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Abstract

We human beings communicate with others by transmitting auditory and visual informa-
tion. Recently, since information technology has steadily improved, not only commu-
nication between humans, but also communication between humans and computers has
become feasible. In consequence, new services such as spoken dialogue system and bio-
metrics authentication system have been developed. In order to realize communication
between humans and computers, the computer need to interpret auditory and visual infor-
mation. Speech recognition and speech synthesis are used as techniques for processing
auditory information, and image recognition and image synthesis are used as techniques
for processing visual information. Improvements in these techniques are necessary for
smooth communication between humans and computers.

Hidden Markov models (HMM)-based speech recognition and speech synthesis have been
proposed as a standard framework. HMMs are one of widely used statistical models for
representing time series by well-defined algorithms. Additionally, two-dimensional data
such as pixel values of image can be modeled by extending the HMM to two dimensions.
In this paper, I propose speech synthesis and image recognition based on HMMs to realize
smooth communication between humans and computers. Especially, for widening the
communication, I investigate highly versatile construction methods from low-resource
data.

For speech synthesis, I propose a method for constructing text-to-speech (TTS) systems
for languages with unknown pronunciations. There are thousands of active written lan-
guages in the world. However, conventional methods of constructing corpus-based TTS
systems for a new language not only require preparation of training corpus but also require
language-specific knowledge. Especially, to marshal language-specific knowledge about
pronunciation for each new language requires high cost. Therefore, a goal of the speech
synthesis research is to establish a language-independent framework that can be used to
construct TTS systems for any written language. To address this problem, I investigate a
framework for automatically constructing a TTS system from a target language database
consisting of only speech data and corresponding Unicode texts. In the proposed method,
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pseudo phonetic information of the target language with unknown pronunciation is ob-
tained by a speech recognizer of a rich-resource proxy language. Then, a grapheme-to-
phoneme converter and a statistical parametric speech synthesizer are constructed based
on the obtained pseudo phonetic information. With these processes, it becomes possible to
construct a TTS system automatically without specific knowledge on the target language.

For image recognition, I propose an image recognition method based on hidden Markov
eigen-image models (HMEMs) using a Bayesian framework. The geometric variations
of the object to be recognized, e.g., size, location, and rotation, are an essential problem
in image recognition. Separable lattice hidden Markov models (SL-HMMs), which have
been proposed to reduce the effect of geometric variations, can perform elastic matching
both horizontally and vertically. However, SL-HMMs still have a limitation in that the
images are assumed to be generated independently from corresponding HMM states. It
is insufficient to represent variations in images, e.g., lighting conditions and object defor-
mation. To overcome this problem, HMEMs have been proposed in which the structure
of factor analysis (FA) or probabilistic principal component analysis (PPCA) is integrated
into SL-HMMs. HMEMs have good properties of both SL-HMMs and FA/PPCA: invari-
ances to the size and location of objects to be recognized and a linear feature extraction.
In some image recognition tasks, it is difficult to acquire sufficient training data. Addi-
tionally, models with a complex structure such as HMEMs suffer from the over-fitting
problem, especially when there is insufficient training data. This study aims to accurately
estimate HMEMs using the variational Bayesian (VB) method. The VB method can uti-
lize prior distributions representing useful prior information and is expected to have a
high generalization ability due to the marginalization of model parameters. Furthermore,
to relax the local maximum problem in the VB method, the deterministic annealing expec-
tation maximization algorithm is applied to train HMEMs. Experiments on face recogni-
tion indicated that the proposed method offers a significantly improved image recognition
performance.

As described above, in this paper, I propose a statistical approach to speech synthesis and
image recognition based on HMMs, and they are evaluated in experiments.

Keywords: Speech synthesis, image recognition, hidden Markov model
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Abstract in Japanese

我々人間は，聴覚・視覚情報の伝達により他者とのコミュニケーションを行う．近
年では情報技術の発達により，人と人のコミュニケーションのみでなく，人とコン
ピュータによるコミュニケーションが実現可能となってきた．これにより，音声対
話システムや認証システムなど新たなサービスが開発されている．人とコンピュー
タのコミュニケーションを実現するためには，コンピュータが聴覚・視覚情報を解
釈する必要がある．聴覚情報を処理する技術として音声認識や音声合成が，視覚情
報を処理する技術として画像認識や画像合成が挙げられる．人とコンピュータの円
滑なコミュニュケーションのために，これらの技術の改善が求められている．

音声認識や音声合成の代表的な枠組みとして，隠れマルコフモデル (hidden Markov
model; HMM)を用いた手法が提案されている．HMMは，音声データのような時系
列のデータをモデル化するのに適しており，学習データに基づきパラメータを推定
する実現容易なアルゴリズムが存在，トポロジーを対象に応じて設計可能，現実的
な計算量で学習可能などの特徴がある．さらに，HMMを 2次元に拡張することで
画像データのような 2次元データもモデル化することができる．本論文では，円滑
な人とコンピュータのコニュニケーションを実現するために，HMMに基づく音声
合成と画像認識についての検討を行う．特に，少量の学習データから汎用性が高い
手法の構築することにより，コミュニケーションの幅を広げる．

音声合成においては，発音情報が未知の言語におけるテキスト音声合成システムの
構築法を提案する．世界には数千におよぶ書記言語が存在すると考えられており，あ
らゆる書記言語のテキスト音声合成 (text-to-speech; TTS) システムを構築すること
は，音声合成研究の 1つのゴールである．しかし，一般的なTTSシステム構築法は，
目的とする言語に関する専門的な知識を用いた人手による作業を必要とし，言語ご
とに高い構築コストがかかる．そこで，本論文では発音情報が未知である言語の音
声データとUnicodeテキストのみから構成されるデータベースから，言語に関する
専門的な知識を利用せずに TTSシステムを自動構築する手法について検討する．提
案法では，発音情報が未知であるターゲット言語の発音情報を代理言語の音声認識
により獲得する．そして，疑似発音情報に基づき書記素音素変換器と統計的音声合
成器を構築する．これにより，ターゲット言語固有の知識を利用することなく TTS
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システムを構築することが可能となる．

画像認識においては，ベイズ基準に基づく可変固有画像モデル (hidden Markov eigen-
image models; HMEM)を提案する．画像認識において，認識対象の位置や大きさな
どの幾何学的変動に対応可能な分離型格子HMMに固有画像のような主成分分析の
構造を組み込んだHMEMが提案されている．従来，HMEMの学習には尤度最大化
基準が用いられてきた．しかし，画像認識では十分な量の学習データを用いること
が困難である場合も多く，このような場合に，尤度最大化基準により HMEMのよ
うな複雑なモデル構造を学習すると過学習を起こす恐れがある．そこで，本論文で
は，ベイズ基準に基づく高精度なHMEMの学習を提案する．ベイズ基準は，事前情
報を事前分布として用いて事後分布を推定することにより過学習の緩和が期待でき
る．さらに，確定的アニーリング期待値最大化アルゴリズムを導入することで，初
期値に依存した局所最適解の問題を克服する．

以上のように，本論文では，人とコンピュータのコミュニケーションの実現のため
に，HMMに基づく高性能な音声合成システムと画像認識システムを構築するため
の統計的アプローチを提案し，評価実験により有効性を検証する．
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Chapter 1

Introduction

We human beings communicate with others by transmitting auditory and visual infor-
mation. Recently, since computer hardware and information technology have steadily
improved, not only communication between humans, but also communication between
humans and computers has become feasible. In consequence, new services such as spo-
ken dialogue system and biometrics authentication system have been developed. The
emergence of these services will enrich our lives.

In order to realize communication between humans and computers, the computer need to
interpret auditory and visual information. Speech recognition and speech synthesis are
used as techniques for processing auditory information, and image recognition and image
synthesis are used as techniques for processing visual information. Therefore, improve-
ments in these techniques are necessary for smooth communication between humans and
computers.

Hidden Markov models (HMM)-based speech recognition and speech synthesis have been
proposed as a standard framework for computers to process auditory information. HMMs
are one of widely used statistical models for representing time series by well-defined algo-
rithms. Additionally, two-dimensional data such as pixel values of image can be modeled
by extending the HMM to two dimensions. In this paper, I propose speech synthesis and
image recognition based on HMMs to realize smooth communication between humans
and computers. Especially, for widening the communication, I investigate highly versa-
tile construction methods from low-resource data.

For speech synthesis, I propose a method for constructing text-to-speech (TTS) systems
for languages with unknown pronunciations. A number of studies on TTS systems have
been conducted. Consequently, the quality of synthetic speech has improved, and TTS
systems are now used in various applications, such as in-car navigation, spoken dialogue,
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and speech translation systems. Accordingly, the demand for TTS systems offering high-
quality synthetic speech, various speaking styles, and various languages is increasing.
There are thousands of active written languages in the world [1]. Construction of a TTS
system for a new language leads to increased use of applications. TTS systems for low-
resource languages are in great demand because speech translation systems are very useful
applications for low-resource languages. However, conventional methods of constructing
corpus-based TTS systems for a new language not only require preparation of training
corpus but also require language-specific knowledge. Especially, to marshal language-
specific knowledge about pronunciation for each new language requires high cost. There-
fore, a goal of the speech synthesis research is to establish a language-independent frame-
work that can be used to construct TTS systems for any written language.

To construct a TTS system for a new language, it is necessary to marshal language-
dependent elements, e.g., to define a phoneset and linguistic features, such as accents
and parts-of-speech, for each language. However, doing so requires language-specific
knowledge. Therefore, a low language-dependency framework is needed in order to con-
struct TTS systems for new languages. In this study, I focus on automatic construction
of a TTS system without knowledge specific to the language with the unknown pronun-
ciation. I construct a TTS system from a database consisting of the only speech data and
Unicode [2] texts corresponding to speech data. The problem in this situation is that a
phoneset, phonetic information corresponding to speech data, and a lexicon do not exist.
To solve these phoneset and phonetic information problems, speech recognition is carried
out by using the speech recognizer of a rich-resource proxy language. Pseudo phoneme
sequences of the target language speech data are obtained from the speech recognition
results. An statistical parametric speech synthesis (SPSS)-based speech synthesizer of
the target language is then trained from speech data and pseudo phoneme sequence pairs.
To solve the lexicon problem, I train a grapheme-to-phoneme converter based on joint-
sequence models [3] from text and pseudo phoneme sequence pairs. The joint-sequence
model is a N -gram model that models a joint-sequence in which grapheme and phoneme
sequences are aligned. The model can estimate a phoneme sequence with the highest like-
lihood from a grapheme sequence. In addition, in order to improve quality of synthesized
speech, I propose improvement of the speech recognizer and estimation of the phoneme
sequence considering phoneme duration. With these processes, it becomes possible to
construct a TTS system automatically without specific knowledge on the target language.

For image recognition, I propose an image recognition method based on hidden Markov
eigen-image models (HMEMs) using a Bayesian framework. Image recognition is a tech-
nique for identifying objects in an image. Typical applications include biometrics authen-
tication, e.g., fingerprint and face, optical character recognition (OCR), and general ob-
ject recognition. As computer processing power increases, machine learning approaches
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based on statistical learning theory have been successfully applied in the field of image
recognition. Moreover, not only applying general statistical classifier, approaches consid-
ering the specific problems of image recognition, e.g., geometric variations such as size,
location, and rotation, image size variations, lighting conditions, object deformation, and
occlusion, have been actively studied.

Among the specific problems of image recognition, geometric variations of an object to
be recognized are a serious problem in image recognition. Therefore, much research work
has been conducted on this problem. These can broadly be divided into three approaches:
1) task-dependent normalization techniques, 2) local features, and 3) the integration of ge-
ometric invariants into model structures. For approach 3), HMM based techniques, which
integrate geometric invariants into model structures, have been proposed [4, 5]. Geo-
metric matching between input images and model parameters is represented by discrete
hidden variables and the normalization process is included in the calculation of proba-
bilities. However, the extension of HMMs to two dimensions for two-dimensional data,
e.g., pixel values of an image, generally leads to an exponential increase in the amount of
computation needed for training. To overcome this problem, several low computational
complexity HMM structures have been proposed [6–12]. Among them, separable lat-
tice HMMs (SL-HMMs) have been proposed to reduce computational complexity while
retaining outstanding properties that model two-dimensional data [12]. SL-HMMs can
perform elastic matching in both the horizontal and vertical directions, which makes it
possible to model not only invariances to the size and location of an object but also nonlin-
ear warping in both dimensions. Furthermore, some extensions to structures representing
typical geometric variations that are seen in many image recognition tasks have already
been proposed, e.g., a structure for rotational variations [13], a structure with multiple
horizontal and vertical Markov chains [14], and explicit state duration modeling [15]. By
selecting an appropriate model structure reflecting the data generation process for a target
task, human knowledge can effectively be utilized as prior information, and this makes it
possible to construct models with a small amount of training data. However, SL-HMMs
still have a limitation in their application to image recognition: observations are assumed
to be generated independently from corresponding HMM states. It is insufficient to repre-
sent variations in images, e.g., lighting conditions and object deformation. To overcome
this limitation, hidden Markov eigen-image models (HMEMs) have been proposed [16].
The basic idea of the HMEMs is that eigen-images [17, 18] are generated from an SL-
HMM. In the HMEM, the eigen-images are represented by probabilistic hidden variable
models, such as factor analysis (FA) [19–21] or probabilistic principal component anal-
ysis (PPCA) [22]. Therefore, HMEMs have the good properties of both SL-HMMs and
FA/PPCA: size and location invariant image recognition and a linear feature extraction
based on statistical analysis.
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In some image recognition tasks, only a small amount of training data is available, there-
fore efforts to achieve a high generalization ability are required. However, the training of
HMEMs easily falls into the over-fitting problem because HMEMs have a complex model
structure. Also, the maximum likelihood (ML) criterion has typically been used in train-
ing HMEMs [16]. Since the ML criterion produces a point estimate of model parameters,
the estimation accuracy may be degraded, especially when there is insufficient training
data. In this study, I focus on estimating HMEMs with a high generalization ability by
using the Bayesian criterion. The Bayesian criterion assumes that model parameters are
random variables, and a high generalization ability can be obtained by marginalizing all
model parameters in estimating predictive distributions. Moreover, the Bayesian criterion
can utilize prior distributions representing useful prior information on model parameters.
However, the Bayesian criterion requires complicated integral and expectation computa-
tions to obtain posterior distributions when models have hidden variables. To overcome
this problem, the variational Bayesian (VB) method [23] has been proposed as an approx-
imation method. Additionally, to alleviate the local maximum problem dependent on the
initial parameters, I apply the deterministic annealing expectation maximization (DAEM)
algorithm [24, 25] to the training of HMEMs using the VB method.

The rest of the paper is organized as follows. In Chapter 2, I explain basic theories of
HMMs. Chapter 3 shows constructing TTS systems for languages with unknown pro-
nunciations. Chapter 4 presents image recognition method based on HMEMs using a
Bayesian framework. Concluding remarks and future plans are presented in the final
chapter.
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Chapter 2

Hidden Markov models

2.1 Definition of hidden Markov models

An hidden Markov model (HMM) is a finite state machine which generates a sequence
of discrete time observations [26–28]. At each frame it changes states according to its
state transition probability distributions, and then generates an observation ot at frame t,
according to its output probability distribution of the current state. Therefore, the HMMs
are a doubly stochastic random process model.

The joint likelihood of observations o = {o1,o2, . . . ,oT} and hidden variables z =

{z1, z2, . . . , zT} can be written as:

P (o,z |Λ) = P (z |Λ)P (o |z,Λ) (2.1)

= P (z1 |Λ)
T∏
t=1

P (zt |zt−1,Λ)
T∏
t=1

P (o |zt,Λ), (2.2)

where Λ is a set of model parameters. The model parameters of HMMs are summarized
as follows:

Λ = {π,a, b}. (2.3)

1) π = {πk |1 ≤ k ≤ K}: an initial state probability distribution. Where K is
maximum HMM state. The probability of state k at t = 1 is represented by:

πk = P (z1 = k |Λ). (2.4)

2) a = {ak,k̄ |1 ≤ k, k̄ ≤ K}: a state transition probability matrix. The probability of
moving from state k to state k̄ is represented by:

ak,k̄ = P (zt = k̄ |zt−1 = k,Λ). (2.5)
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3) b = {bk(ot) |1 ≤ k ≤ K}: an output probability distribution. The probability of an
observation ot being generated from a state k is represented by bk(ot) = P (ot |zt =

k,Λ). In continuous distribution HMMs, each output probability distribution is
modeled by a gaussian mixture model [29] as follows:

bk (ot) =
M∑

m=1

wk,mN
(
ot |µk,m,Σk,m

)
, (2.6)

where M is the number of Gaussian component and wk,m, µk,m, and Σk,m respec-
tively denote the Gaussian component (mixture) weight, mean vector, and covari-
ance matrix of the m-th mixture of the k-th state. Each Gaussian component is
defined by

N
(
ot |µk,m,Σk,m

)
=

1√
(2π)D |Σk,m|

exp

[
−1

2

(
ot − µk,m

)⊤
Σ−1

k,m

(
ot − µk,m

)]
, (2.7)

where symbol⊤means transpose of vector or matrix andD is the dimensionality of
an observation vector ot. For each state, mixture weight {wk,m}Mm=1 should satisfy
that:

M∑
m=1

wk,m = 1, 1 ≤ k ≤ K (2.8)

wk,m ≥ 0,
1 ≤ k ≤ K
1 ≤ m ≤M

(2.9)

so that {bk (·)}Kk=1 are properly normalized, i.e.:∫
RD

bk (ot) dot = 1. 1 ≤ k ≤ K (2.10)

Figures 2.1 and 2.2 show the model structure and graphical model representation of
HMMs. Figure 2.1 shows a 3-state left-to-right model, in which the state increases or
stays the same state as frame increases. In Figure 2.2, circles represent random variables,
clear means hidden, and shaded means observed. The left-to-right HMMs are generally
used to model speech parameter sequences, since they can appropriately model signals.

The total output probability of the observation vector sequence from the HMM is calcu-
lated by marginalizing Eq. (2.2) over all possible state sequences,

P (o |Λ) =
∑
z

[
P (z1 |Λ)

T∏
t=1

P (zt |zt−1,Λ)
T∏
t=1

P (o |zt,Λ)

]
. (2.11)
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a1,1 a2,2 a3,3

a1,2 a2,3π1

b1(ot) b2(ot) b3(ot)

o1 o2 oT

Figure 2.1: Model structure of HMMs.

o1 o2 oT

z1 z2 zT

Figure 2.2: Graphical model representation of HMMs.

The order of 2T · KT calculation is required, since at every t = 1, 2, . . . , T there are
K possible states that can be reached (i.e., there are KT possible state sequences). This
calculation is computationally infeasible, even for small values of K and T ; e.g., for K =

5, T = 100, there are on the order of 2 ·100 ·5100 ≈ 1072 computations. Fortunately, there
is an efficient algorithm to calculate Eq. (2.11) using forward and backward procedures.

2.2 Forward-backward algorithm

The forward-backward algorithm is generally used to calculate P (o |Λ), which is the
probability of the observation sequence o given the model Λ. If I directly calculate
P (o |Λ), it requires on the order of 2T · KT calculation. The detail of the forward-
backward algorithm is described in the following part.
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The probability of a partial observation vector sequence from frame 1 to t and the k-th
state at frame t, given the HMM Λ is defined as:

αt(k) = P (o1,o2, . . . ,ot, zt = k |Λ) . (2.12)

αt (k) is calculated recursively as follows:

1. Initialization
α1(k) = πkbk (o1) , 1 ≤ k ≤ K (2.13)

2. Recursion

αt(k̄) =
K∑
k=1

αt−1(k)ak,k̄bk (ot) ,
1 ≤ k̄ ≤ K
2 ≤ t ≤ T

(2.14)

3. Termination

P (o |Λ) =
K∑
k=1

αT (k). (2.15)

As the same way as the forward algorithm, backward variables βt(k) are defined as

βt(k) = P (ot+1,ot+2, . . . ,oT |zt = k,Λ) , (2.16)

that is, the probability of a partial vector observation sequence from frame t to T , given
the k-th state at frame t and the HMM Λ. The backward variables can also be calculated
in a recursive manner as follows:

1. Initialization
βT (k) = 1, 1 ≤ k ≤ K (2.17)

2. Recursion

βt(k) =
K∑
k̄=1

ak,k̄bk (ot+1) βt+1(k̄),
1 ≤ k ≤ K
1 ≤ t ≤ T − 1

(2.18)

3. Termination

P (o |Λ) =
K∑
k=1

β1(k). (2.19)

The forward and backward variables can be used to compute the total output probability
as follows:

P (o |Λ) =
K∑
k̄=1

αt(k̄)βt(k̄). 1 ≤ t ≤ T (2.20)
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In the case of the forward algorithm, at frame t = 1, We need to calculate values of α1(k),
1 ≤ k ≤ K. At frames 2 ≤ t ≤ T , We need only calculate values of αt(k̄), 1 ≤ k̄ ≤ K,
where each calculation involves only the K previous values of αt−1(k) because each of
the K grid points can be reached from only the K grid points at the previous frame slot.
As a result, the forward-backward algorithm can reduce order of probability calculation.

2.3 Viterbi algorithm

The single optimal state sequence ẑ = {ẑ1, ẑ2, . . . , ẑT} for a given observation vector
sequence o = {o1,o2, . . . ,oT} is useful for various applications (e.g., decoding, initial-
izing HMM parameters). By using a manner similar to the forward algorithm, which is
often referred to as the Viterbi algorithm [30], the optimal state sequence ẑ can be ob-
tained. Let δt (k) be the likelihood of the most likely state sequence ending in the k-th
state at frame t

δt(k) = max
z1,...,zt−1

P (o1,o2, . . . ,ot, z1, . . . , zt−1, zt = k |Λ) , (2.21)

and ψt (k) be the array to keep track. The complete procedure for finding the optimal state
sequence can be written as follows:

1. Initialization

δ1 (k) = πkbk (o1) , 1 ≤ k ≤ K (2.22)

ψ1 (k) = 0, 1 ≤ k ≤ K (2.23)

2. Recursion

δt
(
k̄
)
= max

k

[
δt−1 (k) ak,k̄bk (ot)

]
,

1 ≤ k ≤ K
2 ≤ t ≤ T

(2.24)

ψt

(
k̄
)
= argmax

k

[
δt−1 (k) ak,k̄bk (ot)

]
,

1 ≤ k ≤ K
2 ≤ t ≤ T

(2.25)

3. Termination

δT (K) = max
k

[δT (k)] , (2.26)

ẑT = argmax
k

[δT (k)] , (2.27)
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4. Back tracking

ẑt = ψt+1 (ẑt+1) . 1 ≤ t ≤ T − 1 (2.28)

It should be noted that the Viterbi algorithm is similar to the forward calculation of
Eqs. (2.13)–(2.15). The major difference is the maximization in Eq. (2.24) over previ-
ous states, which is used in place of the summation in Eq. (2.14). It also should be clear
that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.4 Expectation-maximization algorithm

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion to obtain Λ which maximizes its likelihood P (o |Λ)

for a given observation sequence o, in a closed form. Since this problem is a high dimen-
sional nonlinear optimization problem, and there will be a number of local maxima, it is
difficult to obtain Λ which globally maximizes P (o |Λ). However, the model parameter
set Λ locally maximizes P (o |Λ) can be obtained using an iterative procedure such as
the expectation-maximization (EM) algorithm [31], and the obtained parameter set will
be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the continuous distribution HMM is described.
The algorithm for the HMM with discrete output distributions can also be derived in a
straightforward manner.

2.4.1 EM algorithm for HMMs

Since HMMs have hidden variables z, it is difficult to obtain an analytic solution to like-
lihood P (o |Λ). The parameters of HMMs can be estimated via the EM algorithm [31],
which is an iterative procedure. This procedure maximizes the expectation of the complete-
data log-likelihood so-called Q-function:

Q(Λ,Λ(old)) =
∑
z

P (z |o,Λ(old)) lnP (o,z |Λ), (2.29)

where Λ(old) denotes the current parameters. Each Gaussian component is decomposed
into a sub-state, and z is redefined as a sub-state sequence,

z = {(z1, s1) , (z2, s2) , . . . , (zT , sT )} , (2.30)
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where (zt, st) represents being in the st-th sub-state of the zt-th state at frame t.

The likelihood of the training data is guaranteed to increase by increasing the value of
the Q-function. The EM algorithm starts with some initial model parameters Λ(old) and
iterates between the following two steps.

(E-step): compute Q(Λ,Λ(old))

(M-step): Λ(new) = argmax
Λ
Q(Λ,Λ(old))

The E-step computes the posterior probabilities of the hidden variables P (z |o,Λ(old))

while keeping model parameters Λ(old) fixed to current values. Then, the Q-function is
computed by using P (z |o,Λ(old)). The M-step estimates the re-estimation parameters
Λ(new) by maximizing the Q-function. These steps are iterated until convergence of the
log-likelihood by replacing Λ(old) ← Λ(new). By maximizing theQ-function with respect
to model parameter Λ, the re-estimation parameters Λ(new) in the M-step can be easily
derived. By contrast, the calculation of the posterior probabilities P (z |o,Λ(old)) in the
E-step is computationally intractable due to the combination of hidden variables.

2.4.2 Update model parameters

According to Eqs. (2.2) and (2.6), the joint likelihood of observations and hidden variables
lnP (o,z |Λ) can be written as:

lnP (o,z |Λ) = lnP (z |Λ) + lnP (o |z,Λ) , (2.31)

lnP (z |Λ) = ln πz1 +
T∑
t=2

ln azt−1,zt , (2.32)

lnP (o |z,Λ) =
T∑
t=1

lnwzt,st +
T∑
t=1

lnN
(
ot |µzt,st ,Σzt,st

)
. (2.33)
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Therefore, Q-function (Eq. (2.29)) can be rewritten as:

Q(Λ,Λ(old)) =
K∑
k=1

P (o, z1 = k |Λ) ln πk

+
K∑
k=1

K∑
k̄=1

T−1∑
t=1

P
(
o, zt−1 = k, zt = k̄

)
ln ak,k̄

+
K∑
k=1

M∑
m=1

T∑
t=1

P (o, zt = k, st = m |Λ) lnwk,m

+
K∑
k=1

M∑
m=1

T∑
t=1

P (o, zt = k, st = m |Λ) lnN
(
ot |µk,m,Σk,m

)
.

(2.34)

The set of HMM model parameters Λ which maximizes the above equation subject to the
stochastic constraints

K∑
k=1

πi = 1, (2.35)

K∑
k̄=1

ak,k̄ = 1, 1 ≤ k ≤ K (2.36)

M∑
m=1

wk,m = 1, 1 ≤ k ≤ K (2.37)

wk,m ≥ 0,
1 ≤ k ≤ K
1 ≤ m ≤M

(2.38)
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can be derived by using Lagrange multipliers as follows [32]:

πk = γ1(k), 1 ≤ k ≤ K (2.39)

ak,k̄ =

T∑
t=2

ξt(k, k̄)

T∑
t=2

γt(k)

,
1 ≤ k ≤ K
1 ≤ k̄ ≤ K

(2.40)

wk,m =

T∑
t=1

γt(k,m)

T∑
t=1

γt(k)

,
1 ≤ k ≤ K
1 ≤ m ≤M

(2.41)

µk,m =

T∑
t=1

γt(k,m)ot

T∑
t=1

γt(k,m)

,
1 ≤ k ≤ K
1 ≤ m ≤M

(2.42)

Σk,m =

T∑
t=1

γt(k,m)
(
ot − µk,m

) (
ot − µk,m

)⊤
T∑
t=1

γt(k,m)

,
1 ≤ k ≤ K
1 ≤ m ≤M

(2.43)

where γt(k) denotes the probability of being in the k-th state at frame t, γt(k,m) denotes
the probability of being in the m-th sub-state of the k-th state at frame t, and ξt

(
k, k̄
)

denotes the probability of being in the k-th state at frame t − 1 and k̄-th state at frame t
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that is

γt (k) = P (o, zt = k |Λ)

=
αt(k)β(k)

K∑
k′=1

αt(k
′)βt(k

′)

,
1 ≤ k ≤ K
1 ≤ t ≤ T

(2.44)

γt (k,m) = P (o, zt = k, st = m |Λ)

=
αt(k)β(k)

K∑
k′=1

αt(k
′)βt(k

′)

wk,mN
(
ot |µk,m,Σk,m

)
M∑

m′=1

wk,m′N
(
ot |µk,m′ ,Σk,m′

) ,
1 ≤ k ≤ K
1 ≤ m ≤M
1 ≤ t ≤ T

(2.45)

ξt(k, k̄) = P
(
o, zt−1 = k, zt = k̄ |Λ

)
=

αt(k)ak,k̄bk̄ (ot+1) βt+1(k̄)
K∑

k′=1

K∑
k̄′=1

αt(k
′)ak′,k̄′bk̄′ (ot+1) βt+1(k̄

′)

.
1 ≤ k, k̄ ≤ K
1 ≤ t ≤ T

(2.46)
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Chapter 3

Constructing text-to-speech systems for
languages with unknown
pronunciations

3.1 Background

A number of studies on text-to-speech (TTS) systems have been conducted. Conse-
quently, the quality of synthetic speech has improved, and TTS systems are now used
in various applications, such as in-car navigation, spoken dialogue, and speech transla-
tion systems. Accordingly, the demand for TTS systems offering high-quality synthetic
speech, various speaking styles, and various languages is increasing. There are thousands
of active written languages in the world [1]. Construction of a TTS system for a new lan-
guage leads to increased use of applications. TTS systems for low-resource languages are
in great demand because speech translation systems are very useful applications for low-
resource languages. However, conventional methods of constructing corpus-based TTS
systems for a new language not only require preparation of training corpus but also re-
quire language-specific knowledge. Especially, to marshal language-specific knowledge
about pronunciation for each new language requires high cost. Therefore, a goal of the
speech synthesis research is to establish a language-independent framework that can be
used to construct TTS systems for any written language.

TTS systems can be examined as a text-to-speech mapping problem. Phoneme, the sim-
plest abstract class of speech sounds, is a widely used intermediate representation for map-
ping. Thus, TTS systems have two main components: text analysis (text-to-phoneme) and
speech waveform generation (phoneme-to-speech). In the text analysis part, a phoneme
of an input text is estimated by using a lexicon which contains phonetic information. Ad-
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ditionally, some phonetic contextual factors, e.g., accents and parts-of-speech, are also
estimated. These phoneme and phonetic contextual factors are used linguistic features.
Since this part is highly dependent on the target language, it is costly to construct a TTS
system for someone not familiar with the target language. In the speech waveform gen-
eration part, a speech waveform is generated from the linguistic features estimated by the
text analysis part. Corpus-based speech synthesis approaches such as unit-selection [33]
and statistical parametric speech synthesis (SPSS) have been proposed for the speech
waveform generation part. SPSS, e.g., hidden Markov model (HMM)- and deep neural
network (DNN)-based speech synthesis [34, 35], has been actively researched and the
quality of synthetic speech has greatly improved. An SPSS system has several advan-
tages: 1) within its statistical training framework, it can train the statistical properties of
speakers, speaking styles, emotions, etc. from a training corpus; 2) many techniques that
were developed for HMM/DNN-based speech recognition can be applied to speech syn-
thesis; and 3) multiple languages can easily be supported because the language-dependent
element is the only set of linguistic features to be used.

To construct a TTS system for a new language, it is necessary to marshal language-
dependent elements, e.g., to define a phoneset and linguistic features, such as accents
and parts-of-speech, for each language. However, doing so requires language-specific
knowledge. Therefore, a low language-dependency framework is needed in order to con-
struct TTS systems for new languages. In this study, I focus on automatic construction
of a TTS system without knowledge specific to the language with the unknown pronun-
ciation. I construct a TTS system from a database consisting of the only speech data and
Unicode [2] texts corresponding to speech data. The problem in this situation is that a
phoneset, phonetic information corresponding to speech data, and a lexicon do not exist.
To solve these phoneset and phonetic information problems, speech recognition is carried
out by using the speech recognizer of a rich-resource proxy language. Pseudo phoneme
sequences of the target language speech data are obtained from the speech recognition
results. An SPSS-based speech synthesizer of the target language is then trained from
speech data and pseudo phoneme sequence pairs. To solve the lexicon problem, I train a
grapheme-to-phoneme converter based on joint-sequence models [3] from text and pseudo
phoneme sequence pairs. The joint-sequence model is a N -gram model that models a
joint-sequence in which grapheme and phoneme sequences are aligned. The model can
estimate a phoneme sequence with the highest likelihood from a grapheme sequence. In
addition, in order to improve quality of synthesized speech, I propose improvement of the
speech recognizer and estimation of the phoneme sequence considering phoneme dura-
tion. With these processes, it becomes possible to construct a TTS system automatically
without specific knowledge on the target language.

In another way to address language-dependency, several low language-dependency frame-
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works have been proposed [36–38]. Grapheme-based speech synthesis treat every sin-
gle graphemes as separate phoneme [36, 37]. Methods of constructing a TTS system
based on UniTran [37], a transliteration framework to convert Unicode text into a guessed
phoneme [39], and vector space models (VSMs) [38] have also been proposed. Unlike
these low language-dependency methods, the proposed method can utilize the obtained
pseudo phonetic information by the speech recognizer of a proxy language. Therefore,
not only grapheme information but also phonetic information can be utilized to construct
TTS systems in the proposed method.

I applied the proposed method to Japanese. The results of objective and subjective ex-
periments are discussed and the impacts of components are analyzed. Comparing the
proposed and grapheme-based TTS system, a subjective preference test was conducted.
Additionally, I challenged the construction of TTS systems for nine Indian languages
(Assamese, Bengali, Gujarati, Hindi, Malayalam, Marathi, Rajasthani, Tamil, and Tel-
ugu) using the proposed method in the Blizzard Challenge 2014 and 2015 [40, 41]. The
results of the Blizzard Challenge 2015 were shown that the proposed TTS system was
more natural sounding than the baseline TTS system for many languages.

3.2 HMM-based speech synthesis

A text-to-speech (TTS) system generates intelligible, natural-sounding artificial speech
for a given input text. One of the major approaches in the TTS system is statistical para-
metric speech synthesis (SPSS) [42]. SPSS is a means of “mapping” (i.e., representing a
map) of speech waveforms from text on the basis of a statistical model. However, a sta-
tistical model for directly predicting a speech waveform from text is difficult to construct.
Accordingly, mapping a speech waveform from text can be divided into two steps: text
analysis and speech waveform generation parts. Good examples of architectures suitable
for modeling time-series data are available for acoustic modeling, and efficient training
algorithms have been developed. For those reasons, HMMs are widely utilized, and SPSS
based on HMMs (called “HMM-based speech synthesis”) have become widely used as a
standard speech-synthesis technique [34].

Figure 3.1 shows overview of the HMM-based speech synthesis system [43]. HMM-
based speech synthesis system consists of training and synthesis parts. In the training part,
context-dependent label sequences are estimated from text. Additionally, spectrum and
excitation parameters are extracted from speech waveforms. These parameters are mod-
eled by context-dependent HMMs. In the synthesis part, a sentence HMM is constructed
by concatenating the context-dependent HMMs from a given text to be synthesized. The
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Figure 3.1: An overview of a typical HMM-based speech synthesis system.

sequences of spectrum and excitation parameters are generated from the sentence HMM
using speech parameter generation algorithm [44–46]. Finally, speech waveform is syn-
thesized from a synthesis filter module.
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3.3 Text-to-speech system construction

3.3.1 Language-dependent text-to-speech system construction

Phonemes are widely used by text-to-speech (TTS) systems as intermediate representa-
tions for mapping a text to speech. The following language-dependent operations are
needed in order to construct a TTS system of a new language.

• Define a phoneset and linguistic features.

• Construct a lexicon or grapheme-to-phoneme converter for the text analysis part.

Normally, the phoneset is defined based on the phonology of the target language. Lin-
guistic features are designed based on pronunciation information obtained from texts of
each language. Additionally, the lexicon for converting from graphemes to phonemes is
manually created.

3.3.2 Constructing a text-to-speech system for a language with an
unknown pronunciation

In this paper, I propose a method for constructing TTS systems that uses a target language
database consisting of speech data and Unicode texts corresponding to speech data. In the
case of an unknown-pronunciation language, it is difficult to define a phoneset and even
more difficult to construct a hand-made lexicon, because they require manual operations
used language-specific knowledge. Furthermore, it is hard to obtain a phoneme sequence
corresponding to the speech data. To solve these problems, a speech recognizer of a rich-
resource proxy language, e.g., English, for the target language can be used for automatic
acquisition of phoneme sequences. The phoneset of the proxy language speech recognizer
is then used as the phoneset of the target language. Although the phoneset is different
from the appropriate phoneset of the target language, similar phonemes are assigned to
speech data in this approach. To overcome the lexicon problem, a grapheme-to-phoneme
converter based on a statistical model is used instead of a hand-made lexicon. In this way,
entire TTS systems can be constructed within a statistical framework.

Figure 3.2 shows an overview of the proposed TTS system construction method for a
language with an unknown pronunciation. This method consists of a speech recognizer
(SR), word aligner (WA), grapheme-to-phoneme converter (G2P), and speech synthesizer
(SS). The details of each component are described in the following sections.
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Figure 3.2: Overview of the proposed TTS system construction method for a lan-
guage with an unknown pronunciation (PL-SI-SR: proxy language speaker-independent
speech recognizer, SD-SR: speaker-dependent speech recognizer, WA: word aligner, G2P:
grapheme-to-phoneme converter, SS: speech synthesizer).

Speech recognizer (SR)

In the case of SPSS, phoneme sequences corresponding to the speech data are necessary
for acoustic modeling. To obtain phoneme sequences, speech recognition is carried out
by using a proxy language speaker-independent SR (PL-SI-SR). For the target language
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recognition, a lexicon and language model are not used, and a phoneme network is de-
signed so that each phoneme connects to every phoneme. In this way, the PL-SI-SR can
work without being affected by a proxy-language-dependent phoneme sequence.

Since the accuracy of the phoneme sequences affects the latter components, i.e., the WA,
G2P, and SS, it is important to estimate phoneme sequences accurately. To do so, a
speaker-dependent SR (SD-SR) is constructed from initial phoneme sequences obtained
by the PL-SI-SR. Furthermore, the phoneme sequence estimation and SD-SR training are
iterated in order to adapt an acoustic model to training data. These iterations are acoustic-
driven unsupervised training of speech units that uses the phoneset of the proxy language
as an initial value.

Modeling of phoneme durations is important component for the SS. It is expected that
phoneme sequences that are suitable for the SS can be obtained by taking account of
phoneme duration. However, a hidden Markov model (HMM)-based SR has trouble ac-
counting for phoneme duration because an HMM does not have explicit state duration in-
formation. Therefore, phoneme sequences are rescored using an alignment likelihood of a
hidden semi-Markov model (HSMM) that has explicit state duration probability distribu-
tions. The phoneme sequence with the highest HSMM alignment likelihood in theN -best
hypotheses of the HMM speech recognition result is selected as the pseudo phoneme se-
quence corresponding to the speech data.

Word aligner (WA)

Since many languages, e.g., English and Spanish, are written with spaces between words,
a word-level G2P is suitable for the text analysis part. Furthermore, word boundary infor-
mation is useful as linguistic features of the SS. However, a phoneme sequence obtained
by the SR does not include word boundaries. Therefore, I construct a WA based on a
joint-sequence model [3] for estimating word boundaries.

The optimal grapheme and phoneme pair alignment ŵ is estimated as follows:

ŵ = arg max
w∈W

P (w). (3.1)

Here, w is a alignment of grapheme and phoneme pairs and W denotes the set of align-
ments of all possibly different grapheme and phoneme pairs. The parameters of the joint-
sequence models are estimated by using the expectation-maximization (EM) algorithm.
Pairs of texts with word boundaries and phoneme sequences obtained by the speech recog-
nition are used for training. The WA is trained by providing a constraint condition such
that a pause in the recognition results must be a word boundary. The Viterbi algorithm
is used to align the grapheme and phoneme pairs. The word boundary of the phoneme
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sequence are estimated by the phoneme corresponding to the grapheme with the word
boundary.

Grapheme-to-phoneme converter (G2P)

To synthesize an arbitrary text, an input text needs to be converted into a phoneme se-
quence. However, in a language with an unknown pronunciation, it is difficult to construct
a hand-made lexicon for converting input texts into phonemes. To overcome this problem,
a G2P based on a joint-sequence model [3] is used instead of a hand-made lexicon. The
G2P is trained from word-level pairs of text and phoneme sequences obtained by the SR
and WA.

Insertion of appropriate pauses is important for natural synthesized speech. To estimate
pauses by the G2P, word-level phoneme sequences of training data contain pauses in the
speech recognition results. This makes it possible to estimate pauses when converting a
phoneme sequence by the G2P.

Speech synthesizer (SS)

In the case of SPSS, context-dependent models are used to capture a variety of phonetic
contextual factors. To generate naturally sounding synthesized speech, appropriate pho-
netic contextual factors (linguistic features) need to be defined. Here, I can use linguistic
features of phoneme, syllable, word, phrase, and utterance. The details of these hierarchi-
cal linguistic features are as follows.

• Phoneme:

– the current phoneme;

– preceding and succeeding two phonemes;

– the position of the current phoneme within the current syllable.

• Syllable:

– the number of phonemes within preceding, current, and succeeding syllables;

– the position of the current syllable within the current word and phrase;

– the vowel identity within the current syllable.

• Word:
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– the number of syllables within preceding, current, and succeeding words;

– the position of the current word within the current phrase.

• Phrase:

– the number of syllables and words within preceding, current, and succeeding
phrases;

– the position of the current phrase within the utterance.

• Utterance:

– the number of syllables, words, and phrases in the utterance.

A linguistic feature related to phoneme is obtained by the results of the SR. A syllable
which is normally defined as C∗V C∗ is useful as linguistic features of the SS. Here, C is
a consonant, V is a vowel, and C∗ indicates there may be none or more consonants. The
consonant or vowel of a phoneme is dependent on the phoneset of the language used in
the PL-SI-SR. A linguistic feature related to word is obtained by the results of the WA.
A pause in the speech recognition results is defined as a phrase boundary. The SS can be
constructed using the same procedure as the standard one from speech data and linguistic
features corresponding to speech data.

3.4 Experimental conditions

3.4.1 Target language database conditions

Objective and subjective experiments were conducted to evaluate the effectiveness of the
proposed method. Since I can easily gather Japanese native subjects, listening tests for
Japanese synthesized speech are desirable. Thus, Japanese was chosen as the target lan-
guage. Of the 503 phonetically balanced sentences in the ATR Japanese speech database
B-set [47] that were uttered by a male speaker MHT, 450 sentences were used for training
and the remaining 53 sentences were used for testing.

Since there are a large number of graphemes in Japanese, e.g., hiragana, katakana, romaji,
and kanji, a large amount of training data is needed to construct a G2P. Katakana, romaji
and kanji can be represented by using hiragana in Japanese. Only hiragana was used as
the graphemes in the experiments. Furthermore, assuming languages written with spaces
between words, e.g., English and Spanish, a bunsetsu boundary which is a boundary of
basic grammatical unit in Japanese was assumed as a word boundary in linguistic features.
Table 3.1 shows an example of Japanese text for the experiments.
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Table 3.1: Example of Japanese text in the experiment.

Original Japanese text テレビゲームやパソコンでゲームをして遊ぶ
Japanese text てれびげーむや　ぱそこんで　げーむを　して　あそぶ

for the experiment

3.4.2 Speech recognizer conditions

An English SI-SR was used as the PL-SI-SR. The CMU pronunciation dictionary [48]
and the WSJ0, WSJ1 [49], and TIMIT [50] databases were used to train the English SI-
SR. The phoneset of English SI-SR has 40 phonemes. Speech signals were sampled at
a rate of 16 kHz and windowed by a 25-ms Hamming window with a 10-ms shift. The
acoustic feature vector consisted of 39 components comprised of 12-dimensional mel-
frequency cepstral coefficients (MFCCs) including the 0th energy coefficient with the
first- and second-order derivatives. A triphone three-state left-to-right Gaussian mixture
model (GMM)-HMM without skip transitions was used as an acoustic model. The trained
GMMs had 32 mixtures for pause and 16 mixtures for the other phonemes. The HTK [51]
was used to construct the SR. The training procedures and model structures were the same
as that of the HTK Wall Street Journal Training Recipe [52].

To consider phoneme duration, a five-state left-to-right monophone multi-stream multi-
space probability distribution (MSD)-HSMMs [42,43,46,53] without skip transitions was
trained from the TIMIT database. The other model structure and acoustic feature vector
were the same as the SS.

3.4.3 Word aligner and grapheme-to-phoneme convert conditions

A joint-sequence model based WA was constructed from texts with word boundary and
phoneme sequences without word boundary. The WA considered the context independent
joint uni-gram.

A G2P based on the joint-sequence model was constructed from word-level pairs of text
and phoneme sequence obtained by the SR and WA. As a result of a preliminary experi-
ment, a joint eight-gram was used for the G2P structure. The G2P was trained by using
the Sequitur G2P [54].
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3.4.4 Speech synthesizer conditions

The speech signals were sampled at 16 kHz and windowed with a fundamental frequency
(F0)-adaptive Gaussian window with a 5-ms shift. The acoustic feature vectors were
comprised of 183 dimensions: 39-dimension STRAIGHT [55] mel-cepstral coefficients
including the 0th coefficient, log F0, 19-dimension mel-cepstral analysis aperiodicity
measures including the 0th coefficient, and their first- and second-order derivatives. A
five-state left-to-right context-dependent multi-stream MSD-HSMMs [42, 43, 46, 53, 56]
without skip transitions was used as the acoustic model. Each state output distribution
was composed of a spectrum, F0, and aperiodicity streams. The spectrum and aperiodic-
ity streams were modeled using single multi-variate Gaussian distributions with diagonal
covariance matrices. The F0 stream was modeled using an MSD consisting of a Gaussian
distribution for voiced frames and a discrete distribution for unvoiced frames. State dura-
tions were modeled using a 1-dimensional Gaussian distribution. A parameter generation
algorithm considering the global variance (GV) was applied [57]. The HTS [58] was used
for constructing the SS.

A syllable is normally defined as C∗V C∗ in the phonology. However, it is difficult to
construct a language-independent method for estimating syllables. Therefore, in this ex-
periment, a syllable is defined as C∗V assuming a Japanese mora which is basically one
hiragana grapheme.

3.5 Experimental results

3.5.1 Effect of speech recognizer

First, the effect of SR was experimentally evaluated. In the proposed method, speech
recognition results affect components in the latter part. Therefore, the phoneme sequences
obtained from the SR have a big impact on the quality of the synthetic speech.

To objectively evaluate the effect of rescoring using HSMM alignment likelihood, mel-
cepstral distortions (MCDs) were calculated [59]. The PL-SI-SR (English SI-SR) was
used to estimate pseudo phoneme sequences. Table 3.2 shows the results of MCDs in
open data. 1-best system did not apply HSMM-based rescoring process, i.e., speech
recognition results with HMMs were used as the phoneme sequences of the training data.
On the other hand, 50-best system rescored the 50-best hypotheses, which were obtained
from HMM-based speech recognition system, using the HSMM alignment likelihoods.
From Table 3.2, since 50-best system achieved lower average MCD than 1-best sys-
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Table 3.2: MCD for synthesized speech obtained various insertion penalty in 1-best and
50-best.

MCD [dB]
Insertion penalty 1-best 50-best

−25 6.27 6.26
−20 6.28 6.22
−15 6.33 6.20
−10 6.27 6.27
−5 6.36 6.22
0 6.32 6.37

Average 6.31 6.26

tem, the effectiveness of rescoring using HSMM alignment likelihood was confirmed.
Consequently, 50-best system was used to estimate phoneme sequences in the following
experiments.

The effects of the phoneme insertion penalty and the number of iterations of training
and recognition were investigated. A speech recognition score is calculated by using an
acoustic model likelihood and a phoneme insertion penalty. The acoustic model likeli-
hood tends to increase with a sequence of multiple short phonemes. The phoneme in-
sertion penalty is a penalty parameter to control the number of phonemes included in
speech recognition results. Figure 3.3 shows the average number of phonemes per sen-
tence in each system. In Figure 3.3, PL-SI-SR means systems using phoneme sequences
obtained by the English SI-SR, SD-SR i means systems using phoneme sequences ob-
tained by the SD-SR (i denotes iteration count), and IP p means the phoneme insertion
penalty (p denotes value of phoneme insertion penalty). It is confirmed that the number
of phonemes was influenced by the phoneme insertion penalty. The average number of
phonemes increased with each iteration i. In the proposed method, since the acoustic
model was adapted to training data by iterations of training and recognition, the acoustic
model likelihood increased with each iteration. Therefore, the influence of the phoneme
insertion penalty relatively decreased and the average number of phonemes increased.

To objectively evaluate the effect of the phoneme insertion penalty and the number of
iterations of training and recognition, MCDs were calculated. Figure 3.4 shows the results
of MCDs in closed and open data. It can actually be seen in Figure 3.4 that SD-SR i

systems achieved significantly lower MCDs than the PL-SI-SR system. For the SD-SR i

systems, MCD decreased as the number of iterations i increased. Despite the convergence
of the MCDs in the closed data, the MCDs of the SD-SR 6 systems became higher than

26



 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

PL-SI-SR

SD-SR_1

SD-SR_2

SD-SR_3

SD-SR_4

SD-SR_5

SD-SR_6

A
v

er
ag

e 
n

u
m

b
er

 o
f 

p
h

o
n

em
es

 p
er

 s
en

te
n

ce

IP_0
IP_–5

IP_–10
IP_–15

IP_–20
IP_–25
Correct

Figure 3.3: Average number of phonemes per sentence in the training data. Correct means
correct average number of phonemes using Japanese phoneset.

those of the SD-SR 5 systems in the open data. This is because the SD-SR 6 systems had
an overfitting problem.

A five-point mean opinion score (MOS) listening test with SD-SR 5 having various in-
sertion penalties was conducted in order to subjectively evaluate the naturalness of the
synthesized speech. The subjects were ten Japanese students in our research group. All
experiments were carried out using headphones in a soundproof room. For comparison,
20 sentences were chosen at random from the 53 test sentences. Speech samples were
presented in random order for each test sentence. The scale of naturalness ran from 5 for
“completely natural” to 1 for “completely unnatural” in the MOS test. The results of the
MOS listening test are depicted in Figure 3.5. It can be seen from the figure that IP −15
performed best. From Figure 3.3, the number of phonemes in IP −15 was larger than
the correct number of phonemes using the Japanese phoneset. These results suggest that
the proposed system compensated for the differences in the phoneset by acoustic-driven
short speech units. However, IP −10, IP −5, and IP 0 did not obtain a higher MOS
than the system IP −15, though these systems included the large number of phonemes.
Therefore, appropriate setting of phoneme insertion penalty is required to obtain high nat-
ural speech. Table 3.3 shows an example of phoneme sequences with word boundaries in
training data obtained by SD-SR 5 systems.
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Table 3.4: Subjective preference scores.

Grapheme E-SI-SR Neutral p-value
41.5 % 57.0 % 1.5 % 0.0325

It is confirmed that the pseudo phoneme sequence of the system with little influence of
phoneme insertion penalty, such as IP 0 and IP −5, was composed of acoustic-driven
short speech units. In addition, it can be seen that IP −20, IP −10, and IP 0 contained
errors in second word boundary in the example.

3.5.2 Comparing the proposed and grapheme-based systems

Grapheme-based speech synthesis system is often used as a baseline system for language-
independent methods. Comparing the proposed and grapheme-based systems, a subjec-
tive preference listening test was conducted. The condition of preference listening test
was the same as the MOS test. Table 3.4 shows the preference test result. Grapheme
means a system which uses graphemes as speech unit instead of phonemes, and E-SI-SR
means a system using the 50-best, SD-SR 5, and IP −15 in Section 3.5.1 It can be seen
from Table 3.4 that E-SI-SR was preferred to Grapheme. For this reason, the proposed
method (E-SI-SR) may be useful for constructing a TTS system of a language with an un-
known pronunciation without using language-specific knowledge. Since mappings from
grapheme to phoneme are mostly unique in Japanese hiragana, Grapheme was able to
synthesize speech with small pronunciation errors. In a language in which it is difficult to
map from grapheme to phoneme, the proposed method is more expected to improve the
performance compared to Grapheme.

3.5.3 Impact of components

The proposed method estimates all linguistic features in the training and synthesis parts.
To analyze the impact of each component, systems using correct linguistic features were
compared. Additionally, a Japanese SI-SR was constructed by using the JNAS database [60]
for comparison with the English SI-SR. The phoneset of Japanese SI-SR has 35 phonemes.
The acoustic feature vector and model structure were the same as the English ones. Ta-
ble 3.5 summarizes the compared systems and the following is a description of the com-
pared systems.

31



Ta
bl

e
3.

5:
Sy

st
em

s
us

in
g

co
rr

ec
tl

in
gu

is
tic

fe
at

ur
es

.

Tr
ai

ni
ng

pa
rt

Sy
nt

he
si

s
pa

rt
L

an
gu

ag
e

C
on

st
ru

ct
io

n
Sy

st
em

Ph
on

es
et

Ph
on

em
e

se
q.

W
or

d
bo

un
da

ry
Ph

on
em

e
se

q.
of

PL
-S

I-
SR

co
m

po
ne

nt
O

ra
cl

e
Ja

pa
ne

se
C

or
re

ct
C

or
re

ct
C

or
re

ct
-

SS
Ph

on
em

eW
B

Ja
pa

ne
se

C
or

re
ct

C
or

re
ct

E
st

im
at

e
-

G
2P

,S
S

Ph
on

em
e

Ja
pa

ne
se

C
or

re
ct

E
st

im
at

e
E

st
im

at
e

-
W

A
,G

2P
,S

S
J-

SI
-S

R
Ja

pa
ne

se
E

st
im

at
e

E
st

im
at

e
E

st
im

at
e

Ja
pa

ne
se

SR
,W

A
,G

2P
,S

S
E

-S
I-

SR
E

ng
lis

h
E

st
im

at
e

E
st

im
at

e
E

st
im

at
e

E
ng

lis
h

SR
,W

A
,G

2P
,S

S

32



Table 3.6: MCD and RMSE for synthesized speech of systems using correct linguistic
features.

System MCD [dB] RMSE [log Hz]
Oracle 5.01 0.140

PhonemeWB 5.35 0.189
Phoneme 5.35 0.193
J-SI-SR 5.49 0.196
E-SI-SR 5.58 0.198

• Oracle: system using correct linguistic features in the training and synthesis parts.

• PhonemeWB: system using correct linguistic features in the training part.

• Phoneme: system using correct phoneme sequences in the training part.

• J-SI-SR: system using a Japanese SI-SR, 50-best, SD-SR 5, and IP −25. The
phoneme insertion penalty was set approximately to the correct number of phonemes.

To objectively evaluate the impact of components, MCD and root mean squared error
(RMSE) of log F0 were used. Table 3.6 lists the results of the objective evaluation. In
terms of MCD, the systems closer to Oracle obtained a lower MCD. There was a large
difference in MCD between Oracle and PhonemeWB. Phoneme error rate (PER) of the
G2P in PhonemeWB can be calculated because it uses correct phoneme sequences and
word boundaries in the training part. To evaluate pause insertion accuracy, PER exclud-
ing pauses was also calculated. The G2P in PhonemeWB obtained a PER of 3.40 % and
a PER excluding pauses of 0.31 %. Most of phoneme estimation errors of the G2P in
PhonemeWB were caused by pause insertion errors. This result suggests that pause in-
sertion errors have strong impacts on MCD and improvement of the G2P, especially pause
insertion, is necessary to improve MCD. Error rates of the WA can be also calculated in
Phoneme. The number of error boundaries included in the training data was one and the
word boundary error rate was 0.04 %. Therefore, the impact of the WA was not large com-
paring with the G2P in this experiment. From MCDs in Table 3.6, it can be seen that there
was also a difference between Phoneme and J-SI-SR. This result indicates that there is
a difference between the correct phoneme sequence and pseudo phoneme sequence. Ac-
cordingly, improving speech recognition accuracy is necessary. Comparing J-SI-SR with
E-SI-SR, there was a relatively large gap of MCDs. Figure 3.6 shows MCD for synthe-
sized speech obtained E-SI-SR and J-SI-SR. Although speaker adaptation was applied
from PL-SI-SR to SD-SR 1 in J-SI-SR, the improvement of MCD was small. On the
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Figure 3.6: MCD for synthesized speech obtained E-SI-SR and J-SI-SR.

other hand, in E-SI-SR, speaker and language adaptation was applied from PL-SI-SR to
SD-SR 1, and the MCD was significantly improved. This indicates that language adapta-
tion is more effective than speaker adaptation in the proposed method. Additionally, from
Table 3.6, RMSE showed the similar tendency as MCD.

To subjectively evaluate the impact of components, a five-point MOS listening test was
conducted. Figure 3.7 shows the MOS of naturalness. As in the case of the objective
evaluation in Table 3.6, the systems closer to Oracle obtained a higher MOS. There was
a large difference in MOS between Phoneme and J-SI-SR and between J-SI-SR and E-
SI-SR. These results indicate that speech recognition accuracy and phoneset of speech
recognizer affect naturalness of synthetic speech in the proposed method.

Moreover, to evaluate intelligibility, intelligibility test was conducted. The subjects were
asked to transcribe semantically unpredictable sentences (SUSs) by typing in the sentence
they heard. 100 SUSs with each four words from the JEITA standard [61] were used for
the evaluation. The subjects were ten Japanese students in our research group. Each
subject typed 100 SUSs of a system chosen randomly. The average grapheme error rate
(GER) was calculated from these transcripts. Table 3.7 lists the results of the intelligibility
test in terms of GER. Oracle, PhonemeWB, and Phoneme, which used the phoneset
based on the phonology, achieved low GER. Like the MOS evaluation in Figure 3.7, there
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Figure 3.7: MOS of naturalness with 95% confidence intervals for systems using correct
linguistic features.

Table 3.7: GER of systems using correct linguistic features.

System GER [%]
Oracle 5.73

PhonemeWB 6.69
Phoneme 5.54
J-SI-SR 22.52
E-SI-SR 33.33

was a large difference in GER between Phoneme and J-SI-SR and between J-SI-SR
and E-SI-SR. Ambiguous pronunciations had a bad influence on the GER. In E-SI-SR,
several words were partially missing phonemes due to estimation errors in the G2P. The
cause of these errors was the G2P training with training data including word boundary
errors, such as word boundary errors in Table 3.3. In the case of Phoneme which used
correct phoneme sequences, GER (5.54 %) and word boundary error rate (0.04 %) were
low. Therefore, it is necessary to develop a noise-robust WA and improve the SR. It
is considered that the low intelligibility influenced the low naturalness of J-SI-SR and
E-SI-SR. In the future, I should investigate methods to improve intelligibility.
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Table 3.8: Number of native paid listeners.

Language Number of native paid listeners
Bengali 48
Hindi 69

Malayalam 72
Marathi 69
Tamil 70
Telugu 70

Table 3.9: MOS of naturalness and speaker similarity in the Blizzard Challenge 2015.

MOS of naturalness MOS of similarity
Language Base NITech Base NITech
Bengali 2.2 2.5 2.5 3.1
Hindi 3.2 2.3 2.6 2.8

Malayalam 1.6 1.7 1.8 2.3
Marathi 2.7 2.2 2.3 2.5
Tamil 2.2 2.4 1.8 2.3
Telugu 1.9 2.1 2.1 3.1

3.6 Blizzard Challenge 2015 evaluation

The Blizzard Challenge was started in order to better understand and compare research
techniques in constructing corpus-based speech synthesizers with the same data in 2005 [62].
The task of the Blizzard Challenge 2015 is constructing TTS systems for six Indian lan-
guages (Bengali, Hindi, Malayalam, Marathi, Tamil, and Telugu) [63]. These Indian
languages have millions of speakers. However, these languages do not have a lot of re-
sources for constructing a TTS system. The challenge is to construct TTS systems in each
Indian language from the provided speech data sampled at 16 kHz and the corresponding
Unicode text. About four or two hours of speech data in each of the six Indian languages
are provided. To evaluate the synthesized speech, large-scale subjective evaluation tests
were conducted by organizers of the Blizzard Challenge 2015. Table 3.8 summarizes the
number of native paid listeners. I participated in the Blizzard Challenge 2015 [41] using
the proposed method in this paper.

Table 3.9 shows results of five-point MOS tests in the read text task of the Blizzard Chal-
lenge 2015. In Table 3.9, Base means a baseline system used language-specific knowl-
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edge which was constructed by organizers using the FestVox [64] in the unit selection
framework and NITech means my system. NITech systems were constructed without us-
ing language-specific knowledge based on Section 3.3.2 and system conditions were the
same as Section 3.4.2, 3.4.3, and 3.4.4 Iteration count i and phoneme insertion penalty
were adjusted for each language. Since Hindi has relatively rich-resource for construct-
ing a TTS system in Indian languages, Base achieved higher MOS of naturalness than
NITech. By contrast, NITech obtained higher MOSs of naturalness than Base in Bengali,
Malayalam, Tamil, and Telugu. Furthermore, NITech achieved higher MOSs of speaker
similarity than Base in all languages. For this reason, the proposed method is useful for
constructing a TTS system of low-resource languages.

3.7 Summary

This paper has presented automatic construction of a text-to-speech (TTS) system from
a target language database consisting of only speech data and corresponding Unicode
texts. A grapheme-to-phoneme converter and speech synthesizer were constructed from
speech recognition results of a proxy language speech recognizer. I applied this method
to Japanese and evaluated the naturalness of its output. Experimental results showed that
an appropriate phoneme insertion penalty and iteration count for training and recognition
were important for the proposed method. The proposed TTS system that does not use
language-specific knowledge could synthesize more natural speech compared with that
from a grapheme-based TTS system. To improve the proposed method, the impact of
each component was analyzed. The results suggest that pause insertion accuracy, speech
recognition accuracy, and phoneset of speech recognizer affected objective measures.

Additionally, I applied the proposed method to six Indian languages. Subjective experi-
ments of the Blizzard Challenge 2015 showed that the proposed system achieved higher
naturalness than a baseline system of unit selection framework in four languages out of six
languages. In terms of speaker similarity, the proposed system outperformed the baseline
system in all languages.

Future work will include a multilingual speaker-independent speech recognizer based
on the international phonetic alphabet (IPA) [65] or GlobalPhone [66] to obtain accu-
rate phoneme sequences. Furthermore, investigations of prosodic attributes, e.g. accent,
stress, and tone, and languages not written with space between words, e.g. Mandarin,
Japanese, and Thai, will be needed in order to establish a more language-independent
method. Additionally, I will perform experiments on various written languages.

37



Chapter 4

A Bayesian framework for image
recognition based on hidden Markov
eigen-image models

4.1 Background

Image recognition is a technique for identifying objects in an image. Typical applications
include biometrics authentication, e.g., fingerprint and face, optical character recognition
(OCR), and general object recognition. As computer processing power increases, machine
learning approaches based on statistical learning theory have been successfully applied in
the field of image recognition. Moreover, not only applying general statistical classifier,
approaches considering the specific problems of image recognition, e.g., geometric varia-
tions such as size, location, and rotation, image size variations, lighting conditions, object
deformation, and occlusion, have been actively studied.

Among the specific problems of image recognition, geometric variations of an object to
be recognized are a serious problem in image recognition. Therefore, much research work
has been conducted on this problem. These can broadly be divided into three approaches:
1) task-dependent normalization techniques, 2) local features, and 3) the integration of
geometric invariants into model structures. For approach 1), task-dependent normaliza-
tion techniques have been developed for each image recognition task [67, 68]. However,
it is costly to develop a normalization technique for each task. For approach 2), bag-
of-features (BoF) approaches using local features, e.g., scale-invariant feature transform
(SIFT) [69], have been proposed as invariant to local geometric variation [70]. Unfortu-
nately, these approaches cannot consider positional relationships because they respond
to geometric variations by removing the global information of input images. There-
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fore, methods considering the positional relationships of local features have been devel-
oped [71, 72]. For approach 3), convolutional neural network (CNN) based techniques,
which integrate geometric invariants into model structures, have achieved significant im-
provements in the image recognition field [73, 74]. In addition to the structure of the
standard feed-forward neural networks used as model structures, CNNs have geometric
invariants based on multiple convolutional and pooling layers. However, since pooling is
independently performed in each local window, it is difficult to represent global geomet-
ric transforms over an entire image. Another way to integrate the normalization processes
into model structures is using hidden Markov models (HMMs) [4,5]. Geometric matching
between input images and model parameters is represented by discrete hidden variables
and the normalization process is included in the calculation of probabilities. However,
the extension of HMMs to two dimensions for two-dimensional data, e.g., pixel values
of an image, generally leads to an exponential increase in the amount of computation
needed for training. To overcome this problem, several low computational complexity
HMM structures have been proposed [6–12]. Among them, separable lattice HMMs (SL-
HMMs) have been proposed to reduce computational complexity while retaining out-
standing properties that model two-dimensional data [12]. SL-HMMs can perform elastic
matching in both the horizontal and vertical directions, which makes it possible to model
not only invariances to the size and location of an object but also nonlinear warping in
both dimensions. One of the advantages of SL-HMMs against CNNs is explicit modeling
of the generative process, which can represent geometric variations over an entire image.
Furthermore, some extensions to structures representing typical geometric variations that
are seen in many image recognition tasks have already been proposed, e.g., a structure
for rotational variations [13], a structure with multiple horizontal and vertical Markov
chains [14], and explicit state duration modeling [15]. By selecting an appropriate model
structure reflecting the data generation process for a target task, human knowledge can
effectively be utilized as prior information, and this makes it possible to construct models
with a small amount of training data. It is also an interesting property of SL-HMMs that
images with various sizes can directly be used as inputs without image size normalization.
However, SL-HMMs still have a limitation in their application to image recognition: ob-
servations are assumed to be generated independently from corresponding HMM states.
It is insufficient to represent variations in images, e.g., lighting conditions and object de-
formation. To overcome this limitation, hidden Markov eigen-image models (HMEMs)
have been proposed [16]. The basic idea of the HMEMs is that eigen-images [17, 18]
are generated from an SL-HMM. In the HMEM, the eigen-images are represented by
probabilistic hidden variable models, such as factor analysis (FA) [19–21] or probabilistic
principal component analysis (PPCA) [22]. Therefore, HMEMs have the good properties
of both SL-HMMs and FA/PPCA: size and location invariant image recognition and a
linear feature extraction based on statistical analysis.
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In some image recognition tasks, only a small amount of training data is available, there-
fore efforts to achieve a high generalization ability are required. However, the training of
HMEMs easily falls into the over-fitting problem because HMEMs have a complex model
structure. Also, the maximum likelihood (ML) criterion has typically been used in train-
ing HMEMs [16]. Since the ML criterion produces a point estimate of model parameters,
the estimation accuracy may be degraded, especially when there is insufficient training
data. In this study, I focus on estimating HMEMs with a high generalization ability by
using the Bayesian criterion. The Bayesian criterion assumes that model parameters are
random variables, and a high generalization ability can be obtained by marginalizing all
model parameters in estimating predictive distributions. Moreover, the Bayesian criterion
can utilize prior distributions representing useful prior information on model parameters.
However, the Bayesian criterion requires complicated integral and expectation computa-
tions to obtain posterior distributions when models have hidden variables. To overcome
this problem, the variational Bayesian (VB) method [23] has been proposed as an approx-
imation method. Additionally, to alleviate the local maximum problem dependent on the
initial parameters, I apply the deterministic annealing expectation maximization (DAEM)
algorithm [24, 25] to the training of HMEMs using the VB method. I show that the VB
method applying the DAEM algorithm can significantly improve the performance in im-
age recognition experiments. Third, approaches to image recognition based on CNNs are
performed for comparison with the proposed method. Comparative experiment results
show that the proposed method is more robust to geometric variations than CNNs when
the amount of training data is insufficient.

4.2 Hidden Markov eigen-image models

4.2.1 Probabilistic eigen-image models

Factor analysis (FA) [19,20] and probabilistic principal component analysis (PPCA) [22]
are statistical methods for modeling the covariance structure with a small number of hid-
den variables. In this paper, I call them probabilistic eigen-image models (PEMs). In
image modeling using PEMs, an image is assumed to be a fixed-length T -dimensional
observation vector o = [ o1 o2 · · · oT ]⊤. Then, observation vector o is assumed to be
generated from a G-dimensional factor vector x = [ x1 x2 · · · xG ]⊤ (G < T ) and a
T -dimensional noise vector v:

o = Wx+ v, (4.1)

where W = [w1 w2 · · · wG ] is a T × G matrix known as the factor loading matrix.
The factor vector x is a hidden variable assumed to be distributed in accordance with a
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Figure 4.1: Model structure of PEMs in face image modeling

Gaussian distribution N (x |0, I) where 0 and I respectively denote the zero vector and
the identity matrix, and the noise vector v is distributed in accordance with N (v |µ,Σ).
If Σ is assumed to be a diagonal covariance matrix Σ = diag[ σ2

1 σ
2
2 · · · σ2

T ], this model
is called FA, and PPCA is a special case of FA in which the noise covariance matrix is
isotropic, i.e., Σ = σ2I . Figures 4.1 and 4.2 respectively show the model structure of
PEMs in face image modeling and the graphical model representation of PEMs. The
likelihood of observation o given factor vector x and model parameters Λ can be written
as:

P (o |x,Λ) = N (o |Wx+ µ,Σ) (4.2)

because the product Wx becomes a constant vector added to the noise vector v. The
marginal distribution of observation o is obtained by integrating out the hidden variable
x:

P (o |Λ) =

∫
P (o |x,Λ)P (x)dx

= N (o |µ,WW⊤ +Σ). (4.3)
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Figure 4.2: Graphical model representation of PEMs. Circles represent random variables,
clear means hidden, and shaded means observed.

From the above equation, it is obvious that PEMs are a Gaussian distribution whose co-
variance matrix is constrained by the factor loading matrix W and the noise covariance
matrix Σ. That is, PEMs can capture the correlation among observations with a small
number of parameters instead of using a full covariance matrix.

4.2.2 Separable lattice hidden Markov models

In the case that observations are two-dimensional data, e.g., pixel values of an image,
observations are assumed to be given on a two-dimensional lattice as:

o = {ot |t = (t(1), t(2)) ∈ T }, (4.4)

where T = {(1, 1), (1, 2), . . . , (1, T (2)), (2, 1), . . . , (t(1), t(2)), . . . , (T (1), T (2))} denotes
the two-dimensional image lattice, t denotes a two-dimensional coordinate lattice, t(m)

is the coordinate of the m-th dimension, T (m) is the number of coordinates in the m-
th dimension, and m ∈ {1, 2} denotes the dimension index representing horizontal and
vertical direction. In two-dimensional HMMs, observation ot is emitted from a state
indicated by hidden variable zt. The hidden variables zt ∈ K can take one of the
K(1)K(2) states, which are assumed to be arranged on a two-dimensional state lattice
K = {(1, 1), (1, 2), . . . , (1, K(2)), (2, 1), . . . , (k(1), k(2)) . . . , (K(1), K(2))}, where K(m)

is the number of states in the m-th dimension. In other words, a set of hidden vari-
ables represents a segmentation of observations into the K(1)K(2) states, and each state
corresponds to a segmented region in which the observation vectors are assumed to be
generated from the same distribution. The number of possible state sequences in two-
dimensional HMMs is (K(1)K(2))T

(1)T (2) . Therefore, standard two-dimensional HMMs
require high computational costs.

Separable lattice hidden Markov models (SL-HMMs) have been proposed to reduce com-
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Figure 4.3: Model structure of SL-HMMs in face image modeling

putational complexity [12]. In SL-HMMs, to reduce the number of possible state se-
quences, hidden variables are constrained to be composed of two Markov chains as fol-
lows.

z = {z(1),z(2)}, (4.5)

z(m) = {z(m)

t(m) |1 ≤ t(m) ≤ T (m)}, (4.6)

where z(m) is the Markov chain along with them-th coordinate, and z(m)

t(m) ∈ {1, . . . , K(m)}.
The composite structure of hidden variables in SL-HMMs is defined as the product of hid-
den state sequences as:

zt = (z
(1)

t(1)
, z

(2)

t(2)
). (4.7)

This means that hidden state sequences are independent of each dimension and the seg-
mented regions of observations are constrained to rectangles. That is, it allows an observa-
tion lattice to be elastic both horizontally and vertically. Using this structure, the number
of possible state sequences can be reduced from (K(1)K(2))T

(1)T (2) to (K(1))T
(1)
(K(2))T

(2) .

Figures 4.3 and 4.4 respectively show the model structure of SL-HMMs in face image
modeling and the graphical model representation of SL-HMMs. The likelihood of ob-
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Figure 4.4: Graphical model representation of SL-HMMs. Rounded boxes represent
group of variables, and arrows pointing to each box represent dependency in regard to
all variables in box instead of drawing arrows to all variables.

servations o is obtained by summing the hidden variable z:

P (o |Λ) =
∑
z

P (o |z,Λ)P (z |Λ). (4.8)

In the application of image modeling, SL-HMMs can perform elastic matching in both the
horizontal and vertical directions by assuming transition probabilities with left-to-right
and top-to-bottom topologies, which makes it possible to model not only invariances to
the size and location of an object but also nonlinear warping in both dimensions.

4.2.3 Hidden Markov eigen-image models

A hidden Markov eigen-image model (HMEM) is defined as a model integrating a PEM
and an SL-HMM [16]. The basic idea of HMEMs is that eigen-images are generated
from an SL-HMM. Figures 4.5 and 4.6 show the model structure of HMEMs in face
image modeling and the graphical model representation of HMEMs, respectively. The
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likelihood function of HMEMs is defined as follows.

P (o |Λ) =
∑
z

∫
P (o |x,z,Λ)P (x)P (z |Λ)dx, (4.9)

P (o |x,z,Λ) =
∏
t

P (ot |x, zt,Λ), (4.10)

P (x) = N (x |0, I), (4.11)

P (z |Λ) =
2∏

m=1

P (z(m)
1 |Λ)

T (m)∏
t(m)=2

P (z
(m)

t(m) |z
(m)

t(m)−1
,Λ)

 , (4.12)

where x is a factor vector and z represents state variables as used in SL-HMMs. The
model parameters Λ of HMEMs are summarized as follows.

Λ = {π(1),π(2),a(1),a(2), b}. (4.13)

1) π(m) = {π(m)

k(m) |1 ≤ k(m) ≤ K(m)}: an initial state probability distribution. The
probability of state k(m) at t(m) = 1 is represented by:

π
(m)

k(m) = P (z
(m)
1 = k(m) |Λ). (4.14)

2) a(m) = {a(m)

k(m),k̄(m) |1 ≤ k(m), k̄(m) ≤ K(m)}: a state transition probability matrix.
The probability of moving from state k(m) to state k̄(m) is represented by:

a
(m)

k(m),k̄(m) = P (z
(m)

t(m) = k̄(m) |z(m)

t(m)−1
= k(m),Λ). (4.15)

3) b = {bk(ot) |k ∈ K}: an output probability distribution. The probability of
an observation ot being generated from a factor x and state k is represented by
bk(ot) = P (ot |x, zt = k,Λ), where k denotes the two-dimensional state index in
the two-dimensional state lattice K. The output probability distribution of state k

can be represented by:

P (ot |x,zt = k,Λ) = N (ot |W kx+ µk,Σk)

= N (ot |W̃ kx̃,Σk), (4.16)

where W k, µk, and Σk respectively denote the state level factor loading matrix,
mean vector, and the diagonal covariance matrix in state k. For simplicity, the
extended factor loading matrix and factor vector are defined as:

W̃ k = [W k µk ], (4.17)

x̃ = [x⊤ 1 ]⊤. (4.18)

46



By incorporating the state transition structure into the factor loading matrix, eigen-images
can be transformed to match an input image, and this state transition structure performs
size and location normalization. Once the state sequences are given, HMEMs are regarded
as PEMs, which are given normalized data. Therefore, HMEMs overcome the limitation
of SL-HMMs, i.e., the correlation among all observations can be modeled through the
factor variables. Thus, HMEMs have the good properties of both PEMs and SL-HMMs:
a linear feature extraction based on statistical analysis and invariances to the size and
location of the object to be recognized. Moreover, the structure of HMEMs includes
conventional PEMs and SL-HMMs as special cases; HMEMs with the same number of
states as the number of pixels of the input images become the conventional PEMs [19,20,
22], and HMEMs with a zero factor become the SL-HMMs [12].

4.3 Bayesian framework for training of HMEMs

4.3.1 Maximum likelihood criterion

In Bayesian statistics, it is important to estimate model with a high generalization ability
from training data o. The maximum likelihood (ML) criterion has typically been used to
train statistical models in Bayesian statistics. The optimal model parameters Λ(ML) are
estimated in the ML criterion by maximizing the likelihood of training data P (o |Λ) as:

Λ(ML) = argmax
Λ

P (o |Λ). (4.19)

The predictive distribution of testing data o(test) in the testing stage is calculated by
P (o(test) |Λ(ML)).

Since HMEMs have hidden variables x and z, it is difficult to obtain an analytic so-
lution to Eq. (4.19). The parameters of HMEMs can be estimated via the expectation
maximization (EM) algorithm [31], which is a local maximum solution based on an it-
erative procedure. This procedure maximizes the expectation of the complete-data log-
likelihood. However, calculating the expectation is still computationally intractable due to
the combination of hidden variables x and z. Variational methods have been used to ap-
proximate the EM algorithm in probabilistic graphical models with hidden variables [75].
An approximate posterior distribution is estimated by maximizing the lower bound of the
log-marginal likelihood instead of the true log-likelihood. The variational method makes
the parameter estimation of HMEMs possible with a realistic calculation time [16].
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4.3.2 Bayesian criterion

Since the ML method produces a point estimate of model parameters, the estimation ac-
curacy may be degraded due to the over-fitting problem when there is insufficient data.
In this paper, I propose using the Bayesian framework for training HMEMs. The frame-
work has two advantageous properties for model training: using prior distributions and
marginalizing model parameters. Therefore, the framework can be expected higher gen-
eralization ability than the ML method.

The predictive distribution of the Bayesian criterion is given by:

P (o(test) |o) =
∫
P (o(test) |Λ)P (Λ |o)dΛ. (4.20)

Posterior distribution P (Λ |o) for a set of model parameters Λ can be written with the
Bayes theorem:

P (Λ |o) = P (o |Λ)P (Λ)

P (o)
, (4.21)

where P (Λ) is a prior distribution and P (o) is evidence. Model parameters Λ are es-
timated as posterior distribution P (Λ |o), and posterior distribution is integrated out in
Eq. (4.20) so that the effect of over-fitting is mitigated. That is, the Bayesian criterion has
a higher generalization ability than the ML criterion when there is insufficient training
data. However, the criterion requires complicated integral and expectation computations
to obtain posterior distributions when models have hidden variables. Markov chain Monte
Carlo (MCMC) [76] and variational Bayesian (VB) [23] methods have been proposed as
approaches to approximation to overcome this problem.

4.3.3 Variational Bayesian method

Posterior distribution

An approximate posterior distribution is estimated in the VB method by maximizing the
lower bound of log-marginal likelihood instead of the true likelihood. The lower bound
of the log-marginal likelihood F is defined by using Jensen’s inequality:

lnP (o) = ln
∑
z

∫∫
Q(x,z,Λ)

P (o,x,z,Λ)

Q(x, z,Λ)
dxdΛ

≥
∑
z

∫∫
Q(x,z,Λ) ln

P (o |x,z,Λ)P (x)P (z |Λ)P (Λ)

Q(x,z,Λ)
dxdΛ

≜ F(Q(x, z,Λ)), (4.22)
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whereQ(x, z,Λ) is an arbitrary distribution. The difference between the true log-marginal
likelihood lnP (o) and the lower bound F is given by the Kullback-Leibler (KL) diver-
gence KL[· || ·] between the arbitrary distribution Q(x, z,Λ) and the true posterior distri-
bution P (x, z,Λ |o) as:

lnP (o)−F(Q(x, z,Λ)) = KL[Q(x,z,Λ) ||P (x,z,Λ |o)]. (4.23)

Since the true log-marginal likelihood lnP (o) is independent of the arbitrary distribu-
tion Q(x,z,Λ), maximizing the lower bound F is equivalent to minimizing the KL di-
vergence. In other words, Q(x,z,Λ) can be regarded as an approximation of the true
posterior distribution P (x,z,Λ |o).

To reduce computational complexity, random variables are assumed to be conditionally
independent of one another, i.e.,

Q(x, z,Λ) ≈ Q(x)Q(z)Q(Λ)

≈ Q(x)Q(z(1))Q(z(2))Q(Λ), (4.24)

where Q(x), Q(z(m)), and Q(Λ) are called VB posterior distributions that, respectively,
satisfy

∫
Q(x)dx = 1,

∑
z(m) Q(z(m)) = 1, and

∫
Q(Λ)dΛ = 1. Under this assump-

tion, the optimal VB posterior distributions Q(x), Q(z(m)), and Q(Λ) that maximize the
objective function F are given as:

Q(x) ∝ P (x) exp

[∑
z

∫
Q(z)Q(Λ) lnP (o |x,z,Λ)dΛ

]
, (4.25)

Q(z(m)) ∝ exp

[∑
z(m̄)

∫∫
Q(x)Q(z(m̄))Q(Λ) lnP (o |x, z,Λ)P (z(m) |Λ)dxdΛ

]
,

(4.26)

Q(Λ) ∝ P (Λ) exp

[∑
z

∫
Q(x)Q(z) lnP (o |x,z,Λ)P (z |Λ)dx

]
, (4.27)

where m̄ represents the dimension index that is an alternative to the m-th dimension.
Since the VB posterior distributions in Eqs. (4.25)–(4.27) are dependent on each other,
these updates need to be iterated by using the EM algorithm.

(VB E-step):

Q(i+1)(x) = argmax
Q(x)
F(Q(x)Q(i)(z)Q(i)(Λ))

Q(i+1)(z) = argmax
Q(z)
F(Q(i+1)(x)Q(z)Q(i)(Λ))

(VB M-step):

Q(i+1)(Λ) = argmax
Q(Λ)
F(Q(i+1)(x)Q(i+1)(z)Q(Λ))
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The update equations increase the value of the objective function F at each iteration until
convergence by adding 1 to iteration count i. The details of VB E- and M-step are given
in Appendix A.1. In the proposed method, HMEMs that have the same number of states
as the number of pixels of the input images are equivalent to the conventional FA using
the VB method [21], and HMEMs with a zero factor become the SL-HMMs using the VB
method [77].

Prior distribution

The VB method has an advantage in that it can utilize prior distributions representing use-
ful prior information on model parameters. Although arbitrary distributions can be used
as prior distributions, conjugate prior distributions are widely used as prior distributions.
A conjugate prior distribution is a distribution where the resulting posterior distribution
belongs to the same distribution family as the prior distribution. The conjugate prior
distributions of an HMEM are defined as:

P (Λ) =
2∏

m=1

D(π(m) |ϕ(m))
K(m)∏
k(m)=1

D(a(m)

k(m) |α
(m)

k(m))


×
∏
k

D∏
d=1

N (w̃k,d |hk,d,U
−1
k σ2

k,d)G((σ2
k,d)

−1 |ηk, νk,d), (4.28)

where D is the dimension of observation o, D(·) is a Dirichlet distribution, N (·)G(·) is a
Gauss-gamma distribution, and w̃k,d and σ2

k,d are defined as:

W k = [wk,1 wk,2 · · · wk,D ]⊤, (4.29)

wk,d = [wk,d,1 wk,d,2 · · · wk,d,G ]⊤, (4.30)

µk = [µk,1 µk,2 · · · µk,D ]⊤, (4.31)

w̃k,d = [w⊤
k,d µk,d ], (4.32)

Σk = diag[σ2
k,1 σ

2
k,2 · · · σ2

k,D ], (4.33)

where W k is assumed to be independent of each dimension. These distributions can
be represented by a set of hyper-parameters {ϕ(1),ϕ(2),α

(1)

k(1)
,α

(2)

k(2)
,hk,d,Uk, ηk, νk,d}.

When conjugate prior distributions are used for prior distributions, the posterior distribu-
tions are represented by the same parameter set {ϕ̂

(1)
, ϕ̂

(2)
, α̂

(1)

k(1)
, α̂

(2)

k(2)
, ĥk,d, Ûk, η̂k, ν̂k,d}.

Figures 4.7 and 4.8 respectively show a graphical model representation with the model
parameters of HMEMs using the ML and VB methods.

Since the prior distributions of model parameters affect the estimation of posterior distri-
butions in the VB method, determining prior distributions is a serious problem in estimat-
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Figure 4.7: Graphical model representation for ML method of HMEMs. Dotted circles
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Figure 4.8: Graphical model representation for VB method of HMEMs. Dotted rectangles
represent hyper-parameters.

ing appropriate models. I set the prior distribution as:

P (Λ) ∝ P (Λ |o(prior))τ , (4.34)

where o(prior) is data given in advance (I call this prior data). I can control the influence of
the prior distribution on the posterior distribution by adjusting tuning parameters τ . The
hyper-parameters based on prior data o(prior) are given in Appendix A.2.
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Predictive distribution

Predictive distribution P (o(test) |o) is calculated using Eq. (4.20). Although predictive
distribution includes a complicated expectation calculation, the same approximation based
on the VB method as that in posterior distribution training can be applied, and the lower
bound F (test) is defined as:

F (test)(Q(x)Q(z)Q(Λ))

≜
∑
z

∫∫
Q(x)Q(z)Q(Λ) ln

P (o(test),x,z |Λ)P (Λ |o)
Q(x)Q(z)Q(Λ)

dxdΛ. (4.35)

Additionally, the posterior distribution P (Λ |o) is approximated to Q(Λ). From this ap-
proximation, the predictive distribution can update only Q(x) and Q(z) (VB E-step).

In image recognition based on HMEMs using the VB method, posterior distributions
P (Λ |oc) are trained by using images for each class c, i.e., subject, separately in the
training stage. Then, in the testing stage, the likelihood of testing data o(test), which is
calculated by the predictive distribution P (o(test) |oc), is compared among all subjects.
The class that obtains the highest likelihood is chosen as the identification result.

4.3.4 Deterministic annealing EM algorithm

An iterative procedure, such as the EM algorithm, suffers from the local maximum prob-
lem dependent on the initial parameters, especially models with a complex structure. A
deterministic annealing EM (DAEM) algorithm has been proposed to relax this prob-
lem [24, 25]. In this paper, I apply the DAEM algorithm to the training of HMEMs using
the VB method.

In this paper, negative free energy f(o,x,z,Λ) is defined by using four temperature
parameters as:

f(o,x, z,Λ) ≜ ln
∑
z

∫∫
P β1(o |x,z,Λ)P β2(x)P β3(z |Λ)P β4(Λ)dxdΛ, (4.36)

where β1, β2, β3, and β4 are respectively the temperature parameter of the output prob-
ability distributions, the factor probability distributions, the initial and state transition
probability distributions, and the prior distributions. The effect of each distribution can
be controlled appropriately by introducing multiple temperature parameters.

Instead of Eq. (4.22), a lower bound F (DAEM) for the VB DAEM algorithm is defined by
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using Jensen’s inequality:

F (DAEM)(Q(x, z,Λ))

≜
∑
z

∫∫
Q(x,z,Λ) ln

P β1(o |x,z,Λ)P β2(x)P β3(z |Λ)P β4(Λ)

Q(x,z,Λ)
dxdΛ. (4.37)

To reduce computational complexity, random variables x, z(m), and Λ are assumed to be
conditionally independent of one another, which is the same as Eq. (4.24). The optimal
VB posterior distributionsQ(x), Q(z(m)), andQ(Λ) that maximize the objective function
F (DAEM) are given by the variational method as:

Q(x) ∝ P β2(x) exp

[∑
z

∫
Q(z)Q(Λ) lnP β1(o |x,z,Λ)dΛ

]
,

(4.38)

Q(z(m)) ∝ exp

[∑
z(m̄)

∫∫
Q(x)Q(z(m̄))Q(Λ) lnP β1(o |x, z,Λ)P β3(z(m) |Λ)dxdΛ

]
,

(4.39)

Q(Λ) ∝ P β4(Λ) exp

[∑
z

∫
Q(x)Q(z) lnP β1(o |x,z,Λ)P β3(z |Λ)dx

]
. (4.40)

By applying the DAEM algorithm, the temperature parameters βl (l = 1, . . . , 4) are at-
tached to the original VB posterior distributions in Eqs. (4.25)–(4.27). The VB posterior
distributions are given in Appendix A.3.

In the annealing process, the temperature parameters βl are gradually increased from
βl ≃ 0 to βl = 1. When βl ≃ 0, the VB posterior distributions take a form with nearly
uniform distribution. While the temperature parameter is increasing, the form of the dis-
tributions becomes close to that of the original VB posterior distributions. Finally, at
βl = 1, the distributions take the form of the original VB posterior distributions. Since
the DAEM algorithm reduces the effect of the local maximum problem dependent on the
initial parameters, reliable model parameters can be estimated.

4.4 Experiments

4.4.1 Conditions

Face recognition experiments were conducted on the XM2VTS database [78] to evaluate
the effectiveness of the proposed method. The experimental conditions are summarized
in Table 4.1. I prepared two datasets for these experiments. Dataset1 did not include
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Table 4.1: Experimental conditions

Database XM2VTS [78]
Original image size 720 × 576

Datasets Dataset1 Dataset2
Cropped image size 550× 550 480× 480–720× 720

Center coordinates of cropping (360, 288) (360± 80, 288± 20)
Subsampled image size 64 × 64, grayscale

Number of subjects (classes) 100
Number of training data 6 images per subject
Number of testing data 2 images per subject

Compared methods FA/PPCA-VB/ML-DAEM/EM
HMM structure Left-to-right and top-to-bottom

without skip transitions
Number of HMM states 40× 40

Number of factors 0, 1, 2, 3, 4, 5
Prior distribution Universal background model

Tuning parameter τ 1
100
, 1
500
, 1
1000

, 1
2000

, 1
3000

, 1
4000

, 1
5000

Schedule of temperature θl θ1,2,3 = 20, θ4 = 2−6

large size and location variations, while Dataset2 did. The cropped image sizes and
center coordinates of cropping were randomly generated by the Gaussian distribution in
Dataset2. Figure 4.9 shows some examples of images for the experiments.

In the prior distributions, I used all training images for all subjects as prior data. This
is the same idea as that in the universal background model (UBM) [79]. The UBM was
trained with the SL-HMM structure and was extended to the HMEM structure. I con-
trolled the influence of the prior distribution on the posterior distribution by adjusting
tuning parameters τ .

The temperature parameter βl(j) for the DAEM algorithm was updated by:

βl(j) =

(
j

J

)θl

, (4.41)

where j = 1, . . . , J denotes the number of iterations of temperature updates. When set
to J = 1, this algorithm is the same as the EM algorithm. In these experiments, the
number of temperature parameter updates was set to J = 60. The schedules of temper-
atures θ1,2,3 = 20 and θ4 = 2−6 were used, and I could stably obtain a high recognition
performance with each method in the preliminary experiments.

The training recipe of FA-VB-DAEM is summarized in Table 4.2. In steps 1–2, prior
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Dataset1

Dataset2

Training data Testing data

Training data Testing data

Figure 4.9: Examples of images for experiments
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Table 4.2: Training recipe of FA-VB-DAEM

1. Train UBM from all training images for all subjects with flat hyper-parameters.
2. Set hyper-parameters Eqs. (A.27)–(A.32) from UBM by adjusting tuning parameter τ .
3. Set Eqs. (A.8) and (A.10) to uniform probabilities, Eq. (A.33) to zero vector, and

Eq. (A.34) to identity matrix.
4. Compute Eqs. (A.36)–(A.41).
5. Update temperature parameters βl(j) using Eq. (4.41).
6. (VB E-step): Update Eqs. (A.13)–(A.15), Eqs. (A.8) and (A.10), and Eqs. (A.33)

and (A.34).
7. (VB M-step): Update Eqs. (A.36)–(A.41).
8. Go to step 6 until convergence of lower bound F (DAEM) using Eq. (4.37).
9. Go to step 5 by adding 1 to j until j = J .

distributions train all training images for all subjects. Steps 3–4 and 5–9 are respectively
an initialization and iterative procedure, and they are performed for each class.

For comparison with the proposed method, two convolutional neural network (CNN)-
based approaches (CNN and CaffeNet) were performed [73, 74]. For CNN, a CNN was
trained by using a Caffe [80] based on both Dataset1 and Dataset2. For CaffeNet, a
pre-trained CNN (CaffeNet) [74, 80], which was trained by using the ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC2012) dataset [81], was used to extract
image features. The details of CNN approaches are as follows.

CNN: The architecture of the CNN model was I(64, 1)−C(128, 10, 1, 55)−P (3, 2, 27)
−C(256, 5, 1, 23) − P (3, 2, 11) − F (800) − F (600) − F (400) − O(100), where
I(i, d) indicates an input layer with a d dimensional i× i sized image, C(f, w, s, o)
indicates a convolutional layer with f filters of aw×w sized window with a stride of
s and o× o sized output, P (w, s, o) indicates a pooling layer, F (n) indicates a fully
connected layer with n units, and O(c) indicates an output layer with c classes. The
ReLU activation function was used in the convolutional and fully connected layers.
The stochastic gradient descent (SGD) algorithm with mini-batch of size 200 was
used for training and dropout with a probability of 0.5 was used to the convolutional
and fully connected layers.

CaffeNet: The image-feature vectors were composed of 4096 dimensions extracting
the pre-trained CaffeNet of the 7th fully-connected layer. The one-nearest neighbor
was then used as the classifier.
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4.4.2 Results

The subject of the bottom of Figure 4.9 in Dataset2 was modeled by using three factors
and tuning parameter τ = 1

2000
in order to visualize model parameters. Figure 4.10 shows

the values of the mean vector µk in Eq. (4.31), and the eigen-images W k in Eq. (4.29)
were represented in grayscale. From Figure 4.10, with the EM algorithm approaches FA-
VB/ML-EM, the shape of the mean and eigen-images collapsed due to the local max-
imum problem. Although FA-ML-DAEM could comparatively smoothly represent the
subjects’ faces, the faces were modeled in two places because geometric variations were
not fully absorbed by the SL-HMM structure. In comparison, it was confirmed that FA-
VB-DAEM clearly preserved the subjects’ faces, even though the training data included
much geometric variation. Therefore, the proposed method overcame the over-fitting and
local maximum problems and was able to absorb geometric variations. Additionally, the
1st eigen-image of FA-VB-DAEM seems to represent the hairstyle differences of the
subject. These results indicate that the geometric variations of the object to be recognized
were absorbed by the SL-HMM structure, and object deformations are represented by the
PEM structure.

Figures 4.11(a) and 4.11(b) respectively show the recognition rates for Dataset1 and
Dataset2. The tuning parameter τ of the prior distribution with which the highest recog-
nition was obtained was used for each factor. From Figure 4.11, the VB method achieved
significantly better recognition rates than the ML method. Comparing the DAEM and
EM algorithms, the DAEM algorithm outperformed the EM algorithm for each method.
In particular, FA-VB-DAEM greatly improved the accuracy of recognition performance.
The highest recognition rates for Dataset1 and Dataset2 were 95.5% and 89.0% when
using FA-VB-DAEM with five factors, respectively. Compared with the HMEM (one
to five factors) and SL-HMM (zero factor) structures, the HMEMs did not obtain higher
recognition rates than the SL-HMMs in the ML method. In contrast, in the VB method,
the HMEMs obtained higher recognition rates than the SL-HMMs. Additionally, com-
pared with the FA and PPCA structures, FA-ML-DAEM/EM with a high degree of free-
dom in noise covariance matrix did not achieve higher recognition rates than PPCA-
ML-DAEM/EM with the ML method. By contrast, FA-VB-DAEM/EM achieved higher
recognition rates than PPCA-VB-DAEM/EM. These results suggest that although HMEMs
with FA have a higher potential than those with PPCA and SL-HMM structures, a high
generalization ability was not obtained due to over-fitting and the local maximum prob-
lems caused by the ML method and EM algorithm. Contrary to this, the proposed VB
DAEM algorithm mitigated these problems and achieved a high recognition performance.
Therefore, the proposed method is useful for applying image recognition.

Comparing the proposed method with CNN-based approaches, FA-VB-DAEM achieved
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Eigen-image
Method Mean 1st 2nd 3rd

FA-ML-EM

FA-VB-EM

FA-ML-DAEM

FA-VB-DAEM

Figure 4.10: Values of mean vector and eigen-images represented by grayscale

better recognition rates than CNN-based approaches. Furthermore, while CNN-based
approaches decreased recognition rates significantly for Dataset2, which included many
size and location variations, FA-VB-DAEM maintained high recognition rates. These
results suggest that the proposed method is more robust to geometric variations than CNN-
based approaches and more effective than CNN-based approaches when the amount of
training data is insufficient. However, since CNN did not obtain better recognition rates
than CaffeNet, the number of training images in the experiments was too small to train
the CNN. Therefore, in the future, I should perform comparative experiments on large
datasets.
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Figure 4.11: Recognition rates obtained in image recognition experiments on Dataset1
and Dataset2 (circle point: FA, cross point: PPCA, red line: VB, blue line: ML, solid
line: DAEM, dotted line: EM).

4.5 Summary

I proposed image recognition based on hidden Markov eigen-image models (HMEMs)
using the variational Bayesian (VB) method with the deterministic annealing expectation
maximization (DAEM) algorithm. Face recognition experiments were performed on the
XM2VTS database. HMEMs based on the VB method demonstrated better recognition
performance than the maximum likelihood method. In particular, the VB DAEM algo-
rithm greatly improved the accuracy of recognition performance. This is because the
proposed method mitigated the over-fitting and local maximum problems. Additionally,
comparative experiment results showed that the proposed method was more robust to ge-
ometric variations than convolutional neural networks when the amount of training data is
insufficient. Subjects for future work include applying the Bayesian framework to image
recognition based on the parameter sharing structures of HMEMs, which share a factor
loading matrix across classes, and performing experiments on various image recognition
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tasks.
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Chapter 5

Conclusion

I described a statistical approach to speech synthesis and image recognition based on
HMMs. Basic theories and fundamental algorithms of the HMM were reviewed in Chap-
ter 2.

In Chapter 3, the method for constructing TTS systems for languages with unknown pro-
nunciations was proposed. A grapheme-to-phoneme converter and speech synthesizer
were constructed from speech recognition results of a proxy language speech recognizer.
I applied this method to Japanese and evaluated the naturalness of its output. Experi-
mental results showed that an appropriate phoneme insertion penalty and iteration count
for training and recognition were important for the proposed method. The proposed
TTS system that does not use language-specific knowledge could synthesize more nat-
ural speech compared with that from a grapheme-based TTS system. Future work will
include a multilingual speaker-independent speech recognizer based on the IPA [65] or
GlobalPhone [66] to obtain accurate phoneme sequences. Furthermore, investigations of
prosodic attributes, e.g. accent, stress, and tone, and languages not written with space
between words, e.g. Mandarin, Japanese, and Thai, will be needed in order to establish a
more language-independent method. Additionally, I will perform experiments on various
written languages.

In Chapter 4, the image recognition system based on HMEMs using the variational Bayesian
method with DAEM algorithm was proposed. Face recognition experiments were per-
formed on the XM2VTS database. HMEMs based on the VB method demonstrated bet-
ter recognition performance than the maximum likelihood method. In particular, the VB
DAEM algorithm greatly improved the accuracy of recognition performance. This is
because the proposed method mitigated the over-fitting and local maximum problems.
Additionally, comparative experiment results showed that the proposed method was more
robust to geometric variations than convolutional neural networks when the amount of
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training data is insufficient. Subjects for future work include applying the Bayesian frame-
work to image recognition based on the parameter sharing structures of HMEMs, which
share a factor loading matrix across classes, and performing experiments on various image
recognition tasks.
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Appendix A

Derivation of training algorithm for
HMEMs

A.1 Derivation of VB EM algorithm for HMEMs

The VB posterior distributionQ(x) in Eq. (4.25) can be written by a Gaussian distribution

as follows:

Q(x) = N (x | µ̂(x), Σ̂
(x)

), (A.1)

where µ̂(x) and Σ̂
(x)

are the mean vector and full covariance matrix of the factor vector x,

respectively. The re-estimation formulae µ̂(x) and Σ̂
(x)

of the VB posterior distribution

Q(x) are derived as follows:

µ̂(x) = Σ̂
(x)
{∑

t

∑
k

D∑
d=1

⟨zt,k⟩Q(z)

[
ω̂k,dη̂kν̂

−1
k,d (ot,d − γ̂k,d)− ûk

]}
, (A.2)

Σ̂
(x)

=

[
I +

∑
k

D∑
d=1

Nk

(
ω̂k,dη̂kν̂

−1
k,dω̂

⊤
k,d + Υ̂k

)]−1

, (A.3)

where ot,d is ot = {ot,d |d = 1, 2, . . . , D} and ω̂k,d, γ̂k,d, Υ̂k, and ûk are defined as:

ĥk,d =
[
ω̂⊤

k,d γ̂k,d
]⊤
, (A.4)

Û
−1

k =

[
Υ̂k ûk

û⊤
k ûk

]
. (A.5)
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The expectation value with respect to Q(z(m)) is computed by the following equations:

Nk =
∑
t

⟨zt,k⟩Q(z), (A.6)

⟨zt,k⟩Q(z) = ⟨z(1)t(1),k(1)
⟩Q(z(1))⟨z

(2)

t(2),k(2)
⟩Q(z(2)), (A.7)

⟨z(m)

t(m),k(m)⟩Q(z(m)) =
∑
z(m)

Q(z(m))z
(m)

t(m),k(m) , (A.8)

N
(m)

k(m),k̄(m) =
T (m)∑
t(m)=2

⟨z(m)

t(m)−1,k(m)z
(m)

t(m),k̄(m)⟩Q(z(m)), (A.9)

⟨z(m)

t(m)−1,k(m)z
(m)

t(m),k̄(m)⟩Q(z(m)) =
∑
z(m)

Q(z(m))z
(m)

t(m)−1,k(m)z
(m)

t(m),k̄(m) , (A.10)

where ⟨·⟩Q(·) denotes the expectation with respect to the posterior distribution Q(·) and

z
(m)

t(m),k(m) is the Kronecker delta function:

z
(m)

t(m),k(m) =

{
0 (z

(m)

t(m) ̸= k(m))

1 (z
(m)

t(m) = k(m))
. (A.11)

The VB posterior distribution Q(z(m)) in Eq. (4.26) can be represented as follows:

Q(z(m)) ∝ exp

 K(m)∑
k(m)=1

z
(m)

1,k(m)⟨ln π
(m)

k(m)⟩Q(Λ)


× exp

[
T (m)∑
t(m)=2

K(m)∑
k(m)=1

K(m)∑
k̄(m)=1

z
(m)
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(m)

t(m),k̄(m)⟨ln a
(m)

k(m),k̄(m)⟩Q(Λ)

]

× exp

[∑
t

K(m)∑
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K(m̄)∑
k(m̄)=1

z
(m)
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(m̄)

t(m̄),k(m̄)⟩Q(z(m̄))⟨ln bk(ot)⟩Q(x)Q(Λ)

]
. (A.12)
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The expectation value with respect to Q(x) and Q(Λ) are derived as:

⟨log π(m)

k(m)⟩Q(Λ) = Ψ
(
ϕ̂
(m)

k(m)

)
−Ψ

 K(m)∑
k′(m)=1

ϕ̂
(m)

k′(m)

 , (A.13)

⟨log a(m)

k(m),k̄(m)⟩Q(Λ) = Ψ
(
α̂
(m)

k(m),k̄(m)

)
−Ψ

 K(m)∑
k′(m)=1

α̂
(m)

k(m)k′(m)

 , (A.14)

⟨ln bk(ot)⟩Q(x)Q(Λ) =
D∑

d=1

[
lnN (ot,d | ĥ

⊤
k,d ⟨x̃⟩Q(x) , η̂
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−1

2
ln η̂k,d +

1

2
Ψ(η̂k,d)−

1

2
Tr

{
ĥ

⊤
k,d

⟨
x̃x̃⊤⟩

Q(x)
ĥk,d

−ĥ
⊤
k,d ⟨x̃⟩Q(x) ⟨x̃⟩

⊤
Q(x) ĥk,d + Û

−1

k

⟨
x̃x̃⊤⟩

Q(x)

}]
, (A.15)

where Ψ(·) is a digamma function. The expectation values ⟨x̃⟩Q(x) and
⟨
x̃x̃⊤⟩

Q(x)
with

respect to Q(x) can be calculated by using Eqs. (A.2) and (A.3):

⟨x̃⟩Q(x) =
[
µ̂(x)⊤ 1

]⊤
, (A.16)⟨

x̃x̃⊤⟩
Q(x)

=

[
Σ̂

(x)
+ µ̂(x)µ̂(x)⊤ µ̂(x)

µ̂(x)⊤ 1

]
. (A.17)

Since HMEMs assume independence of horizontal and vertical state sequences, the VB

posterior distribution Q(z(m)) in Eq. (A.12) has a Markovian structure as the likelihood

function of an standard one-dimensional HMM. Therefore, Eqs. (A.8) and (A.10) can be

computed efficiently by the forward-backward algorithm [82] in section 2.2.

The VB posterior distribution Q(Λ) in Eq. (4.27) can be written by Dirichlet and Gauss-

gamma distributions:

Q(Λ) =
2∏

m=1

D(π(m) | ϕ̂
(m)

)
K(m)∏
k(m)=1

D(a(m)

k(m) | α̂
(m)

k(m))


×
∏
k

D∏
d=1

N (w̃k,d | ĥk,d, Û
−1

k σ2
k,d)G((σ2

k,d)
−1 | η̂k, ν̂k,d). (A.18)

The posterior distribution of model parameters can be updated by statistics of the training
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data as follows:

ϕ̂
(m)

k(m) = ϕ
(m)

k(m) + ⟨z
(m)

1,k(m)⟩Q(z(m)), (A.19)

α̂
(m)

k(m),k̄(m) = α
(m)

k(m),k̄(m) +N
(m)

k(m),k̄(m) , (A.20)
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(
Ukhk,d +

∑
t

⟨zt,k⟩Q(z) ot,d ⟨x̃⟩Q(x)

)
, (A.21)

Ûk = Uk +Nk

⟨
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Q(x)
, (A.22)

η̂k = ηk +
1

2
Nk, (A.23)

ν̂k,d = νk,d +
1

2
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k,dUkhk,d −
1

2
ĥ

⊤
k,dÛkĥk,d +

1

2

∑
t

⟨zt,k⟩Q(z) ot,dot,d.

(A.24)

When PPCA structure, i.e., the covariance matrix of noise vector is tied in feature dimen-

sions and HMM states, is used, the re-estimation formula of the gamma distribution is as

follows:

η̂ = η +
1

2
D
∑
k

Nk, (A.25)

ν̂ = ν +
1

2

∑
k
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+
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2

∑
t

∑
k

D∑
d=1

⟨zt,k⟩Q(z) ot,dot,d. (A.26)
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A.2 Derivation of Hyper-parameters based on prior data

The hyper-parameters based on prior data o(prior) are given as:

ϕ
(m)

k(m) = 1 + τ⟨z(m)

1,k(m)⟩
(prior)

Q(z(m))
, (A.27)

α
(m)

k(m),k̄(m) = 1 + τN
(m)(prior)

k(m),k̄(m) , (A.28)
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k τ

∑
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⟨zt,k⟩(prior)Q(z) o
(prior)
t,d ⟨x̃⟩(prior)Q(x) , (A.29)

Uk = τN
(prior)
k
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x̃x̃⊤⟩(prior)

Q(x)
, (A.30)

ηk = 1 +
1

2
τN

(prior)
k , (A.31)
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1

2
τ
∑
t

⟨zt,k⟩(prior)Q(z) o
(prior)
t,d o

(prior)
t,d − 1

2
h⊤

k,dUkhk,d, (A.32)

where ·(prior) denotes statistics of prior data o(prior) and τ is the tuning parameter for prior

distributions P (Λ).

A.3 Derivation of VB DAEM algorithm for HMEMs

In the VB DAEM algorithm, the temperature parameters βl are attached to the re-estimation

formulas. The VB posterior distribution Q(x) in Eq. (4.38) can be updated as follows:

µ̂(x) = Σ̂
(x)
{
β1
∑
t

∑
k

D∑
d=1

⟨zt,k⟩Q(z)

[
ω̂k,dη̂kν̂

−1
k,d(ot,d − γ̂k,d)− ûk

]}
, (A.33)

Σ̂
(x)

=
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Nk(ω̂k,dη̂kν̂
−1
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k,d + Υ̂k)

]−1

.

(A.34)
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The VB posterior distribution Q(z(m)) in Eq. (4.39) can be represented as follows:

Q(z(m)) ∝ exp

β3 K(m)∑
k(m)=1

z
(m)

1,k(m)⟨lnπ
(m)

k(m)⟩Q(Λ)
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× exp
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× exp
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t(m̄),k(m̄)⟩Q(z(m̄))⟨ln bk(ot)⟩Q(x)Q(Λ)

]
. (A.35)

The VB posterior distributionQ(z(m)) can be applied to the forward-backward algorithm.

Therefore, Eqs. (A.8) and (A.10) considering the temperature parameters can be obtained

efficiently.

The VB posterior distribution Q(Λ) in Eq. (4.40) can be updated as follows:

ϕ̂
(m)

k(m) = β4(ϕ
(m)

k(m) − 1) + 1 + β3⟨z(m)

1,k(m)⟩Q(z(m)), (A.36)
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η̂k = β4(ηk − 1) + 1 +
1

2
β1Nk, (A.40)

ν̂k,d = β4νk,d +
1

2
β4h

⊤
k,dUkhk,d −

1

2
ĥ

⊤
k,dÛkĥk,d

+
1

2
β1
∑
t

⟨zt,k⟩Q(z) ot,dot,d. (A.41)
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