rays (geodesic half-lines). Here, two geodesic rays of unit speed
are said to be asymptotic if the distance between them is bounded. For a Hadamard
manifold, we can define some different kinds of boundaries, this ideal boundary, an-
alytic boundary and so on. This geometric boundary shows many properties of the
interior part, the Hadamard manifold itself. For example, the Tit metric on the ideal
boundary shows the flatness of the Hadamard manifold ([9, 12]). Therefore, we are
interested in asymptotic behaviors of trajectories on a Hadamard Kahler manifold.
Our main result shows that when the strength of a Kahler magnetic field is less than
the square root of the absolute value of the upper bound of sectional curvatures of the
underlying Kahler manifold its trajectories form the same ideal boundary.

We here give the organization of this paper. In Chapter 1, we introduce some no-
tations, give some basic notions concerning Riemannian manifolds, and review some
fundamental results. In Chapter 2, we describe Kahler manifolds, especially complex
space forms which are simply connected Kahler manifolds of constant holomorphic
sectional curvature. Also, we give definitions of trajectories for Kahler magnetic fields.

We note that a closed 2-form on a Riemannian manifold is said to be a magnetic



field because it can be regarded as a generalization of static magnetic field on a Eu-
clidean 3-space. Though we use physical terms, important thing is that trajectories
are curves showing a complex line spanned by velocity vector at each point. In order
to study properties of trajectories, we study in Chapter 3 magnetic Jacobi fields which
are obtained as differentials of variations of trajectories. Just like Rauch’s compari-
son theorem on Jacobi fields plays quite an important role in the study of geodesics,
comparison theorems on magnetic Jacobi fields play important role in the study of
trajectories. We give explicit expressions on magnetic Jacobi fields on complex space
forms and estimate norms of magnetic Jacobi fields on general Kahler manifolds by
comparing them to those on complex space forms. The core parts of this paper are
chapter 4 and chapter 5. To study the relationship between trajectories and geodesics
we consider trajectory-harps in Chapter 4, which are variations of geodesics associated
with trajectories. We regard a trajectory-segment and a geodesic segment joining two
ends of the trajectory-segment as a correspondence of a geodesic triangle. By applying
Rauch’s comparison theorem, we give comparison theorems on trajectory-harps. We
study string-lengths of trajectory-harps, which are lengths of geodesic segments joining
origins and other points of trajectories, and zenith angles of trajectory-harps, which
are lengths of curves formed by initial vectors of geodesic segments. We show that
trajectory-harps on a Kéahler manifold of large sectional curvature are “shorter” and
“fatter” than those on a Kéhler manifold of small sectional curvature. In Chapter 5, we
study asymptotic behaviors of trajectory half-lines. By applying a comparison theorem
on string-lengths of trajectory-harps, we can show under the condition on strengths of
Kahler magnetic fields that every magnetic exponential map is a diffeomorphism and
that every trajectory-half line converges to some point in the ideal boundary. In order
to study the relationship between asymptotic behaviors of geodesics and those of tra-
jectories, we introduce trajectory-horns, which are variations of trajectories associated
with geodesics. Corresponding to comparison theorems on trajectory-harps, we give

estimates on tube-lengths, lengths of trajectory segments joining the origin and other



points of geodesics, and on embouchure angles, which are lengths of curves formed by
initial vectors of trajectory segments. With the aid of these comparison theorems, we
can show that trajectories have the same properties as of geodesics under the condition
on strengths of Kahler magnetic fields.

Here, the author would like to express his sincere gratitude to his supervisor, Pro-
fessor Toshiaki Adachi for his instructive advice and useful suggestions on his thesis.
In this thesis, we use some results due to him without refering his papers. Without his
help, this thesis would not have reached to its present form. Also, the author thanks
to Professor Hideya Hashimoto (Meijo University) for his advice on preparing the au-
thor’s paper [22] in Current Developments in Differential Geometry and its Related
Fields. Special express the author’s hearty thanks to the members of Ban BunTane
Scholarship organization. He does not think that he could obtain his degree success-
fully in three years without their help. In addition, the author would like to thanks to
his colleagues on their help and support. Finally, the author is indebted to his family

for their continuous support and encouragement.



CHAPTER 1

Riemannian manifolds

In this chapter, we introduce some notations and give some notions which are quite
familiar in the field of differential geometry. After recalling some fundamental results

on Riemannian manifolds, we give explicit formulas of circles on real space forms.

1. Notations and some fundamental results

Let M be an m-dimensional C*°—manifold. We denote by 7, : TM — M its
tangent bundle. At each point p € M we take an inner product g, : T,M x T,M —
R on the tangent space T,M at p. For a local coordinate neighborhood (U, p =

(1,... ,xm)) around p € M and ¢, j with 1 <4, 57 < m, we define a function g;; : U — R

by
9is(q) = gq((@%)q, (%)q)-

on U is defined by

(aii)qf = <aiif°90_l> ((q))

for each smooth function f on U. When such functions g;; : U — R are smooth for

Here, the vector field

T

an arbitrary local coordinate neighborhood (U, ¢), we call a family of inner products
g = {9p}pemr a C*-Riemannian metric on M. In order to simplify the notation, we
denote a Riemannian metric just by ( , ). We say a pair (M,(, )) of a smooth
manifold and a Riemannian metric to be a Riemannian manifold.

A smooth map ¢ : I — M of an interval [ is called a smooth curve on M. For a

smooth curve o : I — M and a,b € I with a < b, we set

b b
1ength(0|[a7b]):/ ||0'(t)||dt:/ Vo' (t), 0 (t)) dt

5



6 I. Riemannian manifolds

and call it the length of o[, 4. A continuous map o : [a,b] — M is said to be a piecewise
smooth curve from o(a) to o(b) if there is a division a =ty < t; < -+ < tx = b of
the interval [a,b] such that o|qy, ) is a smooth curve and both lim,,, , o’(t) and

limyyy, 0’ (t) exist for ¢ = 1,--- , K. For this curve, we set

K t;
length() = 3 / o' ()]t
i=1 Jti-1

For a piecewise smooth curve o : [a,b] — M, we define a piecewise smooth curve
o' [a,b] - M by 07'(t) = o(a+ b —t). For two piecewise smooth curve o :
[a1,b1] = M and o3 : [as, bs] — M with o1(by) = 02(a1), we define a piecewise smooth

curve oy - 09 : a1, by + by — as] — M by

(t) Jl(t), when aq S t S bl,
01 0 =
! 2 UQ(t — b1 + CLQ), when b1 S t S b1 + bg — a9.

Then we have
length(c~') = length(c), length(oy - 03) = length(oy) + length(oy).

We call o~ the reversed curve of o, and call o, - o5 the join of oy and o5.
Given two points p,q € M, we denote by C,,(M) the set of all piecewise smooth
curves on M from p to g. When M is connected, we see C,, # 0 (see §A3). We define

d(p, q) by
d(p, q) = inf{length(c) | o € €, ,(M)}.

If o € Cy(M) then o' € C,,(M) and if oy € C, (M),00 € C,.(M) then oy -
oy € €, (M). Since we have a constant map o € C,,(M), we find that this map
d: M x M — R satisfies

(1) d(p,q) > 0 and d(p,q) = 0 if and only if p = g,

(2) d(p,q) = d(q,p),

(3) d(p,q) +d(g,r) = d(p,7).
Therefore this d is a distance function on M. In case M is not connected, for two points

p, q which are not contained in a same connected component, we set d(p, q) = co. On
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a Riemannian manifold we usually consider this distance function induced by the
Riemannian metric.

We denote by C*°(M) the set of all smooth functions on M, and by X(M) the
set of all C*—vector fields on M. We see that X(M) is a vector space and is a

C*(M)—module.
0 :
(o))

0
Given a local coordinate neighborhood (U, ¢), we see {<8_> ,
T1/q
a basis of T, M at each g € U. Hence every vector field X € X(M) is expressed on

Uas X|y = Z fz with smooth functions fi, fo, -+, fn on U. For vector fields

X,Y € ff(M) we deﬁne their bracket [X,Y] € X(M) by
(X, Y]f = X(Y[) - Y(X[)

for an arbitrary smooth function f € C*°(M). On a local coordinate neighborhood

(U, ¢), we note that this bracket satisfies

[%,%]: 0.

On a Riemannian manifold M, we have a unique bilinear map
V:X(M)xX(M)>(X,)Y)— VxY € X(M)

satisfying the following conditions for an arbitrary function f € C°°(M) and arbitrary
vector fields X,Y, Z € X(M) :

(1) VxiyZ =VxZ +VyZ, VixY = fVxY;

(2) Vx(Y+2)=VxY +VxZ, Vx(fY)= (XY + fVxY,

(3) VxY = VyX = [X,Y];

(4) XY, Z) = (VxY, Z) + {Y,VxZ).
We call this bilinear map the Riemannian connection or the Levi-Civita connection of

this Riemannian manifold M, and call VxY the covariant differentiation of Y by X.

LEMMA 1.1 (Koszul formula). For arbitrary vector fields X,Y, Z € X(M) we have
2UVY, Z) = X (Y, Z) + Y (X, Z) — Z(X,Y)

(1.1)
+ <[X,Y],Z> - <[X7 Z]vY> - <[K Z],X>,
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PRrOOF. By using the third and fourth properties of Riemannian connections we

see that the right hand side turns to
(VxY, Z)+(Vy X, Z)+([X,Y],Z2) =(VxY,Z) + (Vy X, Z) + (VxY,Z) — (Vy X, Z)
and get the conclusion. O
This lemma shows that Riemannian connection V is defined by (1.1) (see Lemma
Al). Thus we see that the Riemannian connection is uniquely determined.
We take a local coordinate neighborhood (U, o = (x1,... ,xm)) of M. Since the

Riemannian connection V on M is determined by Lemmal.l, we find (VxY)|y =

Vx,Y|u. We denote as

0 = 0
\V4 — ek~
3(?%' 8(13j ; ”Ehk
and call the functions 17 ¥ on U the Christoffel’s symbols These satisfy I7; k =17 koOIf
0
and Y|y = Zw

x; ox;’

we express vector fields X, Y € X(M) as X|y = ZXia
i=1

then we have

(VxY)ly = Z{sz S w}

i=1 j=1
This expression shows that if Xi(p) = Xs(p) then (Vx,Y)(p) = (Vx,Y)(p). Thus
we frequently denote it by V,Y with v = X;(p) € T,M. Let 0 : (—e,e) - M
be a smooth curve satisfying o(0) = p and Z—j(O) = v. If two vector fields Y, Y5
satisfies Yi(o(t)) = Ya(o(t)) for —e < t < ¢, then the above expression shows that
VY1 =V, Y.

When N is a sub-manifold of a Riemannian manifold (M, (, )) we can define a
metric on N by considering T, N C T, M at an arbitrary point ¢ € N C M and by
restricting (, ) on U,y (T,N xT,N). We call this metric on N the induced metric,
and call N with this induced metric a Riemannian sub-manifold of M. When real
dimensions of N and M satisfy dim(M) = dim(N) + 1, we call N a real hypersurface

of M. If we take a (local) unit normal vector field N on N in M, that is a unit vector

field satisfying that N, is orthogonal to all tangent vectors in 7, N at each point ¢ € N,
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then the Riemannian connections ¥V, ¥V of M and N are related with each other
as

NWxY =My — MYV, N)N
for arbitrary vector fields X,Y € X(N), where we regard these vector fields as vector
fields defined on N(C M) which are tangent to N.

Generally, at an arbitrary point ¢ € N we decompose T M orthogonally as T,M =
T,N & (T,N)*. We call TN+t = U,n(T,N)* the normal bundle of N in M. For
X,Y € X(N), we consider the tangential component (MVxY)T of ¥V Y. Then
(MV )T satisfies four conditions of Riemannian connections on N. Hence we have
MVxY)" = ¥VxY. We define S : TN x TN — TN+ by S(X,Y) = (MVyxY)*+ =

MY —N¥VxY, and call it the second fundamental form of N. As we have
S(X,Y)—S(Y,X)=MVxY - "VxY)t = ([X,Y])* =0,

it is symmetric bilinear map. We call N is totally geodesic if S is the null map, that
is, S(X,Y) =0 for all X,Y € X(N).
We define the Riemannian curvature tensor R : X(M) x X(M) x X(M) — X(M)
on M by
R(X,)Y)Z =VxVyZ —VyVxZ -V xyZ,
with the Riemannian connection V. For vector fields XY, Z W € X(M), the Rie-

mannian curvature tensor satisfies following properties :

1) R(X,Y)Z = —R(Y, X)Z;
R(X,Y)Z+ R(Y,2)X + R(Z,X)Y =0;
R(X,Y)Z,W) + (R(X,Y)W, Z) = 0;

R(X,Y)Z,W) = (R(Z,W)X,Y).

(1)
(2)
(3)
(4) (

LEMMA 1.2. For smooth functions f € C*(M) and vector fields X,Y,Z € X(M),
the Riemannian curvature tensor satisfies following properties :

(1) R(fX,Y)Z = fR(X,Y)Z, R(X,fY)Z = fR(X,Y)Z;

(2) RX,Y)(fZ)=fR(X,Y)Z.
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PROOF. (1) By the definition of the Riemannian curvature tensor, we have
R(fX,Y)Z =VxVyZ —=NyVixZ — VixyZ.

Also, by properties (1), (2) of Riemannian connections, we have
fovyZ = fVXvYZa

VyVixZ = Vy(fVxZ) = (Yf)VxZ + fVyVx Z,

ViixyiZ = Vyixyl-ovpxZ = [VixyZ — (Y )VxZ.
Then we get
R(fX,Y)Z = fNxVyZ — (Yf)VxZ — fVyVxZ — fVixnZ + Y (fVx2)

= [(VxVyZ = VyVxZ —Vixy12)
= fR(X,Y)Z.
By use of the property (1) of curvature tensors, we have
R(X,fY)Z = —R(fY,X)Z = —fR(Y, X)Z = fR(X,Y)Z.
(2) By the definition of the Riemannian curvature tensor, we have
RX,Y)(fZ2) = VxVy(fZ) = VyVx(fZ) = Vixy(f2).
Also, by properties (1), (2) of Riemannian connections, we have
VxVy(fZ)=Vx((Y)Z + [VyZ)
= (XY MNZ+YHVxZ+(X[)VyZ+ fVxVyZ,
VyVx(f2) = Y(X))Z + (XVyZ + (Y [)VxZ + [VyVxZ,

Vixy|(f2) = (X, Y])Z + fVixyZ.
We hence get
RX,Y)f2)= (XY f)Z+ (Y HIVxZ+(X[)VyZ+ fVxVyZ

-~ (Y(X[)Z - (XVyZ = (Y [)VxZ = fVyVxZ
- (XYMNZ+YV(XN)Z = [VixxnZ
- f(vaYZ — VYVXZ — V[X,y}Z)

= fR(X,Y)Z.

We get the conclusion.
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For smooth functions f,g,h € C*°(M), by Lemmal.2, we have R(fX,gY)(hZ) =
fghR(X,Y)Z, hence we find that the curvature tensor is a C°°(M)—trilinear map.
Hence for tangent vectors w,v,w € T,M at an arbitrary point p € M, we can define
R(u,v)w.

For two linearly independent tangent vectors v, w € T,M at p € M, we set

Riem(v, w) =

and call it the sectional curvature of the tangent plane spanned by v, w.

LEMMA 1.3. Let (, ) be a Riemannian metric on a manifold M. For a positive
constant A we consider a new Riemannian metric { , ) = X2( | ). Then their Rie-
mannian connections V, V' and sectional curvatures Riem, Riem’ have the following

relations :

(1) VY =VxY for arbitrary X, Y € X(M);
lem (v, w) = A~ “Riem(v,w) for arbitrary v,w & at an arbitrary point
(2) Rien (v, w) = A~Riem(v, w) for arbitrary v,w € T,M bitrary poi
pe M.

PROOF. (1) By Lemma 1.1, for arbitrary X,Y, Z € X(M) we have

2AVNY, Z)Y = X(Y,Z) +Y(X,Z) — Z(X,Y)
H(X Y], 2) = (X, 2. Y)" = ([Y, 2] X)’
= NX(Y,Z) + XY (X, Z) — N*Z(X,Y)
+AH{[X, Y], Z) — XX, Z],Y) — \{]Y, Z], X)
= N{X(Y,Z2)+Y(X,Z) - Z(X,Y)
+H(X,Y],2) - (X, 2.Y) = ([Y. Z], X) }

= 2AVyY, Z) = 2(VxY, Z)
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Thus we have (VY, Z) = (VxY, Z). It leads us to VY = VY.

(2) By definition of sectional curvatures, for arbitrary v, w € T,M we have

., (R(v, w)w,v)’ A{R(v, w)w,v)
Riem’' (v, w) = 5 =
(v, w) (v, ) {(w, w) — (v, w) )\4{<U,v)<w,w) — (v,w)Q}
= (v, w)w, v) = A\ ?Riem(v, w
B /\2{(U,v><w,w> — (U,w>2} A~ Riem(v, w).
Thus, we get the conclusion. [l

At an arbitrary point p € M, we take an orthonormal basis {e;(p), ..., en(p)} on

T,M. We call a C>°—differential m—form w on M the volume element, if it satisfies

wp(el(p), o ,em(p)) =1.

On a local coordinate neighborhood (U, o= (x1,... ,$m)), we set a function G on U
by G = det(g;;). Since the matrix (g;;) is symmetric and positive definite, we see that

G is a positive function. We then have

w:\/adxl/\dxg/\~~/\d:cm

on U, where dx; denotes the dual 1-form of on U, that is, the 1-form satisfying

Ty
0 0
dxl(a—> =1 and dx; <8_> = 0 for j # i. Here, A denotes the wedge product, which
€T; X
is defined as
1
(A B)(v1, .oy V) = Vil Z (Sgn(T))Oé(Um), e s Ur(k)) B(Vr (et 1) - -+ Vr(h40))

TEGC K10

for a k-from « and a ¢-form (3, where sgn(7) denotes the signature of a permutation .

Let (M,(, )) and (M',(, )’) be two Riemannian manifolds, and let ¢ : M — M’
be a diffeomorphism. This map ¢ : (M, (, )) — (M’,(, )’) is called an isometry if its
differential map (dy), : T,M — T,M' keeps the inner product as

(v, w) = ((d@)y(v), (df)y(w))’

for arbitrary v,w € T, M at each point p € M.
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2. Real space forms

When we study Riemannian manifolds, we may say that real space forms, which
are standard spheres, Fuclidean spaces and real hyperbolic spaces, are most basic
manifolds. From the historical point of view, Euclid gave some postulates in his book
“Elements”. His fifth postulate is called the parallel postulate. It states that on a
plane for an arbitrary line v and an arbitrary point p which does not lie on v there
is a unique line which passes through p and that does not intersect v. Negating
this postulate Lobachevsky and some geometers independently gave “new” geometry,
which are called non-Euclidean geometry. Such geometry were developed on hyperbolic

planes and on standard 2-spheres.

[1] Euclidean spaces.

For a Euclidean space R™ = {(z1, 22, ...,2y) | ; € R} we take its canonical inner
product. That is, at an arbitrary point p € R™, for arbitrary two tangent vectors v =
(V1, V25« ., V), W = (W1, W, ..., W) € T,R™ = R™, we set (v,w) =Y " vw;. The
Riemannian connection associated with this metric is the ordinary differentiation. By
using the coordinate (x1, s, ..., x,) on R™, we express two vector fields X,Y on R™

= 0 “ 0
as X, = Z ai(ﬁ_xi)i” Y, = Z bj(ﬁ_:cj)PE X(R™). Then the covariant differentiation
i—1 j=1

of Y by X is given as

VxY(p) = Z Z ai(p) gijz (p) (%)p.

i=1 j=1

By direct computation we have R(X,Y)Z = 0 for arbitrary X,Y,Z € X(R™). Thus,
sectional curvatures of tangent planes of a Euclidean space are zero. We say a Rie-
mannian manifold to be flat if sectional curvatures of all tangent planes are zero. Thus,
an Euclidean space is a typical example of flat manifolds. Another typical example is

a flat torus 7™, which is a quotient manifold of R™.



14 I. Riemannian manifolds

[2] Standard spheres.

On a standard sphere

S™r] = {z = (zo,21,...,xp) ER™ |2 + 27+ + 22, =1}

m

of radiu 7, as it is a sub-manifold of R™*!, we take the metric induced by the canonical
metric on R™™!. We denote by N the unit outward normal vector field on S™[r]. That
is, N, = (1/r)p by regarding a point p € S™[r] C R™! as the position vector. This
identification shows VxN = (1/r)X for X € X(S™[r]), where V is the Riemannian
connection on R™*!. Thus, the Riemannian connections V,V on S™[r] and on R™*+!

are related with each other as follows :
LEMMA 1.4. For arbitrary X,Y € X(S™[r]), regarding them as vector fields defined
on S™(C R™*) tangent to S™ we have

_ 1
Vi =VxY + - (X Y)N.

PRrROOF. As (Y,N) =0, we have
— — — 1
0= (VxY,N)+ (Y, VxN) = (VxY,N) + ;(Y, X).

Since S™ is a Riemannian sub-manifold, we see VxY is obtained by removing the

orthogonal component of VY. Hence we have
_ — — 1
VxY =VxY — (VXY N)N =VxY + - (X, Y)N.
This completes the proof. O

Thus, we obtain
1
R(X,Y)Z = ) {<Y, HX — (X, Z>Y}
r

(see [21], for example). We therefore find that sectional curvatures of all tangent
planes of S™[r| are 1/r%. Standard spheres are typical examples of positively curved
Riemannian manifolds.

Since S™[1] is of constant sectional curvature 1 with respect to ( , ), we have

another way of getting a Riemannian manifold of constant sectional curvature ¢ (> 0).
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1
On S™[1] we define a new Riemannian metric (, )’ by (, )’ = —(, ). By Lemmal.3,
c

we see that S™[1] with this new metric is of constant sectional curvature c¢. We shall
denote this Riemannian manifold by S™(c). Trivially, the map S™[r] 2 p — (1/r)p €

S™(1/r?) is an isometry.

[3] Real hyperbolic spaces.
We take a real hyperbolic space

Hm[r] = {.CL’ = (xo,xl,...,xm) e Rt ’ —ZE(2)+J]%—|—+:1;31 = —7“2}_
On R™*! we define a bilinear form [( , )] by
(z. y) = —zoyo + T1y1 + -+ + T

for x = (o, 1, Tm), ¥ = Yo, Y1, Ym) € R At a point p = (po, - .., Pm) €

H™]r], the tangent space at p is given as

T,H™[r] = {(p,v) € {p} x R™" | —povg + p1v1 + - - + ppvm = 0} = R™,

where we denote v = (vp, ..., V). Therefore we have
(0,0 = —vg + i+ 40
v + . .. + UmPm 2
:_<1p1 » b >—|—vf—|—-~-+vfn
0

Pt

> (i 4t vg) = (Vi + k) 7
0

= (v + -+ )P > 0
and find that the restriction of [ , )] on to each tangent space of H™[r| is positive
definite. Thus [ , )] induces a Riemannian metric on H™[r|. Though [ , )] is not
positive definite on R™"!(or more precisely it has signature (1,m)), we can define
a connection V by the relation (1.1). We denote by N an outward normal vector
field of a real hyperbolic space H™[r] in R™"! satisfying [N,N)] = —1. That is, we
set N, = (1/r)p by regarding a point p € H™[r] C R™"! as the position vector.
This identification shows VxN = (1/r)X for X € X(H™[r]). Thus, the Riemannian

connection V and the connection ¥V on R™*! corresponding to the indefinit metric on

R™*! are related with each other as follows:
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LEMMA 1.5. For arbitrary vector fields X,Y € X(H™|r]), we have

— 1
VxY = V¥ = = [(X.Y)]N,

PrOOF. As [Y,N)] = 0, we have

0= [TxY,N] + (Y, xN] = [Tx¥,N] + 1, X)

Therefore we get

VxY =VxY KN,N>] N—VXY+[<VXy,N>]N—VXy . [<X,Y>]N
This completes the proof. O

Thus we obtain
-1
R(X,Y)Z = = {X(Y, Z) =Y (X, Z)}

(see [21], for example). We therefore find that sectional curvatures of all tangent
planes of H™[r] are —1/r%. A real hyperbolic space H™[r| with this metric is a typical
example of Riemannian manifolds of sectional curvature —1/r2.

Since H™[1] is of constant sectional curvature —1, we have another way of getting
a Riemannian manifold of constant sectional curvature ¢ (< 0). On H™[1] we define
a new Riemannian metric (, )’ by (, ) = %( , ), where ( , ) denotes the canonical
metric on H™[1]. By Lemma 1.3, we see that H™[1] with this new metric is of constant
sectional curvature c. We shall denote this Riemannian manifold by H™(c). Trivially,

the map H™[r] 2 p — (1/r)p € H™(—1/r?) is an isometry.
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3. Geodesics and parallel displacements

Let o : I — M be a smooth curve on a Riemannian manifold M defined on an
interval I. A smooth map I > ¢ — Y (t) € T, M is said to be a vector field along o.
As we see in §1.1, we can determine a new vector field V do Y along 0. We call this the
covariant differentiation of Y along 0. We sometimes denote this also by V 2 Y.

A vector field Y along a smooth curve ¢ is said to be parallel along o, if it satisfies
V%Y = 0. On a local coordinate neighborhood (U, (x1,. .. ,xm)), a vector field Y
along o is parallel if and only if

(1.2) dY"+Zm:Zm:FJZk xjoa yh

Jj=1 k=1

0,

m . a '
where Y|yno(r) = Z Y]% with smooth functions Y7 : I — R (j =1,...,m). Since
.71 ]

(1.2) is a linear differential equation of order 1, for an arbitrary a € I and for each
v € T, )M we have a unique vector field Y along o which is parallel along o and that
satisfies Y (a) =

Let 0 : I — M be a smooth curve on a Riemannian manifold. For a,b € I, we
define a map Paz : To@M — T, M in the following manner: Given v € Ty M,
we take a parallel vector field Y, along o, and define P,%(v) = Y,(b). We call this
a parallel displacement along o from o(a) to o(b). As (1.2) is a linear differential
equation, parallel displacements are linear maps. Moreover, we find P, is the identity
of T,yM and P, = (P b)_l. Since we have

C0),Yal0)= (Vs 2) (1), Yul0) ) +{Yal), (Ve Ya) (1)) = 0

we have (Y, (a), Y, (a))= (Y,(b), Y, (b)). Thus, we see that P,% is a linear isomorphism

preserving the inner product.

LEMMA 1.6. Given XY € X(M) and a point p € M, we take a smooth curve
o (—€€) = M satisfying 0(0) = p and 6(0) = X (p). Then we have

VY (p) = lim {0 (1)) ~ Y ()}
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ProOOF. We take a local coordinate neighborhood (U,go = (xq,... ,xm)) around
p. We denote as X = Zz_: X oz and Y = ; Y 0z, We define functions a;;(t) and

bij(t) by

P() S0 P, ~Snolh);

Since P,{ is the identity, we have a;;(0) = 0;; and b;;(0) = &;;, where d;; denotes the

Kronecker’s delta, that is, ;; = 1 and d,; = 0 for ¢ # j. By (1.2) we have

On the other hand, as P,? = (Pavg)fl, we have Z a;(t)bg;(t) = d;5. Differentiating
k=1
this equality, we obtain

Z{%@bkﬂ )+azk(t)lz;z< )} =0.

daij dbz
0 -
dt (0) dt

db "
2(0) = Z r)pX
a=1

By using the above, we get

In particular, we have (0) = 0. Hence we find that

:%;{Z1;w@@))%@)(%)p_g;w@(a%)p}
- ygol%{z S L o 0)bstt) - V() (0))
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Jj=1 1=
<N oY’ U P
- {Z OGP+ YZ(p)F;xp)X’f(p)} (5), = V=Y @)
j=1 {i=1 ¢ i=1 k=1 J
We get the conclusion. ([l

A smooth curve v : I — M on a Riemannian manifold M defined on an interval

is called a geodesic, if it satisfies the differential equation V44 = 0. By using a local

coordinate neighborhood (U, (21, ... ,xn)) this equation turns to
d?(zp07) zi 0 7) d(z; o)
=0 k=1,... .
d2t + Z Z dt dt ( ) ) m)

i=1 j=1

Since this is a system of nonlinear differential equations, for given an arbitrary v € T, M
at an arbitrary point p € M there exists a neighborhood V' (C TM) of v and a
positive e such that for each w € V' there exists a geodesic 7, : (—¢,€) — M satisfying
~7(0) = 7 (w) and Z—Z(O) = w. Here, € depends on w. By general theory on differential
equations, we know that solutions of differential equations depend smoothly on initial

conditions, we therefore find that the geodesic v, depends smoothly on w.

d
LEMMA 1.7. For a geodesic v : [a,b] — M, the norm function Hd—z of its verocity

vectors is constant. Hence length(y) = HE(G)HU? —

Proor. We have

=3 (7)o B0) o

and get the conclusion. 0

il

For a non-zero A\, we consider a smooth curve o : (—¢/|A|,¢/|\|) = M by o(t) =

) do d’yw
Yw(At). Since ﬁ(t) 7 ——(At), we see
do ., dvw
V(;ZE — /\ V%E —O,
do

and as we have 0(0) = my(Aw) and E(O) = \w, we find v, (t) = 7w (At).
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Given a point p € M we define a smooth map exp, : W — M of an open neigh-
borhood U of 0, € T,M by exp,(v) = 7,(1). As a matter of fact, as the unit tangent
space U,M = {u € T,M | |Ju]| = 1} is diffeomorphic to a sphere S"~! and is compact,
there is positive e satisfying that 7, is defined on (—e,€) for all w € U,M. Then for
every v € B/s(p) we find that +, is defined on a interval including (—2,2). Thus, we
can take U so that it includes B./2(p). As 7, depends smoothly on v, we find that
this map is smooth. We call this map the exponential map at p. We note that exp,
depends smoothly on p, that is, the map (u,w) = exp, () (w) is smooth, because 7,

depends smoothly on v.

LEMMA 1.8. The differential (dexp,)o, : To,(T,M) — T,M is the identity if we
identify To, (T, M) with T,M.

[a¥)

PROOF. Given a tangent vector u € T,M (= R™), we consider a curve c¢ :
d
(—p,p) = T,M given by c(t) = tu. Then we have ¢(0) = 0, € T,M and d—j(()) =

u € Ty, (T,M) by regarding u as a vector in Ty, (7, M) (=2 R™). We hence have

d

(dexp, o, (u) = -exp, (c()

d _

= _’7u(t)}t:0 T dt

t=0 dt 0)=w,

which shows the assertion. O

Since (dexpp)op is invertible, by inverse mapping theorem there exists a positive §
such that the restriction expp| Bs(0,) Bs(p) — M of the exponential map to an open
ball Bs(0,) = {v € T,M | ||v|| <} in T,M is a diffeomorphism onto an open subset
U = expp(B(g(Op)) of M. If we set ¢ = (expp’Bé(Op))_l : U — T,M = R™, then
(U, p) is a local coordinate neighborhood around p. We call this a normal coordinate
neighborhood centered at p.

A smooth map « : [a,b] X (—€¢,¢) — M is said to be a variation of geodesics, if
for each s € (—¢,€) the map [a,b] 5t — «(t,s) € M is a geodesic. For a variation of

geodesic « : [a,b] X (—e,¢) — M, we define a vector field Y along a geodesic vy given
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by v(t) = a(t,0) by Y(t) = g—j(t, 0). Then it satisfies
(1.3) (V4V5Y) (1) + R(Y (1), 4(8)%(t) = 0.

As a matter of fact, as t — «(t, s) are geodesics, we have

Oa Oa

ViViY =VaVaor =VaVa o
Oa Ja day O da da O
=VeVsa R ) o e a) ar

A vector field Y along a geodesic 7 satisfying the linear differential equation (1.3) is
called a Jacobi field. A Jacobi filed Y along a geodesic v is defined uniquely if we give
initial condition Y (0) and (V4Y)(0). Therefore, the set Ja(y) the set of all Jacobi

fields along v is a 2 dim (M )-dimensional vector space.

PROPOSITION 1.1 (Gauss Lemma). We take two tangent vectors u,v € T,M at
an arbitrary point p € M. Suppose the geodesic 7y, of initial vector u is defined on
an interval containing [0,€|. Then for 0 <t < € we have the following by identifying

Ty (T, M) with T,M -

(1) (dexpy)(u) = Fu(t),
(2) {(dexpp)u(v), % (t)) = (v,u), in particular, ||(dexp,)w(v)| = [v].

PROOF. (1) Since the curve ¢(s) = (t+s)u on Ty, (T, M) = T, M satisfies ¢(0) = tu

d
and d—;(()) = u, we have

d

(dexp, Jeut) = ~exp (e(5))],y = el +5)] =

dy,
— (7).
s (t)

ds
(2) We define a smooth map « : [—¢€, €] x (—=0,0) — M with some positive d by

a(t,s) = exp, (t(u + sv)). Then it is a variation of geodesics. We set

Y(t) = g—j(t, 0) = (dexpp)tu(tv) = t(dexpp)tu(v),



22 I. Riemannian manifolds

which is a Jacobi field along ,. It satisfies Y (0) = 0 and

(V2. 1)0) = (v 5) 0,0)

- (V% ((dexpp)t(u+sv) (u+ sv) |t:0)> 5=0

= (V% ((dexp,)o, (u + sv))) L:o =Va(u+ sv)| _, = v.
Since we have
Ly .50)= (T T2.7) 05000 ) = —(RO0. 50) 00 50) = 0.

because 7, is a geodesic, we see

Y (1), 4(1))= (¥ (0),4(0))+((V5.) Y (0),4(0))t = (v, u)t.

Thus we obtain

<(dexpp)tu(v)a 7u(t)> = <

This complete the proof. 0J

SY(0),5(0) = (v,

We showed that a variation of geodesics induces a Jacobi field. On the other hand,

for a Jacobi filed Y along a geodesic v we have a variation « of geodesics satisfying

a(t,0) = ~(t) and g—j

u, Y(0) = v and V;Y(0) = w. We take a curve o : (—¢,€) — M satistying o(0) = p

(t,0) = Y(t) for all t. As a matter of fact, we set v(0) = p, 4(0) =

and 0'(0) = v. If we define a variation of geodesics by a(t, s) = exp,,) (t(u + sw)),
then we have a(t,0) = exp,(tu) = y(t) and

o d

do
52(0,0) = (Z-exp((0acs))

= E(O) = .

s=0

Since (dexpy(y))o, ., is the identity, we have

(Vs 52) 0.0 = (V32 57 ) 0:0) = (7 (expigo s+ 0],

— (V% ((dexpy(q) o, ., (u + Sw») 5=0

O
Os
Let v : (a,b) = M (a < 0 < b) be a geodesic and ty € (a,b). If there is a non-trivial

s=0

= (V (u+ sw))|S:0 = w.

9
Js

Thus we see the Jacobi field —(¢,0) along 7 coincides with Y.

Jacobi field Y satistying Y (0) = 0 and Y (o) = 0, we say that (o) is a conjugate point
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of v(0) along ~, and say that ¢y a conjugate value of v(0) along . We call the minimum

positive conjugate value ¢, (p) the first conjugate value of p along o.

LEMMA 1.9. Let v be a geodesic. Suppose y(ty) is not a conjugate point of ~(0)
along . For arbitrary v € Tyo)M and w € Ty,\ M, there exists a unique Jacobi field
Y along v satisfying Y (0) = v and Y (ty) = w.

PROOF. Since the set Ja(7)’ = {Y € Ja(7) | Y(0) = 0} is an m-dimensional linear
space and (tg) is not a conjugate point, we see the linear map Ja(7)° 3 Y +— Y (o) €
Tto)M is Dbijective, that is, it is a linear isomorphism. Thus, we have Y; € Ja(v)°
satisfying Y (to) = w.

Let X be a Jacobi field along v. We consider a geodesic 4 given by 4(t) = y(to —1t).
If we set a vector field X along 7y, we have

(VA'VAX) (1) + R(X(t),7(t)7(2)
= (VLY X)(to — 1) — R(X(to — ), ~(to — 1)) (to — £) = 0.
hence X is a Jacobi field along 4. By definition of conjugate points, we find that ~(0)
is not a conjugate point of v(¢y) along 4. Thus, above argument shows that we have
a Jacobi field Y, along v satisfying 37(0) = 0 and }7(750) = v. Therefore, by setting
Yy(t) = Ya(to — 1), it is a Jacobi field along v satisfying Y (0) = v and Y (o) = 0. Thus
we find that the Jacobi field Y = Y7 + Y5 satisfies the desirable condition.

If we have another Jacobi field Z along 7 satisfying Z(0) = v and Z(tg) = w, the

Jacobi field Y — Z satisfies (Y — Z)(0) = 0 and (Y — Z)(tp) = 0. Since v(ty) is not a

conjugate point, we see Y — Z = (. We hence get the conclusion. 0

By using Gauss Lemma (Proposition 1.1), we study the relationship between the

distance function and exponential maps.

LEMMA 1.10. Suppose exp, : B,(0,) — exp,(B,(0,)) is an embedding. For v €
B, (0,), the geodesic v, : [0,1] — M satisfies

d(p, expp(v)) = length(~,) (: ||v||)
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Moreover, if a smooth curve ¢ : [a,b] — M with c(a) = p, c(b) = exp,(v) satisfies
length(c) = ||v|| then ¢([a,b]) = 7,([0,1]), and if v is a geodesic of unit speed with
7(0) = p and y([[v]|) = exp,(v), then v,(t) = y(||v||t) holds fort € [0,1]. In particular,
exp, (B, (0,)) is a distance-ball B,(p) = {q | d(p,q) < r}.

PROOF. First we take a smooth curve ¢ : [a,b] = M in B := exp,(B,(0,)) satisfy-
ing c(a) = p and ¢(b) = q := exp,(v). Then we have a smooth curve x : [a,b] — B,(0)
with ¢(t) = exp,(u(t)). We shall show length(c) > [lv. If there are a < t; < ¢, <

- < tg < b with c(t;) = p, we divid ¢ into K + 1 curves c|ja,], ¢lit1 40, - - - » €| [tk b].
We may hence suppose ¢(t) # p for t > a. We set p(t) = ||u(t)|| for a < ¢ < b and
u(t) = ,u(t)/p(t) € U,M for a <t <b. By Gauss Lemma (Proposition 1.1), we find

|desp, i (x| = gy (r(0)] = 1.
<<dexpp>u<t>< (6), (exp)uco (o (1)) ) = (u(t), S (1)) = 5 tut), u(t)) = 0.
Therefore, as 2—‘;(15) = %(t)u(t) + p(t)ccll—?(t), we have

|0 = emo o (G )H=H<dexpp>u<t>(%<t>u<t>+ﬂ<t>§—?<f>)H

2}1/2

= {‘ ) H dexp,) () (u H + p(t (depr) <le§:( ))

> [gr0] = (G t>>\=$1<2—‘§<t>vu<t>>\

L uwl| = | 2.
dt dt

length(c) = / ’ %(1&) & )‘ dt

> / o, dt‘_} — p@)| = Ilol.

(1.4)

Hence we find
*1dp

o>

(1.5)

Next we take a curve ¢ : [a, b] — M satisfying c¢(a) = p and ¢(b) = ¢ which does not con-
tained in B. Then there is ¢y > with a < ¢y < b satisfying c(t) € exp, (Bg1(o/2(0p))
for a <t < ty and c(ty) & expp(B(MHvH)/g(Op)). By the above argument we have



§1.3. Geodesics and parallel displacements 25

length(clja)) > (r + [|v]])/2 > ||lv]|. We hence find d(p,q) > ||v||. Since length(y,) =
[v]], we obtain d(p, ¢) = [[v].

Next we take a smooth curve ¢ : [a,b] — M with ¢(a) = p and ¢(b) = ¢ which
satisfies length(c) = d(p, q)(= ||v||). Then we find that ¢([a, b]) is contained in B and
equalities hold in (1.4) and (1.5). Thus we see u(t) = v € U,M and %’ > 0. This
means c([a,b]) = 7. ([0, [|v]]]). Since exp, : B.(0,) — B is bijective, we have v = ||v||u
and e([a, B]) = ([0, 1))

Finally we study B,(p). It is clear that B C B,(p) by the assertion we showed in
the above. On the other hand, if we suppose that we have a point € B,(p) \ B then
for every smooth curve ¢ : [a,b] — M with c(a) = p and ¢(b) = z there is t, with
a <ty < b satisfying c(t) € B and c(ty) ¢ B. Since length(c|jz,) > 7 as we see in
the above and length(c|y, s > d(c(to), z) > 0, we find d(p,z) > r. We hence get the

conclusion. O

An open set W in M is called uniformly normal neighborhood if there exists positive
0 such that the following conditions hold at each point ¢ € W:
i) exp, : B4(04) — exp,(B,(0,)) is an embedding;
i) W C exp,(B,(0,))-

LEMMA 1.11 (Existence of uniformly normal neighborhoods). Given a point p € M
and a neighborhood U of p, there exists a uniformly normal neighborhood W of p

contained in U.

PROOF. We take a neighbourhood V' of p whose closure V is contained in U. Since
TM |y = quV{“ € T,M | ||u]| = 1} is compact, there is positive e satisfying that 7,
is defined on (—¢,¢) for all w € TM|3;. Therefore we see that exp, : Bc(0,) — M is
defined for each ¢ € V. By setting &€ = {u € TM|y | [|u| < €}, we define a smooth
map @ : &€ - M x M by &(u) = (WM(U),eXpWM(u)(U)).

For a normal coordinate neighborhood (U’, ¢ = (21,..., %)) of M centered at

p with U’ C V, we have a corresponding coordinate neighborhood of T'M given by
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(U’,(,E = (z1,..., ;&1 .- ,fm)) which is defined as U’ = TM |y and

— o
U’9§ §j<_8x-> — (21(0), - s T (@), &1y - - &) € ©(U') x R™,
j=1 jr

Since we have

mu(6 (i), =0 e exppésj(a%)q):so—l(&,...,gm),

We find that (d®)o, : To,& — T, p) (M X M) = T,M x T,M is given by the matrix

Oxy, O E O
(Dds)op = - (* E)
O(wjoexp,)  O(w;oexp,)
Oy, &,

by identifying Ty € = R*™ and T,M xT,M = R™ xR™ = R*". As (D®),, is invertible,
by inverse mapping theorem, there is an open neighborhood V (C 8) of 0, such that
®ly : V — &(V) is a diffeomorphism.

There exist an open neighborhood U” of p and a positive € such that U” C U’ and

¢ 1 (U" x B«(0)) C V. Since q (%)q is smooth, we can set

o= mind [ (50),

]:

G = mm{Hzm: (ai )

]:

a; € R with Za?zl, qEW},
j=1

m
a; € R with Za?zl, qEW}.
=1

Then for arbitrary v € TM [y we have C. 377 &(v)* < |lv]| < Cy 377 &;(v)?. Thus,
if we put U := U cpn{v € TyM | |lv]| < Cie'}, then it is an open neighborhood of 0,
satisfying U C g7 (U” x Bu(0)). Since Ply : V — &(V) is a diffeomorphism, we can
take an open neighborhood W (C U”) of p so that W x W C &(U).

We shall show that W and § := C.¢ satisfy the conditions of uniform normal
neighborhood. We set W := {J oy {v € T,M | [Jv]| < 6} As W C U C V, the map
Dl : W — &(W) is a diffeomorphism.



§1.3. Geodesics and parallel displacements 27

We take an arbitrary point ¢o € W. We define a map ¢ : exp,, (Bs(04,)) — Bs(0g,)
so that (€Z5|w)71(q0,y) = 1(y). Then, for each v € T,)M with ||v|| < J, we have

Yoexp, (v) = (¢|W)71(qo, exp,, (U)) = (@|W)71 od(v) =w.

On the other hand, for arbitrary y € M satisfying y = exp,,(v) with some v € Ty, M

with ||v|| < 0, we have

(40, expgy 0 V() = Do (Plw) ™ (40, y) = (0. ),

hence have exp,, o (y) = y. Thus, exp, : Bs(0g,) — exp,, (B(;(Oqo)) is an

|B5(Oq0)
embedding.

We take arbitrary points ¢,y € W. Since W xW € @(U), we take v = (@|u)_1(q, )
€ T,M. We note that ||v|| < 0 and that v € W because ¢ € W. As (q,y) = ¢(v) =
(q,equ(v)), we find that y € equ(Bg(Oq)). Thus, we find that W is uniformly

normal. O

By Lemmas 1.10 and 1.11, for arbitrary points ¢;, ¢ in a uniform normal neigh-
borhood W there is a geodesic 7 joining these points whose length is less than 9.

When a Riemannian manifold M is complete, by Hopf-Renow theorem every geo-
desic can be extended unlimitedly. That is, domains of geodesics are the set R of all
real numbers. We say a Riemannian manifold to be geodesically complete at p € M if

every geodesic of initial poit p is defined on R.

THEOREM 1.1 (Hopf-Renow Theorem). For a connected Riemannian manifold M,

the following conditions are mutually equivalent:

(1) At some point p € M, the manifold M is geodesically complete;

(2) M is geodesically complete;

(3) At some point p € M, for every r > 0, the closed ball B.(p) = {q €
M;d(p,q) <r} is compact,

(4) For an arbitrary pointp € M and everyr > 0, the closed ball B, (p) is compact,
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(5) The distance space (M,d) is a complete distance space, that is, every Cauchy

sequence in M is a convergent sequence.
In the proof of this theorem we can show the following.

PROPOSITION 1.2. Given two points p,q on a complete connected Riemannian

manifold, there ezists a geodesic 7y joining p and q with length(y) = d(p, q).

The geodesic in Proposition 1.2 is called a minimizing geodesic joining p and q.

PROOF OF THEOREM 1.1. (1) = (3). First, we show that the condition (1) guar-
antees that for every ¢ € M there exists a minimizing geodesic joining p and q.

By Lemma 1.8 and by inverse mapping theorem, there is positive ¢ such that
exp,, : Ba(0,) — M is an embedding into M. By Lemma 1.10 each point ¢ € By (p) =
exp,, (Bge(Op)) can be joined by a unique minimal geodesic with p. We consider the
case d(p,q) > 2¢. Since B.(p) = epr(E(Op)) is compact, we can take § € 0B.(p)
satisfying d(p,q) + d(q,q) = d(p,q). In fact, for each positive integer j we have a
smooth curve ¢; : [0,1] — M from p to ¢ which satisfies length(c;) < d(p,q) + % We
take ¢; so that ¢;(t) € Be(p) for 0 < ¢t < t; < 1 and d(p,¢,(t,)) = €. Then putting
¢; = c;(t;) we have

d(p, q;) + d(g;,q) < length(cj|os,)) + length(c;|y, 1) = length(c;) < d(p, q) + %

As g; € 0B.(p) we can take a convergent subsequence {g;, }72,. If we set § =
limy 00 ¢j, € OBc(p), we have

d(p,q) + d(g,q) = lim {d(p, g;,) + d(g;., 9)} < d(p, q)
by the above inequality. On the other hand we have d(p,q) < d(p,q) + d(q,q) by the
triangle inequality. Hence we have d(p, q) + d(q, q) = d(p, q).

We take a geodesic v of unit speed with v(0) = p and y(¢) = ¢. Under the condition
(1), this geodesic is defined on R. We set

T= {t € [0,d(p,q)]

(0. y(1) =,
d(p,y(t)) +d((t),q) = d(p,q) |’
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and put 7' := supT. Since 7| is the minimizing geodesic from p to g, we find
that ¢t € [0, €] satisfies the conditions, hence T > e. We suppose T" < d(p,q) and
set ¢ = v(T'). By definition of T, and continuity of the distance function d, we have
d(p,q") =T and d(p,q)+d(¢',q) = d(p,q). We take a positive ¢ so that 20 < d(p,q)—T
and that Bsys(q’) is contained in a uniform normal neighborhood W around ¢’. By the
same argument when we take ¢, by taking a sequence of smooth curve joining ¢’ and
q, we have a point ¢ € 0B;s(q') satistying d(¢',q) + d(q7',q) = d(¢',q). By definition
of T, we have a monotone increasing sequence {t;}72, C T with limg ooty = 7.
For sufficiently large ko we have v(ty,) € Be(¢'). We set p’ = v(ty,). Then we have
d(p,q) =d(p,p) +d(p',q) = ty, + d(p',q). Thus we obtain
d(p',q) = d(p,q) — ti, = d(p,q) + d(d',q) — ti,
=d(d,q) +T —ty, = d(d',q) +d(p',¢),
because p’ and ¢ are joined by a minimizing geodesic 7| its, 7]+ BY the triangle inequality

we have
dip',q) <d(p'.¢)+d(d'.q)=dp'.¢)+d(d,q) —d(T,q)

=d(p',q) —d(d,q) <d(.7),
hence have d(p/,¢") + d(¢',q') = d(p’, 7). Since p',¢',q € W this equality shows that
the join of 7| ltho 7] and the minimizing geodesic of unit speed from ¢’ to ¢’ is the minimal
geodesic of unit speed from p’ to ¢’. Hence it coincides with ’Y|[tk0,T+6] because of the
uniqueness of geodesics of given initial vector. We therefore have v(T'40) = ¢’. Again,

by the triangle inequality we have
d(p,q) <d(p,q') +d(d,q) =d(p,q)+d(d,q) —d(d,q)
= d(p7 Q) - d(q/7 Q) S d(p7 q_/)7

hence have d(p,q) = d(p,q') +d(q',q) =T + 6. Moreover, we have

d(p,q) +d(q,q) =d(p,q) +d(¢,q) +d(7,q) = dp,q) +d(¢,q) = d(p,q).

Thus, we find T+ § € T, which is a contradiction. We hence find 7" = d(p, q). This

shows that 7 is a minimal geodesic of unit speed joining p and gq.
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Next we show the condition (3) holds under the condition that for every ¢ €
M there exists a minimizing geodesic joining p and ¢q. For an arbitrary sequence
{@}52, C B,(p), we take upy € U,M so that the geodesic of initial vector uy is a
minimal geodesic of unit speed from p to ¢;. Since U,M is compact and d(p, q;) <,
we can take a subsequence {qy, }52, so that both {uy, }52, and {d(p, q;)}52, converge.
We set u = lim;_,oo g, and d = lim;_ d(p, qx;) (< 7). Since 7, depends smoothly
on u, we find 7, (d) = lim;_, Y, (d(p, qkj)) = lim; o gr;- Thus {q, }32, converges to
Yu(d) € B,.(p). Hence B,(p) is compact.

(3) = (4). We take an arbitrary point ¢ € M. By triangle inequality, we see
B,.(¢) C Brtapg(p). Since Brigp.q(p) is compact, its closed subset B,(q) is also
compact.

(4) = (5). We take a Caucy sequence {p;}32; in M with respect to the induced
distance function d. For a positive € there is a number N such that d(p;,px) < € for
every j,k with j,k > N the distance. If we set R = max{d(p1,p;) | 2 < j < N},
we have d(p1,pr) < d(p1,pn) + € for K > N. Thus we see {p;}32, C Bryc(p1). Since
Brae(p1) is compact, we find that {p;}52, converges to a point in Bgy(p1). Thus, M
is complete.

(5) = (2). We take a geodesic vy of unit speed. It is defined at least on the interval
(—e,¢€). We set T’y = sup{r | 7 is defined on (—e¢, 7]}. If we suppose T < oo, we take

a monotone increasing sequence {t;}22, with lim; ,t; =T. As we have

d(y(t;),v(t)) <length(v|y, 1)) =tk — 1

for arbitrary j, k with j <k, and since {t;}32, is a convergent sequence, we find that
{7(t;)}32, is a Cauchy sequence in M. We put ¢ = lim;_.,y(t;). We take a uniform
normal neighborhood W of ¢q. There is jy such that if j > j, we have v(t;) € W.
We take a geodesic o : (—€¢,€) — M of unit speed which satisfies ¢(0) = ¢ and
o(d(q,v(tjo+1)) = ¥(tjo+1) and that lies in W. Since

d(y(t)),q) = lim d(y(t;),7(tx)) = lim [ty —t;[ =T —;,

k—o0
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Since y(t;) € W for j > jo, the geodesic 7|, +,,,,] is minimizing, hence

jovt
d(V(tj0+1)a V(tjo)) = tjoJrl - t.jO'
Thus, we have

d(Qa V(tjo—i—l)) + d('Y(tjo-H)a V(tjo)) - (T - tjo-i-l) + (tjo-l—l - tjo) =T- jo = d(Qa ’7<tj0))'

This means that the joined curve of 7|[tj0 o) and o~ ! is a minimizing geodesic joining

v(t;,) and ¢. If we consider a geodesic

(1) = (1), when ¢t <t 41,
) o(T —t), whent; 1 <t<T+¢,

then 7|p.r) = 7, because ¥(tj,+1) = ¥(tjo41). This is a contradiction to the definition
of T. Hence we find that ~ is defined on (—¢, 00). Considering y~!, we get 7 is defined
on R. Thus we see M is geodesically complete. 0



32 I. Riemannian manifolds

4. Circles

A smooth curve v : I — M on a Riemannian manifold M is said to be parameter-
ized by its arc-length if it satisfies ||¥(t)|| = 1 at each ¢, where 4 denotes the differential
of v with respect to the parameter t. A smooth curve v parameterized by its arc-length
is said to be a circle, if it satisfies the following system of differential equations:

Vi = kY,
{ VY = —ky,

(1.6)

with a constant k(> 0) and a field Y of unit vectors along 7. We call the constant k
its geodesic curvature and {%,Y'} its Frenet frame. When M is complete, every circle

is defined on R.

PROPOSITION 1.3. A smooth curve v parameterized by its arc-length is a circle if

and only if it satisfies

(L.7) Vi Vi + VA1 = 0.

ProOF. First, we suppose a curve 7 is a circle. Then we get
ViV = V4(kY) = =K% = —||[V3] P4,

Next, we suppose a curve -« satisfies (1.7). As it is parameterized by its arc-length, we

have
0=3(I41°) = 2(4, V).
By (1.7), we obtain
FUIVsAI?) = 2(V5 Vs, Vid) = =2 V5411*(7, Vs3) =0,
hence we find that |V.:7]|| is constant along v. We put k = ||V+7|. When k = 0,

for an arbitrary parallel unit vector field Y along =, it satisfies the equations of circle

(1.6). When k > 0, we set Y = (1/k)Vs%. Then we find that (1.7) turns to
kV5Y + k> = 0.

This shows that 7 satisfies the system of equations (1.6). UJ
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LEMMA 1.12. Let v be circles of geodesic curvature k on (M, , )). For a positive
constant \, we consider a new Riemannian metric { , ) = N(, ) . If we define a

curve o by o(t) = ~(t/X). then it is a circle of geodesic curvature k/X\ on (M, {, )').

PrOOF. We put a(t) = t/\. We then have

C;_j(t) _ %'y(a(t)) - a’(t)C;—Z(a(t)) — %Z—Z(u(t»

H do

dt
1

Thus o is parameterized by its arc-length with respect to (, ). We put Y’ = XY. We

Hence have

- M- Ao

1
then have [|Y'|| = XHYH/ = |Y] = 1.

By Lemma 1.3, we have

. . 1. 1 . 1 k
Vo =Vso = v§7X7 = ﬁvﬁv = ﬁkY =3 Y,
1 k. k.
VZ-TY, = VC}Y/ = FV’YY = —ﬁ’}/ = —XO'7
hence o is a circle of geodesic curvature k/A. We get the conclusion. U

For the sake of later use, we here study circles on real space forms.

[1] Circles on a Euclidean space

First we study circles on a Euclidean space R™. Since the covariant differentiation
with respect to the Riemannian connection on R™ is the ordinary differentiation, the

equation (1.7) of a circle of geodesic curvature k turns to
7/// 4 sz}// — 0
Since its characteristic equation is A\* + k?\ = 0, we find that ~ is expressed as
Y(t) = A+ BeV™H 4 Ce™VTIR — A 4 B’ cos kt + C' sin kt

with some A, B,C, B’,C" € R™. Under the initial conditions that v(0) = p € R™ and
v (0) = u, v"(0) = kv with u,v € U,R™ C T,R™ = R™, we have

v(t) =p+ %(sin kt)u + %(1 — cos kt)v.
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Thus this circle is closed of minimal period 27 /k. Here, a curve v parameterized by
its arclength is said to be closed if there is ¢y # 0 satistying (¢ + to) = (¢) for all .
The minimum positive ¢ty with this property is said to be the minimal period of this

closed curve. When 7 is not closed it is said to be open.

[2] Circles on a standard sphere
Next we study circles on a standard sphere S™(1). Regarding S™(1) as a sub-

manifold of R"™, we denote Riemannian connections of S™(1) and R™ by V and V,
respectively. We take a circle 7 of geodesic curvature k whose Frenet frame is {7,Y'}.
We regard this curve as a curve in R™*1. For the sake of simplicity we denote it also
by . For arbitrary vector fields X,Y € X(S™(1)), we have VxY = VxY + (X, Y)N
(see §1.3). Hence, the system of differential equations (1.6) turns to

Vi = kY —,

V.Y = —k7.
We therefore get

ViVid = kV3Y =4 = —(K* + 1)4,

which is equivalent to 7" + (k* + 1)’ = 0. Since its characteristic equation is A3 +

(k* + 1)\ = 0, we find that v as a curve in R™"! is of the form
Y(t) = A+ BeV W4 Cem V=D = A 4 B cos(VEZ + 1) + C' cos(VE2 + 1t)

with some A, B,C, B’,C" € R™*!. Under the initial conditions y(0) = p € S™(1) C
R™! and 4(0) = u, V44(0) = kv with u,v € U,5™(1) C T,S™(1) C T,R™*t = R™1,
which is equivalent to v(0) = p, v(0) = u, 7v"(0) = kv + p, we obtain

1
(cos VE2 + 1t+k*) p+———=sin VK2 + 1t u— (cos VK2 + 1t—1)w.

k
V2 +1 k241

Thus, we find that every circle of geodesic curvature k£ on S™(1) is closed and of

minimal period 27 /v/k? 4 1.

We here make mention of circles on S™(c).

1
t =

Let v be a circle of constant geodesic curvature k on (S™(c),( , )’). Here, the

1
metric ( , ) is given by (, )’ = =(, ) with the canonical metric ( , ) on a standard
c
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sphere S™(1). If we define a curve o on S™(1) by o(s) = v(s/+/c), then it is a circle

of geodesic curvature k/+/c on (S™(1),(, )) by Lemmal.12. Hence it is expressed as

o(s) = (k/\[ (Cosms+ (k/VE))p
R AR

(k/y\[ <cosms—1>v
<c05m8+(k/\/_)2)p+ Wﬂﬂsm (/) +1 5 u

- kgLfm(COS \/ (k/\/e)2+1s— 1>v.
Here, we put ¢ = s/+/c. Since ||6(0)]]' = 1//¢||6(0)]| = u/+/c, we have
V(t) = o(Vet) = C(ccosvk2+ct+k2)p+ sinvk?+4ctu

Ve
VE2+ ¢
vk (cosx/k2+ct—1)

=
— kzic(ccosvk2+ct+k2)p+
k JVi2
— k:2+c(COS k +ct—1)v.
As v(t) = o(y/et), if o(s + s9) = o(s), we see
1(t -+ 50/3/@) = o (et + 50) = o(/et) = (2).

Since o is closed of minimal 27/+/(k//c)? + 1, we see that + is closed of minimal
period 27 /Vk? + c.

1
\/Wsin\/lﬁ—irctu
c

[3] Circle on a real hyperbolic space

In the third place we study circles on a real hyperbolic space H™(—1). Regarding
H™(—1) as a sub-manifold of R™"! we denote Riemannian connections of H™(—1)
and R™*! by V and %, respectively. We take a circle v of geodesic curvature k£ whose
Frenet frame is {7,Y}. We regard this curve as a curve in R™"!. We use the same
convention as in the case of S™(1). For arbitrary vector feilds X,Y € X(H™(—1)), we
have VyV = VxY — (X, Y)N (see §1.3). Hence the system of equations (1.6) turns
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to B

Vi = kY +7,

V.Y = —k.
We therefore get

S ]

which is equivalent to v+ (k* — 1)+ = 0. Since its characteristic equation is A*+ (k? —
1)\ = 0, we have three cases according to properties of its solutions. When k£ > 1 it
has two pure imaginary solutions and a real solution, when k£ = 1 all its solutions are
null, and when 0 < k < 1 it has three real solutions. Thus, we find that v as a curve

in R™*! is of the following form

A+Be\/mt + Ce™ V-2

=A+ B COS(Mt) + ' sin(\/ﬁt),
v(t) = A+ Bt + Ct2, if k=1,
A4BeVIF 4 Qe VITR

if k>1,

if 0 <k <1
L = A+ B'cosh(V1—k%t) + C'sinh (V1 — k), 1

with some A, B,C, B',C" € R™'. Under the initial conditions v(0) =p € H™(-1) C
R™ and §(0) = u, V4%(0) = kv with u,v € U,H™(-1) C T,H™(-1) C T,R™*! =

R™ ! which is equivalent to v(0) = p, v/(0) = u, v"(0) = kv + p, we obtain

(1 1
R ( —cosVk? — t) ————sinvVk2—1tu
=1 . vk —1 it 1,
—l—m(l—cos 1t)v,
2 t2
v(t) = (1+§>p+tu+§kv, if k=1,
1 1
hv1— k2t —k*)p+ —=—==sinh V1 — k% t u
T Ny .
if0<k<l.
+ 2 (cosh\/l—k;zt— l)v,

\

Thus, we find that every circle of geodesic curvature k with k£ > 1 on H™(—1) is closed
and is of length 27 /v/k? — 1. On the other hand, when k < 1, every circle of geodesic

curvature k on H™(—1) is unbounded.



§1.4. Circles 37

We here make mention of circles on H™(c). Let v be circles of geodesic curvature k

n (H™(c),(, )'). Here, the metric (, )" is given by (, )/ = Bl
metric ( , ) on a H™(—1). If we define a curve o on H™(—1) by o(s) = vy(s/+/Ic]),

then it is a circle of geodesic curvature k/+/|c] on (H™(—1),( , )) by Lemma 1.12.

(, ) with the canonical

Hence it is expressed as

(

AGL: o — k2
\ o — 2 (co a s — 1>v,
Here, we put ¢t = s/+/|c[. Since [|a(0)||" = 1//]c|[|6(0)|| = u/+/]c], we have
e k? k? — |c| 1 . VK2 =]
k2 —|c| (ﬂ o Ic] )

+ sin su
V=T .

2 K2 — ||
+ (1 —cos—s)v,

k — k2
+ W<C08hLS — 1)1},

As y(t) = a(\/|c|t), if o(s + so) = o(s), we see
Yt + 50/ lel) = o(V]elt + s0) = o (V/]c[t) = ~(F).

Since o is closed of minimal period 27 / \/ k / |c —1—1 we see 7 is closed of minimal
period 27 /+/k? + |c|.






CHAPTER 2

Kahler magnetic fields

Our attempt is to study Kéhler manifolds by using some smooth curves associated
with their complex structure. We define a family of smooth curves so that it include
all geodesics. In this section we introduce the notion of magnetic fields so that we can

define such a nice family of curves.

1. Kahler manifolds

We shall start by giving the definition of Kahler manifolds.

Let M be a Hausdorff topological space. We call M a complex manifold of complex
dimension n if we have a family {(U,, 1a)}aca of pairs of an open set U, of M and a
homeomorphism v,U, — ¥ (U,) onto an open subset 1, of C" satisfying the following
conditions:

1) M =Uqea Uss
ii) When U, N Ug # 0, the map

@DB o) Q/J(;l :C" D ZZJQ(U@ N U/g) — @Dg(Ua N Uﬁ) cCcr
is holomorphic isomorphism.

We call (U,, 1) a holomorphic local coordinate neighborhood. If we denote 1(p) =
(21 (p), .-, zn(p)) the family of these functions {z1,...,2,} is called a holomorphic
coordinate system.

We denote as z; = z; + v/—1y; by using two real functions z;,y; on U,. Then,

with {(Ua, (T1, Y1y -y Ty, yn)) }aeA we see that M is a real 2n-dimensional real analytic

0 0 0 0
Gl G G (),

39

manifold. Hence
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are a basis of T,M at ¢ € U,. We define an linear isomorphism J, : T,M — T,M by

W)= (), Al =), =i

We note that this linear isomorphism does not depend on the choice of holomorphic

~—

coordinates. As a matter of fact, if (U 3, (Wi, ..., wn)) is also a holomorphic coordinate
around ¢, we denote as w; = u; + v/ —1v; by using real functions u;,v;. By Caucy-

Riemann equations, we have

()@ (5),~ G (5),

=3 {-G0@ (5,), - Gi)@ G b =-Gy),

Thus, the definition of J, does not depend on the choice of holomorphic coordinates.

Clearly, we have J3 = —Idz,n. We define an endomorphism J : T'"M — T'M so that

its restriction onto T,M at each p € M is J,, and call it the complex structure of M.
A Riemannian metric (, ) on a complex manifold (M, J) with complex structure

J is said to be Hermitian if it satisfies (Jv, Jw) = (v, w) for arbitrary v,w € T,M at

an arbitrary point p € M. We say a complex manifold with Hermitian metric to be a

Hermitian manifold. Given a Riemannian metric (, ) on a complex manifold (M, J),
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if we define (, )’ by
(v, w) = %{(v,w> + (Ju, Jw)},
then it is a Hermitian metric on M.

On a complex Riemannian manifold (M, J,( , )) with complex structure J, we
define a 2-form B; by B;(u,v) = (u,Jv) for all u,v € T,M at an arbitrary point
p € M. We say this 2-form B; to be a Kahler form. When the Kahler form is closed,
we call (, ) a Kéhler metric. A complex Riemannian manifold with K&hler metric is
called a Kahler manifold.

On a smooth manifold M, we call a linear isomorphism J : TM — TM an almost

complex structure if it satisfies J? = —Idpy,.

LEMMA 2.1. Let M be a Hermitian manifold with almost complex structure J.

(1) When J is parallel with respect to the Riemannian connection, then M is a
Kahler manifold.

(2) The complex structure J of a Kdhler manifold M is parallel.

PROOF. For arbitrary vector fields X, Y, Z € X(M) on M, we have
(dB))(X,Y,Z)=(VxB)(Y,Z) — (VyB,)(X,Z) + (VzB,)(X,Y).

Since we have

(VxB,)(Y,Z) =Vx(B,(Y,2)) =B,(VxY,Z) —B,(Y,VxZ)
=Vx(Y,JZ) = (VxY,JZ) = (Y, J(Vx Z))
= (Y, Vx(J2)) = (Y, J(VxZ))
= (Y, (VxJ)Z),
we find
(dB,)(X,Y,Z) = (Y, (VxJ)Z) — (X, (VyJ)Z) + (X, (Vz])Y).

Thus if J is parallel, then B is closed.
On the other hand, we shall show that ((V,J)v,w)= 0 for arbitrary vectors

u,v,w € T,M at an arbitrary point p € M. We extend w,v,w to a vector fields
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X, Y, Z which are defined in some neighborhood of p. That is, X,Y, Z are local vector
fields satisfying X (p) = u, Y (p) = v, Z(p) = w. We may suppose (by using local co-
ordinates) that [X,Y] = [X,Z] = [X,JY] = [X,JZ] = [Y,JZ] = [JY, Z] = 0. First,
we have

(Vx )Y, Z) = (Vx(JY),Z) — (J(VxY), Z) = (Vx(JY), Z) + (VxY, T Z).

By using the Koszul formula (Lemma 1.1), we have
UV (JY), Z) = X(JY, Z) + JY (X, Z) — Z(X, JY)

+([X,JY], Z) — ([X,Z],Y) = {([JY, Z], X)
= X(JY,Z)+ JY(X,Z) — Z(X,JY)
=-Vx(B,(Y.2)) — V(Bs(X,JZ)) — Vz(B,(X,Y))
VXY, JZ) = XY, JZ) + Y(X,JZ) — JZ(X,Y)
+(X,Y],JZ) = ([X,JZ],Y) = ([Y. /2], X)
= X(Y,JZ)+Y(X,JZ) - JZ(X,Y)

=Vx(B,(JY,JZ)) + Vy(Bs(X,Z)) + V,z(Bs(X, JY))
We hence obtain
2((VxJ)Y,Z) = —{Vx(B;(Y,2)) = Vy(Bs(X,2)) + Vz(B,(X,Y)) }
+{Vx(Bs(JY,JZ)) — Vv (Bs(X,JZ)) + V,z(Bs(X,JY))}
Thus if B, is closed, then we have ((V,J)v,w) = 0 for arbitrary vectors u, v, w € T,M
at an arbitrary point p € M. Therefore we get (V,J)v = 0 for arbitrary vectors u, v

at an arbitrary point p € M, which shows that J is parallel. O
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2. Complex space forms

We here give complex space forms which correspond to real space forms. Complex
space forms are complex Euclidean spaces, complex projective spaces and complex

hyperbolic spaces.

[1] Complex Euclidean spaces.
We denote by C the field of all complex numbers. An n-dimensional complex

Euclidean space
C"={(21,22,---,2n) | 5, €C, 7=1,2,...,n}

is a direct n-product of complex lines. On this space, we have a canonical Hermitian

inner product (, ) given by
(z,w)) = 2101 + 209 + - - - + 2,0y,

for z = (z1,29,...,2n),w = (w1, ws, ..., w,) € C". Here, we denote by z the complex
conjugate of a complex number z, that is, if we denote as z = x + /—1y with real
numbers z,y, we set Z =  — /—1y. The canonical Riemannian metric is the real part
of this Hermitian product : We set (z,w) = Re(z,w)). Here, for a complex number
z = x + /=1y we denote by Re(z) the real part of z, which means Re(z) = . As a
Riemannian manifold, a complex Euclidean space C" is isometric to a 2n-dimensional

Euclidean space R?" by the map

(Zla 22y .- '7Zn) = (xhylax%y?y s 7xn7yn)a

where we denote a complex number z; as z; = z; + \/—_1yj with two real numbers
xj,y;, because we have
(z,w) = (21 4+ V=1y1) (1 — V=11 + -+ (0 + V=1yn) (un — V—1v,)
= {(z1ur +y1v1) + -+ + (TpUn + Ynvn) }
+ V= — z101) + - + (Ynttn — Tvn) },
where we denote as w; = u; + \/—_lvj with u;,v; € R. Thus, the covariant differ-

entiation with respect to the Riemannian connection is the ordinary differentiation.
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As T,C" = {p} x C" = C" at each point p € C", we define J : T,C" — T,C" by
Jv = y/—1v. Then it is a complex structure on C". Since it is clearly parallel with

respect to the canonical metric, we see C" is a Kahler manifold.

[2] Complex projective spaces

We consider a unit sphere
S ={zeC™ | (z2)=1}={z€C"" | |z]| =1}

in a complex Euclidean space C"™! with respect to the canonical Hermitian inner
product {, ) . A unit circle S* = {A € C | |A\| =1} acts on S as Az := Az =
(Az0, A1, -+, Az,). We denote by CP™ the quotient space S?"1 /St of S?"*! under this
action, and call it an n-dimensional complex projective space. Here, a quotient space of
the action means the following. We say two points z, w € S?"*! are equivalent to each
other if there is A € S* with w = Az. The quotient space is the set of all equivalence

classes. We define a projection by
@ ST S 2 = (20,21, 20) > 2] = [(20, 21, - -, 20)] € CP™,

where [z] denotes the equivalence class containing z. We call the pair (S?"*! @) a Hopf
fibration. We note that we can construct a complex projective space as a quotient space
of C"™1\ {0}, where z,w € C"*1\ {0} are equivalent to each other if and only if there
is « € C\ {0} with w = az. We can hence express a point of CP™ as [z, 21, - . . , Zn)

with (zo, 21, ..., 2,) € C"™1\ {0}. By definition we have
(20, 21, - -+ Zn) = [@20, @21, .0y a2y

for an arbitrary o € C\ {0}. We call this expression [z, 21, . . ., 2,] the homogeneous
coordinate of CP™.

We now introduce a Riemannian metric and a complex structure on this quotient
manifold. We express the tangent space T,S5*"*! of a standard sphere S?**! in C**!

as

T.5%"* = {(z,u) € {z} x C"™" | (z,u) = 0},
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where (z,u) = Re((z,u)) denotes the canonical Riemannian metric on C"*'. We de-
compose it into horizontal and vertical subspaces as T.5?""1 = H, ® V, with respect
to the projection w. That is, the vertical space V, is the tangent line generated by

the action of S', hence is expressed as
V. = {(z,V—-1laz) € T.5*"" | a € R},

and the horizontal space 3, is the orthogonal complement of the vertical space, hence

is expressed as
H. = {(z,u) € T.5*"" | (z,u)) = 0}.

The action of S onto S?"*! induces an action on T'S*"*! which is given as (z,v)
(Az, \v) for an arbitrary A € S C C.

The horizontal subspace F(, is a complex subspace of T,C"*1. That is to say,
for a horizontal tangent vector (z,v) € H, we see v/—1 - (2,v) = (z,v/—1v) is also
contained in H,. Identifying T, CP" with 3, at each point z € S***! we define
J : Tr(5yCP™ = T,y CP™ by Jdw((2,v)) = dw((z,v/—1v)). Since we have A\y/—1v =
v/—1Xv for an arbitrary A € S' C C, we find that J is well defined. As J? = —1I is
clear, we see this J is a complex structure on CP".

We define a Riemannian metric of CP™ by

<[27 u]v [Z’ U]>: Re«u? U)>7

where (z,u),(z,v) € H,. We note that if (w,u’), (w,v") € H, satisfy [(w,u)] =
[(z,u)], [(w,v")] =[(z,v)]. We have A\ € S* with v/ = Au, v = Av. Thus, we have

Re((u',v") = Re{(Au, ) = Re(|A*(u, v)) = Re{(u, v)

and find that our metric is well defined. This Riemannian metric on CP" is call the
Fubini-Study metric.
We denote by N the outward unit normal vector field of S?"*1(1) in C™!.
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LEMMA 2.2. Let V and V the Riemannian connections of CP"™ with the Fubini-
Study metric and of S*" (1), respectively. For X,Y € X(CP™) we take their horizon-
tal lifts X,Y € X(S*+1(1)). Then the horizontal lift ViY of VxY satisfies

(2.1) VyY = VeV — (X, JY)JN.
Hence if we denote by V the Riemannian connection of C"+1, we have

(2.2) VyY = VeV + (X, V)N — (X, JY)JN.

PROOF. By definition of Hopf fibration, we see ﬁ/ is obtained by removing the
vertical component of V )?EN/ Since (Y, JN) = 0 and N; can be identified with the

position vector p € S?"*1, by Lemma 1.4 we have
0= (Vi JN) + (Y, Ve (JN)) = (ViV, JN) + <?,v)~((m) (X, JCN)N>
= (VY IN) + (Y, JVN) = (VV, IN) + (Y, JX) = (VV,JN) — (X, JY).
Thus we obtain

VyY = ViV — (VV, JNVIN = VY — (X, JY)JN.

The second relation follows directly from Lemma 1.4. 0

COROLLARY 2.1. The complex structure J on CP"™ is parallel with respect to the

Fubini-Study metric.

PROOF. We take arbitrary vector fields X,Y € X(CP™). We denote by X,Y their
horizontal lifts. By definition of the complex structure J on CP"™ we see that the
horizontal lift JY of JY coincides with J }7, where J denotes the complex structure

on C"*!. By (2.2), we have

Vx(JY) = V(JY) + (X, JYIN + (X, V)N

= JVY + (X, JYIN+ (X, Y)JN

— JVXY — {(X,YV)JIN + (X, JY)N} + (X, JY)N + (X, V)N = JVLY.
This shows that Vx(JY) = JVxY. We hence find that J is parallel. O
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By using the relationship on connections we can express the curvature tensor of

Cp".
LEMMA 2.3. The curvature tensor on a complex space form CP™ satisfies

RX.Y)Z = (Y, 2)X — (X, 2)Y = (Y, JZ)JX + (X, JZ)JY +2(X,JY)J Z.

PRrooF. For vector fields X, Y, Z € X(CP™), we denote their horizontal lifts on S™
also by XY, Z for simplicity. By Lemma 2.2, we find
ViVyZ =Vx(VyZ) — (X, IVyZ)IN
(2.3) = Vx(VyZ =Y, JZ)IN)—(X, JVy Z)IN
= VxVyZ = XY, JZ)IN = (Y, JZ)JX — (X, JVy Z)JN,

where N denotes the outward unit normal of S2*™1(1) in C**, and V denotes the

Riemannian connection on S?"*!. Here, we note
Vx(IN) = Vx(JN) + (X, ININ = JVN = JX.

We denote by [, ]p and [, ]g bracket products of CP" and S*"*1 respectively.
They are related with each other by the following equality :
[X,Y], = VxY —VyX = VxY — (X, JY)JN = Vy X + (Y, JX)JN
= [X,Y]s — 2(X, JY)JN,
By using this, we have
VixyeZ = Vz[X.Y]p + [[X.Y]p. 2],
= V[X.Y]p — (Z,JX,Y]p)IN + [[X,Y]p, Z],
=V ([X,Y]s — 2(X, JY)IN)+{JZ,[X,Y]p)JN + [[X,Y]p, Z] ,

= VixysZ = [[X,Y]s, Z] =2V 2 ((X, JY)JIN)

+(JZ,[X,Y]p)IN+ [[X,Y]p, Z] —2([X,Y]p, JZ)IN



48 II. Kahler magnetic fields

Applying the properties of bracket product, we have
X,Y]p = VixysZ — [[X,Y]p, Z] —2[(X, JY)JN, Z}S—Q%Z(Q(, JY)JN)

+(JZ,[X,Y]p)IN+ [[X,Y]p, Z] ;—2([X,Y]p, JZ)JN
= Vixy.Z — 2(<X, IYVWonZ = V2 ((X, JY>JN)) —2V,((X, JY)JN)
—(JZ,[X,Y]p)JN

= VixyisZ — 26X, JY)(JZ + [IN, Z]s) ~(J Z,[X,Y]p)IN.
Here, as we have

[N, Z)s = VyxZ — V z(JN)

— Va2 = V4 (IN) + ((IN, Z) = (Z, IN)N = 0,
we find

(2.4) VixyipZ = VixysZ — (JZ,[X,Y]p)IN = 2(X, JY)JZ
Therefore, by (2.3), (2.4) we obtain
R(X,Y)Z =VxVyZ — (X(Y,JZ) — (X, IJVyZ)IN = (Y, JZ)J X
—VyVxZ + (Y(X,JZ) + (Y, JVxZ))IN + (X, JZ)JY
—VixvisZ + (JZ,[X,Y]p)IN + 2(X, JY)J Z
=VxVyZ —VyVxZ — VixysZ
+{-X(Y,JZ) — (X, VyZ)+ Y(X, ] Z)
+ (Y, IVXxZ) +(JZ,[X,Y]p) } N
— Y, JZVJX + (X, JZ)JY +2(X,JY)JZ.

Here, as we see in [2] of §1.2, the curvature tensor R of a standard sphere $2"+1(1) is

given as R(X,Y)Z = (Y, Z)X — (X, Z)Y. We hence get
RX.Y)VZ =Y, 2)X —(X,2)Y = (Y, JZ)JX + (X, JZ)JY + 2(X,JY)JZ.
This completes the proof. O

As a consequence of Lemma 2.3 for a unit tangent vector v € UCP™ we have

(R(v, Jv)Jv,v) = (Ju, Ju)(v,v) — (v, Jv)(Jv,v) — (Jv, —v){Jv,v)

+ (v, —v){—v,v) + 2(v, —v)(—v,v) = 4.
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Thus CP"™ endowed with the Fubini-Study metric has constant holomorphic sectional
curvature 4. We hence denote this Kahler manifold by CP™(4). When we consider a
metric on CP™ given by ( , ) = %( , ) with a positive ¢ and the Fubini-Study metric,
we see it has constant holomorphic sectional curvature ¢ by Lemma 1.3. We denote

this Kéhler manifold by CP"(¢). The curvature tensor R of CP"(c) is hence expressed

(2.5) R(X,Y)Z = §{<Y, DX (X, 2)Y — (Y, JZ)JX + (X, JZ)JY +2(X, JY)JIZ}

by Lemma 2.3.
If we take unit tangent vectors v, w € T,CP™(4) which satisfy (v, w) = (v, Jw) = 0,
that is, v, w are orthonormal vectors which span a real vector subspace, we have
(R(v,w)w,v) = (w,w){v,v) — (v,w){w,v) — (w, Jw){Jv,v)
+ (v, Jw)(Jw, v) + 2(v, Jw) (Jw,v) = 1.
Hence for unit tangent vectors v, w € T,CP"(c) which satisfy (v, w) = (v, Jw) = 0 we

have (R(v, w)w,v) = c/4.

LEMMA 2.4. For an arbitrary point p € CP™ and an arbitrary unit tangent vector
v € T,CP" we have a totally geodesic CPI(C CP”) satisfying p € CP! and v €
T,CP.

PROOF. Let w : S?"*! — CP™ be a Hopf fibration of a unit sphere S?**! in C**+1.
We take a point z € S?"*! and a horizontal vector (z,u) € H, C T,5** c T,C*!
so that they satisfy @w(z) = p and dw(z,u) = v. Since ||z]| = ||u|| =1 and {(z,u)) =0,
we see that the subset N = {pz +vu | pov € C, |[uf2 + V2 = 1} of §2"*! s a
three dimensional standard sphere S% in C?> = Cz @ Cu C C"*'. Thus we find that
N = w(]v ) is CP! by its construction. As z € N and the horizontal part of T,N is
Cu, we see p € N and v € T,N. Since the outward normal N is identified with p by
regarding it as a unit vector, by definition of covariant differentiations of N and CP"

we see N is totally geodesic in CP". O
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LEMMA 2.5. For arbitrary points p,p’ € CP™ and arbitrary unit tangent vectors

v e T,CP" v € Ty,CP" we have a holomorphic isometry ¢ satisfying ¢(p) = p’ and
dp(v) = 0.

PROOF. We take 2,2’ € S?"T!1 € C"*! 5o that w(z) = p, w(z') = p'. Also, we take
horizontal vectors (z,u) € T.S*! and (2/,u) € T, S*"! satisfying dw((z,u)) = v
and dw((Z/,u')) = v'. Then both the pairs {z,u} and {z’,u'} are C-linearly inde-
pendent. Thus we can take two sets of orthonormal vectors us,...,u, € C**! and
ul, . ..,ul, € C" so that both {z,u, us,...,u,} and {2/, ', uh, ..., u,} are C-linearly
independent and are orthonormal. If we express them by vertical vectors, then two
matrices (z,u, ug, ..., u,) and (2, ', ub, ... ul) are unitary. We set a unitary matrix
AeU(n+1) by

A= (2 uy, .o oul) (2w, )
As A(z,u,ug, ..., u,) = (2,0 uby, ... ul), this induces a C-linear transformation ¢ :
Ctl — C"*! satisfying ¢(z) = 2/ and ¢(u) = u/. Since A is unitary, we have
poy/—1=+/—1o0¢pand $(S?*+1) = §2"+1 We hence find that ¢ induces a bijection
p : CP" — CP" satistying dp o J = J odp. As ¢ preserves the Hermitian inner

product {(, ) because A is unitary, we see that ¢ is an isometry. O

REMARK 2.1. For arbitrary points p,p’ € CP™ and arbitrary unit tangent vectors

v e T,CP", v € T,CP" we can construct an anti-holomorphic isometry ¢ satisfying

/

p(p) =p' and dp(v) =v'.
PROPOSITION 2.1. A complex projective line CP'(c) is isomorphic to a standard
sphere S?(c).
PRrooF. We define ¢ : CP! — S% C R? by
¢(@((20,21))) = (|20]* = |21]?, 2Re(Z021), 2Im(Z21))

= (2020 — 2121, 2021 + Z()Zl, vV —1(—2021 + 2021)>.

To simplify notations by considering R?* = R x C we can express ¢ as

¢(@((20,21))) = (|z0]* = |21]?, 22021).
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We adopt this expression in this proof. We note that
(l0]* = [21*)? + 4]Z12]* = (|20 + |21[*)* = 1.

We take a horizontal vector (z,u) € T,S8* C T,C? = C? and denote u = (ug,u;). As
(z,u)) = 0, which means zgty + 2141 = 0, we have
dp (dw(z, u)) = (Hozo + Zoug — U121 — Z1U1, 2Upz1 + 220u1)
= 2(tgzo — Z1u1, U1 + Zou1) € R x C.
Thus, for two horizontal vectors (z,u), (z,w) € T.S* we have
(do(dw(z,u)),dp(dw(z,w)))
= 4Re(Tgwo|z0|* + w11 |21 > — UgW1 2021 — UrwoZoZ1
+ ﬂ0w0|2’1|2 + u17111|2’0|2 + Ugw1 2021 + Ulw()?ozl)
= 4Re(owo + u1w1) = 2(tdowo + 11 + UeWo + Ty wr)
= 4Re(ugWo + w1 w1) = (dw(z, u), dw(z, w)).
Here, we note that the standard metric on S*(1) induces the metric of CP'(4). Our
computation shows that ¢ is an isometry of CP'(4) to S%(4). We hence get the

conclusion. O

[3] Complex hyperbolic spaces
We take a Hermitian form ((, )) on C"*! given by
(z, W) = —2oWo + 21W1 + - - - + 2, Wy,

for z = (20,21,..+,2n), W = (wo,wy,...,w,) € C"". We consider an anti-de Sitter
space

H' ={zeC™ | (z,2) = -1} = {2 € C""" | ||| = —1}.
A unit circle S* = {X € C | [\| =1} acts on H{"™" as Az = Az = (A2, Az1, ..., Az).
We denote by CH™ the quotient space H:"t/S' of H7"™! under this action, and call

it an n—dimensional complex hyperbolic space. We define a projection by

w: H" M S 2= (20,21, ., 20) = [2] = [(20, 21, ..., 20)] € CH™,
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where [2] denotes the equivalence class containing z. We call the pair (H;"*' @) a
Hopf fibration.

With respect to the projection w, we decompose the tangent space T, HZ"t! at z
into horizontal and vertical subspaces as T, H;""' = H, @ V.. Here, the tangent space

TZH12"+1 is expressed as a subset of T,C"! as
T.H™ ' = {(z,u) € {2} x C""" | Re ((z,u)) = 0},

and the vertical space V, is the tangent line generated by the action of S*, hence is

expressed as
V. ={(z,vV~1laz) € T.H?""" | a € R},

and the horizontalspace H, is the orthogonal complement of the vertical space, hence

is expressed as
H, = {(z,u) € T,H"™ | {z,u)) = 0}.

It is also clear that the action of S' onto H:"™' induces an action of S! onto the
tangent bundle TH{"™ which is given as (z,u) + (\z, Au). By the same way as
for the case of complex projective spaces, we can define a complex structure on CH"
which is induced by the canonical complex structure on C"*!. That is, identifying
T CH™ with H, at each point z € S*"*! we define J : Ty, \CH" — T,y CH"
by Jdw((z,w)) = dw((z,v/—1w)). Since we have A\\/—1v = v/—1)\v for an arbitrary
A € St C C, we find that J is well defined. As J? = —1I clearly holds, we see this .J is
a complex structure on CH™.

We now define a Riemannian metric on CH". By identifying T5 CH™ with F(,

at each point z € H"™ we set

<dw((z, U)), dw(('Z? U))>: Re <<u7 U>>

for (z,u), (2,v) € H,. Since we have (Av, \w)) = (v, w)) for an arbitrary A € S* C C,
and since dw((z,u)) = dw((/,)) if and only if there is u € S* C C with 2’ = uz and
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u' = pu, we find that this form on CH" is well defined. Moreover, as we have
(v, vl = —Jvol* + o] + - + v

=)+ vl = vz 4 v 202

> Jor* + - ol = (Jvillza] + -+ Joa][2a])?]20] 7

> —([oa] - oal) ([ + - Ll = [20]*) 20| 2

= (loa]* + -+ + val)20] 7 2 0,
for an arbitrary (z,v) € H, because {(z,w)) = 0, we find it is positive-definite. Hence
we get a Riemannian metric on CH™.

We denote by N the outward normal vector field of H?"*! in C"*! satisfying

(N, N) = —1.

LEMMA 2.6. Let V and V be the Riemannian connections of CH™ with respect

to the above metric and the canonical connection of Hi"™', respectively. For X,Y €
X(CH™) we take their horizontal lifts X, Y € X(H?"). Then the horizontal lift ViV
of VxY satisfies

(2.6) VxY = ViV + (X, JY)JN.
Hence if we denote by V the cannonical connection of C**, we have
(2.7) VyY =VeV — (X, V)N + (X, JY)JN,
ProoF. Though an anti-de Sitter space is not a real hyperbolic space, the canonical
connections V and V on H?" ' and on C™! are related to each other by the same

relationship as that of Riemannian connections on H™ and R"*!. If we take Z , W e

X(H™) we have
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because we can identiy N with the position vector p € H***!. Thus we have

VW = VW — (W, Z)N.

Since the horizontal lift of the covariant differentiation ﬁ/ is obtained by remov-

ing the vertical component of the covariant differential v )?37 on H?"*1 we have

_ (VxY, IN)
VxY =VyY — TN, TN

IN = VxY 4 (VxY, JN)JIN.
As (Y, JN) = 0 we have
0= (VeV, JN) + (¥, Ve (JN)) = (VeV, IN) + <<?,vg(m) (X, JN)ZN>
= (VY IN) + (Y, JVN) = (VgV,IN) + (Y, JX))
= (VzY,JN) - (X, JY),
hence we obtain

VY =VxY + (X, JY)JN.

We hence get the relationship between V and V by the above relationship between v
and V. O

COROLLARY 2.2. The complex structure J on CH™ is parallel with respect to the

canonical metric.

PROOF. We take arbitrary vector fields X, Y € X(CH"™). We denote by X,Y their
horizontal lifts. By definition of the complex structure J on CH", we see that the
horizontal lift JY of JY coincides with .J° 37, where J denotes the complex structure

on C"*1. By (2.7), we have

Vx(JY) =V (JY) = (X, JY)N — (X, Y)JN

= JV:Y — (X, JY)N — (X, V)N

= JVY + (X, V)JIN + (X, JYIN — (X, JY)N — (X, Y)IN = JVyY.
This shows that Vx(JY) = JVxY. We hence find that J is parallel. O

By using the relationship on connections we can express the curvature tensor on a

complex hyperbolic space CH™.
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LEMMA 2.7. The curvature tensor on a complex hyperbolic space CH™ satisfies

R(X.Y)Z = —{{Y,2)X — (X, 2)Y — (Y, JZ)JX + (X, JZ)JY + 2(X,JY)JZ}.

PRroOOF. For vector fields X,Y,Z € X(CH™), we denote their horizontal lifts on
H"™ also by XY, Z for simplicity. By Lemma 2.6, we find
ViVyZ = Vx(VyZ) + (X, JVyZ)JN
(2.8) = Vx(VyZ + (Y, JZ)IN)+(X, JVy Z)JN
= VxVyZ+ XY, JZVIN + (Y, JZ)JX + (X, JVy Z)JIN,

where N denotes the outward unit normal of H2*** in C**!, and V denotes the Rie-

mannian connection on H7"™'. Here, we note
Vx(IN) = Vx(JN) = (X,NVJN = JVN = JX.

We denote by [, |z and [, ]g, bracket products of CH™ and H:"™! respectively.
They are related with each other by the following equality :
[X,Y], = VxY —VyX = VxV + (X, JY)JN = Vy X — (Y, JX)JN
= [X,Y]n +2(X, JY)JN.
By using this, we have
VixyinZ =Vz[ X, Y]y + [[X,Y]u, 2],

= VX, Y] +{Z, T X, Yu)IN + [[X,Y]n, Z]

H

(X, Y], 4+ 2(X, JY)IN)=(JZ,[X,Y]g) N + [[X,Y]n, Z] ,

\Y
\Y

v Z = [[X.Yn,, 2], +2V 2 ((X, JY)JN)
— (JZ,[X,Y]g)IN + [[X,Y]u, Z]
= %[X,le — [[X, Y] — 2(X, JY)JN, Z] H1+2€Z(<X, JY)JN)
—(JZ,[X,Yu)IN+ [[X,Y]n, Z] , +2([X,Y]u, JZ)IN

= Vixyly, Z + 2[(X, JY)IN, Z] 42V 7 ((X, JY)IN)+{J Z,[X, Y]y ) IN.
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By the definition of bracket product [, ], we have
= Vixyls, 2 + 2(<X IYWnZ =V ((X, JY>JN))+2%Z(<X, JY)JN)
+ (JZ,[X,Y]g)IN

= Vixyi, Z + 20X, JYYNJZ + [IN, Z]m,) + (JZ,[X,Y])JN.
Here, as we have
[IN, Z]1, = VnZ — V z(JN)

=VnZ = Vz(IN)+ ((JN, Z) — (Z, IN))N = 0,
we find

(2.9) VixyiuZ = Vixyiy Z + (JZ,[X,Y]a)IN +2(X, JY)J Z

Therefore, by (2.8),(2.9) we obtain
R(X,Y)Z =VxVyZ + (XY, JZ) + (X, IVy Z)IN + (Y, JZ)J X

—VyVxZ — (Y(X,JZ) + (Y, JVxZ))IN — (X, JZ)JY
~Vixyim Z — (JZ,[X,Y]m)IN - 2(X, JY)J Z
=VxVyZ = VyVxZ = Vixyiy, Z
+{X(Y,JZ) +(X,JVyZ) - Y(X,JZ)
— Y, JVxZ) —(JZ,[X,Y]u) } N
+ (Y, JZ)VJX — (X, JZ)JY —2X,JY)JZ.

Here, as we see in [3] of §1.2, the curvature tensor R of an anti-de Sitter space H

is given as R(X,Y)Z = —(Y, Z)X — (X, Z)Y. We hence get
RX,Y)Z = —(Y, )X + (X, 2)Y + (Y, JZ)JX — (X, JZ)JY — 2(X, JY)JZ

=AY, )X —(X,2)Y = (Y, JZ)JX + (X, JZ)JY +2(X,JY)JZ}.
This completes the proof. 0

As a consequence of Lemma 2.7 for a unit tangent vector v € UCH" we have
(R(v, Jv)Jv,v) = —{{Jv, Jv)(v,v) — (v, Jv)(Jv,v) — (Jv, —v){Jv, V)
+ (v, —v)(—v,v) + 2(v, —v)(—v,v) } = —4.
Thus CH™ endowed with the Riemannian metric through the fibration w : H?"™' —

CH™ has constant holomorphic sectional curvature —4. We hence denote this Kéahler
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—4
manifold by CH™(—4). When we consider a metric on CH" given by (, ) = —(, )
c

with a positive ¢ and the Riemannian metric, we see it has constant holomorphic
sectional curvature ¢ by Lemma 1.3. We denote this Kéhler manifold by CH"(c). The
curvature tensor R of CH™(c) is hence expressed as
RX.Y)Z = S{(Y, 2)X — (X, Z)Y — (Y, JZ)JX
(2.10) 4
+(X,JZ)JY +2(X,JY)JZ}

by Lemma 2.7.

If we take unit tangent vectors v, w € T,CH"(—4) which satisfy (v, w) = (v, Jw) =
0, that is, v, w are orthonormal vectors which span a real vector subspace, we have

(R(v,w)w,v) = —{{w,w)(v,v) — (v, w)(w,v) — (w, Jw){Jv,v)
+ (v, Jw){(Jw,v) + 2(v, Jw) (Jw,v)} = —1.

Hence for unit tangent vectors v, w € T,CH"(c¢) which satisfy (v, w) = (v, Jw) = 0 we

have (R(v, w)w,v) = c/4.

LEMMA 2.8. For an arbitrary point p € CH™ and an arbitrary unit tangent vector
v € T,CH™ we have a totally geodesic CH*(C CP") satisfying p € CH" and v €
T,CH'.

PROOF. Let @ : H{"™' — CP" be a Hopf fibration of an anti-de Sitter space H;"'*
in C"*!'. We take a point z € H"™ and a horizontal vector (z,u) € H, C T.H"*' C
T.C"*! so that they satisfy @(z) = p and dw(z,u) = v. Since {(z,z)) = —1, [ju| =1
and ((z,u)) = 0, we sce that the subset N = {uz + vu | p,v € C, —|ul2 + V|2 = =1}
of H"*! is an anti-de Sitter space in C?> = Cz @ Cu C C"*!. As a matter of fact, we
have

oz + v, oz + v = [Pz, 2 + ]2 G, ) = — [ + |2 = —1.

Thus we find that N = w(]v ) is CH! by its construction. As z € N and the horizontal
part of T’ LN is Cu, weseep € N and v € T,N. Since the outward normal N is identified
with p by regarding it as a position vector, by definition of covariant differentiations

of N and CH™ we see N is totally geodesic in CH™. 0J
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LEMMA 2.9. For arbitrary points p,p’ € CH" and arbitrary unit tangent vectors
veT,CH", v € T,CH" we have a holomorphic isometry ¢ of CH™ satisfying ¢(p) =

!/

P and de(v) =,

PROOF. We take z, 2’ € H?"™ € C"' so that w(z) = p, w(?') = p'. Also, we take
horizontal vectors (z,u) € T,H{"™ and (¢/,u') € T, H{™*! satisfying dw((2,u)) = v
and dw((z',u’)) = v'. Then both the pairs {z,u} and {2’,u'} are C-linearly in-
dependent. Thus we can take two sets of orthonormal vectors us,...,u, € C!
and uh,...,u,, € C" so that both {z,u,us,...,u,} and {2,/ ul, ... u,} are C-
=1 ((ug,uz) = (uj uj)) =
L, {(z,u;)) = (uj,u) =0 and <<z’,u;)) = <<u3,u§c>> =0(j # k). If we express them by

linearly independent and satisfies that {(z, z)) = (2/, 2"))

vertical vectors, then two matrices (z,u, ug, ..., u,) and (', v/, u}, ..., ul) are matrices

rn

in U(n + 1,1) (that is, “unitary” matrices with respect to {(, ))). We set a matrix
A€U(n+1,1) by

A= (b, .. ul) - (z,u,us, . u,)

As A(z,u,ug, ..., u,) = (2,0 uby, ... ul), this induces a C-linear transformation ¢ :

Ctl — C™M! satisfying ¢(z) = 2/ and $(u) = «'. Since A € U(n + 1,1), we have
¢pov/—1=+/—Topand ¢(H"™) = HP". As a matter of fact, if we denote A = (a;;)

we have
n n
— agoloo + Zaeo@eo = —1, —ag;0g; + Zaejdéj =1 (j>1),
=1 =1
n
— Qojaok + Zaeﬂek =0 (0<j,k<n, j#k).
=1
For w = (wo, ..., w,) € H" we have Aw = (Z] Q025+ D (nj2;), hence have
((Aw, Aw>> = — Z aonjC_Loka + Z alijdlkEk + -+ Z aanjC_LOnka
Jsk Jsk Jsk

= Z{—a()jdo;c + ajag + - 'anjC_LOnk}Zj»?k
jik
=~z + |zl + -+ = -1
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We hence find that ¢ induces a bijection ¢ : CH™ — CH™" satisfying dp o J = J o dy.

Since we have

((Au, AU» = — E anUjC_LOk’ﬁk + E alju]'C_lei_}k + -+ E CLnj’U,jdonki_Jk
Jk Jk Jk
= E {—aojaox + arjann + - anjlons ;v
j7k

= —UpUp + U101 + -+ + UpVy = <<U,, ’U»,

¢ preserves the Hermitian inner product (( , )). Thus, we find that ¢ is an isometry. [J

REMARK 2.2. For arbitrary points p,p’ € CH™ and arbitrary unit tangent vectors

veT,CH" v € T,CH" we can construct an anti-holomorphic isometry ¢ satisfying

/

@(p) =p" and dp(v) = v'.

PROPOSITION 2.2. A complex projective line CH(c) is isomorphic to a real hy-

perbolic space H*(c).

PROOF. We define p : CH! — H? C R® by
e(@((20,21))) = (|20]” + |21]% 2Re(Z021), 2Im(Z0z1))
= (5020 + Z121, 2021 + 2071, V—1(—Zoz1 + 2051))-

To simplify notations by considering R?* = R x C we can express ¢ as
gp(w((zo,zl))) = (|z0|2 + |21|2, 22021).
We adopt this expression in this proof. We note that
—(|20)® + 121132 + 4|72 = —(|20]* — |21[P)? = —1.

We take a horizontal vector (z,u) € T,H} C T,C? = C? and denote u = (ug,u;). As
{(z,u)) = 0, which means —zgto + 214, = 0, we have
dg&(dW(Z, u)) = (TTLQZO + ZoUg + U121 + Zlul, 2@021 + 220?14)

= 2(@020 + Ziuy, Ugzy + Zoul) eR xC.
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Thus, for two horizontal vectors (z,u), (z,w) € T, H} we have
(do(dw(z,u)),dp(dw(z,w)))
= 4Re(—ﬂow0|z()|2 — uy |21)? — Ty 2021 — UL WOZ0ZL
+ Gowol|z1|* + w11 ]20]* + UowW1 2021 + u1w05051)

= 4Re(—ﬁ0w0 + ulwl) = 2(—ﬂ0w0 + uw, — upwg + lel)

= 4Re(—uoWo + w1 = (dw(z,u), dw(z,w)).
Here, we note that the canonical form on H} induces the metric of CH'(—4). Our
computation shows that ¢ is an isometry of CH'(—4) to H?*(—4). We hence get the

conclusion. O
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3. Magnetic fields

A closed 2-form on a Riemannian manifold is said to be a magnetic field. In order to
explain why we say closed 2-forms to be magnetic fields, we here recall static magnetic
fields on a Euclidean 3-space R?. On R3, a vector valued function B = (B1, By, B3) :
R3? — R3 is said to be a static magnetic field under the action of constant current if it

satisfies the Gauf’s law
. = aBl 832 833
div(B) := = 0.
IV( ) 8.1’1 + 8%2 + 8.1'3

Here, (x1, Ty, 23) is the ordinary orthonormal coordinate system of R®. We regard B

as a 1-form Bydr, + Bodxs + Bsdxs. When we treat with magnetic fields in physics,
we need to consider the orientation which is called the right-hand system or left-hand

system. Therefore by use of duality we identifiy this 1-form with the 2-form
B = Bldl'g A d[L‘g + Bgda?g VAN dl’l + Bngl VAN dl‘g.

Since we have

B B B
dB = bdajl Adxy A dxs + Qdmg Adxs N\ dxy + bClilﬂg Adzy N dxy
83:1 8:62 83:3
<6?Bl i 832 i 883
0271 81’2 81'3

we find that the Gauf’s law is equivalent to the property that B is closed.

)dl‘l N de‘Q VAN d$3,

ExaMPLE 2.1. We take an orientable Riemann surface M and denote its volume
form by dvoly; (see §1.1). Every 2-form is expressed as fdvoly, with some function f

on M and is closed. We call this a surface magnetic field.

EXAMPLE 2.2. We take a Kéhler manifold (see §2.2 for definition). Since its Kéhler
form B is closed, we see its constant multiple is also closed. For a constant £ € R we

denote as B, = kB and call it a Kdhler magnetic field.

EXAMPLE 2.3. Let M be a real hypersurface, a real submanifold of dimension
2 dimc(ﬂ )—1 in a K&hler manifold M, where dimc(ﬂ ) denotes the complex dimension

of M. We define ¢ : TM — TM by o(v) = Jv + (v, JN)N, where N is a unit normal
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vector field on M in M. If we define a 2-form F on M by F, by F(v,w) = (v, pw)
then it is closed (see [11]). We say a constant multiple of this form to be a Sasakian

magnetic field.

Under the influence of a static magnetic field B on R3, a charged particle of mass
m and electricity e which moves in R? gets a Lorentz force ev’ x B if we denote its
velocity vector by #. Here, x denotes the vector product in R3. Therefore, its equation

of motion is given as
(2.11) o eix B
) m—uvU = ev .
dt

If we set ¥ = (v, v9,v3) we have

, 0 Bs; —DB, U1
17 x B = (’UQBg - ’UgBQ,’UgBl - ’UlBg, UlBQ - UgBl) = —Bg 0 Bl (%)
BQ _Bl 0 (%]

Thus, by using a skew symmetric matrix

0 Bs —B,
Q = —Bg 0 Bl )
By, —-B; 0

we see (2.11) turns to m%ﬁ' = ef).

We generalize (2.11). For a magnetic field B on a Riemannian manifold M, we
define an endomorphism (25 : TM — TM of the tangent bundle TM by (v, 2(w)) =
B(v,w) for arbitrary tangent vectors v,w € T,M at an arbitrary point p € M. Since
B(v,w) = —B(w,v), we find that (25 is skew symmetric. We call a smooth curve ~y

parameterized by its arclength a trajectory if it satisfies the differential equation

Vi = £28(7).
When B is a trivial magnetic field, that is, B is the null 2-form and is the case that there
are no influences of magnetic fields, then we find that the skew symmetric operator
is null operator. Hence a smooth curve ~ is a trajectory for this magnetic field if

it satisfies V59 = 0, hence is a geodesic of unit speed. Therefore we may say that

trajectories are generalizations of geodesics.
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By the definition of the Kahler form, we find that the skew symmetric endomor-
phism of a Kahler magnetic field By, is given as {25, = kJ. Thus, a smooth curve ~y
parameterized by its arclength is said to be a Bj-trajectory, if it satifies Vi3 = kJ7.
Generally, when the skew symmetric operator {25 of a magnetic field B is parallel,
that is, its covariant differential V{25 vanishes, this magnetic field is called uniform.
Clearly, Kahler magnetic fields are uniform magnetic fields.

The geodesic maintains the property of geodesic even if the speed is changed, but
we note that if we change speeds of trajectories, then they turn to trajectories of other

magnetic fields. More explicitely, we have the following.

LEMMA 2.10. Let vy be a trajectory for a Kdhler magnetic field By. If we change

its speed to A—times of the orignal, it can be seen as a “trajectory” for By.

PROOF. For a constant A(> 0), we put o(t) = v(At). Considering the differential,
we get o' (t) = My(At). It leads us to

Voo = XNVe5 = NkJy = Mk J (o).

Thus we find that o satisfies the equation of trajectories for By, though it is not of

unit speed. 0

It is well known that geodesics on real space forms are expressed explicitly. Cor-
responding to this we give explicit representations of trajectories for Kahler magnetic
fields on complex space forms.

Since complex structure J of a Kahler manifold is parallel, we have

{ Vi = kJ4,
Vs(J4) = — k.

Hence we have the following.

LEMMA 2.11. Let v be a trajectory for a Kahler magnetic field. Then it is a circle
of geodesic curvature |k| and of Frenet frame {¥,sgn(k)J¥}. Here, for a real number

k, we denote by sgn(k) its signature.
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For the sake of later use we here express the velocity vectors of a trajectory -y
by use of parallel displacement along . We set v = 4(0). We denote by nyo :
T.

oM — T, M be the paralle displacement along . Since the complex structure

J on a Kihler manifold is parallel, we find that the vector field {JP./4(v)}; along
v is parallel. As {P.,(Jv)}; is also a parallel vector field along v and P (Jv) =
Jv = JPJ(v), we find JP./y(v) = P/y(Jv). Now we set a vector field X along v by
X(t) = coskt P/o(v) + sinkt P.}y(Jv). We then find

(V5X)(t) = —ksinkt P./;(v) 4 k cos kt Py (Jv)
= k{sinkt P.'s(v) + coskt JP',(v) = kJX(t),
X(0) = v, (V4X)(0) = kJv.

Thus we see X satisfies the same differential equation as of 4. Hence we find

(2.12) Y(t) = coskt P.y(v) 4 sinkt P/ (Jv).

LEMMA 2.12. Let M be a Kahler manifold. For a unit tangent vector v € UM,
there exists a unique trajectory vy : (—e,€) — M for By with initial vector v. If M is

complete, this curve is defined on a hole real line.

PRroOOF. Since Vsy = kJ% is a linear differential equation, we get the existence
and the uniqueness on trajectories by general theory on differential equations. We
take the maximal interval I where v is defined.

Suppose [ is bounded from above. We set b the superimum of I. As ||¥| = 1,
we see the distance d(v(t1),7(t2)) between two points v(t1),v(t2) is not greater than
|t1 — ta|. Therefore the set {y(t) | 0 <t < b} is bounded. Since M is complete, we
have a limit point limsy, y(¢) € M. Becauce 4(t) is a unit tangent vector for each ¢,
we also have a limit unit tangent vector limsy, 4(¢) € UM in the unit tangent space at
limyy, y(¢). Thus we find b € I. Applying the theorem on local existence of solutions
at v(b) we find 7 is defined on an interval I U [b, b+ ¢€) for some positive €. As we chose

I to be maximal, this is a contradiction.



§2.3. Magnetic fields 65

If we suppose [ is bounded from below, along the same lines as above we have a

contradiction. Hence we get the conclusion. 0

LEMMA 2.13. Let «y be a trajectory for By. We define a smooth curve o by o(t) =

v(to — t) with some ty. Then o is a trajectory for B_y.

PROOF. As we have d(t) = —¥(to — t), we find
Vso = (V47)(to — t).
Since v is a trajectory, we have V4 = kJ¥. Hence we see that
Vso = (Vi) (to — t) = kJy(to — t) = —kJ5.

we get the conclusion. O

EXAMPLE 2.4. Let v be a trajectory for By on C" with initial condition v(0) =
p € C" and ¥ = (p,v) € T,C". We consider a subset p + Cv in C". Since p + Cv =
C = R? we take a circle 4 on R? with initial condition 4(0) = 0,4'(0) = (1,0)
and 4”(0) = k(0,1). If we regard this curve as a curve in C" we see it satisfies
¥(0) =p+ 0v =p, ¥(0) =v and 4”(0) = kJv. Since a trajectory satisfies the same

differential equation as of 4 regarding as a curve in C", we find v = 4. Thus, we have

1 1
v(t)=p+ E(sin kt)v + E<1 — cos kt)Jv.

This shows that v is closed of length 27/|k|.

EXAMPLE 2.5. Let y be a trajectory for By, on a complex projective space CP™(c) of
constant holomorphic sectional curvature c. We choose a totally geodesic CP!(c) with
7(0) € CP*(c) and 4(0) € T,0)CP'(c) (see Lemma 2.4). If we consider a trajectory 4
for By, on CP'(¢) with 4(0) = ~(0) and 5(0) = #4(0), as CP(c) is totally geodesic, its
extrinsic shape ¢ o4 in CP"(c) is a trajectory for By. In view of initial conditions of
v and ¢t o4, we find v = ¢ 0 4. This means that 7 lies on a totally geodesic CP*(c).
Thus, as we see in §1.3, a trajectory « for By is a “small” circle of radius 1/vk2 + ¢
on CP'(c) = S*(c), hence it is closed of length 27/v/k2 + c.
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EXAMPLE 2.6. Let v be a trajectory for By on a complex hyperbolic space CH™(—c)
of constant holomorphic sectional curvature —c. We choose a totally geodesic CH(—c)
with v(0) € CH'(—c¢) and §(0) € Ty)CH*(—c). If we consider a trajectory 4 for By,
on CH'(—c) with 4(0) = ~v(0) and 7(0) = #(0), as CH'(—c) is totally geodesic, its
extrinsic shape ¢ o4 in CH"(—c) is a trajectory for B;. In view of initial conditions of
v and ¢ o4, we find v = 1 0 4. This means that ~ lies on a totally geodesic CH'(—c).
Thus, every trajectory for a Kahler magnetic field is a curve without self intersections
and lies on a totally geodesic CH'(—c) = H?*(—c). Features of trajectories depend on
strengths of Kéhler magnetic fields. When |k| > \/|c|, a trajectory for By, is closed of
length 27/v/k% — ¢, and when |k| < /[c], it is open and is unbounded.

We here note more on trajectories on complex space forms. We say two smooth
curves 71,72 on a Riemannian manifold N parameterized by their arclengths to be
congruent to each other if there exist an isometry ¢ of N and a constant ¢, satisfying
Y2(t) = @ovy(t+1to) for all . When we can take to = 0, we say that they are congruent

to each other in strong sense.

PROPOSITION 2.3. On a complex space form CM™(c), two trajectories for B, are

congruent to each other in strong sense.

PRrROOF. Let 71,7, be trajectories for B;. By Lemma 2.9, we have a holomorphic
isometry ¢ on CM"(c) satisifying ¢(71(0)) = 72(0) and dp(71(0)) = 42(0). We set
Y1 = @ o~;. Then, as ¢ is an isometry, we have

Vi A = do(Vs, i) = do(kJAn) = kdp(J5)kJ7,.
Hence, 7, is a trajectory for B, with initial condition 3;(0) = ~2(0),7,(0) = 2(0).
By Lemma 2.12, we see 7; coincides with ~,. Hence we have 75 = ¢ o ~; and get the

conclusion. O

On a Kéhler manifold M, at a point p € M we define Byexp, : T,M — M by

v/||v 0 ,
Byexp,(v) = {7 fel(loll) v # 0,
p v = 0,.
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Here, we denote by v, a By—trajectory with 4(0) = v and 0, € T,M is origin of the
vector space. We call it the magnetic exponential map at p. When k£ = 0, the magnetic

exponential map Boexp, is the ordinary exponential map exp,,.






CHAPTER 3

Comparison theorems on magnetic Jacobi fields

In order to describe the differential of magnetic exponential maps we introduce
magnetic Jacobi fields in this chapter. We study magnetic Jacobi fields for Kahler mag-
netic fields on complex space forms, and investigate results corresponding to Rauch’s

comparison theorem on Jacobi fields.

1. Magnetic Jacobi fields

Let v be a trajectory for a uniform magnetic field B on a Riemannian manifold M.
We say a vector field Y along v to be a magnetic Jacobi field for B if it satisfies
ViViY — 025(V5Y) + R(Y, )y =0,
(3.1) .
(V5Y,4) =0.
Since the first equality in (3.1) is a linear differential equation, and since we have

Vi (V:Y, %) = (V. V5Y,4) + (V5Y, 28(%))

= (28(V3Y), %) = (R(Y,9)7, %) — (26(V5Y),7) =0
we find that a magnetic Jacobi field Y is defined uniquely by the initial condition
Y (0), (V5Y)(0).
We here study the relationship between magnetic Jacobi fields and variations of
trajectories. We say a smooth map « : (—¢, €) xR — M to be a variation of trajectories,

if the map a(s,-) : {s} x R — M is a trajectory for B for each s.

LEMMA 3.1. Let o : (—¢,€) x R — M be a variation of B-trajectories.

0
(1) The vector field Yy defined by Ys(t) = 8_§(S’t> is a magnetic Jacobi field for

B along a trajectory t — «(s,t).
69
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(2) On the other hand, given a magnetic Jacobi fieldY for B along a B-trajectory

7, there exists a variation « of B-trajectories satisfying «(0,t) = ~(t) and

oo
s —(0,t) =Y (t).
PROOF. (1) Since a: (—¢,€) Xx R — M is a variation, we see oy : t — a(s,t) is a
0 0
trajectory for B for each s. Then we have V 2a a—(: an—a We take the differentials

of both sides of this equalities on s. As {25 is parallel, we get

Ve (Vargr) ~ Ve (%)

- (V5) (50)+(7: (57)

- 2s(v5(5))
On the other hand, we have

Vi (Ve 20 = Vi (v 2 (20 00) 20

5 ot % a@t gt g gt
= Ve (v%‘i‘a_i%R(a? aa> a?‘

0
Thus we find that Y, = a—a(s, -) satisfies the first equality in (3.1). Moreover, since
s

o)
ay is a trajectory, we have ||— ‘: 1. Differentiating both sides of this equalities, we

I

- g—a@—? %%Z 2<sz§)—?7 8@—‘2‘}: 2<Vzﬁg—(§’ g—?>~

Therefore we find that Y, = g_oz is a magnetic Jacobi field along as.
s

(2) We put p = v(0) and v = 4(0). We take a smooth curve o : (—¢,e) — T,M

obtain

satisfying o(0) = p,6(0) = Y(0), and take a smooth curve u : (—¢, €) — T'M satisfying
u(0) = v,4(0) = V4 Y(0),u(s) € Uy M. We define a smooth map o : (—e,€) xR — M
by a(s,t) = Bexp,, (tu(s)). It is clear that this is a variation of trajectories for B.

We have also a(0,t) = Bexp,(tv) = y(t). As a(s,0) = Bexp,,(0) = o(s), we find
Oa
55
« .
as E(S’t) = Yu(s)(t), we get
Ja Jo

v%?%(o 0) = V%‘é‘a_( 0) = vaa%(s\ .= Vasu(s)| _,=1u(0) = V;Y(0).

0,0) = 6(0) = Y(0). Moreover, if we denote by 7, the B-trajectory with 4,(0) = v,
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0
Thus —a(O, t) satisfies the same initial condition as of Y (¢). This means that Y (t) =

0s
0
a—a(O, t). We get the conclusion. O
s

We study more on magnetic Jacobi fields.

LEMMA 3.2. Let Y and W be B-Jacobi fields along a B-trajectory v. Then
(V3Y, W) = Y, VW) + (Y, 2(W))

15 constant along .

PROOF. By taking the differential of (V,Y, W) — (Y, V., W)+ (Y, 25(W)), we have
d

(VY ) = (V. VW) + (v, ) )
= (Vs VY, W) + (V5Y, VW) — (VsY, VW)
— (Y, VsV W) + (V4 Y, Q5W) + (Y, 25(V, W)
= (V5 V5Y, W) — (Y, VsV W) 4+ (V5Y, QW) + (Y, 2p(V, W)
= (Qs(V5Y) = R(Y,$)3. W) — (Y, 25(V5W) — R(W,4)3)
+ (V5 2a(W)) + (Y, 25(V5 W)
= 0.

We therefore get conclusion. ([l

A vector field Y along a geodesic is said to be a Jacobi field if it satisfies V; VY 4
R(Y,5)¥ = 0. So, we do not need the second equality in (3.1). The difference comes
from the fact that we restrict trajectories to be of unit speed. Even if we change the
speed of a geodesic it is still a geodesic. While, as we see in Lemma 2.10, if we change
the speed of a trajectory, then it is seen as a “trajectory” for another magnetic field.
We hence need the second equality in the definition of magnetic Jacobi fields.

For a trajectory « for B, we denote by d, the set of all magnetic Jacobi fields for
B along 7. Then it is a vector space of dimension 2dimg (M) — 1, because the first
equality in (3.1) is a linear differential equation. For a vector field X along -, we set

X* = X — (X,4)%, which is the component orthogonal to . In order to consider
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singularities of the map ® : (0,7) x U,M — M with a constant r, we take a trajectory
~ for B with v(0) = p. We call a constant t. a magnetic conjugate value of p along -y
if there is a non-trival magnetic Jacobi field Y along v which satisfies Y*#(0) = 0 and
Y*(t,) = 0. The point 7(t.) is said to be a magnetic conjugate point of p along v. We
call the minimum positive magnetic conjugate value c,(p) the first magnetic conjugate
value of p along . We set ¢,(p) = oo when there are no positive magnetic conjugate
values along ~.

We now restrict ourselves to Kéahler magnetic fields. Since {25, = kJ, a C*°-vector

field Y along a Bj-trajectory is a magnetic Jacobi field for By, if it satisfies

ViViY — kJ(V5Y) + R(Y, )7 =0,

(3.2) '
(VyY,9) =0.

For a vector field X along a trajectory ~ for B, we divide it into three components

and denote as X = fx¥ + gxJ¥ + X+ with smooth functions fyx, ¢gx and a vector

field X+ along ~ which is orthogonal to both 4 and .J% at each point. We hence have

Xt = gxJi+ XL,

LEMMA 3.3. The vector field X along v satisfies (V' X"+, 54) = (VEX+, J§) =0

for an arbitrary positive m, where VI' = Vs --- V5.

PROOF. For a vector field X along a trajectory 7 for By, we have (X* 5) =
(X+,J4%) = 0. Then we get

0= V’IY<XJ_7’7> - <VﬁXl7’7> + k<XL7 ‘]’7> = <V"YXJ_7’7>
0= V(X5 J3) = (Vs X5 J7) — k(X+,4) = (V, X+, JA).
By mathematical induction, for all integers m, we have

(VIX™,4) = (VyXH, J9) =0,

and get the conclusion. O
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LEMMA 3.4. A vector field X along a trajectory v for By is a magnetic Jacobi field
if and only if it satisfies

(3.3)
(g% + k2gx)J + VsV X1 — kJ(V X 1) + R(X,4)7 = 0.

PROOF. We take a vector field X = fx¥ + gxJ¥ + X along a Bj-trajectory ~.
By taking its covariant differentiation, we have
ViX = (fx = kax)¥ + (kfx + gx)J7 + V4 X
Thus, we see (V5X,4) = 0 if and only if f% = kgx. The second covariant derivative

of X is given as
ViV X = {(fx —kax)' —k(kfx+95%) 3+ {k(fx —kax) + (kfx+%) } T+ V5V X
Under the assumption that (V;X,+) = 0 it turns to

ViV X = —k(kfx + g5)7 + (kfx + 9%)J7 + V5 V5 X

Substituting the first and the second covariant differentiations into the left hand side
of the first equation in (3.2), we have
(left hand side) = —k(kfx + g%)7 + (kfx + g%) 7 + V5 V5 X+
— kJ{(kfx + gx)Jy + V5 X} + R(X, 9)%
— (g + Kgx) T + V3 Vs X = RI(V:XY) + ROXA.
Thus, we find that a vector field X along v satisfying (V:X,4) = 0 is a magnetic
Jacobi field if and only if it satisfies the second equation in (3.2). This completes the
proof. 0

REMARK 3.1. We note that R(X, )7 does not have a component parallel to 4 and
R(X, %)y = gx R(J¥, %)%+ R(X*,%)7. But we can not distinguish the components of
R(J%, %)%, R(X*, %)% which are parallel to and orthogonal to J.
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2. Magnetic Jacobi field on complex space forms

In this section we study magnetic Jacobi fields for Kéahler magnetic fields on a
complex space form CM"(c) of constant holomorphic sectional curvature c. We note

that the curvature tensor R on a complex space form CM™(c) is expressed as
R(X,Y)Z = 2{(}/, DX —(X,2)Y = (Y, JZ)JX +(X,JZ)JY + 2(X, JY}JZ}

for vector fields X,Y, Z € X(CM"(c)). Thus, for a vector field Y = fy¥ + gy Jy+ Y+

along a By-trajectory -, we have

o\ . . c . : : o1
RY, )Y = =R Y)Y = = {ry =Y —ovJ¥ =29 J¥} = C(gh + ZW).

Therefore, by Lemma 3.4, we find that a vector field Y = fy+ + gy J% + Y+ along v
is a magnetic Jacobi field if and only if it satisfies
y = kgy,
(3.4) gy + (K +c)gy =0,
V.V Y — kJ(ViY) + EYL ~0.

[1] Magnetic Jacobi fields on a complex Euclidean space
We study magnetic Jacobi fields along a trajectory v for a Kahler magnetic field
B on C".
In this case the covariant differential is the ordinary differential. We therefore find
that (3.4) turns to
Iy = kgy,
gy + k*gy =0,
(Y)Y —kJ(Y+) =0.
By solving the second equality gy + k%gy = 0, we get

gy (t) = ¢ cos kt + co sin kt
with some constants ¢1,cy € R. As f{, = kgy, it leads us to

fr(t) = ¢y sinkt — cycoskt + c3
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with a constant c3 € R. Also by solving (Y+)” — kJ(Y+) =0, we get
YH(t) = (1(1), A+ BeV ')

with some vectors A, B € C" which are orthogonal to both 4(0) and J%(0).
If we suppose Y (0) = 0, we then find that a magnetic Jacobi field ¥ on C" is

expressed as
(3.5) Y (t) = a{(1 — cos kt)¥(t) + (sin kt) J5(t) }+(7(2), (1 — eﬁkt)c)

with @ € R, C' € C" satisfying that C' is orthogonal to both 4(0) and J*(0).

[2] Magnetic Jacobi fields on a complex projective space
We study magnetic Jacobi fields along a trajectory ~ for a Kahler magnetic field
B, on CP"(c). By solving the second equation g¢§- + (k* + ¢)g = 0 in (3.4), we get

g(t) =crcosVk?+ct+ cosinVk? +ct

with constants c¢;,co € R. As fj, = kgy, it leads us to

k
fy(t) = m(cl sinvVk?2+ct — cycos VEZ+ ct>+c3
c

with a constant c; € R.

Next, we study the third equation of (3.4). Since V5Y =+ and V, V.Y are orthog-
onal to both 4 and J¥ by Lemma 3.3, if we denote by YL the horizontal lift of Y+
along a horizontal lift 4 of ~ through the Hopf fibration @ : S***! — CP", we find
by (1) of Lemma 1.3 and Lemma 2.2 that ﬁé?L and ﬁéﬁé?l are horizontal lifts
ﬁ\/W, V:V\S/L of V5Y* and V5V, Y, respectively. Here, V denotes the Riemann-

ian connection of S?"*t!. Hence we have V%}N/L = V,Y ! and Vﬁé?l = V,V, YL

with the Riemannian connection V on C"*+1. Thus Y satisfies the differential equation
(V1) = V=Tk(Y) + 37+ =0,
By solving its characteristic equation A\? — ky/—1\ + (¢/4) = 0, we have

M=V_Il(k+VE+c)/2, o=vV—-1(k—Vi2+c)/2
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Thus, we get
~ VEk2+ct VE2+ct
Y+(t) = dw (’y(t), eV Ik (Acos % + Bsin %))

with some A, B € C**! which are orthogonal to 4(0), .J5(0),~4(0) and J~(0).
If we suppose that a magnetic Jacobi field Y satisfies Y (0) = 0, we then find that

it is expressed as

Y (t) = a{k(1 — cos VE> + ct)¥(t) + VE*> + c(sin V> + ct) J5(t) }
+ dw (’y(t), CeV=Tkt/2 gin %\/ k2 + ct>

with some a € R and C' € C*! which is orthogonal to 5(0), J3(0),4(0) and J5(0).

(3.6)

[3] Magnetic Jacobi fields on a complex hyperbolic space
We study magnetic Jacobi fields along a trajectory v for a Kahler magnetic field
By, on CH"(c). Since k?+c is positive, zero and negative according to |k| > /[c|, k =
++/|c| and |k| < \/|c|, we need to study separately. First, by solving the second
equation ¢” + (k* +¢)g = 0 of (3.4), we get
c1 cosh VE2 + ¢t + cosinh V&2 + ct,  if |k| < \/H,
gy (t) = § ¢1 + cat, if k= ++/cl,
c1cos VkZ+ ct + cysin VE? + ct, if |k| > +/]cl,

with some constants ¢1,cy € R. As f} = kgy, it leads us to

(
\/I#L—l—c(q sinh VA% 4 ¢ t + o cosh VE? + c t)+cs, i [k] < /|c],

fy(t) = c1+@t2+c3, if bk =4+/]c,

2
k
\/m(cl sinVk? + ¢t — ¢y cos VE2 + ¢ t)+cs, if |k| > +/]c],
\

with some constant c3 € R.

Next, we consider the third equation of (3.4). In the case ¢ = —4, we take a
horizontal lift Y+ of Y+ along a horizontal lift 5 of ~. it is rewrited to the equation
in C"*! through the Hopf fibration @ : H*"™1(1) — CH"(—4). Since both Y1 and

V.Y+ are vertical to % and J%, the horizontal lift of Y+ is expressed as

(VY —V=1k(YY) =Y+ =0.
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By solving its characteristic equation A2 — kv/—1\ — 1 = 0, we have

(V=1k+V4—k?)/2, k*<A4,
A= \/—_1k/2, k= j:27
V-1(k+Vk*—4)/2, k>4,

(V=1k —VA—k2)/2, k? <4,
Ao = ¢ V—1k/2, k=42,
V-1(k=Vk>—4)/2, k>4

Thus, we obtain

( Va—k2t VA—k*t
dw<f?(t),€ﬁkt/2 (A CoshT + Bsinh T)>’ k| <2,
PL(t) = { deoo (3(8), eV TH/2(A + BY), b=
/1.2 VE2 -4t
kalw(f?(t),e\ﬁktﬂ(Acos +BSI )>, k| > 2,

with A, B € C"*', which are orthogonal to 5(0), J7(0),7(0) and J7(0). If we suppose

Y (0) = 0, we then have magnetic Jacobi fields on CH™ are expressed as
a{k (coshv4 — k2 t — 1)7(t) + V4 — k2(sinh v4 — k2 1) J5(t) }

+dw <’~y(t), CeV=Tt/2 sinh @)
Y (t) = { a{2t%5(t) + ktJ3(t) }+dew ((3(t), CeV=1F/2)), k= +2,

a{k(l — cos Vk? — 4 t)5(t) + VK> — A(sin VK2 — 4 t) JH(t) }
+dw (7@)7 CeV—1kt/2 gip —k22_ 4 t)

, k? < 4,

, k? > 4,

\

with @ € R and C' € C™*! which is orthogonal to 5(0), J5(0),4(0) and J5(0).

In general case, we make use of a homothetic change of metrics. If we change the
metric on CH"(c) homothetically to (1/[c[/2)%(, ), then the curve o(s) = y(2s/+/]c])
is a trajectory for By = %/\/H on CH"(— ) If we set Z(s 25/\/_ it is a
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vector field along 0. We hence obtain

(
, V4 — k2 V4 — k?
dw (5(5), eV=IK's/2(A cosh TS + Bsinh TSD K] < 2,
Zt(s) = { dw(5(s), eV 's/2(A + Bs)), K = +2,
, VE? —4 VE? —4
dw(&(s),eﬁks/g(AcosTS—i—BsinTS)), |E'| > 2.
\
Therefore we have
V() = Z7(V]elt/2)
' pTERVIEE PTERVIEE
dw ’y(t),erzm (A cosh ; | Bsinh QICI ’ )), || < /|l

ey ey
% + Bsinh CT)) k| < /],

5(1), 2 (A + B)), k= 2/,

(

(

( S Il - + Bsin W_4 2 )) |k:|>\/H
5 ; ;

(

(

—Tkt Vk? t Vk? t
e (Acos% + Bsin %)), k| > /||

We note that the horizontal lift Y1 satisfies (}A}L)”—\/—_1I~c(37L)’—l—237L = 0 by Lemmas
1.3 and 2.10. We can get the expressions of vy directory by solving this differential
equation.

We here consider magnetic Jacobi fields under the condition that their initials are

null. By the condition gy (0) = 0, we get ¢; = 0. Therefore, by the condition fy(0) = 0,

we find that

(
—k
\/T%’ k| < \/H,
0, k=++/]c,

k‘CQ
, k| > \/|c|.
Ve AV

C3 =
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Also by the condition Y1(0) = 0, we find that A = 0. Thus we get this magnetic

Jacobi field Y is expressed as follows :

(a{k:(cosh Ve =kt —1)4(t)

+/[e] = K2 (sinh \/Jc] — &2 t)h(t)}

Vel — k2t
L)a |k‘<\/|?|7

2

+dw (ﬁ(t), e ="

sinh

1 Tkt
SR2(L) + m(t)}mw(fy(t), ce@t), k=+/]d,

(3.7)  Y() =4 a{ >

a{k:(l — cos Vk? + c t)7(t)
+VE? + c(sinVE* + ¢ t) Jf'y(t)}

—1kt k2 t
e (3(0), e 3 sin YT ] >/,

\

with a constant @ € R and a horizontal vector C € C"*! which is orthogonal to

7(0), J5(0),7(0) and J(0).

In order to treat magnetic Jacobi fields on a complex space form CM™(¢) uniformly,

we define two functions

si(t;c), te(t;e) 1 [0, 1/VE2+¢) — [0,00)

by
((1/VE2 + ¢) sin(vVEZ + ct), when k% + ¢ > 0,
sp(tic) =< t, when k% + ¢ =0,
\(1/\/|c|fl€2)sinh( lc|] — k%t), when k* + ¢ <0,
'\/k2+ccot(\/kf2—l—ct), when k2 4+ ¢ > 0,
te(t;c) = j}:g:z; =4 1/t when k% + ¢ =0,
\\/mcoth( lc| — k2t), when k% + ¢ < 0.

Here, we regard 7/v/k?+ ¢ in the domains of s;(¢;c) and t;(¢;¢) as infinity when
k2 4+c¢<0.
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PROPOSITION 3.1. On a complex space form CM"(c) of constant holomorphic sec-

tional curvature c, every magnetic Jacobi fieldY = fy5+gy JY+Y* along a trajectory

v for By, with Y (0) = 0 satisfies the following properties for 0 <t < w/Vk* + ¢

1) gy (O] = 195 (0)lsi(t; ), 1Y = [V5YH(0)] x 281(t/2; 0);
2) gy (t) = gy (Ot(t;c), (V5Y (1), Y1) = YOI x (1/2)t(t/2;5 ).

PRrROOF. By (3.5), (3.6) and (3.7), we have

(a+/|c| — k2sinh \/|c| — k2 ¢, when k% + ¢ < 0,
gy (t) =1 at, when k% 4+ ¢ =0,
LaVk? + csinVE? + ct, when k2 4+ ¢ > 0,

( oV —1kt/2 sinh( /|c| ) t/Q) E(t)7 when k% + ¢ < 0,
Yh(t) = { eV IR B(1), when &2 4 ¢ = 0,
leV~162sin(VE2 + ct/2) E(t),  when k* 4+ ¢ >0,

with some constant a and a parallel vector field E along v whose initial F(0) is or-

thogonal to both 4(0) and J#(0). By taking the differentiations of gy (t) and Y1 (¢),

we have
a(le| — k?) cosh /|c| — k2 t, when k2 + ¢ < 0,
gy (t) = < a, when k% + ¢ =0,
a(k® + ¢) cos VEk?2 + ct, when k2 + ¢ > 0,
(%eﬁkm{\/—lk sinh +/|c| — k? ¢
+/lc] — k?cosh 11/]¢| — k2 t}E(t), when k2 + ¢ < 0,
v—1k
ViYH(t) = eﬁktﬂ{Tt + 1}E(t), when k2 + ¢ = 0,
1
Eeﬁktm{\/—lk sin $vVk*+ ¢t
+\/k2+ccos%\/k2+ct}E(t), when k% + ¢ > 0.

In particular, we have
a(le] — k?*),  when k* + ¢ < 0,
gy (0) = < a, when k? + ¢ = 0,
a(k* + ¢ when k% + ¢ > 0,
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1

5\/]c| — k2E(0), when k% + ¢ <0,
V.Y +(0) = < E(0), when k2 +c¢ =0,

1

5 k*+cE(0), when k*+c¢> 0.

We hence get the conclusion. U

LEMMA 3.5. These functions si(t;c) and t(t; c) satisfy the following properties for
O<t<m/Vk2+ec:
(1) If |k1| < |kol|, then ty, (t;¢) > t,(t; ¢);
(2) si(t;c) is strictly increasing (i.e. s, (t;¢) > 0) on (0,7/2Vk% + ¢);
(3) s1(t;¢) < 2s1(t/2;¢) when k* + ¢ > 0,
s, (t;¢) > 255(t/2; ¢) when k* + ¢ < 0;
(4) 2t,(t;¢) < t.(t/2;¢) when k2 +c¢ >0,
2t (t; ¢) > 4,(t/2; ¢) when k* + ¢ < 0.

PROOF. (1) We are enough to consider the case ky > k; > 0. Since we have

Vk? + ceot(vVk2 + ct), when k% 4+ ¢ > 0,
te(t;c) =< 1/t when k% + ¢ = 0,
Vel = k2 coth(y/[e] — k21), when k% + ¢ < 0,

we consider the differential of t;(¢; ¢) with respect to k for 0 < k < 4o0.

When k2 + ¢ > 0, we have
d, (t:0) k{sin(2v'k? + c t) = 2Vk? + c t}
—_— ;c = .
g 2V k2 + csin(Vk?2 + ¢ t)?

dk
Here, fixing t(> 0) we put Fi(k) = sin(2vk? + ¢ t) — 2vk? + ¢ t. We then have
d —2kt 2kt cos(2Vk? + ¢ t)

LRk = +
kW = N
:\/%{COS(Z\/k2+Ct)—1}< 0.
c

and F;(0) = sin(24/ct) — 2y/ct < 0 for t > 0. Thus, we find that F;(k) is a monotone
decreasing negative function when 0 < k < oo for each t > 0. Therefore, we have

t(; ¢) is monotone decreasing with respect to k for 0 < k < 0.
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When k? + ¢ < 0,
d 4oy = k{t\/|c] — k* — (1/2) sinh(2\/|c| — k> t) }
dk V|e| = k2 sinh(y/|c| — k2 t)? '

Here, fixing ¢(> 0) we put Gi(k) = ty/|c| — k? — (1/2) sinh(2+/|c| — k2 t). We then

have
d —2kt 2kt cosh(2/|c| — k2 t)

—Gy(k) = +
a5, G (k) Ve — k2 Vel — k2

d
and Gi(+/|c|]) = 0. Thus, we find that %tk(t;c) is a monotone increasing negative

function when 0 < k < y/|¢| for each t > 0. Therefore, we have t;(¢;c) is monotone
decreasing with respect to k for 0 < k < 4/|c/.

Moreover, by de L’Hopital’s rule we have

VR4 . cos? VE2+ct 1
lim t(¢;¢) = lim lim ——— = —,
k¢\/|? ki\/_ tan v/ k?z +ct ki\/ﬂ t t
Vel = k2 h? — k2t 1
lim t(t;¢) = lim < = lim — i =-.
kty/lel kty/lel tanh y/lc| — k2t iy /i t t
Therefore we get the conclusion.
(2) We have

cosh(y/|c] — k2 t), when k% + ¢ < 0,
s (t;c) =<1, when k% + ¢ =0,
cos(Vk?+ct), when k2 + ¢ > 0.
Thus we see s,(t;¢) > 0 for 0 < ¢ < 7/(2vk? + ¢) when k% + ¢ > 0 and for 0 < ¢ < oo

when k? 4+ ¢ < 0. Hence, we find that s, (¢; ¢) is strictly increasing on that interval.

(3) We define a smooth function F(t;¢) : (0,7/vVk? +¢) — R by

F(t;c) = si(t;¢) [ (28(t/2; ¢)).

When k2 + ¢ > 0, we have
sp(tic) (2/VE? + ¢) sin(vVk? + c t/2) cos(Vk? + c /2)
25, (t/2;¢) (2/VE2+¢)sin(VE2 + ¢ t/2)

= cos(Vk?+ct/2).

F(t;c) =
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Hence we see 0 < F(t;¢) < 1 for 0 <t < m/vVk? + ¢, which shows s, (t; ¢) < 28,(t/2;¢)
for 0 <t <m/Vk*+c.

When k? + ¢ < 0, we have

Pitse) = CIVIT =) sinh(V/Ie] = K2 t/2) cosh( /el = ¥ ¢/2)
| (2/y/]e] — k?) sinh(VE® + c t/2)

= cosh(+/|c| — k2 t/2) > 1.
Hence we find that s;(t;¢) < 2s,(t/2;¢) for ¢ > 0.
(4) We define a smooth function G(¢;¢) : (0,7/vVk? +¢) — R by

G(t:¢) = 24,(t: ¢) /4 (£/2; ©).

When k% + ¢ > 0, we have

_ 2cos(VE?*+ct) y sin(Vk?+ct/2)  2cos?(VkZ+ct/2)—1
 sin(VE2+ct)  cos(VR2Fct/2)  cost(VRZ+ct)2)
B cos?(Vk? 4+ ct/2)
As 0 < cos?(VE2 + ¢ t/2) < 1, we have G(t;¢) < 1, which shows 2t (¢; ¢) < t(t/2;¢).
When k2 + ¢ < 0, we have
2cosh(y/|c| — k2 t)  cosh(y/|c| — k? t/2)
G(t;c) = X
sinh(y/|c| — k2 t)  sinh(\/|c| — k% t/2)
cosh?(y/[c] — k? t/2 4 sinh?(\/|c] — k? t/2)
cosh?(/|c| — k2 /2)
=1+ tanh?(y/|c| — k2 t/2) > 1

Hence we have 2t,(t;¢) > t,(t/2;¢) for t > 0. O

G(t;c)

For the sake of later use, we here note more on these functions sy (¢; ¢), t(t;c).
We have
VEZ 4+ 4c/2 cot (VE? + 4c/2 t), when k? + 4c > 0,
te2(t;c) = S 1/t when k? 4+ 4¢ =0,
VAle] = k2/2 coth(y/4]c] — k2/2t), when k? + 4c < 0,

and t2(t; ¢) = (1/2)t:(t/2; 4c).
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In order to estimate norms of magnetic Jacobi fields on a complex space form

CM"(c) we need the following technical inequalities.

LEMMA 3.6. For constants (3,0 and positive constants B, D, we have

min{ﬁ 6}< f+9 <max{ﬁ 5}.

B'DS~ B+D ~ B'D
Proor. Without loss of generality we may suppose % < % Since B, D are
positive, we have fD < §B. As we have §(B+ D) — D(f+6) = 6B — D >0
and D, B + D are positive, we get % > g ::__15), which shows the second inequality.
Similarly, as we have (8+0)B—f(B+ D) =0B— /D > 0, and B, B+ D are positives,
we get g ig > %, which shows the first inequality. 0

PROPOSITION 3.2. On a complex space form CM™(c) with n > 2, every magnetic
Jacobi field Y = fy¥ + gy JJY + Y=L along a trajectory ~ for By, with Y (0) = 0 satisfies
the following properties on Y* = gy J5 + Y.

(1) When k* + ¢ > 0, we have

IV5Y#(0)llsk(t;0) < [VF)II < [V5Y(0)] x 28i(t/250),

(Vs YE(1), V(D)
t(t;c) <
SN VO
for 0 <t <m/Vk?+ec.
(2) When k* + ¢ =0, we have

1
< 5 tt/20)

_ (V5YE(), YE(t) 1
YA = [IV5Y#(0)]lt, VRO~

fort > 0.
(3) When k* + ¢ < 0, we have

IV5YHO)] x 28(t/2:¢) < IYF@)II < [V5Y#(0)ls(t; ),

Ly o < (TY0.YH0)
2 B T

< 4 (¢;
9 _k(ac)

fort > 0.
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PROOF. Since Y* = gy J¥ + Y+, we have ViY* = —kgyy + ¢4 J% + V;YL. By
the conditon Y (0) = 0, that is, fy(0) = gy(0) = 0 and Y*+(0) = 0, we see V,Y#(0) =
g5 (0)J%(0)+ VY +(0). As Y is orthogonal to both 4 and J7¥, we have (VsY*, J¥) =
0 by Lemma 3.3. We hence have ||[V;Y#(0)]|? = |¢}-(0)]> + [|[VsY(0)[|?. As J¥ and
Y are perpendicular to each other, we obtain ||[Y*(¢)||* = {gy(#)}? + ||[Y+(¢)||>. Thus

by Proposition 3.1 we have
IYF@)I? = 195 (0)Psi(t; ) + 4] V5 Y (0 P8 (t/2; ).
By Lemma 3.5 (3), we have
YA = {lov () + Vs (0)[*}¢2 = [ V5 Y*(0)[**,  when k* + ¢ =0,
VY O)[Pse(t; )® < IYFB)I* < 4IV5Y(0)[Pse(t/2:¢)*  when k* + ¢ >0,
AVsYEH0) Psi(t/2:0)* < |YF)IP < [IV5YF(0) P8kt 0)*  when &* + ¢ < 0.
These gurantee the estimate on ||Y*(t)]|.
As we have (V:Y#(t), Y1) = g4 (t) gy (t) + (VY (t), Y4(t)), by applying Lemma

3.6 we get
(VaY2(), YE() _ gy (Dgv (D) + (VY (0), Y2 (1) {9&(?5) (VsY t),YL(t)>}
IYE()|? {ov ()} + Y ()] B gy Y@ ’
(VaYF(), Y1) _ gy (t)gy () + (V5Y (1), Y (1)) max{é}%(t) <V~le(t),Yl(t)>}
YE)12 {ov@O) 1 + V(@) gy(@®) Y@ '
Since
2 NN\ 25 GLOR (e ) S
I e O) Al

Lemma 3.5 (4) leads us to the assertion on (VsY*(t), Y¥(¢))/||[Y*(1)|>. O
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3. Comparison theorems on magnetic Jacobi fields

In this section we estimate norms of magnetic Jacobi fields. Our results correspond

to Rauch’s comparison theorem on Jacobi fields. First we recall this theorem.

THEOREM 3.1 (Rauch’s comparison theorem). Let M, My be two Riemannian
manifolds and oy : [0,T] — My, o5 : [0,T] — My be geodesics of unit speed. We set
pi = 0,(0) (i =1,2). Assume dim(M;) > dim(M,) and

maX{Riem(U,dl(t)) | v € Ty My, v L dl(t)}
< min{Riem(w, 62(t)) | w € TyyyMa, w L 65(t)}.
We assume that T is not greater than the first conjugate value c,,(p2) of pa along o.

We then have the following.

(1) oy (p1) = T

(2) If a Jacobi field Yi- along o1 which is orthogonal to ¢y and a Jacobi field
Y5t along oo which is orthogonal to o5 satisfy Yi+(0) = 0, Y;5(0) = 0 and
Ve, YH0)]| = || Vs, Y5H(0)||, then the following assertions hold :

(a) the function t — ||[Y{H(0)||/||Y5H(8)]| is monotone increasing for 0 < t < T;

(b) (Ve it (1), Yi (1)) > (Ve, Y5 (1), Y5 (1))
DeOllk IY5- ()12

() IYF-@ll = Y5 (@)l for 0 <t <T.

for0O<t<T;

Moreover, if there exists ty with 0 < ty < ¢,,(p2) such that equality holds in
the inequality in (b) or in (c), then we have

1) equalities hold in (b) and (c) for 0 <t < to;

i) Riem(61(¢), Yi5(t)) = Riem(&2(t), Y55 (1)) for 0 <t < to;

iii) YiE()/||YS ()| is parallel along oy and Y3-(t)/|| Y5 ()| is parallel along

oy for 0 <t <t,.

REMARK 3.2. Under the assumption on sectional curvatures for the case T =

Coy (p2> we find Coy (pl) > Coy (pQ)'

Let v be a trajectory for By and T" be a constant satistfying 0 < 7" < ¢, (y(0)), where
¢4(7(0)) denotes the first magnetic conjugate value of v(0) along 7. For a vector field
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X along ~ which is orthogonal to ¥, denoting X as X = gxJ¥ + X+, we define its
index Ind] (X) by

T
Indf () = [ {gh® = gk + (VaX* — RIXE, ViXH) — (RIXA)T, X) Jae
0

Along the same way as for ordinary Jacobi fields we have the following.

LEMMA 3.7. Let Y = fy% + gy J¥ + YL be a magnetic Jacobi field along . Then
for Y=gy J¥ + Y+ we have Indl (Y*) = (VsYHT),YHT)) — (V5Y#(0),Y#0)).

PRroOOF. By direct computation we have
T
Indy (Y¥) = /0 {9?2 — kg + (V5Y " —kJY S, V5Y) — (R(Yﬁﬂ)%yﬁ>}dt
4 d
= [ {lovsh) = vl + Boov) + (T3~ bIVE Y
0
— (VY = RIV3Y Y ) = (ROVEA), YF) e

T
d
= / {(ovav) = ar(gf + K2gv) + (VYY)
0

(VWYL — IV YL V) — (R(YE )5, Yﬁ>}dt
T

[ + o)

t
= [ov(a + kg + (V9 BIVY Y 4 (RO Y9 i
0

Here, for a vector field X = gxJ%+ X+ which is orthogonal to 7, as V; X = —kgx7y +
G JY+V5 X+, we have (V5 X, X) = gygy+(V5 X+, X+). Since JV;Y+ and V5V, Y+
are orthogonal to J7, continuing calculation by make use of the second equation in

(3.3) in Lemma 3.4, we have
T

= [(V&Yﬁ’ Yﬁ>]

0

T
- / <(g§; + Ky )Jy + ViV Y — kJVLY T + R(YE A)F, Yﬂ>dt
0

= (Vv ¥9)] = (wvm), YHD) — (9510), YHO).
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LEMMA 3.8. Let Y be a magnetic Jacobi field along a trajectory v for By on a
Kdhler manifold M satisfying Y (0) = 0 and X be a vector field along v which is
orthogonal to 4 and satisfies X(0) = 0. If we have no magnetic conjugate points of p
along ([0, T]) and X(T) = Y*¥(T), then we have Indt(X) > Indl(Y*). The equality
holds if and only if X = Y*.

Proor. We put n = dimcM, the complex dimension M. We choose linearly
independent magnetic Jacobi field Y7, ..., Y5, 1 along 7 so that Y;(0) =0 (1 < i <
2n—1). Since we have no magnetic conjugate points of v(0), which means 7" < ¢, (y(0)),
we have that Y/ (¢), ..., Y2 _,(t) are also linearly independent for 0 < ¢ < 7. Hence we
take smooth functions 7, ..., 7, 1 so that it satisfies X = 22”1 ! ;Y. As usual, we

denote as X = gxJ¥+X* and Y;ﬁ = g;Jy+Y-. Then we have gx = Zf:l_l 7:gi, X+ =
S22 U 7Yk We hence have

T
0

T 2n—1 2n—1 9
= / {(Z (rig: + Ti9§)> kQ(Z Tigz')
0 i= i=1
2n—1 2n—1

ROMAGERAD RN AR SEAERAD Y
i=1 j=1
2n—1 2n—1

_ <R(Z 7i(gi A + Yﬁ)ﬂ)% > 7ilgidA + Yf)>}
i=1 j:1
2n—1 2n—1 -

dt
T 2 n—1 9
:/0 {(Z Tz-/gz'> +(Z ngz> —i—QZ TTJngJ) k;2<z Tigz->
=1 i=1 Q= i—1
2n— 1J 2n—1 2n—1
+ H Z T,YJ‘ <Z T/YL Z Vs YJ_> <Z TZV&Y#, Z T]{Y}L>
=1 j=1

<2n21 kYL %ZITJV vih)- <Z kY 2RZITYJ‘>+H%ZITZV v

2n—1 2n—1

- <R<Z (g JA + V) ')7, Z (g0 + Yi)>}dt

=1




83.3. Comparison theorems on magnetic Jacobi fields 89

T 2n—1 T 2n—1
By making partial integration on 2/ Z 7i7;9:9;dt and / Z (Y Vﬁfjﬂdt,

i,j=1 0 ij=1
we have
2n—1 2n—1 2n—1
22/ 7T 9:g;dt = Z/ 77 9ig;dt + [ anjglg]]
i,j=1 3,5=1 1,j=1
2n—1 2n—1
-3 / TTjgigdt = Y Tii(gig; + gi9) )dt,
i,7=1 0 i,7=1
and
2n—1 2n—1
Z/ (Y, VY hd [Zm] Yivyl Z/ HT (Y, VLY dt
1,j=1 1,7=1 1,j=1
2n—1
— Z/ 7 (V5 Y VY + (Vi V Vvt dt.
i,j=1
Hence we have
2n—1 T T 2n—1
T(x 1 1
Indg ( [ZszT] glgj + (Y, Vs3Yh) }04—/ HZ
i,j

T 2n—1
[ (X nlog; - oy — (VYY) + (VA V) — KYE YY) ) d
0

i,j=1

T 2n—1
/ {Z TiTj (g@ '+ kPg;) + (Y, VYY) — k(Y JVY )

i,j=1
F(R((g5+ Y403 (9507 + Y7 ) e
By Lemma 3.2, we see that
9195 — 9, — (VY5 Y5 + (Y, Ve Yih) — k(Y JY)
= (V3YE V) = (Y2, V3 Y) + (Y kJY)
= (V3Y5,Y)) — (Y5, V5Y)) + (Y3, kJY))

is constant along . Hence it equals to 0, because its initial value is 0. Thus, we have
T 2n—1
/ |> -,
o "3

2n—1 _
/T Zn Y k2g) Y + ViV Y — EIVSYE 4 R(Y, )ZT]W>

2n—1

2n—1 =T
Ind? (X) = <Z TGl + VY Y mile T+ Y|+
7=1
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2n—1 2n—1 2n—1
Since Y~ 7(T)Y;(0) = 0and Y~ n(T)Yi(T) = X(T) = Y(T), wehave Y = Y~ r(T)Y;
=1 =1 =1
2n—1

As X(0) = Z 7:(0)Y;:(0) = 0 and the definition of the magnetic Jacobi field, we get

[

2n—1

Indj (X) = (3 (Vs Yﬁ) S T]

=1
By Lemma 3.7, we see
T 2n—1

Ind () = tndf (V%) + [ HZ

Since the last inequality holds if and only if all 7/ vanish along 7, we obtain the

0 (YF).

conclusion. O

We here give estimates on norms of vertical components of magnetic Jacobi fields.
First, we give an estimate from below. We define a function ¢x(t;¢) : [0, 7/VEk? + ¢c] —

R by
cos(vVk2 + ct), k*+c >0,

c(t;c) =< 1, k*+c=0,
cosh(y/|c| — k?t), k*+c¢ <0,
which is the differential of sj(¢;c). As usual, we regard 7/vk2 + ¢ as infinity when
k*+¢<0.

THEOREM 3.2. Let v be a trajectory for By on a Kahler manifold M and ¢ be
a positive number with £ < w/\k%+c. We suppose sectional curvatures satisfy
max{Riem(v,¥(t)) | v € T,;yM, v L 4(t)} < ¢ with some constant ¢ for 0 <t < (.
We then have the following.
(1) ¢,(7(0)) = L.
(2) Every magnetic Jacobi field Y along a trajectory ~ for By with Y (0) = 0
satisfies the following properties for 0 <t < £:
(a) The function t — ||[Y*(t)||/sk(t; c) is monotonic increasing;
(b) IYF@)| = [[V5Y#(0)]] s(t: )
(c) (VsYH(t), Y¥(t))> [[YVH(1)[Ptu(t; o).
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Moreover, if there exists to with 0 < ty < £ such that one of the equality holds
in the inequalities in (b) and (c), then we have

i) Both of the equalities hold in (b) and (c) for 0 <t <ty;

ii) The magnetic Jacobi field Y is Y*(t) = £||VY*(0)|sx(¢; ¢) JH (1) ;

iii) The sectional curvature satisfies (R(JY,5)7, J¥) = ¢ for 0 <t <t.

REMARK 3.3. Under the assumption on sectional curvatures for the case T =

7/Vk? + ¢ we find ¢, (7(0)) > 7/VEk? + c.

COROLLARY 3.1. If sectional curvatures of a Kihler manifold M satisfy Riem™ < ¢
with some constant c, then the first magnetic conjugate value cy(M) satisfies cx(M) >
7 /Vk? + c. In particular, when Riem™ < ¢ <0 and k? + ¢ < 0 there are no magnetic

conjugate points for By on M.

PROOF OF THEOREM 3.2. We take a complex space form M = CM™(4c) and a
trajectory 4 for By on M. We denote by P! TyyM — TyoyM and ]35 : T;Y(O)]\//T —
T@(t)]\/i parallel transformations along v and 4, respectively. Let I : T’y M — Tﬁ(o)]\/f\
be a holomorphic linear isometry which preserves the inner product and satisfies
1(5(0))= 4(0) and I(J%(0))= J#(0). We define a vector field X along 4 by )A((t) =
ﬁvt olo P; (Yi(t)). As I preserves the inner product and the complex structure .J is
parallel, we find that <)A(, yy = ()A(, J4) = 0. Thus we find that X satisfies X = X .

We take a positive number T" with 7" < £. By the condition on sectional curvatures,

we have

T
IndT Yti

(3.8) /0
> [ s

— K2} + (VY — kIYE Vi) — (R(YE4)3,Y9) e

T

G2+ (VYL — kIt vyt — c||Yﬁ||2}dt
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As V] = g8 + [V L, we have
T
Indd (v*) = /{2 kg —|—<VﬁYL—kJYL,V7Yl)—c(g§+||YL||2)}dt

/ {gy° + gP(—K* —¢) }dt + /OT{M)? —kJX,V:X) — || X|*}dt
= Ind{ (gyJ3) + Ind] (X),
where 7 denots a trajectory for By on CM*(c).

Since T < 7/v/k% + ¢, we can take a magnetic Jacobi field Y = 4 + gJ7 for By
along 4 satisfying g(0) =0, g(T') = gy (T) and a magnetic Jacobi field Y for By, along
4 satisfying Y = Y+, 3/}(0) =0 and ?(T) = )?(T)

By lemma 3.8 we have IndT(X) > IndT(Y). Therefore by Proposition 3.1 and
Lemma 3.7, we obtain

(VAYH(T), YH(T)) = IndE (V%) > Indd (gy J3) + Ind? (%)
> Ind? (§.J7) + Ind}(Y)
= (§/(T)JA(T), §(T)JNT)) + (VY (T), Y (T))
— GY(Ts ) JAT), §(T)TH(T)) + (7,9 (T), ¥(T)
(3.9) = GO 4 (T50) + [T D x 56(7/2:40)
= 13(D) Pt (Ts ¢) + [V (D) [Pty (T )
> gy (T) (T ¢) + | X (T)[Pte(T' )
= gy (T)[*t(T; 0) + Y (D) |*t(T5 )
= [YH(T)|*t(T; ).
Since T' is an arbitrary positive number with T" < ¢, we have

(V5Y3(0), A1) > [YVE()*te(ts o)

for 0 <t < /.
We here consider a function h(t) = |V;Y#(0)||?s2(¢; ¢). It satisfies
R (t) = 2||V5YH0) P8k (t; e)ex(t; ¢) = [V YH(0) |81 (28 ¢),

W'(t) = 2|V YH(0)Pex(2t; ).
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Thus we have

4oy o
(3.10) @<W> T —T<2 (VsYH(T),YH(T)) — IYH(T)]| W>
:f%<VY“ (T)) - [VH(T)[26(T; ) > 0.
li

As s(T;¢) > 0, this shows —

v)ln

number with 7" < /¢, we ﬁnd that the functlon t = |[Y*(t)|/s1(t; c) is monotone

> 0. Since T is an arbitrary positive

increasing for 0 < ¢ < /.

As the function h satisfies h(0) = #'(0) = 0 and A”(0) = 2|[V,Y*#(0)||?, and as
Y*#(0) = 0, we have the following by de I’'Hopital’s rule:
IYROI? _ . 20V Y0, YE(D)

lim ———— =
0o R o X0
V.V # % 2
e (VYY) + VO
tJ0 h"(t)
d IIYE))? - Lo (12
Smce i\ h > 0 for every T with 0 < T < ¢, we get |Y*(¢)||?/h(t) > 1 and
=T

obtain |[Y#(t)|| > || V,Y*(0)||sk(t;¢) for 0 <t < .

We now consider the case that equalities hold. First we consider the case that
the equality holds in (2-b). We suppose [[Y¥(to)|| = ||V5Y*(0)||sk(to; c) at some g
with 0 < #o < £. We then find that ||[Y*(¢y)|>/h(te) = 1. As [|[Y¥(0)]|?/h(0) =
and ||[Y¥(¢)||?/h(t) is monotone increasing, we have [|[Y*(t)|| = [|[V;Y*(0)||sx(t;c) for
0 <t <tg. Since |[Y*#(t)||? = ||V5Y#(0)|*s2(t; ¢), by considering the differentiations of
both sides we have

2V, YE(R), YE(E) _ 2/[V5YFH(0)|Psk(t; c)ex(ts o)
ol IVsYRO)IPsi(tie)

which shows that

(V5YE(1), YE()) = [IY*(t) P4t ).
Therefore we may only consider the case that the equality holds in (2-¢). We suppose
(V3Y(t), YH(to)) = [[Y*(to)|*ti(to; c) at some t, with 0 < t5 < £. Then we see
equalities hold in (3.9) with 7" = t5. The third inequality in (3.9) should be an
equality. As we have ty5(t;c) > t(t;c) for 0 < t < 7/vk?+c by Lemma 3.5,
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this shows }A/(to) = (. Since every non-trivial magnetic Jacobi field along 4 which is
orthogonal to both ’Ay and J’;y does not vanish for 0 < ¢ < 7/v/k? + ¢, we obtain Y =0.
As the second inequality in (3.9) should be an equality, we have Ind®(X) = Ind(Y)
and Indl°(gyJ%) = Indi(§J7). Hence by Lemma 3.8, we find X =Y =0 and
g = gy. We therefore obtain Y+ = 0. Since the first inequality in (3.9) should be an
equality, which means that in (3.8) the inequality on Ind°(Y¥) should be an equality,
we find (R(Y*, %)%, Y*) = ¢|Y¥|? for 0 < t < ty. As we showed that Y+ = 0, by the

expressions of magnetic Jacobi fields on a complex sapce form CM?(c), we get
YE(t) = £[V5YH(0)|lsk (t; ) T3 (1)
We therefore get the conclusion. 0

Next, we give an estimate of norms of magnetic fields from above.

THEOREM 3.3. Let v be a trajectory for By on a Kdahler manifold M and ¢ be a
positive number with ¢ < c,(v(0)). We suppose sectional curvatures satisfy
min{Riem(v,(t)) | v € Ty@yM, v L 4(t)} > ¢ for 0 <t < L.
We then have the following.

(1) &, (3(0)) < 2m/vIEF e,
(2) Every magnetic Jacobi field Y along a trajectory v for By with Y(0) = 0
satisfies the following properties for 0 <t < £:
(a) The function t — ||Y*(t)||/sk2(t; ¢) is monotonic decreasing;
() IYVEOI < [IV5YF(0)] srya(ti )
() (V5Y#(t), YE(1)) < [[YF(t)[Ptrya(ts o).
Moreover, if there exists ty with 0 < toy < £ such that one of the equality holds
in the inequalities in (b) and (c), then we have
i) Both of the equalities hold in (b) and (c) for 0 <t < ty;
ii) The magnetic Jacobi field Y is of the form
Yi(t) = Y (t) = [V5Y4(0)la(t: ) {cos(kt /2 E(r) + sin(kt/2) JE(1)}
with a parallel vector field E satisfying E(0) = VsY+(0)/||VsY(0)||;



83.3. Comparison theorems on magnetic Jacobi fields 95

iii) The sectional curvature satisfy (R(Y 1, %)y, Y L) = c||[Y1||? for 0 < t < ty.

REMARK 3.4. Under the assumption on sectional curvatures for the case ¢ =

c4(7(0)) we find ¢, (7(0)) < 27/Vk? + 4c.

PROOF OF THEOREM 3.3. We take a trajectory 4 for B, on CM'(c) and a tra-
jectory 4 for By, on CM"(4c). We denote by P; : TyyM — T,qM and ID\J; :
T@(O)]\//T — Tgy(t)]\/I\ the parallel transformations along v and 4, respectively. Let
I:7T,(00M — T@(O)]\/f be a holomorphic linear isometry which preserves the inner
product and satisfies 1 ((0))= 4(0) and I(J%(0))= J#(0). For an arbitrary positive T
with T" < ¢, we take a magnetic Jacobi field Y for B, along 4 which satisfies }A/(O) =0
and Y (T) = ﬁf oI o PI(Y!(T)). We also take a magnetic Jacobi field fA -+ gJ# for
By along ¥ satisfying g(0) = 0 and g(T') = gy (T). We define a vector field X along ~y
by X (t) = §(t)J4(t) + (Pl ol o P1) " (Y(#)). We then have

X(T) = g(T)JA(T) + (P} o 1o PT) "' (Y(T))
= gy (1)JH(T) + Y H(T) = YX(T).
Since ty/2(T;¢) = 1/24,(17/2; 4c), by Lemma 3.5 we obtain
IYHT)Ptiy2(T €) = |gv (T) Ptija(T5 €) + [[Y (D) [*t2(T )
> gy (T) Pt (T5 ¢) + [V (1) Ptis2(T; )

(3.11) = gy (T)[24.(T; ¢) + ||?<T)||2%tk(T/2;4c)

~ o~ p . 1
= (T )3, G(T)T3) + T (D) (12 1)
Thus we find [[Y*(T)[[tes(T5¢) > (§'(T)J7, 3(T)J7) + (V5Y (T),Y(T)) by Proposi-
tion 3.1. Since §(0) = 0, }A/(O) = 0, by Lemma 3.7 we continue our calculation and

get N N
(G(T),9(T)) +{V5Y(T),Y(T))

— Ind}(5.%) + Ind}(V(T))
T

_ / {57 =136 + (V3¥ = BIV, V) — (@ + |[VIP) bat

0
T
:/ {7 = 138 + (Vi¥ = BIV, V.7) = (| X|P) b
0
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By the condition on sectional curvatures and by Lemma 3.8, we obtain

512) > /OT{§'2 — K25+ (ViY — kI, V:V) — (R(X, 7)7,X)}dt
= Ind{ (X) > Indf (Y*) = (V. YX(T),Y(T)).
Thus we get [|[Y#(T)||*t2(T;¢) > (V,Y¥(T),Y*(T)) for arbitrary 7 with 0 < T < ¢,
which is the assertion (2—¢).
We consider a function h(t) = [[V5Y#(0)[*s7 5(t; ¢). It satisfies
W (t) = 2[[V5YH(0)]Psk2(t; ¢)crya(ts ¢) = [| V4 YF(0)[|Psr/2(28; ),
W'(t) = 2V5YH(0) | ers2(2t; ).

Since we have

# 2 /
%<%> = ﬁ(%%mn,w(m - HYWT)HQ%)
_ %((V‘yyﬁ(T),Yﬁ(T)) — HYﬁ(T>H2tk/2(T; C))S 0

for arbitrary 7' with 0 < 7" < ¢, we find that the function ¢ — ||Y*(¢)||/sk/2(¢; ¢) is
monotonic decreasing.
As the function h satisfies 2(0) = A’'(0) = 0 and A”(0) = 2||V;Y*#(0)||?, and as

Y*#(0) = 0, we have the following by de I’'Hopital’s rule:
YFOI* _ | 2(V5YEH), YED))

W e T H (1)
V.Y # Y 2
e (VY YVHLYI0) + VY@
tJ0 R (t)
Since — (“Yﬂ( )I” ) < 0 for every T with 0 < T < ¢, we get ||[Y*(¢)[|?/h(t) < 1 and
dt ( ) t:T_ y Y g —

obtain |[Y#(t)|| < [|[V5Y*(0)|lsk/2(t;¢) for 0 <t < L.

We now consider the case that equalities hold. First we consider the case that the
equality holds in (2-c). That is, we suppose (V;Y*(to),Y*(to)) = [[Y*(to)||*tx/2(to; ¢)
at some t, with 0 < ¢y < ¢. Then we find that equalities hold in (3.11) and (3.12)
with T' = ty. The second inequality in (3.12) should be an equality. Since Indy(X) =
Indp(Y*?), we have X = Y* by Lemma 3.8. Moreover the inequality in (3.11) should
be an equality. As t/2(to;c) > tw(to;c), we have gy(tp) = 0. It leads us to g = 0
because 5+ §J7 is a magnetic Jacobi field. By the structure of X, we have X = X .
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Therefore we find that Y* = X is orthogonal to J4. Since the first inequality in (3.12)
should be an equality, we have that (R(X,%)%, X) = ¢|| X||? for 0 < ¢ < ty. This shows
(R(X,9)%, X) = (RY*H,9)3, YY) = [y H|”

By the expressions of magnetic Jacobi fields on CM"(4c), we get

YEE) = YH(t) = | V5 Y (0) sk /2(t; €) { cos(kt /2) E(t) + sin(kt/2) JE(t) },

where we express eV~ E(t) as cos(kt/2)E(t) + sin(kt/2)JE(t). Next, we consider
the case that the equality holds in (2-b). We suppose ||Y*(to)|| = ||V Y*(0)||sx/2(t0; ¢)
at some ty with 0 <ty < £. Then we find that ||Y*(t0)[|?/h(to) = 1 for 0 < t < t,.
As ||[Y#(0)]|2/h(0) = 1 and ||Y*(¢)||*/h(t) is monotone decreasing, we have ||Y*#(t)| =
IV5YH(0)[|sk/2(t; ¢) for 0 <t < to. Since [[YH()[]> = [[V5Y*(0)[|*s} (t; ¢), by consid-
ering the differentiation on both sides we have

2(VYH(), YHE) _ 20V5YH(0)[Psk/a(t; )crya(tic)
V()] IV5YHO)Psi (B 0)

which shows that
(VL YE(E), YH(E)) = IYH) P tey2(t; o).

We get the conclusion. 0

In view of our proofs of Theorems 3.2, 3.3, we study magnetic Jacobi fields by
decomposing them into components parallel to J+ and components orthogonal to both
4 and J7 for each trajectory . Therefore, we can not compare magnetic Jacobi fields
on two general Kahler manifolds. We should note that our proof stands for ordinary

Jacobi fields on Kahler manifolds.






CHAPTER 4

Comparison theorems on trajectory-harps

In this chapter we study trajectories for Kahler magnetic fields in connection with
geodesics. A trajectory-harp consists of a trajectory and a variation of geodesics. We
compare trajectory-harps on a general Kahler manifold with those on a complex space
form, and give some results corresponding to Toponogov’s theorem on triangles.

We recall Toponogov’s comparison theorem, which is a powerful global general-
ization of Rauch’s comparison theorem. Given three distinct points pi,p2,p3 on a
Riemannian manifold M, we take geodesic segments ~v; : [0,¢;] — M (i = 1,2,3)
joining p;+1 and p;. o, where indices are considered by modulo 3. We call the triangle
A(p1peps) formed by ~1,72,73 a geodesic triangle. Set a; = 4(_%+1<€i+1)»%‘+2(0))7
the angle between —4;,1(¢;) and ;12(0).

THEOREM 4.1 (Toponogov’s compariosn theorem). Let M be a complete Riemann-
ian manifold. We suppose that sectional curvatures satisfy Riem™ > ¢ with some con-
stant c. We set RM?(c) a 2-dimensional real space form of constant sectional curvature
c. Let A(p1paps) be a geodesic triangle in M. We suppose 1,7y, are minimal, and sup-
pose U3 = length(ys) < w/\/c, when ¢ > 0. Then we have { < 27 /\/c and there ezists
a geodesic triangle A(pipaps) in RM?(c) such that length(vy;) = lenth(%;) (1 =1,2,3)
and a; > &y, ag > Q. Here, we set £ := {1 + Uy + (3. If £ < 27/+/c, the triangle in
RM?(c) is uniquely determined up to isometries. Moreover, if there exists a geodesic

triangle with ¢ = 27 /\/c, then M is congruent to S™(c).
1. Trajectory-harps

Let (M, J) be a complete Kéhler manifold with complex structure J. Since M

is complete, as we see in Lemma 2.12, every trajectory for Kahler magnetic fields is
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defined on the whole line R. For a trajectory v : R — M, we call its restriction
Y|iri, 1) to a closed interval [T7, T3] a trajectory-segment, and call its restriction |z, o)
0T Y| (o017 t0 a closed unbounded interval [T’, 00) or (—oo, T a trajectory half-line. For
the sake of simplicity, we sometimes call v : [0, 7] — M with 0 < T < 0o a trajectory.
This means that it is a trajectory-segment when 7T is finite and that it is a trajectory
half-line when 7' is infinity. Given a trajectory ~y : [0, 7] — M for a non-trivial K&hler
magnetic field By, satisfying v(¢) # v(0) for 0 < ¢t < T, we say a smooth variation
a, [0, 7] xR — M of geodesics to be a trajectory-harp associated with + if it satisfies
the following conditions:
i) ay(t,0) =(0),
ii) when ¢ = 0, the curve s — (0, s) is the geodesic of initial vector 4(0),
iii) when ¢ > 0, the curve s — «,(t,s) is the geodesic of unit speed joining ~(0)
and ().
We call the geodesic segment s — o, (¢, s) from (0) to y(t) the string of o, at ¢, and
call the trajectory v its arch.
When ([0, 77) is contained in the ball B, (p) of radius ¢, of injectivity at p = v(0)
centered at p, joining ~y(¢) and +(0) by the unique minimal geodesic, we can get a

trajectory-harp. Thus we have the following.

LEMMA 4.1. When a trajectory +y satisfies that its image ([0, T)) is contained in the
ball B, (p) of radius c, of the minimum of conjugate values along geodesics emanating

from p = ~(0), we can construct a trajectory-harp associated with .

PROOF. When p and 7(t) is joined by a unique minimal geodesic for 0 < ¢ < e,
in particular when ~([0,€]) is contained in the ball B, (p), by using these minimal

geodesics we can construct a trajectory-harp for 0 < t < e. Here, the initial vector

0 0
ﬂ(e, 0) of the geodesic s — o, (€, s) is given as limy, ﬂ(t, 0), even if y(€) is a cut

0s s

point of p, that is, there are at least two minimal geodesics joining p and y(e). We

suppose y(€) is not a conjugate point of p along the geodesic s — a,(€,s). Then we
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have a Jacobi field Y along this geodesic with Y (0) = 0 and Y (¢,(e)) = 5(e). Since

0 0
%(e, ) = limyg, %(t, -) is a Jacobi field along the geodesic satisfying the same

condition, we have %(e, s) = Y (s). Thus, if we take a variation o/ : (=4,d) x R —
M (6 < €) of geodesics generated by Y, we have o/|(_50)xr = y(e—s,)xr. Thus we

can extend o, beyond this cut point. 0

For ¢t > 0, we denote by ¢,(t) the length of the geodesic segment s — ., (t,s) of
7(0) to v(t). We set £,(0) = 0. We call £,(t) to be the string-length at v(t). As
trajectory v is parameterized by its arc-length, it is clear that it satisfies £,(¢) < ¢
for 0 <t <T. We set 6,(t) := <f'y(t), %(t, Zy(t))>, which is the cosine of the angle
formed by the tangent vector of the string at ¢ and the tangent vector of trajectory at
t, and call it its string-cosine at y(t).

We here study some fundamental properties of string-lengths and string-cosines.

LEMMA 4.2. For a trajectory-harp ., associated with a trajectory v : [0,T] — M
for a Kdhler magnetic field on M, its string-length and its string-cosine satisfy K’W(t) =
0y(t) for 0 <t <T. We hence have limg o €. () = 6,(0).

PrROOF. We define & : [0,7] x R — M by a(t,u) = a(t,¢,(t)u). We then have
a(t,0) = v(0) and

0= = [ [ s
Considering the differential of this function, we have %(&(t}): 20,(t)¢,(t) and
%(@(t)) - %/01<%(t,u),g—i(t,u)>du: /01%<%(t,u),g—i(t,u)>du
- 2/01<(V§tg—i>(t,u), %(t,u)>du - 2/01<<V£%—(§>(t,u), %(t,u)>du

= 2/01{%<08—C:(t,u), g—i(t,u)>—<%(7§,u), (Vﬂg—i)(t,u»}du.
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As u = d,(t, u) is a geodesic for each ¢ and 22(t,0) = 0 because & (t,0) = (0), we

have

' d 04 dér 94 9%
- T . =2(— o
2 [ Gt gt =2 Gt o)

- 2<%—?(z&, 1), %(t, 1)>= 2<7(t), %(t,u) u:1>
= 2<ﬁ(t), Zv(t)g—j(t, s) . >= 267(t)<v(t), Z—i(t %(t))>

= 20,(1)5,1).

Since ¢, (t) > 0 for ¢ > 0 and 0, is smooth with respect to ¢ by definition, we get the

conclusion. O

LEMMA 4.3. For a trajectory v for By on a Kdhler manifold, we have the following

properties : £,(0) = 0, 6,(0) = 1, limyo &, (t) = 0 and lim,yo 07(t) = —k*/4.

PROOF. By definitions of string-lengths and of string-cosines, we get £,(0) = 0 and

3,(0) = <"y(0), g—a(o, 0)>: 1. For the third equality, we compute the differential of
s

the string-cosine. Since s — «,(t, s) is a geodesic for each ¢, we have

5(0) = (V300 5o, ,0))+ (30, (7 22 (1. 0,(0))
)

+4000. (Va5

9
= (Va0 S (160 )+ (30, (V4 52) (1 0)
= (kJ4(t), g—j(t,ew(t))>+<v<t), (v gtg—j) (t:6,(1) )
_ ]{;<J7(t), g—j(t, Ev(t))>+<ﬁ(t), (V% a—i) (t €7<t))>

0
As Ha—a(t, S)H = 1, by taking the differentiation of both sides of this equality we get
S
Ja

5 (0,0), we get the third equality in the
s

Ja Oa : :
<V%$, §>: 0. Since we have (0)



84.1. Trajectory-harps 103

following manner:

lim 8 (¢) = 1tiirg{k<ﬂ(t), g—j(t,ﬁv(t))>+<ﬁ(t), (vgta_o‘> (t,ﬁv(t))>}
= (7300, 220,0) )+ (5(0), (v 4 22

0 )
— k<J(3a(O 0), g—(o 0)>+<g—j(0,0), (vgta—o‘)(o,ow
—0.

To get the fourth equality, we need to compute the differential of 0/ (t). As we see

5 (t) = k<J»y(t), da

20 1,0,0) Y+ (300, (V5. 22) (14,0 ),

we have
07(1) = k{ { JV3(0), g—“(t,%(t>>>
+ <Jf'y(t) (vag—a)(t 0y (1)) +65(1) (V@ia_a)wv(t)»}
(0. (V4 50 ) >
+ (300, (759 20 (,6,0) +£,0) (9 2.9 3 22) 10,0
:—k2< g— >+2 < ( oa (.0
RCACASIE > < f%(va@s%g—j)w“>>>-

Since y(t) = a(t, £,(t)), we see §(t) = 8 da

trajectories, we have
kJA(t) = Vii(t)
(Va %—0‘) (£, £5(8))+2, (¢ )(v g—a>(t ¢ (t))v%x(t)g—i(t,éw(t))
+ et ){(Vag ) 60)+ (T2 ga>(t 60)}
= (V aat>(t (1) +20,(t) <Vag )(t ()0 (t )gj (t.0,(1)).

0 Ja
Since a—(j(t, 0) = 0, we have v%?a—(o, 0) = 0. We therefore obtain

kJ3(0) = 2hm<V gj)(t 0,(8)),
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because lim; o 0/ (t) = 0,(0) = 1 and limgo €7(t) = limyd.(f) = 0. As we have

H H =1, we see

S MY 3 N - AR S0l

Thus, by noticing that s — (¢, s) is a geodesic for each t, we get

lim 67/(£) = 13%1{%2@(15), g—j(t,@(t))>+2k<w(t), (Vgg—j) (t,é,y(t))>

£,0
Oa

_|_< (1), (V tht 88><t 4 ())>
AGICIO! (Vivé’ta) )}
= (3000, 520,00y +1( 75(0), 21 (V5 52 (1. ,(0)
(
(

) 25
4(0), hm(VatVat—) >
’ a

(0
lgigl Lt )) <'y( ), hm(V aSVgg—> (t7£’y(t))>
= —k*(5(0),%(0)) + k({J3(0), kJ7(0))

< (0, ),gg)l(vatvgtg—j)( t,L (t))>

00(7475 ) 60)
_ <7(0)a1}g13<(20£ (t,6,(t)), gj (t%(ﬂ))? (t, (¢ ))>
= k2 + K2+ lim<g—(t,€7(t)), (V%Vg g—i) (tagv(t))>
0

(300, R(%20.0), 920,0)) 5210, 0)),

By using (4.1) we obtain

_|_
+

= —tim (v 5) ()] (3600 R(550,0),50) )30
= |t 70|

k.?
_

This completes the proof. O
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2. Trajectory-harps on a complex space form

We say two trajectory-harps a,, o, : [0,7]xR — M on a Kahler manifold M to be
congruent to each other if there is an isometry ¢ of M satisfying ., (t,s) = poa., (¢, s)
for all (¢,s) € [0,7] x R. On a complex space form CM"(c) of constant holomorphic
sectional curvature ¢, as we see in Proposition 2.3 two trajectories 71,72 for a Kahler
magnetic field By are congruent to each other in strong sense. Since each trajectory
lies on some totally geodesic complex line CM!'(c), we see that the trajectory-harp

associated with this trajectory lies on this CM!(c). Therefore we find the following.

PROPOSITION 4.1. On a complex space form CM™(c) two trajectory-harps associ-

ated with trajectories v1,v2 : [0,T] — CM"(c) for By are congruent to each other.

By this proposition, string-lengths and string-cosines for trajectory-harps for a
Kéhler magnetic field By, on CM"(¢) do not depend on the choice of trajectory-harps.
We therefore denote them by /¢ (t;c) and 6x(t;c). These functions are given in the

following.

[1] Trajectory-harps on a complex Euclidean space
On a complex Euclidean space C", as the covariant differentiation is the ordinary
differentiation, a trajectory 7 for By is a circle of radius 1/|k| in the sense of Euclidean

geometry, hence is closed of length 27/|k|.

PROPOSITION 4.2. For 0 <t < 2n/|k|, we have the following:
(1) The string-length is given as l(t;0) = (2/|k|) sin(|k|t/2);
(2) Ewvery trajectory for By emanating from an arbitrary point p € C"™ and the

corresponding chord make the angle 0x(t;0) = |k|t/2. Hence the string-cosine
is given as 6(t;0) = cos(|k|t/2).

PROOF. Let v be a trajectory for Bx. We set p = v(0). We consider a circular arc
v([0, t]), which is inferior when 0 < ¢ < 7/|k| and is superior when 7/|k| <t < 27/|k|.

The geodesic-segment joining (0) and v(¢) is a sub-tense for this circular arc. We
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take a triangle of vertices p,v(t) and the center o of the circle. As it is an isosceles
triangle with d(p,0) = d(~(t),0), we find that the distance between ~(0) and ~(t) is
(2/|k|) sin(|k|t/2). Since the angle 0(t;0) coincides with the angle of circumference
over ¥([0,¢]), hence is equal to the half of the angle |k|t of the sector of circular arc

7([0,2]). O

As we see in Lemma 2.13, when ~ is a trajectory for By then the curve 7 defined
by 4(s) = v(t — s) is a trajectory for B_j. If a geodesic o satisfies o(0) = (0) and
o(f) = ~(r), we see that the angle between §(0) and ¢(0) coincides with the angle
between 4(0) and 7(0), where & is given by 6(s) = o(¢ — s). Thus 6,(¢;0) also shows
the angle between (0) and &(0).

LEMMA 4.4. The functions lx(t;0) and §x(t;0) satisfy the following properties:
(1) C(t;0) = €_x(t;0), 61(t;0) = 0_(¢; 0);
(2) The function Cx(-;0) : [0,27/|k|] — R is monotone increasing in the interval

[0,7/|k|] and is monotone decreasing in the interval [w/|k|, 27 /|k|];

(3) The function o(- ;0) : [0,27/|k|] = R is monotone decreasing.

PROOF. The first assertion is trivial by their expressions in Proposition 4.2. Since
Ok (t;0) = (2/|k|) sin(|k|t/2), we have

C0(1:0) = cos([klt/2) = 5u(10),  £54(150) = ~(Kt/2) sin[kle/2).

We get the conclusion. O

PROPOSITION 4.3. The string-lengths and the string-cosines on C™ with respect to
|k| satisfies the following:
(1) The function Cx(-;0) : [0,7/|k|]] — R is monotone decreasing with respect to
I
(2) The function ox(-;0) : [0,7/|k|] — R is monotone decreasing with respect to
|
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Proor. We are enough to study the case k£ > 0.

By differentiating of the string-length ¢ (¢; 0) and the string-cosine d(¢; 0), we have

d t kt d t .kt
%Ek(t,O) =85 < 0, %(5;6(15,0) = —gsino < 0.
We hence get the conclusion. 0

[2] Trajectory-harps on a complex projective space

We take a trajectory 7 for By on a complex projective space CP"(c) of constant
holomorphic sectional curvature c. As we see in §2.3, a trajectory 7 for By is a “small”
circle of radius 1/v/k% + c on a totally geodesic CP'(c) = S?(c), hence it is closed of
length 27/v/k% 4+ c. We note that the injectivity radius icpn() of CP"(c) is equal to

7/+/c.

PROPOSITION 4.4. For 0 <t < 27/vk? + ¢, we have the following:

(1) The string-length is given by Vk* + csin(y/cly(t; ¢) /2)= /esin(VE> + ¢ t/2) ;
(2) The string-cosine is given by
VE? + ccos(VE? + ¢ t/2)

Op(t;c) = )
\/k2 + ccos? (VK2 + ¢ t/2)

PROOF. Since every trajectory lies on some totally geodesic CP!(c), we are enough
to study the case n = 1. As we see in §2.3, CP!(c) is isomorphic to S?(c), we hence
use the expression of trajectories on S%(c) C R3. We take a trajectory ~ for B; with
7(0)=pe S?CR? 4(0)=ueT,5 C T,R* =R and V:7¥(0) + ¢y(0) = v. Then, if
we regard v as a curve in R3, it is expressed as

(t) = ! (k:2+ccosx/k2+ct)p+k;(sin\/k;?Jrct)u
1

k%2 + ¢ 24+¢
o (1 —cosx/k:2+ct)v.
c

Also we take a geodesic o on S?(c) with ¢(0) = p and 6(0) =« € T,5* C T,R3 2 R?,

+

1
which is expressed as o(t) = cos/c tp + —=sin+/c tu’ as a curve in R3. We take an
c

7
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arbitrary positive r with r < 27/v/k? 4+ ¢ and suppose 7(r) = o(¢(r;c)). Since p is

orthogonal to u,v and u’, and p,u, v span R?, this equality shows

(4.2) E* 4 ccos VE2 4+ cr = (k* + ¢) cos v/cli(r; c),

L ; ' = —1 i Z4+cer)u
(4.3) TCsm(\/EEk(r,c))u— k2+c(sm\/ﬁ) +

Applying the double angle formula to (4.2), we have

(1 —cosvVkZ+c r)v.

1
k24 c

k4 c(1 = 2sin® (VK2 + ¢ r/2)) = (K* + ¢) (1 — 2sin*(v/eli(r; ¢) /2)),

which shows the first assertion because r < 27/vk% + ¢ and lx(r;c) < r. As u is
orthogonal to v, and (u/, u) = dx(r;c), ||u|| = 1, by taking the inner products of both
sides of (4.3) with u, we get

o(r;¢) sinvkZ+cr
Ve VE +c
Again, by using the double angle formula and the first assertion, we get

VesinVikZz +er

sin (v/cly(r; )=

) = i sin(y/eta(r: )
_ Vesin(VE? + cr/2) cos(VEE+ e r/2)
VEZ + esin(y/cly(r; ) /2) cos(y/ely.(r; ¢)/2)
_ cos(\/m r/2) _ MCOS(\/W r/2)
COS(\/&MT; C)/Q) \/k2 + ccos2(\/m r/2) '
This completes the proof. 0

LEMMA 4.5. When ¢ > 0, the functions (x(t;c) and 6x(t;c) satisfy the following
properties:

(1) Ci(t;c) = L_y(t;0), On(t;c) = 6k(t;c);

(2) The function (- ;c) : [0,2m/vk2 + ¢| — R is monotone increasing in the in-
terval [0, W/\/m] and s monotone decreasing in the interval [W/\/m,
27r/\/k:27—|—c} :

(3) The function §y(- ;) : [0,2m/Vk% + c]— R is monotone decreasing.
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PRrOOF. The first assertion is trivial by their expressions in Proposition 4.4.

Since we have

iék(t; c) =0k(t;c) = v CCOS(\/k2 o t/2)

at B \/kQ + ccos?(VE? + ¢ t/2)
and
bu(t0) = i( VI & coos(VI + ct/2) > R+ sn(VETct/2)
e dt =

\/k2 + CCOSZ(\/k2 +c t/2) Q{kz + ccos?(Vk? + ¢ t/2)}3/2'

We get the conclusion. O

PROPOSITION 4.5. The string-lengths and the string-cosines on CP™(c) satisfies
the following:
(1) The function ly(t;c) is monotone decreasing with respect to |k|;

(2) The function dx(t;c) is monotone decreasing with respect to |k|.

PrRoOOF. We are enough to study the case k > 0.

By differentiating of the string-length ¢, (¢; ¢) and the string-cosine dx(¢; ¢), we have

d tk(cos(VEk? + ct/2) — 1)

— Ll (t;c) = < 0,
dk x(t; ) (k2 + ¢) cos(v/cly(t; ¢) /2)
and
d ksin(VE? + ¢ t/2) (k;Q\/k'Q—|—ct+csin(\/k2+ct))
—5k(t C) = — 3 < 0.
) /2
dk 2\/k:2+c<k’2+ccos(\/k‘2+ct/2)2>
We hence get the conclusion. 0

[3] Trajectory-harps on a complex hyperbolic space

We take a trajectory « for By on a complex hyperbolic space CH"(c) of con-
stant holomorphic sectional curvature c. As we see in §2.3, a trajectory v for a
Kahler magnetic field is a curve without self-intersections and lies on a totally ge-
odesic CH'(¢) = H?(c). In particular, when |k| > \/|c|, a trajectory is a circle of

radius 1/vk? + ¢ and when |k| < \/|c|, it is open and is unbounded.
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PROPOSITION 4.6. When ¢ < 0, for 0 < r < 21 /v/k% + ¢, we have the following :
(1) The string-length Cx(r; c) satisfies the following relations ;
Vel = k2sinh (y/[c[6(r; ) /2)= /c|sinh(y/[e] = k2 r/2), if [k| < /]c],
2sinh (+/[c[lk(r;¢)/2)= \/]c]r, if k=++/]|c|,
V2 + esinh(y/[c|l(r;¢)/2)= /|c|sin(VE2 + c 7/2), if |k > /.

(2) The string-cosine 0(r;c) is given by

(/]c| — k2 cosh(+/]c| — k2 7"/2)7 if 1kl < /Idl
\/|c\ cosh?( Vel — k2 r/2)—k
ok(ric) = Q / c\rQ +4

VE? + ¢ cos(VE? + cr/2)
\ \/k2 + ccos? (VK2 + cr/2)

if k= ++/]l,

;o if |k > /el

PROOF. Since every trajectory lies on some totally geodesic CH?', we may consider
the case n = 1.

First we study the case |c| > k?. On CH'(c) = H?(c), we take trajectory ~ for By
with v(0) = p € H* C R*,4(0) = uw € T,H? C T,R*® 2 R? and V:%(0) — |¢[v(0) =
Then if we regard it as a curve in R3, it is expressed as

1
~y(t) = m(!c\ coshy/|c| — k2 t — k2)p+

+ ;(Sinh lc| — k% t)u.

e — k2
Also we take a geodesic o on H?(c) with (0) = p and ¢(0) =’ € T,H* C T,R3 = R?,
1
" sinh y/|c| tu’ as a curve in R3. We
Ve

take an arbitrary positive r with r < 27 /v/k? + ¢ and suppose y(r) = o(x(r; c)). Since

1
m(cosh le| = k2t —1)v

which is expressed as o(t) = cosh+\/|c| tp +

p is orthogonal to u,v and u’, and p, u, v span R3, this equality shows

(4.4) le| cosh/|e| — k2 r — k%) Cosh(\/_ﬁk (r;c)),
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sinh (v/|c] €y (r; ¢))u’ = ﬁ(cosh Vel =k r—1)v
(sinh/|c| — k2 r)u.

1
(4.5) Vel
+

1
Jid R

Applying the double angle formula to (4.4), we have

\/|c|—k28inh(\/\?|€k(r;c)/2) \/_smh(\/ — k%r/2).

As wu is orthogonal to v, (u,u') = dx(r;c) and |ju|]| = 1, by taking inner products of
both sides of (4.5) with u, we get

bu(rsc) = Y15 (VId —# )
; \/Wsinh( EG c))

_ s (/e = Fer/2)cosh (/[T /2
Vel = R sinb{/Ielta (7€) /2) cosh{y/[elte(r: 0)/2)

_ cosh(+/]c| — k2 r/2) Ve — k2 cosh(\/|c| — k2 r/2)
cosh (y/[eu(7; C>/2) \/|c| cosh®(y/|c] — k2 r/2)—k

Next we study the case |c| = k*. On CH'(c) = H?(c), we take a trajectory ~y for By

with 7(0) = p,%(0) = u and V4%(0) — |¢|v(0) = v. If we regard it as a curve in R?, it

is expressed as
|c|t? t?
= (1+ 5 )p+ ot
(1) ( + 5 p+21)—|—tu
Also we take a geodesic o on H?(c) with 0(0) = p and 6(0) =’ € T,H? C T,R® 2 R3,

which is expressed as o(t) = (cosh+/|c| t)p + (sinh y/|¢] ¢)u’ as a curve in R®.

1
Vel
We take an arbitrary positive r and suppose y(r) = o(€x(r; ¢)). Since p is orthogonal

to u,v and v/, and p, u,v span R3, this equality shows

(4.6) 1+ ICL = Cosh(\/_ﬂk (r;0)),

2

sinh (v/]e[l(r; ¢))u’ = Ev+ru

(4.7)

\/|_

Applying the double angle formula to (4.6), we have

2 sinh(\/HKk(r; c)/2)= Vd|r.
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As wu is orthogonal to v, (u,u') = d(r;¢) and |ju|| = 1, by taking inner products of

both sides of (4.7) with u, we get

el
sinh(\/ﬂ&c(r; c))
) JHr
2 Sinh(\/HEk(r; )/2) Cosh(\/HEk(r; c)/2)
1 2

d(r;c) =

a cosh(\/HEk(r;c)/Q) NZESPprE

Finally we study the case |c| < k. On CH'(c) = H?(c), we take a trajectory ~y for By
with v(0) = p,¥(0) = uw and V+%(0) — |c|7(0) = v. If we regard it as a curve in R?, it
is expressed as

1

=

~(t) = 2 (k* — || cos /K2 — |c| t)p

1
+ m(l — cos k% — |c] t)v

+ ﬁ(sin k2 — |c] t)u.

Also we take a geodesic o on H?(c) with (0) = p and ¢(0) =’ € T,H?* C T,R3 = R?,
1
which is expressed as o(t) = (cosh+/|c| ¢)p + W(sinh Vel t)u' as a curve in R®.
c
We take an arbitrary positive r and suppose v(r) = o(¢x(r;c)). Since p is orthogonal

to u,v and v/, and p,u, v span R3, this equality shows

(4.8) k2 — || cos /E2 — |e| r = (K — |e]) cosh(y/|c|tx(r; ¢)),

! sinh (/e[ (r; ¢))u’ = ;(1 —cos k2 — |¢] r)v
E k2 =l
(4.9)
+ (sin /&2 — |c] r)u

Applying the double angle formula to (4.8), we have

V2 + csinh(\/ﬂﬁk(r; )/2)= /|c|sin(Vk?+cr/2).
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As wu is orthogonal to v, (u,u') = §x(r;¢) and |jul]| = 1, by taking inner products of
both sides of (4.7) with u, we get
(s ) = c|sin /K2 — |c| r
e k2 —|c] sinh(\/HEk(T;c))
B ¢ sin(y/k? — [c| r/2)cos(y/k? — |c|r/2)
N || sinh(\/ﬂﬁk(r;c)/2)cosh(\/H€k(r;c)/2)
_ cos(/k* — |c|r/2)  VE ccos(VE2 + ¢ /2)
cosh (y/[eltx(r; ¢)/2) \/k:2+ccos2(\/k2+cr/2)'

This completes the proof. 0

We here show some properties of string-lengths and string-cosines of trajectory-

harps on a complex hyperbolic space.

LEMMA 4.6. When ¢ < 0, the functions {(- ;¢) and 0x(- ;¢) satisfy the following
properties.

(1) C(t;c) = Lop(t;0), O(t;c) = 0-k(t; 0);

(2) The function Cy(t;c) : [0, 27r/\//£27+c]—> R is monotone increasing in the in-
terval [0, 7T/\//€27+C] and is monotone decreasing in the interval [W/\/m,
21 /Vk2 + c]. Here, when we regard 7/\/k® + ¢ and 21 /vVk2 + ¢ as infinity,
and do not consider the interval [x/Vk® 4 c,2m /K2 + c|;

(3) The function 0y(t;c) : [0,27/VE* + ¢]— R is monotone decreasing.

PRrOOF. The first assertion is trivial by their expressions in Proposition 4.6. Since

we have

( — 72 cosh — 12 4/9
Vel = k2 cosh(y/|c| — k2 t/ )’ it k] < /]l
\/|c\ cosh®(y/]c] — k2 t/2)—k?
2
_ if |k = /||,

\/k:2+ccos(\/k;2+ct/2) it [ >\/H
k\/k2+ccos2(\/k2+ct/2)’ 7
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and
( K*(|c| — k?) sinh(y/]c| — k* ¢/2) it || < /Il
_ , cl,
2(k2 + |c| cosh?(y/]c| — k2 t/2) )3/2
d 2|c|t , B
%(h(t;c) =\ G e if k| = +/Icl,
k?(k? in(vk?+ct/2
R 2/2, if [k] > \/]cl.
( 2(k%+ ccos?(VE? + c t/2))
We get the conclusion. 0

PROPOSITION 4.7. The string-lengths and the string-cosines on CH"(c) satisfies
the following:
(1) £(t; ¢) is monotone decreasing with respect to |k|;

(2) 0x(t; ¢) is monotone decreasing with respect to |k|.

PROOF. By the expressions of ¢ or d;, we are enough to study the case k > 0.

(1) When |k| < 1/]c]|, the string-length ¢, (¢; ¢) satisfies

Vel = k2 sinh (V]| (t; ¢) /2)= /| sinh(/]c| — k2 £/2).
Differentiating both sides of this equality, we have

i£k< 0 = tk(1 — cosh(y/|c| — k? t/2)) _
dk (le] — k2) cosh(\/Hﬁk(t; c)/2)

Similarly, when |k| > \/|c|, the string-length ¢ (¢; ¢) satisfies

V2 + csinh(\/ﬂﬁk(t; c)/2)= \/Hsin(v k2 +ct/2).

We hence have
cos(VA? + ¢ t/2)—
—-li(t; ) =
dk (k2 + c) cosh(y/|c|lk(t;¢)/2)
Next we consider that the case |k| = /|c|. By de I'Hopital’s rule, we have

inh(\/|c| — k%t/2
lim (Ve />: lim —COSh(\/ ol —k2t/2)=
vl Vel = k2 ONEE

in(/52
lim sin(vV +¢t/2) = lim E(308(\//€2+ct/2)
Kyl VR Fc kly/iel 2
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We find

lim 2 Sinh_l (mSIHh(\/Wt/Q)>
ki /el S -2

. 2 | sin(VE?2 + ct/2)
= lim sinh
AV/ERVALE VE?+¢

= 2 sinh~! |C|t
Vel 2 )

we find that ¢4 (t; ¢) is monotone decreasing with respect to k.

(2) When |k| < \/|c|, the string-cosine expressed as

5ot €) = Vel = k2 cosh(y/|c] — k2 /2)

\/|c\ cosh®(y/|c] — k2 t/2) —k? |

By direct computation, we have

P ksin(y/[c] — &2 t/2) <k2\/|c| ZHR2 t+ |c] sin(y/]d] = &2 t))

d_kék(t’C) o 2/ |e| — k2 <k2 + |¢| cos(\/|c\fk2 75/2)2>3/2 -
Similarly, when |k| > \/|c|, the string-cosine expressed as
sulty ) = Lot ecsVRT e t/2)
\/k2 + ccos?(VE? + ¢ t/2)
Then we have
d ksin(\/Wt/Q) (kQMt+csin(\/lcz—ﬂ t))
%&c(t;c) =— < 0.

2V k% + c(k2 + ccos(VE: + ¢ 15/2)2)3/2

Next we consider the case |k| = \/|c|. Since we have
el — k2 _ e — k2

e cosh? (v/]e] = K2t/2)—k2  |¢|sinh®(y/|e] — k2/2)+|c| — k2’

by applying de I’'Hopital’s rule, we have

inh? — k2 i _ k2
i |c| sinh? (/|c] — k2t/2) i (|e[t/2) sinh(y/]c] — k2 ¢)

kty/lel lc| — k2 kty/lel 2/ |e| — k2

t2 cosh — k2t t?
_ lim |e|t* cos ( |c| ): |c|

kty/lel 4 4
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Therefore we have

— 12 — 72
lim 6(t:c) = lim Vel =k cosh(\/|c| k t/2)
K/l kel \/|c| cosh®(y/]c] — k2t/2) —k2
1

(left?)/4+ 1
2

Ve +4

Similarly, as we have
k? +c k*+c
k2 + ccos?(VE? + ct/2) G + ¢ — csin® (VK2 + ct/2) ’
by applying de I’Hopital’s rule, we have

|c| sin® (VK? + ct/2) " (le[t/2) sin(VE? + ct)

lim = lim

kiy/Jd k2 +c W 2vVk? + ¢
c|t? cos(VE2 +ct)  |c|t?

K/l 4 4

Therefore we have
) ] \/k2+ccos(\/k2+ct/2)
lim 6x(¢;¢) = lim
kdy/Iel kly/lel \/k2 + ccos2(\/ k2 + ct/2)
1
(|elt?)/4+ 1
2
|c|t? + 4
We find that 0x(t; ¢) is monotone decreasing correspond to k. We get the conclusion.

OJ

Summarizing Propositions 4.2, 4.4 and 4.6 up we have the following.

PROPOSITION 4.8. For 0 <t < 27w /vk? + ¢, we have
(1) so(Lk(t;0)/2;¢)=sk(t/2;0).
1— (k? t/2;¢)?
(2) ok(t;c) = j:\/ 1(_ c—:kc(>:/k2<, 2)2’ 2 , where the double sign takes positive
when 0 <t < w/Vk? + ¢ and takes negative when w/vVk? + ¢ <t <21 /Vk? + c.
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3. Comparison theorems on string-lengths and string-cosines

of trajectory-harps

In this section we give estimates of string-lengths and of string-cosines of trajectory-
harps on a general Kahler manifold M under some condition on sectional curvatures.

For a trajectory-harp «., associated with a trajectory v : [0,7] — M, we set
R, =sup{t € [0,7] ] ,(7) > 0 for 0 <7 < t}

and call it the mazimal arch-length of a.,. On a complex space form CM"(c), for a
trajectory-harp . associated with a trajectory v : [0,7] — M for By, the maximal
arch-length is given as
k2 if k2 >0
Ritse) = { VG TR+ e> 0
00, if k4 ¢ <0,
it T > R(k;c).
We define a positive T, (c) as follows. If there is ¢, satisfying 0 < ¢, < T and
0,(t.) = le(R(k;c);c) we set T,(c) = min{t,} and in other case we set T,(c) = T
Since £,(t) < ¢, we see T,(c) > min{T, (4 (R(k; c); c)}. We note that

((2/y/c) sin ™t \/c/(k? + ¢), if ¢ >0,

G (R(ks ) 0) = 2/|k, if ¢ =0,
(2/\/H) sinh ™' \/|e|/(k2 +¢), if ¢ <0 and k*> 4 ¢ > 0,
0, ifc<Oand k2 +¢<0.

Given a trajectory-harp o, for By associated with a trajectory v : [0,7] — M, for
0<a<b<T,weset HB,(a,b) = {ay(t,s)]la <t <b,0< s < C,(1)} and call it
the harp-body of a.,. We denote HB,(0,b) by HB.(b). By Lemmas 4.4, 4.5 and 4.6,
the function €4(- ;¢) : [0,7/vk? 4+ ¢ ]— R is monotone increasing. We hence define a
function 7;,(- ;¢) : [0, &k (m/Vk® + ¢;¢) | — R as the inverse function of (- ;c).

First we give estimates from below when sectional curvatures are bounded from

above.



118 IV. Comparison theorems on trajectory-harps

THEOREM 4.2. Let o, be a trajectory-harp associated with a trajectory v : [0,T] —
M for a non-trivial Kdhler magnetic field By, on a Kdhler manifold M. Suppose sec-
tional curvatures of planes tangent to its harp-body HB.(T) are not greater than a

constant c. We then have the following :

(1) £,(t) > br(t;c) for 0 <t <min{R,,2R(k;c)}.
(2) 6,(t) = 0 (T (L,(t); )i ¢) for 0 <t < To(c).

In particular, we have R, > T,(c) and R(k;c) > T,(c).

Moreover, we have the following when equalities hold in the above assertion.

(1) If 6, (to) = 6k (7(€ (t0); )i ¢) at some to with 0 <ty < T,(c), then we have
1) the derivatives of string-cosines satisfy 0! (to) = 6}, (1(¢,(to); ¢); ).

0 0
2) the vector %(to, s) 1is parallel to J%(to, s) for 0 <s < {,(tg).

3) the sectional curvature Riem(%(to, s), %(to, s)) of the tangent plane
spanned by %(zﬁo, s) and %(to, s) is equal to ¢ for 0 < s < £,(ty).

(2) If €, (to) = li(to; c) at somety with 0 < to < T,(c), then the harp-body HB.(to)

s totally geodesic, holomorphic and of constant sectional curvature c. In

particular, we have (,(t) = ly(t;c) and 6,(t) = 6i(t;c) for 0 <t <t,.
REMARK 4.1. We note that ¢4 (t; c) is defined for 0 <t < 2R(k;c).

REMARK 4.2. It is likely that R, > R(k; c) holds under the assumption of Theorem

4.2. But our result does not guarantees this.
To show this we need the following local estimates.

LEMMA 4.7. Let o, be a trajectory-harp associated with a trajectory v : [0,T] — M
for a non-trivial Kdhler magnetic field By on M. When we take a positive k satisfying

|k| < k, there exists positive € such that the following properties hold for 0 <t <e€:

§I(E) <0, Si(t;e) <L) <0, Giltic) < 6y(t), (iltie) < £,(1).
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PROOF. We define a smooth function F' by F(t) = &, (t) — &} (¢; ¢). By Lemma 4.3

we have

F(0) =0.(0) — (5;%(0; c)=0-0=0,
F'(0) = 82(0) — 87(0;¢) = —k*/4 — (—k?/4) = (k* — k*)/4 > 0.
If we apply Taylor’s theorem to F', we see there exists a small positive €; satisfying
F(t) = F(0) + F'(0)t + 0(t*) > 0

for 0 <t <. We have &' (t) > 0. (¢;¢) for 0 <t < €.
We define another function G by G(t) = 6,(t) — 0;(¢; ¢). We then have

G(t) = /O tF(s)derG(O).

Since Lemma 4.3 guarantees

we have G(t) > 0 for 0 <t < €.

We define one more function H by H(t) = ¢,(t) — {;(t;c). We then have

H(t) = /Ot G(s)ds + H(0)

by Lemma 4.2. As H(0) = £,(0) — £;(0;¢) =0, we have H(t) > 0 for 0 <t < €.
As 07(0) = —k?/4 < 0 and J, is smooth, there is a positive €, satisfying that
67(t;e) < 0 for 0 <t < €. Since §/(0) = 0 we see 0/(f) < 0for 0 <t < €. By

choosing € = min{e;, €2}, we get the conclusion. O

PROOF OF THEOREM 4.2. We take a positive k so that |k| < k. First we study
near the origin. By Lemma 4.7 we see 6;(; ¢) < 0,(t) and £;(t;¢) < £(t) for 0 <t <.
Since 7; (- ; ¢) is monotone increasing, we have 73 (¢,(t); ¢)> 7, (€;.(t; ¢); ¢)= t. As §;(;¢)
is monotone decreasing, we find &, (t) > 6;(¢;¢) > 6; (1;,(4,(2); ¢); ¢).

We take a maximal positive T}, (< T') so that the conditions

i) £,(t) < G(R(k; 0); 0),
ii) 57(75) > 0y, (Tk(gv(t>§ c); C)
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hold for 0 <t < Tj. The above study guarantees that T} is positive.

We shall show that if T, < T then we have £,(T}) = £;(R(k;c);c). To do this we
suppose T, < T and £,(T;) < (i(R(k;¢);c). As £y,0,,€:(-;¢) and 6;(-; ¢) are smooth,
by the maximality of T}, we see 8, (T};) = 0; (7, (¢4 (T}; ¢); ¢); ¢). We study the derivative
of ¢, at T;. By direct computation we have

@10)  Drmy) = (231, 2 (03, 0,10) )+ (3T, (V5 50 (13, 0,(11) )

By definition of 4., we have

= o

> (3(13), %(%%(Tﬁ)fﬁﬂ(ﬂ), e (T () )

8047

— {5 Y+ (IHT). G2 (T 4(T3)) )

hence the first term of the right-hand side of (4.10) satisfies

day

k<J7(T,;,) o (T, €,(T;, ))>z —|kl\/1 = {0,(T})}2.

As |k| < k and 0,(T}) = 64 (7.(65(T}); ¢); ¢) < 1, we see

(‘30@Y

. 2
BT, S (T 6(T0) > =1 = {3 ((0 (T )i )}
In order to estimate the second term of the right-hand side of (4.10), we put

Oa,
Zils) = ot

is of unit speed for each ¢, it satisfies <Zt(3),

—(t, s), which is a Jacobi field along a geodesic s — (¢, s). As s+ a,(t, s)

o
a—v(t, s)>: 0 for each t. This guarantees
s

that <V dary Z1(S), %(t7 s)>: 0 because

Js

0= {209, 21,9 )= (Voms Zu(5), 220, 5) )+ 20(5), (Vim T2 1))

= (Vou, Zi(s), 830‘ (t,5)).

We take a trajectory-harp d; associated with a trajectory 4 : [0, R(k; c)]— CM*(c)
for B; on CM*(c), and put Z(s) =

%(t, s), which is a Jacobi field along a geodesic

s+ @5(t,s). We note that CM*(c) is congruent to a real space form of constant sec-

tional curvature ¢ (see Propositions 2.1, 2.2). Since we have ¢; (T}; ¢)< T; < R(k;c) <
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m/y/c, we do not have conjugate points of 4(0) along the geodesic s — as(T},s). As
Y(t) = a(t, 4,(t)), we have

Oay Oa,

0, 00) 40, 0) o (1, (1)) = Ze((0)+6,(0) o (1 (1)

Y(t) = o

By applying Rauch’s comparison theorem on Jacobi fields, we have

<7(T;;)7<Vgtaa(): (Ty (1)) )= (AT, ,<V§aa7> (T3 (7)) )
:<ZTA 0,(T,))+0 (Tk)aaW( (1)), V 2 Zr, (¢ (ch))>
= (21, (4(1}), Vo Zo, (EW(T,;))>
(21, (04(T), V a0s Z, (04(Ty)) )
1Zz, (6,(T) 12
(Zny(are) (6(T2)), WawZTkww(T yo (6(TR))
| Zey e, 0 (6 () |12

= 11 Zz, (¢-(T)I* %

> || 2, (6,(TR) 1 %
1z (L@
12z pie) (TP
5 (Zeyttr 0 (6 (T0)), Vs Zoy 00 (6(T1)) )-

As we have Z;((,(t)) = ~(t) — 57(75)8%(75, (,(t)), the Jacobi field Z; satisfies Z,(0) = 0
and || Z;(€,(t))||> = 1 — {6,(¢)}?, because we have

L= RO = | 2(60)+5,0 2, 6,0

= 120 0) 12 + 26,00 Zu(0,(0)), 21, 0 )20 || o
— 11200, (0) P + 22(0).

(9047

o)

By same computation we have HZ(E,;(t; c)) H2 =1—{0;(t;¢)}*
As 6, (T;)= 6 (7.6 (T}); )5 ), we have [| Zr, (6(T3: ) || = | Ze, gy 0 (G(Tis ) ||

Continuing our computation on the second term of the right-hand side of (4.10), we
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Thus, we obtain

dd—?@,;) > k1= {8 (r(6,(T1): ) 2
+ <7(Tk(€“{<Tk)ﬂ c)), v?%(Tk<EV(Tk)7 c),ﬂy(Tk))>
= W B 0(T3):0), 05 (78, (T3); ), 0, (Tp)
+ (T3 9), Vs, 2 (6 (T3); ), 6,(T1) )
d d
= %61% (Tk (67 (Tkz)7 C)? C) @513 (Tk (EW (u)v C)) C) u:T,;.

By the maximality of T}, we find that it is a contradiction, because we have 0, (7}) >
6 (13(04(T3); 0);¢) for 0 < Ty < e3. Thus, we find that if 7, < T then £,(T}) =
(. (R(k; ¢); ¢) holds. This means that either T, = T holds or T, < T and £,(T}) =
E,;(R(/%;c) ; ¢) holds.

We take a monotone decreasing sequence {k; 132, with l;:j > |k| and lim;_, l%j = |k|.
Taking a subsequence, if we need, the above argument shows that one of the following
conditions holds for all j:

1) T, =T,
2) Ty, < T and (,(T}, ) = & (R(kj;c) ;0).

In the first case it is clear that lim;_, T,;j = T'. By definition of T} we find

0,(T) < lim €; (R(kj;¢);c) = bu(R(|K]; ¢); ¢) = (R(K; ¢); ¢),

j—oo M
and have T, (c) = T'. In the second case, as we have £/ (t) = d,(t) > 0 in the interior of

U,[0, T,%j] because &; (7(¢,(t); ¢); ¢)> 0, the function £, is monotone increasing on this

domain. Since the sequence {ﬁ,;j(R(k‘j; c);c) e

j=1
4.4, 4.5, 4.6 and Propositions 4.3, 4.5, 4.7. Because we have (,(T} ) = €,;j(R(l§;j; c);c),

is monotone increasing by Lemmas
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Voo . : . :
we see the sequence {év(TkJ_)}j:1 is monotone increasing. As £, is monotone increas-
ing on U;[0, T} ], we find that {7} }52, is a monotone increasing sequence. Hence
J J
lim; o 15 = exists including the case lim; .o, T3 = oo. We set lim; ,T; = T,. We
J J J

then have

KW(T*) = hm KV(T]%) = lim Efg

Jim €,(T;,) = Tim 6 (R(kjs); ) = Gy (R(JK];€) : ),
which shows T, = T, (c). In each case, as limy_, ;, J; (7.(€,(2); ¢); )= 6k (T (L4 (t); €); ¢)
for each t, we obtain 6, (t) > &, (7 (£, (t); ¢); ¢) for 0 < t < T',(c). Since 8 (7(¢4(t); ¢); ¢)
> 0 for 0 <t <T,(c), we see R, > T,(c).

We next compare (- (t) and £ (t; ¢). For a positive k with |k| < k we take a maximal
positive S; < min{T, R(k; c)} satisfying £,(t) > €;(t; ¢) for 0 < t < S;. We shall show
that S; = min{7T, R(k;c)}. If we suppose S;, < min{7, R(k;c)}, by the maximality
of S;, we get €,(S;) = €;(S;;¢). Since €;(Si;¢) < E,;(R(l;:; c);c) < lp(R(k;c);c), we
find S; < T,(c). Hence by the above argument on string-cosines, we have §,(5;) >
Op (Tk(&(S};); c); c). By Propositions 4.3, 4.5 and 4.7, we have

05(S3) = 0k (7 (€4(S3); €)3 €)= O (T (L (S5 €); ©); )
> 61 (e (Ce(Sj; €); €); €)= 1 (Sy; ©) > 6;(S; €).

By the maximality of S;, we see that it is a contradiction. We hence have S; =
min{7T, R(k;c)}. We take a monotone decreasing sequence {/;7]};”;1 satisfying k; > |k|
and lim;_, k; = |k|. Since lim;_,o R(kj;¢) = R(k;c), when T < R(k;c) we may
suppose T < R(kj;c). Thus we have S, = T in this case. As lim; o0 €} (t;c) =
l(t;c), we have £,(t) > i(t;c) for 0 < ¢ < T in this case. When T > R(k;c), as
R(k;c) > R(k;;¢), we have Sp, = R(kj; ¢). In this case, we obtain £.(t) > £(t; ¢) for
0 <t < R(k;e) = limj_, R(l;;j;c). In this case, if R(k;c) < R, < 2R(k;c), then for
R(k;c) <t < R, we have £,(t) > £,(R(k; c)) > lx(R(k; c); ¢) > €y(t; c).

We now check the relationship between R(k;c) and T.,(c). When T' > R(k;c) we
have €., (t) > (i (t;c) for 0 <t < R(k;c). Thus we have T',(c) < R(k;c).

Next we study the case that equalities hold. First we study the case that d,(to) =

6 (Tk(£(t0); ©); ¢) holds. Along the same lines as above estimate on the derivative of
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-, by taking a trajectory-harp és associated with a trajectory 4 for By on CM™"(c)
and by changing T} to ¢, we have

o t0) = W I410), o2 (10, 4(10)) )+ (3110). (V5 22 (10, 10)) )

> —[k]\/1 - 6, (10)?

(4.11)

+ (3000, (s 52 ) (b)), 1)
= D (10 )= TE (s wien )|
If we suppose %(to) > Cfi—if(m(f (u);c);c) vty we have
db doy,

0> Tl w):0):)

u=t
for ty — e < ¢ <ty with some positive e. As 8, (t) > 0x (75,(¢,(t); ¢); ¢), we have
o do, o ds
5, (o) = / T s -0 > [ P wie)rd) dut bt <)
to—e U
o dy,
> . %(Tk(ﬁv(u); ¢);c) du+ 0k (1(C (o — €); ¢); €)= 0k (T (€, (t0); )5 €).

do, doy,

Hence we see E(to) = d—( k(€ (w); ¢); ¢) ‘ . Thus, we find that the equality holds
u=to
in the inequality in (4.11). This means that both of the following equalities hold :
. day
(4.12) B(Tits). 2 (to0, (1)) )= —Ikly/1 = 8, (t0)2

(4.13) " dé
= (6 0):0). (Vms T2 ) (0t ). 1)

0
The equality (4.12) shows that %(to,év(to)) is contained in the complex line in
0
T 10y M spanned by 4(to). Since 4(to) = Zu, (L+(t0)) +67(t0)% (to, £, (to)) with the Ja-
cobi field Z;, (s) = %(to, s), this means that Z;, (¢,(to)) is parallel to J% (o, £4(t0))

0
because Zy, (¢, (to)) is orthogonal to %(to, 0,(to)). As we used Rauch’s comparison
s
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theorem to obtain (4.11), the equality (4.13) and Rauch’s comparison theorem (Theo-
rem 3.1) gurantee that Z; (s)/||Z,(s)|| is parallel along the geodesic s — . (to, s) for
0 < s </,(ty) and that Riem(%(to,s), 86(1 (to, )) = cfor 0 <s </, ().

We finally study the case that £, (to) = €x(to; ¢) holds. We have to = 74 (¢, (to); c).

As we have 8, (t) > 0y (1,(€,(t); ¢);¢) for 0 <t < T (c) we find

to d to
to = —T] c) dt = / dtZ/ dt = ty.
’ /0 dt k 5k Tk ) ) 0 ’

Thus we obtain &, (t) = 8 (7 (€,(¢); ¢); ¢) for 0 < ¢ < ;. Hence we find by the above

argument that Riem(%(t, s), 8;7 (t, s)) = c and that %(t, s) = (t, S)J%(t, s)
for 0 < s < ¢,(t) and 0 < ¢ <ty with a smooth function ). We then obtain
Oay
Vs~
00@ oY aa,y
Vam’ 83 ds’
8047 oY (9047 8047 oY Oay oY Doy
Voo ~ o’ os TV V% e o’ as Vs as
Hence HB,(ty) is totally geodesic. This completes the proof. 0

Next we give estimates from above under a condition that sectional curvatures of
underlying manifolds are bounded from below along the same lines as in the proof of
Theorem 4.2. For a trajectory-harp «., associated with a trajectory v : [0,7] — M,
by putting p = v(0) we set

C, =sup{t € [0,T] | £,(T) < cg{%(T)(p) for 0 <7 <t},

where cg@”( ) denotes the minimum of first conjugate values of p along geodesics
{s = oay(t,s) | 0 <t <T}. We say o, is holomorphic at its arch if (98 (t,0,(t)) is

contained in the complex line spanned by §(¢) for 0 < ¢ < R,. When M is an orientable
Riemann surface, by regarding it as a Kahler manifold, we see every trajectory-harp

is holomorphic at its arch.

THEOREM 4.3. Let o, be a trajectory-harp associated with a trajectory v : [0,T] —

M for a non-trivial Kdhler magnetic field By on a Kdhler manifold M. Suppose that
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it is holomorphic at its arch and sectional curvatures tangent to its harp-body HB.(T)

are not smaller than a constant c. We then have
0,(t) < li(tic) and  0,(t) < 6k (Tw(C,(t); ) c)
for 0 <t <min{C,, R,}.
Moreover, we have the following if equalities hold in the above estimates.
(1) If 6,(to) = 0k (m(€(to); c);c) holds at some to with 0 < to < min{R,,C,},
then we have the following:

a) the derivatives of string-cosine satisfy 0',(to) = 01 (7 (¢4 (t0); ¢); ¢);
b) The vector %(to, s) is parallel to J%(to, s) for 0 <'s < L,(to);

ot 0s
c) The sectional curvature of the tangent plane spanned by %(to, s) and
0
%(to, s) is equal to ¢ for 0 < s < {,(ty).
s

(2) If €, (to) = L (to; c) holds at ty with 0 <ty < min{R,,C,}, then the harp-body
HB,(to) is totally geodesic, holomorphic and of constant sectional curvature

c. In particular, 0.,(t) = L,(t; ¢) and 0,(t) = 0x(to; c) hold for 0 <t <t.
To show this we need the following local estimations.

LEMMA 4.8. For a trajectory-harp o, associated with a trajectory v : [0,T] — M
for a non-trivial Kahler magnetic field By, on M, and for a positive k satisfying |k| >
/2:, there exists sufficiently small positive € such that the following properties hold for

0<t<e:

0p(t;c) <0, OL(t) <di(t;c) <0, 0,(t) < 0p(t;0), £4(t) < Li(t;0).

PROOF. We define a smooth function F' by F(t) = ¢, (t;¢) — &,(¢). By Lemma 4.3

we have

F'(0) = 6.(0;¢) = 8,(0) =0 — 0 = 0,

F"(0) = 67(0;¢) — 82(0) = —k*/4 — (—k*/4) = (K* — k*) /4 > 0.

If we apply Taylor’s theorem to F', we see that there exists a small positive €; satisfying

F(t) = F(0)+ F'(0)t+0(t*) > 0
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for 0 <t < €;. We hence have §;(t;¢) > 8 (t) for 0 <t < €.

We define another function G by G(t) = 6;(t;¢c) — d,(t). We then have

t
alt) = / F(s)ds + G(0).
0
Since Lemma 4.3 guarantees
G(0) = 0;(0;¢) —0,(0) =1—-1=0,

hence we have G(t) > 0 for 0 < t < ¢;.

We define one more function H by H(t) = ¢;(t;c) — ¢,(t). We then have

H(t) = /0 ' G(s)ds + H(0)

by Lemma 4.2. As H(0) = £;(0;¢) — £,(0) = 0, we have H(t) > 0 for 0 <t < ¢;.

As §/(0) = —/%2/4 and 0;(-;c) is smooth, there is a positive e, satisfying that
6g(t; ¢) <0 for 0 <t < e. By choosing € = min{e;, €2}, we get the conclusion. O

PROOF OF THEOREM 4.3. We take a positive k so that 0 < k < |k|. We estimate
0, and £, by 0;(t; c) and £;(¢; c) from above, respectively.

First we study near the origin. By Lemma 4.8, we have (,(t) < ¢;(t;c) and d,(t) <
bi(t;c) for 0 < ¢ < e. Since 7x(+;¢) is monotone increasing, we have 7 (¢, (t); c)<
Th (€k(t;c);c): tfor 0 <t < e. As d;(-;c) is monotone decreasing, we find d,(t) <
6t ) < 0y (Ti(€4();0);¢) for 0 < t < e.

We take a maximal positive T} (< min{R,, C,}) so that the following conditions

i) €,(t) < 6 (R(k;c);c),

i) 6, (1) < 0 (7 (0): ) )
hold for 0 < ¢ < 7T;. The above argument guarantees that 7} is positive. We show
T; = min{R,,C,}. To do this we shall show that if we suppose T} < min{R,,C,}
then £, (t) = ¢; (R(l;:; c); c) holds. We here suppose that both 7} < min{R,,C,} and
0L(t) < ¢ (R(/%; ¢); ¢) hold. By maximality of T}, we have 8, (T})= &; (7 ((,(T}); ¢); c).
We compute the derivative of ¢, at T} :

@11 Buny = k{3, 2 (1 01) Y+ (51, V 5 2 (13 1))

ot
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Since ., is holomorphic at its arch, by definition of d5(t), the first term of the right-
hand side of (4.14) is estimated as

(AT, 522 (T3, ,(13)) )= 1 = (5, (TP < 1~ {5,(T)

because 0 < k < |k].

In order to estimate the second term of (4.14), we take a trajectory-harp ds as-

sociated with a trajectory 4 : [0, R(k;c)]— CM'(c) for B; on CM'(c). We set
Zi(s) = %(t,s) and Z,(s) = %(t,s), which are Jacobi fields along geodesics

s — an(t,s) and s — @4(t,s), respectively. Since each geodesic s — ay(t,s) is of
g—j(t, s)>: 0. As we have v(t) = a,(t,¢,(t)), we have
Zi(Ly(t)) = A(t) — 57(75)%(&67(0). Thus the Jacobi field satisfies Z;(0) = 0 and
1Z:(€,(8)) || = 1 — {6,(t)}* because we have

unit speed, we see <Zt(s),

L= 5O = 12:(60)+8, 022w, (o)
2D + 1,0 2 )|

(%z7

+ 20,0 (Z(6,(8)). S22 4,(1)))
= 1Z:(6; @) 1" + {0,(1)}*.
Similarly, the Jacobi field Z, satisfies Z,(0) = 0 and HZ (6,;(15;0))”2: 1 —{6;(t;0) 1>
As 6, (T3)= 6; ((¢4(T}); ¢); ¢), we have || Z,(€,(T}))| = HETk ye) (65(T3))]|- Since
T;, < C,, by Rauch’s comparison theorem, we have £, (T})< 3”3”(”( (0)) < 7/+/e,
thus we do not have conjugate points of v(0) along the geodesic s — a,(T},s). By
applying Rauch’s comparison theorem on Jacobi fields, we have

80@

(3(T3).¥ 002 22 (T3, (1)) )
= {21, (1) 40, (1) 5 (13 (1), ¥ e 21, (1)
= <ZT,AC (gv(Tic))v V%ZT;; (KW(T,;))>

2 <ZTI;(g’v(Tl%))vvai;LgZTz;(gv(Tl%)»
_HZTIQ(K’Y(TE))H X HZT;;(MT;;))IIZ
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< HZ (6 (T ))H2 <Z\Tk(€»y(T,;),c) (EV(T];))’Va;‘W 71, (€ (T},)5¢) (K’Y(T]Ag))>
— T i X s
R PR ||Z7' )C)(g (T) |12

— (3(r(Ti0), va%i;‘g (0 <Tk>7c>,£7<Tk>>>

= (B T)10), Vs (6 (T 00 (1))
Thus, we get

d5

CT;) < /1= {5 (7l (T)s )5 0) 2

(). o 25 (B0, 0,1,
_ doy, d5
T — (3 ((T}); ¢);0)= p —E (7., (w); 0); ¢)

U

As we supposed £, (T}) < ¢ (R(k:; c); c), by the maximality of T}, we find that it is a
contradiction. Thus, if we suppose T; < min{R,,C,}, then ¢,(T}) = ¢; (R(l%; c);c).
But this shows

8, (Ty) < 0 (7 (0, (Ty)s €)s¢) = 63(R(k; ¢);¢) = 0,

which tells us T; > R,. Thus it is again contradict to 7} < min{R,,C,}. We hence
find that T}, = min{R,, C,}.

Let {l;:}oo be a monotone increasing sequence of positive constants satisfying
k; < |k| and lim;_,o k; = |k|. Since lim;_, s (T,;j (4 (t); ¢); ¢) = b (Tu(l,(2); ¢); ), we
have 6,(t) < &;. (73 (£,(2); ¢); ¢)) for 0 <t < min{R,,C,}.

We next compare £, (t) and ¢x(t; c). For i satisfying 0 < k < |k| we take a maximal
positive S; (< min{R,, C,}) which satisfies £,(t) < {;(t;c) for 0 < ¢ < S;. We shall
show that S; = min{R,,C,}. To do this we suppose S; < min{R,,C,}. We then
have £,(S;) = €;(S;; c). Therefore, by Proposition 4.7, we find

05(S3) < 0k (7 (€4 (Sp)s 03 ) < 03 (7w (€5(Sp )i €)s )
< O (705 (Sp)s €5 €)= 07, (73 (0 (S €5 ©); ) = G (S ).
By the maximality of S, also we find a contradiction. Thus S; = min{R,,C,}. As
lim;_, . G (8 ) = Li(t; ), we get £y (1) < Ly(t;¢) for 0 <t <min{R,, C,}.
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We here consider the case that 8, (to) = 6k (7 (¢, (to); ¢); ) holds. Along the same
lines as in the above, by taking a trajectory-harp ¢ associated with a trajectory 4 for

By, on CM!(c), we have

dé.,
L (t0) = —Ikly/1 = 8,(t0)* + (Zuo (1+(t0)) . V0w Zug (£ (t0)) )
(4.15) = —\k\\/l = O ({5 (to)s s )’
+ <Z\7—k(47(t0);c)(€7( ) Voss Zryit, 10 >(£v(to))>
d
= @&g (Tk(gv(u)m)?C) ety
where Z,(s) = 8({;): (t,s). If we suppose dd—(?(to) < %(Tk(ﬁv(u); c);c)|u:t0, then there

is a positive ¢ satisfying that dd—(st'y(t) < Z—&C(Tk(@(u}; c);c)| _ fortg—e <t <t As
U u=

we have 8, (t) < 6 (1(4,(t); ¢); ¢), we have

o do, o d§
d,(to) = / 7 —L(t) dt + 6, (tg — €) < / d—f(m(&(t);c);c) dt + 6,(tg — €)
to—e to—e

< /to C?tk( (€y(t);c);c) dt+5k(Tk(€y(to —5)30)30) = 5k(Tk<€v(t0)§C)SC)

0—€
do, doy,
Thus, we see E(to) = d—(Tk(ﬁy(u); c);c)| _,,- Therefore (4.15) shows that
U u=

(20 (6420)). V 502 21y (63(t0)) ) = ( Zo 00000 (6(10)), V 0, Zoo, g (6 (1))
Rauch’s comparison theorem guarantees that Z,,/||Z,,|| is parallel along s — o (%o, s)
and Riem(Z,, (s ), 2o 52 (to,s)) = cfor 0 < s < £,(t). Since e, is holomorphic at its
arch, Zy, (€,(to)) is contained in the complex line spanned by §(ty). Hence Z;, (€, (to))
is parallel to J% (to, €, (t0)).

We finally study the case that £, (tg) = ¢x(to; ¢) holds. By this condition we have

7k (5 (t0); €)= T (L (to; €); €)= to. As 0 < 6,(t) < 6k (Tw(¢(t);¢);c) for 0 <t < g, we

to d to
ty = —T dt / dtg/ dt = ty.
’ /0 dt k 5k Tk ) ) 0 ’

Hence we find 6, (t) = 6 (7(¢,(t); ¢); ¢) for 0 <t < t5. Thus we obtain that %(t, s)

have

day

P (ts))chorOStSthnd

is parallel to J%(t, s) and Riem(%(t,s)
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0 < s < /l,(t). Since s — a,(t,s) is a geodesic of unit speed for each ¢, we have
%(t, s) = (t, s)J%(?ﬁ, s) with a smooth function 1. We hence find
Oay
ay T — 0
Vaas’y 83 ’
day, Oy Oay,
VBS?W B 83J ds’
V@a»y% = 8_1# %_,_wjv%aaV = %J%_ 8_1/1%

oot Ot° Os o Ot Ot° ds s Os
Hence HB,(t) is totally geodesic.
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4. Volumes of trajectory-balls

As an application of comparison theorems on string-lengths of trajectory-harps,
we give estimates on volumes of trajectory-balls. By using magnetic exponential map

Brexp, : T,M — M defined in §3.1, we set
Bf@) = {Bkexpp(tv) ‘ 0<t<nrwve UPM}

and call it a trajectory-ball of arc-radius r centered at p. Since Boexp, is the ordinary
exponential map exp,, we see that BY(p) is a geodesic-ball of radius r.

At an arbitrary point p € M, we define the By-injectivity radius v (p) at p by
we(p) = sup{r >0 | Brexp,|s,(,) is injective},

where B,(0,) (C T,M) is a ball of radius r centered at the origin 0, of T,M = R?".
Clearly, to(p) is the ordinary injectivity radius at p. For a positive ¢ and a constant k,
we defined in §3.2 a function s;(¢;¢) : R — R by
(1/VE2 + ¢)sin(vVk2 + c t), when k2 + ¢ > 0,
sp(t;e) = < t, when k% + ¢ =0,
(1/+/]e] — k2) sinh(;/]e] — k2 t), when k% + ¢ < 0.
In order to simplify the expression of our computation, we put its derivative as ¢x(t; ¢),

that is, we set a function ¢ (t;¢) : R — R by

cos(Vk? +ct), when k? + ¢ > 0,
a(t;c) =< 1, when k% + ¢ =0,
cosh(y/|c| — k2 t), when k% + ¢ < 0.

These functions satisfy the relation
(K> 4+ ) {sp(t;e)}* + {en(t; 0)}* = 1.

We note also
(1/+/c) sin(y/ct), when ¢ > 0,

so(t;c) = Qt when ¢ = 0,

(1/+/]¢]) sinh(~/]¢]t), when ¢ < 0,
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and
cos(y/ct), when ¢ > 0,

co(t;e) =<1, when ¢ = 0,

cosh(y/|c|t), when ¢ < 0.
Therefore, these functions satisfy the following.

LEMMA 4.9. The functions so(t;c) and c¢o(t; c) satisfy
s0(t;¢) = 280(t/2;¢)eo(t/2;¢),

for 0 <t <m/VE>+ec.
For geodesic-balls we have following estimates on their volumes studied by Bishop.

THEOREM 4.4 (Bishop’s comparison theorem 1). Let M be a Riemannian mani-
fold of dimension m. For an arbitrary unit tangent vector w € UM, we take a ge-
odesic o, with 6,(0) = u. If sectional curvatures satisfy max{(R(5(t),v)v,d(t))|v €
UyiyM,v*6(0)} < ¢ with some constant ¢ for 0 <t < ¢,(c(0)), where ¢,((0)) is the
first conjugate value along o. Then we have

(1) the function t — O(t,u)/{so(t,c)}™ ! is monotone decreasing for 0 < t <
¢e(0(0)).
(2) O(t,u) > {so(t,c)}™ ! for 0 <t < c,(a(0)).

In particular, the volume of geodesic-ball By(p) of radius € is estimated as

¢
vol(B(p))> wm_1/0 {s0(s;¢)} ™ tds,

where wy,_1 denotes the volume of a standard unit sphere S™1(1).

THEOREM 4.5 (Bishop’s comparison theorem 2). Let M be a Riemannian mani-
fold of dimension m. For an arbitrary unit tangent vector w € UM, we take a ge-
odesic o, with 6,(0) = u. If sectional curvatures satisfy min{(R(&(t),v)v,a(t))|v €
UyiyM,v*6(0)} > ¢ with some constant ¢ for 0 <t < ¢,(0(0)). Then we have

(1) the function t — O(t,u)/{so(t,c)}™ ! is monotone increasing for 0 < t <

¢o(0(0)).
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(2) O(t,u) < {so(t,c)}™ ! for 0 <t < c(a(0)).

In particular, the volume of geodesic-ball By(p) of radius € is estimated as
vol(Be(p)) < W1 /4{50(3; )} ds.
0
For a trajectory-harp a., associated with a trajectory v : [0,T] — M for By, we set
]f; = sup{t | £,(7) < 1o(7(0)) for 0 < 7 < t},

and set Iy(p) = inf ]5, where infimum is taken over the set of all trajectory-harps
associated with trajectories emanating from p. When r < 14(p), for each trajectory = :
[0,7] = M with v(0) = p we can take a trajectory-harp associated with v and ¢,(7) <
T <rfor 0 <7 <r, wesee I;(p) > to(p). We set Ry(p) = inf R, where infimum is
taken over the set of all trajectory-harps associated with trajectories emanating from
p. When sectional curvatures of M satisfy Riem™ < ¢ with some constant ¢, then we

have Ri(p) > (x(R(k;c); c) by Theorem 4.2.

THEOREM 4.6. Let M be a Kdhler manifold of complex dimension n whose sectional

curvatures satisfy Riem™ < ¢ with some constant c. For an arbitrary r with 0 < r <

min{cy(p), Ix(p), Ri(p)}, we have
vol(BE(p))> wan 1 /0 T{25k(t/2; YT = es2(t/2;0) Y en(t/2; ¢) dt.

PROOF. For an arbitrary point ¢ € B¥(p) we have a trajectory ~ : [0,7r] — M
satisfying v(0) = p and v(¢,) = ¢ with some ¢, with 0 < ¢, < r. Theorem 4.2 guarantees
that a trajectory-ball B%(p) contains a geodesic-ball By, (r.c)(p). As 7 < 1(p), we see
U (r;¢) < 1o(p). Hence we find that

vol(B;(p)) = vol(Be,(re) (p))-

By applying Bishop’s comparison Theorem 4.4 with ¢ = ¢, (¢; ¢), we obtain

Ly (r3¢)
vol (B¥(p) > vol By, (rey(P) ) > wan—1 / {s0(s;¢)}"" " ds.
0
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By Lemma 4.9, we have

ta(ri) -
wznl/ {50<3§ C)} ds
0
£ (rc) o
T / [950(s/2:¢) - co(s/2: ) V> s
0
£ (rsc) on—1 5y 2=l
:(,UQn_l/ {260(s/2;0)}" x {1 —eso(s/2;¢)*} = ds
0
2n2—1 dgk

= Wan1 /OT{Qso(fk(t; C>/2;C)}2”_1{1 — {50 (Gu(t; C)/2;c)}2} St

By Proposition 4.8, we have

C e /or{zs’“(t/ 20} {1 - efsult/20)) T _1(k_ ;ic():/kz(f £>2 ) it
1/2

= W1 /OT{st(t/Z c>}2”‘1{1_csz(t/z;c)}”_l{1_(k2+c)sz(t/2;c)} dt.

Thus we get the conclusion. O

When M is compact, we can give another estimate on volumes of trajectory-balls

by making use of the following Gromov’s comparison theorem on volumes of geodesic

balls.

THEOREM 4.7 (Gromov). Let M™ be a complete Riemannian manifold whose Ricci

curvatures satisfy Ricci™ > (m — 1)c. Then for arbitrary positive r, R with r < R, we

have

R r
vol(Bg(p)) /vol(B,(p)) < / {s0(s; c)}m_lds// {s0(s; c)}m_lds.
0 0
When sup{d(p, q)|p,q € M} < oo, we call this constant the diameter of M.

THEOREM 4.8. Let M be a compact Kdahler manifold of diameter R and of complex

dimension n. Suppose its sectional curvatures satisfy c; < Riem™ < ¢y with some

constants ci, co. Then at an arbitrary point p € M, for an arbitrary r with 0 < r <

max{co(p), Ix(p), Ri(p)}, the volume of a trajectory-ball BE(p) of arc-radius r for a
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non-trivial Kdahler magnetic field By, is estimated from below as follows:

vol(M be(rica)
vol (BE(p) > ——lD) / {so(t; 1) dt.

{s50(s;¢1)}*" ds
0

PROOF. As the diameter of M is R, we have M = Bg(p) for arbitrary p € M. By

applying Theorems 4.2, 4.7, we have
vol(M)

vol(Bf(p)) > Vol(Berer) () = —7
/0{50(8;01)}2n_1d8

This completes the proof. (]

04 (ric2)
/ {so(t; 1)}t dt.
0

Next, we give an estimate of volumes of trajectory-balls from above.

THEOREM 4.9. Let k be a non-zero constant and M be a Kahler manifold of complex
dimension n whose sectional curvatures satisfy Riem™ > ¢ with some constant c. We
take an arbitrary point p € M and an arbitrary r with 0 < r < min{Rx(p), Cx(p)}.
Suppose that every trajectory-harp associated with ~y : [0,7] — M for By, with v(0) = p
is holomorphic at its arch. Then the volume of a trajectory-ball B (p) of arc-radius r

for By 1s estimated from above as following :
vol(B!(p)) < w2n_1/ {26(t/2; c)}zn*l{l — csr(t/2; c)}nflck(t/Q; c) dt.
0

PROOF. For an arbitrary point ¢ € B¥(p) we have a trajectory v satisfying v(0) = p
and 7y(t,) = ¢ with some ¢, with 0 < t, < r. Asr < min{Ry(p), Cx(p)}, the trajectory-
ball Bf(p) is contained in the geodesic-ball B, (p), we can take a trajectory-harp
associated with v. By Theorem 4.3 we have d(p,q) < £,(t;) < lp(tg;c) < li(r;c).
Thus, Bf(p) is contained in the geodesic-ball By, (.0 (p) of radius (r;c). We put
0 = lg(r;c). We then have
B dﬁkdt B cx(t/2;¢) 5t — V1= (k2 +c)s2(t/2;c) @t

St _\/1—csi(t/2;c) N V1—cs2(t/2;¢)

Therefore, by applying Bishop’s comparison theorem (Theorem 4.5) and by using the

ds

relation so (04 (t/2; c); c)= sx(t/2; ¢), we obtain
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VOl(Bf (p)) < VOI(BZk(r;C) (p))

Ly (15¢) on—1
< Wop—1 / {50(3§ C)} ds
0

L (r50) 2n—1
= Wap_1 /0 {2s0(s/2; c)}Qn*l{l — c{so(s/2;¢)}°} % ds

e /or{%o (telt; ) /25 ¢) }Qn_l{l — {50 (Lk(ts)/2; ) }2}%dd_£tkdt

By IO N e -2

-1

= oy /Or{st(t/Q;c)}%_l{l—csi(t/Q;c)}n {1—(k2+c)sz(t/2; @}”th

we get the conclusion. 0

For the sake of comparison, we here recall results by Bai and Adachi ([10]).

PROPOSITION 4.9. Let M be a complete Kahler manifold of complex dimension n.
Suppose its sectional curvatures satisfy Riemy, < ¢ with some constant c. Then at an
arbitrary point p € M, for an arbitrary r with 0 < r < max{co(p), Ix(p), Re(p)}, we

have .
Vol(Bf(p)) > wgnl/ 5k(t;c){5k/2(t;c)}2"’2dt
0

:wgn_l/ 22125, (t: ) {5 (t/2; 4c) }*"2dt.
0

Bai and Adachi ([10]) also gave an estimate from above under a condition that

sectional curvatures are bounded from below.

PROPOSITION 4.10. Let M be a complete Kdahler manifold of complexr dimension
n. Suppose its sectional curvatures satisfy Riemy; > ¢ with some constant c. Then at
an arbitrary point p € M, for an arbitrary r with 0 < r < max{co(p), Ix(p), Rx(p)},

we have

VOl(B:f(p)) S Won—1 /OT Ek(t; C){Ek/z(t; c)}Qn—th

= Won—1 / 22025, (t; c){s(t/2; 4c) > 2dt.
0
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We note that the assumption on r for Proposition 4.9 is weaker than the assumption

in Theorem 4.6. But we can not say clearly which estimate is sharper.
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5. Comparison theorems on zenith angles and lengths of sector-arcs

In this section we study “fatness” of trajectory-harps. For a trajectory-harp o,
associated with a trajectory v : [0,7] — M and constants a,b with 0 < a < b < T, the

restriction a2’ : [a,b] x [0, £,(a)] = M of o is said to be a harp-sector. We call the

9oy
Os
Us0)M the zenith angle of this harp-sector, and call the curve [a,b] 3 t — v, (t, 4, (a)) €

length 9, (a,b) of the curve [a,b] 3t — (t,0) € Uy0)M in the unit tangent space

M in M the sector-arc of this harp-sector. We denote by s/, (a,b) the length of this

sector-arc. We say the restriction . |jpxr of a, on [a,b] x R to be a sub-harp. We

call the curve [a,b] 5 t — «, (t,ﬁ,y(t))e M the harp-arc of this sub-harp. Generally,
3} 3}

we have 9, (a,b) > L( aO: (a,0), 86? (b, O)>

Since a trajectory-harp &y associated with an arbitrary trajectory 4 for By on a

complex space form CM"(c) lies on a totally geodesic CM*(c), the zenith angle of a

0dv; 0dvs
harp-sector éyz’b is the angle between —(a,0) and —

0s 0s

Vi(a,b;c) = cos™ ' 64 (b; c) — cos™ ' di(a;c).

(b,0), hence is given by

Therefore, the arc-length of the sector-arc is given as U(a, b; ¢)sy (Ek(a; c); c) if 0 <
a<b<2n/ VE2 + c.

We here study the relationship between zenith angles and string-cosines. When
a = 0, we take a trajectory o for B_; given as o(t) = v(b —t). Suppose we have a
trajectory-harp associated with o. Also, we suppose that the restriction [0, £,(b)] >
s+ a,(b,s) € M is the reversed geodesic segment of the restriction [0, 4,(b)] > s —
a,(b,s) € M of the string of a, at o(b). Such case occurs when ~(b) is contained in
By (p), for example. We then have

Ooy 9o,

9.(0,b) > 4(«0) (b, 0)) - 4(4(0), = Ea(b))> — cos™L 4, (b).

" Os
When a # 0, the zenith angle of a harp-sector Ozi’b is not smaller than the angle
Oa,

0
between %(a, 0) and 8_<b’ 0), hence is estimated by
s s

9 (a,b) > cos™" &, (b; c) — cos™! §,(a;c).
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We now estimate zenith angles and lengths of sector-arcs under some assumption
on sectional curvatures of the underlying manifold.

First we study the case that sectional curvatures are bounded from above.

THEOREM 4.10. Let avy be a trajectory-harp associated with a trajectory v : [0,T] —
M for By on a Kdhler manifold M. Suppose that sectional curvatures of planes tangent
to the harp-body HB.(T) are not greater than a constant c. Then, for arbitrary a,b
with 0 < a < b < min{R,,C,}, by setting a = 7,(¢,(a);¢) and b= 7k (Ly(b); ¢) we

have the following :

(1) The zenith angle satisfies 0., (a,b) < Uy(a, b; c);
(2) The length of the sector-arc satisfies sl (a,b) < Uy(a, b; sy, (Cx(a;c);c);
(3) The length of the harp-arc satisfies b—a < b— a.

Moreover, if an equality holds in one of the above inequalities, then we have the fol-
lowing :
Oay , Oa,
1) W(t, s) is parallel to Ja—(t, s) fora <t <b, 0<s</L/(t);
s
2) Riem(%(t, s), %(t,s)) =cfora<t<b 0<s</L/(t);
3) The body HB.(a,b) is totally geodesic and holomorphic.

PrOOF. We put Z;(s) = %(t, s), which is a Jacobi field along s — «,(,s). By

definition, we have

)= [[|(vp o e = [

o
Since the sectional curvature of the plane spanned by Z;(s) and ——(t, s) is not greater

0s

than ¢ for 0 < s < ¢,(¢), by Rauch’s comparison theorem on Jacobi fields, we have

1Z()]) 2 [|(V ams Z2)(0)

(va% Zt) (O)H dt.

}ﬁk(s; c). We take a trajectory-harp é&s associated with a

~

trajectory 4 for By on CM*(c) and set Z(s) = %(t, s). As we see || Z,(¢,(1))]]* =

1—62(t) in the proof of Theorem 4.2, and as 6, (t) < 0k (7k(£,(t); ¢); ¢) by the comparison
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theorem on string-cosines (Theorem 4.2), we have

0,(a,b) < HZt / Vl_ dt

_a5k

/ \/1—5k (70 (65 ()s¢); t_/ |1Z wm (O,

519 )a ’C>

We put u = 75,(£,(t); c). We then have

S

Therefore, as a = 73 (E,y(a); c),

9, (a,b) S/:Hdu_/j

because (i (u; c) = £,(1).

=Ty (&,(b); c), we obtain

(v@a ) Hdu = 95(a, b; c)

ds

Next we study the lengths of sector-arcs. By the comparison theorems on string-

cosines (Theorem 4.2), we have

126, = /1= 8,02 < /1= 8, (706,40 0)” = [ Zoes 00 (650) -

Oa
As the sectional curvature of the plane spanned by Z;(s) and a—y(t, s) is not greater
s

than ¢ for 0 < s < ¢,(t), by Rauch’s comparison theorem we find that the function s —
| Ze($)|| /| Zz, (e, (1)) (5) || is monotone increasing. Hence we have || Z;(s)||/|| Zr. e, t);e)(5) ]
<1 for 0 <s < {,(t). This means that ||Z;(s)| < HZT;@(EW(t);c)(S | for an arbitrary s

with 0 < s < £,(t). We therefore obtain by putting u = 74 (¢, (t); ¢) that

(a,0) /||Zt )| dt</ 1Zsie, 00 (6 (@) ||
o~ B o~
< / |2t @) |G < [ |2t @) du

b f ~ ~
:/ HZU(E@(&))” du = sl5(a,b) = 9 (a ,b;c)sk(fk(&;c);c).
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At last we study the lengths of harp-arcs. Since |5 = ||7]| = 1, we have

b—a—/ (o)) dt = /Hv (0] i =

B . Ox(u; ¢)
- L 7<“>H5y<@<g,§<u,c>>>dw &

We here study the case that one of the three equalities ¥, (a, b) = J4(a, b; ¢), b—a=

H—du

u)Hdu:lA)—&.

b—a and sl (a,b) = Vy(a, b; c)sy (¢k(a; c); ¢) holds. Our proof guarantees that this holds
if and only if 0, (¢) = 6k (75 (¢,(¢); ¢); ¢) holds for a <t < b. Thus, by Theorem 4.2, we

get the conclusion. 0

COROLLARY 4.1. Let M be a Hadamard Kahler manifold of sectional curvature
Riem™ < ¢ < 0. If |k| < +/|c|, then for an arbitrary trajectory half-line ~y for By, the

trajectory-harps o, associated with ~y satisfies

/ 2
4(805(251’0)’ t27 / C| i

Js sinh — k%t

for all ty >t > 0.
0
In particular, we have a limit lim; %(t, 0) € Uyo)M of initial vectors of harp-
s

strings.

PRrROOF. We take a trajectory-harp ., associated with . Since limy;_,o € (t;¢) =
00, we see 7y is unbounded.

We set Z,(s) = %(t, s), which is a Jacobi field along the geodesic s — (¢, s).
We consider another Jacobi field Zy(s) = A cosh (/][ 3)6(3)4—3 sinh(y/]c] s) Jo along
a geodesic 6 on CH?(c) satisfying Z,(0) = 0, where A, B € R constants. As Z,(0) = 0,
we see A = 0. Therefore the Jacobi field on CH?(c) is of the form
V. 20|

Vel

By Rauch’s comparison theorem on Jacobi field, if Riem™ < ¢ < 0, we have

sinh \/H s

Z(s) = sinh (/|c] s) Jo(s).

Vo > 20| |95, 20

if ||V oo, Z:(0)|= ||V 22 Z:(0)].
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For a trajectory-harp a.,, as y(t) = ay(t, ¢, (t)), we have

Oa,

(1) = Z(6(6)) +0, (1) 7 2 (£, 4,(1))-
Hence, we have [|Z;(¢,(t))|* = 1—4,(¢)*> < 1. Considering the case s = £,(t), we have

ViId 260 _ ] ]
Hv%Zt(O)”_ s1nh(\/_€ (t)) smh(\/ﬂ C(t)) = sinh(\/H O (t; c))

When |k| < \/H’ as Sinh(mé’“(tw)): \/|?|sinh(|wc/| |j|k_2 L t/2)

Sinh(\/ﬂ&(t; c)) =2 Sinh(—\/H gk(t; C))cosh<—\/m ék(t; C))
=2 sinh(—\/H gk@; C)> \/1 + sinh? (—\/H §k<t; C)>

_ 2+/lc|sinh(/]c] — k2 /2) \/1 |c| sinh? (/] c| k2 t/2)
Vel = k2 el =

We therefore obtain by noticing |c| — k% < |c| that

/ tz
t1

, we have

o ||
Va ”to‘dt / VMZ dt</ dt
% s |V e 2O #, sinh+/|c| lx(t; )

]

:/tl 2\/Hsinh(\/|c| — k2 t/2)\/ |c| sinh?® (v/|c| — k2 t/2)
Vel — k2 le| — k2

[ VI F )
! QSinh(\/mt/Q)\/l (|| = k?) sinh? \/m £/2)

dt

<

Vel = k2 gt
t 2sinh(y/|c| — k2 t/2)\/1 + sinh®(y/|c| — k2 t/2)

[ VEE
t1

sinh\/|c| — k2 t

for all to > ¢; > 0.
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Since we have

Joy Joy B t2
4(%(751»0)7 g(hﬂ))ﬁ Uy(th, 1) = /lt1

we get the estimate. Our estimate shows that when ¢ > log2/2(|c| — k%), we have

8047

v % s

t,O)Hdt,

sinh(y/]c] — k2 ¢)> exp(y/|c| — k*t) /4. Hence we can estimate Uy (t1,t,) from above

/ t2
t1

as

RNy
Viuy 5 day t,())Hdt </ i
Js o exp(y/[e] — k2 t)

4 4
< - :
exp(y/|c] — k2 t1)  exp(y/|c] — k%)
0 0
When ty > t; > log 2/2(|c| — k%), we get that limy, 4, o0 A( aa,y (t1,0), aa,y (t2,0)> 0.

oo
Since U, )M is compact, we find that this Caushy sequence {a—(t, 0)} converges.
S t>0

We hence get the conclusion. O

We here give an alternative estimate which is uniform with respect to k.

PROPOSITION 4.11. Let M be a Hadamard Kdhler manifold of sectional curvature
Riem™ < ¢ < 0. If |k| < +/|c|, then for an arbitrary trajectory half-line ~ for By, the

trajectory-harps o, associated with v satisfies

Oa
4(&@170)7 t27

/\/—t2

for all ty > t; > 0.

PRrROOF. We take a trajectory-harp «., associated with .

By the proof of Corollary 4.1, we have

(20200 [

Vou, 880‘”’ £,0) Hdt

1

to
/tl 2sinh(/]c| — k2 t/2) 1+ |c| sinh? (\/|c] — k2 t/2)
Vel — k2 |c| — k2

|c\ sinh®(y/]c] — k2 t/2) _ |¢| t2.

>
le| — k2 4

dt.

We here show
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c|smh2(\/ le| — k2 t/2) |c| 2

| — &2 4

We take a function F'(t) = . By differentiating F'(¢),

we have
‘| t

, o Je|
F'(t) = h k2t
(t sinh (/Je] = 126)

2/ |e| — k2
F"(t) = I (cosh( | — k2t) — 1).
As F"(0) = 0, F'(t) is monotone increasing. Since F'(0) = 0, F'(t) > 0 for ¢t > 0.

Hence, F'(t) is monotone increasing. As F'(0) = 1, we find F(t) > 0 for ¢t > 0.
le| — k%t
2

2
We take one more function G(t) = e sinh(
C —

)—t. By differenti-
ating G(t), we have
G'(t) = cosh(@
for t > 0. As G(0) =0, we find G(¢) > 0 for t > 0.
We therefore find

)—1 > 0,

Z(a_a(tho)a t27

s / / |c| t2 / Ve t2
We get the conclusion. O
We give an estimate in the case |k| = /|c|.

COROLLARY 4.2. Let M be a Hadamard Kahler manifold of sectional curvature
Riem™ < ¢ < 0. If |k| = /|c|, then for an arbitrary trajectory half-line ~ for By, the

trajectory-harps o, associated with v satisfies

O«
4($<t170)7 t27

vk

for all ty >ty > 0.

0
In particular, we have a limat lim;_, o ﬂ(t, 0) € UyoyM of initial vectors of harp-

Os

strings.

PRrROOF. We take a trajectory-harp a. associated with ~. Since limy o € (t;c) =

00, we see 7y is unbounded.
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%(t, s), which is a Jacobi field along the geodesic s — . (¢, s).

We set Zi(s) = py
We consider another Jacobi field Z(s) =A cosh(\/m 5)5(3)+B sinh(\/m s) Jo along
a geodesic & on CH?(c) satisfying Z,(0) = 0, where A, B € R constants. As Z,(0) = 0,
we see A = 0. Therefore the Jacobi field on CH?(c) is of the form
Z(s) = %smh(m s)J&(s).

By Rauch’s comparison theorem on Jacobi field, if Riem™ < ¢ < 0, we have

sinh \/_

1Z:() 2 (| Z:(5)||= |V a0s Z:(0)]| x —=

\/_
if ||V o, Z(0)[|= ||V 22 Z:(0)]).
For a trajectory-harp a.,, as y(t) = a,(t, ¢,(t)), we have

dav,y

5(0) = Z4(0(0) +6,0) 2 (1. 4,(0).
Hence, we have || Z,(¢,(t))||* =1 —6,(¢)* < 1.

Considering the case s = ¢,(t), we have

ViId |z Vel i
”VG%Zt H_ sinh \/_f (t ) sinh(\/HEV(t)) = sinh(\/ﬂék(t;c)).

When |k| = /|c], as sinh(ﬁgk(t;c >: \/Ht, we have

2

sinh(\/ﬂﬁk(t; c)) = gsmh<w>mh(\/ﬂ ék<t; C)>

= 251%(@) \/1 4 SinhQ(\/‘Hi}:(t;C))
_ VIt et
2

We therefore obtain
t2 Oy t2 |c|
V oa ”to‘dt / V ooy Z(0)||dt < / dt
\/t1 3'y s H 37 t H ” Slnh(\/_gk(t,C))
to
:/tl 4+| T / \/_t2

for all to > ¢; > 0.



84.5. Comparison theorems on zenith angles and lengths of sector-arcs 147

Since we have

Oauy day (" Jay
4( s (tlao)’ s (t270)>§19k(t17t2) _/t1 vao"v 83 t 0 Hdt

we get the estimate.

0 0
Since limy, 4,00 4( aaw (t1,0), aav (ts, 0)) 0 and U,y M is compact, we find that
0
this Caushy sequence { aa (¢, 0)} converges. We hence get the conclusion. U
s >0

% (t,0) the limit

We shall call the geodesic half-line o, of initial vector lim;_,
string of a trajectory-harp c,.

Next we study the case that sectional curvatures are bounded from below.

THEOREM 4.11. Let avy be a trajectory-harp associated with a trajectory v : [0,T] —
M for By on a Kdhler manifold M. Suppose that it is holomorphic at its arch and
that sectional curvatures of planes tangent to the harp-body HB.(T) are not smaller
than a constant c. Then, for arbitrary a,b with 0 < a < b < min{R,,C,}, by setting
a);c) and b= (€,(b); ¢) we have the following :

=7, (£

~

(1) The zenith angle satisfies V- (a,b) > O4(a, b; c);
(2) The length of the sector-arc satisfies sl(a,b) > Ux(a, b; ¢)sy, (Ce(a; ¢); ¢);
)

(3) The length of the harp-arc satisfies b—a > b—a.
Moreover, if an equality holds in one of the above inequalities, then we have the fol-
lowing :
Oa, ‘ Oa,
1) E@’S) is parallel to Ja—(t,s) fora <t <b, 0<s</l(t).
s
2) Riem(%(t, s), %(t, S)) =cfora<t<b 0<s<Ul,t).
s
3) The body HB.(a,b) is totally geodesic and is holomorphic.

PROOF. We put Z;(s) = ﬂ(t, s), which is a Jacobi field along s — a,(t,s). By

ot

(ool a= |

definition, we have

() = [ b

(Vo 2:) 0| .
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O
Since the sectional curvature of the plane spanned by Z;(s) and — (¢, s) is not smaller

0s

than ¢ for 0 < s < /,(t), by Rauch’s comparison theorem on Jacobi fields, we have

1 Z:(s)]| < H(Va{;ﬂZt)(O)Hsk(s;c). We take a trajectory-harp & associated with a

A~

trajectory 4 for By, on CM™(c) and set Zy(s) = %(t, s). As we see || Z,(€,(1))|* =
1—02(t) in the proof of Theorem 4.3, and as 0, (t) < 0 (7x(£,(); ¢); ¢) by the comparison

theorem on string-cosines (Theorem 4.3), we have

/ua /Jl—idt

/ \/1—5k Tk t);c); / H Tkg,y(t Eﬁ, ))H i@

Sk (g (t), ) C)
We put u = 75,(¢,(t); c). We then have

du _ O(*) <1.

it 5, w 000 =
Therefore, as a = Tk( ), ( ), we obtain

(vaa ) O)Hdu = 9:(a, b c),

oz [ H( GO,

because ((u; c) = ().
Next we study lengths of sector-arcs. By the comparison theorems on string-

cosines, we have

12 ) = /1= 6,82 = /1= 6, (706 (8 0):0)* = || Zryiesner (G ) |

0
As the sectional curvature of the plane spanned by Z;(s) and %(t, s) is not smaller
s

than ¢ for 0 < s < /,(t), by Rauch’s comparison theorem we find that ||Z.(s)| >

||Z.,-k(g,y(t i) (8 H for an arbitrary s with 0 < s </Z,(t). We therefore obtain

s@v(a,b):/ 12,6, (@) dt>/ 1Zonie0 Hdt>/ 1Z.(6,())]| du
b
= | 1 Z.(6:(@) ] du = st5(a,b) = V(@b )si. (6 (@ ); ),

where u = 7, (€,(t); c).
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At last we study lengths of harp-arcs. Since ||¥|| = ||7]| = 1, we have

b—a—/ ()| dt = /Hv ol Hdt

B . Ox(u; ¢)
- /& 7<“>”57<a<ek<u,c>>>du2 d

We here study the case that one of the three equalities 9., (a, b) = Jx(a, b c), sly(a,b)

u)HduzB—d.

= Y(a, b; c)sy, (ﬁk(&; c); c) and b—a = b—a holds. Our proof guarantees that this holds
if and only if 6,(t) = & (7e(£,(¢); ¢);¢) holds for @ < ¢ < b. Thus, as we see in the

proof of Theorem 4.3, we get the conclusion. 0






CHAPTER 5

Ideal boundary of a Hadamard Kahler manifold

In this chapter we study asymptotic behaviors of unbounded trajectories on a
Hadamard Kéahler manifold, a simply connected Kéhler manifold of non-positive cur-

vature.

1. Hadamard manifold

First we study the topology of a Riemannian manifold of non-positive curvature.

THEOREM 5.1 (Cartan-Hadamard). Let M be a complete Riemannian manifold
of non-positive curvature. At an arbitrary point p € M, the exponential map exp,, :
T,M — M s a covering map. Hence the universal covering space of M s diffeomor-

phic to R™, where m is the real dimension of M.

COROLLARY 5.1. A complete simply connected Riemannian manifold of non-positive

curvature is diffeomorphic to a Euclidean space.

A map ¢ : M — N between Riemannian manifolds is said to be a local isometry
if each point p € M has a neighborhood U such that the restriction |y : U — N is
an isometry onto an open subset ¢(U) of N.

In order to show those results, we need the following.

PROPOSITION b5.1. Let M and N be m-dimensional connected Riemannian mani-
folds. Suppose M is complete. If p: M — N 1is a local isometry, then it is a covering
map. That is, @ is a surjective continuous map such that for each ¢ € N there exists
an open neighborhood V' of q satisfying the following conditions:

1) o' (V) =Uyea U is a disjoint union of open sets in M;
151
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i) ¢|u, : Ux — V is an isometry for each \.

PROOF. First, we show ¢ is surjective. We take an arbitrary p € M and put p(p) =
g. Since N is complete, for each ¢ € N we have a geodesic p on N satisfying p(0) = ¢
and p(tp) = ¢’ with some ty. As ¢ is a local isometry between Riemannian manifolds
of same dimension, the differential map (dy), : T,, M — T, N is a linear isometry. we
put u = ((dgo)p)_l(p'(O)) and take a geodesic o on M with ¢(0) = u. Since ¢ is a local
isometry, we see poo is a geodesic on N. As (¢o00)'(0) = (dp),(5(0)) = p(0), we find
that p = ¢ o 0. Therefore we have ¢’ = p(tg) = ¢ (0 (ty)) and find that ¢ is surjective.

For an arbitrary ¢ € N, we take a small positive r satisfying r < 19(q). We put
©1(q) = {pr}rea. Since @ is a local isometry, every geodesic o on M with ¢(0) = p is
mapped to a geodesic ¢ oo on N with ¢ oo (0) = ¢. Thus we have ¢(B.(px)) C B,(q),

and have
(dSD)PA
—

B (OPA) BT(OQ>

S
(

Br pk) T> Br(Q)

equ © (dg0>p)\ = 90 © eprA : BT‘(OPA) — Br(q)

Here, as (dy),, : T,,M — T,N is a linear isometry, we see (dg),, : B,(0,,) = B.(0,)
is bijective. Since r < 10(g), the map exp, : B,(0,) — B,(q) is bijective, and exp,, :
B,(0,,) — B, (py) is surjective. Thus, for each ¢’ € B,(q), by taking u € B,(0,,) with
q' = exp, o (dp)p, (u), we find ¢ = p(exp,, (u)). This shows ¢|g,(,) : Br(pa) = Br(q)
is surjective. Also, if p’,p” € B, (py) satistly ¢(p’) = ¢(p”), then taking «’, u” € B,(0,,)
satisfying exp,, (u') = p’ and exp,, (u") = p”, as exp, o (dp),, (v') = exp, o (dp),, (u") =
@(p'), we see v’ = ", which shows p’ = p”. Thus ¢|p,(p,) : Br(px) = Br(q) is injective
Therefore we find that ¢|p,(p,) : Br(px) = Br(q) is an isometry.

As we see ¢(B,(px)) C B,(q), we have [y, B-(pr) C ¢ '(B:(g)). On the other
hand, for p' € ¢ '(B,(q)) we set ¢ = ¢(p') € B,(¢q) and take v € B,(0,) with
exp,(v) = ¢'. Then p(t) = exp,(1 — t)v is a geodesic from ¢’ to ¢q. If we set o(t) =
exp,, (t(d@;l(p(o))), then it is a geodesic satisfying o(0) = p’. Since ||p(0)|| = ||v]| < r

and we have exp, o (dy)y = poexp, : B,(0y) — B.(¢') because the above argument
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holds for arbitrary g, we see ¢(o(1)) = p(1) = ¢. This means that (1) = p,, with
some A\g € A. As d(o(1),p') < r, we find p' € B,(py,). Thus we have ¢ (B, (q)) C
Usea Br(p2), and get Uyeq Br(pa) = ¢~ (Br(0)).

We finally show that B,.(px) N B.(px) = 0 if A\ # XN. Suppose there exists p’ €
B,(px) N B,(px). We then have u; € B,(0,,) and uy € B,(0,,,) satisfying exp,, (u1) =
P =exp,, (uz). Considering geodesic segments 01 = exp,, (tu;) joining py and p’ and
O3 = exp,,,, (tug) joining py and p/, we see poo; and pooy are geodesic segments joining
q and ¢(p’) which are contained in B, (g). Since r < 1y(q), we have poo; = poos. As
exp,, (u1) = exp,,, (u2), we obtain o1 = 09, which means that py = py. Therefore we

find ¢ is a covering map. O

PrROOF OF THEOREM 5.1. By Corollary 5.1, we have no conjugate points on M.
Therefore, exp, : T,M — M is regular, that is, for an arbitrary u € T,,M, its differen-
tial (dexp,,)y : Tu(TpM) — Texp, ()M is surjective (hence is bijective) linear map. We

define (, )g by use of the Riemannian metric (, ) on M as

(€ mr = ((dexp,)u(€), (dexp,)u(n))-
Thus, we see exp,, is a local isometry with respect to (, )g and (, ).
We take an arbitrary w € T,M and consider a line ¢, on T,M emanating from
0, which is given by /(,(t) = tu. As o(t) = exp,(lu(t)) is a geodesic, £,(t) =
(expp)_l(a(t)), and (exp,)
As /, is defined on R and w is arbitrary, we find that (7,M,( , )r) is complete by

"is a local isometry, we see £, is a geodesic on (T,M, (, )r)-

Theorem 1.1(Hopf-Renow). Thus, Proposition 5.1 guarantees that exp, is a covering

map. 0

Following to Cartan-Hadamard theorem (Theorem 5.1) we say a simply connected
Riemannian manifold of non-positive curvature to be a Hadamard manifold. We here

study some properties on geodesics on a Hadamard manifold.

PROPOSITION 5.2. Let M be a complete Riemannian manifold of non-positive cur-

vature. We take an arbitrary point p € M
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(1) For arbitraryv € T,M and { € T,(T,M), we have ||(dexp,).(§)|| > |||, where
we induce the standard Euclidean metric on T,(T,M).

(2) For an arbitrary smooth curve u : [a,b] — T,M in T,M, we have length(u) <
length(exp, o i). In particular, if M is simply connected, then we have

d(exp,(v), exp,(w)) > [[o — w].

PROOF. (1) Let (—e€,€) 3 s — wv(s) € T,M be a smooth curve with v(0) = v
and v/(0) = £. We take a variation a(t, s) = exp,(tv(s)) of geodesics and set Y (t) =
0
—a(t, 0), which is a Jacobi field along a geodesic ¢ — exp,(tv). We then have

0s
Oa

Y(t) = 5-(8,0) = (dexp,)uu(s) (t0'(5))|s=0 = t(dexp, )1 (€),

hence obtain Y (1) = (dexp,),(§). Since Riem" < 0, we know by Rauch’s compar-
ison theorem that ||Y(t)[|/t is monotone increasing. As we have { = (dexp,)o(§) =

limy o(1/t)Y (), we get

1€ <MY (W = [[(dexp,)o(E]]-

length(u) = /ab ds < /ab (dexpp)“(s)<2—g(s)> H ds
(i (expp o u)) (s) H ds = length(exp, o ).

b
:/a ds

Since exp, is bijective, there exsits a curve y : [0,1] — T, M such that exp, oy is the

(2) By the first assertion we have

dp
d_s(s)

unique minimal geodesic segment from exp,(v) to exp,(w). Thus, we have
d(exp,(v), exp,(w)) = length(exp, o p) > length(u) > |lv — wl|

because ||[v — w|| is the Euclidean distance between v and w. O

COROLLARY 5.2. Let p,q,r € M are distinct points of a Hadamard manifold M.
We denote by 0,q, 0pr, 04 the minimal geodesics of unit speed from p to q, from p tor
and from q to r, respectively. We put a = length(o,,), b = length(c,,), ¢ = length(o,,)
and C' = £(0,(0),0,,(0)), A= Z(0}.(b),0%.(c)), B= Z(—0},(a),00,.(0)). Then we

have
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(1) ¢* > a®> +b* — 2abcos C (Low of cosines);
(2) ¢ <bcosA+acosB (Double low of cosines);
(3) A+ B+C <.

PRrOOF. (1) We take v,w € T,M so that exp,(v) = ¢ and exp,(w) = r. By the
second assertion of Proposition 5.2, we have
¢ > Jlv —wl®
= [[ol* + [lwl* = 2(v, w)
= [[ol* + llw]|* = 2||v]l[Jw]| cos C
=a® +b* — 2abcos C.

(2) By using the law of cosines, we have
a’?> b+ —2bccos A and b? > a? + ¢ — 2accos B.

Adding both sides of these inequalities, we get the second assertion.

(3) By triangle inequality we have ¢ < a + b, where the equality holds in the case that
r is an intermediate point on o0,,. Thus, if ¢ = a +b we have A+ B+ C = 7. Similarly
we get the same equality when either b = ¢+ a or a = b+ ¢ holds. We next study the
case that these equalities do not hold. In this case we have a triangle on a Fuclidean
plane R? whose edges have lengths a, b, c. We denote its angles by A’, B’ and C’. For
this triangle we have ¢ = a? + b? — 2abcos C' and obtain C' < C’. Similarly we have

A< A and B< B’ Thuswefind A+ B+C <A+ B +C"=n. O

PROPOSITION 5.3. For two geodesics 1,09 on a Hadamard manifold M, the func-
tion t d(Ul(t),UQ(t)) is a convex function. When M is strictly negative, that is

Riem™ < ¢ < 0, then this function is strictly convex.

PROOF. First we study this function f(t) = d(o1(t),02(t)) at a point ¢, satisfying
o1(to) # o2(ty). We then have 1 (t) # oo(t) for tg — e < t <ty + € with some positive

e. We take a geodesic segment ; : [0, 1] — M satisfying v(0) = o1(t) and (1) = o»(t)
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for to — e <t < to+ €. Since length(y:) = || (s)]|, by putting a(t, s) = 1(s), we have

7o) = prenginin) = 5 [ ot as
= | o (T ) 9 5.0} @

- ﬁ/o <(v85 %(j)(t s), g(;‘(t, s)> ds.

Therefore we have

d ! Ja Oa Ld OJa Oa
1" 1(4)\2 \V4 — Voa —, — .
PO f@) + 1) dt /0 < 5 ot’ 8s> ds /0 dt< 5 ot’ 85> ds

Here, we have

WG 5 = (Vavag 5+ [Va gl
(a2 () ) [
- %<V%‘Zaa_?’g_j> - <Vas%t szﬁ—D

(G35 a Vel

0
We put Y, = 8_?(t’ s), which is a Jacobi field along the geodesic v;, and take its
component Y5 =Y; — f(t)7%(Y;, )7, vertical to ;. We then have

1
L _
Ve V™ =Vau¥ — W<V33Yt,%>v£,

<VaaY#,%> = aa (Y1) =0,
(v (v 90
- (Vyva S )+ (R 5) 5 5

hence obtain
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As 7(s) = a(t, 5) is a geodesic for each ¢, we obtain
PO + 0
(o) ) (e )00 o)
RS UES ST
= [P+ o (Vg¥ionl) — (ROLYY i)

because t — «a(t,0) and t — «(t,1) are also geodesics. As <V%QY;,%> is constant

along 7;, we have

1 ' "2 1 1\ 2 Iy
f(t)Q/O <vg—jn7%> ds = f(t)2<v%n’%> = f(t)".

Therefore, as Riem™ < 0, we obtain

0 p— / l{llvaaY#H? — (RO, Y)Y,y | ds > 0.
f(t) Jo os
Here, when Riem™ < ¢ < 0 we have f”(t) > 0.
Next we study at a point ty with oy (ty) = 0a(ty). If 01(t) = 02(t) for to—e < t < tg
or for tg <t < ty+ €, we see 07 = g9. Thus we are enough to consider the case that
o1(t) # oo(t) for tg — e <t < tg+e¢€, t #to. The above argument show that f”(¢) >0

fortg —e <t <tg+e, t#ty. Hence f takes a minimal value 0 at ¢y in the interval

(t — €0, t+ €p). Continuity of f” shows that f”(¢) > 0. We hence get the assertion. [

As a Hadamard manifold M is homeomorphic to a Euclidean space by Corollary 5.1,
we consider its compactification. We say two geodesic half-lines oy, a9 : [0, 00) — M of
unit speed on a Hadamard manifold M to be asymptotic to each other if the distance
function ¢t — d(oy(t),02(t)) is a bounded function. We denote o, ~ oy in this case.
This asymptotic relation ~ on the family G(N) of all geodesic half-lines on M is an

equivalence relation. This is because we have

i) d(o(t),o(t)) =0;
ii) d(o1(t),02(t)) = d(oa(t), 01 (1));
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iii) if ¢t — d(o1(t),02(t)) and t — d(o9(t),03(t)) are bounded functions, then the
triangle inequality d(oy(t), 03(t)) < d(o1(t), 02(t)) + d(oa(t), 03(t)) shows that

t — d(o1(t),o3(t)) is also a bounded function.

For a unit tangent vector u € UM we denote by o, the geodesic of initial vector
7(0) = u. For distinct two unit tangent vectors u,v € T,M at an arbitrary point p on a
Hadamard manifold M, by Corollary 5.2 we have d(o,(t), 0, (t)) > 2t*—2t? cos Z(u, v),
hence find that o, and o, are not asymptotic to each other. We denote by dM or by
M (o0) the set G/~ of equivalence classes of geodesic half-lines on M. We call 9M the
ideal boundary of M. By the above argument we have an injection dexp,, : U,M — OM
defined by u +— o,(0), for arbitrary p € M.

PROPOSITION 5.4. The map dexp,, : U,M — OM s a bijection for arbitraryp € M.

PROOF. We are enough to show that it is surjective. For arbitrary z € OM we take
a geodesic half-line o of unit speed with o(co) = z. For each positive ¢, we denote by p;
the geodesic half-line of unit speed with p(0) = p and p(¢;) = o(t). By Proposition 5.3
we find that d(p(s),o(s)) < d(p,o(0)) for 0 < s < ¢;. We set uy = p(0). First we take
a sequence {t;}32, so that {¢; }22, is monotone increasing. Taking its subsequence we
get a convergent sequece {utji}g’il in UpM. We set uq, = lim; ;o0 uy; . Since o is not

bounded, we see lim;_,, Etji = 00. As we have

d(auoo(s),a(s)) = lim d(ptji (5),0(5)) < d(p,a(O))

1—00

for 0 < s < lim; o ¢, = 00, we find that o, is asymtotic to o. Thus we obtain that

Ji
dexp,, : U,M — OM is surjective. OJ

For a geodesic half-line o, we denote by o(00) the asymptotic class containing o.
We put M = M UOM. We here introduce a topology on M so that its restriction
onto M coincides with the original topology of M. We take every open set in M as an
open set in M. In order to define an open set containing elements of M, we define

a fundamental system B of open neighborhoods. For an arbitrary point p € M and
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arbitrary positive €, R, we take u € U,M so that ¢,(c0) = 2z and set a set by
O.(p,e, R) = {exp,(tv),0,(c0) | v € UM, Z(v,u) <€, t > R}

and define B = {Oz(p, 6, R) | 2€0M, pe M ande>0,R > O}. Since exp, is a
diffeomerphism, we see O(p, €, R) N M is an open subset of M. We shall show that B,
is a basis B, of open neighborhoods around z.

To do this we need the following lemmas. Given distinct three points p, q1, g2 € M,
we put Z,(q1, ¢2) = Z£(6pg, (0), 6, (0)), where o, is the geodesic satisfying 0,4, (0) = p

and o, (rj) = g; with some positive 7;.

LEMMA 5.1. Let 0 : [0,00) — M be a geodesic half-line. We put o(oc0) = z. If
t1 < iy, €1 2 € and €5 < 7'('/2, then OZ(O'(tQ),GQ,R) C OZ(O'(tl),El,R).

PRrROOF. We may suppose t; < to. If p € O, (U(tQ), €2, R), we have Z,1,)(p, 2) < €
and Zy,)(0(t1),p) > ™ — €. Hence we see
Lo(t) (P, 2) = Loy (P, 0(t2)) S 7 — (T —€2) = Zp(o(tr), o(t2)) <2 < &

by Corollary 5.2 (3). By Corollary 5.2 (1), we have
d(p,o(t1))* = d(p,o(t2))* + (t2 — t1)* = 2(t2 — t1)d(p, 0(t2)) cos L) (o (t1), )
> d(p,o(ty))? > R?,
because Zq,) (0 (t1),p) > /2, we find p € O.(o(t1), €1, R). O

LEMMA 5.2. Given O, (p, €, R) and g € M, w € O, (p, €, R) (OM, we denote by p
be the geodesic half-line of unit speed with p(0) = q and p(co) = w. Then, there are
positive T and € satisfying O, (p(t), €, O) C O, (p, €, R).

PROOF. Let o be a geodesic half-line of unit speed satisfying (0) = p and o(c0) =
w. Since o and p are asymptotic to each other, we have
2t cos £, (o (t), p(t)) > 2t* — d(a(t), p(t))?

by law of cosines (Corollary 5.2 (1)), and limy_,o, Z,(c(t), p(t)) = 0. Similarly, we have
2t{t + d(p, q)} cos L) (p, q) = 2td(p, p(t)) cos Ly (p: )

> t* +d(p,p(t))* — d(p,q)* > t* + (t — d(p,q))* — d(p, q)°,
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hence limy_,o Z,0)(p, q) = 0.

We set € = min{(e — Z,(z,w))/3,7/4}. We take a sufficiently large positive T
so that Z,(o(t),p(t)) < €, Z,w(p,q) < € and d(p,p(t)) > R for t > T. We take
a point r € Ow(p(t),e/,()). Since Zyw(p,w) = m — Zywy(p,q) > m — €, we have
Loy, ) > Loy (p,w) — Lpwy(w,x) > m — 2¢/. Applying Corollary 5.2 (3), we find
Zp(p(t), x)+ 2Ly (p, x) < m1—2Ly(p(t),p) < m, hence obtain Z,(p(t),z) < 2¢'. Therefore
we have

Ly, 2) < Zyfuw, p(8)) + Zyp(t),) = Zy(0(8),p() + Zy(p(8), 2)
<3 <e— Z,(z,w)
and find that Z,(z,2) < Z,(z,w) + Z,(
d(p,x)* > d(p, p(t))* + d(p(t), z)* — 2d(p, p(t)) x d(p(t),x) cos £ pr) (p, 7)
> d(p, p(t))* > R?,
because Z,u(p,x) > m/2. We hence find z € O, (p, €, R). O

w,x) < €. By the law of cosines, we have

We are now in the position to show that the family B is a fundamental sys-
tem of open neighborhoods. We take O, (p, e,R), O, (p’,e’, R’), and choose a point
we O, (p, €, R) NO., (p’, e, R’) NoM if O, (p, €, R) NO., (p’, €, R’) is not an empty set.
We denote by p a geodesic half-line of unit speed satisfying p(0) = p’ and p(c0) = w.
We set €' = (¢ — Zy(2',w))/2. By Lemma 5.2, there exist positive ¢y, 0 satisfy-
ing & < min{e, €’} and Ow(p(to),é, O) C Oz(p, 0, R). On the other hand, we have
Ou(p',¢",R) C O.(p,€,R). As Ou(p(to),8,R') C Oy(p,€’, R') by Lemma 5.1, we
see Oy, (p(to),5, R’) C O, (p,e, R) N O, (p',e’,R’). This guarantees that B is a funda-
mental system of open neighborhoods.

We call the topology on M determined by B the cone topology.

We show that M is a compactification of M.

PROPOSITION 5.5. At an arbitrary point p of a Hadamard manifold M, the map
f: Bi(0,) ={veT,M||v|| <1} = M defined by

[[v]

expp<mv>, when ||v|| < 1,

o(00), when ||v]| =1

flv) =
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is a homeomorphism. In particular, M is compact.

PROOF. Since [0, ) > s — s/(1—s) € [0,00) is a homeomorphism, we find that

By(0,) v — expp( ‘ ) € M is a homeomorphism. Thus we are enough to study
at the boundary S;(0,) = 0B4(0,) = U,M.

As 0,(00) # 0,(00) for v,w € U,M with v # w, we find that f is injective. On the
other hand, we take an arbitrary z € M. There is a geodesic half-line o : [0, 00) — M
of unit speed satisfying o(oco) = z. We take a geodesic o,, of unit speed joining p and
o(n), that is, 0,(0) = p and 0,(s,) = o(n) with some s,. By the triangle inequality,
we have |s, —n| = |d(p,o(n)) — d(a(n),c(0))] < d(p,o(0)). In particular, we have
lim,, o 8, = 00. Since the function t — d(o,(t),o(t)) is convex by Proposition 5.3,
for 0 < s < s,, we have

A(0a(5), 0(5)) < max{d(0,(0),7(0)), d(on(s,), ()}
= max{d(p,c(0)), d(c,(sn),0(sn))}.
As we have 0,(s,) = o(n), we see d(0,(8,),0(8,)) = |sn —n| < d(p,c(0)), hence find
d(on(s),0(s)) < d(p,o(0)). As {6,(0)}, C U,M, we have a convergent subsequence

{00, (0)}52,. We take a geodesic v with §(0) = lim; o &,,,(0). Then we have

d(7(s),0(s)) = lim d(ay,(s),0(s)) < d(p, (0))

j—ro0
for all s > 0. Thus, we find that there is a bijection of U,M to OM. Hence f is
bijective.
We take an arbitrary v € U,M. For positive € and r with 0 < r < 1, the set
Ule {vEBl ) | Z(v,u) <€, o] >r}
={veT,M | L(v,u) <e |[v] >r}()Bi(0,)

is an open set in By(0,). Clearly we have f(U(e,r)) = O(p,e,r/(1=7)). As B,(0,) and
Bl(() ) are homeomorphic to each other for every ¢ € M, we see f~! (O(q, €, R)) is an

open set in By (0,). Since {U(e,7) | € >0, 0 < r < 1} is a basis of open neighborhood

of u, we see f is a homeomorphism. O
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We now show the relationship between exponential maps of a Hadamard manifold

and its ideal boundary.

THEOREM b5.2. Let M be a Hadamard manifold. Given arbitrary points p € M

and z € OM, we have a unique geodesic half-line o satisfying o(0) = p and o(c0) = z.

ProOOF. First we show the uniqueness. If we have two geodesic half-lines oy, 09 :
[0, 00) — M satistying 01(0) = 02(0) = p and o1(00) = 02(c0) = 2z, then by the law of

cosine (Corollary 5.2) we have
d(01(t), 02(t))” > 262{1 — cos(64(0), 62(0)) }.

Hence d(o1(t), 02(t)) is bounded if and only if 61(0) = 6(0), which means o = o5,

Next we show the existence. We take a geodesic half-line v whose asymptotic class
is z (i.e. 7(c0) = z). Let oy denotes the geodesic of unit speed joining p and ~(t). That
is, if we set d; = d(p,(t)), the geodesic oy satisfies 0,(0) = p and oy(d;) = (). By
Proposition 5.3 we have

- S

d(v(s), n(des/t)) < ! d(7(0),a:,(0)) + ;d(’Y(t)aUt(dt))
t—s

= — d(v(0),p) < d(+(0),p)

for 0 < s <t. Since {64(0)}; C U,M and U,M is compact, we can choose a convergent
sequence {0, (0)}52, with monotone increasing sequence {t;}22, satisfying lim; ., t; =
oo. We put lim; o, 64,(0) = v € U,M and take a geodesic half-line o satisfying

0(0) = v. By the triangle inequality we have

hence find lim;_,., d;/t = 1. We hence have

d(7(3)=0(5>) = lim d(V(S)aUtj(dth/tj)) < d(v(O).p)

Jj—00

for s > 0. Thus we see o(00) = y(00) = z. This completes the proof. O
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By this theorem we find that for an arbitrary point p on a Hadamard manifold
exp, : T,M — M induces a bijective map dexp,, : U,M — OM defined by u + o,(00),

where o, is the geodesic with ,,(0) = u.
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2. Asymptotic behaviors of trajectories on a Hadamard manifold

Let M be a Hadamard Kahler manifold whose sectional curvatures are bounded
from above as Riem™ < ¢ with some negative constant c¢. We take a Kéhler magnetic
field By, satisfying k% < |c|. In this section, we show that every trajectory half-line is

unbounded and converges to a point in the ideal boundary of M.

THEOREM 5.3. Let M be a Hadamard Kdhler manifold whose sectional curvatures
satisfy Riem™ < ¢ < 0 with some constant ¢, and By, be a Kihler magnetic field whose
strength satisfies |k| < \/|c|. Then each trajectory half-line ~ : [0,00) — M for By, is

unbounded and limy_,, y(t) exists in OM.

Since a Hadamard manifold M is diffeomorphic to R™ through each exponential
map, M has no conjugate points. Therefore, for each trajectory half-line « for By which
is not closed and does not have v(0) as self-intersection point, we have a trajectory-
harp ., associated with v by Lemma 4.1. Under the assumption of Theorem 5.3, by

Theorem 4.2 its string-length and string-cosine satisfy
0,(t) > Cp(t;c) and  6,(t) > 6 (e(€,(t);¢);¢)  for t > 0.

As
V|| sinh e — k%t

Vel — k? sinh(\/ﬂ&c(t; c))7

we see di(t;¢) > 0. Hence d,(t) > 0, and we find that ¢, is a monotone increasing

(Sk (t; C) =

function. Thus, we see that 7(0) is not a self-intersection points of .
Since
(|c| — k%) Cosh(\/HEk(t; ¢)) = || coshy/|c] — k> t — k2,
we see limy_, o 0 (t; ¢) = co. Hence we find that £,(t) is not a bounded function. This
means that v is not bounded.
We are now in the position to show Theorem 5.3. We denote by z, € M the point
at infinity of the limit string o, of the trajectory-harp c.,. For arbitrary positive €, R, if

we take sufficiently large 7" we have £, (t) > R and 4(%(75, 0), d7(0)> <efort>T.
s
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This means that v(t) € O, (7(0),€, R) for ¢t > T. Thus, we find lim,_, () = 2, and
get the conclusion of Theorem 5.3.

We here study more on the behavior of trajectories. Given a trajectory or a trajec-
tory half-line ~ for By, we denote by U(y,r) the tube {p € M | d(p,~) <r} of radius
r around . Here, we set d(p,v) = inf{d(p, ¢)|q € Image(y)}. Similarly, we denote by
U(o,,r) the tube {p € M | d(p,0,) < r} of radius r around the limit-string ., of the
trajectory-harp associated with . For a negative ¢ and a constant k with |k| < /[c],
we set p(k;c) = |k|m/(2v/]c|(|c|] — k?)).

THEOREM b5.4. Let M be a Hadamard Kdhler manifold whose sectional curvatures
satisfy Riem™ < ¢ < 0 and k be a real number with |k| < \/H For each trajectory
half-line v for By, the harp-body HB. of the trajectory-harp o, associated with vy is
contained in the tube U(y7 p(k; c)) around vy, and is contained in the tube U(Uﬂ,, p(k; c))

around the limit-string o

Proor. We take arbitrary a,b with a < . By Theorem 4.10 the length of the

sector-arc of the harp-sector ai’b satisfies
sly(a,b) < Uy (Tk(év(a); ¢), Tk (£ (D); ); C)5k (fv(a); C)

= sinh \/H bHla) 4(90‘& (Tk(€w<a>§ c), O)v %(Tk@v(b); ), O)>’

Vel Js Os
~ s . Oa (%wy
where 4 is a trajectory for By, on CH"(c). Since é(a—( u,0), O_(Tk<£7(a)7 c), 0)) is
s
monotone increasing for u > 7,(¢,(a); c), we have
Oas, Oas
£( 52 (1l (@):0).0) S (7l (8): ), 0))
. 80(:/ 6@ .
< uh_glo Z(E(“’? 0)7 Os (Tk(g (a’)7 C), 0))
= lim {cos™" 0y (u; ) — cos™" 8 (e (44 (a); 0); ) }.

U—00

/el = /{QCOSh<\/’ | — k2 u/2)
\/|c| cosh?(y/Je| — k2 u/2) —
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we have

(904,Y

4(880; (7(60); €),0) S (7e(t5 (1): ),0))
- lim { VI = Beohl(yld - B /) _ o 5k(rk<ev<a>;c>;c>}
uoe Vel cosh®(v/Iel = &2 u/2) — 2
<l { VI K COSh(W W) s 5k(m<ev<a>;c>;c>}
uoo /el cosh?(v/Tel — 2 u/2)
—1 Ve — &2
Vel

As 0 < (m/2)sinf for 0 < 0 < w/2, we have

— cos ™" 8 ((€5 (a); ¢); €).

= COS

4(%@(@(@) o), o)%(mwb), ¢) o))
Zsm cos ! o — #* —cos Lo, (m(l,(a);c); ¢ }
< Jinf o VT (00

B mlk|\/Je] — K2
2/1d \/ le| cosh? (—WT,@(@(@); ¢) ) e

« {cosh(—wrk(éw(a); C))_ sinh( |c| — szk(gy(a); c) )}

2

Since

A mmW ) i <ﬁf>

“in h2 le| — kW )

cosh

\/We \/
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we have

4(680: (e (4, (a); c), O)%(Tk(&(b); c), 0))

|kl /el = 2
2|¢| cosh(@)

X {\/’c| E‘ 2 + sinh? (M) - sinh(@)}
k| y/Tel — B2 X

2|c] Cosh {\/|C| — —|—Slnh2<\/ﬂ€ ) +smh<\/—£ )}

|k|m
|e| —k2 sinh \/|c| £, (a)
Then we have
ot (a,b) < sinh v/[c| y(a)  |k|m 1 k|

|| 2/ |e| — k2 smh\/_f 2\/H\/|c|—k‘2'

Hence we find
d(an(t,6,(a)),7) < sty(at) < p(kse) and  d(ay(t, 4y (a)),0y) < pl(k;c),
for t > a. Since a is a arbitrary, we get the conclusion. 0
For a trajectory-harp ., we denote by ¢ the geodesic half-line s — o, (t, s).
REMARK 5.1. Under the same conditions as in Theorem 5.4, its proof shows that

d(o% ()<
d(o! (s),ay(s))g p(k; c) for t > 0and 0 <s < {,(%).

Y

) for 0 < t; < ty and 0 < s < (,(t;). This guarantees
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3. Magnetic exponential maps on Hadamard manifolds

In this section we generalize Hopf-Renow theorem (Theorem 1.1) and Cartan-
Hadamard theorem (Theorem 5.1) to trajectories for Kéhler magnetic fields following
to [5]. For arbitrary distinct points p, ¢ on a connected complete Riemannian manifold
there is a minimizing geodesic joining them (Hopf-Renow Theorem). We consider
this property for trajectories for Kahler magnetic fields. Since trajectories for non-
trivial Kahler magnetic fields on a complex Euclidean space are circles and are closed,
we see that this property can not be generalized to general Kahler manifolds. As
we showed in §5.2 that on a Hadamard Kéhler manifold whose sectional curvatures
satisfy Riem™ < ¢ < 0 trajectories for By, with |k| < \/|c| are unbounded, we study

the property of Hopf-Renow type under such assumptions.

THEOREM 5.5 ([5]). Let By be a Kdhler magnetic field on a connected complete
Kiéhler manifold M whose sectional curvatures satisfy Riem™ < ¢ < 0. If [k| < +/|c],
for arbitrary distinct points p,q € M, there is a minimizing trajectory for By which
goes from p to q. In particular, when M is simply connected, there exists a unique

tragectory for By of p to q.

THEOREM 5.6 ([5]). Let By be a Kdhler magnetic field on a connected complete
Kihler manifold M whose sectional curvatures satisfy Riem™ < ¢ < 0. If [k| < /|c],
every magnetic exponential map Brexp,, : T,M — M is a covering map. In particular,

when M s simply connected, every magnetic exponential map s a diffeomorphism.

PROOF OF THEOREM 5.5 (EXISTENCE). First we consider the case that M is a
Hadamard Kahler manifold. Given a point p € M we shall show that the magnetic
exponential map Brexp, : T,M — M is surjective. To show this, we are enough
to show that the image of Brexp, is an open set and a closed set, because M is a
connected manifold and as exp,(0,) = p the image is not an empty set. Since we
do not have magnetic conjugate points for By with |k| < \/H , by implicit function

theorem, we see that the image of Brexp, is an open set. On the other hand, when
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a sequence of points {g;}22, (C ]B%kexpp(R)) converges to a point ¢ € M (p # p),
we denote as ¢; = Brexp,(r;v;) with unit tangent vectors v; € U,M and r; > 0.
Since lim; o d(p, ¢;) = d(p,q), we have a positive ¢ with d(p,q;) < ¢ for all j. For
each trajectory-segment v, for By given by 7,, = Brexp,(tv;) for 0 <t < rj, we
consider its trajectory-harp. Since M is a Hadamard manifold, its string at g; is the
unique geodesic of unit speed joining p and g;, hence we have E%j (r;) = d(p,q;). By
Theorem 4.2 we have (,, (r;) = {(rj; ) and £, is monotone increasing. We hence
have r; < 74,(¢; ¢) for all j, where 74(-;¢) is the inverse function of ¢4(-;¢). We hence
find that {r;}32, is bounded from above. We note r; > d(p,q;) > 0. Thus {r;}32, is
a bounded sequence.

Since U,M is compact, there is a subsequence {j;}7°, such that both {v;, }7°,
and {r;, }7°, converge. We set vy = limy_, vj, and 7o = limy_,o 7;,. We then have
q = Brexp,(rovo), We hence find that the image of Brexp,, is closed. Thus the connect-
edness of M guarantees that Bpexp, is surjective. Therefore, for an arbitrary point
q € M, we have a trajectory-segment for B, from p to q.

Given distinct points p, ¢ € M, when we have finite trajectory segments for B, from
p to q, we can take the trajectory-segment of minimizing length. When we have infinite
trajectory segments for B from p to ¢, we take a sequence {’yj ‘;‘;1 of such trajectory-
segments such that lim;_,, length(~y;) shows the infimum of lengths of such trajectory-
segments. We set 4,(0) = u; and define r; by 7;(r;) = ¢. Since r; = length(y;) > 0, we
see that {r;}22, is bounded (at least r; < 7, (d(p, q);¢)). Thus we have a subsequence
{jk 72, such that both {u;, }32, and {rj, }?2, converge. Putting uy = limj_, u;, and
ro = limg_,o 7j,, We have ¢ = Brexp,(roup). As rj = length(v;,), we find that the
trajectory-segment t — Brexp, (tug) (0 <t < rg) is a minimal trajectory-segment from
p to q.

Next we study the case that M is not simply connected. We take its universal
covering w : M — M , which is a Hadamard Kahler manifold. We note that for a

trajectory « for By on M, every smooth curve 74 satisfying v(¢) = w o 4, which is
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called a covering trajectory, is a trajectory for By on M , because of the uniqueness of
solutions for differential equations.

Given distinct points p,q € M we choose a point py € M with w(po) = p. For
each ¢, € w !(q), we have a minimal trajectory-segment 7, from py to Gy. We show
that £ = {length(v,) | A\} takes the minimum value. Suppose we have a sequence
7y, satisfying lim; . length(yy,) = inf £. As above, we set 4y,(0) = w; and r; =
length(ﬂy,\j). We choose a convergent subsequence and put wy = limj_, w;, and

ro = limy_o 75, Since w(qdy) = ¢, we have
w(EkexpﬁO (rowo)) = w(jli_}rglo Brexp;, (Tjkwjk))

= lim @ (Brexpg, (rj,wj.)) = lim w(gy,, ) =g.

This shows that the trajectory segment ¥y given by t +— Brexp; (wo) (0 <t < 1q)
is a minimal trajectory-segment from py to some ¢,. Therefore w o 7y is a minimal

trajectory-segment from p to q. 0

PrROOF OF THEOREM 5.6. We are enough to consider the case that M is a Hadam
-ard Kahler manifold. Since there are no magnetic conjugate points for B, by Corol-

. T(T,M) —

lary 3.1, we see Brexp, : T,M — M is regular, that is, (dIB%kexpp)
TBkepr(U)M is a linear isomorphism at each v € T,M. We define an inner product

(, yronT,(T,M) by

(&mr = <(d]Bkepr)v(£)7 (dBkepr)v>’

and a linear map Jg : by Jr(§) = ((dBkexpp)v)fl(J(dIB%kexpp)v(f)). Then Brexp, is
a local holomorphic isometry with respect to (( , g, Jg) and ((, ),J). We denote
by V¥ the Riemannian connection on T,M with respect to ( , )r. As Brexp, is a
local isometry, for arbitrary vector fields X ,57 € X(IT,M) and arbitrary v € T,M,

considering an open neighborhood U if v and a neighborhood U of Byexp,(v) we have

(VEV) () = ((dBrexp,),) ((VxY) (Brexp, (v) ).
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where XY € X(U) is defined by
X(q) = (dIB%kepr)w ()/(\'(wq)) and Y(q) = (d]B%kepr)wq (?(wq))

with w, := (IB%kexpp| ) (q). Since we have

JrY (v) = ((dBrexp,),) (J((d]BkeXPp) (?( ))>>
= ((@Brexp,),) (77 Brex, ),

we obtain

(V;(JRY))(U) = (dBkepr)v>l <(VX(JY)) (Bkexpp(v))>

< 1
o

(dBrexp,),) (I (VxY) (Beexp, (v) )

= JR(<(d]B%kepr)v> B (J(VXY) (Bkepr(U))>)

= JR<(V§?) (U))7
hence find that 7,M is a Kéhler manifold with respect to ((, ), Jr).
We take an arbitrary u € T, M and consider a line 4, on 7,M from 0, defined by
Au(t) = tu. If we set y(t) = Brexp, (fu(t)), then we have

(VI ) = (@Beexp,) ) (V) (0) = ((@Biesp,). ) (R73(0)
~ kn(((@Besp,) ) (5(0) ) = R )

hence find that 4 is a trajectory for B, on T,M. We show that the origin 0, € T, M
and su € T,M with s > 0 is joined by a unique geodesic-segment of unit speed on
(T,M,( , )r). First we suppose there are two geodesic-segment &y,65 on T,M of
unit speed from 0, to su. Then Byexp, o d; (j = 1, 2) are geodesic on M from p to
Brexp,(su). Since M is a Hadamard manifold, we find that Byexp, 06, and Byexp, 05

coincide with each other. In particular, we have

d
it

Bkexpp o 02) |t:0,

dt (Bkepr © &1) |t:0

which is equivalent to

(d]B%kexpp)Op (5’1 (0)) = (dIBﬂkexpp)Op (52(0)).
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As (dByexp,) 0, 15 bijective, we see G1(0) = 5(0). By the uniqueness of solutions of
differential equations, we find 6; = 5. Thus we need to show the existence. Since
Brexp, is a local isometry, there is positive € such that when 0 <t < € we can join 0,
and tu by a geodesic-segment of unit speed. We set ¢, the maximal positive number
satisfying that for all 0 < ¢ < ¢, we have a geodesic-segment joining 0, and su. Suppose
t, < co. We take a trajectory =, for B, on M. Since M is a Hadamard manifold, we
have a unique trajectory-harp «., associated with ~,. We take positive €’. Since the
set {a, (t,s) |0 <t <t.,+¢€,0<s<{,(t)} is compact, it is covered by finite open
subsets U;, j = 1,..., N in M such that Biexp, |y, : U; — Uj is an isometry on some
open subset U; in 7, M. Here, we take U; so that [ J; U; contains the geodesic on T),M
which joins 0, and tu for all 0 < ¢ < ¢, and that U;VZI U; is connected. We can then
take a geodesic ; on T, M satisfying Brexp, 0 64(s) = a, (t,s) for t, — € <t <t+¢
and 0 < s < £, (t) by taking the inverse images of s — «,,(t,s) through some of
Brexp,|y,’s. Thus we have a geodesic-segment of unit speed which joins 0, and tu for
t, <t <t,+¢€. Thisis a contradiction to the choice of t,. Hence we find that t, = co.

We now show that T),M is complete. We take a Cauchy sequence {w;}32, C T,M
with respect to the distance function dp induced by (, ). We may suppose w; # 0,.
We take the unique geodesic segment ¢; of unit speed on 7,,M from 0, to w;. By the
above argument we have such a geodesic. We set @ := 5]-(0) € To, (T,M) and take r;
so that &;(r;) = w;. Since {w;}32, is a Cauchy sequence with respect to dr, we find
that {r;}32, is bounded. So there is a positive £ with r; </ for all j. As 4; = Yo, /jjuw,|
defined by ¢t — tw;/|w;]| (0 <t < |lwj]|) is a trajectory-segment for B, on T),M,
we can consider its trajectory-harp by joining 0, and tw;/||w,|| by a geodesic which
we showed in the above. As r; is the string-length of this trajectory-harp at w; and
||w;]| is the length of this trajectory-segment, we have ||w,|| < 74 (¢; ¢) by Theorem 4.2,
where 7 (; ) is the inverse function of £;(-;c). Thus {w;}32, is bounded with respect
to ordinary norm on T,M = C". Since Uy, (1, M) is compact, we have a subsequence

{Jr}32, satistying the following conditions:
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i) {rj, }%2, converges,

i) {u;, 132, converges in Uy, (T,M),

iii) {w;, }32, converges in T,,M with respect to the ordinary norm.
Since wj, = 6, (r;,uj.), we see {w;, }2, also converges with respect to dr. Thus,
we find that {w;, }72, converges in T,M with respect to dr. As {w;}32, is a Cauchy
sequence with respect to dp, it converges in T, M. Hence we find that 7,,M is complete
with respect to dg.

Thus we find that Byexp, : (T,M,(, )r) — (M, (, )) is a local isometry between

complete connected Riemannian manifolds, it is a covering map by Proposition 5.1.

This complete the proof. 0

PROOF OF THEOREM 5.5 (UNIQUNESS). When M is a Hadamard Ké&hler man-
ifold, for given a point p € M, the magnetic exponential map Byexp, : T,M — M
is a diffeomorphism by Theorem 5.6, for each ¢ € M with ¢ # p there is a unique
v € T,M with v # 0, satisfying Brexp,(v) = ¢. Thus the trajectory-segment
t = Brexp,(tv/[lv]]) (0 < ¢ < [jv]]) is the unique trajectory-segment from p to g.
This complete the proof of Theorem 5.5. ([l
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4. Trajectory-horn

In order to study the behavior of trajectories, we studied trajectory-harps in Chap-
ter IV. A trajectory-harp consists of a trajectory and geodesics. To study more on
trajectories we study a family of trajectories associated with a given geodesic.

Let M be a Hadamard manifold whose sectional curvatures satisfy Riem®™ < ¢ < 0
with some constant c. Given a geodesic half-line o : [0, 00) — M we define a variation
Boy : [0,00) xR — M of trajectories for By with |k| < \/H by the following condition:

1) Byx(0,s) = 0(0) for every s;
2) when s = 0, the curve t — ,(t,0) is the trajectory for By with initial vector
(0);
3) when s > 0, the curve t — B, (¢, s) is the trajectory for By, joining ¢(0) and
o(s).
We note that as M is a Hadamard manifold we have o(s) # ¢(0) for s > 0 and that
by Theorem 5.5 there exists a unique trajectory which joins o(0) and o(s). Therefore
we can define such a variation of trajectories uniquely. We call this the trajectory-
horn for By, associated with o, and call a trajectory t — [,(t,s) a horn-tube of this
trajectory-horn.

In order to measure the size of a trajectory-horn f3,; we consider the following
quantities. We denote by r,x(s) the arc-length of the trajectory segment ¢ — S,(t, s)
from ¢(0) to o(s), and call it a tube-length at s. Since for each s the geodesic-segment
0ljo,s) is the minimal geodesic joining o(0) and o(s), we have r,,(s) > s. We set
€rk(s) = <<'7(s), %(s,rmk(s)» and call it a tube-cosine at o(s).

For a trajectory-horn 3, ;, for By, associated with a geodesic half-line ¢ on a Hadamard
manifold M, we denote by 7, the trajectory half-line ¢ — B,x(t,s). As M is a
Hadamard manifold, its injectivity radius is ¢«(M) = oo, we can define a trajectory-
harp «,, associated with v, and find that its harp-string at s coincides with o. Thus

we have
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s =10, (rox(s)) and erp(s) =0y, (ron(s)),
where £, and d,, are the string-length and string-cosine of o, (see §4.1).

We here study trajectory-horns for B, with |k| < /[c] on a complex hyperbolic
space CH"(c). Given a geodesic half-line o we take a totally geodesic CH!(c) con-
taining the image of o. Since this CH! is totally geodesic, we see that all tubes of
the trajectory-horn lie on this CH'. Thus, we find that two trajectory-horns for B,
are congruent to each other by a holomorphic isometry (Proposition 2.2). We hence
express by 74 (s; ¢) and €g(s; ¢) tube-lengths and tube-cosines of trajectory-horns for By
on CH™(c). As we see in Proposition 4.6, functions of string-length and string-cosine

of trajectory-harps for By on CH"(c) are given by

( . — 1.2
isinh_l \/Hsmh(\/|c| k t/2), it k] < /[T
Vel Vel = k2

2sinh ™! (y/|c] t/2) if k= =+/|c|

€] ’

\/szmh(mm) ;A [k < /el
Ok(t;c) = \/’C‘ cosh® (y/e|=k2/2) — k?
2

Vet + 4

Therefore those functions ri(s;c), €x(s;c) are given as

2 -1 3 .
\/ﬁsmh {\/]c]—k smh(\/HS/Q)/\/H}, if |k < /|c],
ismh(\/ﬂ s/2), if k = £4/]c],

Vel
( 2
\/1 — k—tanhQ@s, if [k < /],

]

ék (t; C) =

\

and

if k ==44/]c.

rr(s;c) =

and

(i) =4

Vel
\cosh TS

We note that 74 (s; ¢) coincides with the inverse function 74(s; ¢) of the function ¢x(¢; c).

if k ==£4/]|c|.
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By using these functions we can estimate tube-lengths and tube-cosines as follows.

PROPOSITION 5.6. Let o be a geodesic on a Hadamard Kahler manifold M whose
sectional curvature satisfy Riem™ < ¢ < 0 for some constant c. We take the trajectory-
horn By for By with |k| < +/|c| which is associated with o. We then have the following

fors>0:

(1) Tube-length satisfies s < ryr(s) < 1i(s;¢);

(2) Tube-cosine satisfies €, ,(s) > €x(s;c).

PrOOF. We denote by v, the trajectory half-line ¢t — [, x(¢,s). Since M is a
Hadamard manifold, we have a trajectory-harp a., associated with ~5. The harp-

string of o, at s coincides with o. By the comparison theorem on trajectory-harps

(Theorem 4.2), we have

Oy, (Tk(s; c); C): s =Ly, (ra,k(s>)2 O (TU”“(S); C)'

As (i (+; ¢) is monotone increasing, we get the first assertion.

By Theorem 4.2 we have

€ok(s) =0, (Tm(s))z Ok (Tk(é%(ra,k(s)); c); c): Op (Tk(s; c); c): ex(s;c)

and get the conclusion. O

For 0 < a < b < oo, we call the restriction of 5, to [0,00) X [a, b] a sub-horn. The

o

ot

sub-horn and is denoted by 6, x(a,b). We estimate angles between two horn-tubes at

arc-length of the curve [a,b] 5 s — (0,5) € UyyM the embouchure-angle of this

the origin and show that every trajectory-horn has a limit tube.

THEOREM 5.7. Let M be a Hadamard Kdhler manifold whose sectional curvatures
satisfy Riem™ < ¢ < 0 with some constant c. If |k| < +/|c|, then for an arbitrary

geodesic half-line o, the trajectory-horn 3, : [0,00) X R — M for By, associated with o
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satisfies

(8@, (0,51), = 65" VId=*F__
ot s; sinh /|| — k2 s
o (VI 52 = 1) (exp ([T s1 + 1)
(exp(y/]e] k2 55+ 1) (exp (/]| k251 — 1)
%(O, s) € Ugo,0M of initial

for all sy > s1 > 0. In particular, it has a limit lim,_,

vectors of horn-tubes.

PROOF. We denote by v, the horn-tube ¢ — 5,(t,s). We set Yi(t) = aaﬁa (t,s),
s

which is a magnetic Jacobi field for B, along a horn-tube ~,. We denote Y, = f4, +
gJ%s + YL and put YF = gJ5, + Y5 Since 3,(0,5) = B,(0,0), we have Y;(0) = 0.
Thus we see f(0) = ¢g(0) = 0, hence we have

(Vo Vo) (0) = (KF(0) + 6'(0)) J34(0) + (Vi Vi) (0) = (Vs Y2 0).
By the comparison theorem on magnetic Jacobi field (Theorem 3.2), we have
IYE@I = V5. Y#(0)]] x (1/+/le] — k2) sinh /]e] — k2 ¢,

hence we obtain

” o 52 f — 12
/ |V o5, Y (0)||ds :/ V05 Y(0) || ds < / IVEOl Vel =
S1 ot 51 at s1 sinh /‘C| — k2 ra,k(s)

As 0(s) = By(rox(s),s), we see

a(s) = a@io (rak(s) )+8£G (rok(s) s)r;k(s)

= Y(ro(8)) +1754(5)3s (ron(s)).
This shows Y, (rex(s)) = a(s) — 1, 1 (8)Fs (ro(s)).
In order to study Y} = Y, — (Y, 5,)7s, we first compute (Y5, 5s).
(Va(ran($)): 3 (o)) = (5(8) = rha(s)3s(ros()) 4s (ro(s)) )
= (5(), 3 (10(5)) )= (I (i) |2

= €ok(5) = To(s)
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Thus we see Y (r,1(s)) = 6(s) — €5k(5)¥s (rox(s)). We hence find that
IYE (ros () I = 15() 1 = 2€04(5)(5(5), s (1o (5)) ) + €0 ()19 (ro(s)) I

=1- EU’k(S)Q.
This leads us to the following:

[Y4(rou HW B_yloevid=F e
sinh \/ c] k2 rox(s) — sinhy/|c| = k2 rop(s) — sinh Vel — k2 roi(s)

As r,1(s) > s, we see

[ 1w < [*—LEZE
s1 Os s1 Sinh\/m%,k(s)

[ EE,

~ Jo sinhy/]e] — k2 s

= log (exp(\/W52 o)) (eXP(\/Wsl +1)
(exp(\/m@ + 1) (eXP(\/Wsl _ 1)'

Since we have

4(%@, o) 0£a<o )< Orilsr.52) = /Hv% 0)||ds.

we get the estimate.

Our estimate shows that {75(0)|s > 0} is a Cauchy sequence. More clearly, when

s >1og2/(24/|c| — k?), we have sinh(y/]c|—k?s) > exp(y/|c|—k? s) /4, hence we can

estimate 6, x(s1, s2) from above as

/ Vel — k2 s 2 4y /|e| — J
= s
s1 sinhy/|c| — k2% s s exp(y/|c] — k2 s)
4 4

= exp(y/|c| — k2 s1) B exp(y/|c| — k? 32)'

which guarantees lim,, s, 00 Z(§s,,9s,) = 0. As Ug(o,0)M is compact we get the con-

clusion. 0

9B,

W (S, 0) the

We shall call the trajectory half-line v, with initial vector lim,_,.
limit horn-tube of a trajectory-horn f,.
Given a trajectory-horn 3, for B, associated with a geodesic half-line o, we set

HR, = {Bs(t,s) | s > 0,0 <t <r,x(s)} and call it the horn-body of f3,.
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PROPOSITION 5.7. Let M be a Hadamard Kdhler manifold whose sectional cur-
vature satisfy Riem™ < ¢ < 0 and k be a real number with |k| < \/H For each
geodesic half-line o, the horn-body HR, of a trajectory-horn for By on M is contained
in the tube U(%., p(k; c)) around the limit horn-tube v,, and is contained in the tube
U(a, p(k;c)) around o, where p(k;c) = |k|m/2+/|c|(c] — k?).

PROOF. For each trajectory t — [3,(t, s), the geodesic o can be regarded as a string
of the trajectory-harp associated with this trajectory. We denote it by v,. By Remark
5.1, for each s > 0 we have d(v,(t), 0 ((,, (1)) < [k|7/(24/]c|(Jc] — k?)) for 0 < ¢ <
rok(8). Since limg o v5(t) = 7,(t) and since £, is smooth with respect to v € U,M
because M is Hadamard, we obtain d(v,(t),o((,, (t)))< |kl7/(2v/]¢](Jc] — k?)) and

get the conclusion. ([l
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5. Trajectories and its ideal boundary on a Hadamard manifold

In this section we study the existence of the trajectory joining an arbitrary point
on a Hadamard Kéahler manifold and a point on the ideal boundary.

On a Hadamard manifold M satisfying Riem™ < ¢ < 0, for each trajectory half-
line 7 for By with |k| < /]¢[, Theorem 5.3 guarantees that v is unbounded and that
v has its point at infinity v(00) := limy_,o, y(t) € M. In this section we show the

following main result in this paper.

THEOREM 5.8. Let M be a Hadamard Kdhler manifold whose sectional curvatures
satisfy Riem™ < ¢ < 0 with some constant c. We take a Kihler magnetic field By, on
M with [k| < +/]d].

(1) For arbitrary points p € M and z € OM, there exists a trajectory ~y satisfying
7(0) = p and lim;_,, y(t) = z. Moreover when |k| < \/|c|, such a trajectory
15 uniquely determined.

(2) When |k| < \/H, for arbitrary distinct points z,w € OM, there exists a

trajectory v satisfying limy_, o, y(t) = z and lim_,o, y(t) = w.

If M is a Hadamard Kihler manifold whose sectional curvatures satisfy Riem™ <
¢ < 0 and, if |k| < /[c], by Theorem 5.7 the magnetic exponential map Brexp,,
T,M — M is bijective. Since every trajectory half-line has its point at infinity, we see
that at arbitrary point p the magnetic exponential map Bexp, : T,M — M induces
a map dByexp, : U,M — OM, which is defined by U,M > u + ~,(00) € OM, where
~u denote the trajectory for By with 4,(0) = w. First assertion in Theorem 5.8 is
equivalent to the assertion that this induced map is surjective when |k| < /|c| and is
bijective when |k| < /],

First, we study that the induced map is surjective.

PROPOSITION 5.8. Let M be a Hadamard Kahler manifold whose sectional curva-
tures satisfy Riem™ < ¢ < 0. If [k| < +/|c|, the induced map OBexp, : UyM — OM

at p is surjective.
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PROOF. First, we consider the case |k| < \/|c|.

We take an arbitrary infinity point z € dM and choose a geodesic half-line o :
[0,00) — M satisfying 0(0) = p and o(0c0) = z. We consider the trajectory-horn S,
for By, associated with 0. We can take its limit horn-tube v, by Theorem 5.7. For this
trajectory v, for Bj, we take an associated trajectory-harp v, . By Corollary 4.1, it
has limit string o, .

By Proposition 5.7, we have d(o((,,(t)),7-(t))< |klm/(2v/]c|(|c] — k?)), and by
Theorem 5.4 we have d(v,(t), 04, ((, (1)) < [k|7/(24/]c|(|c] — k2)). Since £,, is mono-
tone increasing, we find that d(o(s), 0., (s))< [k|w/+/|c|(Jc| — k). Therefore we find
o = o, and 7¥(00) = 0(00) = z. Thus we obtain that OBexp, is surjective.

Next we study the case k = :l:\/ﬂ. We take a sequence {k;}32, satisfying
lim; oo kj = k and |kj| < /]c]. We take w; € U,)M so that v;(c0) = z, where
7; denotes the trajectory for By, with +;(0) = w;. Since U, M is compact, then
we have a convergent subsequence {wj, }22,. We put ws = lim; o, wj;,. We take the
trajectory vy, for By and put 2’ = v, (c0). We suppose 2’ # z and take v € U, )M
satisfying o,(00) = 2’. We take positive R, €, so that O,(p,2¢, R) N O./(p,2¢, R) = 0,
where O,(p,2¢, R) is an open neighborhood of z in M = M U dM given in §5.1.
We set Tr = (2/4/]c|) sinh(y/[c|R/2). By the comparison theorem on string-lengths
(Theorem4.2) and by Proposition 4.7, for t > Tg, we have

Cy,(t) = by, (t;c) > fm(t; c) > fm(TR; ) =R,

and (., (t) > E\/H(t; ¢) > R. We take the geodesic o, of unit speed with 0,,(0) = p
and o, (00) = z’. By Proposition 4.11 and Corollary 4.2, we have
Oay, 2 2
2 (4 0)) < .
5 %) Vlelt Vlelt

When ¢ > max{Tg,2/+/|cle}, we find v;(t) € O.(p,e, R) and 7, (t) € O.(p, €, R).

and (v, 0ty (t,0))<

£(510), i

But as we have lim; .., 7;,(t) = 7w, (t), it is contradiction. Hence 7, (c0) = =z.

Therefore we obtain that OB JIAexPp is also surjective. OJ
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When a Hadamard manifold M satisfies Riem™ < ¢ < 0, for a constant k with
k| < /lc|, we define a map ®F : UM — U,M by w — v = ¢,,(0), where 7,
denotes the trajectory half-line for B, with initial vector w and o, denotes the limit
harp-string of the trajectory-harp associated with ~,. By Corollary 4.1, we have the

following.

COROLLARY 5.3. When a Hadamard manifold M satisfies Riem™ < ¢ < 0, for a
constant k with [k| < \/|c|, the map ®% : U,M — U,M satisfies the point at infinity
of the trajectory half-line 7, with 3,(0) = w coincides with the point at infinity of the

geodesic half-line op () with Gapw)(0) = F(w), that is vy, (o0) = Ol () (00).

When a Hadamard manifold M satisfies Riem™ < ¢ < 0, for a constant k with
k| < \/]e|, we define a map Uk U,M — U,M by v — 4,,(0), where o, denotes the
geodesic with ¢,(0) = v and ~,, denotes the limit horn-tube of the trajectory-horn for
By associated with o,. Since we take a subsequence to get a trajectory v for B, N

satisfying v(co) = og(00) in the proof of Proposition 5.8, we can not say that we can

define such a map for £ = ++/|c|. By Theorem 5.7, we have the following.

COROLLARY 5.4. When a Hadamard manifold M satisfies Riem™ < ¢ < 0, for a
constant k with |k| < \/H, a map Ok - U,M — U,M satisfies the point at infinity
of the geodesic half-line o, with 6,(0) = v coincides with the point at infinity of the
trajectory half-line Yy () with 7\1,15(1,)(0) = \I/’;(v), that is o,(00) = vq,z;(v)(oo).

LEMMA 5.3. When a Hadamard manifold M satisfies Riem™ < ¢ < 0, for a
constant k with |k| < +/|c|, we have that the composition ®F o Ok : U,M — U,M s
the identity.

PROOF. For a v € U,M, we put w = Wk(v),u = ®F o UF(v). We then have
0y(00) = Yw(00) = 0y (00). As dexp, : UpM — U,M is bijective, we have v = u. That

is the composition <I>’; ) \If’; is the identity. Therefore we get the conclusion. 0J

Next, we study the injectivity of the induced map 0Brexp,,.
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PROPOSITION 5.9. Let M be a Hadamard Kahler manifold whose sectional curva-
tures satisfy Riem™ < ¢ < 0. If |k| < +/|c|, then the induced map OBexp,, : UM —

OM s injective.

PRrOOF. For unit tangent vectors v,w € UM, we denote by o, the geodesic with
0,(0) = v and by 7, the trajectory for By with 4,,(0) = w.

In order to show the assertion we are enough to show that the map ®F : U,M —
Up,M is bijective. Since @’; o \I/’; is the identity by Lemma 5.3, to show that @’; is
bijective we only need to show that the composition \I’I; o CD’; is the identity.

We take a trajectory 7, for w € U,M and a constant t. For a geodesic o; of unit
speed which joins 7,,(0) and 7, (t), we consider a trajectory-horn g, : [0,00) x R — M
associated with o;. For an arbitrary s, we find that u +— S;(s,u) is the trajectory for
By, joining 04(0) = 7,,(0) and o4(s). We denote by r:(s) the tube-length of f; at s and
set w; = %(8,0) € U,M. By Proposition 5.6, we have r(s) < 7(s;c). We have a
subsequence {¢;}72, depending on s which satisfies that both {w; }72,(C U,M) and
{re;(s)}521(C R) converge. We set w3, = lim; 00wy, and roo(s) = lim; o0 74, (s).

By Corollary 4.1, the trajectory-harp ., : [0,00) X R — M associated with the
trajectory 7, has a limit. Then we find that lim;e 04(s) = Tgk(w)(s) with O (w) =

limy_yo0 6¢(0). As 04(s) = By(s,74(5)) = Y (1:(s)), we have

Ué‘;(w)(s) = lim th (Tt]( )): Yws, (TOO(S))'

Jj—00
Therefore, we see that each v, is a tube of trajectory-horn associated with Tk ()
By Theorem 5.7, we have
Lo () ol — k2
twruy < [T
s sinh \/|c| — k2 u

for s < ¢,,(t) and arbitrary ¢, because 7, is a horn-tube of a trajectory-horn f;.

Therefore we have

/ Vel — k2
sinh y/|c| — k2 u

’U)t,
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and hence we obtain

du < oo.

</ Ve — k2
N sinh y/|c| — k2 u

Thus we find that lim,_, wS, = w. This shows ¥¥(®%(w)) = w. We therefore get the

conclusion. O

REMARK 5.2. We take an arbitrary geodesic half-line o of unit speed emanating
from p € M. The condition ®, 0 ¥, = Id means that for the limit horn-tube , of the
trajectory-horn for B associated with o, the limit harp-string o, of the trajectory-
harp associated with v, is ¢. On the other hand, we take an arbitrary trajectory
half-line v for By, which is emanating from p € M. The condition ¥, o &, = Id means
that for the limit harp-string o, of the trajectory-harp associated with « the limit

horn-tube 7, of the trajectory-horn associated with o is 7.
Finally we study trajectories joining distinct points in the ideal boundary.

PROPOSITION 5.10. Let M be a Hadamard Kdihler manifold satisfying Riem™ <
¢ < 0. If k satisfies |k| < +/|c|, then for distinct points z,w € OM there exists at least

one trajectory v with y(—o0) = z and y(o0) = w.
To show Proposition 5.10, we need a result corresponding to geodesics.

THEOREM 5.9. Let M be a Hadamard manifold satisfying Riem™ < ¢ < 0. For
distinct points z,w € OM, there exists a unique geodesic o of unit speed with o(—o0) =

z and o(o0) = w.
To show this, we recall Gauss-Bonnet theorem.

THEOREM b5.10 (Gauss-Bonnet). Let M be a 2-dimensional orientable compact
Riemannian manifold with boundary OM. Suppose OM 1is piecewise smooth. Then we

have
k;

L
/ Riem™dvol,, + Z
M

i=1 j=1

{/ s)ds + (4, (4 %+1(0)>}= 2 X(M).
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Here, each component of OM s the join i, -7i, - - Vi, of smooth curves with ~y;; (6;;) =
vj+1(0), L is the number of components of OM and X(M) denotes the Euler charac-
teristic of M.

PrROOF OF THEOREM 5.9. We take an arbitrary point p € M and take geodesic
half-line 1, 2 satisfying 71(0) = 72(0) = p, 71 (00) = 2z and y2(00) = w. Let oy be the
geodesic of unit speed with ¢;(0) = 71 (¢) and 0;(¢;) = 2(t) for some positive ¢;. Since
M is strictly negative, by Proposition 5.3, we see s — d(p, 04(s)) is a strictly convex

function. As we have

d(p,0:(0)) =t = d(p, 0:((1)),

there is r; with 0 < r; < ¢; such that d(p, o¢(r)) = min{d(p, o4(s))|s}. Let S; denotes
a Riemann surface consists of all geodesic segments from p to oy(s) with 0 < s < 4.
The boundary of S; consists of the geodesic segments 71|[07ﬂ,72|[0,t] and O't|[gjgt]. By

Gauss-Bonnet theorem, we have

/ Riem®*dvolg, +cos ™ {(—41(0), 32(0))+cos (41 (t), 6,(0))+cos{a,(£,), = (t)) = 2.
St
Therefore, we have

> —/ Riem®dvolg, > |c|[vol(S)),
St

because Riem™ < ¢ < 0. On the other hand, comparing volumes of sectors of angle
Z(%1(0),42(0)) and of radius d(p,o¢(r;)) in M and in R?, as S; is contained in this
sector in M, we have vol(S;) > %d(p, oi(re))? % £(%1(0),42(0)) by Rauch’s comparison
theorem. We hence have

2T
= 1200 0),5:(0))

d(pa O_t(rt))z
0
PROOF OF PROPOSITION 5.10. We take a geodesic o satisfying z = lim;_,_ o, (t)

and w = lim;_,, 7(t). For each positive s, we take a trajectory 7 for By, joining o(—s)

and o(s). We take the parameter of «, so that v5(0) = o(—s) and ~s(ts) = o(s)
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with some positive t;. As a restriction of o is a harp-string of the trajectory-harp a.,
associated with v for each s, Remark 5.1 guarantees the following :

1) If we take positive r, satisfying s = £ (rs), we have

d(0(0),7s(rs)) < [klm/ (2/lel(|c] — £2)).

2) For 0 <t <t, we have d(7,(t), o)< |klr/(2y/]c|(|c] — k2)).

We set B a geodesic-ball of radius |k|m/(2+/]c[(Jc] — k?)) centered at o(0). As
Ys(rs) € B, we can choose a sequence s; so that {¥,,(rs;,)}; C UM|p converges. We
denote by 7 the trajectory whose initial is lim;_, s, (rs,). By perturbation theory
of differential equations we see that Byexp, is smooth with respect to p. Therefore, we
find d(ys(t), o) is not greater than |k|x/(2+/]c|(Jc| — k2)) for each t. This shows that

limy oo Yoo (t) = 2 and limy o Yoo (t) = w. Thus we get conclusion. O
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Appendix

We here give some general results which we used in this paper.

1. Dual linear maps

Let V' be a real vector space. A bilinear form p of Visamapp: V xV — R
satisfying that
1) p(Ao1 + Agvz, w) = Aip(v1, w) + Aep(ve, w),
i) p(v, pws + pows) = pap(v, wr) + pap (v, wa),
for arbitrary vy, ve, v, wy, wo, w € V and Ay, A9, i1, o € R. We say it is symmetric if it
satisfies p(v,w) = p(w,v) for all v,w € V. We call p a non-degenerate if p(v,w) =0
for all w € V shows v = 0. When V' is a complex vector space, we say a bilinear form
p: V x V — C Hermitian if it satisfies p(v,w) = p(w, v) for all v,w € V, where % of a

complex number z is the complex conjugate of z.

LEMMA A.1. Let p be a non-degenerate bilinear form on a finite dimensional vector

space V' over an algebra F. If v,v" € V satisfy p(v,w) = p(v',w) for all w € V, then

v=1.

This lemma shows that if we know p(v,w) for all w € V' and they satisfy linearity
with respect to w then we have a unique v € V' having these relations.
PrOOF OF LEMMA A.1. By the definition of p, we note
0=pv,w)—p0,w)=pl—1w).

Then we have v — v = 0. Therefore we can get the conclusion. 0

187
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2. Inverse mapping theorem

In this section we give inverse mapping theorem following to [17]. This is quite
important in the study of Riemannian manifolds.

For a linear map L : R™ — R"™ we set
IL]| = max{|| Lu| [ u € R™, [[ul| = 1}.

Trivially, we have ||L|| = 0 if and only if L = O, and have ||Lv| < ||L]|||v]| for all

v € R™ because when v # 0 we see

Izl = |2 el ) || = (e (o) | = et < |2 Grag )| = 1zt

When L : R — R" and M : R"” — R® be linear maps, then for the linear map
Mo L:R™ — R® we have ||M o L|| < ||L]| || M]|, because

1M o L(w)ll = M (L(w)) | < ML) < [M]L[ el

Given a differentiable mapping F': U (C R™) — R"™ and an arbitrary point p € U,

by denoting as F' = (fi,..., fn) with functions y; = f;(z1,...,2,) (j =1,...,n), we
define its differential DF(p) : R™ — R™ at p as the linear map defined by the matrix
o, of
8xl( p) B, (p)
o5, O
oz, P) o, &)

LEMMA A.2. Let U be a convex subset of R™ and F : U — R™ be a differentiable
mapping. If K = sup,cy || DF (p)|| < oo, for arbitrary p,q € U we see ||F(p)—F(q)|| <
Kllp —ql|.

PROOF. By mean-value theorem, we have F'(q) = F(p) + DF(£)(q — p) with some

& € R™ which lies on the line from p to ¢. If we rewrite it, we have

f1?Q) fl.(P) %(g) %(5) Q1fp1

ox1 O0xm

: : afn 8fn :
fala) fa(p) 20 & 50O ) \g—pn
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where p = (p1, ..., Pm)- 4= (q1,--.,qn). Thus we find

1E(p) = F(@)ll = [IDF(&)(p — )l < [[DFE)I[ lp — qll < Kllp —qll,

and get the conclusion. 0

THEOREM A.1 (Inverse mapping theorem). Let F' = (fy,..., fm) be a Ct-mapping
of an open subset D of R™ to R™. If the Jacobian of F' satisfies H(po) # 0

at a point py € D, then there exist open subsets U,V of R™ satisfying the following

conditions:

)peUCDandV =F(U),
ii) the restriction F|y : U — V is a bijection,

iii) the inverse map (F|y)™' : V — U of F|y is also C'-mapping.

PRrROOF. Here, we only show that we can take open subsets satisfying the conditions

i) and ii). We put A = 1/(2||(DF(po)) |) = |DF(po)||/2 (> 0). Since F is of C*, we

see that its Jacobian H : D — R is continuous and that p — || DF(p) — DF (po)||

-----

-1
|

is also continuous. As H@O) # 0, there is a positive € such that H(p) #0
and ||DF (p) — DF(po)|| < A for every p € B.(po) in a open ball centered at py.
First we show that F' is injective near the point py. By applying mean-value

theorem, we have
(A1) F(p+h) = F(p) + DF(§)h,

where ¢ is a point on the line from p to p + h. We here suppose F(p + h) = F(p) for
p,p+h € Bpy). By (A1) we see DF(§)h = 0. As the matrix DF(€) is invertible
because H(f) # 0, this shows h = 0, which means p + h = p. Thus, we see F'
is injective on B(po).

Next we show that V := F (Be(po)) is an open subset of R™. We take a point
Yo € Vp and choose a point z¢ € B.(py) so that yo = F(x). Weset r = {e—d(zo,po)}/2.

If we can show that By, (yo) C Vo, we find that Vj is open. We hence show By, (yo) C Vb.
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We take an arbitrary point y € By,(yo) and define a map G, : B, — R™ by

Gy(p) = p+ (DF(po)) ' (y — F(p))-
Since Gy (zo) = x¢ + (DF(po))fl(y — yo) we have
—1 ]. T
1G(z0) — aoll < 1(DF () I g — woll < 57 % Ar =L
On the other hand, by chain rule we have

DGy (p) = I — (DF(py)) "' DF(p) = (DF (o))~ (DF(po) — DF(p)).

Hence we obtain

_ 1
10G, ()] < [ (DF ()~ [ [|DF (o) — DF ()| < 55 Mlp — ol =
By Lemma A.2 for arbitrary p,q € B.(py) we have

(A2) 1G,(0) = Gy(@)] < = lp — ol

In particular, we have ||G,(p) — G, (z0)| < g Thus we see
1Gy(p) = moll < [|Gy(2) = Gy(xo) || +[|Gy(20) = o <7,

and find that G(p) € B,(zo) This shows that the restriction G|z 5 of Gy onto the

closure B, (1) (C Be(po)) of B,(xo) is a contraction map. Since B,(z0) is compact
hence is complete, the map GMW has a fixed point x € m by Theorem A.2
below. This means that v = Gy(z) = + (DF(pO))fl (y — F(z)). We therefore obtain
y = F(x) and find that B),(yo) C V. This shows that V' is an open subset of R™.
By putting U = B.(py) we find that F|y : U — V is a bijection and U,V are open

sets. |

Since manifolds are locally congruent to Euclidean spaces we can extend the above

to manifolds.

COROLLARY A.1. Let M and N be a manifold of same dimension and ¢ : M — N
be a C'-map. If the differential map (dg)p, : TpoM — Tippe) N is invertible, then there
exist an open neighborhood U of py in M and an open neighborhood V' of v(pg) in N

satisfying the following conditions:
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1)V =¢(U),
ii) the restriction |y : U — V' is a bijection,

iii) the inverse map (p|ly)™' : V = U of ¢|v is also C'-mapping.

Let (X,d) be a metric space. A map f : X — X is said to be a contraction if
there is p (0 < p < 1) such that d(f(p),f(q)) < pd(p,q) for all p,q € X. Clearly a

contraction is a continuous map.

THEOREM A.2 (Fixed point theorem). Let f : X — X be a contraction of a

complete metriz space X. Then there exists a unique fixed point of f, that is p, € X

with f(p.) = ps.

Proor. We take an arbitrary point p, € X and define a sequence {pj};-";o c X

inductively by pj+1 = f(p;). As we have

d(Tpy1,T0) = f(f(xn)f(xn—1)> < pd(Tn, Tp-1)

for n > 1, we find inductively that d(x,.1,2,) < p"d(xi,29). Thus we have for

arbitrary positive integers j, k with 7 < k that

d(pj, px) < d(pj, pj+1) + -+ + d(Pr-1, pr)
Ly
L=p
Thus we see {pn};?‘;o is a Caucy sequence. If we set p, = lim;_,;, 4, p; then

< (PP 4 PP d(0, 1) < (0, 21)-
f(p) = f(lim p;) = lim f(p;) = lim pj1 = p,.
J—0 J—0o0 j—oo
Thus we have a fixed point.

If we have two fixed points p., g, € X then we have

d(ps, q.) = d(f(pe), f(g2)) < pd(ps, q.).

Since 0 < p < 1, this is a contradiction. Hence we get the uniqueness. 0
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3. Connectedness and compactness

In this section we recall some fundamental results on topological spaces.
[1] Connectedness

A topological space X is sad to be connected if there are no pairs (U,V) of
nonempty open subsets satisfying UUV = X and UNV = 0.

LEMMA A.3. A topological space X is connected if and only if its open and closed

subset is either X itself or an empty set ().

PROOF. (=) Suppose we have an open and closed nonempty subset U with U # X.
Then V = X \ U is also an open and closed nonempty subset. Since X = U UV and
UNV =0, we see X is not connected.

(<) When X is not connected, we have two open nonempty subsets U, V satisfying
UUuVandUNV =0. AsU = X \ V, we see U is an open and closed nonempty set
with U # X. O

It is well-known that R is connected. A topological space consists of one point is

connected.

LEMMA A4. Let p: X — Y be a continuous map of a connected topological space
to a topological space. Then ¢(X) is a connected subspace of Y with respect to the
induced topology on p(X).

PROOF. If we suppose ¢(X) is not connected, then there exist open subsets U, V
of Y satisfying
U'uV' =p(X), UnNV' =0, U#0, V' #£0,

where U’ = U N ¢(X) and V' = V N p(X). Since ¢ is continuous, we see ' (U) and

¢ 1(V) are open subsets of X. As we have
e (U) U (V) =9 (U)Up (V) = X,
0,

e 'U)ne ' (V)= {(U'NnV") =

e (U) =97 (U)#£0, o (V)=¢ (V) #0,
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we find that X is not connected, which is a contradiction. O

LEMMA A.5. Let Sy,S5 be two subsets of a topological space X. If Si, and Sy are
connected and Sy N Sy # (), then S; U Sy is connected.

PROOF. Suppose S := 57 U.S; is not connected. Then there are nonempty subsets
U,V of X with

ScUuV, UnvnS=0, UUS#D, VUS#I.

If Sy NU # (), then S; NV = 0 because S is connected. This leads us to Sy NV # ()
and hence S, NU = (. Thus we have

UUV)N(S1NSy)=UNS;NS)U (VNS NSy) =0

On the other hand, as we have S C U UV, we have (UU V)N (S} NSy) = 51 N Ss.
Thus we find S; NSy = @, which is a contradiction. O

Given two points p,q in a topological space X, we denote p ~ ¢ if there is a
connected subset of X containing both p and ¢. Since {p} is connected, we have
p ~ p. It is clear that p ~ ¢ shows ¢ ~ p by definition. When p ~ ¢ and ¢ ~ r, then
there are connected subsets 57, S of X such that S; contains p, ¢ and Sy contains ¢, r.
Since S1NS3 3 g we know that S;U.S5 is connected by Lemma A.5. As p,r € S{USy we
see p ~ r. Therefore, this relation ~ is an equivalence relation. We call an equivalence
class with respect to ~ a connected component of X.

A topological space is arc-wisely connected if for arbitrary distinct points p,q € X

there is a continuous curve ¢ : [0, 1] = X with ¢(0) = p and ¢(1) = q.
LEMMA A.6. If X is arc-wisely connected, then it is connected.

PROOF. Suppose X is not connected. Then there are nonempty open sets U,V
with UUV = X, UNV = (. We take points p € U and ¢ € V. Since X is
arc-wisely connected, there is a curve ¢ : [0,1] — M with ¢(0) = p and ¢(1) = q.

Since ¢ is continuous, we see ¢([0,1]) is connected by Lemma A.4. As ¢([0,1]) C
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UUV, ¢([0,1])nUNV =0 and ¢([0,1]) NU 3 p, ¢([0,1]) N U > q, we find ¢([0, 1]) is

not connected. This is a contradiction. Hence X is connected. O

Let M be a manifold. Given two points p, g € M we denote p X ¢ if there is a curve
¢:[0,1] = M with ¢(0) = p and ¢(1) = g. Considering a constant curve we have p X p.
If p x g, considering the reversed curve ¢! of ¢[0,1] — M with ¢(0) = p, ¢(1) = ¢
which is given by ¢7'(t) = ¢(1 —t), we find ¢ !(0) = ¢ and ¢7'(1) = p, hence ¢ x p. If
p X q and g X 7, we take curves ci, ¢y : [0,1] — M with ¢1(0) = p,c1(1) = ¢ = ¢2(0)
and cy(1) = r. Considering their join ¢; - ¢3 : [0, 1] — M given by

) c1(2t), when 0 <t <1/2,
c1-cot) =
b (2t — 1), when 1/2 <t <1,

it is a curve with ¢; - ¢3(0) = p and ¢; - c2(1) = r. Thus we have p x r. Therefore x is

an equivalence relation.
LEMMA A.7. A connected manifold M is arc-wisely connected.

Proor. We decompose M into components, equivalence classes, with respect to
the relation x as M = (J,., K. We show that K is an open set. We take a point
p € K, C M and a local coordinate neighborhood (U, ¢) around p with p(U) = R™
and ¢(p) = 0. Because every open subset of R™ is homeomorphic to R™, we may
suppose this. For each v € R™ we have a curve ¢, : [0, 1]toR™ defined by ¢,(t) = tv.

Since ¢ is a homeomorphism, each ¢ € U and p is joined by a curve ¢!

O Cy(q)- Hence
U C K,. Thus K, is an open set.
Suppose K, is not an empty set. Then [J,. Ao} K, is an open set, hence K, is

an open and closed set. Hence K, = M. Thus M is arc-wisely connected. 0J

[2] Compactness
A topological space X is said to be compact if it satisfies the following condition:

If a family {Ux}xea of open subsets of X satisfies X = J,., Ux, then there
exist finite Uy, ..., Uy, with X = Ujvzl Uy,
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Such a family {Ux}rea of open sets of X with X = (J,., U, is called an open covering
of X. A subset K of a topological space X is compact, that is, it is compact with
respect to the induced topology, if and only if each family {U\} ca of open subsets of
X satisfying K C [J,¢, Ux has a finite subfamily {U, })_, satisfying K C Ujvzl Uy,

A topological space X is said to be sequentially compact if each sequence {p;}32, (C
X) has a convergent subsequence {p;, }32;.

Let (X, d) be a metric space. A sequence {p;}32, (C X) is said to be a Cauchy
sequence if for each positive € there is jo such that for every j, k with j,k > jo the
distance between p;, py, satisfies d(p;, pr) < €. A metric space is said to be complete if
every Cauchy sequence converges.

Given a subset U of a metric space X, we set diam(U) = sup{d(p,q) | p,q € U}
and call it the diameter of U. A metric space is said to be totally bounded or said to

be precompact if for each positive € there exists finite open subsets Uy, ..., Uy such

that X = Ujvzl U; and diam(U;) < e.

LEMMA A.8. For a metric space (X, d) the following conditions are mutually equiv
-alent:
(1) X is compact,
(2) X is sequentially compact,
(3) X is totally bounded and complete.

In order to show this we need some lemmas. A subset S of a topological space X
is said to be dense if the closure S of S coincides with X. We call a topological space

X separable if there is a countable dense subset S of X.
LEMMA A.9. A totally bounded metric space (X,d) is separable.

PROOF. Given a positive e we take a finite covering Uy, ..., Uy, of X with diam(Uj)
< €. From each j we take a point a; € U; and set A. = {ai,...,an.}. For an
arbitrary p € X, we take jo with 2 € U;,. Then we have d(p,a;,) < e. Thus we see
d(p,A) = min{d(p,a;) | j=1,...,N} <e
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We set A = U;’;l Ay g, which is a countable or finite set. We then for an arbitrary
p € X we have d(p, A) < d(p, A1¢) < 1/C for every {. Thus p € A. We obtain A = X
and find that X is separable. O

A family B of open sets of a topological space is said to be an basis ot the topology
if for each open set U and each point p € U there is W € B with x € W C U.
We say a topological space X to be second countable if there is a countable family

B ={U;|7=1,2,...} of open sets which is a basis of the topology.
LEMMA A.10. Every metric space (X,d) is a second countable space.

PROOF. Since X is separable by Lemma A.9, we can take a countable subset S of X
with S = X. We define a countable family of open subsets by B = {B,(p) |[p€ S, r €
Q}. For an arbitrary open set U and an arbitrary point p € U we choose positive € so
that By (p) C U. Since S is dense, we have g € S with d(p, ¢) < e. We choose 1, so that
d(p,q) < r < e and consider B,(q). As we have d(p,x) < d(p,q)+d(q,z) < 2r < 2 for
every = € B,(q), we find p € B,(q) C Ba(p) C U. Hence B is a basis of the topology.

Hence X is second countable. ]

We note that a second countable topological space is separable. Hence a metric

space is separable if and only if it is second countable.

LEMMA A.11. Let X be a second countable space, For an arbitrary open covering

U = {Ux}rea of X we can choose a countable open sub-covering {Uy,;}32, of X.

Proor. We take a countable baisis B of the topology. For each W € B, we set
a family Uy by Uy = {Uy | W C U,, and define a subfamily B’ of B by B’ = {IV |
W e B, Uy # 0}. This family is countable. For each W € B’ we choose U, € Uy
and denote it Uy. For an arbitrary point p € X we have U, with p € U,. Then there
is W e B withpe W C Uy. Thus W € B’. Hence p € W C Uy. Therefore we have

X =Uwes Uw. Thus, {Uw }wes is a countable open covering of X. 0



8A.3. Connectedness and compactness 197

PrOOF OF LEMMA A.8. (1) = (2). We take an arbitrary sequence {p;}32, of X.
We suppose {p;}32, does not have accumulation points. In particular, {p;}52, contains
infinitely many distinct points. That is, for each ¢ € X we have a positive ¢, such that
the cardinality of the set {j | p; € B, (¢q)} is finite. As X = (J B (¢q), we can take

finite points ¢, ...,qy € X with X = Ufj:l B, (qx). Since we have

2

({pJ’J>1})—|j<{pg j =130 U €ap (qx) ) Z {p] Jj=>1inB., ( ))<oo,

where £(S) for a set S denotes the cardinality of the set S, we find a contradiction.
Thus, we have a point ¢p such that {j | p; € B.(q)} is an infinite set for every
positive e. We take j; so that p;, € Bi(q), and inductively, we take j,; so that
Je+1 > Jr and pj, € Bi/k(qo). Then the subsequence {p;, }72, converges to gy because
d(pj.,qo) < 1/k. Thus X is sequentially compact.

(2) = (3). First we shall show that X is complete. We take an arbitrary Cauchy
sequence {p; 521- Since X is sequentially compact, we have a convergent subsequence
{pj. 1321, where {ji}32, is monotone increasing. We set po, = lim;_,o p;, € X. For
every positive €, there is a positive number K. and N, such that d(p«,pj,) < €/2)
for k > K. and d(pj,ps) < €/2 for j,£ > Ne. Thus if £ > max{K., N.}, we have
d(po;pe) < d(psospj,) + d(pj,,pe) < €. Hence we see lim;_,o,p; = ps. Thus, X is
complete.

Next we shall show that X is totally bounded. To do this we suppose X is not
totally bounded. There exist a positive ¢y such that for an arbitrary finite subset S of
X the open set |, g Bac, (p) does not cover X. We take an arbitrary point p; € X. We
inductively take p;11 € X'\ ( /. B, (pk)> Since | _, Be,(pk) C ULy Baey(pr) # X,
we can take such a point. Clearly we have d(p;4+1,pr) > € for k =1,...,j. This shows
that d(pj, px) > €0 if j # k. Thus {p;}52, does not have Cauchy subsequences. This
shows that X is not sequentially compact, which is a contradiction.

(3) = (2). Given a positive € we take a finite covering Uj,...,Uy of X with

diam(U;) < e. Then for each sequence {p;}32, in X, there is Uy, such that it contains
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infinitely many points of {p; | j}. Hence we can take a subsequence {p;, }?>, C Uj,.
This sequence satisfy d(p;,,p;,,) < €.

Under this consideration, we take an arbitrary sequence {g;}32, in X. We can take

, of this sequence with d(q](-l), qj(,1 )) < 1. For this new sequence

we take a subsequence {C]]@)}?; of with d(q](-Q),q](-,Q)

22, with d(qy), ](,é)) < 1/¢. We set a; = pg-j), and

o
‘]:

a subsequence {q](-l)
) < 1/2. Inductively we take a
subsequence {qj(»g) 22, of {q](.e_l)
construct a subsequence {a;}32; of {g;}32,. Then, when j, ;" > jo we have d(a;, a;) <

4 . . (j0) 00
1/jo, because a;, a; are contained in {qj Ay

Hence we find that {a;}32, of {¢;}32,
is a Cauchy sequence. Hence it converges to some point in X. Thus X is sequentially
compact.

(3) = (1). Since X id totally bounded, every open covering {Uy}ca of X contains
a countable open subcovering {Uy, };’11 by Lemmas A.9, A.10 and A.11. If we suppose
that {U,, }32; does not have finite open sub-covering, we can take a point p; € X \
<Uf€;11 U)\k>. Since X is sequentially compact because conditions (2) and (3) are
equivalent, we have a convergent subsequence {pj, }32, where {j;}7°, is monotone
increasing. We set p, = limy o pj,. For each ¢, if we take & > ¢ we have j, >
k > (. Hence we have p;, € X\ (Ufgl UA,L.> C X\ (Uf;ll U,\Z.> for £ > (. Since
X\ (Uf;i U,\i> is a closed set, we see poo € X \ <Uf;i U,\l.>. Thus we find py €
Niey (X\ (Uf;ll U,\l.)) =X\ (Ufil U,\i). But {U),;}32, is an open covering of X, it

is a contradiction. O
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complex projective space, 44
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cone topology, 160
congruent, 66

conjugate point, 22

D
distance function, 6

E

embouchure angle, 176
Euclidean space, 13
exponential map, 20
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first magnetic conjugate value, 72
fixed point theorem, 191

Frenet frame, 32

Fubini-Study metric, 45

G

Gauss Bonnt theorem, 184
geodesic, 19

geodesically complete, 27

geodesic ball, 132

geodesic curvature, 32

Gromov’s comparison theorem, 135
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Hermitian, 40
holomorphic at arch, 125
Hopf fibration, 44
Hopf-Renow theorem, 27
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ideal boundary, 158
injectivity radius, 132
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Jacobi field, 21

K

Kaéhler form, 41

Kéhler magnetic field, 61
Kaéahler manifold, 39
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limit horn tube, 178
limit string, 147
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magnetic conjugate point, 72
magnetic conjugate value, 72
magnetic exponential map, 67
magnetic field, 61

magnetic Jacobi field, 69
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normal coordinate neighborhood, 20

P
parallel, 17
— displacement, 17
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Q

quotient manifold, 13

R

Rauch’s comparison theorem, 86
real hyperbolic space, 13

real space form, 13

Riemannian connection, 7
Riemannian curvature tensor, 9
Riemannian manifold, 5
Riemannian metric, 5

S

sectional curvature, 11
sector arc, 139

standard sphere, 13
static magnetic field, 61
string cosine, 101

string length, 101

surface magnetic field, 61

T
Toponpgov’s comparison theorem, 99
totally geodesic, 49
trajectory,62
— ball, 132
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U
uniformly normal neighborhood, 25

\%
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zenith angle, 139
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