Effect of Ionic Liquid on Transition Metal－N \mathbf{N}_{2} Complexes and Its Application to Electrochemical Ammonia Synthesis

イオン液体中での窒素錯体の評価と電気化学的アンモニア合成への応用

Thesis by
Akira Katayama

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Nagoya Institute of Technology
Nagoya，Japan

January 2018

Copyright © 2018
Akira Katayama
All Rights Reserved

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Professor Hideki Masuda for the continuous support of my Ph.D. study for his patience, motivation, enthusiasm, and immense knowledge. I am deeply indebted to him for the thinking of chemistry and life.

Beside my advisor, I would like to express my gratitude to Associate Professors Tomohiro Ozawa and Tomohiko Inomata for their encouragement, hard questions and insightful comments, and Assistant Professor Yuko Wasada-Tsutsui who taught me how to carry out DFT and TD-DFT calculations. I would like to show my appreciation to Professor Hideki Mori in Nagoya Institute of Technology who taught me chemical engineering process, helped design of the electrolysis cell, and gave me valuable advice and to Dr. Yoshiyuki Watanabe and Dr. Mitsuo Morita in JGC CORPORATION who performed feasibility studies for the electrochemical ammonia synthesis toward the industrial application. I would like to thank Professor Yoshitsugu Kojima in Hiroshima University, who gave me variable comments regarding with the electrochemical ammonia synthesis. I would like to thank the late Professor Takashi Ogura and Associate Professor Takehiro Ohta in University of Hyogo, who taught me how to measure resonance Raman spectroscopy and discussed on the results and provided incisive comments.

I would like to offer my thanks to Associate Professor Yuji Kajita in Aichi Institute of Technology, Associate Professor Takuma Yano and Assistant Professor Kenta Motobayashi in Nagoya Institute of Technology, and Dr. Jun Matsumoto, Dr. Takahiko Ogawa, Dr. Tatsuya Suzuki and Dr. Tatsuya Kitagawa who taught me how to do experiments and gave me helpful advices for all things. I am also grateful to Masuda
laboratory's members who helped my experiment and discussed my work. Especially, I would sincerely like to thank to Mrs. Hiroko Amano who is a secretary and Mrs. Yachiyo Taniyama who is a technical officer helping me various things in this laboratory.

I acknowledge the Equipment Development Center in Institute for Molecular Science for helping the development of the electrolysis cell. My Ph.D. study was supported by the New Energy and Industrial Technology Development Organization (NEDO) through the "Advanced Research Program for Energy and Environmental Technologies," and the Japan Society for the Promotion of Science (JSPS) through the research fellowship for young scientists (DC2) with "Grant-in-Aid for JSPS Fellows (No. 15J09325)".

Finally and importantly, my deepest appreciation goes to my parents Ryuji and Rika Katayama raising me and giving me this opportunity to pursue this career path.

Abstract

So far, small molecule activation reactions such as the reduction of CO_{2} by using transition metal complexes in ionic liquids (ILs) have been studied. Transition metal complexes in ILs are affected by the electrostatic interaction of ILs and the reactivity in ILs are different from those in conventional organic solvents. However, the N_{2} reduction by transition metal complex has never been reported before. In this thesis, therefore I focused on understanding the N_{2} coordination to transition metal complexes in ILs and its activation, and applying the combination to the electrochemical NH_{3} synthesis.

The main subjects are summarized as follows; (1) the construction of the electrochemical conversion system for N_{2} and proton derived from $\mathrm{H}_{2} \mathrm{O}$ to NH_{3} by using transition metal complexes in ILs under mild conditions is described in Chapter 2 , and (2) the evaluation of the effect of ILs toward transition metal- N_{2} complexes is discussed in Chapters 3 and 4. These details containing the introduction are described in Chapter 1.

In Chapter 2, the electrochemical NH_{3} synthesis by using titanocene dichloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, in the ILs in solid polymer electrolyte (SPE) cell is described based on the results of the electrochemical redox reaction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs. To carry out the electrochemical reaction, a SPE cell having a proton exchange membrane and a gas diffusion electrode coated with 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate $\quad\left(\mathrm{Pyr}_{4} \mathrm{FAP}\right)$ and 1-butyl-1-methylpyrrolidinium triflate $\left(\mathrm{Pyr}_{4} \mathrm{OTf}\right)$ containing $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ is designed and fabricated. The electrochemical NH_{3} synthesis in SPE cell gives higher NH_{3} yields than that in THF solution in H-type cell. Moreover, to confirm that the generation of NH_{3} in the electrochemical reaction is derived from N_{2} gas, the isotopic labeling experiment was also performed. The comparison of the electrochemical synthesis of NH_{3} in

non-coordinating IL with that in coordinating IL indicates that the efficiency of the NH_{3} synthesis in non-coordinating IL is higher than that in coordinating IL.

In Chapter 3, the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs is evaluated using UV/vis/NIR spectroscopy, and furthermore, N_{2} coordination of titanocene monochloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, in ILs is also discussed. UV-vis/NIR spectra of [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ during the electrochemical reduction clearly suggest that dimeric species, $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, is generated via formation of monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ even in non-coordinating IL. To confirm whether an equilibrium reaction between dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ in IL exists or not, the frozen solution EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ was measured. Surprisingly, the hyperfine splitting derived from N_{2} coordination to [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ was observed only in IL. The effect of ILs toward the N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ is evaluated by DFT calculations, and it was suggested that the polar domain in non-coordinating IL promotes the N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ through weak interaction between FAP anion and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$.

In Chapter 4, the electrochemical oxidation reaction of molybdenum(0)- N_{2} complex supported with bidentate phosphine ligands in $\mathrm{Pyr}_{4} \mathrm{FAP}$ is described. To examine the effect of $\mathrm{Pyr}_{4} \mathrm{FAP}$, the electrochemical oxidation reaction in THF solution was also evaluated. Resonance Raman, FT-IR and UV-vis/NIR spectroscopic studies during electrochemical oxidation reaction and their evaluation by DFT and TDDFT calculations revealed that the subsequent reaction after the electrochemical oxidation of the $\operatorname{Mo}(0)-\mathrm{N}_{2}$ complex proceeded to form the dimeric species, $\mathrm{Mo}(\mathrm{II})-\mathrm{N}=\mathrm{N}-\mathrm{Mo}(\mathrm{II})$ in THF solution. On the other hand, a mononuclear $\mathrm{Mo}(\mathrm{I})-\mathrm{N}_{2}$ complex in Pyr_{4} FAP was stabilized due to its weak interaction with FAP anion of the non-coordinating IL.

In Chapter 5, the conclusions in this thesis are described.

List of Publications

1. Electrochemical conversion of dinitrogen to ammonia induced by a metal complexsupported ionic liquid

Akira Katayama, Tomohiko Inomata, Tomohiro Ozawa, Hideki Masuda, Electrochem. Commun., 2016, 67, 6-10.
(Reference in Chapter 3)
2. Electrochemical Evaluation of Titanocenes in Ionic Liquids with Non-coordinating and Coordinating Anions and Application for NH_{3} Synthesis

Akira Katayama, Tomohiko Inomata, Tomoniro Ozawa, Hideki Masuda, ChemElectroChem., 2017, 4, 3053-3060.
doi: 10.1002/celc. 201700557
(Reference in Chapter 2)
3. Ionic liquid promotes N_{2} coordination to titanocene(III) monochloride Akira Katayama, Tomohiko Inomata, Tomohiro Ozawa, Hideki Masuda, Dalton Trans., 2017, 46, 7668-7671.
(Reference in Chapted 2)

Table of Contents

Page
Acknowledgements -iii
Abstract -v
List of publication vii
Table of Contents viii
Detail Table of contents ix
List of Figures xiv
List of Schemes xx
List of Tables xxi
List of Abbreviations xxv
Chapter 1: Introduction -1
Chapter 2: Electrochemical ammonia synthesis by using titanocene in ionic liquid -22
Chapter 3: Ionic liquid promotes N_{2} coordination to titanocene(III) monochloride- 44
Chapter 4: Electrochemical oxidation of molybdenum(0) $-\mathrm{N}_{2}$ complex in THF solution and ionic liquid -81
Chapter 5: Conclusions 119
Appendices 125

Detailed Table of Contents

Page
Chapter 1: Introduction -1
1.1 Motivation -1
1.2 Potential roles of NH_{3} as hydrogen carrier in H_{2} economy -1
1.3 Current major NH_{3} syntheses -2
1.3.1 Industrial ammonia synthesis -2
1.3.2 Biological NH_{3} synthesis -3
1.3.3 NH_{3} synthesis by transition metal complexes -4
1.3.4 Electrochemical NH_{3} synthesis at room temperature and 1 atom -7
1.4 Ionic liquid -9
1.4.1 Property of ionic liquids -9
1.4.2 Small molecule activation reaction in ionic liquids 12
1.5 Purpose of this study 13
1.6 Chapter summaries 13
1.7 References -15
Chapter 2: Electrochemical ammonia synthesis by using titanocene in ionic liquid 22
2.1 Introduction -22
2.2 Results and Discussion 24
2.2.1 Design and fabrication of solid polymer electrolyte cell (SPE cell) 24
2.2.2 Cyclic voltammograms of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquids with non-coordinating FAP $^{-}$or coordinating OTf anion -24
2.2.3 Linear sweep voltammograms of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in SPE cell -29
2.2.4 Electrochemical NH_{3} synthesis in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$ 30
2.2.5 Isotopic labeling experiment under ${ }^{15} \mathrm{~N}_{2}$ atmosphere 33
2.3 Conclusion 35
2.4 Experimental 35
2.4.1 Chemicals 35
2.4.2 Instrumentation 37
2.4.3 Measurements of cyclic voltammetry 37
2.4.4 Electrochemical N_{2} reduction in SPE cell- 37
2.4.5 Quantification of NH_{3} and $\mathrm{N}_{2} \mathrm{H}_{4}$ 38
2.4.6 Detection of ${ }^{15} \mathrm{~N}$-labeled indophenol -39
2.4.7 DFT calculation- -40
2.5 References -40
Chapter 3: Ionic liquid promotes N_{2} coordination to titanocene(III) monochloride 44
3.1 Introduction -44
3.2 Results and Discussion -45
3.2.1 UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquids during electrochemical reduction -45
3.2.2 UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ -51
3.2.3 Frozen solution EPR spectroscopy of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, THF and toluene 53
3.2.4 Full geometry optimizations of titanocene derivatives, $\mathbf{1 , 2}, \mathbf{3}, \mathbf{4}$, and 4-TS by DFT calculations. -59
3.2.5 Evaluation of equilibrium reactions based on calculated Gibbs energies of the titanocene derivatives 62
3.2.6 Evaluation of the effect of IL toward 3, 4 and 4-TS 63
3.2.7 Mechanism of N_{2} coordination to 3 achieved in IL -66
3.2.8 TD-DFT calculations for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ and $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in ionic liquid 67
3.3 Conclusion 69
3.4 Experiment 71
3.4.1 Chemicals 72
3.4.2 Purification of ionic liquid 72
3.4.3 Instrumentation 73
3.4.4 Measurement of EPR spectra under ${ }^{14} \mathrm{~N}_{2}$ atmosphere 73
3.4.5 Measurement of EPR spectra under ${ }^{15} \mathrm{~N}_{2}$ atmosphere -73
3.4.6 UV-vis/NIR spectra during controlled potential electrolysis (CPE) 74
3.4.7 DFT and TDDFT calculations 75
3.5 References 76
Chapter 4: Electrochemical oxidation of molybdenum(0)- N_{2} complex in THF solution and ionic liquid 81
4.1 Introduction 81
4.2 Results and Discussion 82
4.2.1 Electrochemical oxidation of $\mathrm{Mo}-\mathrm{N}_{2}$ complex in THF solution 83
4.2.1.1 FT-IR spectra during electrochemical oxidation 83
4.2.1.2 Resonance Raman spectra during electrochemical oxidation- 86
4.2.1.3 UV-vis spectra during electrochemical oxidation 91
4.2.1.4 Assignment of FT-IR, resonance Raman and UV-vis spectra for electrochemical oxidation products of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ by DFT and TDDFT calculations 94
4.2.1.5 Quantitative molecular orbital diagram and energy profile for$\left\{\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]_{2}\right\}^{2+}$ in the singlet state (7)98
4.2.2 Electrochemical oxidation of $\mathrm{Mo}-\mathrm{N}_{2}$ complex in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 100
4.2.2.1 FT-IR spectra during electrochemical oxidation 100
4.2.2.2 Resonance Raman spectra 102
4.2.2.3 The effect of FAP anion toward Mo complex 103
4.3 Conclusion 107
4.4 Experiment 108
4.4.1 Chemicals 108
4.4.2 Instrumentation 109
4.4.3. FT-IR spectroscopy during the controlled potential electrolysis 110
4.4.4 Resonance Raman spectroscopy during the controlled- potential electrolysis 111
4.4.5 UV-vis spectroscopy during the controlled potential electrolysis 113
4.4.6 DFT and TDDFT calculations 114
4.5 References 115
Chapter 5: Conclusions 119
Appendix A: Supporting information in Chapters 2 and 3 125
A. 1 Design of a cell for UV-vis spectroscopy during CPE 125
A. 2 Design of SPE cell 126
A. 3 Quantification of H_{2} 127
A. 4 Calculation of diffusion coefficients $\left(\mathrm{D} / \mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$ 128
A. 5 Calculation of electrochemical rate constant $\left(\mathrm{k}^{0} / \mathrm{cm} \mathrm{s}^{-1}\right)$ 131
A. 6 Influence of viscosities of solvents against D and k^{0} 132
A. 7 Cyclic voltammograms of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ 134
A. 8 UV -vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right],\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$ 140
A. 9 Cyclic voltammograms of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in ionic liquids 144
A. 10 Electrochemical synthesis of NH_{3} by using $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in SPE cell 146
A. 11 Linear sweep voltammograms of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 147
A. 12 DSC measurement 148
A. 13 References 149
Appendix B: Supporting Information in Chapter 3 150
B. 1 Structural information of model complexes 150
B. 2 TD-DFT calculations of model complexes in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ 154
B.3. TD-DFT calculations of model complexes in THF ($\varepsilon=7.4257$) 165
B. 4 Computed profile of titanocene in toluene, THF and Pyr_{4} FAP 172
B. 5 Cartesian coordinates for optimized structures 173
B. 6 References 180
Appendix C: Supporting Information in Chapter 4 181
C. 1 Design of apparatus -181
C. 2 Cyclic voltammogram of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ 183
C. 3 Evaluation of the appropriate functional for DFT calculation 184
C. 4 DFT and TD-DFT calculations of Mo complexes in THF 185
C. 5 Electrochemical NH_{3} synthesis by trans- $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in by using SPE cell- 214
C. 6 Cartesian coordinates for optimized structures -216
C. 7 References -237

List of Figures

Chapter 1

Figure 1-1. Schematic structure of the active site of nitrogenase (FeMoco). -------------3

Figure 1-3. Schematic drawing of electrochemical synthesis of NH_{3} using proton

Figure 1-4. A photo of IL and chemical structures of cation and anion parts of ILs.----10

Chapter 2

Figure 2-1. The structures of titanocene complexes, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and ILs. ----------------24
Figure 2-2. A schematic diagram and internal structure of the constructed SPE cell.---25
Figure 2-3. CVs of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$.--------------------------------------26
Figure 2-4. Possible structures of titanocene(III) species coordinated with triflate. ----28
Figure 2-5. Energies estimated by DFT studies of the $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right] .----28$
Figure 2-6. LSVs of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and in $\mathrm{Pyr}_{4} \mathrm{OTf}$ in SPE. --------------------30
Figure 2-7. (A) Plots of NH_{3} yields per Ti ion against the consumed electric charge and plots of current efficiency (\%) (B) against the consumed electric charge. ---------------31

Figure 2-8. ESI-MS spectrum (negative mode) of indophenol anion derived from ammonia prepared by CPE at $-1.5 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$ under ${ }^{14} \mathrm{~N}_{2}$ or ${ }^{15} \mathrm{~N}_{2}$.-----------------34

Chapter 3

Figure 3-1. UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ during CPE at -1.2 V (vs. Pt

Figure 3-2. UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ during CPE at -1.2 V (vs. Pt

Figure 3-3. UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at -1.2 V (vs. Pt wire) under Ar atmosphere.-50

Figure 3-4. UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$, toluene and $\mathrm{Pyr}_{4} \mathrm{FAP}$.52

Figure 3-5. Experimental and simulated frozen solution EPR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ under ${ }^{14} \mathrm{~N}_{2}$ and ${ }^{15} \mathrm{~N}_{2}$ atmospheres.56

Figure 3-6. Frozen solution EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene. -------------------57
Figure 3-7. Frozen solution EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} /$ THF.---58

Figure 3-8. Optimized structures of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in the singlet (1) and triplet states (2), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right](3),\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right](4)$ and $\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right]$ in the transition state (4-TS). -------61
Figure 3-9. Computed profile of the equilibrium reactions among 1, 2, 3, 4, and 4-TS in toluene and ionic liquid, as estimated at $298.15 \mathrm{~K} .--62$

Figure 3-11. Computed reaction profile of the equilibrium reaction calculated by BP86/TZVP with empirical corrections (GD3BJ) among 3', 4' and 4-TS without FAP anion and 3'-FAP, 4'-FAP and $\mathbf{4}^{\prime}$-FAP-TS with FAP in $\mathrm{Pyr}_{4} \mathrm{FAP}$ at 298.15 K . -66

Figure 3-12. Absorption spectra of complex 2, 3, and 4 in Pyr_{4} FAP $(\varepsilon=14.7)$ calculated by TD-DFT.

Chapter 4

Figure 4-1. Cyclic voltammogram of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$.

Figure 4-2. (A) Cyclic voltammogram of 10 mM trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ (WE and CE: Pt mesh, RE: Pt wire, cell: Nylon film and scan rate: 10 mV / s), (B) the plots of consumed electric charge (mC) against time (s) by CPE at +0.5 V (vs. Pt wire), (C) The difference FT-IR spectra during CPE at +0.5 V (vs.Pt wire) (WE and CE: Pt mesh, RE: Pt wire, FT-IR cell: Nylon film) based on the spectrum at 0 s and (D) the plots of $\Delta \mathrm{Abs}$. in peak area at 1938 (red) and $2008 \mathrm{~cm}^{-1}$ (blue) against time during CPE. Amount of solution 0.1 mL .85

Figure 4-3. (A) Resonance Raman spectra of trans-[Mo(depe $\left.)_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ and trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ and $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ (black), (B) cyclic voltammogram of trans-[Mo(depe $\left.)_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{Pr}_{4} \mathrm{FAP} / \mathrm{THF}$, (C) the plots of consumed electric charge (mC) against time (s) in CPE at +0.5 V (vs. Pt wire), (D) the resonance Raman spectra of trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at +0.5 V , (E) the resonance Raman spectra of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M Pyr ${ }_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at +0.5 V and (F) the Raman spectrum of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ and trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ in CPE at 120 min and those difference spectra. 90

Figure 4-4. (A) Cyclic voltammogram of trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (B) the plots of consumed electric charge (mC) against time (s) by CPE at +0.5 V (vs. Pt wire), (C) Time-dependent UV-vis spectra of 1 mM trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{FAP}$ during CPE at +0.5 V (vs. Pt wire) in the range of 250 to 850 nm and (D)
that in the range of 350 to 600 nm , (E) the plots of abs. against time at 300 and 323, and (F) those at 417, 457 and 493 nm . -93
Figure 4-5. (A) Electronic absorption spectra estimated by TD-DFT calculations for complexes $\mathbf{1}$ and $\mathbf{4}$ and (B) expanded Figure 4.5(A), those for (C) $\mathbf{2}$ and 3, (D) 5 in the triplet and singlet states, (E) $\mathbf{6}$ in the triplet and singlet states and (F) 7 in the triplet and singlet states.
Figure 4-6. Qualitative frontier molecular orbital diagram of 7 in the singlet state estimated from DFT calculation. The z axis is defined as the Mo-N2-Mo vector. -99

Figure 4-7. Computed reaction profile from 7 to the nitride 8. Free energy profile calculated at $298.15 \mathrm{~K}(\Delta \mathrm{G}, \mathrm{kcal} / \mathrm{mol})$.

Figure 4-8. Cyclic voltammograms of 1 mM trans- $\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}$ in Pyr_{4} FAP.------ 101
Figure 4-9. (A) The difference FT-IR spectra during CPE at +0.5 V (vs.Pt wire) based on the spectrum at $0 \mathrm{~s},(\mathrm{~B})$ the CV of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ before electrochemical oxidation, and (C) the plots of $\triangle \mathrm{Abs}$. in peak area at 1955 and $1919 \mathrm{~cm}^{-1}$ against time during CPE.
\qquad
Figure 4-10. Resonance Raman spectra of trans-[Mo(depe) $\left.\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$, trans-[Mo(depe) $\left.\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ and used solvent in $\mathrm{Pyr}_{4} \mathrm{FAP} .---------------------------------104$
Figure 4-11. Energy profile for model complexes for $\mathbf{9}^{\prime}, \mathbf{1 0}^{\prime}, \mathbf{1 1}^{\prime}$ and $\mathbf{1 2}^{\prime}$.-------------105
Figure 4-12. The optimized structure of 12 '.---106

Appendix A

Figure A1. Schematic drawing of UV-vis/NIR spectral cell. ------------------------------125
Figure A2. Design of solid polymer electrolyte cell.--126
Figure A3. Pictures of parts for correcting H_{2} gas. ---127
Figure A4. Chronoamperogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and i-t ${ }^{-1 / 2}$ plots. -----------129
Figure A5. Chronoamperogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ and i-t ${ }^{-1 / 2}$ plots. ---------129
Figure A6. Chronoamperogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ and $i-\mathrm{t}^{-1 / 2}$ plots.
\qquad
Figure A7. Plots of D versus $1 / \eta .---133$
Figure A8. CV of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and plots of $j\left(\mu \mathrm{~A} / \mathrm{cm}^{2}\right)$ vs. $v^{1 / 2}\left(\mathrm{~V}^{1 / 2} / \mathrm{s}^{1 / 2}\right)$.

Figure A9. CV of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ and plots of $j\left(\mu \mathrm{~A} / \mathrm{cm}^{2}\right)$ vs. $v^{1 / 2}\left(\mathrm{~V}^{1 / 2} / \mathrm{s}^{1 / 2}\right)$. Figure A10. CV of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP} /$ THF and plots of $j\left(\mu \mathrm{~A} / \mathrm{cm}^{2}\right)$ vs. $v^{1 / 2}$
$\left(\mathrm{V}^{1 / 2} / \mathrm{s}^{1 / 2}\right)$. 136
Figure A11. Cyclic voltammograms of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP} / \mathrm{THF}$. 138
Figure A12. Cyclic voltammograms of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} 4{ }_{4} \mathrm{FAP} / \mathrm{THF}$. 139
Figure A13. UV-vis/NIR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$. 140
Figure A14. UV-vis/NIR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. 140
Figure A15. UV-vis/NIR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene. 141
Figure A16. UV-vis/NIR spectrum of $\left[\mathrm{Cp}_{2}{ }_{2} \mathrm{TiCl}\right]$ in toluene. 141
Figure A17. UV-vis/NIR spectrum of $\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$ in toluene. 142
Figure A18. UV-vis/NIR spectra of $2,4,8$, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$. 143
Figure A19. UV-vis/NIR spectra of $2,4,8$, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene. 143
Figure A20. UV-vis/NIR spectra of 2, 4, 8, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in THF. 144
Figure A21. Cyclic voltammograms of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$. 145
Figure A22. (A) Plots of NH_{3} yield per Ti ion (\%) against the consumed electric charge
(C) and plots of current efficiency (\%) against the consumed electric charge (C). 147
Figure A23. (A) LSVs of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in SPE under N_{2} and Ar 148
Figure A24. DSC measurement for $\mathrm{Pyr}_{4} \mathrm{FAP}$. 148
Appendix B
Figure B1. The optimized structures for $\mathbf{3}^{\prime}$ and $\mathbf{4}^{\prime}$ - 152
Figure B2. The optimized structures for $\mathbf{3}^{\mathbf{\prime}} \mathbf{- F A P}$ and $\mathbf{4}^{\prime}$-FAP 153
Figure B3. The optimized structures for $\mathbf{4}^{\prime}$-TS and 4'-FAP-TS. 153
Figure B4. The optimized structure for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{THF})\right]$ (5) 153
Figure B5. Absorption spectra for $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ calculated by TD-DFT 154
Figure B6. Molecular orbitals for model complex of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$. 155
Figure B7. Absorption spectra of $\mathbf{2}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ calculated by TD-DFT, 156
Figure B8. Molecular orbitals for model complex 2 in $\operatorname{Pryr}_{4} \mathrm{FAP}$ (isosurface values:± 0.07 ($109 \alpha, 110 \alpha, 111 \alpha, 112 \alpha, 113 \alpha, 114 \alpha, 115 \alpha$ and 116α), ± 0.04 (107α and108 α)).157
Figure B9. Molecular orbitals for model complex 2 in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (isosurface values:± 0.07 ($109 \beta, 111 \beta, 113 \beta$), ± 0.04 (107β and 108β)).158
Figure B10. Molecular orbitals of model complex 1 (Isosurface values: ± 0.02 (109))and 2 (Isosurface values: ± 0.01 (109 α) in $\mathrm{Pyr}_{4} \mathrm{FAP}$.158
Figure B11. Absorption spectra of $\mathbf{3}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ calculated by TD-DFT. 159

Figure B12. Molecular orbitals for model complex 3 in Pyr $_{4}$ FAP (isosurface values: $\pm 0.07(51 \alpha, 52 \alpha, 53 \alpha, 54 \alpha, 55 \alpha, 56 \alpha, 57 \alpha, 58 \alpha$ and $59 \alpha) .----------------------------160$
Figure B13. Molecular orbitals for model complex 3 in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (isosurface values: $\pm 0.07(51 \beta, 52 \beta, 54 \beta, 55 \beta$ and $57 \beta)$. 161
Figure B14. Absorption spectra of 4 in Pyr_{4} FAP calculated by TD-DFT. --------------162 Figure B15. Molecular orbitals for model complex 4 in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (isosurface values: $\pm 0.07(61 \alpha, 62 \alpha, 63 \alpha, 64 \alpha, 65 \alpha, 66 \alpha, 67 \alpha, 68 \alpha)$ and $\pm 0.04(72 \alpha)$. -163
Figure B16. Molecular orbitals for model complex 4 in Pyr ${ }_{4}$ FAP (isosurface values:
± 0.07 ($59 \beta, 60 \beta, 62 \beta$ and 63β))--164
Figure B17. Absorption spectra of 2, $\mathbf{3}$ and $\mathbf{5}$ in THF as calculated by TD-DFT. 165
Figure B18. Absorption spectra of $\mathbf{1}$ in THF calculated by TD-DFT. ------------------166
Figure B19. Absorption spectra of $\mathbf{2}$ in THF calculated by TD-DFT. ------------------167
Figure B20. Absorption spectra of $\mathbf{3}$ in THF calculated by TD-DFT. ------------------168
Figure B21. Absorption spectra of $\mathbf{4}$ in THF calculated by TD-DFT. ------------------169
Figure B22. Absorption spectra of $\mathbf{5}$ in THF calculated by TD-DFT. ------------------170
Figure B23. Molecular orbitals for model complex 5 in THF. ---------------------------171
Figure B24. Computed profile of the equilibrium reactions among 1, 2, 3, 4, and 4-TS in toluene and $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$, as estimated at $298.15 \mathrm{~K} .-----------------------172$
Figure B25. Computed profile of the equilibrium reactions among 1, 2, 3, 4, 4-TS and 5 in THF as estimated at $298.15 \mathrm{~K} .--172$

Appendix C

Figure C1. The picture of a gas purification column for ${ }^{15} \mathrm{~N}_{2} .-------------------------181$
Figure C2. Picture of a FT-IR film cell. --181
Figure C3. Pictures and drawing of resonance Raman cell. ------------------------------182
Figure C4. CV of 2 mM trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ and the plots of consumed electric charge in the electrochemical oxidation. --------------------183
Figure C5. Absorption spectra of complex 1 calculated by TD-DFT.-------------------185
Figure C6. Molecular orbitals for model complex 1. ---------------------------------------186
Figure C7. Absorption spectra of complex 2 calculated by TD-DFT.-------------------187
Figure C8. Molecular orbitals for model complex 2. ---------------------------------------188
Figure C9. Absorption spectra of complex $\mathbf{3}$ calculated by TD-DFT.-------------------189
Figure C10. Molecular orbitals for model complex 3. -------------------------------------190
Figure C11. Absorption spectra of complex 4 calculated by TD-DFT 191
Figure C12. Molecular orbitals for model complex 4. 192
Figure C13. Absorption spectra of complex $\mathbf{5}$ in the triplet state calculated byTD-DFT.194
Figure C14. Molecular orbitals for model complex 5 in the triplet state. 195
Figure C15. Absorption spectra of complex 5 in the singlet state calculated byTD-DFT.197
Figure C16. Molecular orbitals for model complex 5 in the singlet state. 198
Figure C17. Absorption spectra of complex 6 in the triplet state calculated by TD-DFT. 199
Figure C18. Molecular orbitals for model complex 6 in the triplet state. 200
Figure C19. Absorption spectra of complex 6 in the singlet state calculated by TD-DFT. 202
Figure C20. Molecular orbitals for model complex 6 in the singlet state. 203
Figure C21. Absorption spectra of complex 7 in the triplet state calculated by TD-DFT. -204
Figure C22. Molecular orbitals for model complex 7 in the triplet state. 205
Figure C23. Absorption spectra of complex 7 in the singlet state calculated by TD-DFT. 207
Figure C24. Molecular orbitals for model complex 7 in the singlet state. 208
Figure C25. Absorption spectra of complex $\mathbf{8}$ in the triplet state calculated by TD-DFT. 209
Figure C26. Molecular orbitals for model complex $\mathbf{8}$ in the triplet state. 210
Figure C27. Absorption spectra of complex $\mathbf{8}$ in the singlet state calculated byTD-DFT.-211
Figure C28. Molecular orbitals for model complex 8 in the singlet state. 212
Figure C29. The optimized structure of 12' 213
Figure C30. Linear sweep voltammogram of 10 mM trans- $\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in SPE cell. 214

List of Schemes

Chapter 3
Scheme 3-1. Possible reaction scheme of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ under $\mathrm{N}_{2}----------55$
Scheme 3-2. Schematic drawing of (A) the estimated equilibrium reactions among 1, 2 and $\mathbf{3}$ in nonpolar domain of in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and (B) that between $\mathbf{3}$ and $\mathbf{4}$ in polar domain of $\mathrm{Pyr}_{4} \mathrm{FAP}$ 67
Chapter 4
Scheme 4-1. Equilibrium reaction mechanism of trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ 86Scheme 4-2. Proposed subsequent reaction mechanism of the oxidizedtrans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during the controlled-potentialelectrolysis at +0.5 V (vs. Pt wire)-89
Appendix C
Scheme C1. Proposed reaction scheme for NH_{3} generation from trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ 215

List of Tables

Chapter 2
Table 2-1. Summary of redox potentials for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ 26
Chapter 3
Table 3-1. Summary of dipole moments (Debye) for model complexes -63
Chapter 4
Table 4-1. Summary for DFT and TDDFT calculations -97
Appendix A
Table A1. Parameter obtained from chronoamperograms 128
Table A2. Parameters used in calculations for k^{0} 131
Table A3. Relationship between Ψ function parameter and peak potential separation131
Table A4. Viscosity of ionic liquids and diffusion coefficients of [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$] 132
Table A5. Diffusion coefficients of ferrocene and cobaltocene hexafluorophosphate--132
Table A6. Parameters obtained from CV in $\mathrm{Pyr}_{4} \mathrm{FAP}$ shown in Figure A8 137
Table A7. Parameters obtained from CV in $\mathrm{Pyr}_{4} \mathrm{OTf}$ shown in Figure A9 137
Table A8. Parameter obtained from CV in $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP} / \mathrm{THF}$ shown in Figure A10137
Table A9. Redox potentials (vs. $\left.\mathrm{Fc} / \mathrm{Fc}^{+}\right)$of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ inFigure A13139
Table A10. Summary of UV-vis/NIR spectra for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ and [$\mathrm{Cp}_{2} \mathrm{VCl}_{2}$] 142
Table A11. Summary of redox potentials for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ 146

Appendix B

Table B1. Selected bond lengths (\AA) and angles (deg) optimized for the model complexes, $\mathbf{1}$ and $\mathbf{2}$, and the comparison with crystal structure of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ reported in previous literature ${ }^{1,2}$150

Table B2. Selected bond lengths (\AA) and angles (deg) for optimized model complexes with applying the dielectric permittivity of $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ 150
Table B3. Selected bond lengths (\AA) and angles (deg) for optimized model complexes with applying the dielectric permittivity of toluene ($\varepsilon=2.37471$) 151 Table B4. Selected bond lengths (\AA) and angles (deg) for optimized model complexes
with applying the electric permittivity of THF ($\varepsilon=7.4257$)--------------------------------151 Table B5. Selected bond lengths (\AA) and angles (deg) for optimized model complexes
by using BP86/TZVP with Empirical Dispersion=GD3BJ in Pyr $_{4}$ FAP-------------------152
Table B6. Calculated transitions of $\mathbf{1}$ optimized in Pr_{4} FAP --------------------------154
Table B7. Calculated transitions of $\mathbf{2}$ optimized in Prr $_{4}$ FAP ------------------------------156
Table B8. Calculated transitions of $\mathbf{3}$ optimized in Pyr $_{4}$ FAP------------------------------159
Table B9. Calculated transitions of 4 optimized in Pyr $_{4}$ FAP--------------------------------162
Table B10. Calculated transitions of $\mathbf{1}$ optimized in THF--------------------------------166
Table B11. Calculated transitions of $\mathbf{2}$ optimized in THF--------------------------------167
Table B12. Calculated transitions of $\mathbf{3}$ in the singlet state optimized in THF ----------168
Table B13. Calculated transitions of 4 optimized in THF--------------------------------169
Table B14. Calculated transitions of 5 optimized in THF--------------------------------170
Table B15. Cartesian coordinates for optimized structure of $\mathbf{1}$ in Pyr_{4} FAP------------173
Table B16. Cartesian coordinates for optimized structure of $\mathbf{2}$ in Pyr_{4} FAP--------------173
Table B17. Cartesian coordinates for optimized structure of $\mathbf{3}$ in Pyr_{4} FAP-------------173
Table B18. Cartesian coordinates for optimized structure of $\mathbf{4}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}-----------174$
Table B19. Cartesian coordinates for optimized structure of 4-TS in $\mathrm{Pyr}_{4} \mathrm{FAP}-------174$
Table B20. Cartesian coordinates for optimized structure of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$in $\mathrm{Pyr}_{4} \mathrm{FAP}$
174
Table B21. Cartesian coordinates for optimized structure of $\mathbf{1}$ in toluene --------------174
Table B22. Cartesian coordinates for optimized structure of $\mathbf{2}$ in toluene --------------175
Table B23. Cartesian coordinates for optimized structure of $\mathbf{3}$ in toluene --------------175
Table B24. Cartesian coordinates for optimized structure of 4 in toluene --------------175
Table B25. Cartesian coordinates for optimized structure of 4-TS in toluene----------175
Table B26. Cartesian coordinates for optimized structure of $\mathbf{1}$ in THF------------------175
Table B27. Cartesian coordinates for optimized structure of $\mathbf{2}$ in THF-----------------175
Table B28. Cartesian coordinates for optimized structure of $\mathbf{3}$ in THF------------------177
Table B29. Cartesian coordinates for optimized structure of $\mathbf{4}$ in THF 177
Table B30. Cartesian coordinates for optimized structure of 4-TS in THF 177
Table B31. Cartesian coordinates for optimized structure of $\mathbf{5}$ in THF 177
Table B32. Cartesian coordinates for optimized structure of 3' in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 178
Table B33. Cartesian coordinates for optimized structure of $\mathbf{4}^{\prime}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 178
Table B34. Cartesian coordinates for optimized structure of $\mathbf{4}^{\prime}$ - $\mathbf{T S}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 178
Table B35. Cartesian coordinates for optimized structure of 3'-FAP in $\mathrm{Pyr}_{4} \mathrm{FAP}$ - 178
Table B36. Cartesian coordinates for optimized structure of 4'-FAP in Pyr ${ }_{4}$ FAP--- 179
Table B37. Cartesian coordinates for optimized structure of 4'-FAP-TS in $\mathrm{Pyr}_{4} \mathrm{FAP}$ 179
Appendix CTable C1. Comparison of functionals and basis sets against $v\left(\mathrm{~N}_{2}\right), \mathrm{N}-\mathrm{N}$ and $\mathrm{Mo}-\mathrm{N}$bond distances for trans-[$\left.\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ (1) under vacuum condition in DFTcalculation184
Table C2. Calculated transitions of complex 1 185
Table C3. Calculated transitions of complex 2 187
Table C4. Calculated transitions of complex 3 189
Table C5. Calculated transitions of complex 4 191
Table C6. Calculated transitions of complex 5 in the triplet state 194
Table C7. Calculated transitions of complex 5 in the singlet state 197
Table C8. Calculated transitions of complex 6 in the triplet state 199
Table C9. Calculated transitions of complex 6 in the singlet state 202
Table C10. Calculated transitions of complex 7 in the triplet state -204
Table C11. Calculated transitions of complex 7 in the singlet state -207
Table C12. Calculated transitions of complex $\mathbf{8}$ in the triplet state -209
Table C13. Calculated transitions of complex $\mathbf{8}$ in the singlet state 211
Table C14. Summary for $v\left(\mathrm{~N}_{2}\right)$ in Mo- N_{2} complexes 212
Table C15. Results of controlled-potential electrolysis -216
Table C16. Cartesian coordinates for optimized structure of $\mathbf{1}$ -216
Table C17. Cartesian coordinates for optimized structure of 2 -217
Table C18. Cartesian coordinates for optimized structure of 3 -218
Table C19. Cartesian coordinates for optimized structure of 4 219
Table C20. Cartesian coordinates for optimized structure of 5 in the triplet state-- 220
Table C21. Cartesian coordinates for optimized structure of $\mathbf{5}$ in the singlet state--- 221
Table C22. Cartesian coordinates for optimized structure of $\mathbf{6}$ in the triplet state-- 223
Table C23. Cartesian coordinates for optimized structure of $\mathbf{6}$ in the singlet state--- 224
Table C24. Cartesian coordinates for optimized structure of 7 in the triplet state---- 225
Table C25. Cartesian coordinates for optimized structure of $\mathbf{7}$ in the singlet state--- 227
Table C26. Cartesian coordinates for optimized structure of $\mathbf{8}$ in the triplet state---- 228
Table C27. Cartesian coordinates for optimized structure of $\mathbf{8}$ in the singlet state---- 229
Table C28. Cartesian coordinates for optimized structure of 7-TS in the triplet state229
Table C29. Cartesian coordinates for optimized structure of 7-TS in the singlet state231
Table C30. Cartesian coordinates for optimized structure of $\mathbf{9}^{\prime}$ 232
Table C31. Cartesian coordinates for optimized structure of 10' 233
Table C32. Cartesian coordinates for optimized structure of 11' 233
Table C33. Cartesian coordinates for optimized structure of 12' 234
Table C34. Cartesian coordinates for optimized structure of 1 with empiricalcorrections235

List of Abbreviations

Abs.	Absorbance
$\mathrm{Ag} / \mathrm{AgCl}$	Silver/silver(I) chloride electrode (reference electrode)
Ag	Silver
AgCl	Silver(I) chloride
AgClO_{4}	Silver(I) perchlorate
AgNO_{3}	Silver(I) nitrate
$\mathrm{Al}_{2} \mathrm{O}_{3}$	Aluminium oxide
aq.	Aqueous solution
Ar	Argon
atm	Standard atmosphere
$\mathrm{BF}_{4}{ }^{-}$	Tetrafluoro borate
BP86	functional for DFT
B3LYP	functional for DFT
B3LYP*	functional for DFT
C	Coulomb
calcd	Calculated
CE	Counter electrode
Cl^{-}	Chloride anion
cm	Centimeter
cm^{-1}	Wavenumver
CO_{2}	Carbon dioxide
CO	Carbon monoxide
CPE	Controlled-potetial electrolysis
Cp	Cyclopentagienyl ligand
[$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$]	Titanocene dichloride
$\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$	Dimeric bis[(cyclopentadienyl)titanium(III) chloride]
[$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$	Bis[(cyclopentadienyl)titanium(III) chloride]
$\left[\mathrm{Cp}^{2} \mathrm{TiCl}_{2}\right]$	Bis(pentamethylcyclopentadienyl)titanium(IV) dichloride
[$\mathrm{Cp}_{2} \mathrm{VCl}_{2}$]	Bis(cyclopentadienyl)vanadium(IV) dichloride
$\mathrm{CrCp}_{2}{ }^{*}$	Decamethylchromocene
CT	Charge transfer
Cu	Copper

CV	Cyclic voltammogram
$\mathrm{C}_{4} \mathrm{mim}$	1-butyl-3-methylimidazolium
D	Diffusion coefficient
D_{2}	Deuterium dihydrogen
deg.	Degree
depe	1,2 -Bis(diethylphosphino)ethane
DFT	Density functional theory
dppe	1,2 -Bis(diphenylphosphino)ethane
e^{-}	Electron
EC	Heterogeneous electron transfer followed by homogeneous
	chemical reaction
Eq.	Equation
$\mathrm{ESI}-\mathrm{MS}$	Electrospray ionization mass spectroscopy
EtOH	Ethanol
EMIM	1 -ethyl-3methylimidazolium
EPR	Electron Paramagnetic Resonance
eV	Electron volt
$E_{1 / 2}$	Measured or expected half-wave potential in voltammetry
$E_{\text {ox }}$	Oxidation peak potential
$E_{\text {red }}$	Reduction peak potential
F	
FAP	Fluorine atom
Fc	
Fc	Tris(pentafluoroethyl)trifluorophosphate
Fe	ferrocenium ion
$\mathrm{Fe} \mathrm{F}_{3}$	ferrocene
FeMoco	Iron
g	Triiron tetraoxide
G	Iron-Molybdenum cofactor
GCE	Electron g-factor
GD 3 BJ	Gauss, Gibbs free energy
	Glassy carbon electrode

H	Enthalpy, hydrogen atom
H^{+}	Proton
H_{2}	Dihydrogen
HD	Hydrogen deuteride
Hg	Mercury
HIPT	Hexa-isopropyl-terphenyl
HOMO	Highest-Occupied Molecular Orbital
Hz	Hertz
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfic acid
$\mathrm{H}_{2} \mathrm{O}$	Water
IL	Ionic liquid
IR	Infrared
K	Potassium, Kelvin
$\mathrm{kcal} / \mathrm{mol}$	Kilocalorie per mole
KC	Potassium graphite
$\mathrm{K}_{2} \mathrm{O}$	Potassium oxide
LiClO	Lithium perchlorate
LMCT	Ligand to metal charge transfer
LSV	Linear sweep voltammogram
LUMO	Lowest-Unoccupied Molecular Orbital
$[\mathrm{LutH}] \mathrm{BAr}$	F

NBO	Natural Bond Orbital
NBu_{4}	Tetrabutylammonium
NH_{3}	Ammonia
nm	Nanometer
NO	Nitric oxide
NOx	Nitrogen oxides
NTf_{2}	Bis(trifuloromethane)sulfonate
N_{2}	Dinitrogen
OTf	Triflate
O_{2}	Dioxygen
P	Phosphorus atom
PCM	Polarized continuum model
$\mathrm{PF}_{6}{ }^{-}$	Hexafluorophosphate
PTFE	Polytetrafluoroethylene
Pt	Platinum
$\mathrm{Pyr}_{4} \mathrm{FAP}$	1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate
$\mathrm{Pyr}_{4} \mathrm{OTf}$	1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate
$\mathrm{Pyr}_{4} \mathrm{NTf}_{2}$	1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
RE	Reference electrode
redox	Reduction and oxidation
r.t.	Room temperature
Ru	Ruthenium
QRE	Quasi-reference electrode
s	Second
SDD	Stuttgart/Dresden ECP (basis sets for DFT)
SCE	Saturated Calomel Electrode
SPE	Solid polymer electrolyte
TBABF_{4}	Tetrabutyl ammonium tetrafluoroborate
TDDFT	Time-dependent density functional theory
THF	Tetrahydrofuran
Ti	Titanium

TMS	Trimethylsilane
TZVP	Polarized valence triple- ζ (basis sets for DFT)
UV-vis/NIR	UltraViolet-visible/Near InfraRed
V	Volt
vs.	Versus
W	Tungsten
WE	Working electrode
$\%$	Percent
ε	Electric permittivity
$\mu \mathrm{M}$	Micromolar
$\Delta \mathrm{G}$	Gibbs energy change in a chemical process
$\Delta \mathrm{H}$	Enthalpy change in a chemical process
\AA	Ångström
(D)	Depth
(W)	Width
(H)	Height
ϕ	Diameter
${ }^{\circ} \mathrm{C}$	Degree Celsius
π	Pi symmetry orbital
π^{*}	Pi symmetry antibonding interaction
ε	Extinction coefficient in units of M ${ }^{-1} \mathrm{~cm}^{-1}$, dielectric permittivity
η	Hapcity of order,
λ	Wavelength
$\lambda \lambda_{\text {max }}$	Wavelength
$6-31 \mathrm{G}$	
0.2 M Pyr 4 FAP/THF	Basis sets for DFT

Chapter 1: Introduction

1.1 Motivation

A unifying theme described in this thesis concerns the effect of ionic liquid (IL) on the N_{2} activation by a transition metal complex and its application to electrochemical ammonia $\left(\mathrm{NH}_{3}\right)$ synthesis. In 2011, when this subject was first given to me, the N_{2} activation in IL had not been presented yet although various studies on dinitrogen fixation had been reported. Since I believed the breakthrough and new discovery in this research area on both of the N_{2} activation and ILs, I decided to tackle the issues as my Ph.D. study.

1.2 Potential roles of NH_{3} as hydrogen carrier in $\mathbf{H}_{\mathbf{2}}$ economy

NH_{3} is one of the most important chemicals produced exceeding 200 million tons/year. ${ }^{1}$ ca. 80% of NH_{3} produced is used for the fertilizer, and it is utilized to maintain the growth of human population in the world. ${ }^{2}$ Beyond using it as fertilizer, the use of NH_{3} as energy carrier has recently been expected, because it contains $17.6 \mathrm{wt} \%$ of H atom. ${ }^{3}$ From the potential roles of NH_{3} in dihydrogen $\left(\mathrm{H}_{2}\right)$ economy that is the energy system mainly utilizing H_{2} as energy carrier, ${ }^{3}$ the use of NH_{3} has been energetically developed. In comparison with their physical properties, some advantages of NH_{3} with respect to H_{2} are its lower cost for stored energy, higher volumetric energy density and easier handling. ${ }^{3}$ Moreover, since completely burned NH_{3} does not emit CO_{2}, the use of NH_{3} as energy storage media is expected from the viewpoint of safety and environment. ${ }^{4}$ In Japan, the utilization method of NH_{3} as a fuel instead of fossil fuel has been studied in the field of the
vehicle industry, electric power plant, and so on. ${ }^{5,6}$ It is considered that NH_{3} as energy carrier is competitive with hydrogen or electricity in terms of its efficiency, CO_{2} emissions, and supply cost for energy systems. ${ }^{5}$ In electric power plant, since the reducing the CO_{2} emission at coal-fired power generating plant has succeeded in $2017, \mathrm{NH}_{3}$ has been expected as a fuel instead of powdered coal. ${ }^{6}$ Especially, in the case of firing 80% of coal with 20% of NH_{3} in a test plant, the generated nitrogen oxides (NOx) and electrical energy are similar to those by firing 100% of coal, indicating that 20% of CO_{2} emission is reduced. ${ }^{6}$ Accordingly, the use of NH_{3} as hydrogen carrier will contribute to the realization of the sustainable energy society in the future.

1.3 Current major NH_{3} synthesis method

A lot of chemical plants that produce NH_{3} consume up to 5% of the world's natural gas and release hundreds of millions of $\mathrm{CO}_{2} .{ }^{7}$ To reduce CO_{2} emission, chemists have developed various alternative methods to use renewable energy. ${ }^{7}$ In this section, we describe major industrial and biological NH_{3} syntheses in addition to the conversion of N_{2} into NH_{3} by using transition metal complexes. Furthermore, electrochemical NH_{3} syntheses are also introduced, which is especially promised to the energy storage technique for renewable energy such as solar power, wind power and so on. ${ }^{8}$

1.3.1 Industrial ammonia synthesis

The Haber-Bosch process is the main method to produce NH_{3} from N_{2} and H_{2} gases in industry (Eq. 1). ${ }^{8}$

$$
\begin{equation*}
\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3} \tag{1}
\end{equation*}
$$

The Haber-Bosch process was developed 100 years ago, which adopts $\mathrm{Fe}_{3} \mathrm{O}_{4} / \mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst in the temperature range of $400-500{ }^{\circ} \mathrm{C}$ under $130-170$ bar. ${ }^{8,9}$ Nowadays, although the process requires very severe conditions, it produces about 120 million tons of NH_{3} per year for fertilizer. The energy consumption for the synthesis is estimated to be about 1.4% of all energy consumed in the world. ${ }^{7,10,11}$ Additionally, more than 90% of the total energy for industrial NH_{3} production is consumed for the H_{2} generation as a raw material from fossil fuels, and more than 300 million tons of CO_{2} are produced per year. ${ }^{11}$ Therefore, an alternative NH_{3} synthesis process consuming less energy would be highly desirable.

1.3.2 Biological NH_{3} synthesis

As opposed to the Haber-Bosch process carried out under severe conditions, in nature, plants and bacteria can convert N_{2} gas into NH_{3} under mild conditions. In biological system, nitrogenase enzyme is well known to proceed the conversion of N_{2} to ammonia at ambient temperature and pressure (eq. 2). ${ }^{12}$ The active site structure of nitrogenase is composed of $\mathrm{Fe}_{7} \mathrm{MoS}_{10} \mathrm{CNO}_{2}$ cluster, as shown in Figure 1-1.

Figure 1-1. Schematic structure of the active site of nitrogenase (FeMoco).

Though X-ray structure of the active site of FeMo cofactor in nitrogenase has been confirmed in 2011, the detailed reaction mechanism and pathway have not been elucidated yet. ${ }^{12}$ Currently, the scheme has been proposed that N_{2} is coordinated and activated at the thiolate-bridged Fe sites to be converted into NH_{3} through the stepwise protonation and reduction. ${ }^{12(a)}$

Although 8 equiv. of ATP is required to produce 1 equiv. of $\mathrm{NH}_{3}(244 \mathrm{~kJ} / \mathrm{mol})$, it is still better than the industrial method (ca. $485 \mathrm{~kJ} / \mathrm{mol}$, where it includes the whole process such as H_{2} production from steam reforming, pressurizing of the reaction mixture, and so on). ${ }^{8,10}$ Moreover, the rate of NH_{3} generation by nitrogenase enzyme from Klebsiella pneumoniae
 Ru-K/C as heterogeneous catalyst. ${ }^{13}$ Interestingly, even though H_{2} evolution by the reduction of proton is extremely favor reaction for NH_{3} production, nitrogenase enzyme produces 2 equiv. NH_{3} and 1 equiv. H_{2}, as shown in eq. (2). FeMo nitrogenase under D_{2} atmosphere generated HD , suggesting that the scrambling reaction of H^{+}with D_{2} occurs and that the H_{2} evolution is not just a side reaction in NH_{3} generation. ${ }^{14,15}$

On the basis of the attractive NH_{3} synthesis system by nitrogenase in nature, many scientists have considered that to imitate and learn it are a key to realize an environment-friendly alternative process instead of the Haber-Bosch process for NH_{3} production under mild reaction conditions.

1.3.3 $\mathbf{N H}_{3}$ synthesis using transition metal complexes

Toward the development of N_{2} activation method under mild condition, many chemists
have engaged in studying on various transition-metal N_{2} complexes so far. ${ }^{16,17,18}$ Notably, the $\mathrm{Mo}-\mathrm{N}_{2}$ and $\mathrm{W}-\mathrm{N}_{2}$ complexes supported with four monodentate phosphines as ligands, which achieved a stoichiometric conversion of the coordinated N_{2} into NH_{3} by treatment with strong acid such as sulfuric acid, have energetically been studied. ${ }^{19,20}$ The reaction utilizing change in the oxidation states of $\operatorname{Mo}(0)$ to $\operatorname{Mo}(\mathrm{IV})$ is known as Chatt cycle. ${ }^{21}$ In 2003, Yandulov and Schrock reported that a catalytic conversion of N_{2} into NH_{3} was achieved by using $\operatorname{Mo}(\mathrm{III})$ supported with trisamidoamine ligand with sterically bulky substituent groups as the catalyst. ${ }^{22}$ The structure of catalysts is shown in Figure 1-2. The catalytic reaction gave 8 equiv. of NH_{3} per Mo ion by using decamethylchromocene $\left(\mathrm{CrCp}_{2}{ }^{*}\right)$ as a reducing agent and 2,6-lutidinium tetrakis[3,5-bis(trifluoromethyl)phenylborate] ([LutH]BAr $\mathrm{BA}_{4} \mathrm{~F}$; $\mathrm{ArF}=$ 3,5-bis(trifluoromethyl)phenyl)) as a proton source with the catalyst. ${ }^{22}$ In the Schrock cycle, the catalytic reaction is accompanied by change in the oxidation state of Mo (III) to $\mathrm{Mo}(\mathrm{VI})$ by the stepwise protonation and reduction. ${ }^{23}$

In 2011, Nishibayashi and co-workers reported the catalytic conversion of N_{2} into NH_{3} by using Mo complexes supported with PNP-type pincer (2,6-bis(di-tert-butylphosphinomethyl)pyridine)) ligand (Figure 1-2). ${ }^{24}$ Although in the initial report, the TON was ca. 12 equiv. of NH_{3} per Mo atoms, the tuning of the ligand and reaction conditions improved the catalytic activity up to 415 equiv. ${ }^{11(\mathrm{~d}), 25}$ From both of theoretical and experimental studies, some catalytic reaction pathways, such as the stepwise protonation and reduction for the coordinated N_{2} and the protonation to the Mo-nitride complex via directly $\mathrm{N} \equiv \mathrm{N}$ bond cleavage, are proposed.

Although these studies show catalytic NH_{3} synthesis under 1 atm at r.t., more improvement of reaction conditions are required. The energy consumption of the added protonation and reducing agent (for Schrock system, $580 \mathrm{~kJ} \mathrm{~mol}^{-1}$ as calculated as a 65% efficiency; for Nishibayashi system, $700 \mathrm{~kJ} \mathrm{~mol}^{-1}$ as 50% efficiency) ${ }^{15}$ is not mild still as compared with the industrial and biological reactions. Moreover, the chemicals, such as protonation source and reducing agent, should be replaced by proton derived from $\mathrm{H}_{2} \mathrm{O}$ and electron supplied from electrode using a renewable energy.

Recently, bio-inspired Fe complexes having catalytic activity for conversion of N_{2} into NH_{3} have also been reported by Peter's group. In that case, the $\mathrm{Fe}-\mathrm{N}_{2}$ complex, $\left[\mathrm{Fe}\left(\mathrm{BP}_{3}\right)\left(\mathrm{N}_{2}\right)\right]^{-}\left(\mathrm{BP}_{3}=\mathrm{B}\left[2-\left(i \mathrm{Pr}_{2} \mathrm{P}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3}\right.$, generated NH_{3} from excess amount of strong acid and reducing agent under $\mathrm{N}_{2} .{ }^{26}$ Such robust system gave larger turnover of 64 equiv. of NH_{3} production at $-78^{\circ} \mathrm{C}$. Interestingly, the resting state of the catalyst was detected as the $\mathrm{Fe}-\mathrm{N}_{2}$ hydride species that was proposed as the active intermediate of the nitrogenase enzyme. ${ }^{26(b)}$ In this way, the study of N_{2} fixation by transition metal complex is also useful in understanding the biological N_{2} fixation.

Figure 1-2. Molecular catalysts for N_{2} fixation reported by (a) Nishibayashi et al., (b) Schrock et al. and (c) Peters et al.

1.3.4 Electrochemical NH_{3} synthesis at room temperature under 1 atm

As described above, NH_{3} is promised as energy storage media for next renewable ones, therefore, the development of efficient electrochemical NH_{3} synthesis is prospective. So far, numerous researchers have studied the electrochemical NH_{3} synthesis under high temperature and pressure conditions under N_{2}. There, however, are few reports on the electrochemical NH_{3} generation from N_{2} and $\mathrm{H}_{2} \mathrm{O}$ at r.t. and 1 atm (Figure 1-3).

Proton exchange membrane

$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}$
(Most of electrons are used to H_{2} evolution reaction from the proton reduction.)

$$
3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 / 2 \mathrm{O}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}
$$

Figure 1-3. Schematic drawing of electrochemical synthesis of NH_{3} using proton exchange membrane.

In the case of using heterogeneous catalyst as the electrode, the electrochemical reaction proceeds in a solid polymer electrolyte (SPE) cell with the proton exchange membrane and the gas diffusion electrode. For example, Kyriacou and co-workers reported the electrochemical NH_{3} synthesis derived from N_{2} and $\mathrm{H}_{2} \mathrm{O}$ in SPE cell using a Ru / C cathode by gas diffusion electrode as the working electrode (WE). ${ }^{27}$ in this system, the proton generated in the oxidation of $\mathrm{H}_{2} \mathrm{O}$ at the counter electrode reacted with N_{2} at WE , and its current efficiency was 0.28% at $20^{\circ} \mathrm{C}$ when the controlled-potential electrolysis was
performed at -1.10 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). The rate of NH_{3} generated was $0.21 \mu \mathrm{~g} \cdot \mathrm{~h}^{-1} \mathrm{~cm}^{-2}$. The standard potential for the N_{2} reduction to NH_{3}, as calculated from the Nernst equation, was reported to be -0.88 V (vs. $\mathrm{Ag} / \mathrm{AgCl}){ }^{27}$ The conversion of N_{2} to NH_{3} in their experiments was carried out from -0.96 V , which is slightly higher (by 0.08 V) than the calculated value $(-0.88 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl}))$. Recently, Tao and co-workers reported the direct synthesis of NH_{3} from air and $\mathrm{H}_{2} \mathrm{O}$ at r.t. and 1 atm by using Pt / C electrode in SPE cell. ${ }^{28}$ The current efficiency was ca. 0.2% by applying the voltage at 1.6 V .

The electrochemical NH_{3} synthesis by using transition metal complexes under mild conditions have also been reported by Pickett and co-worker first in 1985, which was carried out through protonation to trans- $\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{4}\right]$ at r.t. ${ }^{29}$ The reaction was proceeded in THF containing $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{BF}_{4}\right]$ in the controlled-potential electrolysis at $-2.6 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$ on Hg-pool electrode. Besides, Becker and co-workers reported the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in H-type cell under N_{2} atmosphere to generate NH_{3}. The current efficiency was 0.28% in MeOH containing $0.1 \mathrm{M} \mathrm{LiClO}_{4}$ as electrolyte by using Pt electrode in the controlled potential electrolysis at -2.2 V (vs. Ag wire). ${ }^{30}$

Though these reactions proceeded in low current efficiency, it would be improved if the experimental conditions were optimized by changing the H-type cell to SPE cell that the proton derived from $\mathrm{H}_{2} \mathrm{O}$ was used and the gas diffusion electrode was introduced for efficient supply of N_{2} gas. In addition, they required a large amounts of energy, because the energy required for activations of cis- $\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ is higher than heterogeneous catalysts, such as Ru and Pt electrodes. Therefore, the electrochemical NH_{3} synthesis by using transition metal complexes without consuming large amounts of energy is
extremely challenging theme. In addition to the fundamental understanding of the reduction of N_{2} in the protonation, it requires development of new catalytic systems.

1.4 Ionic liquid

As a breakthrough method of conversion of N_{2} into NH_{3}, we have paid attention to ionic liquid (ILs), because the reactions in ILs are different from those in conventional solvents. In this session, we describe their physical properties and small molecule activation reactions in ILs to refer to our purpose in this thesis.

1.4.1 Property of ionic liquid ${ }^{31}$

An IL is a salt composed of organic cation and anion in the liquid state. The following typical structures are studied as the cation parts of ILs; (a) imidazolium, (b) pyridinium, (c) pyrrolidinium, (d) ammonium, and (e) phosphonium types, as shown in Figure 1-4. Although the substituent groups around N or P atom are basically constructed by alkyl groups, they are tunable by changing the length of alkyl chains and introducing various functional groups. The control of structures affects their physical properties, such as viscosity, melting point, and so on. Thus, ILs are called as "designable solvent". A positive electric charge in (a) or (b) is delocalized on the aromatic rings, while that in (c), (d) and (e), which are non-aromatic type, is localized on N or P atom. Thus, the physical property for (a) and (b) is somewhat different from those in (c), (d) and (e). Typical anions of ILs, which are mainly inorganic compound, are summarized in Figure 1-4 ((f), (g), (h), and (i)). In ILs containing a halogen anion, they have higher melting points, viscosity, and hydrophilicity as
compared with other ILs. These types of ILs were firstly paid attention, because cellulose was dissolved in $\left[\mathrm{C}_{4} \mathrm{mim}\right] \mathrm{Cl} . \mathrm{BF}_{4}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-}$anions are also often used as anion of ILs. However, they generate a small amount of HF due to hydrolysis by mixing with $\mathrm{H}_{2} \mathrm{O}$. The IL containing $\left[\mathrm{NTf}_{2}\right]$ anion is hydrophobic, which shows low melting point and viscosity. This is because their anions are flexible for rotation of $\mathrm{CF}_{3}-\mathrm{SO}_{2}$ - group around N atom by delocalization of negative charge.

(a)
(b)
(c)

(g)
(d)

(e)

f)

(h)
(i)

Figure 1-4. A photo of IL (left) and chemical structures of cation and anion parts of ILs (right); for the cation part, (a) imidazolium, (b) pyridinium, (c) pyrrolidinium, (d) ammonium, and (e) phosphonium cations ($\mathrm{R}=$ alkyl group), and for the anion part, (f) bis(trifluoromethanesulfonyl)imide, (g) trifluorometansulfonate, (h) hexafluorophosphate, and (i) tetrafluoroborate.

Characteristic physical property of IL is summarized as follows.
i) A low melting point and difficulty of crystallization

The physical properties of low melting point and difficult crystallization are derived from the steric hindrance of ions, the delocalization of the charges and the asymmetric
character in the structures of ions.
ii) A low vapor pressure

The physical property of low vapor pressure is different from those of ordinary solvents. The non-volatility brings about a great merit especially when using as reaction field under vacuum condition.
iii) A wide range of electrochemical window

In aprotic IL, the stabilities in the reduction and oxidation depend on the kinds of cations and anions, respectively. In the reduction reaction, aliphatic type cations such as pyridinium and ammonium are more stable than aromatic cations such as imidazolium and pyrridinium.
iv) Viscosity

Viscosity is very important factor when using as a solvent. The viscosity of IL is more than 100 times as high as $\mathrm{H}_{2} \mathrm{O}$ and other organic solvents on the account of working electrostatic interaction among ions. In the case of using as electrolyte and reaction solvent, the low viscosity is preferred due to reduction in the diffusion constant.
v) High ionic conductivity and thermal stability ${ }^{31(\mathrm{e})}$

Ionicity is affected by both of the Lewis basicity of anions and the Lewis acidity of cations and the van der Waals forces between them. Increase in their parameters lead to decrease in ionicity of ILs. Typical IL is constructed of quite low Lewis basicity and Lewis acidity. Therefore, their coordination abilities are very low. Although the electrostatic interaction among their ion pairs is estimated to be ca. $80 \mathrm{kcal} / \mathrm{mol}$, which
competes with those of covalent bonds (single bond: $50-100 \mathrm{kcal} / \mathrm{mol}$), each ion is dissociated. Accordingly, low vaporization and high ionic conductivity bring about high thermal stability.
vi) Nanostructure organized by polar and non-polar domain ${ }^{31 \mathrm{f}, 31 \mathrm{~g}}$

The nanostructure of ILs are organized by polar domain, which is constructed of ionic parts, and non-polar domain, which is constructed of hydrophobic alkyl groups. ${ }^{31 \mathrm{~h}}$ The electric permittivity (ε), therefore, is locally different. For instance, in the case of 1-butyl-3-methylimidazolium hexafluorophosphate, $\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\mathrm{PF}_{6}\right]$, the total dielectric permittivity has been reported to be ca 14.0 Debye, ${ }^{31 \mathrm{i}}$ but those in nonpolar and polar domains have been reported as ca. 2.5 and 20 Debye, respectively. ${ }^{31 \mathrm{~g}}$

1.4.2 Small molecule activation reaction in ionic liquids

Small molecule activation reactions in ILs have also been a hot research topic. ${ }^{32}$ For example, the reduction of CO_{2} to CO by Ag electrode in 1-ethyl-3methylimidazolium tetrafluoroborate, $[E M I M] \mathrm{BF}_{4}$, is achieved at low overpotential due to the electrostatic interaction between the one-electron reduced CO_{2} intermediate and imidazolium ring. ${ }^{33}$ Regarding the reduction of O_{2}, the reversible one electrochemical reduction and oxidation are observed by cyclic voltammetry, even though the phosphonium-type IL contains $\mathrm{H}_{2} \mathrm{O}$. This specific behavior is also attributed to the stabilization by electrostatic interaction in IL. ${ }^{34}$

The catalytic electrochemical conversion of CO_{2} to CO by fac- $\left[\operatorname{ReCl}\left(2,2^{\prime}\right.\right.$ '-bipyridine $\left.)(\mathrm{CO})_{3}\right] \quad$ in 1-ethyl-3-methylimidazolium tetracyanoborate,
[emim] $[\mathrm{TCB}]$ was achieved at lower overpotential $\left(-1.74 \mathrm{~V}\right.$ vs. $\left.\mathrm{Fc} / \mathrm{Fc}^{+}\right)$than that in acetonitrile (-2.11 V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$). The mechanism has been proposed as follows; the interaction between imidazolium cation and two-electron reduced Re complex promotes the rapid dissociation of chloride and the decrease in the activation energy for CO_{2} reduction. ${ }^{35}$

Numerous studies involving small molecule activation reactions by transition metal complexes in ILs have been reported ${ }^{36}$ and they revealed that the ILs interact with substrates through the electrostatic interaction. However, the reduction of N_{2} to NH_{3} by using transition metal complex in ILs have never been reported yet.

1.5 Purpose of this study

The purpose of this study is (i) to construct the electrochemical conversion system for N_{2} to NH_{3} by using transition metal complexes under mild conditions in ILs and (ii) to evaluate the effect of ILs toward formation of transition metal- N_{2} complexes. As described in the session 1.4.2, small molecule activation reactions, such as CO_{2} and O_{2}, in ILs have been studied previously. However, the N_{2} reduction by transition metal complexes and the evaluation of transition metal- N_{2} complexes in the ILs have never been reported before. Therefore, we have evaluated that the N_{2} molecule coordinated to a transition metal complex in IL would affect to the reactivity by its electrostatic interaction and the reactivity in the IL would be different from those in conventional organic solvents.

1.6 Chapter summaries

On the basis of the above-mentioned backgrounds, the construction of the
electrochemical conversion system from N_{2} and proton derived from $\mathrm{H}_{2} \mathrm{O}$ to NH_{3} using transition metal complexes in ILs under mild conditions and the evaluation of the effect of ILs toward transition metal- N_{2} complex have been described as below.

In Chapter 2, the electrochemical NH_{3} synthesis by using titanocene dichloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, in the ILs in solid polymer electrolyte (SPE) cell is described based on the results of the electrochemical redox reaction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs. To carry out the electrochemical reaction, a SPE cell having a proton exchange membrane and a gas diffusion electrode coated with ILs containing $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ has been designed and fabricated. The electrochemical NH_{3} synthesis in the SPE cell resulted in higher NH_{3} production than that in THF solution in H-type cell. Moreover, to confirm that the generation of NH_{3} in the electrochemical reaction has been derived from N_{2} gas, the isotopic labeling experiment has also been performed. Furthermore, the electrochemical NH_{3} production in non-coordinating IL has been compared with that in coordinating IL. It indicated that the efficiency of the NH_{3} synthesis in non-coordinating IL has been higher than that in coordinating IL.

In Chapter 3, N_{2} coordination by titanocene monochloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, in ILs are described in addition to the evaluation of electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs by using UV/vis/NIR spectroscopy. UV-vis/NIR spectral changes of [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$] during the electrochemical reduction clearly suggest that dimeric species, $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, are generated via formation of monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ even in non-coordinating IL. To confirm whether an equilibrium reaction between dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ in IL exists or not, the frozen solution EPR spectroscopy of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in ILs
under N_{2} was measured. Surprisingly, the hyperfine splitting derived from N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ was detected only in IL. The effect of ILs toward $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ was evaluated using DFT calculations, and we concluded that the polar domain in non-coordinating IL promoted the N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ due to complex formation with anion parts of IL through the weak interaction.

In Chapter 4, the electrochemical oxidation reaction of molybdenum(0$)-\mathrm{N}_{2}$ complex supporting with bidentate phosphine ligands in ILs is described. To consider the effect of the ILs, the electrochemical oxidation reaction of molybdenum(0$)-\mathrm{N}_{2}$ complex in organic solvents is also evaluated. Resonance Raman, FT-IR and UV-vis/NIR spectroscopic studies during the electrochemical oxidation reaction and their evaluation by DFT and TDDFT calculations have revealed that the subsequent reaction after the electrochemical oxidation reaction proceeded to form the dimeric structure, $\mathrm{Mo}(\mathrm{II})-\mathrm{N}_{2}-\mathrm{Mo}$ (II). On the other hand, a mononuclear $\mathrm{Mo}(\mathrm{I})-\mathrm{N}_{2}$ complex is stabilized due to weak interaction between F atoms of anion in IL and H atoms on ethyl group in the depe ligand during the oxidation process, which suppressed the formation of the dimeric structure

In Chapter 5, the conclusion in this thesis is described and the perspective for the reactivity of transition metal complexes in ILs are stated.

1.7 References

1. S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energ., 2013, 38, 14576.
2. J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Norskov, ChemSusChem., 2015, 8, 2180.
3. G. Thomas and G. Parks, Potential Roles of Ammonia in a Hydrogen Economy A

Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage, U.S. Department of Energy, 2006, <https://www.hydrogen.energy.gov/pdfs/nh3 paper.pdf>
4. A. Valera-Medina, R. Marsh, J. Runyon, D. Pugh, P. Beasley, T. Hughes, P. Bowen, Applied Energy, 2017, 185, 1362.
5. D. Miura and T. Tezuka, Energy, 2014, 68, 428.
6. http://criepi.denken.or.jp/press/pressrelease/2017/01_10press.pdf, 10 Jan 2017, Press in central research institute of electric power industry.
7. R. F. Service, Science, 2014, 345, 610.
8. V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today, 2017, 286, 2.
9. Liu, H. Ammonia Synthesis Catalysts; Chemical Industry Press \& World Scientific: Singapore, 2013.
10. (a) C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183. (b) M. Appl, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH \& Co. KGaA, 2006
11. (a) I. Rafiqul, C. Weber, B. Lehman, A. Voss, Energy, 2005, 30, 2487. (b) N. Gruber, J. N. Galloway, Nature, 2008, 451, 293. (c) Annual Energy Outlook 2012: with Projections to 2035; U.S. Energy Information Administration: Washington, DC, 2012. (d) Y. Nishibayashi, Inorg. Chem., 2015, 54, 9234.
12. (a) B. M. Hoffman, D. Lukoyanov, Z. Yang, D. R. Dean, and L. C. Seefeldt, Chem. Rev., 2014, 114, 4041. (b) T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. A. Andrade, E.

Schleicher, S. Weber, D. C. Rees, O. Einsle, Science, 2011, 334, 940. (c) K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, Science, 2011, 334, 974. (d) K. M. Lancaster, Y. Hu, U. Bergmann, M. W. Ribbe, S. DeBeer, J. Am. Chem. Soc., 2013, 135, 610. (e) J. A. Wiig, Y. Hu, C. C. Lee, M. W. Ribbe, Science, 2012, 337, 1672.
13. (a) K. Aika, Angew. Chem. Int. Ed., 1986, 25, 558. (b) R. R. Eady, B. E. Smith in R. W. F. Hardy, F. Bottomley, R. C. Burns (Eds.): A Treatise on Dinitrogen Fixation. Sections 1 and 2. Wiley. New York 1979, p. 466.
14. (a) S. Wherland, B. K. Burgess, E. I. Stiefel and W. E. Newton, Biochemistry, 1981, 20, 5132. (b) B. K. Burgess, S. Wherland, W. E. Newton and E. I. Stiefel, Biochemistry, 1981, 20, 5140.
15. C. J. M. van der Ham, M. T. M. Koper and D. G. H. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183.
16. A. D. Allen, C. V. Senoff, Chem. Commun., 1965, 621.
17. (a) S. Hinrichsen, H. Broda, C. Gradert,; L. Söncksen, F. Tuczek, Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem., 2012, 108, 17. (b) Y. Nishibayashi, Dalton Trans., 2012, 41, 7447. (c) K. C. MacLeod, P. L. Holland, Nat. Chem., 2013, 5, 559. (d) M. D. Fryzuk, Chem. Commun., 2013, 49, 4866. (e) Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev., 2013, 257, 2551. (f) H.-P. Jia, E. A. Quadrelli, Chem. Soc. Rev., 2014, 43, 547. (g) C. Köthe, C. Z. Limberg, Anorg. Allg. Chem., 2015, 641, 18. (h) N. Khoenkhoen, B. de Bruin, J. N. H. Reek, W. I. Dzik, Eur. J. Inorg. Chem., 2015, 567.
(i) S. F. McWilliams, P. L. Holland, Acc. Chem. Res., 2015, 48, 2059. (j) R. J.

Burford and M. D. Fryzuk, Nat. Chem. Rev., 2017, 1, 1.
18. (a) T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, Z. Hou, Science, 2013, 340, 1549. (b) S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc., 2013, 135, 11373. (c) M. T. Mock, S. Chen, M. O’Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel, R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493. (d) T. Miyazaki, Y. Tanabe, M. Yuki, Y. Miyake, K. Nakajima, Y. Nishibayashi, Chem.-Eur. J., 2013, 19, 11874. (e) I. Klopsch, M. Finger, C. Würtele, B. Milde, D. B. Werz, S. Schneider, J. Am. Chem. Soc., 2014, 136, 6881. (f) A. J. Keane, B. L. Yonke, M. Hirotsu, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc., 2014, 136, 9906. (g) K. C. MacLeod, D. J. Vinyard, P. L. Holland, J. Am. Chem. Soc., 2014, 136, 10226. (h) J. Rittle, C. C. L. McCrory, J. C. Peters, J. Am. Chem. Soc., 2014, 136, 13853. (i) Y. Ishida, H. Kawaguchi, J. Am. Chem. Soc., 2014, 136, 16990. (j) T. Miyazaki, H. Tanaka, Y. Tanabe, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed., 2014, 53, 11488. (k) G. W. Margulieux, Z. R. Turner, P. J. Chirk, Angew. Chem. Int. Ed., 2014, 53, 14211. (l) C. Gradert, N. Stucke, J. Krahmer, C. Näther, F. Tuczek, Chem.-Eur. J., 2015, 21, 1130. (m) Y. Lee, F. T. Sloane, G. Blondin, K. A. Abboud, R. García-Serres, L. J. Murray, Angew. Chem. Int. Ed., 2015, 54, 1499. (n) I. Pappas and P. J. Chirik, J. Am. Chem. Soc., 2015, 137, 3498.
19. (a) J. Chatt, A. J. Pearman, R. L. Richards, Nature, 1975, 253, 39. (b) J. Chatt, A. J. Pearman, R. L. Richards, J. Chem. Soc., Dalton Trans., 1977, 1852.
20. T. Takahashi, Y. Mizobe, M. Sato, Y. Uchida, M. Hidai, J. Am. Chem. Soc., 1979, 101, 3405.
21. (a) J. Chatt, R. L. Richard, J. Organomet. Chem., 1982, 239, 65. (b) C. J. Pickett, J. Biol. Inorg. Chem., 1996, 1, 601. (c) F. Tuczek, K. H. Hom, N. Lehnert, Coord. Chem. Rev., 2003, 245, 107.
22. (a) D. V. Yandulov, R. R. Schrock, Science, 2003, 301, 76. (b) V. Ritleng, D. V. Yandulov, W. W. Weare, R. R. Schrock, A. S. Hock, W. M. Davis, J. Am. Chem. Soc., 2004, 126, 6150. (c) R. R. Schrock, Acc. Chem. Res., 2005, 38, 955. (d) W. W. Weare, X. Dai, M. J. Byrnes, J. M. Chin, R. R. Schrock, P. Müller, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 17099. (e) R. R. Schrock, Angew. Chem. Int. Ed., 2008, 47, 5512.
23. (a) R. L. McNaughton, M. Roemelt, J. M. Chin, R. R. Schrock, F. Neese and B. M. Hoffman, J. Am. Chem. Soc., 2010, 132, 8645. (b) R. A. Kinney, R. L. McNaughton, J. M. Chin, R. R. Schrock and B. M. Hoffman, Inorg. Chem., 2011, 50, 418. (c) R. R. Schrock, Angew. Chem. Int. Ed., 2008, 47, 5512. (d) S. Schenk, B. L. Guennic, B. Kirchner and M. Reiher, Inorg. Chem., 2008, 47, 3634.
24. K. Arashiba, Y. Miyake and Y. Nishibayashi, Nat. Chem., 2011, 3, 95.
25. K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi, Bull. Chem. Soc. Jpn., 2017, 90, 1111.
26. (a) J. S. Anderson, J. Rittle and J. C. Peters, Nature, 2013, 501, 84. (b) T. J. D.

Castillo, N. B. Thompson, and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 5341.
27. V. Kordali, G. Kyriacou and Ch. Lambrou, Chem. Commun., 2000, 1673.
28. R. Lan, J. T. S. Irvine and S. Tao, Sci. Rep., 2013, 3, 1145.
29. C. J. Pickett and J. Talarmin, Nature, 1985, 317, 652.
30. J. Y. Becker, S. Avraham and B. Posin, J. Electroanal. Chem., 1987, 230, 143.
31. (a) P. Hapiot and C. Lagrost, Chem. Rev., 2008, 108, 2238. (b) M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 2009, 8, 621. (c) F. V. Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107, 2757. (d) J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508. (e) S. Tsyzuki, H. Tokuda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B, 2005, 109, 16474. (f) O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi and M. Nagao, J. Chem. Phys., 2011, 135, 054508. (g) M. Mizoshiri, T. Nagao, Y. Mizoguchi and M. Yao, J. Chem. Phys., 2010, 132, 164510. (h) J. N. A. C. Lopes and A. A. H. Pádua, J. Phys. Chem. B, 2006, 110, 3330. (i) M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494.
32. C. D. Hubbard, P. Illner and R. V. Eldik, Chem. Soc. Rev., 2011, 40, 272.
33. (a) B. A. Rosen, A. S. Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis and R. I. Masel, Science, 2011, 334, 643. (b) B. A. Rosen, J. L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. S. Khojin, D. D. Dlott and R. I. Masel, J. Phys. Chem. $C, 2012,116,15307$.
34. C. Pozo-Gonzalo, A. A. J. Torriero, M. Forsyth, D. R. MacFarlane, and P. C. Howlett, J. Phys. Chem. Lett., 2013, 4, 1834.
35. (a) D. C. Grills, Y. Matsubara, Y. Kuwahara, S. R. Golisz, D. A. Kurtz, and B. A. Mello, J. Phys. Chem. Lett., 2014, 5, 2033. (b) Y. Matsubara, D. C. Grills and Y. Kuwahara, ACS Catal., 2015, 5, 6440.
36. (a) M. Schmeisser and R. van Eldik, Inorg. Chem., 2009, 48, 7466. (b) S. Kern, R.
van Eldik, Inorg. Chem., 2012, 51, 7340. (c) M. Schmeisser, F. W. Heinemann, P. Illner, R. Puchta, A. Zahl, and R. van Eldik, Inorg. Chem., 2011, 50, 6685. (d) S. Begel, F. W. Heinemann, G. Stopa, G. Stocheland, R. van Eldik, Inorg. Chem., 2011, 50, 3946. (e) S. Begel, P. Illner, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2008, 47, 7121. (f) P. Illner, S. Begel, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2009, 48, 588. (g) K. Pokornv, M. Schmeisser, F. Hampel, A. Zahl, R. Puchta, and R. van Eldik, Inorg. Chem., 2013, 52, 13167. (h) S. Begel, R. Puchta, J. Sutter, F. W. Heinemann, L. Dahlenburgand, and R. van Eldik, Inorg. Chem., 2015, 54, 6763. (i) C. Sievers, O. Jimenez, T. E. Müller, S. Steuernagel, and J. A. Lercher, J. Am. Chem. Soc., 2006, 128, 13990.

Chapter 2: Electrochemical ammonia synthesis by using titanocene in ionic liquid

2.1 Introduction

Numerous researchers in various chemical fields have investigated electrochemical NH_{3} synthesis under mild conditions. ${ }^{1}$ The electrochemical synthesis of NH_{3} by using transition metal complex is one of the promising methods because the reaction can proceed under mild conditions. ${ }^{2,3}$ As well as development of the catalyst, ${ }^{4}$ we must rethink the reaction conditions to achieve more efficient synthesis of NH_{3}. Disadvantages of the electrochemical NH_{3} synthesis by using transition metal complexes are inefficient supply of N_{2} gas in ordinary electrolysis cell such as H-type cell using hydrogen source derived from fossil fuel. For example, Becker and co-workers reported previously that titanocene dichloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, could convert N_{2} into NH_{3} when the controlled potential electrolysis (CPE) was carried out at -2.2 V (vs. Ag wire) in MeOH solution containing $0.3 \mathrm{M} \mathrm{LiClO}_{4}$ and 0.25 M catechol. ${ }^{3}$ Although the reaction proceeds at r.t. under 1 atm using hydrogen source from catechol and/or MeOH , the yield of NH_{3} per $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and the current efficiency were quite low (1.45% and 0.28%, respectively). To improve the bottleneck, we paid attention to the electrochemical synthesis of NH_{3} in solid polymer electrolysis (SPE) cell.

As described on the electrochemical NH_{3} synthesis in SPE cell in Section 1.3.4, ${ }^{1 \mathrm{~d}} \mathrm{a}$ proton generated by oxidation of $\mathrm{H}_{2} \mathrm{O}$ at the counter electrode (CE) was transferred to the working electrode (WE) and it reacts with $\mathrm{N}_{2} .{ }^{1 \mathrm{~d}}$ It has advantages that the proton originating from $\mathrm{H}_{2} \mathrm{O}$ oxidation is employed and the generated O_{2} is separated from the WE by proton exchange membrane.

Electrochemical NH_{3} synthesis by using a transition metal complex on gas-diffusion
electrode in SPE cell would achieve the highly conversion of N_{2} to NH_{3} because the supplying of N_{2} gas is improved compared with that in the H-type electrolysis cell. Hence, we considered that an ionic liquid (IL) would be applied as the supporting material of transition metal complex on gas-diffusion electrode in SPE cell.

ILs that are salts in a liquid state at r.t. have recently been employed in a number of different research efforts, because they have several unique properties such as low volatility, an electrochemical window, high thermal and chemical stability, and electric conductivity, as described in Section 1.4. ${ }^{5}$ In particular, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate $\left(\mathrm{Prr}_{4} \mathrm{FAP}\right)$ is appropriate for use as a supporting material because of its high stability. ${ }^{6}$ Hence, we devised fabrication of the WE by coating the $\mathrm{Pyr}_{4} \mathrm{FAP}$ supported with a transition metal complex on the gas diffusion electrode.

Regarding the transition metal complex, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, group 4 metallocene, was chosen. Group 4 metallocenes have been widely studied because they have a coordinating ability toward N_{2} molecule. ${ }^{4 \mathrm{c}-\mathrm{f}}$ In addition, since the characteristic of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in organic solvents has been investigated and well-known, the redox behavior of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs will be able to easily evaluate. ${ }^{7}$ To consider the influence of the coordinating ability of ILs to the reactivity, the electrochemical NH_{3} synthesis is also performed not only in $\operatorname{Pyr}_{4} \mathrm{FAP}$ as non-coordinating IL but also in 1-butyl-1-methylpyrrolidinium triflate $\left(\mathrm{Pyr}_{4} \mathrm{OTf}\right)$ as coordinating IL, as shown in Figure 2-1. Here, we report the electrochemical reduction of N_{2} to NH_{3} using a WE coated with a transition metal complex-supported ILs in the SPE cell under ambient conditions.
(A)
(B)

(C)

Figure 2-1. The structures of titanocene complexes, (A) $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and ILs, (B) $\mathrm{Pyr}_{4} \mathrm{FAP}$, and (C) $\mathrm{Pyr}_{4} \mathrm{OTf}$.

2.2 Results and Discussion

2.2.1 Design and fabrication of solid polymer electrolyte cell (SPE cell)

SPE cell was fabricated as shown in Figure 2-2, which was designed by modification of the previous literature. ${ }^{1 \mathrm{~d}}$ The gas diffusion electrode is made from carbon paper coated with $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. Since WE is in the gas flow channel, N_{2} gas is supplied effectively.

2.2.2 Cyclic voltammograms of $\left[\mathrm{Cp}_{2} \mathbf{T i C l}_{2}\right]$ in ionic liquids with non-coordinating FAP $^{-}$or coordinating OTf anion

To understand redox potential of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs , cyclic voltammetry of [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$ were measured. The cyclic voltammograms (CVs) are shown in Figure 2-3 and the parameters obtained are summarized in Table 2-1. The redox waves of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, as shown in Figure 2-3(A), have oxidation and reduction waves at -1.14 and $-1.06 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, respectively, as a reversible redox wave ($E_{1 / 2}$ value: -1.10 V) assigned to the $\mathrm{Ti}(\mathrm{IV}) / \mathrm{Ti}(\mathrm{III})$ couple. This potential is in good agreement with the previously measured value in THF containing electrolyte, ${ }^{3,8}$ indicating that the reaction Eq. (1) (see below) has proceeded.

Figure 2-2. A schematic diagram of the constructed SPE cell (left) and the internal structure of electrolysis cell (right); (a) gasket ($30 \mathrm{~mm}(\mathrm{D}) \times 55 \mathrm{~mm}(\mathrm{~W}) \times 1 \mathrm{~mm}(\mathrm{H})$), (b) Cu wire, (c) parafilm ($10 \mathrm{~mm}(\mathrm{D}) \times 10 \mathrm{~mm}(\mathrm{~W})$), (d) carbon paper (TORAY, TGP-$\mathrm{H}-120$) as the working electrode $(10 \mathrm{~mm}(\mathrm{D}) \times 20 \mathrm{~mm}(\mathrm{~W}) \times 0.37 \mathrm{~mm}(\mathrm{H}))$ coated with $50 \mu \mathrm{~L}$ of IL containing $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, (e) Nafion®212 membrane, (f) carbon paper $(10 \mathrm{~mm}(\mathrm{D}) \times 20 \mathrm{~mm}(\mathrm{~W}) \times 0.37 \mathrm{~mm}(\mathrm{H}))$ that is used as support to bind membrane, (g) gasket, (h) Pt wire, (i) Pt mesh as the counter electrode, (j) gasket, (k) bolt, (l) aluminum plate $(70 \mathrm{~mm}(\mathrm{D}) \times 50 \mathrm{~mm}(\mathrm{~W}) \times 5 \mathrm{~mm}(\mathrm{H})),(\mathrm{m})$ polytetrafluoroethylene (PTFE) plate $(70 \mathrm{~mm}(\mathrm{D}) \times 50 \mathrm{~mm}(\mathrm{~W}) \times 5 \mathrm{~mm}(\mathrm{H})),(\mathrm{n})$ PTFE plate that has a hole (1/4 28UNF) at the center to screw the reference electrode, (o) aluminum plate that has a hole $(1.2 \mathrm{~cm}$ diameter) at the center, (p) teflon connector, and (q) silicon tube (1 mm diameter). The reference electrode is $\mathrm{Ag} / \mathrm{AgCl}$ one (3 M NaCl aq.) that is a screw type to attach in teflon body. The inlet of gas channel is connected by gas cylinder and the outlet is connected to 10 mM HCl aqueous solution as NH_{3} trap. The flow rate of gas was kept at $5 \mathrm{~mL} / \mathrm{min}$. The inlet and outlet of liquid channels are connected by pump, and the 0.2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution is circulated.

Figure 2-3. CVs of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in (A) $\mathrm{Pyr}_{4} \mathrm{FAP}$ and (B) $\mathrm{Pyr}_{4} \mathrm{OTf}$ (WE: GCE (1 mm diameter), CE : Pt wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode, scan rate: $100 \mathrm{mV} / \mathrm{s}$, 1st cycle: blue, 2nd cycle: red, and 3rd cycle: gray). The potentials were referenced to the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$couple in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$, respectively.

Table 2-1. Summary of redox potentials for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$

Complex	Anion of IL	Redox potential (V vs. Fc/Fc					
		$\boldsymbol{E}_{\text {ox1 }}$	$\boldsymbol{E}_{\text {red2 }}$	$\boldsymbol{E}_{\text {ox2 }}$	$\boldsymbol{E}_{\mathbf{1 / 2}}$	$\boldsymbol{E}_{\text {red3 }}$	$\boldsymbol{E}_{\text {red4 }}$
		-	-1.14	-1.06	-1.10	-2.31	-2.54
		-0.41	-0.99	-0.76	-0.88	-2.14	-

$$
\begin{align*}
{\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]+\mathrm{e}^{-} } & \rightleftharpoons\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-} \tag{1}\\
{\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-} } & \rightleftharpoons\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]+\mathrm{Cl}^{-} \tag{2}\\
{\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right] } & \rightleftharpoons 2\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right] \tag{3}
\end{align*}
$$

In more negative potential region, two irreversible reduction waves, $E_{\text {red }}$ and $E_{\text {red4 }}$, were observed at -2.31 and -2.54 V (vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$) in $\mathrm{Pyr}_{4} \mathrm{FAP}$, which were reduced with increase in cycles. As described in the previous literatures, ${ }^{8,9}$ the irreversible wave at $E_{\text {red3 }}$ is attributed to $\mathrm{Ti}(\mathrm{III}) / \mathrm{Ti}(\mathrm{II})$ reduction. The reduced titanocene(II) is unstable and the $\mathrm{C}-\mathrm{H}$ bond in cyclopentadienyl group was activated, and $\mathrm{Ti}-\mathrm{C}$ bonds among titanocenes was formed. The reduction wave at $E_{\text {red }}$ would be derived from $\mathrm{Ti}(\mathrm{III}) / \mathrm{Ti}(\mathrm{II})$ reduction of the uncharacterized titanocene species.

The cyclic voltammetry of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ was also measured and the CV was shown in Figure $2-3(B)$. The reduction and oxidation waves of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$, which were assigned to $\mathrm{Ti}(\mathrm{IV}) / \mathrm{Ti}(\mathrm{III})$ redox couple, were observed at -0.99 and -0.76 V (vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$), respectively. The $E_{1 / 2}$ value is -0.88 V (vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$). The irreversible reduction wave observed at -2.14 V was assigned to $\mathrm{Ti}(\mathrm{III}) / \mathrm{Ti}(\mathrm{II})$ reduction. The oxidation wave ($E_{\mathrm{ox} 1}$) was observed at -0.41 V (vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$), although it was not detected in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (Figure 2-3(A)). This oxidation wave $\left(E_{\text {ox1 }}\right)$ is explained in terms of difference in the coordination behaviors to the reduced titanocene between FAP and OTf anions. Oldham Jr. and co-workers have reported that the $\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{2+}$ species is coordinated by bis(trifluoromethylsulfonyl)imide anion, $\left[\left(\mathrm{SO}_{2} \mathrm{CF}_{3}\right)_{2} \mathrm{~N}\right]^{-}$, through $\eta^{1}-\mathrm{O}$ binding modes. ${ }^{10}$ Though the anion of the IL used in this study was OTf anion instead of $\left[\left(\mathrm{SO}_{2} \mathrm{CF}_{3}\right)_{2} \mathrm{~N}\right]^{-}$, the chemical property of $\left[\left(\mathrm{SO}_{2} \mathrm{CF}_{3}\right)_{2} \mathrm{~N}\right]^{-}$are similar to that of OTf anion. Accordingly, OTf anion can coordinate to the Ti center during the electrochemical reaction and the titanocene complex coordinated with OTf anion may be generated, as shown in Figure 2-4. The oxidation wave ($E_{\text {ox1 }}$) observed at -0.41 V originates from oxidation of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{OTf})\right](\mathrm{Ti}(\mathrm{IV}) / \mathrm{Ti}(\mathrm{III}))$, which is the $\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{+}$ species coordinated with $\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$in the η^{1}-O binding mode (Figure 2-4).

Figure 2-4. Possible structures of titanocene(III) species coordinated with OTf anion.

Previously, Daasbjerg and co-workers reported the redox behavior of $\left[\mathrm{Cp}_{2} \mathrm{TiX}_{2}\right](\mathrm{X}$ $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ in THF containing electrolyte. ${ }^{11}$ The oxidation waves, which were derived from the generated $\left[\mathrm{Cp}_{2} \mathrm{TiX}\right]$, were observed in the range of -0.6 to $-0.9 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$ as a subsequent reaction of Eq. (1) when the $\mathrm{Ti}-\mathrm{X}$ bond was cleaved to generate the monomeric species, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ according to Eq. (2). Moreover, the monomeric species reacted each other to generate the dimeric species, $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, as shown in Eq. (3). ${ }^{11}$

To consider the dissociation reaction of the Cl anion from $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$, DFT calculations for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ are also carried out and the quantitative energy profile is shown in Figure 2-5. $\Delta \mathrm{G}$ value of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}(1.27 \mathrm{kcal} / \mathrm{mol})$ is higher than that of monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, indicating that monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ is more stable than $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$

Figure 2-5. Energies estimated by DFT studies of the $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$and monomeric [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ with Cl^{-}.

In Chapter 3, UV-vis/NIR spectra during the electrochemical reduction of [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in THF, $\mathrm{Pyr}_{4} \mathrm{OTf}, \mathrm{Pyr}_{4} \mathrm{FAP}$, and IL are described to consider the subsequent reaction in the electrochemical reduction.

2.2.3 Linear sweep voltammograms of $\left[\mathrm{Cp}_{2} \mathbf{T i C l}_{2}\right]$ in SPE cell

The linear sweep voltammograms (LSVs) of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in the SPE cell were investigated and the results are displayed in Figure 2-6(A) together with the results of control experiments: The LSVs were measured under N_{2} and Ar atmospheres, respectively, and it without $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ under N_{2} is also carried out for comparison. Under both N_{2} and Ar atmosphere, broadened peaks were observed at -1.13 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$, but no peaks were observed without $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. Accordingly, it is clear that the observed peaks originate from the oxidation of $\mathrm{Ti}(\mathrm{IV})$ to $\mathrm{Ti}(\mathrm{III})$ in $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. The current under N_{2} is considerably greater than that under Ar. The noisy pattern in the peak is due to the generation of H_{2} gas. These findings indicate that the reduced $\mathrm{Ti}(\mathrm{III})$ species reacts with N_{2}, accompanied by an H_{2} evolution reaction.

In order to investigate the influence of coordinating anion in the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, the LSV of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ was also carried out in SPE cell. The LSV before the CPE is shown in Figure 2-6(B). The current in the range of the -1.0 to -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$) under N_{2} atmosphere is larger than that under Ar atmosphere, suggesting that reduced $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ is reacted with N_{2} even in $\mathrm{Pyr}_{4} \mathrm{OTf}$. Hence, the potential in the CPE was decided to carry out in the range of -1.0 to -1.5 V .

Figure 2-6. LSVs of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in (A) $\mathrm{Pyr}_{4} \mathrm{FAP}$ and in (B) $\mathrm{Pyr}_{4} \mathrm{OTf}$ in SPE under N_{2} (red line) and Ar (blue line) (Scan rate: $5 \mathrm{mV} / \mathrm{s}$). Black one is carried out without $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$.

2.2.4 Electrochemical NH_{3} synthesis in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$

Although in the CPE in the range of -1.0 V to -1.4 V (vs. $\mathrm{Ag} / \mathrm{AgCl}), \mathrm{NH}_{3}$ was not detected, it was detected in the CPE at -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). The quantification of produced NH_{3} was evaluated using the indophenol method. ${ }^{12}$

As expected, the CPE at -1.5 V under Ar did not gave NH_{3} generation. Performing the CPE at -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$) by using $\mathrm{Pyr}_{4} \mathrm{FAP}$ without $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ under N_{2} also did not give NH_{3}. These results indicate that the conversion of N_{2} into NH_{3} was occurred by $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ during the CPE at -1.5 V (vs. $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$.

The plots of the yields of NH_{3} per $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ (\%) against the consumed electric charges (C) in the CPE at -1.5 V are displayed in Figure 2-7. The yield of NH_{3} was found to increase gradually and the maximum yield reached ca. 27%. The yield of NH_{3}

Figure 2-7. (A) Plots of NH_{3} yields per Ti ion (\%) against the consumed electric charge (C) and plots of current efficiency (\%) (B) against the consumed electric charge (C) (blue plots: $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, red plots: $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, blue plots: $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\left.\mathrm{Pyr}_{4} \mathrm{OTf}\right)$.
saturated when the 400 equiv. of electric charge ($20 \mathrm{C}, 0.2 \mathrm{mmol}$) was consumed against the amount of the used $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ (500 nmol). The plots of the current efficiency (\%) against consumed electric charge (C) in CPE at -1.5 V (vs. AgAgCl) are displayed in Figure 2-7(B). The current efficiency (\%) was found to be ca. 1.2% at the early stage in CPE with a gradual decrease to ca. 0.2% at 20 C . These results indicate that $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ is converted to an inactive species after the reaction, and that the consumed electric charge (C) is employed for the H_{2} evolution reaction.

Hydrazine is also believed to be produced as an incomplete reduction product of nitrogen. Though the quantification of hydrazine was carried out according to the published procedure, ${ }^{13}$ it could not be detected during the CPE. This selective formation of NH_{3} is similar to that in organic solvent reported in previous literature. ${ }^{3}$ The yield of NH_{3} is much higher than the previous yield, 1.45%. Moreover, the applied
potential in the electrochemical reduction, $-1.5 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$, is positive than that of the previous report, -2.2 V (vs. Ag wire). ${ }^{3}$ In addition, our system, in which $\mathrm{H}_{2} \mathrm{O}$ was used as the proton source, is carried out under milder conditions than the previous experiment which used catechol as the proton source.

Although the CPEs by using $\mathrm{Pyr}_{4} \mathrm{OTf}$ containing $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in the range of -1.0 to -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$) are also conducted, the generation of the NH_{3} was confirmed only in the CPE at -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). The yield per Ti atom (\%) and current efficiency are shown in Figure 2-7. The maximum yields of NH_{3} per Ti ion is 6.8% at 20 C , which is lower than that in $\mathrm{Pyr}_{4} \mathrm{FAP}$, suggesting that the coordination of OTf anion prevents the reaction. Though the current efficiency at early stage is 1.38% at 0.5 C , it gradually decreased to 0.15% at 20 C , which are similar to those in $\mathrm{Pyr}_{4} \mathrm{FAP}$. The quantification of H_{2} was also performed, and the current efficiency was estimated to be 84% at 5.0 C under N_{2} atmosphere. The quantification of hydrazine was also carried out but was not detected, which is similar to that in the case of using $\mathrm{Pyr}_{4} \mathrm{FAP}$.

The small molecules activation reactions by a transition metal complex in ILs have been recently reported. ${ }^{5 j, 14,15}$ The reduction of CO_{2} to CO by $f a c-\operatorname{ReCl}($ bpy $)(\mathrm{CO})_{3}$ (bpy $=2,2^{\prime}$-bipyridine) was found to lower the activation energy in the presence of ILs against the same reaction in the absence of IL. ${ }^{15}$ This is because the IL, 1-ethyl-3methylimidazolium tetracyanoborate, assists in the dissociation of Cl anion from the fac- $\mathrm{ReCl}(\mathrm{bpy})(\mathrm{CO})_{3}$ and decrease the activation energy for reduction of CO_{2}. Accordingly, also in our system, the electrostatic interaction of the IL toward $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ would have an effect on the reaction. (see Chapter 3) To the best of our knowledge, this is the first example of reduction of N_{2} by a transition metal complex in IL. The obtained current efficiency is similar to that in previous literature. ${ }^{3}$ The yield of NH_{3}, however, is
higher than the previous one. ${ }^{3}$ In electrochemical synthesis of NH_{3} using N_{2} and protons, previously reported current efficiencies have been quite low, ${ }^{1 \mathrm{ld}, \mathrm{le}, 5 \mathrm{j}}$ because most of the electric charge is consumed in the H_{2} evolution reaction. Accordingly, the low current efficiency obtained in this system is explained in terms of having most of the available electric charge used for H_{2} evolution reaction.

2.2.5 Isotopic labeling experiment under ${ }^{15} \mathrm{~N}_{2}$ atomosphere

To confirm that the generated NH_{3} was originated from N_{2} gas, the controlled experiments under ${ }^{15} \mathrm{~N}_{2}$ atmosphere and Ar atmosphere are also carried out. The ESI-MS spectrum of indophenol anion derived from NH_{3} prepared by the CPE by using $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ at -1.5 V (vs. $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$ under ${ }^{14} \mathrm{~N}_{2}$ or ${ }^{15} \mathrm{~N}_{2}$ are shown in Figure 2-8. The ${ }^{14} \mathrm{~N}$-indophenol $(\mathrm{m} / \mathrm{z}=198)$ and ${ }^{15} \mathrm{~N}$-indophenol anions were detected when the CPEs under ${ }^{14} \mathrm{~N}_{2}$ or ${ }^{15} \mathrm{~N}_{2}$ were carried out, respectively. These results clearly indicate that the obtained NH_{3} was derived from N_{2} gas.

Figure 2-8. ESI-MS spectrum (negative mode) of indophenol anion derived from ammonia prepared by CPE at $-1.5 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$ under ${ }^{14} \mathrm{~N}_{2}$ or ${ }^{15} \mathrm{~N}_{2}$. The expanded views of the range of $\mathrm{m} / \mathrm{z}=196-203$ for (A) the simulation of ${ }^{14} \mathrm{~N}$-indophenol anion ($\mathrm{m} / \mathrm{z}=198$), for (B) the measurement of ${ }^{14} \mathrm{~N}$-indophenol anion, for (C) the simulation of ${ }^{15} \mathrm{~N}$-indophenol ($\mathrm{m} / \mathrm{z}=199$), and for (D) the measurement of ${ }^{15} \mathrm{~N}$-indophenol.

2.3 Conclusion

The electrochemical properties of monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ were investigated in two different types of ILs, $\mathrm{Pyr}_{4} \mathrm{FAP}$ with the non-coordinating FAP^{-}anions and $\mathrm{Pyr}_{4} \mathrm{OTf}$ with the coordinating OTf anion, by measuring cyclic voltammetry. In the CVs of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$, a difference was observed in the ratio of the current densities between $\mathrm{Pyr}_{4} \mathrm{OTf}$ and $\mathrm{Pyr}_{4} \mathrm{FAP}$, indicating that $\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{2+}$ was stabilized in $\mathrm{Pyr}_{4} \mathrm{OTf}$ by the coordination of OTf anion in the $\eta^{1}-\mathrm{O}$ binding mode.

Toward development of the electrochemical NH_{3} synthesis by using transition metal complexes in IL under mild conditions, the SPE cell, where WE is supported with IL containing a transition metal complex on gas diffusion, was designed and fabricated. LSV in SPE cell showed that the current density under N_{2} was larger than that under Ar in the range of -1.0 to -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). In the case of using $\mathrm{Pyr}_{4} \mathrm{FAP}$, the maximum yield of NH_{3} per $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ was 27% at 20 C and the maximum current efficiency was 1.24% at early stage, but it is gradually decreased to 0.2% at 20 C .

The yield of NH_{3} per Ti ion (\%) and current efficiency in the CPE of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ was lower than that in $\mathrm{Pyr}_{4} \mathrm{FAP}$, indicating that the synthesis of NH_{3} by using transition metal complex is preferred in non-coordinating IL, $\mathrm{Pyr}_{4} \mathrm{FAP}$, as a solvent. The unique property of $\mathrm{Pyr}_{4} \mathrm{FAP}$ will be applied not only to electrochemical NH_{3} synthesis but also to various electrochemical reactions by using transition metal complexes, because $\mathrm{Pyr}_{4} \mathrm{FAP}$ acts as a polar non-coordinating IL.

2.4 Experimental

2.4.1 Chemicals

Bis(cyclopentadienyl)titanium(IV) dichloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, was purchased from Tokyo

Chemical Industry Co., Ltd. and used without further purification. 1-Butyl-1methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, $\mathrm{Pyr}_{4} \mathrm{FAP}$, was purchased from Merck Ltd., which was purified according to the previous literature as follows. ${ }^{16}$ $\mathrm{Pyr}_{4} \mathrm{FAP}(50 \mathrm{~g})$ was dissolved in distilled EtOH (100 mL), and to the solution was added an activated charcoal (5g, Sigma-Aldrich). And then, the activated charcoal was removed by filtrate and the remaining solvent was removed by evaporator. If the color was not colorless, the purification was repeated using the activated charcoal. After the purification was finished, $\mathrm{Pyr}_{4} \mathrm{FAP}$ was vacuumed at $80^{\circ} \mathrm{C}$ for 3 days and dried over molecular sieves ($4 \AA$) for 1 week. 1-Butyl-1-methylpyrrolidinium triflate, $\mathrm{Pyr}_{4} \mathrm{OTf}$, was synthesized according to the literature, ${ }^{16}$ based on the metathesis reaction of 1-butyl-1-methylpyrrolidinium chloride and lithium triflate (Wako Pure Chemical Industries Ltd.), where 1-butyl-1-methylpyrrolidinium chloride was also synthesized according to the literature ${ }^{16}$ by using N_{2} methylpyrrolidine (TCI Co. Ltd) distilled with KOH under N_{2} atmosphere and 1-chlorobutane (TCI Co. Ltd) distilled from CaH_{2} under N_{2} atmosphere. $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and ILs were stored in a glove box (mBRAUN MB 150B-G glovebox) under Ar atmosphere ($<1 \mathrm{ppm} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$). The reagents used for quantification of NH_{3} and $\mathrm{N}_{2} \mathrm{H}_{4}$, including sodium nitroprusside, sodium hydroxide, sodium hypochlorite, ammonium chloride, p-dimethylaminobenzaldehyde, hydrazine monohydrochloride, and hydrogen chloride, were purchased from Wako Pure Chemical Industries Ltd. These reagents were used without further purification. Nafion ${ }^{\circledR} 212$ was purchased from Sigma Aldrich. N_{2} (99.999\%) and Ar (99.999 \%) gases (Nagoya Kousan. Ltd.) were employed as inlet gas.

2.4.2 Instrumentation

Milli-Q water was obtained from a Millipore Biosil system connected to an EYELA SA-2100E automated water distillation apparatus. Solvents were purified by the method of Grubbs, ${ }^{17}$ where the solvents were passed over columns of activated alumina and supported copper catalyst supplied by ultimate purification system (Glass Contour System, NIKKO HANSEN \& CO., LTD), transferred to the glovebox without exposure to air, and stored over molecular sieves ($4 \AA$). Electrochemistry was conducted using a potentiostat (BAS, ALS/1100C). UV-vis/NIR spectra were measured with a Jasco V-770 spectrophotometer. ESI-TOF/MS were obtained with a Micromass LCT spectrometer.

2.4.3 Measurements of cyclic voltammetry

Cyclic voltammetry was measured in a glove box under a purified Ar atmosphere at $25{ }^{\circ} \mathrm{C}$. The cyclic voltammetry was recorded using a GCE (1 mm diameter) as a working electrode (WE). Pt spiral wire was used as a counter electrode (CE). $\mathrm{Ag} / \mathrm{Ag}^{+}$ electrode (Ag wire +10 mM AgNO 3 in $0.2 \mathrm{M} \mathrm{Prr}_{4} \mathrm{FAP} / \mathrm{THF}$) was used as a reference electrode (RE). The potentials are referenced to the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple, which was measured by adding ferrocene to the sample solution. The concentrations of [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ were adjusted to 10 mM in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$.

2.4.4 Electrochemical \mathbf{N}_{2} reduction in SPE cell

The electrochemical reduction of N_{2} was carried out with a solid polymer electrolyte (SPE) cell as shown in Figure A2 (see Appendix A). ${ }^{18}$ The SPE cell used in these experiments was constructed of a aluminum plate, a teflon plate $(70 \mathrm{~mm}(\mathrm{D}) \times 50 \mathrm{~mm}$
$(\mathrm{W}) \times 5 \mathrm{~mm}(\mathrm{H})$), a gasket made of Viton (fluoropolymer elastomer, ($30 \mathrm{~mm}(\mathrm{D}) \times 55$ $\mathrm{mm}(\mathrm{W}) \times 1 \mathrm{~mm}(\mathrm{H})$), a Nafion ${ }^{\circledR} 212$ membrane, carbon paper (TORAY, TGP-H-120) as a WE, Pt mesh as a CE , and $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{NaCl}$ aq., ALS Co., Ltd, RE-3VP) as a RE that is a screw type to attach to Teflon body. The gas and liquid channels were constructed using Viton gaskets. Cu wire was used as the lead line of the WE that was coated with $50 \mu \mathrm{~L}$ of IL containing $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. The gas inlet and outlet were jointed with Swagelok SS Ball Valve 1/4" straight (SW-SS-43GS4). The setting was carried out in the glove box. The flow rate of N_{2} and Ar gases was kept in $5 \mathrm{~mL} / \mathrm{min} .10$ mL of 10 mM HCl aq. was set at N_{2} gas outlet for collecting NH_{3}. The inlet and outlet of liquid channels are connected by pump, and the $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution is circulated.

2.4.5 Quantification of NH_{3} and $\mathrm{N}_{2} \mathrm{H}_{4}$

The NH_{3} generated during the CPE measurement was collected in the NH_{3} trap (1 mL of 10 mM HCl aq.). The concentration of NH_{3} trapped was evaluated by the indophenol method. ${ }^{12}$ A calibration curve was made from 10 mM HCl containing $\mathrm{NH}_{4} \mathrm{Cl}$. Then, 2 mL of a solution of reagent $\mathrm{A}(5 \mathrm{~g}$ of phenol with 25 mg of sodium nitroprusside per 500 mL of solution) and 2 mL of a solution of reagent B (2.5 g of sodium hydroxide with 4.2 mL sodium hypochlorite to 500 mL of solution) were added to 1 mL of each sample. The visible spectrum was recorded, and the amounts of produced NH_{3} were estimated from the maximum absorption peak at 635 nm after 30 min when reagents A and B were added to the sample solution.

The current efficiency (CE) for formation of NH_{3} was calculated as following scheme. ${ }^{19}$

$$
C E(\%)=\frac{\text { Moles of } \mathrm{NH}_{3} \text { produced }}{\text { Consumed Coulombs /Faraday constant }} \times \frac{1}{3} \times 100
$$

In order to confirm the formation of hydrazine in the N_{2} reduction reaction, the quantification of hydrazine was carried out as follows. ${ }^{13} 2 \mathrm{~mL}$ of a solution of p-dimethylaminobenzaldehyde (2 g of p-dimethylaminobenzaldehyde with 2 mL of conc. HCl to 100 mL ethanol solution) was added to a 1 mL sample of unknown hydrazine concentration and then diluted to 5 mL by adding 1 M HCl . Immediately, a yellow-orange color with an absorption peak at $\lambda_{\max }=458 \mathrm{~nm}$ appeared. The concentration of hydrazine was estimated from the intensity of the maximum absorption at 458 nm .

2.4.6 Detection of ${ }^{15} \mathrm{~N}$-labeled indophenol

The aqueous solution containing indophenol anion prepared by indophenol method after the CPE at -1.5 V was added to tetrabutylammonium bromide, which was extracted with CHCl_{3}. The CHCl_{3} solution was evaporated, and then acetonitrile was added. The acetonitrile solution was used for measurement of ESI-MS. The obtained spectrum ($\mathrm{m} / \mathrm{z}=199$) was noisy. This is because the rate of supplying of ${ }^{15} \mathrm{~N}_{2}(<1$ $\mathrm{mL} / \mathrm{min})$ is slower than that of ${ }^{14} \mathrm{~N}_{2}(5 \mathrm{~mL} / \mathrm{min})$ and the amount of ${ }^{15} \mathrm{~N}$-labeled indophenol anion was quite low compared with ${ }^{14} \mathrm{~N}$-labeled indophenol anion.

2.4.7 DFT calculation

All electronic structure calculations were performed with the Gaussian 09 package ${ }^{20}$ on the Fujitsu HX600 system at the Nagoya University Information Technology Center. Geometry optimizations of dimeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]^{-}$and the monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ as model complexes were performed using BP86 functional ${ }^{21}$ in combination with a polarized valence triple- ζ basis set (TZVP) ${ }^{22}$ for all atoms.

Contribution of solvents for the DFT calculations was applied with polarized continuum model (PCM). ${ }^{23}$ In the DFT calculation with solvent effect of ILs, the dielectric permittivity (ε) of 14.7 at $25{ }^{\circ} \mathrm{C}$, which is that of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide $\quad\left(\mathrm{Pyr}_{4} \mathrm{NTf}_{2}\right)$, was employed, because structure of $\mathrm{Pyr}_{4} \mathrm{NTf}_{2}$ is similar to that of $\mathrm{Pyr}_{4} \mathrm{FAP}$. ${ }^{24}$

2.5 References

1. (a) D. B. Kayan, F. Köleli, J. Electroanal. Chem. 2010, 638, 119. (b) G. Marnellos, M. Stoukides, Science 1998, 282, 98. (c) T. Murakami, T. Nishikiori, T. Nohira, Y. Ito, J. Am. Chem. Soc. 2003, 125, 334. (d) V. Kordali, G. Kyriacou, C. Lambrou, Chem. Commun. 2000, 1673. (e) R. Lan, J. T. S. Irvine, S. Tao, Sci. Rep. 2013, 3, 1145. (f) A. Tsuneto, A. Kudo, and T. Sakata, Chem. Lett. 1993, 22, 851. (g) V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today, 2017, 286, 2. (h) C. J. M. van der Ham, M. T. M. Koper and D. G. H. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183.
2. C. J. Pickett and J. Talarmin, Nature, 1985, 317, 652.
3. J. Y. Becker, S. Avraham (Tsarfaty) and B. Posin, J. Electroanal. Chem., 1987, 230, 143.
4. (a) Y. Nishibayashi, Inorg. Chem., 2015, 54, 9234. (b) R. J. Burford and M. D. Fryzuk, Nat. Chem. Rev., 2017, 1, 1. (c) P. J. Chirik, Organometallics, 2010, 29, 1500. (d) I. Pappas and P. J. Chirik, J. Am. Chem. Soc., 2015, 137, 3498. (e) S. P. Semproni and P. J. Chirik, J. Am. Chem. Soc., 2013, 135, 11373. (f) S. P. Semproni, C. Milsmann and P. J. Chirik, Organometallics, 2012, 31, 3672.
5. (a) P. Hapiot and C. Lagrost, Chem. Rev., 2008, 108, 2238. (b) M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 2009, 8, 621. (c) F. V. Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107, 2757. (d) J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508. (e) S. Tsyzuki, H. Tokuda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B, 2005, 109, 16474. (f) O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi and M. Nagao, J. Chem. Phys., 2011, 135, 054508. (g) M. Mizoshiri, T. Nagao, Y. Mizoguchi and M. Yao, J. Chem. Phys., 2010, 132, 164510. (h) J. N. A. C. Lopes and A. A. H. Pádua, J. Phys. Chem. B, 2006, 110, 3330. (i) M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494. (j)C. D. Hubbard, P. Illner and R. V. Eldik, Chem. Soc. Rev., 2011, 40, 272.
6. N.V. Ignat'ev, U. Welz-Biermann, A. Kucheryna, G. Bissky, and H. Willner, J. Fluorine Chem., 2005, 126, 1150.
7. (a) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, J. Am. Chem. Soc. 2004, 126, 7853-7864. (b) J. Larsen, R. J. Enemærke, T. Skrydstrup, K. Daasbjerg, Organometallics, 2006, 25, 2031-2036.
8. J. Langmaier, Z. Samec, V. Varga, M. Horáček, K. Mach, J. Organomet. Chem., 1999, 579, 348.
9. G. P. Pez, P Apgar, R. K. Crissey, J. Am. Chem. Soc. 1982, 104, 482.
10. D. B. Williams, M. E. Stoll, B. L. Scott, D. A. Costa, W. J. Oldham, Jr., Chem.

Comтип., 2005, 1438.
11. R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, Organometallics, 2004, 23, 1866.
12. M. W. Weatherburn, Anal. Chem., 1967, 39, 971.
13. G. W. Watts and J. D. Chrisp, Anal. Chem., 1952, 24, 2006.
14. (a) M. Schmeisser and R. van Eldik, Inorg. Chem., 2009, 48, 7466. (b) S. Kern, R. van Eldik, Inorg. Chem., 2012, 51, 7340. (c) M. Schmeisser, F. W. Heinemann, P. Illner, R. Puchta, A. Zahl, and R. van Eldik, Inorg. Chem., 2011, 50, 6685. (d) S. Begel, F. W. Heinemann, G. Stopa, G. Stocheland, R. van Eldik, Inorg. Chem., 2011, 50, 3946. (e) S. Begel, P. Illner, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2008, 47, 7121. (f) P. Illner, S. Begel, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2009, 48, 588. (g) K. Pokornv, M. Schmeisser, F. Hampel, A. Zahl, R. Puchta, and R. van Eldik, Inorg. Chem., 2013, 52, 13167. (h) S. Begel, R. Puchta, J. Sutter, F. W. Heinemann, L. Dahlenburgand, and R. van Eldik, Inorg. Chem., 2015, 54, 6763.
15. (a) D. C. Grills, Y. Matsubara, Y. Kuwahara, S. R. Golisz, D. A. Kurtz, and B. A. Mello, J. Phys. Chem. Lett., 2014, 5, 2033. (b) Y. Matsubara, D. C. Grills and Y. Kuwahara, ACS Catal., 2015, 5, 6440.
16. A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskeya, G. A. Baker, Green Chem., 2007, 9, 449.
17. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
18. A. Katayama, T. Inomata, T. Ozawa, H. Masuda, Electrochem. Commun. 2016, 67, 6.
19. K. Tanaka, Y. Hozumi, T. Tanaka, Chem. Lett. 1982, 1203.
20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01,; Gaussian, Inc.: Wallingford, CT, 2013.
21. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.
22. A. Schäfer, C. Huber, R. Ahlrichs, J. Chem.Phys., 1994, 100, 5829.
23. J. Tomasi, , B. Mennucci, and R. Cammi, Chem. Rev., 2005, 105, 2999.
24. M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494.

Chapter 3: Ionic liquid promotes \mathbf{N}_{2} coordination to titanocene(III) monochloride

3.1 Introduction

In Chapter 2, the electrochemical synthesis of ammonia $\left(\mathrm{NH}_{3}\right)$ by using titanocene(IV) in ionic liquid (IL) was investigated. The yield of NH_{3} per Ti ion (\%) and current efficiency in the CPE of titanocene dichloride $\left(\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right)$ in 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate $\left(\operatorname{Pyr}_{4} \mathrm{FAP}\right)$ is higher than that in 1-butyl-1-methylpyrrolidinium triflate $\left(\operatorname{Pryr}_{4} \mathrm{OTf}\right)$, indicating that the synthesis of NH_{3} by using transition metal complex is preferred in non-coordinating IL, $\mathrm{Pyr}_{4} \mathrm{FAP}$, as a solvent. The yield of NH_{3} in $\mathrm{Pyr}_{4} \mathrm{FAP}$ is significantly improved compared with that in organic solvents reported in previous literature. ${ }^{1}$ The N_{2} reduction to NH_{3} is believed to occur during the electrochemical reduction of $\mathrm{Ti}(\mathrm{IV})$ to $\mathrm{Ti}(\mathrm{III})$ and/or $\mathrm{Ti}(\mathrm{II})$ species in titanocene. This reaction is not observed for the same complex in organic solvents such as THF and toluene, suggesting that the IL contributes to the highly efficient N_{2} reduction reaction.

Hence, in Chapter 3, the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, $\mathrm{Pyr}_{4} \mathrm{OTf}$, and THF containing $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP}$ ($0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$) were discussed by using UV-vis/NIR spectroscopy during the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ to understand the electrochemical N_{2} reduction promoted by $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ as described in Chapter 2. Besides the UV-vis/NIR spectroscopy during the electrochemical reduction, bis[(dicyclopentadienyl)titanium(III) chloride], $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right)_{2}\right.$, was prepared and its reactivity toward N_{2} in the IL was examined by using UV-vis/NIR and frozen solution EPR spectroscopies. Moreover, to consider the equilibrium reaction containing N_{2} coordination from theoretical viewpoints, we describe the density
functional theory (DFT) and time-dependent density functional theory (TDDFT) studies for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right],\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, and $\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right]$, which are the possible structures in the equilibrium reaction of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene and IL.

3.2 Results and Discussion

3.2.1 UV -vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathbf{T i C l}_{2}\right]$ in ionic liquids during electrochemical reduction

To understand the electrochemical reduction reaction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ from $\mathrm{Ti}(\mathrm{IV})$ to Ti(III), UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{Pyr}_{4} \mathrm{OTf}$ and $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ were measured during the controlled-potential electrolysis (CPE). The results in $\mathrm{Pyr}_{4} \mathrm{FAP}$ are shown in Figure 3-1. The rest potential before the LSV measurement was observed at 0 V (vs. Pt wire). Thus, the LSV was started to sweep from 0 V (vs. Pt wire). The LSV (Figure 3-1(A)) before UV-vis/NIR and CPE measurement showed increase in the current assigned to the reduction of $\mathrm{Ti}(\mathrm{IV})$ to $\mathrm{Ti}(\mathrm{III})$. Therefore, the reduction potential of CPE was decided to be -1.2 V (vs. Pt wire). The time courses (s) of electric charge (mC), UV-vis/NIR spectra and its difference spectra are shown in Figures 3-1(B), 3-1(C) and 3-1(D), respectively. The difference spectra shown in Figure 3-1(D) clearly revealed intensity changes in absorbances at 462,531, 821, and 1194 nm .

The results in $\mathrm{Pyr}_{4} \mathrm{OTf}$ and $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP} / \mathrm{THF}$ are also shown in Figures 3-2 and 3.3, respectively. The LSVs before UV-vis/NIR and CPE measurements are shown in Figures 3-2(A) and 3-3(A), respectively, and the increase in the currents were observed from -0.8 V (vs. Pt wire) in the LSVs, which are assigned to the reduction of $\mathrm{Ti}(\mathrm{IV})$ to Ti(III). The wave seen in Figure 3-1(A) is not wave-shaped, as seen in Figure 3-2(A), suggesting that IR drop was occurred due to the higher viscosity of $\operatorname{Prr}_{4} \mathrm{FAP}$ than that of
$\mathrm{Pyr}_{4} \mathrm{OTf}$. In addition, the setting of 3 electrodes in UV-vis/NIR cell cannot provide the best cell geometry allowing minimizing of IR drop. The current value is different from in all three solvents due to the difference in their viscosities $\left(\operatorname{Pyr}_{4}\right.$ FAP: $\eta=333.789$ $\mathrm{mPa} \bullet \mathrm{s}$ at $293.15 \mathrm{~K}, \mathrm{Pyr}_{4} \mathrm{OTf}: \eta=217 \mathrm{mPa} \bullet \mathrm{s}$ at 293.15 K$)^{2,3}$. The influence due to the viscosities was also observed in the consumed electric charge of CPE, as shown in Figures 3-2(B) and 3-3(B), and in the intensity change in absorbances in UV-vis/NIR spectra shown in Figures 3-2(C), 3-2(D), 3-3(C) and 3-3(D). In the difference UV-vis/NIR spectra in $\mathrm{Pyr}_{4} \mathrm{OTf}$ (Figure 3-2(D)), intensity changes were observed in the bands at 525, 783, 874, and 1154 nm . In the difference UV-vis/NIR spectra in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ (Figure 3-3(D)), the intensity change is observed in the bands at 519, 737, 811, 1171 nm , which is similar to that in $\mathrm{Pyr}_{4} \mathrm{OTf}$. The species generated in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ is therefore similar to that in $\mathrm{Pyr}_{4} \mathrm{OTf}$.

All the UV-vis/NIR and difference spectra in $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{Pyr}_{4} \mathrm{OTf}$ and 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ showed increase in the broad bands at around $1000 \sim 1400 \mathrm{~nm}$, which are characterized to metal to metal charge transfer (MMCT) band derived from $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ generated after the electrochemical reduction (see Section 3.2.2). ${ }^{4,5}$ Moreover, other peaks at around 800 nm were also characterized to $\mathrm{d}-\mathrm{d}$ transition of Ti (III) for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$. These observations are consistent with the UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ as shown in Figures A13-A15 in Appendix A. ${ }^{4}$ Accordingly, $\mathrm{Ti}-\mathrm{Cl}$ bond of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$was obviously cleaved even in $\operatorname{Pr}_{4} \mathrm{FAP}$ that is non-coordinating solvent. To the best of our knowledge, although such a behavior in 0.2 $\mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$ has been reported before, ${ }^{6}$ that in non-coordinating solvent has not been reported yet. Accordingly, the generation of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, which was estimated as the active intermediate in the electrochemical NH_{3} synthesis as described in Chapter 2, ${ }^{4,7}$
was also confirmed clearly by UV-vis/NIR spectra observed during electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$.

Interestingly, increase in intensity of the absorbance observed at 462 nm in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (Figure 3-1(D)), which is derived from $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, was not observed in $\mathrm{Pyr}_{4} \mathrm{OTf}$ (Figure 3-2(D)) and $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP}^{2}$ THF (Figure 3-3(D)), suggesting that equilibrium reactions between $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{S})\right]$ (S: solvent), as shown in Eqs.(2) and (3), ${ }^{8}$ exist in addition to Eq. (1).

$$
\begin{align*}
{\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right] } & \rightleftharpoons 2\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right] \tag{1}\\
{\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]+\left[\mathrm{Pyr}_{4}\right]^{+}[\mathrm{OTf}] } & \rightleftharpoons\left[\mathrm{Pyr}_{4}+\left[\mathrm{C} \mathrm{C}_{2} \mathrm{TiCl}(\mathrm{OTf})\right]-\right. \tag{2}\\
{\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]+\mathrm{THF} } & \rightleftharpoons\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{THF})\right] \tag{3}
\end{align*}
$$

Figure 3-1. UV-vis/NIR spectra of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ during CPE at -1.2 V (vs. Pt wire) under Ar atmosphere. (A) Linear sweep voltammogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (scan rate: $10 \mathrm{mV} / \mathrm{s}$) before CPE, (B) plots of consumed electric charge (mC) vs. time (s) during CPE at -1.2 V (vs. Pt wire), (C) UV-vis/NIR spectra of 10 mM $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ (1) in $\mathrm{Pyr}_{4} \mathrm{FAP}$ during CPE at -1.2 V (vs. Pt wire) under Ar atmosphere at 0 , $900,1800,2700$, and 3600 s , and (D) the difference UV-vis/NIR spectra of 10 mM [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ at $900,1800,2700$, and 3600 s.

Figure 3-2. (A) Linear sweep voltammogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ (scan rate: 100 mV / s) before CPE, (B) plots of consumed electric charge (mC) vs. time (s) during CPE at -1.2 V (vs. Pt wire), (C) UV-vis/NIR spectra of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ during CPE at -1.2 V (vs. Pt wire) under Ar atmosphere at $0,900,1800,2700$, and 3600 s , and (D) difference UV-vis/NIR spectra of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ at 900, 1800, 2700, and 3600 s .

Figure 3-3. UV-vis/NIR spectra of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at -1.2 V (vs. Pt wire) under Ar atmosphere. (A) Linear sweep voltammogram of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ (scan rate: $10 \mathrm{mV} / \mathrm{s}$) before CPE , (B) plots of consumed electric charge (mC) vs. time (s) during CPE at -1.2 V (vs. Pt wire), (C) UV-vis/NIR spectra of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ at $0,180,360,540$, 720, 900, 1800, 2700, and 3600 s , and (D) the difference UV-vis/NIR spectra of 10 mM [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$] in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ at $180,360,540,720,900,1800,2700$, and 3600 s.

3.2.2 UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right]$

UV-vis/NIR spectra of $5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP}$-containing THF solution ($0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$) and toluene for comparison were measured under a dinitrogen atmosphere. These spectra are shown in Figure 3-4 and summarized in Table A10 in Appendix A. All spectra have an intense peak at about 450 nm , two weak bands in the range of $690 \sim 820 \mathrm{~nm}$ and a broadened band at about 1150 nm , which are quite similar to each other, except for a small absorption band at 449 nm observed in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. The former intense bands and two weak bands were previously assigned as CT and d-d bands, respectively. ${ }^{9}$ Although the broadened band at about 1150 nm was also assigned as a d-d band, it is in a longer wavelength region. Therefore, we measured UV-vis/NIR spectra of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$ in toluene in order to assign the broadened bands, in which metal ions are both in the same electronic state (d^{1} electronic configuration) and do not form any dimeric structure. ${ }^{10}$ These complexes have intense bands below 400 nm and two weak bands in the d-d transition band range of $550-910 \mathrm{~nm} ; 558\left(\varepsilon 110 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and 640 $\mathrm{nm}\left(\varepsilon 77 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ for $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ and $755\left(\varepsilon 82 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $905 \mathrm{~nm}(\varepsilon 93$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) for $\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$, (see Figures A16 and A17 and Table A10 in Appendix A). However, there are no absorption bands in the NIR region of $900-1500 \mathrm{~nm}$. Therefore, the absorption bands observed in the range of $1100-1200 \mathrm{~nm}$ are assigned as metal-metal charge transfer (MMCT) bands. Furthermore, UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, toluene and THF were measured in various concentrations (see Figures A18-A20 in Appendix A). The MMCT bands in all three solvents were increased in the higher concentrations. These behaviors are reasonable because the equilibrium is biased toward the formation of the dimeric species. Thus, the results also
suggest that the bands in the range of $1100-1200 \mathrm{~nm}$ are MMCT bands. The detailed assignments of the UV-vis/NIR spectra by TD-DFT calculations are described in Section 3.2.8 and Appendix B.

The CT band indicates that the equilibrium reaction between the dimeric and monomeric species exists also in non-coordinating solvent. As described above, the intense band at about 450 nm decreases in intensity according to the following order of solvents; toluene $(456 \mathrm{~nm}(\varepsilon 1300))>\operatorname{Pyr}_{4} \mathrm{FAP}(449 \mathrm{~nm}(\varepsilon 930))>0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} /$ THF $(452 \mathrm{~nm}(\varepsilon 120))$.

The decrease in peak intensity of the CT band observed in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ solution may indicate release of a chloride atom from the $\mathrm{Ti}(\mathrm{III})$ center upon coordination of a THF molecule, resulting in transformation from dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right)_{2}\right.$ to monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$. The small decay of the CT band observed for the complex in $\mathrm{Pyr}_{4} \mathrm{FAP}$ may indicate dissociation from the dimeric species to the monomeric species and weak coordination of the dinitrogen molecule.

Figure 3-4. UV-vis/NIR spectra of $5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} /$ THF (black), toluene (blue) and $\mathrm{Pyr}_{4} \mathrm{FAP}$ (red).

3.2.3 Frozen solution EPR spectroscopy of dimeric $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, THF

 and tolueneTo understand the equilibrium reaction between dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, EPR spectrum for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ was measured. Regarding the ground state of the $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, it has been known to be in the singlet state at low temperature. ${ }^{11-14}$ Accordingly, $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet state is stabilized at lower temperature due to the strong intermolecular spin-spin interaction of titanium-titanium. The unusual phenomenon observed in $\mathrm{Pyr}_{4} \mathrm{FAP}$ would involve the switch of the spin state in $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ from the singlet state to the triplet state. Therefore, if there is the monomeric species generated by the equilibrium reaction of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP},\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ would be EPR active.

To confirm the existence of equilibrium reaction between monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ and dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, the EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ under N_{2} atmosphere was measured at 77 K . The yellow color of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in Pyr4FAP is changed to yellow-green when it was cooled at 77 K . This color change was not observed upon cooling the complex in organic solvents, $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ and toluene. The color change observed for the complex in pure ionic liquid suggests N_{2} coordinates to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$. Interestingly, the EPR spectrum of the complex in $\mathrm{Pyr}_{4} \mathrm{FAP}$ is obviously different from that of the complex in organic solvents, as described below (see Figures 3-5, 3-6 and 3-7). The EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pr}_{4} \mathrm{FAP}$ under ${ }^{14} \mathrm{~N}_{2}$ (Figure 3-5) was a rhombic signal with $\mathrm{g}_{\mathrm{x}}=1.997, \mathrm{~g}_{\mathrm{y}}=1.977, \mathrm{~g}_{\mathrm{z}}=1.946$, and $A_{z}(N)=17 G$. This spectrum exhibits clear triplet hyperfine splitting at the g_{z} signal. This is a strong indication of dinitrogen binding to the $\mathrm{Ti}(\mathrm{III})$ center, because the hyperfine splitting is a triplet pattern induced by the coordination of ${ }^{14} \mathrm{~N}$ with a nuclear
spin $I=1 . \quad$ This spectrum agrees well with the simulation $\left(\mathrm{g}_{\mathrm{x}}=1.995, \mathrm{~g}_{\mathrm{y}}=1.974, \mathrm{~g}_{\mathrm{z}}=\right.$ 1.944 and $\left.\mathrm{A}_{\mathrm{z}}(\mathrm{N})=16 \mathrm{G}\right)$. To confirm this finding, we also carried out the same experiment under ${ }^{15} \mathrm{~N}_{2}\left(I=1 / 2\right.$ for $\left.{ }^{15} \mathrm{~N}\right)$. The spectrum for the complex measured under ${ }^{15} \mathrm{~N}_{2}$ is also a rhombic type spectrum with $\mathrm{g}_{\mathrm{x}}=1.994$, $\mathrm{g}_{\mathrm{y}}=1.975$, and $\mathrm{g}_{\mathrm{z}}=1.940$, in which the g_{z} signal was doubly split with $\mathrm{A}_{\mathrm{z}}(\mathrm{N})=22$. The doubly split signal clearly indicates coordination of ${ }^{15} \mathrm{~N}_{2}$ to the $\mathrm{Ti}($ III) species. This spectrum is consistent with the simulated spectrum $\left(g_{x}=1.994, g_{y}=1.975, g_{z}=1.940, A_{z}(N)=21\right)$. Further support for coordination of N_{2} is provided by the ratio of coupling constants, ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$, because the ratio (0.77) is close to the theoretical value estimated from the ratio for nuclear spin moments, ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N},(0.7128) .{ }^{15}$ These experimental data demonstrate that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ dissociates to monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ and N_{2} coordinates to the monomeric species in $\mathrm{Pyr}_{4} \mathrm{FAP}$. Although the reactivity of the lower valent titanocene(II) with N_{2} has previously been studied, ${ }^{16}$ reactivity of titanocene(III) ligated to a Cp ring without any substituent groups such as a methyl group has never been reported.

For comparison, EPR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ were also studied in toluene and 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ at 77 K , which are shown in Figures 3-6 and 3-7. Both spectra have a rhombic signal with $\mathrm{g}_{\mathrm{x}}=1.998, \mathrm{~g}_{\mathrm{y}}=1.980, \mathrm{~g}_{\mathrm{z}}=1.950$ and with $\mathrm{g}_{\mathrm{x}}=1.997, \mathrm{~g}_{\mathrm{y}}=1.977$, $\mathrm{g}_{\mathrm{z}}=1.946$, respectively. These spectra are similar to the simulated spectra and in agreement with spectra in the literature. ${ }^{17}$ These spectra, however, do not include hyperfine splitting at the g_{z} peak. If $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ were retained in the dimer structure, it would be EPR silent due to the antiferromagnetic interaction. These findings at least indicate that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ also exists as the monomeric species. Although the EPR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (Figure 3-5) has a hyperfine split derived from coordination of N_{2}, similar hyperfine splitting was not observed for the complex in
organic solvents.
A plausible reaction scheme for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in IL is illustrated in Scheme 3.1. $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ is in equilibrium between the dimeric species, $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, and the monomeric species, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, not only in organic solvents ${ }^{6}$ but also in $\mathrm{Pyr}_{4} \mathrm{FAP}$. The monomeric species is coordinated to dinitrogen at 77 K . Increase in the amount of the monomeric species promotes the coordination of N_{2}. The UV-vis/NIR spectra at various concentrations, as shown in Figures A18-A20 in the Appendix A, indicate that more monomeric species exists in the lower concentrations. Accordingly, the coordination can be enhanced in lower concentrations.

The results of this work suggest that the IL affects the reactivity of titanocene(III) monochloride with N_{2}. Although the detailed structure of the titanocene(III)- N_{2} species in the ionic liquid remains unknown, it appears that the ionic liquid promotes and stabilizes the formation of the N_{2}-coordinated Ti (III) species. To the best of our knowledge, the similar coordination behavior of N_{2} with a $\mathrm{Ti}(\mathrm{III})$ complex has not been reported although the reactivity of other transition metal complexes with small molecules such as NO and CO_{2} in ionic liquid has been investigated. ${ }^{18}$

Scheme 3-1. Possible reaction scheme of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ under N_{2}

Figure 3-5. Experimental (blue) and simulated (red) frozen solution EPR spectra of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ under ${ }^{14} \mathrm{~N}_{2}$ (upper) and ${ }^{15} \mathrm{~N}_{2}$ atmospheres (bottom). Experimental conditions are as follows: ${ }^{14} \mathrm{~N}_{2}$; temperature $T=77 \mathrm{~K}$, power 1 mW , and modulation $0.63 \mathrm{mT},{ }^{15} \mathrm{~N}_{2}$; temperature $T=77 \mathrm{~K}$, power 1 mW , and modulation 0.63 mT . The observed spectrum (blue) and simulation (red) are as follows; ${ }^{14} \mathrm{~N}_{2} ; g$ values estimated from the spectrum are $g_{\mathrm{x}}=1.998, g_{\mathrm{y}}=1.977, g_{\mathrm{z}}=1.946, \mathrm{~A}_{\mathrm{z}}(\mathrm{N})=17 \mathrm{G}$ and simulated g values are $g_{\mathrm{x}}=1.995, g_{\mathrm{y}}=1.974, g_{\mathrm{z}}=1.944, \mathrm{Az}(\mathrm{N})=16 \mathrm{G},{ }^{15} \mathrm{~N}_{2} ; g$ values estimated from the spectrum are $g_{\mathrm{x}}=1.994, g_{\mathrm{y}}=1.975, g_{\mathrm{z}}=1.940, \mathrm{Az}(\mathrm{N})=22 \mathrm{G}$, and simulated g values are $g_{x}=1.994, g_{y}=1.975, g_{z}=1.940, \mathrm{Az}(\mathrm{N})=21 \mathrm{G}$.

Figure 3-6. Frozen solution EPR spectrum of $0.5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in toluene. Experimental conditions are as follows: temperature $T=77 \mathrm{~K}$, frequency $v=9.142$ GHz , power 1 mW , and modulation 0.63 mT . The observed spectrum (blue) and simulation (red) are as follows; g values estimated from the spectrum are as follows; g_{x} $=1.998, g_{\mathrm{y}}=1.980, g_{\mathrm{z}}=1.950$, and simulated g values are $g_{\mathrm{x}}=1.998, g_{\mathrm{y}}=1.980, g_{\mathrm{z}}$ $=1.950$.

Figure 3-7. Frozen solution EPR spectrum of $1 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. Experimental conditions are as follows; temperature $T=77 \mathrm{~K}$, frequency $v=9.125 \mathrm{GHz}$, power 1 mW , and modulation 0.63 mT . The observed spectrum (blue) and simulation (red) are as follows; g values estimated from spectrum are $g_{\mathrm{x}}=1.997, g_{\mathrm{y}}$ $=1.977, g_{\mathrm{z}}=1.946$, and simulated g values are $g_{\mathrm{x}}=1.997, g_{\mathrm{y}}=1.979, g_{\mathrm{z}}=1.950$.

3.2.4 Full geometry optimizations of titanocene derivatives, 1, 2, 3, 4, and 4-TS by DFT calculations.

In order to understand the N_{2} coordination to titanocene in IL, which was previously studied by EPR spectroscopy, full geometry optimizations of the following model complex structures were carried out by using DFT calculations; $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet (1) and triplet states (2), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ in the doublet state (3), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]$ in the doublet state (4), and the transition state of 4 in the doublet state (4-TS). DFT calculations were performed using BP86/TZVP basis set for all atoms, ${ }^{19,20}$ because DFT calculations for titanocene complexes were studied previously using the same basis set. ${ }^{21,22}$ The calculations were carried out with applying with the dielectric permittivity (ε) as solvation effects of toluene $(\varepsilon=2.3741)$ and IL $(\varepsilon=14.7)$. The value ε of IL employed in this study was applied with that of 1-butyl-1-methyl pyrrolidinium bis(trifluoromethansulfonyl)imide reported previously. ${ }^{23}$ The transition state in the formation of $\mathbf{4 , 4 - T S}$, was calculated by gradual elongation of $\mathrm{Ti} \cdots \mathrm{N}$ distance for 4 .

The structures of model complexes optimized with solvent effect of $\operatorname{IL}(\varepsilon=14.7)$ are shown in Figure 3-8, and the structural information are summarized in Tables B2-B4 and described in the Appendix B. The optimized structures in toluene were similar to those in toluene and IL, and the bond parameters among them were almost the same within $\pm 0.02 \AA$ (see Appendix B). Although the structures of $\mathbf{1}$ and $\mathbf{2}$ were similar to each other, the $\mathrm{Ti}-\mathrm{Ti}$ distance $(4.0153 \AA$) for $\mathbf{1}$ was shorter than that of $\mathbf{2}(4.0657 \AA)$. This difference was found in the difference between their molecular orbitals as follows. For 1, the density population analysis revealed that the HOMO-1 in the molecular orbital 109 was constructed of d orbitals on two Ti atoms to form the metal-metal interaction (see Figure B10 in Appendix B). On the other hand, for 2, the spin density
demonstrated that the HOMO-1 in the molecular orbital 109α displayed the metal-metal interaction on Ti atoms via molecular orbitals of the bridged Cl atoms (see supporting information). The Ti-Ti distances in the optimized structures for $\mathbf{1}$ (4.0153 \AA) and $2(4.063 \AA)$ were slightly elongated in comparison with that ($3.943 \AA$ and 3.968 \AA) in the crystal structure of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ complex in the triplet state reported previously (see Table B1 in Appendix B). ${ }^{13}$ In comparison with $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet and triplet states calculated by using B3LYP/def2-TZVP, the Ti-Ti distances are also slightly elongated in comparison with those model complexes $(3.91615 \AA$ for singlet state, $3.94936 \AA$ for triplet state) (see Table B1). Accordingly, the structures of model complexes $\mathbf{1}$ and $\mathbf{2}$ calculated by BP86/TZVP are almost agreement with those of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ calculated by B3LYP/def-TZVP reported in previous literature. ${ }^{14}$

The optimized structure of $\mathbf{3}$ is similar to the crystal structure of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ previously reported. ${ }^{24}$ Although the $\mathrm{Ti}-\mathrm{Cl}$ bond length ($2.380 \AA$) for $\mathbf{3}$ is similar to that ($2.363 \AA$) of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ crystal, the angle of Cp ring centroid- $\mathrm{Ti}-\mathrm{Cp}$ ring centroid for 3 (134.70 deg) is smaller than that (143.6 deg) in [$\left.\mathrm{Cp} *{ }_{2} \mathrm{TiCl}\right]$ crystal, which may have been widen by steric hindrance of methyl groups on $\mathrm{Cp} *$ rings. In the optimization of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]$ complex (4) coordinated with N_{2}, the $\mathrm{N}-\mathrm{N}$ bond length was calculated to be $1.120 \AA$, which was slightly longer than that $(1.0977 \AA)$ of free N_{2} molecule. The distances of $\mathrm{Ti}-\mathrm{N}$ and $\mathrm{Ti}-\mathrm{Cl}$ bonds were estimated to be 2.116 and $2.477 \AA$, respectively. The angle $\mathrm{Ti}-\mathrm{N}-\mathrm{N}$ (178.26 deg.) was almost linear and the $\mathrm{Cl}-\mathrm{Ti}-\mathrm{N}$ was 84.88 deg. In the optimized structure of $\mathbf{4 - T S}, \mathrm{N}-\mathrm{N}$ bond length was calculated to be $1.1069 \AA$, which is slightly shorter than that of 4 . The distances of $\mathrm{Ti}-\mathrm{N}$ and $\mathrm{Ti}-\mathrm{Cl}$ bonds were estimated to be 2.9406 and $2.4175 \AA$, respectively. The angle $\mathrm{Ti}-\mathrm{N}-\mathrm{N}$ (158.70 deg.) and $\mathrm{Cl}-\mathrm{Ti}-\mathrm{N}$ (79.60 deg) were smaller than those of 4.

$\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ (singlet) (1)

$\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ (triplet) (2)

$\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right](3)$

$\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right](4)$

$\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right]$-TS (4-TS)

Figure 3-8. Optimized structures of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet (1) and triplet states (2), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right](3),\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right](4)$ and $\left[\mathrm{Cp}_{2} \mathrm{TiClN}_{2}\right]$ in the transition state $(4-\mathrm{TS})$ (purple: Ti atom, green: Cl atom, black: C atom, blue: N atom and White: H atom). The bond lengths and angles are presented in \AA and degree, respectively. Important bond parameters for $\mathbf{1}$: $\mathrm{Ti} \cdots \mathrm{Ti} 4.0153$, $\mathrm{Ti}-\mathrm{Cl}$ 2.5953. For 2: $\mathrm{Ti} \cdots \mathrm{Ti} 4.063$, $\mathrm{Ti}-\mathrm{Cl} 2.597$. For 3: Ti-Cl 2.380. For 4: Ti-Cl 2.477, Ti-N 2.116, N-N 1.120, Ti-N-N 178.26, N-Ti-Cl 84.88. For 4-TS: Ti-Cl 2.477, Ti-N 2.116, N-N 1.107, Ti-N-N 158.96, N-Ti-Cl 79.53.

3.2.5 Evaluation of equilibrium reactions based on calculated Gibbs energies of the

 titanocene derivatives.Next, we tried to evaluate the equilibrium reactions among species 1-4 in toluene and IL under N_{2}, and the computed reaction profiles of the equilibrium reactions were analyzed. The equilibrium reactions among these complexes were discussed by using $\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$ instead of $\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ (see Figure B24 in Appendix B), because of the well-known erroneous computational analyses of the variation of entropy for a reaction where two reactants give only one product in solution. ${ }^{25}$ The $\Delta \mathrm{Hs}$ for $\mathbf{1 - 5}$ at 298.15 K in toluene and IL are shown in Figure 3-9.

Figure 3-9. Computed profile of the equilibrium reactions among 1, 2, 3, 4, and 4-TS in toluene $(\varepsilon=2.3741)($ red $)$ and $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ (black), as estimated at 298.15 K .

The $\Delta \mathrm{H}$ values ($\mathrm{kcal} / \mathrm{mol}$), as estimated based on the sum of enthalpies of the two monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right](3)$ and two free N_{2} molecules, were evaluated in each solvent. In toluene, the calculated $\Delta \mathrm{H}$ value for $\mathbf{1}$ was estimated to be $-6.92 \mathrm{kcal} / \mathrm{mol}$ and that for $\mathbf{2}$ was $-6.99 \mathrm{kcal} / \mathrm{mol}$, indicating that $\mathbf{2}$ is slightly stable at 298.15 K as compared with $\mathbf{1}$. For the equilibrium reaction between $\mathbf{1}$ and $\mathbf{2}$, it is known that the ground state of $\mathbf{2}$ in
the triplet state is close to the singlet state at a low temperature. ${ }^{11-14}$
Interestingly, the $\Delta \mathrm{H}$ values of $\mathbf{1}(-3.85 \mathrm{kcal} / \mathrm{mol})$ and $\mathbf{2}(-3.75 \mathrm{kcal} / \mathrm{mol})$ in IL are higher than those (-6.99 and $-6.75 \mathrm{kcal} / \mathrm{mol}$, respectively) in toluene. On the other hand, those of 4-TS $(8.04 \mathrm{kcal} / \mathrm{mol})$ and $4(-3.78 \mathrm{kcal} / \mathrm{mol})$ in IL are similar to those (7.84 and $-3.40 \mathrm{kcal} / \mathrm{mol}$, respectively) in toluene. To further discuss the influence of the dielectric permittivity for model complexes, the dipole moments (Debye) for the optimized all model complexes are summarized in Table 3-1 and compared. Interestingly, it suggests that the model complex with a small dipole moment, such as $\mathbf{1}$ and 2, is stabilized by non-polar solvent with a small dielectric permittivity, in other words, a polar solvent destabilizes $\mathbf{1}$ and $\mathbf{2}$ with small dipole moment.

Table 3-1. Summary of dipole moments (Debye) for model complexes

Solvent (dielectric permittivity)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4 - T S}$	$\mathbf{4}$
Pyr $_{4}$ FAP (14.7)	0.14	0.058	5.0	5.5	6.4
Toluene (2.3741)	0.0022	0.0005	4.2	4.3	5.6

3.2.6 Evaluation of the effect of IL toward 3, 4 and 4-TS.

In order to understand the interaction between titanocene and FAP anion, DFT calculations for model complexes $\mathbf{3}, \mathbf{4}$ and $\mathbf{4 - T S}$ with FAP anion were performed by using BP86/TZVP with empirical corrections (GD3BJ) ${ }^{26}$ and dielectric permittivity of IL ($\varepsilon=14.7$). The model complexes 3, 4 and 4-TS calculated using empirical corrections (GD3BJ) again for comparison are described as $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ and $\mathbf{4}^{\prime}$ - $\mathbf{T S}$, and their FAP adducts for $\mathbf{3}^{\prime}, \mathbf{4}^{\mathbf{\prime}}, \mathbf{4} \mathbf{\prime}$ - $\mathbf{T S}$ are described as $\mathbf{3}^{\prime}$ '-FAP, $\mathbf{4}^{\mathbf{\prime}} \mathbf{- F A P}$ and $\mathbf{4}^{\prime}$-FAP-TS.

The optimized structures for $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{4}^{\prime}$ - TS, 3'-FAP, 4'-FAP, and 4'-FAP-TS and their structural information are shown in Figures 3-10, B1, B2, B3 and Table B5 in Appendix B. The structures of titanocene in $\mathbf{3}^{\prime}$ and $\mathbf{4}^{\prime}$ without FAP are similar to those in 3'-FAP and 4'-FAP (see Table B5). Interestingly, F atoms in FAP anion have weak interactions with H atoms in Cp rings. The structure of 4'-FAP is shown in Figure 3-10. The $\mathrm{F} \cdots \mathrm{H}$ distances between FAP anion and Cp ring are in the range of ca. 2.5 to $2.9 \AA$ as follows; F15 $\cdots \mathrm{H} 2$ 2.4596, F15 $\cdots \mathrm{H} 6$ 2.7927, F15 $\cdots \mathrm{H} 7$ 2.7080, F5 $\cdots \mathrm{H} 2$ 2.6499, F5 $\cdots \mathrm{H} 12.8546$, F10 $\cdots \mathrm{H} 12.7475$, F10 $\cdots \mathrm{H} 6$ 2.6748, and F9 $\cdots \mathrm{H} 62.5828$ Å. Such interactions are also observed in structure of 3'-FAP. Although we also expected weak interaction of F atom with the coordinated N_{2}, the $\mathrm{N}-\mathrm{N}$ bond distance ($\mathrm{N} 1-\mathrm{N} 21.119 \AA$) for $\mathbf{4}^{\prime}$-FAP is the same as that of $\mathbf{4}(\mathrm{N} 1-\mathrm{N} 21.119 \AA)$ and the F atom in FAP anion is near the coordinated N_{2} atoms (F10 $\cdots \mathrm{N} 13.2935, \mathrm{~F} 10 \cdots \mathrm{~N} 23.2999 \AA$). To confirm the interaction between FAP anion and the N_{2} molecule coordinated to [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, Mulliken charges on N atoms of 4'-FAP were estimated. However, the charges on N atoms of 4'-FAP (N1: $0.071401, \mathrm{~N} 2:-0.172722)$ were unfortunately similar to those of $\mathbf{4}^{\prime}(\mathrm{N} 1$: $0.074238, \mathrm{~N} 2:-0.173357$), indicating that the F atom has only little interaction toward N_{2} molecule.

To consider the effect of the interaction in the energy profile, the computed profile of the equilibrium reactions among $\mathbf{3}^{\prime}, \mathbf{4}^{\mathbf{\prime}}, \mathbf{4}^{\mathbf{\prime}}$-TS, $\mathbf{3}^{\mathbf{\prime}}$-FAP, $\mathbf{4}^{\mathbf{\prime}}$-FAP, and $\mathbf{4}^{\mathbf{\prime}}$-FAP-TS were shown in Figure 3-11. The $\Delta \mathrm{H}$ values ($\mathrm{kcal} / \mathrm{mol}$) are based on the enthalpy of $\mathbf{3}$ ' with free FAP anion and free N_{2} molecule. $\Delta \mathrm{H}$ of 3'-FAP is estimated to be $-2.54 \mathrm{kcal} / \mathrm{mol}$, indicating that FAP anion stabilized $\mathbf{3}^{\prime}$ ' through weak interaction between H atoms on the Cp ring and F atoms in FAP anion. The $\Delta \mathrm{H}$ of $\mathbf{4}^{\prime}-\mathbf{T S}$ as the transition state of N_{2} adduct of $\mathbf{3}^{\prime}$ is estimated to be $-0.37 \mathrm{kcal} / \mathrm{mol}$, which is very close to that of $\mathbf{3}$ ' with free
N_{2} molecule. The $\Delta \mathrm{H}$ value of $\mathbf{4}^{\prime}-\mathbf{T S}$ in the transition state might be estimated to be low due to the dispersion corrections. The $\Delta \mathrm{H}$ value of $\mathbf{4}^{\prime}$ '-FAP-TS $(-3.46 \mathrm{kcal} / \mathrm{mol})$ is also affected by the weak interaction, and therefore, the $\Delta \mathrm{H}$ is lower than that of $\mathbf{4}$ '-TS. In addition, the $\Delta \mathrm{H}$ of $\mathbf{4}^{\prime}$-FAP $(-11.3 \mathrm{kcal} / \mathrm{mol})$ is lower than that of $\mathbf{4}^{\prime}(-7.81 \mathrm{kcal} / \mathrm{mol})$, also suggesting that FAP anion stabilized $\mathbf{4}^{\prime}$. These findings suggest that the N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ is occurred in polar domain of $\mathrm{Pyr}_{4} \mathrm{FAP}$ that weakly interacts to the transition metal complex.

Figure 3-10. The optimized structure of 4'-FAP. Selected bond lengths (\AA) and angles (deg.) for 4'-FAP: Ti1-Cl1 2.4779, Cp1(centroid)-Ti1 2.0529, Cp1(centroid)-Ti1-Cp2(centroid) 134.6, Cp1(centroid)-Ti-Cl1 107.8, N1-N2 1.1196, Ti1-N1 2.0987, Ti1-N1-N2 178.77, N1-Ti1-Cl1 84.9, F15 $\cdots \mathrm{H} 13.8974$, F15 $\cdots \mathrm{H} 22.4596$, F15 $\cdots \mathrm{H} 62.7927$, F15 $\cdots \mathrm{H} 7$ 2.7080, F5 $\cdots \mathrm{H} 2$ 2.6499, F5 $\cdots \mathrm{H} 1$ 2.8546, F10 $\cdots \mathrm{H} 12.7475$, F10 \cdots H6 2.6748, F10 \cdots N1 3.2935, F10 \cdots N2 3.2999, F9 \cdots H6 2.5828.

Figure 3-11. Computed reaction profile of the equilibrium reaction calculated by BP86/TZVP with empirical corrections (GD3BJ) among 3', 4' and 4-TS without FAP anion (black) and 3'-FAP, 4'-FAP and 4'-FAP-TS with FAP (red) in Pyr_{4} FAP $(\varepsilon=14.7)$ at 298.15 K .

3.2.7 Mechanism of \mathbf{N}_{2} coordination to 3 achieved in IL

On the basis of the above findings obtained by DFT calculations, we evaluated the mechanism of N_{2} coordination to $\mathbf{3}$ in IL, as shown in Scheme 3.2. The IL is known to have both of polar and nonpolar domains. ${ }^{27,28}$ For instance, in the case of 1-butyl-3-methylimidazolium hexafluorophosphate, $\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\mathrm{PF}_{6}\right]$, the total dielectric permittivity has been reported to be $\varepsilon=$ ca. 14.0 but those in polar and nonpolar domains have been estimated to be ca. 20 and 2.5, respectively. ${ }^{23}$ For $\operatorname{Pyr}_{4} \mathrm{FAP}$, it would also have domain structures, although the accurate ε values of polar and nonpolar domains have been unknown. Accordingly, the equilibrium reaction in nonpolar domain of IL
would be similar to that in nonpolar non-coordinating solvent, such as toluene. On the other hand, the equilibrium reaction in polar domain of IL would be affected by forming a complex with anion. Therefore, other reaction mechanism would exist in IL unlike in conventional organic solvents. In this study, we can propose that the equilibrium reaction in polar domain of IL has that between $\mathbf{3}$ and $\mathbf{4}$ in addition to those among 1, 2 and 3. As a result, the N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ would be observed in non-coordinating IL by frozen solution EPR spectroscopy. ${ }^{9}$

Scheme 3.2. Schematic drawing of (A) the estimated equilibrium reactions among 1, 2 and $\mathbf{3}$ in nonpolar domain of in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and (B) that between $\mathbf{3}$ and $\mathbf{4}$ in polar domain of $\mathrm{Pyr}_{4} \mathrm{FAP}$
(A) Nonpolar domain

(B) Polar domain

3.2.8 TD-DFT calculations for $\left[\mathrm{Cp}_{2} \mathbf{T i C l}\right]$ and $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right]$ in ionic liquid

UV-vis/NIR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (Figure 3-4) gave the absorption bands at 449, 697, 817 , and 1167 nm , respectively. To characterize the absorption bands, TD-DFT calculations for $\mathbf{1 , 2}, \mathbf{3}$, and $\mathbf{4}$ in IL were carried out. The calculated TD-DFT
absorption bands are shown in Figure 3-12 and Table B6-B9 in Appendix B. In the range of 900 to 1100 nm , the absorption band for $\mathbf{2}$ in the excited state 2 are in good agreement with the absorption band at 1167 nm as shown in Figure 3-12 (see Figure B7, B8, B9, B10 and Table B7). The excited state 2 consists of the transition from molecular orbital 109α (HOMO-1) to 111α (LUMO). Accordingly, the absorption bands at 1167 nm is characterized to MMCT. In the range of 500 to 900 nm , the absorption bands of $\mathbf{2}$ in the excited states 3 and 5 (see Figure B7, B8, B9, B10 and Table B7), $\mathbf{3}$ in the excited states 2 and 3 (see Figures B11, B12, B13 and Table B8), and $\mathbf{4}$ in the excited states 1 and 4 (see Figures B14, B15, B16 and Table B10) were observed. These absorption bands are characterized to the d-d transitions on Ti atom except for the absorption band of 4 in the excited state 4 .

Figure 3-12 Absorption spectra of complex 2 (red), $\mathbf{3}$ (blue), and $\mathbf{4}$ (grey) in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (ε = 14.7) calculated by TD-DFT

The absorption band of $\mathbf{4}$ in the excited state 4 is characterized to the charge transfer from d-orbital on Ti atom to π^{*} orbital on N atom of the coordinating N_{2} (MLCT). Therefore, absorption bands at 697 and 817 nm shown in Figure 3-4 are characterized to
the d-d transitions for $\mathbf{2}$ and $\mathbf{3}$. The absorption bands for $\mathbf{2}$ and $\mathbf{3}$ have strong absorption bands at around 300 nm derived from the charge transfer from the π orbitals on Cp ring to the d orbital on Ti atom (LMCT). Therefore, the absorption band at 449 nm shown in Figure 3-4 is characterized to the LMCT. The absorption band of $\mathbf{4}$ in the excited state 6 is observed the transition at 418 nm , which is closer to the absorption band at 449 nm shown in Figure 3-4 than LMCT of $\mathbf{2}$ and $\mathbf{3}$ at ca. 300 nm . The N_{2} coordination to [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ would be occurred at lower temperature than r.t. or the amounts of $\mathbf{4}$ in IL at r.t. might be not so much to detect it.

3.3 Conclusion

To understand the electrochemical synthesis of ammonia by using $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquids described in Chapter 2, the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in both of conventional organic solvents and the ionic liquids were investigated by using UV-vis/NIR spectroscopy during electrochemical reduction. Even in non-coordinating Pyr_{4} FAP, the absorption band at 1194 nm was observed by electrochemical reduction from $\mathrm{Ti}(\mathrm{IV})$ to (III) in [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$]. The observed absorption band at ca. 1200 nm is also observed in the UV-vis/NIR spectrum of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, which is in good agreement with the absorption bands calculated with TDDFT method, which was assigned to MMCT. The characteristic absorption band at ca. 1200 nm was also observed in THF and $\mathrm{Pyr}_{4} \mathrm{OTf}$, which can be coordinated with [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ via Ti-O bond. Accordingly, the UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ (1) in $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{Pyr}_{4} \mathrm{OTf}$ and 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during the electrochemical reduction of $\mathrm{Ti}(\mathrm{IV})$ to $\mathrm{Ti}(\mathrm{III})$ demonstrate $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ (2) was generated from $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$in these three solvents.

To understand the equilibrium reaction between dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ and
monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, frozen solution EPR spectroscopy for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ was studied in non-coordinating ionic liquid, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ($\mathrm{Pyr}_{4} \mathrm{FAP}$), and organic solvents of 0.2 M $\operatorname{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ and toluene under N_{2}. Interestingly, the spectrum measured in non-coordinating ionic liquid under ${ }^{14} \mathrm{~N}_{2}$ gave a triplet hyperfine splitting of the g_{z} signal, which was changed to a doublet pattern in the isotopic labeling experiment using ${ }^{15} \mathrm{~N}_{2}$. However, the EPR spectra in organic solvents did not have such a hyperfine splitting at the g_{z} signal.

These observations demonstrate that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ is in the equilibrium between monomeric and dimeric species in both ionic liquid and organic solvents, and furthermore that the monomeric species is coordinated to dinitrogen in the non-coordinating ionic liquid, Pyr_{4} FAP. These findings may also indicate that Pr_{4} FAP has special properties capable of stabilizing the N_{2} coordinated-[$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ species.

With a view to understanding the effect of ILs toward the N_{2} coordination to monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, DFT calculations were carried out for dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet (1) and triplet states (2), monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ (3), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]$ (4), and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]^{\ddagger}$ in the transition state (4-TS) in toluene and IL, in which the effects of solvents were examined with applying their dielectric permittivities. The DFT studies revealed that $\Delta \mathrm{H}$ values for $\mathbf{1}(-6.99 \mathrm{kcal} / \mathrm{mol})$ and $2(-6.92 \mathrm{kcal} / \mathrm{mol})$ in toluene were lower than those in IL ($-3.85 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{1}$ and $-3.75 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{2}$, respectively). These results are well consistent with the experimental findings that the model complexes with a small dipole moment have been stabilized by the solvents with a small dielectric permittivity. Moreover, to consider the effect of FAP anion toward N_{2}
coordination to titanocenes, we further calculated 3, 4 and 4-TS with FAP anion (3'-FAP, 4'-FAP and 4'-FAP-TS) with empirical corrections (GD3BJ). Though the structures of titanocene in $\mathbf{3}^{\mathbf{\prime}} \mathbf{- F A P}$ and $\mathbf{4}^{\mathbf{\prime}} \mathbf{-} \mathbf{F A P}$ are similar to those of $\mathbf{3}^{\prime}$ ' and $\mathbf{4}^{\mathbf{\prime}}$ without FAP anion, respectively, F atoms in FAP anion had weak interactions toward H atoms on Cp ring. It suggests that the interactions have contributed to stabilize $\mathbf{3}$ '-FAP and 4'-FAP and lowered the activation energy of the N_{2} coordination reaction in 4'-FAP-TS. The N_{2} coordination to [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ was occurred in polar domain of $\mathrm{Pyr}_{4} \mathrm{FAP}$ due to formation of a complex with anion of IL, and therefore, it would have been observed by frozen solution EPR spectroscopy. ${ }^{9}$

In general, the IL is known to have polar and nonpolar domain structures, which are composed of ionic parts and alkyl chain parts, respectively. In nonpolar domain, $\mathbf{3}$ is in equilibriums with $\mathbf{1}$ and $\mathbf{2}$ that have only a small dipole moment. Although most of polar conventional solvents act as coordinating solvent against unsaturated transition metal complexes, the polar domain in $\mathrm{Pyr}_{4} \mathrm{FAP}$ acts as non-coordinating polar solvent toward transition metal center. However, $\mathrm{Pyr}_{4} \mathrm{FAP}$ weakly interacts with titanocene to form a complex with anion of IL. Such weak interactions with anion parts of IL would be observed in the case of using conventional anion, such as triflate and so on. Therefore, it is one of the key factors and reason why the reactivity in IL is different from those in conventional organic solvents.

3.4 Experimental

All manipulations were performed using standard Schlenk-line techniques or in an MBraun dry box under Ar or N_{2} atmosphere ($<1 \mathrm{ppm} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$).

3.4.1 Chemicals

$\mathrm{Bis}\left(\right.$ cyclopentadienyl)titanium(IV) dichloride, $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, was purchased from Tokyo Chemical Industry Co., Ltd. Bis(pentamethylcyclopentadienyl)titanium(IV) dichloride, $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}_{2}\right]$, was purchased from Wako Pure Chemical Industries Ltd. Bis(cyclopentadienyl)vanadium(IV) dichloride, $\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$, was purchased from Sigma-Aldrich. These reagents were used after recrystallization from hexane. 1-Butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, $\mathrm{Pyr}_{4} \mathrm{FAP},{ }^{29}$ was purchased from Merck Ltd. and purified referring to previous literature (see Section 3.4.2 purification of ionic liquid). ${ }^{30} \mathrm{KC}_{8}$ was prepared according to the literature. ${ }^{31}$ Solvents were purified by the method of Grubbs, ${ }^{32}$ where the solvents were passed over columns of activated alumina and supported copper catalyst supplied by ultimate purification system (Glass Contour System, NIKKO HANSEN \& CO., LTD), transferred to the glovebox without exposure to air, and stored over molecular sieves $4 \AA$. Bis[(dicyclopentadienyl)titanium(III) chloride], $\quad\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right)_{2}\right]$ and bis[(dipentamethylcyclopentadienyl)titanium(III) chloride], $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ were synthesized according to the literature. ${ }^{33,34}$

3.4.2 Purification of ionic liquid

Pyr_{4} FAP $(50 \mathrm{~g})$ was dissolved in distilled EtOH (100 mL), and to the solution was added an activated charcoal (5 g , Sigma-Aldrich). And then, the activated charcoal was remove by filtrate and the solvent was removed by evaporator. If the color was not colorless, the purification was repeated using the activated charcoal. After the purification was finished, $\mathrm{Pyr}_{4} \mathrm{FAP}$ was vacuumed at $80^{\circ} \mathrm{C}$ for 3 days and dried over molecular sieves ($4 \AA$) for 1 week.

3.4.3 Instrumentation

Electrochemistry was studied using a potentiostat (BAS, ALS/600). UV-vis/NIR absorption spectra were measured with a Jasco V-770 spectrophotometer using a 1 mm light-pass-length quartz cell. X-band EPR spectra of frozen solution were recorded at 77 K using JEOL RE-1X ESR spectrometer.

3.4.4 Measurement of EPR spectra under ${ }^{14} \mathbf{N}_{2}$ atmosphere

The sample preparation was carried out in the glove box under ${ }^{14} \mathrm{~N}_{2}$ atmosphere. $\operatorname{Pyr}_{4} \mathrm{FAP}$, which was stirred for 1 week under ${ }^{14} \mathrm{~N}_{2}$, was used for EPR measurement. The concentration of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was adjusted to 1 mM for each solvent. EPR tube ($\phi 4 \mathrm{~mm}$) with a ground glass joint (15/25) was employed as the glass stopper (15/25) for measurement under ${ }^{14} \mathrm{~N}_{2}$.

3.4.5 Measurement of EPR spectra under ${ }^{15} \mathbf{N}_{2}$ atmosphere

The sample preparation was carried out in the glove box under Ar atmosphere. Pyr_{4} FAP used was vacuumed overnight, and then, stirred for 1 week under ${ }^{15} \mathrm{~N}_{2}$ before use. The ${ }^{15} \mathrm{~N}_{2}$ gas (99.9 Atom \%), which was purchased from SI Science Co., Ltd., was purified by passing the column containing KC_{8} (see Figure C 1 in Appendix C), and used after replacement of the gas from Ar to ${ }^{15} \mathrm{~N}_{2}$ by using vacuum line equipped in the glovebox. The replacement is carried out by connecting the gas outlet with vacuum line and the gas inlet with ${ }^{15} \mathrm{~N}_{2}$ gas cylinder. The concentration of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was adjusted to 1 mM for each solvent. EPR tube ($\phi 4 \mathrm{~mm}$) with a ground glass joint (15/25) was used with a three-way glass stopcock (15/25) for measurement under ${ }^{15} \mathrm{~N}_{2}$ atmosphere. After adding the sample in EPR tube, the atmosphere in EPR tube was
replaced from Ar to ${ }^{15} \mathrm{~N}_{2}$.

3.4.6 UV-vis/NIR spectra during controlled potential electrolysis (CPE)

UV-vis/NIR spectra during electrochemical reduction were measured by using 1 mm length quartz cell welded with the Pyrex glass tube with an interchangeable ground joint (15/25), a Teflon adapter and electrodes (Figure A1 in Appendix A). Pt mesh and Pt wire were purchased from Nilaco Co., Ltd. Pt mesh (diameter: $\varphi 0.08 \mathrm{~mm}, 80$ mesh, 0.8 $\mathrm{cm} \times 3 \mathrm{~cm}$) connected with Pt wire (diameter: $\varphi 0.25 \mathrm{~mm}$, length: 6 cm) was used as working electrode (WE). Pt mesh, whose reaction area is three times larger than WE, connected with Pt wire was used as the counter electrode (CE). Pt wire (diameter: $\varphi 0.25$ mm , length: 3 cm) was used as quasi-reference electrode (QRE). The Cu wires as lead line for connection between electrodes and potentiostat were fixed to PTFE tube (outside diameter: 6.0 mm , inside diameter: 5.0 mm , FLON INDUSTRY CO., LTD.) by using one-component RTV rubber (KE45, Shin-Etsu Silicon). PTFE tube containing three Cu wire was kept overnight for fixing the RTV rubber. The PTFE tube with Cu wires was jointed to the quartz cell by using a Teflon tube adapter (F-5005-004, outside diameter: $\varphi 6 \mathrm{~mm}$, inside diameter: 5.0 mm , interchangeable ground joint: 15/25, FLON INDUSTRY CO., LTD.). For increasing the airtightness of the connecter with PTFE tube containing Cu wires, a silicon grease was coated. For preventing a contact of electrodes and lead lines each other, the Pt wire of the electrodes were covered by PTFE tube (outside diameter: 1.0 mm , inside diameter: 0.5 mm , FLON INDUSTRY CO., LTD.), and Cu wires bared partly in UV-vis/NIR cell side were wrapped with parafilm. The setting was performed in the globe box. Therefore, the measurements were carried out under Ar atmosphere. The blank solution without $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$, which is containing
only solution in the quartz cell with electrodes as shown in Figure A1, was measured as base line. To decide the potential of CPE, a linear sweep voltammogram (LSV) was measured. The initial UV-vis/NIR spectra, which are described as 0 s in Figures 3-1, 3-2 and 3-3, were recorded after the LSV measurement. The subsequent UV-vis/NIR spectra were measured during the controlled potential electrolysis.

3.4.7 DFT and TDDFT calculations

All electronic structure calculations were performed with the Gaussian 09 package ${ }^{35}$ on the Fujitsu HX600 system at the Nagoya University Information Technology Center. Geometry optimizations of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in the singlet (1) and triplet states (2), monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right](3),\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right](4)$, and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]$ in the transition state (4-TS) as model complexes were performed using BP86 functional ${ }^{19}$ in combination with a polarized valence triple- ζ basis set (TZVP) for all atoms. ${ }^{20}$ Contribution of solvents of toluene and THF were applied using the polarized continuum model (PCM). ${ }^{36}$ In the DFT calculation with solvation effect of IL, the dielectric permittivity of $\mathrm{Pyr}_{4} \mathrm{FAP}$ was applied with $\varepsilon=14.7$ at $25{ }^{\circ} \mathrm{C}$ for 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide $\left(\mathrm{Pyr}_{4} \mathrm{NTf}_{2}\right.$), which is similar structure to $\mathrm{Pyr}_{4} \mathrm{FAP}$. ${ }^{37}$ DFT calculations of 3, 4 and 4-TS added with FAP anion, 3-FAP, 4-FAP, and 4-FAP-TS, were further carried out. In the DFT calculations for 3-FAP, 4-FAP, and 4-FAP-TS, BP86/TZVP as functional and basis sets treated with the D3 version of Grimme's dispersion with Becke - Johnson damping (GD3BJ) ${ }^{27}$ with dielectric permittivity of IL ($\varepsilon=14.7$) was applied to consider the interaction between titanocene and FAP anion. To assign the absorption bands of electronic transitions, time-dependent density functional theory (TD-DFT) calculations ${ }^{38}$ were performed, and the results are
described in Supporting Information. For simulation of UV-vis spectra, the absorption profiles were calculated as a sum of Gaussian functions, where the heights and centers of the peaks were oscillator strengths and excitation energies, respectively, and the standard deviations were 0.1 eV . The isosurfaces of the molecular orbitals were drawn using the MOPLOT and MOVIEW programs. ${ }^{39}$

3.5 References

1. J. Y. Becker, S. Avraham (Tsarfaty) and B. Posin, J. Electroanal. Chem., 1987, 230, 143.
2. S. Stevanoic, and M. F. Costa Gomes, J. Chem. Thermodynamics 2013, 5965.
3. M. Okuniewski, K. Paduszyński, and U. Domańska, J. Chem. Eng. Data, 2016, 61, 1296.
4. A. Katayama, T. Inomata, T. Ozawa and H. Masuda, Dalton Trans., 2017, 46, 7668-7671.
5. Metal to metal charge transfer (MMCT) transition: An electronic transition of a bior poly-nuclear metal complex that corresponds to excitation populating an electronic state in which considerable electron transfer between two metal centres has occurred. PAC, 1996, 68, 2223 (Glossary of terms used in photochemistry (IUPAC Recommendations 1996)) on page 2254.
6. (a) R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, J. Am. Chem. Soc., 2004, 126, 7853. (b) R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, Organometallics, 2004, 23, 1866.
7. A. Katayama, T. Inomata, T. Ozawa and H. Masuda, Electrochem. Commun. 2016, 67, 6.
8. A. Rosales, I. Rodríguez-García, J. Muñoz-Bascón, E. Roldan-Molina, N. M. Padial, L. P. Morales, M. García-Ocaña, and J. E. Oltra, Eur. J. Org. Chem., 2015, 4567.
9. R. S. P. Coutts, P. C. Wailes and R. L. Martin, J. Organomet. Chem., 1973, 47, 375.
10. F. J. Liotta, G. V. Duyne, and B. K. Carpenter., Organometallics, 1987, 6, 1010.
11. R. S. P. Coutts, R. L. Martin, and P. C. Wailes, Aust. J. Chem., 1973, 26, 2101.
12. $\chi_{\mathrm{m}}=\left(\mathrm{g}^{2} \mathrm{~N} \beta^{2} / 3 k_{\mathrm{B}} \mathrm{T}\right)\left\{1+1 / 3 \exp \left(-J / k_{\mathrm{B}} \mathrm{T}\right)\right\}^{-1}$ in B. N. Figgis and R. L. Martin, J. Chem. Soc. 1956, 3837.
13. R. Jungst, D. Sekutowski, J. Davis, M. Luly and G. Stucky, Inorg. Chem., 1977, 16, 1645.
14. (a) R. L. DeKock, M. A. Peterson, L. E. L. Reynolds, L. H. Chen, E. J. Baerends and P. Vernooijs, Organometallics, 1993, 12, 2794. (b) M. Benard and M. M. Rohmer, J. Am. Chem. Soc., 1992, 114, 4785. (c) C. Wolff, A. Gottschlich, J. England, K. Wieghardt, W. Saak, D. Haase and R. Beckhaus, Inorg. Chem., 2015, 54, 4811.
15. A. Gunn, E. R. Derbyshire, M. A. Marletta and R. D. Britt, Biochemistry, 2012, 51, 8384. (b) J. Hüttermann, C. Burgard, and R. Kappl, J. Chem. Soc. Faraday Trans, 1994, 90, 3077.
16. (a) N. Beydoun, R. Duchateau, and S. Gambarotta, J. Chem. Soc., Chem. Commun., 1992, 244. (b) J. R. Hagadorn and J. Arnold, J. Am. Chem. Soc., 1996, 118, 893. (c) L. Morello, P. Yu, C. D. Carmichael, B. O. Patrick, and M. D. Fryzuk, J. Am. Chem. Soc., 2005, 127, 12796. (d) T. Kurogi, Y. Ishida and H. Kawaguchi, Chem. Commun., 2013, 49, 11755.
17. E. Samuel and J. Vedel, Organometallics, 1989, 8, 237.
18. (a) M. Schmeisser and R. van Eldik, Inorg. Chem., 2009, 48, 7466. (b) S. Kern and R. van Eldik, Inorg. Chem., 2012, 51, 7340. (c) M. Schmeisser, F. W. Heinemann, P. Illner, R. Puchta, A. Zahl, and R. van Eldik, Inorg. Chem., 2011, 50, 6685. (d) S. Begel, F. W. Heinemann, G. Stopa, G. Stocheland and R. van Eldik, Inorg. Chem., 2011, 50, 3946. (e) S. Begel, P. Illner, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2008, 47, 7121. (f) P. Illner, S. Begel, S. Kern, R. Puchta, and R. van Eldik, Inorg. Chem., 2009, 48, 588. (g) K. Pokornv, M. Schmeisser, F. Hampel, A. Zahl, R. Puchta, and R. van Eldik, Inorg. Chem., 2013, 52, 13167. (h) S. Begel, R. Puchta, J. Sutter, F. W. Heinemann, L. Dahlenburgand, and R. van Eldik, Inorg. Chem., 2015, 54, 6763. (i) C. Sievers, O. Jimenez, T. E. Müller, S. Steuernagel, and J. A. Lercher, J. Am. Chem. Soc., 2006, 128, 13990.
19. (a)A. D. Becke, Phys. Rev. B, 1988, 38, 3098. (b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.
20. A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem.Phys., 1994,100, 5829.
21. A. Gansäuer, A. Barchuk, F. Keller, M. Schmitt, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, K. Daasbjerg and H. Svith, J. Am. Chem. Soc., 2007, 129, 1359.
22. J. Larsen, R. J. Enemærke, T. Skrydstrup and K. Daasbjerg, Organometallics, 2006, 25, 2031.
23. M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494.
24. J. W. Pattiasina, H. J. Heeres, F. Van Bolhuis, A. Meetsma, J. H. Teuben and A. L. Spek, Organometallics, 1987, 6, 1004.
25. L. Watson and O. Eisenstein, J. Chem. Educ. 2002, 79, 1269.
26. (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132,

154104-1-154104-19. (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
27. O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi and M. Nagao, J. Chem. Phys., 2011, 135, 054508.
28. M. Mizoshiri, T. Nagao, Y. Mizoguchi and M. Yao, J. Chem. Phys., 2010, 132, 164510.
29. N.V. Ignat'ev, U. Welz-Biermann, A. Kucheryna, G. Bissky and H. Willner, J. Fluorine Chem., 2005, 126, 1150.
30. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskeya and G. A. Baker, Green Chem., 2007, 9, 449.
31. D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc., 1978, 100, 2126-2134.
32. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
33. R. P. Spencer, C. L. Cavallaro, and J. Schwartz, J. Org. Chem., 1999, 64, 3987.
34. J. W. Pattiasina, H. J. Heeres, F. V. Bolhuis, A. Meetsma, J. H. Teuben and A. L. Spek, Organometallics, 1987, 6, 1004.
35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision E.01;; Gaussian, Inc.: Wallingford, CT, 2013.
36. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 2005, 105, 2999.
37. M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494.
38. A. Dreuw and M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
39. (a) H. Wasada, Y. Tsutsui, Bull. Coll. Gen. Educ. 1996, 33, 145. (b) I. Takahashi, H. Wasada and Y. Tsutsui, MOVIEW: Program of Nagoya University Information Technology Center Representing Molecular Orbitals and Electron Density Maps by Isosurfaces.

Chapter 4: Electrochemical oxidation of molybdenum(0)- \mathbf{N}_{2} complex in THF solution and ionic liquid

4.1 Introduction

The effect of ionic liquids toward N_{2} coordination of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ is discussed in Chapters 2 and 3. In Chapter 4, the effect of ionic liquids for that of other transition metal- N_{2} complex during electrochemical reaction is described.

As described in Chapter 1, Nishibayashi and co-worker reported the turnover numbers for the ammonia production is drastically improved up to 830 equiv based on a dinitrogen-bridged dimolybdenum complex (415 equiv / Mo ion) in the Mo- N_{2} complex with PNP pincer ligand and iodide by addition of proton source and reductant in a stepwise fashion. ${ }^{1}$ The catalytic cycle, where a protonation for terminal N_{2} ligand of dinitrogen complex $\left(\mathrm{M}-\mathrm{N}_{2}\right)$, formations of diazenide $(\mathrm{M}-\mathrm{NNH})$, hydrazide $\left(\mathrm{M} \equiv \mathrm{NNH}_{2}\right)$, and hydrazium $\left(\mathrm{M}-\mathrm{NNH}_{3}{ }^{+}\right)$, nitride $(\mathrm{M} \equiv \mathrm{N})$ and ammonia $\left(\mathrm{M}-\mathrm{NH}_{3}\right)$ complexes by protonation and reduction, and regeneration for $\mathrm{M}-\mathrm{N}_{2}$ complex, is proposed. Another novel reaction pathway, where generation of nitride $(M \equiv N)$ complex via dinitrogen cleavage of the bridging N_{2} ligand and formation of ammonia by protonation for five coordinate nitride $(\mathrm{M} \equiv \mathrm{N})$ complex, is proposed as a key point for high catalytic activity. The precursor that is molybdenum (I) bearing tridentate ligands with halogen were able to cleavage the bridging N_{2} ligand under N_{2}. ${ }^{1}$

Inspired by these findings, we considered that five coordinate dimeric molybdenum(I) complex bridging N_{2} ligand supporting with only neutral phosphine ligand will cleavage the N_{2} ligand and generate molybdenum (IV) nitride complex. Hence, we decided to investigate the electrochemical one electron oxidation reaction for
trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right](\mathbf{1})($ depe $=1,2-$ bis(diethyl)phosphinoethane) to understand reactivity of di-molybdenum(I) bridging N_{2} ligand supporting neutral phosphine ligand. Herein, we report the UV-vis, FT-IR and resonance Raman spectra during the electrochemical oxidation reaction for $\mathbf{1}$ in THF solution and DFT calculations for Mo- N_{2} complexes and discuss the generation of dimeric $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$.

From the obtained findings in Chapter 3, the reactivity of $\mathbf{1}$ with N_{2} in $\mathrm{Pyr}_{4} \mathrm{FAP}$ was described to be different from that in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. In this Chapter, besides the electrochemical oxidation reaction of $\mathbf{1}$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$, the UV-vis, FT-IR and resonance Raman spectra during the electrochemical oxidation of the $\mathrm{Mo}-\mathrm{N}_{2}$ complex, 1, in $\mathrm{Pyr}_{4} \mathrm{FAP}$ were discussed on the influence of ionic liquids toward structure and reactivity of $\mathrm{Mo}-\mathrm{N}_{2}$ complex by using DFT calculations.

4.2 Results and Discussion

4.2.1 Electrochemical oxidation of $\mathrm{Mo}^{-\mathrm{N}_{2}}$ complex in THF solution

4.2.1.1 FT-IR spectra during electrochemical oxidation

To understand the redox behaviors of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ (1), cyclic voltammogram (CV) of $\mathbf{1}$ in THF containing $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP}\left(0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}\right.$) was measured, which is shown in Figure $4-1$. The redox potential, $E_{1 / 2}$, assignable to $\mathrm{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ is observed at $-1.01 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, and the oxidation wave assignable to $\mathrm{Mo}(\mathrm{I}) / \mathrm{Mo}(\mathrm{II})$ is observed at $-0.02 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, which is in good agreement with the $E_{1 / 2}$ for $\operatorname{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ of trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ measured using Pt electrode in THF containing $0.2 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{BF}_{4}\right]$ (-0.43 V vs. SCE)..2,3

Figure 4-1. Cyclic voltammogram of 1 mM trans $-\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} /$ THF. (WE: GCE $\left(\phi 1 \mathrm{~mm}\right.$, CE: Pt coil, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}(10 \mathrm{mM} \mathrm{AgClO} 4$ in 0.2 M $\left.\operatorname{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}\right)$ and scan rate: $\left.100 \mathrm{mV} / \mathrm{s}\right)$.

In order to understand the structure change of $\mathbf{1}$ during the electrochemical oxidation, the FT-IR spectral changes during the same oxidation reaction were also measured. The FT-IR spectra for $\mathbf{1}$ during electrochemical oxidation was carried out by using Pt mesh (WE and CE) and Pt wire (quasi-RE) in a hand-made Nylon film cell (see Figure C 2 in Appendix C). To determine the oxidation potential from $\operatorname{Mo}(0)$ to $\mathrm{Mo}(\mathrm{I})$, CV for 1 was measured before the controlled-potential electrolysis (CPE). The CV before CPE and plots of electric charge consumed with time during CPE are shown in Figures 4-2 (A) and 4.2(B). In Figure 4-2(A), the two oxidation waves are observed at +0.355 and +1.48 V (vs. Pt wire), and one reduction wave is observed at +0.125 V (vs. Pt wire). The rest potential was observed at ca. 0 V (vs. Pt wire), because the three electrodes used are Pt electrodes. Accordingly, the $E_{1 / 2}$ in the redox for $\operatorname{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ of
$\mathbf{1}$ is observed at +0.24 V (vs. Pt wire). The difference in the two oxidation waves is +1.125 V . Thus, the observed redox waves are assigned to the redox waves for $\operatorname{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ and $\mathrm{Mo}(\mathrm{I}) / \mathrm{Mo}(\mathrm{II})$. On the basis of the observed results, the oxidation potential was decided to be +0.5 V (vs. Pt wire). The consumed electric charge is 90 mC ($0.93 \mu \mathrm{~mol})$, which is less than the total amount of trans $-\mathrm{Mo}\left[(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right](1.0 \mu \mathrm{~mol})$ used, meaning that one electron oxidation reaction proceeds.

The time-dependent difference IR spectra for $\mathbf{1}$ in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at +0.5 V are shown in Figure 4-2(C). The base line was measured after measuring CV described above. The difference FT-IR spectra are measured in the range of 1700 to $2200 \mathrm{~cm}^{-1}$, because a nylon does not have any vibration in the region. The intensities of peaks at 2008 and $1938 \mathrm{~cm}^{-1}$ were changed with time during CPE at +0.5 V (vs. Pt wire). The decrease in the peak intensity at $1938 \mathrm{~cm}^{-1}$ is assigned to the stretching frequency of N_{2} coordinated to $\mathbf{1}$, which is consistent with the wavenumber $\left(1938 \mathrm{~cm}^{-1}\right)$ reported in the previous literature. ${ }^{4}$ The peak at $2008 \mathrm{~cm}^{-1}$ is assigned to $v\left(\mathrm{~N}_{2}\right)$ in the oxidized 1. In the case of trans- $\left[\operatorname{Mo}(\mathrm{dppe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ that keeps the six-coordinate octahedral structure before and after the oxidation, ${ }^{34}$ the difference in the $v\left(\mathrm{~N}_{2}\right)$ between trans- $\left[\operatorname{Mo}(\mathrm{dppe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]\left(1975 \mathrm{~cm}^{-1}\right)$ and trans- $\left[\operatorname{Mo}(\mathrm{dppe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right] \mathrm{I}_{3}\left(2047 \mathrm{~cm}^{-1}\right)$ was 72 cm^{-1}. In our case, the change in wavenumbers during CPE at +0.5 V (Pt wire) is 70 cm^{-1}, suggesting that the oxidized $\mathbf{1}$ is six-coordinate octahedral structure.

The plots of the intensities of IR peaks at 2008 and $1938 \mathrm{~cm}^{-1}$ for times are shown in Figure 4-2(D). The peak at $1938 \mathrm{~cm}^{-1}$ is decreased during CPE at +0.5 V . On the other hand, although the peak at $2008 \mathrm{~cm}^{-1}$ increased at early stage, the peak is gradually reduced and disappears, suggesting that the structure of the oxidized $\mathbf{1}$ is changed during CPE at +0.5 V (Pt wire). Thus, the electrochemical oxidation reaction
for $\mathbf{1}$ has a subsequent reaction after electrochemical oxidation (EC reaction). Moreover, some air bubbles from working electrode were observed during CPE, therefore, the subsequent reaction would be involved dissociation of N_{2} from the oxidized species.

> (A)

(C)

(B)

(D)

Figure 4-2. (A) Cyclic voltammogram of 10 mM trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ (WE and CE: Pt mesh, RE: Pt wire, cell: Nylon film and scan rate: 10 mV / s), (B) the plots of consumed electric charge (mC) against time (s) by CPE at +0.5 V (vs. Pt wire), (C) The difference FT-IR spectra during CPE at +0.5 V (vs.Pt wire) (WE and CE: Pt mesh, RE: Pt wire, FT-IR cell: Nylon film) based on the spectrum at 0 s and (D) the plots of $\Delta \mathrm{Abs}$. in peak area at 1938 (red) and $2008 \mathrm{~cm}^{-1}$ (blue) against time during CPE. Amount of solution 0.1 mL

Scheme 4-1. Equilibrium reaction mechanism of trans- $\left[\mathrm{Mo}(\mathrm{depe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$

4.2.1.2 Resonance Raman spectra during electrochemical oxidation

To clarify whether a dimeric species is formed in $0.2 \mathrm{M} \mathrm{Pyr}{ }_{4} \mathrm{FAP} / \mathrm{THF}$ or not, the resonance Raman spectroscopy are measured. Those of $\mathbf{1}$ and trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ $\left({ }^{15} \mathbf{N}_{2}-\mathbf{1}\right)$ in 0.2 M Pyr $_{4} \mathrm{FAP} / \mathrm{THF}$ are displayed in Figure 4-3(A). The Raman bands of $\mathbf{1}$ attributed to $v\left(\mathrm{~N}_{2}\right)$ are observed at 1816 and $2006 \mathrm{~cm}^{-1}$ and those for ${ }^{\mathbf{1 5}} \mathbf{N}_{\mathbf{2}} \mathbf{- 1}$ are observed at 1754 and $1942 \mathrm{~cm}^{-1}$ (calcd 1754 and $1938 \mathrm{~cm}^{-1}$), respectively. In Raman spectrum for ${ }^{15} \mathbf{N}_{2}-1$, the weak Raman band attributed from $\mathbf{1}$ is also observed, because substitution reaction between coordinating ${ }^{15} \mathrm{~N}_{2}$ and atmospheric ${ }^{14} \mathrm{~N}_{2}$ is occurred while the measurement is carried out under ${ }^{14} \mathrm{~N}_{2}$ atmosphere. The Raman bands at $1816 \mathrm{~cm}^{-1}$ suggest that two N_{2} bridged dimeric Mo complexes, $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]_{2}(\mathbf{2})$ and/or $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]_{2}$ (3), are generated in THF solution, and $\mathbf{1}$ is not stable in THF solution and has an equilibrium reaction for releasing N_{2} from 1 as shown in Scheme 4-1. Fryzuk, Loehr and co-workers reported correlation between N_{2} bond distance, $d\left(\mathrm{~N}_{2}\right)$, and Raman shift, $v\left(\mathrm{~N}_{2}\right)^{6}$ and proposed the following equation; $v\left(\mathrm{~N}_{2}\right)=$ $-1840\left[d\left(\mathrm{~N}_{2}\right)\right]^{3 / 2}+4130 .{ }^{7}$ It led to a prediction of N-N bond from Raman band at 1816
cm^{-1} to be ca. $1.165 \AA$. Judging from the N_{2} bond distance ($1.0977 \AA$), the bond order for N_{2} in these species is estimated to be triple bond. The Raman band at $2006 \mathrm{~cm}^{-1}$ is assignable to the symmetric vibration of N_{2} in $\mathbf{1}$, which is good agreement in DFT calculation as shown in Table 4-1 (see Section 4.2.1.4. Computational Studies).

To evaluate the electrochemical oxidation reaction for $\mathbf{1}$, the resonance Raman spectroscopy was also carried out. The CV for $\mathbf{1}$ before CPE and plots of electric charge consumed with time during CPE are shown in Figures 4-3 (B) and 4.3(C). The $E_{1 / 2}$ value assigned to the redox couple for $\mathrm{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ is observed at +0.17 V (vs. Pt wire), which is negatively shifted compared to the $E_{1 / 2}=+0.24 \mathrm{~V}$ (vs. Pt wire), as shown in Figure 4-2(A), due to using quasi-reference electrode. From the obtained $E_{1 / 2}$ value, the oxidation potential in CPE was decided to be +0.5 V (vs. Pt wire). The consumed electric charge is $91 \mathrm{mC}(0.94 \mu \mathrm{~mol})$ at 7200 s , which is less than the total amount of $\mathbf{1}$ ($1.0 \mu \mathrm{~mol}$), suggesting that one electron oxidation reaction proceeded.

The time-dependent resonance Raman spectra for $\mathbf{1}$ during CPE at +0.5 V (vs. Pt wire) is shown in Figures 4-3(D). The Raman spectra are measured in the range of 1000 to $2200 \mathrm{~cm}^{-1}$ every 20 min during CPE. The Raman band at 1816 and $2006 \mathrm{~cm}^{-1}$ decreased during CPE along with the increase in those at 1292 and 1509 , and $1574 \mathrm{~cm}^{-1}$, suggesting that the N_{2} molecule bridged between Mo complexes was activated by electrochemical oxidation. To confirm these Raman bands attributed to that of N_{2} molecule coordinated with Mo complex, the isotopic labeling experiment was also performed. The Raman spectra for ${ }^{15} \mathbf{N}_{2}-\mathbf{1}$ are shown in Figure 4-3(E). Although the Raman bands derived from $\mathbf{1}$ are also observed, decrease in the Raman bands for ${ }^{15} \mathbf{N}_{2}-\mathbf{1}$ at 1752 and $1942 \mathrm{~cm}^{-1}$ (calcd 1756 and $1937 \mathrm{~cm}^{-1}$) and increase in those at 1245,1453 and $1530 \mathrm{~cm}^{-1}$ (calcd 1248,1457 and $1520 \mathrm{~cm}^{-1}$) are observed during CPE. The
difference spectrum between $\mathbf{1}$ and ${ }^{15} \mathbf{N}_{\mathbf{2}} \mathbf{- 1}$ is displayed in Figure 4-3(E). The intensity of Raman band for $\mathbf{1}$ at $1292 \mathrm{~cm}^{-1}$, which is between the value for free hydrazine (1076 cm^{-1}) and trans-diazene $\left(1529 \mathrm{~cm}^{-1}\right){ }^{8}$ is increased during CPE continuously, and it has the strongest intensity among the bands, indicating that it is attributed from the main species generated by electrochemical oxidation. Previously, Chirik and co-workers reported that the $v\left(\mathrm{~N}_{2}\right)$ value for $\left[\left\{\left({ }^{\mathrm{Ph}} \mathrm{Tpy}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2} \mathrm{Mo}\right\}_{2}\left(\mu_{2}-\mathrm{N}_{2}\right)\right]\left[\mathrm{BArF}{ }^{24}\right]\left[{ }^{\mathrm{Ph}} \mathrm{Tpy}\right.$ $=4^{\prime}-\mathrm{Ph}-2,2^{\prime}, 6^{\prime}, 2^{\prime \prime}$-terpyridine; $\left.\mathrm{ArF}^{24}=\left(\mathrm{C}_{6} \mathrm{H}_{3}-3,5-\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]$ is $1563 \mathrm{~cm}^{-1}$, which is described as $\mathrm{Mo}($ II $)$ complex bridged with a modestly activated $\left[\mathrm{N}_{2}\right]^{2-}$ ligand, and the $v\left(\mathrm{~N}_{2}\right)$ for the 2 electron oxidized species is $1477 \mathrm{~cm}^{-1.9}$ Therefore, the Raman band observed at $1577 \mathrm{~cm}^{-1}$ is assigned to the stretching vibration in a dimeric $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]^{2+}$. The Raman band observed at $1292 \mathrm{~cm}^{-1}$ is attributed to strongly activated N_{2} ligand in dimeric $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]^{2+}$ species, which is similar to that in $\left.\left[\{(\mathrm{PNP}) \mathrm{ClMo}\}\left(\mathrm{N}_{2}\right)\right]\left(\mathrm{PNP}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{t} \mathrm{Bu}_{2}\right)_{2}\right)\right)\left(1343 \mathrm{~cm}^{-1}\right)$ reported by Schneider and co-workers. ${ }^{10}$ Accordingly, N_{2} molecule bridged with the electrochemically oxidized $\mathbf{1}$ is estimated as $\left[\mathrm{N}_{2}\right]^{2-}$ ligand. Although the excitation laser at 355 nm was kept irradiating for 1 hour after the electrochemical oxidation reaction, the obtained spectra were not changed. Thus, the generated dimeric Mo species is supposed to be stable under irradiation of the laser at 355 nm . Moreover, the Raman spectrum of $\mathbf{1}$ irradiated for 1 hour did not change without the CPE, also suggesting that the species with a peak at $1292 \mathrm{~cm}^{-1}$ was generated by CPE.

The proposed subsequent reaction mechanism in the electrochemical oxidation reaction for 1 is shown in Scheme 4-2. $\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$(4) was generated in electrochemical oxidation of $\mathbf{1}$, and then, the intermolecular reaction of molybdenum complexes proceeded to generate $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]^{2+}(\mathbf{5}),\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\right]^{2+}$
(6) whose bridged N_{2} is triple bond, and $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]^{2+}$ (7) whose bridged N_{2} is double bond. Although the electrochemical oxidation products for $\mathbf{2}$ and $\mathbf{3}$ were not observed in FT-IR spectra, the dimeric species 2 and $\mathbf{3}$ would also be oxidized to generate 6 and 7, respectively.

Scheme 4-2. Proposed subsequent reaction mechanism of the oxidized trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \operatorname{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during the controlled-potential electrolysis at +0.5 V (vs. Pt wire)

Figure 4-3. (A) Resonance Raman spectra of 2 mM trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ (red) and trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ (blue) in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ and $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ (black), (B) cyclic voltammogram of 2 mM trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ (WE: Pt mesh, CE: Pt coil, quasi-RE: Pt wire, cell: handmade Raman cell (diameter: 4 mm) (see Supporting Information), scan rate: $10 \mathrm{mV} / \mathrm{s}$), (C) the plots of consumed electric charge (mC) against time (s) in CPE at +0.5 V (vs. Pt wire), (D) the resonance Raman spectra of 2 mM trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ during CPE at +0.5 V at $0,20,40,60$, and 120 min , (E) the resonance Raman spectra of 2 mM trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} /$ THF during CPE at +0.5 V at 0 , $20,40,60$ and 120 min , and (F) the Raman spectrum of trans-[Mo(depe) $\left.)_{2}\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ (red) and trans-[Mo(depe) $\left.)_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ (red) in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ in CPE at 120 min and those difference spectra (black). The resonance Raman spectroscopic measurements were performed under ${ }^{14} \mathrm{~N}_{2}$ by using an excitation wavelength at 355 nm . The excitation laser was irradiated at $0,20,40,60$, and 120 min after the CPE started (exposure times: 30 (s) and accumulation times: 10 (s). Amount of solution: 0.5 mL .

4.2.1.3 UV-vis spectra during electrochemical oxidation

To consider the EC reaction of $\mathbf{1}$ in detail, UV-vis spectroscopy for $\mathbf{1}$ during electrochemical oxidation was also measured. The UV-vis spectra for $\mathbf{1}$ during electrochemical oxidation was carried out by using Pt mesh (WE and CE) and Pt wire (quasi-RE) in UV-vis cell (see Figure A1 in Appendix A). To determine the oxidation potential from $\operatorname{Mo}(0)$ to $\operatorname{Mo}(\mathrm{I})$, the linear sweep voltammetry for $\mathbf{1}$ was performed before the CPE. The linear sweep voltammogram (LSV) at the scan rate of $100 \mathrm{mV} / \mathrm{s}$ before CPE and plots of electric charge consumed with time during CPE are shown in Figures 4-4 (A) and 4-4(B). The current in the LSV (Figure 4-4(A)) increased from 0.2 V (vs. Pt wire) and the oxidation wave was observed at +0.677 V (vs. Pt wire). The wave shape is different from that in Figure 4-3(A) due to IR drop because electrodes are not close each other in the UV-vis cell. The consumed electric charge is $100 \mathrm{mC}(1.0$ $\mu \mathrm{mol})$ at 3600 s , which is less than the total amount of $\mathbf{1}(3.0 \mu \mathrm{~mol})$, suggesting that one electron oxidation reaction was proceeded.

UV-vis spectral changes of $\mathbf{1}$ during CPE at +0.5 V (vs. Pt wire) for electrochemical oxidation are shown in Figures 4-4(C) and 4-4(D). In Figure 4-4(C), the absorption bands derived from 1 are observed at 323 and 417, 457 and 493 nm before CPE. The absorption band at 323 nm decreased during CPE, which was shifted to 300 nm and then decreased. Interestingly, absorption bands at 417 and 457 nm increased once, and then, these bands decreased from 1200 s . The absorption band at 493 nm also decreased during CPE. Plots of intensity changes for these bands with time are displayed in Figures 4-4(E) and 4-4(F). The plots at 323 and 493 nm decreased and those at 417 and 457 nm increased until 1200 s . In the range of 1200 to 3600 s , the changes for the intensities at 323 and 493 nm are not observed. On the other hands, the changes for the
intensities at 417 and 457 nm are switched from increase to decrease at 1200 s and they decreased until 3600 s. Therefore, we judged that the absorption bands at 300, 417 and 457 nm are derived from the oxidized 1. In addition, the absorbances at 417 and 458 nm are started to change at around 1200 s , suggesting that subsequent reactions for the oxidized $\mathbf{1}$ are occurred. Moreover, a new band at 353 nm appeared with decrease in the band of the oxidized $\mathbf{1}$, suggesting that the subsequent reactions proceed and some new species were generated after CPE. The assignments of these absorption bands in detail are described in Section 4.2.1.4.

Figure 4-4. (A) Cyclic voltammogram of 1 mM trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in Pyr_{4} FAP (WE: Pt mesh, CE: Pt coil, quasi-RE: Pt wire, cell: UV-vis cell (see Supporting Information), scan rate: $100 \mathrm{mV} / \mathrm{s}$), (B) the plots of consumed electric charge (mC) against time (s) by CPE at +0.5 V (vs. Pt wire), (C) Time-dependent UV-vis spectra of 1 mM trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{FAP}$ during CPE at +0.5 V ($v \mathrm{~s}$. Pt wire) (WE: Pt mesh, CE: Pt coil, quasi-RE: Pt wire, amount of solution : 3 mL) in the range of 250 to 850 nm and (D) that in the range of 350 to 600 nm , (E) the plots of abs. against time at 300 and 323, and (F) those at 417, 457 and 493 nm .

4.2.1.4 Assignment of FT-IR, resonance Raman and UV-vis spectra for electrochemical oxidation products of trans-[Mo(depe $\left.)_{2}\left(\mathbf{N}_{2}\right)_{2}\right]$ by DFT and TDDFT calculations

To understand the obtained time-dependent FT-IR, resonance Raman and UV-vis spectra for $\mathbf{1}$ and its oxidation reactions, DFT and TDDFT calculations were performed using the model complexes $\mathbf{1}$ (singlet state), $\mathbf{2}$ (singlet state), and $\mathbf{3}$ (singlet state) as $\operatorname{Mo}(0)-\mathrm{N}_{2}$ complexes and $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+} \quad$ (4) (doublet state), $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]^{2+}(5)$ (singlet and triplet states) and $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\right]^{2+}(6$ in the singlet and triplet states) and 7 in the singlet and triplet states) as the oxidized complexes, and $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}(\mathbf{8})$ as nitride complex. These calculations were adopted with B3LYP* as hybrid functional and Stuttgart/Dresden ECP (SDD) on the Mo atom, $6-311 \mathrm{G}(\mathrm{d})$ on N and P atoms, and $6-31 \mathrm{G}(\mathrm{d})$ on C and H atoms as the basis set (see Experimental Section). These model complexes coordinating with THF are not considered because the distance between O atom of THF and Mo ion are ca. $4 \AA$ after optimizing structure of the model complexes as six coordinate structure. The parameters estimated by the calculations are summarized in Table 4-1.

In FT-IR spectra during the electrochemical oxidation reaction, the intensity of peak at $2008 \mathrm{~cm}^{-1}$ was increased and that at $1938 \mathrm{~cm}^{-1}$ was decreased, respectively, as described above. The $v\left(\mathrm{~N}_{2}\right)$ for $\mathbf{1}$ was estimated to be $1940 \mathrm{~cm}^{-1}$, which is in good agreement with the experimental result $\left(1938 \mathrm{~cm}^{-1}\right)$. For electrochemical oxidation of $\mathbf{1}$, 4 would be generated and the $v\left(\mathrm{~N}_{2}\right)$ was estimated to be $2015 \mathrm{~cm}^{-1}$, which is also in good agreement with experimental one ($2008 \mathrm{~cm}^{-1}$).

In resonance Raman spectra shown in Figure 4-3(A), we estimated that $\mathbf{2}$ and/or $\mathbf{3}$ exist in THF solution in addition to $\mathbf{1}$. Although we expected that the Raman shift
assigned to stretching vibration of N_{2} ligand for $\mathbf{2}$ is different from that for $\mathbf{3}$, the calculated values are 1881 and $1880 \mathrm{~cm}^{-1}$, respectively. Thus, we cannot distinguish them. The Raman band at $1816 \mathrm{~cm}^{-1}$, as shown in Figure 4-3, is assigned to the bridging N_{2} ligand in 2 and/or 3, which are close to the estimated values (1881 and $1880 \mathrm{~cm}^{-1}$). However, we estimate that 2 did not almost exist in THF solution because the decreasing peak is observed only at $1938 \mathrm{~cm}^{-1}$ in FT-IR spectra during electrochemical oxidation. If 2 mainly exist in THF, the decreasing peak in FT-IR spectra would be observed in the lower region than $1938 \mathrm{~cm}^{-1}$, because the estimated $v\left(\mathrm{~N}_{2}\right)$ for $\mathbf{2}$ is 1905 cm^{-1}. Therefore, we estimated that the peak at $1816 \mathrm{~cm}^{-1}$ in Raman spectrum is derived from 3. The band at $2006 \mathrm{~cm}^{-1}$ observed in Raman spectra shown in Figure 4-3(A) is attributed to the symmetric stretching vibration of terminal N_{2} ligand in $\mathbf{1}$, which is consistent with the calculated Raman shift for $\mathbf{1}\left(2011 \mathrm{~cm}^{-1}\right)$. In the resonance Raman spectra during electrochemical oxidation (Figure 4-3), the Raman bands at 1816 and $2006 \mathrm{~cm}^{-1}$ decreased along with increase in those at 1292,1509 , and $1574 \mathrm{~cm}^{-1}$, suggesting that bridging N_{2} ligand was activated, and $\left[\mathrm{N}_{2}\right]^{2-}$ ligands were generated. The observed Raman band at 1574 and $1509 \mathrm{~cm}^{-1}$ is consistent with the estimated Raman bands for $\mathbf{6}$ in the triplet and singlet states (1562 and $1568 \mathrm{~cm}^{-1}$). Moreover, the observed Raman band at $1292 \mathrm{~cm}^{-1}$ is also in good agreement in the estimated Raman bands for $\mathbf{7}$ in the triplet and singlet states (1306 and $1311 \mathrm{~cm}^{-1}$). Although $\mathbf{5}$ might be generated during electrochemical oxidation, the estimated Raman bands for $\mathbf{5}$ are not consistent with experimental results. In addition, the generation for 7 via 6 is considerable because intensity for Raman band at $1292 \mathrm{~cm}^{-1}$ is larger than that at 1509 and $1574 \mathrm{~cm}^{-1}$, as described above. Therefore, dimeric Mo complex bridged with $\left[\mathrm{N}_{2}\right]^{2-}$ ligand, $\mathbf{7}$, is main species in electrochemical oxidation for $\mathbf{1}$.

To consider the UV-vis spectra during electrochemical oxidation of $\mathbf{1}$ shown in Figure 4-4, electronic absorption spectra estimated by TDDFT calculations for models 1-7 are shown in Figure 4-5. The calculated absorption bands for $\mathbf{1}$ gave peaks at 270, 309 and 500 nm (Figure $4-5(\mathrm{~A})$ and $4-5(\mathrm{~B})$), which are very similar to those of experimentally obtained bands at 323 and 493 nm (Figures 4-4(C) and 4-4(D)) except for the peak at 270 nm . The estimated band at 309 and 500 nm are assigned to the transition $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}$ and d_{xy} orbitals on Mo ion to π^{*} orbital on N atom (MLCT) (see Appendix C). The estimated band at 270 nm is assigned to the transition for d_{xz} and d_{yz} orbitals on Mo to π^{*} orbital on N atom (MLCT), although the absorption band in UV-vis spectrum is not observed. The band at 270 nm would be slightly shifted to a longer wavelength region.

The estimated electronic absorption bands for $\mathbf{2}$ and $\mathbf{3}$ are detected at 397 nm and at 368 and 433 nm , as shown in Figure 4-5(C). These bands are overlapped with the strong absorption band at 323 nm for 1 as shown in Figure 4-4(C), even if these absorption bands for $\mathbf{2}$ and $\mathbf{3}$ are detected in the range of 350 to 450 nm .

The electronic absorption spectrum estimated for $\mathbf{4}$ generated by the oxidation of $\mathbf{1}$ gave absorption bands at 266, 398 and 440 nm as shown in Figures 4-5(A) and 4-5(B). These bands are similar to the absorbance appearing at 300 nm and the increased peaks observed at 417 and 457 nm (Figure 4-4(C) and 4-4(D)). Therefore, these observed absorption bands are decided to be derived from 4. The absorption bands assigned to 4 is gradually decreased, suggesting that $\mathbf{4}$ has been changed to dimeric species $\mathbf{5 , 6}$ and $\mathbf{7}$. The electronic absorption spectra estimated for 5, 6, and $\mathbf{7}$ are shown in Figures 4-5(D), 4.5(E), and 4.5(F). These spectra have the electronic absorption bands at around 350 nm , suggesting that the bands appeared around 353 nm in Figure 4-4(C) are attributed from
dimeric species 5, 6, and 7. The electronic absorption spectrum in Figure 4-4(C) does not have any bands in the range of 500 to 700 nm , therefore, 7 in the singlet state is mainly generated by electrochemical oxidation for $\mathbf{1}$ via generating 4 .

Table 4-1. Summary for DFT and TDDFT calculations results for complex 1-7 ${ }^{\text {c }}$

Complex	Multiplicity	$\begin{aligned} & v\left(\mathbf{N}_{2}\right) \\ & / \mathrm{cm}^{-1} \end{aligned}$	Raman shift $/ \mathrm{cm}^{-1}$	Wavelength /nm	$\begin{gathered} \mathbf{N}-\mathbf{N} \\ / \AA \end{gathered}$	$\begin{gathered} \text { Mo-N } \\ / \AA \end{gathered}$
1	singlet	1940	$\begin{gathered} 2011 \\ (1871) \end{gathered}$	$\begin{aligned} & 270(\mathrm{MLCT})^{\mathrm{a}} \\ & 309 \text { (MLCT) }^{\mathrm{a}} \\ & 500(\mathrm{MLCT})^{\mathrm{a}} \end{aligned}$	1.1348	2.0208
2	singlet	1905	$\begin{gathered} 1881 \\ (48000) \\ 1932 \\ (18000) \end{gathered}$	397 (MLCT) ${ }^{\text {a }}$	1.1478 (bridged) 1.1428(term inal)	2.1682 (bridged) 1.9822(terminal)
3	singlet	-	1880	368 (MLCT) ${ }^{\text {a }}$	1.1547	$\begin{aligned} & 2.0650 \\ & 2.0725 \end{aligned}$
4	doublet	2015	2072	$\begin{aligned} & 266 \text { (MLCT) }^{\mathrm{a}} \\ & 398(\mathrm{MLCT})^{\mathrm{a}} \\ & 440 \text { (LMCT) }^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 1.1262 \\ & 1.1262 \end{aligned}$	2.0307
	triplet	2008	1886	374 (MLCT) ${ }^{\text {a }}$	$\begin{aligned} & 1.1459 \\ & \text { (bridged) } \\ & 1.1292 \\ & \text { (terminal) } \end{aligned}$	2.1307(bridged) 2.0090(terminal)
5	singlet	2067	$\begin{gathered} 1669 \\ \text { (bridged) } \\ 2091 \\ \text { (terminal) } \end{gathered}$	$\begin{gathered} 432(\mathrm{MLCT})^{\mathrm{a}} \\ 684(\mathrm{~d}-\mathrm{d}) \end{gathered}$	$\begin{gathered} 1.1791 \\ \text { (bridged) } \\ 1.1202 \\ \text { (terminal) } \end{gathered}$	2.0069 (bridge) 2.0143 (bridge) 2.0924 (terminal) 2.0868 (terminal)
	triplet	-	1562	$\begin{gathered} 349 \text { (MLCT) }{ }^{\mathrm{a}} \\ 564(\mathrm{~d}-\mathrm{d}) \end{gathered}$	1.2086	$\begin{aligned} & 1.9309 \\ & 1.9290 \end{aligned}$
6	singlet	-	1568	$\begin{gathered} 360(\text { MLCT })^{\mathrm{a}} \\ 491(\mathrm{~d}-\mathrm{d}) \end{gathered}$	1.2086	$\begin{aligned} & 1.9250 \\ & 1.9085 \end{aligned}$
7	triplet	-	1306	$\begin{gathered} 351(\text { MLCT })^{\mathrm{a}} \\ 543(\mathrm{~d}-\mathrm{d}) \end{gathered}$	1.2586	$\begin{aligned} & 1.9164 \\ & 1.9143 \end{aligned}$
	singlet	-	1311	371 (MLCT) ${ }^{\text {a }}$	1.2586	$\begin{aligned} & 1.9119 \\ & 1.8938 \end{aligned}$

${ }^{\text {a }}$ MLCT: charge transfer from d orbital on Mo atom to π^{*} orbital on N atom
${ }^{\mathrm{b}}$ LMCT: charge transfer from depe ligand to d orbital on Mo atom
${ }^{\mathrm{c}}$ FT-IR frequencies and Raman shifts assigned to $v\left(\mathrm{~N}_{2}\right) / \mathrm{cm}^{-1}$, electronic absorption band / nm, and N_{2} and $\mathrm{Mo}-\mathrm{N}$ bond length / \AA.

Figure 4-5. (A) Electronic absorption spectra estimated by TD-DFT calculations for complexes 1 and 4, (B) expansion of Figure 4-5(A), (C) those for $\mathbf{2}$ and 3, (D) 5 in the triplet and singlet states, (E) $\mathbf{6}$ in the triplet and singlet states, and (F) 7 in the triplet and singlet states.

4.2.1.5 Quantitative molecular orbital diagram and energy profile for $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\mathrm{depe})_{2}\right]^{\mathbf{2 +}}$ in the singlet state (7)

A qualitative molecular orbital diagram for 7 in the singlet state is shown in Figure 4-6. The DFT-computed highest molecular orbitals (HOMO) and the lowest occupied molecular orbital (LUMO) are principally molybdenum based and bridged N_{2} bonding orbital. HOMO-1 and HOMO-2 display d_{xy} orbitals on Mo atoms and LUMO+1 also show d_{z2} orbital on Mo atom. HOMO-3 and HOMO-4 is constructed $\pi_{\mathrm{x}}{ }^{*}$ and $\pi_{\mathrm{y}}{ }^{*}$
orbitals on N_{2} coupled with d_{xz} and d_{yz} orbitals on Mo atoms, indicating that bridged N_{2} bonded by π back donation from Mo center and bridged N_{2} is reduced to $\left[\mathrm{N}_{2}\right]^{2-}$. The Wiberg bond index of 1.76 for N_{2} indicate the bond order of bridged N_{2} is 2 . LUMO+3 and LUMO +6 display $\pi_{\mathrm{x}}{ }^{*}\left(\mathrm{~N}_{2}\right)$ and $\pi_{\mathrm{y}}{ }^{*}\left(\mathrm{~N}_{2}\right)$ orbitals at -0.35 and -0.66 eV , which is higher than HOMO at -4.0 eV , suggesting that generation of $\left[\mathrm{N}_{2}\right]^{2-}$ by reduction of bridged N_{2} ligand from π back donation from Mo center has high activation barrier.

Figure 4-6. Qualitative frontier molecular orbital diagram of 7 in the singlet state estimated from DFT calculation. The z axis is defined as the Mo-N2-Mo vector.

To understand whether the electrochemically generated 7 gives the nitride complex, 8, or not, the reaction profile was analyzed and evaluated, which are shown in Figure

4-7. The energy profile lets us expect that $\mathbf{8}$ may be generated by the electrochemical oxidation reaction, because $\Delta \mathrm{G}$ value based on 7 in the singlet is $3.0 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathbf{8}$ in the triplet state and $-69.1 \mathrm{kcal} / \mathrm{mol}$ lower than that of $\mathbf{8}$ in the singlet state. However, $\mathbf{7 - T S}$, which is the transition state from $\mathbf{7}$ in the singlet to $\mathbf{8}$, is 11.8 $\mathrm{kcal} / \mathrm{mol}$ higher than it in the singlet and $34.2 \mathrm{kcal} / \mathrm{mol}$ higher than it in the triplet state, indicating that it must pass through the higher activation energy barrier. Therefore, it is difficult to generate $\mathbf{8}$ just as it is, although the $\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ of $\mathbf{8}$ in the singlet state is lower than that of 7 .

Figure 4-7. Computed reaction profile from 7 to the nitride 8. Free energy profile as estimated at $298.15 \mathrm{~K}(\Delta \mathrm{G}, \mathrm{kcal} / \mathrm{mol})$.

4.2.2 Electrochemical oxidation of $\mathrm{Mo}-\mathrm{N}_{2}$ complex in $\mathrm{Pyr}_{4} \mathrm{FAP}$

4.2.2.1 FT-IR spectra during electrochemical oxidation

To understand the redox behaviors of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ (1), cyclic
voltammogram (CV) of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ was measured. The result is shown in Figure 4-8. The redox potential, $E_{1 / 2}$, assignable to $\mathrm{Mo}(0) / \mathrm{Mo}(\mathrm{I})$ is observed at $-1.11 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, and the oxidation wave assignable to $\mathrm{Mo}(\mathrm{I}) / \mathrm{Mo}(\mathrm{II})$ is observed at $+0.005 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$, which is similar to that in THF as described in Section 4.2.1.1.

In order to understand the structure change of $\mathbf{1}$ during the electrochemical oxidation from $\mathrm{Mo}(0)$ to $\mathrm{Mo}(\mathrm{I})$, the FT-IR spectra of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ during the electrochemical

Figure 4-8. Cyclic voltammograms of 1 mM trans $-\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}$ (WE.: $\mathrm{GC}\binom{\varphi}{1 \mathrm{~mm}}, \mathrm{CE}: \mathrm{Pt}$ wire, RE: $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode, and scan rate: $\left.100 \mathrm{mV} / \mathrm{s}\right)$. The potentials were referenced to the ferrocene/ferrocenium $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ couple in $\mathrm{Pyr}_{4} \mathrm{FAP}$.
oxidation reaction was also measured. Its difference IR spectra based on the spectrum when the electrochemical oxidation reaction started are shown in Figure 4-9. The CV before controlled potential electrolysis (CPE) and plots of electric charge consumed with time during CPE are shown in Figure 4-9(B). The intensities in peaks at 1955 and
$1919 \mathrm{~cm}^{-1}$ were changed with time during CPE at +0.5 V (vs. Pt wire), as shown in Figure 4-9(A). Since it is lower than those of $\mathbf{1}$ detected in the solid state $\left(1928 \mathrm{~cm}^{-1}\right)^{4}$ and in THF solution $\left(1939 \mathrm{~cm}^{-1}\right)^{4}$ that were reported previously, the decrease in peak at $1919 \mathrm{~cm}^{-1}$ was assigned to $v\left(\mathrm{~N}_{2}\right)$ of $\mathbf{1}$. The increase in peak intensity at $1955 \mathrm{~cm}^{-1}$ is assignable to stretching vibration of N_{2} molecule for the one-electron oxidized species. In addition, since generation of gases are observed during the electrochemical oxidation of $\mathbf{1}$ in both $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $0.2 \mathrm{M} \mathrm{Pyr} 4 \mathrm{FAP} / \mathrm{THF}$ solution, the species generated in the electrochemical oxidation reaction released one molar N_{2} at least from 1. The increase in peak at $1955 \mathrm{~cm}^{-1}$ is clearly correlated to decrease in peak at $1919 \mathrm{~cm}^{-1}$, suggesting that five coordinate $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]$ was oxidized with coordinating N_{2}. In oxidation reaction for trans- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}\right]$ by using an oxidant, the $v\left(\mathrm{~N}_{2}\right)$ stretching of trans- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right]$ in nujol was observed at $1975 \mathrm{~cm}^{-1}$ and the $v\left(\mathrm{~N}_{2}\right)$ stretching of trans- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right] \mathrm{I}_{3}$ in nujol, which is chemically oxidized Mo complex, was detected at $2047 \mathrm{~cm}^{-1} .5$ The difference in wavenumber was $72 \mathrm{~cm}^{-1}$ in one electron oxidation, where the core structure was not changed (see Table C14 in Appendix). In the electrochemical oxidation for $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ shown in Figure 4-9, the difference wavenumber was $36 \mathrm{~cm}^{-1}$, suggesting that the structure of $\mathrm{Mo}(\mathrm{I})-\mathrm{N}_{2}$ complex changed after the electrochemical oxidation reaction. Interestingly, the peak at $1955 \mathrm{~cm}^{-1}$ was not decreased after the electrochemical oxidation, indicating that $\mathrm{Mo}(\mathrm{I})-\mathrm{N}_{2}$ species after the structure change is stabilized and kept in $\mathrm{Pyr}_{4} \mathrm{FAP}$.

4.2.2.2 Resonance Raman spectra

As described in Section 4.2.1, the bridged N_{2} is detected by measuring the resonance Raman spectroscopy. We therefore studied to clarify whether a dimeric
species is formed in $\mathrm{Pyr}_{4} \mathrm{FAP}$ by using resonance Raman spectroscopy. The resonance Raman spectra of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $\operatorname{Prr}_{4} \mathrm{FAP}$ are shown in Figure 4-10. The resonance Raman spectra of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ after electrochemical oxidation reaction were also measured, but the spectra were not changed, suggesting that $\operatorname{Mo}(\mathrm{I})-\mathrm{N}_{2}$ species was stabilized as monomeric cation species by electrostatic interaction with $\mathrm{Pyr}_{4} \mathrm{FAP}$.

Figure 4-9. (A) The difference FT-IR spectra during CPE at +0.5 V (vs.Pt wire) (WE and CE: Pt mesh, RE: Pt wire, FT-IR cell: Nylon film) based on the spectrum at 0 s , (B) CV of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ before electrochemical oxidation, and (C) the plots of $\Delta \mathrm{Abs}$. in the peaks at 1955 (red) and $1919 \mathrm{~cm}^{-1}$ (blue) against time during CPE.

Figure 4-10 Resonance Raman spectra of 2 mM trans- $\left[\mathrm{Mo}(\right.$ depe $\left.)\left({ }^{14} \mathrm{~N}_{2}\right)_{2}\right]$ (red), 2 mM trans- $\left[\mathrm{Mo}(\right.$ depe $\left.)\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ (blue) and used solvent, $\mathrm{Pyr}_{4} \mathrm{FAP}$ (black).

4.2.2.3 The effect of FAP anion toward Mo complex

To consider the effect of FAP anion toward Mo- N_{2} complex, DFT calculations for $\left[\operatorname{Mo}(\text { depe })_{2} \mathrm{~N}_{2}\right]^{+}\left(\mathbf{9}^{\prime}\right), \quad\left[\operatorname{Mo}(\text { depe })_{2} \mathrm{~N}_{2} \cdots\right.$ FAP] $\left(\mathbf{1 0}^{\prime}\right), \quad\left[\right.$ FAP $\left.\cdots \operatorname{Mo}(\text { depe })_{2} \mathrm{~N}_{2}\right] \quad\left(\mathbf{1 1}^{\prime}\right)$ and [FAP $\cdots \operatorname{Mo}(\text { depe })_{2} \mathrm{~N}_{2} \cdots \mathrm{FAP}$] (12') were carried out. These calculations were adopted with B3LYP* as hybrid functional and Stuttgart/Dresden ECP (SDD) on the Mo atom, $6-311 \mathrm{G}(\mathrm{d})$ on N and P atoms, and $6-31 \mathrm{G}(\mathrm{d})$ on C and H atoms as the basis set with empirical corrections (GD3BJ) in ionic liquid ($\varepsilon=14.7$) (see Experimental Section). The energy profile for $\mathbf{9}^{\prime}-\mathbf{1 2}^{\mathbf{\prime}}$ is shown in Figure $\mathbf{4 - 1 1}$. The $\Delta \mathrm{H}$ and $\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ for $\mathbf{9}^{\prime}-\mathbf{1 2}^{\mathbf{\prime}}$ are calculated based on those of $\mathbf{9}^{\prime}$. The $\Delta \mathrm{H}$ values for $\mathbf{1 0}^{\prime}, \mathbf{1 1}$ ' and $\mathbf{1 2 '}$ are estimated to
be $-18.4,-28.3$ and $-41.8 \mathrm{kcal} / \mathrm{mol}$, respectively, and the $\Delta \mathrm{G}$ values for $\mathbf{1 0}^{\prime}, \mathbf{1 1}{ }^{\prime}$ and $\mathbf{1 2}^{\prime}$ are estimated to be $-3.4,-15.1$ and $-16.0 \mathrm{kcal} / \mathrm{mol}$, respectively, indicating that $\mathbf{1 2}$ ' is the most stable among the four complexes. This is because FAP anions weakly interact to the oxidized $\mathrm{Mo}(\mathrm{I})$ complexes.

The structure of $\mathbf{1 2}^{\prime}{ }^{\prime}$ is shown in Figure 4-12 (see Appendix C). The structure of 12' reveals that some F atoms on FAP anion weakly interact with ethyl group in depe ligand; F93 $\cdots \mathrm{H} 73$ 2.8278, F93 $\cdots \mathrm{H} 71$ 2.3380, F89 $\cdots \mathrm{H} 64$ 2.9302, F89 $\cdots \mathrm{H} 63$ 2.6904, F90 $\cdots \mathrm{H} 63$ 2.3938, F90 $\cdots \mathrm{H} 21$ 2.9037, F90 $\cdots \mathrm{H} 30$, F92 $\cdots \mathrm{H} 73$ 2.6136, F88 $\cdots \mathrm{H} 21$ 2.2994, F88 $\cdots \mathrm{H} 22$ 2.6106, F86 $\cdots \mathrm{H} 22$ 2.8267, F106 $\cdots \mathrm{H} 27$ 2.4178, F106 $\cdots \mathrm{H} 66$ 2.4039, F106 $\cdots \mathrm{H} 29$ 2.8833, F103 $\cdots \mathrm{H} 66$ 2.4849, F125 $\cdots \mathrm{H} 29$ 2.5953, F110 $\cdots \mathrm{H} 29$ 2.7437, F110 $\cdots \mathrm{H} 27$ 2.8770, F122 $\cdots \mathrm{H} 66$ 2.4211, F121 $\cdots \mathrm{H} 68$ 2.7540, F122 $\cdots \mathrm{H} 54$ 2.3705. In addition, the $\mathrm{Mo}(\mathrm{I})$ ion may also have weak interaction with FAP anion (Mol‥F90 3.5837). Such weak interactions stabilize 9^{\prime} and contribute to suppression for the formation of dimeric species observed in THF solution, as described in Section 4.1.2. Therefore, the electrochemical oxidation of $\operatorname{Mo}(0)$ to $\operatorname{Mo}(\mathrm{I})$ for $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ gives $\mathbf{1 2}^{\prime}$.

Figure 4.11. Energy profile for model complexes $\mathbf{9}^{\prime}, \mathbf{1 0}^{\prime}, \mathbf{1 1}^{\prime}$ and $\mathbf{1 2}^{\prime}$.

Figure 4-12. The optimized structure of 12'. Selected bond lengths for the complex; F93 $\cdots \mathrm{H} 73$ 2.8278, F93 $\cdots \mathrm{H} 71$ 2.3380, F89 $\cdots \mathrm{H} 64$ 2.9302, F89 $\cdots \mathrm{H} 63$ 2.6904, F90 $\cdots \mathrm{H} 63$ 2.3938, F90 $\cdots \mathrm{H} 21$ 2.9037, F90 $\cdots \mathrm{H} 30$, Mo1 \cdots F90 3.5837, F92 $\cdots \mathrm{H} 73$ 2.6136, F88 $\cdots \mathrm{H} 21$ 2.2994, F88 $\cdots \mathrm{H} 22$ 2.6106, F86 $\cdots \mathrm{H} 22$ 2.8267, F106 $\cdots \mathrm{H} 27$ 2.4178, F106 $\cdots \mathrm{H} 66$ 2.4039, F106 \cdots H29 2.8833, F103 \cdots H66 2.4849, F125 $\cdots \mathrm{H} 29$ 2.5953, F110 $\cdots \mathrm{H} 29$ 2.7437, F110 $\cdots \mathrm{H} 27$ 2.8770, F122 $\cdots \mathrm{H} 66$ 2.4211, F121 $\cdots \mathrm{H} 68$ 2.7540, F122 $\cdots \mathrm{H} 542.3705$.

To assign the obtained FT-IR spectra of $\mathbf{1}$ during the electrochemical oxidation described in Section 4.2.2.1, the $v\left(\mathrm{~N}_{2}\right)$ for $\mathbf{1}$ is also estimated with empirical corrections $(\mathrm{GD} 3 \mathrm{BJ})^{26 b, 26 c}$ in the IL $(\varepsilon=14.7)$. The estimated $v\left(\mathrm{~N}_{2}\right)$ for $\mathbf{1}\left(1937 \mathrm{~cm}^{-1}\right)$ is consistent with the experimental result $\left(1919 \mathrm{~cm}^{-1}\right)$ (see Figure 4-9). The calculated $v\left(\mathrm{~N}_{2}\right)$ for 12, is $1984 \mathrm{~cm}^{-1}$, which is close to the increasing peak at $1955 \mathrm{~cm}^{-1}$ as shown in Figure 4-9. Accordingly, 12', which is a complex with FAP anion, would be generated.

4.3 Conclusion

Electrochemical oxidation reaction for trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ (1) (depe $=$ $\mathrm{Et}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PEt}_{2}$) is carried out and the generation of dimeric molybdenum complex bridging $\left[\mathrm{N}_{2}\right]^{2-}$ ligand is revealed. The one electron electrochemical oxidation reaction is studied by time-dependent FT-IR, resonance Raman and UV-vis spectroscopies during controlled-potential electrolysis (CPE). The time dependent FT-IR spectra during CPE shows decrease in the peak at $1938 \mathrm{~cm}^{-1}$ assignable to $v\left(\mathrm{~N}_{2}\right)$ for $\mathbf{1}$ and increase in the peak at $2008 \mathrm{~cm}^{-1}$ assigned to the $v\left(\mathrm{~N}_{2}\right)$ for the electrochemically-oxidized 1. However, the increased peak at $2008 \mathrm{~cm}^{-1}$ disappeared after electrochemical oxidation reaction. The time-dependent resonance Raman spectra during CPE gave three bands at 1574,1509 and $1294 \mathrm{~cm}^{-1}$, suggesting that N_{2} is activated by forming dimeric species, $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$. Time-dependent UV-vis spectra during CPE shows decrease in the absorption bands at 323 and 493 nm derived from $\mathbf{1}$ and increase in the absorption bands at 417 and 457 nm assigned to those of the oxidized 1, and an absorption band at 353 nm assigned to $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ appeared. To consider the assignment for these spectra, DFT and TDDFT calculations are also performed and they are in good agreement with experimental results. Unfortunately, the generation of nitride complex
by N_{2} cleavage was not observed, because the transition state has a high-energy barrier. However, to the best of our knowledge, the activation of bridging N_{2} ligand through the electrochemical oxidation of the terminally-coordinated N_{2} metal complex has not been reported yet.

On the contrary, in the electrochemical oxidation of $\mathbf{1}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, the resonance Raman spectra of $\mathbf{1}$ and its oxidized species in $\mathrm{Pyr}_{4} \mathrm{FAP}$ have revealed that a dimeric structure bridged with N_{2} is not generated before and after electrochemical oxidation. Since generation of gas was seen during the electrochemical oxidation of $\mathbf{1}$ in both $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ solutions, the species generated in the electrochemical oxidation reaction is supposed to be one molar amount of N_{2} gas at least from 1. Although the FT-IR spectra during the one-electron oxidation reaction in Pyr $_{4}$ FAP showed increase in the peak at $1955 \mathrm{~cm}^{-1}$ and decrease in the peak at 1919 cm^{-1}, there is no increasing peaks unlike that in THF solution. Accordingly, the $\operatorname{Mo}(\mathrm{I})-\mathrm{N}_{2}$ species generated after the structure change was stabilized and kept in Pyr_{4} FAP. DFT calculations for five-coordinate $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$with FAP anion are also performed with empirical correction (GD3BJ) in ionic liquid ($\varepsilon=14.7$) to understand the effect of FAP anion. The DFT calculations reveal that the $\Delta \mathrm{G}$ of $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$interacted with FAP anion is $16.0 \mathrm{kcal} / \mathrm{mol}$ lower compared with that without FAP anion. In addition, the estimated $v\left(\mathrm{~N}_{2}\right)$ for five-coordinate $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$with FAP anions $\left(1984 \mathrm{~cm}^{-1}\right)$ is in good agreement with the experimental result $\left(1955 \mathrm{~cm}^{-1}\right)$. These results indicate clearly that the weak interaction between them contributed to stabilize the monomeric $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$and suppressed the dimerization reaction of $\mathbf{1}$ in the electrochemical oxidation reaction.

4.4 Experimental

All manipulations were performed using standard Schlenk-line techniques or in an MBraun dry box under Ar or N_{2} atmosphere ($<1 \mathrm{ppm} \mathrm{O} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$).

4.4.1 Chemicals

$\mathrm{N}_{2}(99.999 \%)$ and $\operatorname{Ar}(99.999 \%)$ (Nagoya Kousan. Ltd.) were employed as inlet gas for the reaction vessel. 1,2-bis(diethyl)phosphinoethane, depe, was purchased from Sigma-Aldrich and used without the purification. Trans- $\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ was prepared according to the literature. ${ }^{11}$ 1-Butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate, $\mathrm{Pyr}_{4} \mathrm{FAP},{ }^{12}$ was purchased from Merck Ltd. and purified referring to previous literature as follows. ${ }^{13} \mathrm{Pyr}_{4} \mathrm{FAP}(50 \mathrm{~g})$ was dissolved in distilled EtOH (100 mL), and to the solution was added an activated charcoal (5g, Sigma-Aldrich). And then, the activated charcoal was removed by filtrate and the remaining solvents were evaporated. If the color was not colorless, the purification was repeated using the activated charcoal. After the purification was finished, $\mathrm{Pyr}_{4} \mathrm{FAP}$ was vacuumed at $80^{\circ} \mathrm{C}$ for 3 days and dried over molecular sieves $(4 \AA)$ for 1 week. Trans- $\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and Pyr_{4} FAP were stored in a glove box (mBRAUN MB 150B-G glovebox) under N_{2} atmosphere ($<1 \mathrm{ppm} \mathrm{O} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$). KC_{8} was prepared according to the literature. ${ }^{14}$ Solvents were purified by the method of Grubbs, ${ }^{15}$ where the solvents were passed over columns of activated alumina and supported copper catalyst supplied by ultimate purification system (Glass Contour System, NIKKO HANSEN \& CO., LTD), transferred to the glovebox without exposure to air, and stored over molecular sieves $4 \AA$. The trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ is prepared under ${ }^{15} \mathrm{~N}_{2}$ atmosphere by the same procedure in case of trans-[Mo(depe) $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$. The ${ }^{15} \mathrm{~N}_{2}$ gas (99.9 Atom \%), which was purchased
from SI Science Co. Ltd., was purified by passing the column containing KC_{8} (see Figure C 1 in Appendix C), and used after replacement of the gas from Ar to ${ }^{15} \mathrm{~N}_{2}$ by using vacuum line equipped in the glovebox.

4.4.2 Instrumentation

The electrochemical study was evaluated using a potentiostat (BAS, ALS/1100C). Cyclic voltammograms were measured in the glove box under a purified Ar atmosphere at $25^{\circ} \mathrm{C}$. The CVs were recorded using a GCE (diameter: 1 mm) as a WE. Pt spiral wire was used as a CE. $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode $(\mathrm{Ag}$ wire +10 mM AgNO 3 in 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$) was used as a RE. The working electrode was polished by using aluminum slurry before the CV measurement according to the previous literature. ${ }^{16}$ The counter electrode was dipped in concentrated nitric acid for 1 day, and then, rinsed by Milli-Q water and dried in an oven at $190{ }^{\circ} \mathrm{C}$. The potentials are referenced to the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple, which was measured by adding ferrocene to the sample solution. The concentrations of each samples were adjusted to 1 mM . FT-IR spectra of the solid compounds were measured with a JASCO FT/IR-4200 spectrophotometer. UV-vis absorption spectra were measured with a Jasco V-770 spectrophotometer using a 1 mm light-pass-length quartz cell shown in Figure A1 of Appendix A. Resonance Raman spectra were obtained using a liquid nitrogen cooled CCD detector (CCD-1024 \times 256-OPEN-1LS, HORIBA Jobin Yvon) attached to a 1 m single polychromator (MC-100DG, Ritsu Oyo Kogaku) with a 1200 grooves/mm holographic grating. An excitation wavelength of 355 nm was provided by an Nd:YAG laser (Photonic Solutions, SNV-20F), with 5 mW power at the sample point. All measurements were carried out with a hand-made glass tube ($\phi 4 \mathrm{~mm}$, length: 30 cm) at room temperature. Raman
shifts were calibrated with indene and potassium ferricyanide, and the accuracy of the peak positions of the Raman bands was $\pm 1 \mathrm{~cm}^{-1}$. The concentration of each sample was adjusted to 2 mM .

4.4.3 FT-IR spectroscopy during the controlled potential electrolysis

FT- IR measurements were carried out in Nylon film cell as shown in Figure C2 of Appendix C. The nylon film (thickness $75 \mu \mathrm{~m}$) is purchased from Asahi KASEI Pax Co. Ltd. The cut nylon film ($6.5 \mathrm{~cm} \times 2.4 \mathrm{~cm}$) was brought together by using the laminating machine (Clip selaler z-1, Technoimpulse Co. Ltd). The Pt mesh (80mesh, $0.08 \times 5 \times 10 \mathrm{~mm}$, Nilaco Co. Ltd.) connected with Pt wire ($\phi 0.25 \mathrm{~mm}$ diameter, length: 10 cm , Nilaco Co. Ltd.) was used as the working electrode. The Pt mesh ($80 \mathrm{mesh}, 0.08 \times 10 \times 10 \mathrm{~mm}$, Nilaco Co. Ltd.) connected with Pt wire $(\phi 0.25 \mathrm{~mm}$ diameter, length: 10 cm , Nilaco Co. Ltd.) was used as the counter electrode. Pt wire was used as a quasi-reference electrode ($\phi 0.25 \mathrm{~mm}$ diameter, Nilaco Co. Ltd.).

The nylon film cell is soft, and the thickness of liquid is easily changeable, therefore, the exchanging of solutions affects the baseline. Thus, the baseline of sample solutions is measured before the CPE and the obtained results during CPE are displayed as difference spectrum against it. The set of nylon film cell containing the sample solution was carried out in the glove box and the measurements were carried out outside of glove box. The top of Nylon film cell is coated with silicon grease and closed by the laminating machine. Thus, the inside in Nylon film cell is kept under inert atmosphere. The nylon film cell is prepared every time and it was disposed after measurement. The nylon film is transparent for the infrared light in the range of $1700 \sim 2200 \mathrm{~cm}^{-1}$.

4.4.4 Resonance Raman spectroscopy during the controlled potential electrolysis

Resonance Raman spectroscopy was carried out in hand-made electrolysis cell (Raman cell) as shown in Figure C3 of Appendix C. The glass tube (diameter: 4 mm , length: 30 cm) is made of quarts (downside, length 10 cm) and pylex (upper side, length: 20 cm). The upper part is welded with ground glass joint ($15 / 25$, female) for setting electrode by using Teflon tube adaptor (F-5005-004, outside diameter: $\phi 6 \mathrm{~mm}$, inside diameter: $\phi 5.0 \mathrm{~mm}$, interchangeable ground joint: 15/25, FLON INDUSTRY CO., LTD.). Pt mesh and Pt wire as using electrodes were purchased from Nilaco Co., Ltd. Pt mesh (diameter: $\phi 0.08 \mathrm{~mm}, 80 \mathrm{mesh}, 0.4 \mathrm{~cm} \times 1 \mathrm{~cm}$) connected with Pt wire (diameter: $\phi 0.25 \mathrm{~mm}$, length: 25 cm) was used as working electrode (WE). Pt mesh, whose reaction area is three times larger than WE, connected with Pt wire (diameter: $\phi 0.25 \mathrm{~mm}$, length: 25 cm) was used as the counter electrode (CE). Pt wire (diameter: $\phi 0.25 \mathrm{~mm}$, length: 25 cm) was used as quasi-reference electrode (QRE). The Cu wires as lead line for connection between electrodes and potentiostat were fixed to PTFE tube (outside diameter: 6.0 mm , inside diameter: 5.0 mm , FLON INDUSTRY CO., LTD.) by using one-component RTV rubber (KE45, Shin-Etsu Silicon). PTFE tube containing three Cu wires was kept overnight for fixing the RTV rubber. The PTFE tube with Cu wires was jointed to the resonance Raman cell by using a Teflon tube adapter (F-5005-004, outside diameter: $\phi 6 \mathrm{~mm}$, inside diameter: $\phi 5.0 \mathrm{~mm}$, interchangeable ground joint: 15/25, FLON INDUSTRY CO., LTD.). For increasing the airtightness of the connecter with PTFE tube containing Cu wires, a silicon grease was coated. For preventing a contact of electrodes and lead lines each other, the Pt wire of the electrodes were covered by PTFE tube (outside diameter: $\phi 1.0 \mathrm{~mm}$, inside diameter: $\phi 0.5 \mathrm{~mm}$, FLON INDUSTRY CO., LTD.), and Cu wires bared partly in Raman cell side were
wrapped with parafilm. The setting before measurement was performed in the globe box under ${ }^{14} \mathrm{~N}_{2}$ atmosphere. To decide the potential of CPE, a linear sweep voltammogram (LSV) was measured. The initial Raman spectra, which are described as 0 s in Figure 4-3, were recorded after the LSV measurement. The Raman laser at 355 nm was irradiated only in measuring resonance Raman spectroscopy.

4.4.5 UV-vis spectroscopy during the controlled potential electrolysis

UV-vis spectra during electrochemical reduction were measured by using 1 mm length quartz cell welded with the Pyrex glass tube with an interchangeable ground joint (15/25), a Teflon adapter and electrodes (Figure A1 in Appendix A). Pt mesh and Pt wire were purchased from Nilaco Co., Ltd. Pt mesh (diameter: $\phi 0.08 \mathrm{~mm}, 80$ mesh, 0.8 $\mathrm{cm} \times 3 \mathrm{~cm}$) connected with Pt wire (diameter: $\phi 0.25 \mathrm{~mm}$, length: 6 cm) was used as working electrode (WE). Pt mesh, whose reaction area is three times larger than WE, connected with Pt wire was used as the counter electrode (CE). Pt wire (diameter: $\phi 0.25 \mathrm{~mm}$, length: 3 cm) was used as quasi-reference electrode (QRE). The Cu wires as lead line for connection between electrodes and potentiostat were fixed to PTFE tube (outside diameter: $\phi 6.0 \mathrm{~mm}$, inside diameter: $\phi 5.0 \mathrm{~mm}$, FLON INDUSTRY CO., LTD.) by using one-component RTV rubber (KE45, Shin-Etsu Silicon). PTFE tube containing three Cu wires was kept overnight for fixing the RTV rubber. The PTFE tube with Cu wires was jointed to the quartz cell by using a Teflon tube adapter (F-5005-004, outside diameter: $\phi 6 \mathrm{~mm}$, inside diameter: $\phi 5.0 \mathrm{~mm}$, interchangeable ground joint: 15/25, FLON INDUSTRY CO., LTD.). For increasing the airtightness of the connecter with PTFE tube containing Cu wires, a silicon grease was coated. For preventing a contact of electrodes and lead lines each other, the Pt wire of the electrodes were
covered by PTFE tube (outside diameter: $\phi 1.0 \mathrm{~mm}$, inside diameter: $\phi 0.5 \mathrm{~mm}$, FLON INDUSTRY CO., LTD.), and Cu wires bared partly in UV-vis cell side were wrapped with parafilm. The setting was performed in the globe box. Therefore, the measurements were carried out under Ar atmosphere. The blank solution without $\mathbf{1}$, which contains only solution in the quartz cell with electrodes, was measured as base line. To decide the potential of CPE, a linear sweep voltammogram (LSV) was measured. The initial UV-vis spectra, which are described as 0 s in Figure 4-4, were recorded after the LSV measurement. The subsequent UV-vis spectra were measured during the controlled potential electrolysis.

4.4.6 DFT and TDDFT calculations

All electronic structure calculations were performed with the Gaussian 09 package ${ }^{17}$ on the Fujitsu HX600 system at the Nagoya University Information Technology Center. Geometry optimizations of dinitrogen complexes were performed using B3LYP* functional, which is a reparametrized version of the B3LYP hybrid functional ${ }^{18}$ developed by Reiher and co-workers ${ }^{19}$

The B3LYP and B3LYP* energy expressions are given as equation (1):

$$
\begin{equation*}
E_{X C}^{B 3 L Y P}=a_{0} E_{X}^{H F}+\left(1-a_{0}\right) E_{X}^{L S D A}+a_{x} E_{X}^{B 88}+a_{c} E_{c}^{L Y P}+\left(1-a_{c}\right) E_{C}^{V W N} \tag{1}
\end{equation*}
$$

where $a_{0}=0.20$ (B3LYP) or 0.15 (B3LYP*), $a_{x}=0.72, a_{c}=0.81$ and in which $E_{X}^{H F}$ is the Hartree-Fock exchange energy; $E_{X}^{L S D A}$ is the local exchange energy from the local spin density approximation; $E_{X}^{B 88}$ is Becke's gradient correction ${ }^{20}$ to the exchange functional; $E_{c}^{L Y P}$ is the correlation functional developed by Lee and
co-workers ${ }^{21}$; and $E_{C}^{V W N}$ is the correlation energy calculated using the local correlation functional of Vosko, Wilk and Nusair (VWN) ${ }^{22}$.

We used Stuttgart/Dresden ECP and basis set on Mo^{23} together with 6-311G(d) on P and $\mathrm{N}^{24 \mathrm{a}, 24 \mathrm{~b}}, 6-31 \mathrm{G}(\mathrm{d})^{25 \mathrm{a}, 25 \mathrm{~b}}$ on C, F and H . The results of frequency calculations at the same level confirmed that each of the optimized structures was at a minimum on the potential energy surface. For solvent calculation, the polarized continuum model (PCM) $)^{26 \mathrm{a}}$ was applied, using a dielectric constant ε of 7.4257 for THF. DFT calculations for $\mathbf{9}^{\mathbf{\prime}}, \mathbf{1 0} \mathbf{1 0}^{\prime}, \mathbf{1 1}$, and $\mathbf{1 2}{ }^{\prime}$ were performed by using the above functional and basis sets with the D3 version of Grimme's dispersion with Becke - Johnson damping $(\mathrm{GD} 3 \mathrm{BJ})^{266,26 c}$ in addition to the solvent effects of ionic liquid $(\varepsilon=14.7)$. The dielectric constants of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide reported in previous literature ${ }^{26 \mathrm{~d}}$ is used instead of that of $\mathrm{Pyr}_{4} \mathrm{FAP}$, because the dielectric permittivity of Pyr4FAP is not reported yet.

To assign the absorption bands of electronic transitions, time-dependent density functional theory (TDDFT) ${ }^{27}$ calculations were performed. For the simulation of UV-vis spectra, the absorption profile was calculated as a sum of Gaussian functions where the heights and centers of the peaks were oscillator strengths and excitation energies, respectively, and the estimated standard deviation was 0.1 eV . The isosurfaces of the molecular orbitals were drawn using the MOPLOT and MOVIEW programs. ${ }^{28}$

4.5 References

1. K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Bull. Chem. Soc. Jpn., 2017, 90, 1111.
2. (a) J. Chatt, W. Hussain, G. J. Leigh, H. Neukomm, C. J. Pickett, D. A. Rankin, J.

Chem. Soc., Chem. Commun. 1980, 1024. (b) G. J. Leigh, C. J. Pickett, J. Chem. Soc., Dalton Trans., 1977, 1797.
3. (a) Considering that the formal potentials (V) for the ferrocene/ferrocenium couple vs. SCE is 0.56 V in THF containing $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$. The obtained $E_{1 / 2}$ measured by glassy carbon electrode $(\mathrm{GCE})(-1.01 \mathrm{~V})$ is good agreement with the $E_{1 / 2}$ reported by Chatt and co-worker (-0.99 V (vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$). (b) N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877.
4. A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos, N. Weidemann, Angew. Chem. Int. Ed. 2005, 44, 5979.
5. T. A. George, C. D. Sebold, Inorg. Chem. 1973, 12, 2548.
6. J. D. Cohen, M. Mylvaganam, M. D. Fryzuk, T. M. Loehr, J. Am. Chem. Soc., 1994, 116, 9529.
7. C. E. Laplaza, M. J. A. Johnson, J. C. Peters, A. L. Odom, E. Kim, C. C. Cummins, G. N. George, I. J. Pickering, J. Am. Chem. Soc., 1996, 118, 8623.
8. (a) J. R. Durig, M .G. Griffin, R. W. MacNamee, J. Raman Spectrosc., 1975, 3, 133. (b) N. C. Craig, I. W. Levin, J. Chem. Phys., 1979, 71, 400.
9. (a) M. J. Bezdek, S. Guo, P. J. Chirik, Inorg. Chem., 2016, 55, 3117.
10. G. A. Silantyev, M. Förster, B. Schluschaß, J. Abbenseth, C. Würtele, C. Volkmann, M. C. Holthausen, S. Schneider, Angew. Chem., Int. Ed. 2017, 56, 5872.
11. T. A. George, M. E. A. Noble, Inorg. Chem. 1978, 17, 1678.
12. N. V. Ignat'ev, U. Welz-Biermann, A. Kucheryna, G. Bissky, H. Willner, J. Fluorine Chem. 2005, 126, 1150.
13. A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskeya, G. A. Baker,

Green Chem. 2007, 9, 449.
14. D. E. Bergbreiter, J. M. Killough, J. Am. Chem. Soc. 1978, 100, 2126.
15. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics, 1996, 15, 1518.
16. I. Hu, D. H. Karweik, T. Kuwana, J. Electroanal. Chem. 1985, 188, 59.
17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01,; Gaussian, Inc.: Wallingford, CT, 2013.
18. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
19. (a) M. Reiher, O. Salomon, B. A. Hess, Theor. Chem. Acc. 2001, 107, 48. (b)M. Reiher, Inorg. Chem. 2002, 41, 6928.
20. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
21. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
22. S. H. Vosko, L. Wilk, M. J. Nusair, Can. J. Phys. 1980, 58, 1200.
23. D. Andrae, U. Haüssermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta, 1990, 77, 123.
24. (a) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639. (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.
25. (a) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213. (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
26. (a) J. Tomasi, B. Mennucci, R. Cammi, R. Chem. Rev. 2005, 105, 2999. (b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104 - 1 154104 - 19. (c) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456. (d) M. M. Huang, Y. Jiang, P. Sasianker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data, 2011, 56, 1494.
27. A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
28. (a) H. Wasada, Y. Tsutsui, Bull. Coll. Gen. Educ. 1996, 33, 145-158. (b) I. Takahashi, H. Wasada, Y. Tsutsui, MOVIEW: Program of Nagoya University Information Technology Center Representing Molecular Orbitals and Electron Density Maps by Isosurfaces.

Chapter 5: Conclusions

In this thesis, the effect of ionic liquids (ILs) on the N_{2} activation by a transition metal complex and its application to electrochemical ammonia $\left(\mathrm{NH}_{3}\right)$ synthesis are described and discussed. It is happy for me to report some findings in my Ph.D. study. The conclusions obtained from each chapter are summarized as below.

In Chapter 2, the electrochemical property of monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ was investigated in two different types of $\mathrm{ILs}, \mathrm{Pyr}_{4} \mathrm{FAP}$ with the non-coordinating FAP^{-} anions and $\mathrm{Pyr}_{4} \mathrm{OTf}$ with the coordinating OTf anion, by measuring cyclic voltammetry. In the CVs of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$, a difference was observed in the ratio of the current densities between $\mathrm{Pyr}_{4} \mathrm{OTf}$ and $\mathrm{Pyr}_{4} \mathrm{FAP}$, indicating that $\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{2+}$ was stabilized in $\mathrm{Pyr}_{4} \mathrm{OTf}$ by the coordination of OTf anion in the $\eta^{1}-\mathrm{O}$ binding mode.

Toward development of the electrochemical NH_{3} synthesis by using transition metal complexes in IL under mild conditions, the SPE cell, where WE is supported with IL containing a transition metal complex on gas diffusion, was designed and fabricated. LSV in SPE cell showed that the current density under N_{2} was larger than that under Ar in the range of -1.0 to -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). In the case of using $\mathrm{Pyr}_{4} \mathrm{FAP}$, the maximum yield of NH_{3} per $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ was 27% at 20 C and the maximum current efficiency was 1.24% at early stage, but it was gradually decreased to 0.2% at 20 C . The yield of NH_{3} per Ti ion (\%) and current efficiency in the CPE of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ were lower than that in $\mathrm{Pyr}_{4} \mathrm{FAP}$, indicating that the synthesis of NH_{3} by using a transition metal complex is preferred in non-coordinating IL, such as $\operatorname{Pyr}_{4} \mathrm{FAP}$, as a solvent. The unique property of $\mathrm{Pyr}_{4} \mathrm{FAP}$ will be applied not only to electrochemical NH_{3} synthesis but also to various electrochemical reactions by using transition metal
complexes, because $\mathrm{Pyr}_{4} \mathrm{FAP}$ acts as a polar non-coordinating IL.
In Chapter 3, to understand the electrochemical synthesis of ammonia by using $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ILs that was described in Chapter 2, the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in both of conventional organic solvents and ILs were investigated by using UV-vis/NIR spectroscopy during electrochemical reduction. Even in non-coordinating $\mathrm{Pyr}_{4} \mathrm{FAP}$, the absorption band at 1194 nm was observed by electrochemical reduction from $\mathrm{Ti}(\mathrm{IV})$ to (III) in [$\left.\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. The absorption band at ca. 1200 nm is also observed in the UV-vis/NIR spectrum of dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, which is in good agreement with the absorption bands calculated with TDDFT method, which was assigned to MMCT. The characteristic absorption band at ca. 1200 nm was also observed in THF and $\mathrm{Pyr}_{4} \mathrm{OTf}$, which can be coordinated with $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ via Ti-O bond. Accordingly, the UV-vis/NIR spectra of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{Pyr}_{4} \mathrm{OTf}$ and 0.2 M $\mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ during the electrochemical reduction of $\mathrm{Ti}(\mathrm{IV})$ to $\mathrm{Ti}(\mathrm{III})$ demonstrate that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was generated from $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$in these three solvents.

To understand the existence of equilibrium reaction between dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ and monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, frozen solution EPR spectroscopy for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in Pyr_{4} FAP was studied in non-coordinating IL, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ($\mathrm{Pyr}_{4} \mathrm{FAP}$), and organic solvents of 0.2 M $\operatorname{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ and toluene under N_{2}. Interestingly, the spectrum measured in non-coordinating IL under ${ }^{14} \mathrm{~N}_{2}$ gave a triplet hyperfine splitting of the g_{z} signal, which was changed to a doublet pattern in the isotopic labeling experiment using ${ }^{15} \mathrm{~N}_{2}$. However, the EPR spectra in organic solvents did not give such a hyperfine splitting at the g_{z} signal.

These observations demonstrate that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ is in the equilibrium between
monomeric and dimeric species in both IL and organic solvents, and furthermore that the monomeric species is coordinated to dinitrogen in the non-coordinating IL, $\mathrm{Pyr}_{4} \mathrm{FAP}$. These findings may also indicate that $\mathrm{Pr}_{4} \mathrm{FAP}$ has unique properties capable of stabilizing the N_{2} coordinated-[$\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ species.

With a view to understanding the effect of ILs toward the N_{2} coordination to monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$, DFT calculations were carried out for dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the singlet (1) and triplet states (2), monomeric $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ (3), $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]$ (4), and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{N}_{2}\right)\right]^{\ddagger}$ in the transition state (4-TS) in toluene and IL, in which the effects of solvents were examined with applying their dielectric permittivities. The DFT studies revealed that $\Delta \mathrm{H}$ values for $\mathbf{1}(-6.99 \mathrm{kcal} / \mathrm{mol})$ and $2(-6.92 \mathrm{kcal} / \mathrm{mol})$ in toluene were lower than those in IL ($-3.85 \mathrm{kcal} / \mathrm{mol}$ for 1 and $-3.75 \mathrm{kcal} / \mathrm{mol}$ for 2, respectively). These results are well consistent with the experimental findings that the model complexes with a small dipole moment have been stabilized by the solvents with a small dielectric permittivity. Moreover, to consider the effect of FAP anion toward N_{2} coordination to titanocene, we further calculated 3, 4 and 4-TS with FAP anion (3'-FAP, 4'-FAP and 4'-FAP-TS) with empirical corrections (GD3BJ). Though the structures of titanocene in 3'-FAP and 4'-FAP are similar to those of 3' and $\mathbf{4}^{\mathbf{\prime}}$, without FAP anion, respectively, F atoms in FAP anion had weak interactions toward H atoms on Cp ring. It suggests that the interactions have contributed to stabilize 3'-FAP and 4'-FAP and lowered the activation energy of the N_{2} coordination reaction in 4'-FAP-TS. The N_{2} coordination to $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ was occurred in polar domain of $\mathrm{Pyr}_{4} \mathrm{FAP}$ due to formation of a complex with anion of IL, and as a result, it would have been obtained by frozen solution EPR spectroscopy.

In Chapter 4, electrochemical oxidation reaction for trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]($ depe $=$
$\mathrm{Et}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PEt}_{2}$) was carried out and the generation of dimeric molybdenum complex bridging $\left[\mathrm{N}_{2}\right]^{2-}$ ligand was revealed. The one electron electrochemical oxidation reaction of trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ was followed by time-dependent FT-IR, resonance Raman, and UV-vis spectroscopies during controlled-potential electrolysis (CPE). The time dependent FT-IR spectra during CPE showed decrease in the peak at $1938 \mathrm{~cm}^{-1}$ assigned to $v\left(\mathrm{~N}_{2}\right)$ in trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and increase in the peak at $2008 \mathrm{~cm}^{-1}$ assigned to $v\left(\mathrm{~N}_{2}\right)$ in the electrochemically-oxidized trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$. However, the increased peak at $2008 \mathrm{~cm}^{-1}$ disappeared after electrochemical oxidation reaction. The time-dependent resonance Raman spectra during CPE gave three bands at 1574, 1509 and $1294 \mathrm{~cm}^{-1}$, suggesting that N_{2} is activated by forming dimeric species, $\left(\mu-\mathrm{N}_{2}\right)\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$. Time-dependent UV-vis spectra during CPE showed decrease in the absorption bands at 323 and 493 nm derived from trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and increase in the absorption bands at 417 and 457 nm assigned to the oxidized trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$, and the absorption band appeared at 353 nm assigned to $\left(\mu-\mathrm{N}_{2}\right)\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$. To consider the assignment for these spectra, DFT and TDDFT calculations were also performed and they were in good agreement with the experimental results. Unfortunately, a nitride complex that will be generated by N_{2} cleavage was not observed. This is because the transition state of the reaction has high energy barrier. However, to the best of our knowledge, the finding that the bridging N_{2} ligand rather than the terminal N_{2} coordinated to the metal complex was activated by electrochemical oxidation reaction have not been reported yet. Understanding and control of the reactivity for N_{2} complex by electrochemical method are very important for realizing catalytic N_{2} fixation by using renewable energy.

On the contrary, in the electrochemical oxidation of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in
$\mathrm{Pyr}_{4} \mathrm{FAP}$, the resonance Raman spectra of trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and its oxidized species in Pyr_{4} FAP have revealed that a dimeric structure bridged with N_{2} is not generated before and after electrochemical oxidations. Since the generation of gases were observed in the electrochemical oxidation of trans $-\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in both $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{Pa}_{4} \mathrm{FAP} / \mathrm{THF}$ solutions, one molar amount of N_{2} at least from trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ is supposed to have been released by the electrochemical oxidation reaction. The FT-IR spectrum during the one-electron oxidation reaction in Pyr_{4} FAP showed increase in peak at $1955 \mathrm{~cm}^{-1}$ and decrease in peak at $1919 \mathrm{~cm}^{-1}$ and the increased peak did not disappear unlike that in THF solution. Accordingly, the $\operatorname{Mo}(\mathrm{I})-\mathrm{N}_{2}$ species formed after the structure change was stabilized and kept in Pyr_{4} FAP. DFT calculations for five-coordinate $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$with FAP anion were also performed with empirical correction (GD3BJ) in IL ($\varepsilon=14.7$) to consider the effect of FAP anion. The DFT calculations revealed that the $\Delta \mathrm{G}$ of $\left[\operatorname{Mo}(\operatorname{depe})_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$ interacted with FAP anion was $16.0 \mathrm{kcal} / \mathrm{mol}$ lower compared with that without FAP anion. The weak interaction may have contributed to stabilize monomeric $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$and suppressed the dimerization reaction of trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in the electrochemical oxidation reaction.

In general, the IL is known to have polar and nonpolar domain structures, which are composed of ionic parts and alkyl chain parts, respectively. Although most of polar conventional solvents act as coordinating solvent against unsaturated transition metal complexes, the polar domain in $\mathrm{Pyr}_{4} \mathrm{FAP}$ acts as non-coordinating polar solvent toward transition metal center. Interestingly, Pyr_{4} FAP weakly interacts with the transition metal complex to form a complex with anion of IL. Such weak interactions with anion parts of IL would be observed in the case of using IL. Therefore, it is one of the key factors for
reason why the reactivity in ILs is different from those in conventional organic solvents.
The conversion of N_{2} into NH_{3} is one of the most important topics in the view of scientific and engineering fields. The electrochemical NH_{3} synthesis in IL gave new findings in the research field involving N_{2} activation and ionic liquids. Therefore, in the future, this work will contribute to realize the sustainable energy society.

Appendix A: Supporting information in Chapters 2 and 3

A. 1 Design of the cell for UV-vis spectroscopy during CPE

Figure A1. Schematic drawing of UV-vis spectral cell made of quarts (bottom part) and pyrex glass (upper part). (a) Cu wires as a lead line, (b) PTFE tube filled by RTV rubber, (c) Teflon adapter (15/25), (d) a wrapped parafilm, (e) Cu wires as a lead line, (f) joint coiled by Cu wire, (g) QRE (Pt wire), (h) PTFE tube, (i) CE (Pt mesh), (j) WE (Pt mesh), and (k) quart cell (cell length: 1 mm).

A. 2 Design of SPE cell

(B)

Figure A2. (A) A schematic diagram and (B) picture of the SPE cell. (a) Aluminum plate with three holes (1.2 cm diameter), (b) a center hole for RE, (c) high nut, (d) Teflon connector (R $1 / 8$, inside diameter: 3 mm), (e) Teflon plate with a hole ($1 / 428 \mathrm{UNF}$) at the center for screwing the RE and two holes for connector, (f) stainless bolt, (g) Teflon plate with two holes for gas channel, (h) aluminum plate welded, (i) stainless steel seamless tubing ($1 / 4 \mathrm{inch}$), (j) gas inlet, (k) gas outlet, (l) gasket, (m) gasket with square window of 10 mm , (n) gasket in anode side, (o) CE: Pt mesh, (p) carbon paper (10 mm (D) $\times 20 \mathrm{~mm}(\mathrm{~W}) \times 0.37 \mathrm{~mm}(\mathrm{H})$) for fixing of Nafion membrane, (q) Nafion ${ }^{\text {® }} 212$ membrane, (r) parafilm (10 mm (D) $\times 10 \mathrm{~mm}$ (W)), (s) WE: carbon paper ($10 \mathrm{~mm} \times 20 \mathrm{~mm}$) coated with $50 \mu \mathrm{~L}$ of IL containing $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ or $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$, (t) Cu wire as a lead line, and (u) gasket in cathode side.

A. 3 Quantification of $\mathbf{H}_{\mathbf{2}}$

All generated H_{2} gas and flowed N_{2} gas were collected in the balloon, and the amount of the generated H_{2} gas was quantified by gas chromatography (SHIMADZU CORPORATION, GC-8A). The controlled potential electrolysis was performed under N_{2} at flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The outlet of the SPE cell was jointed to the balloon with a ball valve (Swagelok SS Ball Valve 1/4" straight, SW-SS-43GS4), a reducing port connector (Stainless Steel Swagelok Tube Fitting, Reducing Port Connector, $1 / 4 \mathrm{in}$ x $1 / 8 \mathrm{in}$. Tube OD, SS-401-PC-2), and a union tee (Stainless Steel Swagelok Tube Fitting, Union Tee, $1 / 8 \mathrm{in}$. Tube OD, SS-200-3) having a septum made of silicon (diameter: 6 mm , thickness: 4.5 mm , GL Sciences Inc., 3007-15101), and a male tube adapter (Stainless Steel Swagelok Tube Fitting, Male Tube Adapter, $1 / 8 \mathrm{in}$. Tube OD x $1 / 4 \mathrm{in}$. Male ISO Tapered Thread, SS-2-TA-1-4RT), as shown in Figure A3. The balloon was jointed with ISO tapered thread of the male tube adapter. When the quantification of H_{2} was performed, the ball valve connected to the gas outlet was closed and disconnected from the SPE cell. The GC analysis conditions are shown as follows. Column: SHINCARBON ST $50 / 80$, stainless column $4.0 \mathrm{~m}(2.0 \mathrm{~m} \times 2) 3.0 \mathrm{~mm}$ I.C., column temperature: $100{ }^{\circ} \mathrm{C}$, carrier gas: Ar, detecter: TCD, 80 mA , sample volume: $500 \mu \mathrm{~L}$. The gas tight syringe was used and subjected to GC analysis. Retention time for H_{2} was 5.7 min .

Figure A3. Pictures of parts for collecting H_{2} gas (A) before and (B) after assembling.

To understand the electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquid, diffusion coefficients and electrochemical rate constants of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquids were determined as follows.

A. 4 Calculation of diffusion coefficients ($D / \mathrm{cm}^{\mathbf{2}} \mathrm{s}^{-1}$)

Diffusion coefficients of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{Pyr}_{4} \mathrm{OTf}$ and $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ were determined from Cottrell equation by measuring chronoamperometry. ${ }^{1}$

$$
i=\frac{n F A \sqrt{D} c^{*}}{\sqrt{\pi t}}
$$

$i=$ current (A)
$n=$ number of electrons
$F=$ Faraday constant, $96,485(\mathrm{C} / \mathrm{mol})$
$A=$ electrode area $\left(\mathrm{cm}^{2}\right)$
$c^{*}=$ concentration of electroactive species $\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$
$D=$ diffusion coefficient for species $\left(\mathrm{cm}^{2} / \mathrm{s}\right)$
$t=$ time (s)

The chronoamperograms are shown in Figures A4, A5 and A6. Diffusion coefficient $\left(D / \mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$ of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ was calculated from the slope in $i-t^{-1 / 2}$ plots. The parameter used in calculation and calculated D are summarized in Table A1.

Table A1. Parameters obtained from chronoamperograms.

Parameter	$\mathrm{Pyr}_{4} \mathrm{FAP}$	$\mathrm{Pyr}_{4} \mathrm{OTf}$	$0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$
slope in $i-t^{-1 / 2}$ plot	0.169	0.1735	0.1845
$A\left(\mathrm{~cm}^{2}\right)$		7.85×10^{-3}	
$c^{*}\left(\mathrm{~mol} / \mathrm{cm}^{-3}\right)$	1.0×10^{-5}	1.0×10^{-6}	7.07×10^{-2}
$D\left(\mathrm{~cm}^{2} / \mathrm{s}\right)$	9.6×10^{-8}	1.0×10^{-7}	1.0×10^{-5}

All calculations were carried out as $\mathrm{n}=1$.

Diffusion coefficient for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}\left(1.2 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$ obtained in this study is similar to the value $\left(7.2 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$ in $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$ reported in previous literature. ${ }^{2}$

Figure A4. (A) Chronoamperogram of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ after the potential was stepped from 0 to $-1.6 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$and (B) $i-t^{-1 / 2}$ plots calculated from Figure $\mathrm{A} 4(\mathrm{~A})$.

Figure A5. (A) Chronoamperogram of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ after the potential was stepped from 0 to $-1.3 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$and (B) $i-t^{-1 / 2}$ plots calculated from Figure $\mathrm{A} 5(\mathrm{~A})$.

Figure A6. (A) Chronoamperogram of $1 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{PaP}_{4} \mathrm{FAP} / \mathrm{THF}(\mathrm{GCE}: \varphi 3 \mathrm{~mm})$ after the potential was stepped from 0 to $-1.6 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}\right)$and (B) $i-t^{-1 / 2}$ plots calculated from Figure $\mathrm{A} 6(\mathrm{~A})$.

A.5 Calculation of electrochemical rate constant ($\boldsymbol{k}^{0} / \mathrm{cm} \mathrm{s}^{-1}$)

Calculation of the electrochemical rate constant was performed using the peak separation of anodic and cathodic potentials, $\Delta E_{p}=E_{p a}-E_{p c}$, in the voltammograms according to the following equation reported in the previous literature. ${ }^{1,3}$

$$
\Psi=\frac{k^{0}}{[\pi D v(F / R T)]^{1 / 2}}=f\left(\Delta E_{p}\right)
$$

$$
\begin{array}{ll}
\Psi=\text { dimensionless rate parameter } & k^{0}=\text { electrochemical rate constant }\left(\mathrm{cm} \mathrm{~s}^{-1}\right) \\
F=\text { Faraday constant, } 96,485(\mathrm{C} / \mathrm{mol}) & v=\text { scan rate }(\mathrm{V}) \\
D=\text { diffusion coefficient for species }\left(\mathrm{cm}^{2} / \mathrm{s}\right) & R=\text { gas constant, } 8.314\left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \\
T=\text { absolute temperature }(\mathrm{K}) &
\end{array}
$$

Ψ value was estimated using the parameters listed in Table 1 that was reported in previous literature. ${ }^{3}$ The ΔE was determined from the CVs shown in Figures A8, A9, and S10 and Tables A6, A7 and A8. The obtained rate constants were summarized in Table A2.

Table A2. Parameters used in the calculation for $k^{0^{\prime}}$

Parameter	Pyr $_{4} \mathrm{FAP}$	Pyr $_{4} \mathrm{OTf}$	$0.2 \mathrm{M} \mathrm{Pyr} \mathrm{FAP}_{4} / \mathrm{FHF}$
ΔE	103	105	75
Ψ	0.5	0.5	1.5
D	9.64×10^{-8}	1.01×10^{-7}	1.15×10^{-5}
v	0.3	0.2	0.1
$k^{0^{0}}$	9.4×10^{-4}	7.8×10^{-4}	$1.8 \times 10^{-2^{*}}$

$\mathrm{T}=298$ was used in calculation.
*The calculated electrochemical rate constant $\left(1.8 \times 10^{-2} \mathrm{~cm} \mathrm{~s}^{-1}\right)$ is slightly smaller than the heterogeneous rate constant, k_{s}, of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in the redox of $\mathrm{Ti}(\mathrm{IV}) / \mathrm{Ti}(\mathrm{III})\left(0.04 \mathrm{~cm} \mathrm{~s}^{-1}\right)$ that was reported in the previous literature. ${ }^{2}$ Therefore, the obtained k^{0} values in Table A2 could be affected by IR drop and they were underestimated.

Table A3. Relationship between Ψ function parameter and peak potential separation, $\Delta \mathrm{E}_{\mathrm{p}}{ }^{* 3}$

$\Delta \mathrm{E}_{\mathrm{p}} / \mathrm{mV}$	Ψ						
61.6	6.0	82.8	1.0	220	0.10	620	2.0×10^{-3}
62.5	5.0	90.6	0.75	288	5.0×10^{-2}	691	1.0×10^{-3}
63.8	4.0	105	0.50	382	2.0×10^{-2}	763	5.0×10^{-4}
66.0	3.0	123	0.35	454	1.0×10^{-2}	857	2.0×10^{-3}
70.3	2.0	144	0.25	525	5.0×10^{-3}	929	1.0×10^{-3}

*The table is constructed by utilizing the digital simulation package DigiSim 3.0 (Bioanalytical System). (One-electron reduction, $D_{\mathrm{O}}=D_{\mathrm{R}}, \alpha_{\mathrm{c}}=0.5, E_{\lambda}-E^{0}=-1$) α_{c} : transfer coefficient, E_{λ} : switching potential.

A. 6 Influence of viscosity of solvents against \boldsymbol{D}

Ferrocene in ionic liquid has been reported that a plot of D versus $1 / \eta$ is predicted to be linear according to Stokes-Einstein equation ${ }^{4,5}$

$$
D=\frac{k_{B} T}{6 \pi \eta r_{H}}
$$

k_{B} : Bolzmann constant, $1.38064852(79) \times 10^{-23}\left(\mathrm{~J} \mathrm{~K}^{-1}\right)$
T : absolute temperature (K)
η : Viscosity (Pa s)
r_{H} : Stokes radius

If the D value obtained in this study is reasonable, a plot of D versus $1 / \eta$ is predicted to be linear. The plots are shown in Figure A7, and the linear relationship between D and $1 / \eta$ is obtained. Therefore, the obtained D is reasonable and the diffusion of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in ionic liquid is according to Stokes-Einstein equation as well as ferrocene.

Table A4. Viscosity of ionic liquids and diffusion coefficients of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$

Solvent	η^{*} $/ \mathrm{mPa} \mathrm{s}$	$1 / \eta$ $/ \mathrm{Pa}^{-1} \mathrm{~s}^{-1}$	D $/ 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
$\mathrm{Pyr}_{4} \mathrm{FAP}^{6}$	333	3.00	0.964
$\mathrm{Pyr}_{4} \mathrm{OTf}^{7}$	217	4.61	1.02
$0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}^{8}$	0.480	2083	115

*Viscosity at 293.15 K

Table A5.* Diffusion coefficients of ferrocene, Fc , and cobaltocene hexafluorophosphate, CcPF_{6}

Ionic liquid	viscosity $/ \mathrm{mPa} \mathrm{s}$	D_{Fc} $/ 10^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$	D_{CcPF6} $1 / 0^{-7} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
$\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\mathrm{BF}_{4}\right]$	112	1.83	1.11
$\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\mathrm{NO}_{3}\right]$	266	0.83	0.58
$\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\mathrm{PF}_{6}\right]$	371	0.59	0.47
$\left[\mathrm{P}_{14,6,6,6}\right][\mathrm{FAP}]$	464	0.86	0.33

*The parameters are reported in the previous literature. ${ }^{5}$
[C4mim]: 1-butyl-3-methylimidazolium cation \quad [$\mathrm{P}_{14,6,6,6}$]: tris(n-hexyl)tetradecylphosphonium cation

Figure A7. (A) Plots of D versus $1 / \eta$ and (B) expanded version of Figure A7(A) ($\bullet: 0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$, $\mathrm{Pyr}_{4} \mathrm{OTf}$ and $\left.\leqslant \mathrm{Pyr}_{4} \mathrm{FAP}\right)$.

A. 7 Cyclic voltammograms of $\left[\mathbf{C p}_{2} \mathbf{T i C l}_{2}\right]$

Figure A8. (A) Cyclic voltammograms of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ at scan rates of $50,100,200,300$, 400,500 , and $1000 \mathrm{mV} / \mathrm{s}$ (WE: GCE $\phi 1 \mathrm{~mm}, \mathrm{CE}: \mathrm{Pt}$ wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode). The potential is referred to the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple in $\operatorname{Pyr}_{4} \mathrm{FAP}$. (B) Plots of current density $\left(\mu \mathrm{A} / \mathrm{cm}^{2}\right)$ against $v^{1 / 2}$ $\left(\mathrm{V}^{1 / 2} / \mathrm{s}^{1 / 2}\right)$ calculated from Figure $\mathrm{A} 8(\mathrm{~A})$ (reduction wave: plots of positive current and oxidation wave: plots of negative one).

Figure A9. (A) Cyclic voltammograms of $10 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{OTf}$ at scan rates of 50, 100, 200, 300, 400, 500 , and $1000 \mathrm{mV} / \mathrm{s}$ (WE: GCE $\phi 1 \mathrm{~mm}, \mathrm{CE}: \mathrm{Pt}$ wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode). The potential is referred to the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple in $\mathrm{Pyr}_{4} \mathrm{OTf}$. (B) Plots of current density $\left(\mu \mathrm{A} / \mathrm{cm}^{2}\right)$ against $v^{1 / 2}$ $\left(\mathrm{V}^{1 / 2} / \mathrm{s}^{1 / 2}\right.$) calculated from Figure $\mathrm{A} 9(\mathrm{~A})$ (reduction wave: plots of positive current and oxidation wave: plots of negative one).

Figure A10. (A) Cyclic voltammograms of $0.15 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ at scan rates of 50 , 100, 200, 300, 400, 500, and $1000 \mathrm{mV} / \mathrm{s}$ (WE: GCE $\phi 1 \mathrm{~mm}, \mathrm{CE}$: Pt wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode). The potential is referred to the ferrocene/ferrocenium $\left(\mathrm{Fc}^{2} / \mathrm{Fc}^{+}\right)$couple in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. (B) Plots of current density $\left(\mu \mathrm{A} / \mathrm{cm}^{2}\right)$ against $v^{1 / 2}\left(\mathrm{~V}^{1 / 2} / \mathrm{s}^{1 / 2}\right)$ calculated from Figure $\mathrm{A} 10(\mathrm{~A})$ (reduction wave: plots of positive current and oxidation wave: plots of negative one).

Table A6. Parameters obtained from CV in Pyr_{4} FAP shown in Figure A8.

Scan rate $/ \mathrm{V}$	$j_{\mathrm{c}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$j_{\mathrm{a}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$\Delta E_{\mathrm{p}} / \mathrm{mV}$
1	801	-680	130
0.5	580	-498	118
0.4	521	-449	108
0.3	451	-388	103
0.2	366	-316	98
0.1	253	-216	85
0.05	172	-143	80

Table A7. Parameters obtained from CV in $\mathrm{Pyr}_{4} \mathrm{OTf}$ shown in Figure A9.

Scan rate $/ \mathrm{V}$	$j_{\mathrm{c}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$j_{\mathrm{a}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$\Delta E_{\mathrm{p}} / \mathrm{mV}$
1	720	-606	147
0.5	595	-446	126
0.4	471	-401	120
0.3	407	-348	114
0.2	331	-282	105
0.1	229	-194	96
0.05	154	-127	87

Table A8. Parameters obtained from CV in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ shown in Figure A10.

Scan rate $/ \mathrm{V}$	$j_{\mathrm{c}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$I_{\mathrm{a}} / \mu \mathrm{A} \mathrm{cm}^{-2}$	$\Delta E_{\mathrm{p}} / \mathrm{mV}$
1	105	-92.5	96
0.5	73.6	-65.5	85
0.4	66.2	-57.8	84
0.3	57.2	-50.9	79
0.2	46.3	-40.8	78
0.1	32.7	-29.3	75
0.05	23.4	-21.6	75

Figure A11. Cyclic voltammograms of $0.15 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ at $100 \mathrm{mV} / \mathrm{s}$ (WE: GCE $\phi 1 \mathrm{~mm}, \mathrm{CE}: \mathrm{Pt}$ wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode). The potential was refered to the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$ couple in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$. The redox potential of $\mathrm{Ti}(\mathrm{IV} / \mathrm{III})$ is observed at -1.317 and $-1.223 \mathrm{~V},\left(E_{1 / 2}\right.$: -1.27 V) and the reduction of $\mathrm{Ti}(\mathrm{III}) / \mathrm{Ti}(\mathrm{II})$ is observed at -2.470 V .

Figure A12. Cyclic voltammograms of $1 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{P}_{4} \mathrm{FAP} / \mathrm{THF}$ at $100 \mathrm{mV} / \mathrm{s}$ (WE: GCE $\phi 1$ mm, CE : Pt wire, $\mathrm{RE}: \mathrm{Ag} / \mathrm{Ag}^{+}$electrode). The potential was refered to the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$ couple in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$.

Table A9. Redox potentials of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$ that was obtained from Figure A12.

	$E_{\text {red1 }}$	$E_{\text {red2 }}$	$E_{\text {red } 3}$		$E_{\text {red4 }}$	
Potential *	-0.106	-0.653	-1.259		-2.463	
	$E_{\mathrm{ox} 1}$	$E_{\mathrm{ox} 2}$	$E_{\mathrm{ox} 3}$	$E_{\mathrm{ox} 4}$	$E_{\mathrm{ox} 5}$	$E_{\mathrm{ox} 6}$
Potential *	0.017	-0.750	-1.263	-1.735	-1.983	-2.333

[^0]
A. 8 UV-vis/NIR spectra of $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right],\left[\mathrm{Cp}^{*}{ }_{2} \mathbf{T i C l}\right]$ and $\left[\mathrm{Cp}_{2} \mathbf{V C l}_{2}\right]$

Figure A13. UV-vis/NIR spectra of $5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$.

Figure A14. UV-vis/NIR spectrum of $5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{Pr}_{4} \mathrm{FAP} / \mathrm{THF}$.

Figure A15. UV-vis/NIR spectrum of $5 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene.

Figure A16. UV-vis/NIR spectrum of $5 \mathrm{mM}\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{TiCl}\right]$ in toluene.

Figure A17. UV-vis/NIR spectrum of $5 \mathrm{mM}\left[\mathrm{Cp}_{2} \mathrm{VCl}_{2}\right]$ in toluene.

Table A10. Summary of UV-vis/NIR spectra

Complex	Solvent	$\lambda_{\text {max }} / \mathbf{n m}\left(\varepsilon / \mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$	Reference
	$\mathrm{Pyr}_{4} \mathrm{FAP}$	$449(930), 697(89), 817(77), 1167(28)$	this work, 9
$\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}$	$0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$	$452(120), 751(88), 817(86), 1138(46)$	this work, 9
	THF	$456 \mathrm{~nm}^{a}$	10
$\mathrm{Cp}_{2}{ }_{2} \mathrm{TiCl}$	Toluene	$456(1300), 690(98), 813(82), 1164(23)$	this work, 9
$\mathrm{Cp}_{2}{ }_{2} \mathrm{TiCl}$	Toluene	$558(110), 640(77)$	this work, 9
$\mathrm{Cp}_{2} \mathrm{VCl}_{2}$	Toluene	$560(144)$	11

${ }^{a} \varepsilon$ values are noted in $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$ in the parentheses.

Figure A18. UV-vis/NIR spectra of $2,4,8$, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\operatorname{Pyr}_{4} \mathrm{FAP}$.

Figure A19. UV-vis/NIR spectra of 2, 4, 8, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in toluene.

Figure A20. UV-vis/NIR spectra of $2,4,8$, and $12 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in THF.

A. 9 Cyclic voltammogram of $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right]$ in ionic liquids

In Chapter 2, we described that dimeric $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was generated after electrochemical reduction of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$. To investigate the redox behaviors of the $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right], \mathrm{CVs}$ of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$ were measured, which are shown in Figures A21(A) and A21(B), respectively, where they were swept from the rest potential to negative potential region. The redox potential values are summarized in Table A11. In Figure A21(A), the redox waves observed as $E_{\text {red } 1} / E_{\text {ox } 1}$ and $E_{\text {red } 2} / E_{\text {ox } 2}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ are similar to those of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$ that was reported in previous literature. ${ }^{12,13}$ Thus, the observed redox waves are characterized according to the following scheme $\left(E_{\text {red } 1} / E_{\text {ox } 1}\right.$: Eq. (1), $E_{\text {red } 2} / E_{\text {ox } 2}$: Eqs. (2) and (3)) in the same way described in previous literature. ${ }^{12,13}$

In Figure A21(B), the redox couple observed at $E_{\text {red } 1} / E_{\text {ox } 1}$ is also characterized according to Eq. (1), because the observed redox waves are similar to that in Figure A21(A). Interestingly, in the CV in $\mathrm{Pyr}_{4} \mathrm{OTf}$, as shown in Figure $\mathrm{A} 21(\mathrm{~B})$, the ratio of the current densities observed at $E_{\text {red } 2} / E_{\text {ox } 2}$ against that at $E_{\text {red } 1} / E_{\text {ox1 }}$ was quite larger than that in $\operatorname{Pyr}_{4} \mathrm{FAP}$, suggesting that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ generated in $\mathrm{Pyr}_{4} \mathrm{OTf}$ is coordinated with OTf anion. The shift is reasonable, because Daasbjerg and co-workers reported that the redox potential of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$ was shifted to negative
potential region by addition of hexamethylphosphoramide (HMPA) that is a highly polar and aprotic solvent, through the coordination of O atom in HMPA to Ti nucleus. ${ }^{14}$ Accordingly, for the CV measurement in $\mathrm{Pyr}_{4} \mathrm{OTf}$ (Figure A21(B)), we estimated that the redox waves observed as $\mathrm{E}_{\text {red2 }} / \mathrm{E}_{\mathrm{ox} 2}$ has been derived from the redox of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{OTf})\right]^{+}$in addition of Eqs. (2) and (3).

The irreversible reduction wave, $E_{\text {red }}$, at -2.25 V showed in Figure A21(B) is characterized to the reduction of $\mathrm{Ti}(\mathrm{III})$ to $\mathrm{Ti}(\mathrm{II})$, which is similar to that $\left(E_{\text {red } 3}\right.$ at $\left.-2.21 \mathrm{~V}\right)$ of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$, as shown in Figure A21(A), although the oxidation wave was not observed. This is because $\mathrm{Ti}(\mathrm{II})$ species is very unstable to occur the polymerization by forming $\mathrm{Ti}-\mathrm{C}$ bond due to the reaction with cyclopentadienyl group in ILs like that in THF, as described in the previous literature. ${ }^{15}$

$$
\begin{align*}
& {\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{+}-\mathrm{e}^{-} } \rightleftharpoons \tag{1}\\
& {\left[\mathrm{Cp}_{2} \mathrm{Ti}^{2}{ }^{2+}\right.} \tag{2}\\
& {\left[\mathrm{CiCl}_{2}\right]-\mathrm{e}^{-} } \rightleftharpoons \tag{3}\\
& {\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right]^{+}\right.} \\
& {\left[(\mathrm{TiCl})_{2}\right]+\mathrm{e}^{-} } \rightleftharpoons\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]^{-}
\end{align*}
$$

Figure A21. Cyclic voltammograms of $10 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ in (A) $\mathrm{Pyr}_{4} \mathrm{FAP}$ and (B) $\mathrm{Pyr}_{4} \mathrm{OTf}$ (WE: GCE ($\varphi 1 \mathrm{~mm}$), CE: Pt wire, RE: $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode, scan rate: $100 \mathrm{mV} / \mathrm{s}$, 1 st cycle: blue, 2 nd cycle: red, and 3rd cycle: gray). The potentials were referred to the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$couple in $\mathrm{Pyr}_{4} \mathrm{FAP}$ and $\mathrm{Pyr}_{4} \mathrm{OTf}$, respectively.

Table A11. Summary of redox potentials for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ and $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ shown in Figure A21

Complex	Anion of IL	Redox potential (V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$)							
		$E_{\text {red1 }}$	$E_{\text {ox1 }}$	$\boldsymbol{E}_{\text {red2 }}$	$E_{0 \times 2}$	$E_{1 / 2}$	$\boldsymbol{E}_{\text {red3 }}$	$\boldsymbol{E}_{\text {0x } 3}$	$\boldsymbol{E}_{\text {red4 }}$
$\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$	FAP	-0.63	-0.43	-1.05	-1.05	-1.05	-2.21	-2.12	-2.42
	OTf	-0.51	-0.44	-1.11	-1.04	-1.07	-2.25	-	-

A. 10 Electrochemical synthesis of $\mathbf{N H}_{3}$ by using $\left[\left(\mathbf{C p}_{2} \mathbf{T i C l}\right)_{2}\right]$ in SPE cell

The CPE of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was performed in the range of -1.0 to -1.4 V , but NH_{3} was not detected. In contrast, when CPE was carried out at $-1.5 \mathrm{~V}, \mathrm{NH}_{3}$ was generated. The yields of NH_{3} per $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right](\%)$ and current efficiency (\%) against consumed electric charge are shown in Figures A22(A) and A22 (B), respectively. The maximum yield of NH_{3} per $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ is 68% at 29.9 C , and thus the yield of NH_{3} per Ti ion is 34%. The obtained yield is significantly higher than that reported previously for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\left(1.45 \%\right.$ (in $\left.0.3 \mathrm{M} \mathrm{LiClO}_{4} / \mathrm{MeOH}\right) .{ }^{16}$ The maximum current efficiency shown in Figure A22(B) is 1.44% at 5.28 C. When the CPE by using [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$] in Pyr_{4} FAP, as described in previous report, ${ }^{17}$ was carried out, the maximum current efficiency was found to be 1.24% at the early stage of electrolysis. The maximum current efficiency determined for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ is slightly greater than the previous value $(0.28 \%$ in $0.3 \mathrm{M} \mathrm{LiClO} 4 / \mathrm{MeOH}){ }^{16}$ although the current efficiency at the early stage (Figure A22(B)) is 0.80%. In the case of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ in Pyr_{4} FAP reported previously, the maximum current efficiency was obtained at an early stage, and then gradually decreased. However, the current efficiency for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ achieved its maximum value after consuming some of the electric charges at the early stage. This behavior has not yet been rationalized but it is possible that an induction period occurs during electrolysis. The current efficiency gradually decreases to 0.30%. This is similar to the previous result using [$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$] in Pyr_{4} FAP. H_{2} quantification was also carried out, and the current efficiency was estimated to be 89% at 5.0 C under N_{2} atmosphere. In the CPE for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ at -1.5 V (vs. $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$ under $\mathrm{Ar}, \mathrm{NH}_{3}$ was not generated, suggesting that the NH_{3} obtained in the reaction was converted from N_{2}. Additionally, quantification of hydrazine was performed, but NH_{3} was not detected, suggesting that
coordinated N_{2} was protonated according to the distal pathway ${ }^{18}$ and/or that N_{2} triple bond was cleaved immediately if a cluster structure was formed. ${ }^{19,20}$ The results obtained for $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]\right.$ are similar to the results obtained for $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right] .{ }^{17}$

Figure A22. (A) Plots of NH_{3} yields per Ti ion (\%) against the consumed electric charge (C) and plots of current efficiency (\%) (B) against the consumed electric charge (C), which are obtained from CPE by using $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right)_{2}\right.$.

A. 11 Linear sweep voltammograms of $\left[\left(\mathrm{Cp}_{2} \mathbf{T i C l}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathbf{F A P}$

To investigate the active species generated during electrolysis at -1.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$ in a SPE cell, ${ }^{17}$ we evaluated the electrochemical synthesis of NH_{3} using $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in the equilibrium state with $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$. Because the key intermediate for NH_{3} synthesis is monomeric [$\mathrm{Cp}_{2} \mathrm{TiCl}$ allowing the N_{2} coordination, as described in Chapter 3. ${ }^{9}$ The linear sweep voltammograms (LSVs) of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ measured before CPE are shown in Figure A23(A). The red line shows the result obtained with treatment under an N_{2} atmosphere, and the blue line indicates the result obtained under an Ar atmosphere. The currents under N_{2} and Ar were observed in the range of -0.6 V to -1.0 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$, suggesting that protons react with $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and $/$ or $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ and that H_{2} evolution reaction occurs after the generated species is reduced. Therefore, hydride species such as $\left[\mathrm{Cp}_{2} \mathrm{TiHCl}\right]$ is generated during electrochemical reduction. Moreover, the current measured under N_{2} in the range of -1.0 to $-1.5 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$ is significantly greater than the current measured under Ar , suggesting that $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ and/or $\left[\mathrm{Cp}_{2} \mathrm{TiCl}\right]$ react with N_{2}.

Figure A23. (A) LSVs of $10 \mathrm{mM}\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in SPE under N_{2} (red line) or Ar (blue line) (Scan rate: $5 \mathrm{mV} / \mathrm{s}$).

A. 12 DSC measurement

To understand the phase transition in $\mathrm{Pyr}_{4} \mathrm{FAP}$, the melting point of $\mathrm{Pyr}_{4} \mathrm{FAP}$ was investigated by DSC measurement. The results are shown in Figure A24. The melting point of $\mathrm{Pyr}_{4} \mathrm{FAP}$ is $-21.6^{\circ} \mathrm{C}$. Although the DSC measurement of $\mathrm{Pyr}_{4} \mathrm{FAP}$ containing $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ was also performed, the results are similar to the result of $\mathrm{Pyr}_{4} \mathrm{FAP}$.

Figure A24. DSC measurement for $\mathrm{Pyr}_{4} \mathrm{FAP}$ (Rate of temperature increase: $10^{\circ} \mathrm{C} / \mathrm{min}$).

A. 13 References

1. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, $2^{\text {nd }}$ ed.; Wiley: New York; pp 242.
2. R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, Organometallics, 2004, 23, 1866.
3. S. Tanimoto and A. Ichimura, J. Chem. Educ., 2013, 90, 778.
4. C. L. Bentley, J. Li, A. M. Bond, and J. Zhang, J. Phys. Chem. C., 2016, 120, 16516.
5. E. I. Rogers, D. S. Silvester, D. L. Poole, L. Aldous, C. Hardacre, and R. G. Compton, J. Phys. Chem. C, 2008, 112, 2729.
6. S. Stevanoic and M. F. Costa Gomes, J. Chem. Thermodynamics, 2013, 5965.
7. M. Okuniewski and K. Paduszyński, U. Domańska, J. Chem. Eng. Data, 2016, 61, 1296.
8. D.H.S. Ramkumar and A.P. Kudchadker, J. Chem. Eng. Data, 1989, 34, 463.
9. A. Katayama, T. Inomata, T. Ozawa and H. Masuda, Dalton Trans., 2017, 46, 7668.
10. M. Paradas, A. G. Campaña, T. Jiménez, R. Robles, J. E. Oltra, E. Buñue, J. Justicia, D. J. Cárdenas and J. M. Cuerva, J. Am. Chem. Soc., 2010, 132, 12748.
11. J. W. Pattiasina, H. J. Heeres, F. V. Bolhuis, A. Meetsma, J. H. Teuben and A. L. Spek, Organometallics, 1987, 6, 1004.
12. R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, Organometallics, 2004, 23, 1866.
13. R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, J. Am. Chem. Soc. 2004, 126, 7853.
14. J. Larsen, R. J. Enemærke, T. Skrydstrup and K. Daasbjerg, Organometallics, 2006, 25, 2031.
15. J. Langmaier, Z. Samec, V. Varga, M. Horáček and K. Mach, J. Organomet. Chem. 1999, 579, 348.
16. J. Y. Becker, S. Avraham (Tsarfaty) and B. Posin, J. Electroanal. Chem. 1987, 230, 143.
17. A. Katayama, T. Inomata, T. Ozawa and H. Masuda, Electrochem. Commun. 2016, 67.
18. Distal pathway: The N_{2} molecule coordinated to monomeric metal complex in the end-on fashion is cleaved after three hydrogenations to the distal N atom to prepare nitride complex and release NH_{3}, and then, the nitride complex is protonated to generate NH_{3}. B. M. Hoffman, D. Lukoyanov, D. R. Dean, and L C. Seefeldt, Acc. Chem. Res., 2013, 46, 587.
19. G. P. Pez, P Apgar, and R. K. Crissey, J. Am. Chem. Soc. 1982, 104, 482.
20. T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, and Z. Hou, Science, 2013, 340, 1549.

Appendix B: Supporting information in Chapter 3

B. 1 Structural information of model complexes

Table B1. Selected bond lengths (\AA) and angles (degree) optimized for the model complexes, $\mathbf{1}$ and 2, and their comparison with crystal structure of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ reported in previous literature ${ }^{1,2}$

	singlet $^{\mathbf{2}}$	triplet $^{\mathbf{2}}$	Crystal structure $^{\mathbf{1}}$
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.57351	2.57499	$2.536(1)$
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.56749	2.57043	$2.545(2)$
$\mathrm{Ti}(2)-\mathrm{Cl}(1)$	2.56390	2.56611	$2.545(2)$
$\mathrm{Ti}(2)-\mathrm{Cl}(2)$	2.57424	2.57675	$2.558(1)$
$\mathrm{Ti}(1)-\mathrm{Cp}$ (centroid)	2.090	2.089	2.058
$\mathrm{Ti}(1)-\mathrm{Cp}$ ' (centroid)	2.090	2.089	2.053
$\mathrm{Ti}(2)-\mathrm{Cp}($ centroid $)$	2.090	2.089	2.058
$\mathrm{Ti}(2)-\mathrm{Cp}$ ' (centroid)	2.093	2.092	2.057
$\mathrm{Ti}(1)-\mathrm{Ti}(2)$	3.91615	3.94936	3.943
$\mathrm{Ti}-\mathrm{Cl}-\mathrm{Ti}$	$99.3,99.2$	$100.4,100.2$	$101.8,101.2$
$\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$	$80.7,80.7$	$79.7,79.6$	$78.2,78.6$

Table B2. Selected bond lengths (\AA) and angles (degree) for optimized model complexes with applying the dielectric permittivity of Pyr_{4} FAP (14.7)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	4-TS
Ti-Ti	4.0153	4.0657	-	-	-
Ti-Cl	2.5953	2.5987	2.3870	2.4849	2.4175
Ti-Cl-Ti	101.37	102.9325	-	-	-
Cl-Ti-Cl	78.6	77.0707	-	-	-
Cp-Ti	2.0758	2.0789	2.0568	2.0719	2.0592
Cp-Ti-Cp	132.32	132.8116	137.1751	134.6382	136.4527
Cp-Ti-Cl	108.3	107.7020	111.3522	107.6757	109.8719
N-N	-	-	-	1.1197	1.1069
Ti-N	-	-	-	2.1156	2.9406
Ti-N-N	-	-	-	178.3	158.6977
N-Ti-Cl	-	-	-	84.80	79.6063
Cp-Ti-N	-	-	-	105.1613	100.6478

Table B3. Selected bond lengths (\AA) and angles (degree) for optimized model complexes with applying the dielectric permittivity of toluene (2.37471)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4 - T S}$
$\mathrm{Ti}-\mathrm{Ti}$	3.9964	4.0495	-	-	-
$\mathrm{Ti}-\mathrm{Cl}$	2.5882	2.5921	2.3584	2.4536	2.3801
$\mathrm{Ti}-\mathrm{Cl}-\mathrm{Ti}$	101.07	102.7233	-	-	-
Cl-Ti-Cl	78.9254	77.2755	-	-	-
Cp-Ti	2.074	2.0767	2.0584	2.0745	2.0607
Cp-Ti-Cp	132.89	132.7489	137.2547	134.7650	137.8040
Cp-Ti-Cl	108.18	108.39	111.3930	107.5242	109.8588
$\mathrm{~N}-\mathrm{N}$	-	-	-	1.12	1.1083
$\mathrm{Ti}-\mathrm{N}$	-	-	-	2.1154	3.0106
$\mathrm{Ti}-\mathrm{N}-\mathrm{N}$	-	-	-	178.1404	148.1632
$\mathrm{~N}-\mathrm{Ti}-\mathrm{Cl}$	-	-	-	85.1547	99.8257

Table B4. Selected bond lengths (\AA) and angles (degree) for optimized model complexes with applying the electric permittivity of THF (7.4257)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4 - T S}$	$\mathbf{5}$
Ti-Ti	4.0118	4.0629	-	-	-	-
Ti-Cl	2.5938	2.5974	2.3797	2.4774	2.4105	2.5074
Ti-Cl-Ti	101.31	102.9047	-	-	-	-
Cl-Ti-Cl	78.6904	77.0974	-	-	-	-
Cp-Ti	2.0760	2.0753	2.0567	2.0724	2.0600	2.0879
Cp-Ti-Cp	132.38	132.7087	137.1842	134.7087	136.7105	133.6646
Cp-Ti-Cl	108.3509	108.4405	111.3514	107.6305	109.8740	107.8575
N-N	-	-	-	1.1198	1.1070	-
Ti-N	-	-	-	2.1155	2.9406	-
Ti-N-N	-	-	-	178.2641	158.9612	-
N-Ti-Cl	-	-	-	84.8848	79.5358	-
Cp-Ti-N	-	-	-	105.1268	100.69	-
Ti-O	-	-	-	-	-	2.2635
Cl-Ti-O	-	-	-	-	-	84.4415
Cp-Ti-O	-	-	-	-	106.0570	
Cl-Ti-O	-	-	-	-	84.4415	

Table B5. Selected bond lengths (\AA) and angles (deg) for optimized model complexes by using BP86/TZVP with Empirical Dispersion=GD3BJ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ (14.7)

	$\mathbf{3}$,	$\mathbf{4}$	$\mathbf{4}, \mathbf{T S}$	$\mathbf{3}$ '-FAP	4'-FAP	4'-FAP-TS
Ti1-Cl1	2.3755	2.4690	2.3891	2.3810	2.4779	2.4000
Cp1-Ti1	2.0484	2.0553	2.0443	2.0805	2.0529	2.0423
Cp1-Ti-Cp2	132.6	134.7	137.25	132.6	134.6	137.1
Cp1-Ti-Cl1	108.5	108.0	110.57	108.3	107.8	110.3
N1-N2	-	1.1199	1.1077	-	1.1196	1.1072
Ti1-N1	-	2.0995	2.9845	-	2.0987	2.9487
Ti1-N1-N2	-	178.12	144.53	-	178.77	144.617
N1-Ti1-Cl1	-	85.2	79.9	-	84.9	76.85
F15-H1	-	-	-	3.8205	3.8974	3.5593
F15-H2	-	-	-	2.5147	2.4596	2.5480
F15-H6	-	-	-	2.5468	2.7927	2.9021
F15-H7	-	-	-	3.168	2.7080	2.6088
F5-H2	-	-	-	2.7660	2.6499	2.9469
F5-H1	-	-	-	2.8480	2.8546	2.7213
F10-H1	-	-	-	2.6159	2.7475	2.5827
F10-H6	-	-	-	2.6472	2.6748	2.6554
F10-N1	-	-	-	3.2935	3.2985	
F10-N2	-	-	-	3.2999	3.2828	
F9-H6	-	-	-	2.5828	2.6547	
P1-F16	-	-	-	1.6922	1.6839	
P1-F17	-	-	-	1.6836	1.6924	

Figure B1. The optimized structures for 3' (left) and $\mathbf{4}^{\prime}($ right $)$.

Figure B2. The optimized structure for 3'-FAP (left) and 4'-FAP (right).

Figure B3. The optimized structure for 4'-TS (left) and 4'-FAP-TS (right).

Figure B4. The optimized structure of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{THF})\right]$ (5) with solvation model $\varepsilon=7.4257$ (purple: Ti atom, green: Cl atom, black: C atom, blue: N atom, red: O atom, and white: H atom).

B. 2 TD-DFT calculations of model complexes in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Figure B5. Absorption spectra of $\mathbf{1}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ calculated by TD-DFT.

Table B6. Calculated transitions of $\mathbf{1}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Excited State	Energy (eV)	Wavelength $(\mathbf{n m})$	$\mathbf{f}_{\text {osc }}$	Transition	$\mathbf{\%}$
3	1.4771	839	0.1457	$109 \rightarrow 110$	69.1
				$109 \rightarrow 116$	28.1
4	1.5138	819	0.0004	$109 \rightarrow 111$	1093
				$109 \rightarrow 113$	89.3
7	1.9028	652	0.076	$109 \rightarrow 110$	$109 \rightarrow 116$
				$109 \rightarrow 118$	4.7
9	2.0287	611	0.0816	$109 \rightarrow 110$	12.1
			$109 \rightarrow 116$	26.7	
11	3.1608	392	0.0036	$109 \rightarrow 118$	58.8
13	3.6202	342	0.0124	$105 \rightarrow 110$	99.0

$$
\underbrace{\mathrm{L}}_{\mathrm{x}}
$$

Figure B6. Molecular orbitals for model complex 1 in $\operatorname{Pyr}_{4} \operatorname{FAP}(\varepsilon=14.7)$ (isosurface values: $\pm 0.07(109,110$, $111,113,116$ and 118), ± 0.04 (105 and 107)).

Figure B7. Absorption spectra of $\mathbf{2}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ calculated by TD-DFT.

Table B7. Calculated transitions of $\mathbf{2}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Excited State	Energy (eV)	$\begin{gathered} \text { Wavelength } \\ (\mathrm{nm}) \\ \hline \end{gathered}$	$\mathrm{f}_{\text {osc }}$	Transition	\%
2	1.278	970	0.0003	$109 \mathrm{~A} \rightarrow 111 \mathrm{~A}$	51.9
				$110 \mathrm{~A} \rightarrow 113 \mathrm{~A}$	10.6
				$110 \mathrm{~A} \rightarrow 114 \mathrm{~A}$	31.9
3	1.6791	738	0.0013	$109 \mathrm{~A} \rightarrow 112 \mathrm{~A}$	9.7
				$109 \mathrm{~A} \rightarrow 113 \mathrm{~A}$	25.2
				$109 \mathrm{~A} \rightarrow 114 \mathrm{~A}$	8.8
				$110 \mathrm{~A} \rightarrow 112 \mathrm{~A}$	43.7
				$110 \mathrm{~A} \rightarrow 113 \mathrm{~A}$	7.4
5	1.8235	680	0.0007	$109 \mathrm{~A} \rightarrow 115 \mathrm{~A}$	44.1
				$110 \mathrm{~A} \rightarrow 116 \mathrm{~A}$	52.1
14	3.6859	336	0.0384	$109 \mathrm{~A} \rightarrow 115 \mathrm{~A}$	53.6
				$110 \mathrm{~A} \rightarrow 116 \mathrm{~A}$	44.3
16	3.8039	326	0.0018	107B \rightarrow 110B	16.2
				$108 \mathrm{~B} \rightarrow 109 \mathrm{~B}$	61.6
18	3.8303	324	0.0058	$107 \mathrm{~A} \rightarrow 113 \mathrm{~A}$	14.5
				$108 \mathrm{~A} \rightarrow 112 \mathrm{~A}$	33.9
				108B \rightarrow 109B	11.0
				$108 \mathrm{~B} \rightarrow 113 \mathrm{~B}$	10.2
21	4.0787	304	0.0184	$107 \mathrm{~A} \rightarrow 115 \mathrm{~A}$	16.6
				$108 \mathrm{~A} \rightarrow 116 \mathrm{~A}$	37.7
				$108 \mathrm{~B} \rightarrow 111 \mathrm{~B}$	13.7
22	4.0889	303	0.0067	$108 \mathrm{~A} \rightarrow 111 \mathrm{~A}$	11.0
				$108 \mathrm{~A} \rightarrow 116 \mathrm{~A}$	14.7
				$108 \mathrm{~B} \rightarrow 111 \mathrm{~B}$	40.3

114α

111α

115α

112α

116α

113α

109 α

107α

110α (HOMO)

108α

Figure B8. Molecular orbitals for model complex $\mathbf{2}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ (isosurface values: ± 0.07 (109α, $110 \alpha, 111 \alpha, 112 \alpha, 113 \alpha, 114 \alpha, 115 \alpha$ and $116 \alpha), \pm 0.04(107 \alpha$ and $108 \alpha)$).

109β

108β (HOMO)

Figure B9. Molecular orbitals for model complex 2 in Pyr_{4} FAP (isosurface values: $\pm 0.07(109 \beta, 111 \beta, 113 \beta$), \pm 0.04 (107 β and $108 \beta)$).

Figure B10. Molecular orbitals for model complex 1 (isosurface values: ± 0.02 (109)) (left) and 2 (right) (Isosurface values: $\pm 0.01(109 \alpha)$ in Pyr_{4} FAP.

Figure B11. Absorption spectra of $\mathbf{3}$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ calculated by TD-DFT.

Table B8. Calculated transitions of $\mathbf{3}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Excited State	Energy (eV)	Wavelength $(\mathbf{n m})$	$\mathbf{f}_{\text {osc }}$	Transition	$\mathbf{\%}$
2	1.9465	637	0.0009	$55 \mathrm{~A} \rightarrow 57 \mathrm{~A}$	98.4
3	2.1666	572	0.0011	$55 \mathrm{~A} \rightarrow 58 \mathrm{~A}$	60.9
			$55 \mathrm{~A} \rightarrow 59 \mathrm{~A}$	36.9	
4	2.2145	560	0.0005	$55 \mathrm{~A} \rightarrow 58 \mathrm{~A}$	36.6
			$55 \mathrm{~A} \rightarrow 59 \mathrm{~A}$	59.9	
6	3.5868	346	0.0002	$54 \mathrm{~A} \rightarrow 56 \mathrm{~A}$	14.5
			$54 \mathrm{~B} \rightarrow 55 \mathrm{~B}$	82.7	
9	3.8204	325	0.0033	$52 \mathrm{~A} \rightarrow 56 \mathrm{~A}$	72.7
			$52 \mathrm{~B} \rightarrow 55 \mathrm{~B}$	22.8	
10	3.9819	311	0.0045	$53 \mathrm{~A} \rightarrow 56 \mathrm{~A}$	6.6
				$54 \mathrm{~B} \rightarrow 57 \mathrm{~A}$	64.2
11	4.0723	304		$51 \mathrm{~A} \rightarrow 56 \mathrm{~A}$	22.1
				$51 \mathrm{~B} \rightarrow 55 \mathrm{~B}$	72.5

Figure B12. Molecular orbitals for model complex 3 in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ (isosurface values: ± 0.07 (51α, $52 \alpha, 53 \alpha, 54 \alpha, 55 \alpha, 56 \alpha, 57 \alpha, 58 \alpha$ and 59α).

57 β

Figure B13. Molecular orbitals for model complex 3 in $\operatorname{Pyr}_{4} F A P(\varepsilon=14.7)$ (isosurface values: ± 0.07 (51 β, $52 \beta, 54 \beta, 55 \beta$ and $57 \beta)$.

Figure B14. Absorption spectra of 4 in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ calculated by TD-DFT.

Table B9. Calculated transitions of 4 in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
1	1.636	758	0.0009	$62 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	78.0
				$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	11.5
				$62 \mathrm{~A} \rightarrow 68 \mathrm{~A}$	8.1
2	1.7448	711	0.0004	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	9.4
				$62 \mathrm{~A} \rightarrow 65 \mathrm{~A}$	82.2
				$62 \mathrm{~A} \rightarrow 72 \mathrm{~A}$	4.7
3	2.0607	602	0.0003	$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	64.2
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	9.0
				$62 \mathrm{~A} \rightarrow 68 \mathrm{~A}$	17.9
4	2.1521	576	0.0011	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	8.3
				$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	7.0
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	76.9
6	2.9656	418	0.0452	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	73.0
				$62 \mathrm{~A} \rightarrow 65 \mathrm{~A}$	9.2
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	10.4
8	3.4671	358	0.0009	$61 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	59.1
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	22.0
9	3.7317	332	0.0072	$60 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	65.3
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	17.9
11	3.8106	325	0.0196	$61 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	22.1
				$59 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	11.0
				$60 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	26.6
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	31.1

$$
68 \alpha
$$

61 α

62α (HOMO)

Figure B15. Molecular orbitals for model complex 4 in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ (isosurface values: ± 0.07 (61α, $62 \alpha, 63 \alpha, 64 \alpha, 65 \alpha, 66 \alpha, 67 \alpha, 68 \alpha)$ and $\pm 0.04(72 \alpha)$.

60β

Figure B16. Molecular orbitals for model complex 4 in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$ (isosurface values: ± 0.07 (59ß, $60 \beta, 62 \beta$ and $63 \beta)$).

B. 3 TD-DFT calculations of model complexes in THF ($\varepsilon=7.4257$)

UV-vis/NIR spectrum of $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr}_{4} \mathrm{FAP} / \mathrm{THF}$, as shown in Figure 3.4, displays the absorption bands at $449,751,817$ and 1138 nm , respectively. To characterize these absorption bands, TD-DFT calculations for $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$ and $\mathbf{5}$ in the ionic liquid were carried out. The calculated absorption bands for 2, 3, and 5 are shown in Figure B17. In the range of 900 to 1100 nm , the absorption band of $\mathbf{5}$ in the excited state 2 at 933 nm is similar to the absorption band at 1138 nm shown in Figure A14 (see Figures B22 and B23 and Table B14). The absorption band of 5 in the excited state 2 consists of the d-d transition from molecular orbital 75α (HOMO) to 76α (LUMO). Moreover, the absorption band of 2 in the excited state 2 at 963 nm is composed of MMCT from the molecular orbital 109α to its 111α and d -d transition from its 110α to its 114α (see Figures B8, B9, B19 and Table B11). Accordingly, the absorption bands at 1138 nm are assigned to the d-d transition for $\mathbf{2}$ and 5 and MMCT for $\mathbf{2}$, respectively. In the range of 500 to 900 nm , the absorption bands for $\mathbf{2}$ in the the excited state 3 (see Figures B8, B9, B19 and Table B11), $\mathbf{3}$ in the excited states 2 and 3 (see Figures B12, B13, B20 and Table B12), and 5 in the excited state 2 (see Figures B22, B23, Table B14) were observed. These absorption bands are characterized to the d-d transition on Ti atom. Therefore, the absorption band at 751 and 817 nm , as shown in Figure 3.4, are characterized to the d-d transitions of Ti atom. The calculated strong absorption bands at ca. 300 nm for $\mathbf{2}, \mathbf{3}$ and $\mathbf{4}$ by TDDFT method are assigned to the LMCT. Thus, the absorption band at 449 nm can be characterized to the LMCT.

Figure B17. Absorption spectra of $\mathbf{2}$ (red), $\mathbf{3}$ (blue) and $\mathbf{5}$ (grey) in THF ($\varepsilon=7.4257$) calculated by TD-DFT.

Figure B18. Absorption spectra of $\mathbf{1}$ in THF $(\varepsilon=7.4257)$ calculated by TD-DFT.

Table B10. Calculated transitions of $\mathbf{1}$ optimized in THF $(\varepsilon=7.4257)$

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
3	1.4812	837	0.1449	$109 \rightarrow 110$	68.7
				$109 \rightarrow 116$	28.4
4	1.5117	820	0.0006	$109 \rightarrow 111$	11.2
				$109 \rightarrow 112$	88.3
7	1.9031	652	0.0749	$109 \rightarrow 110$	14.5
				$109 \rightarrow 116$	44.2
				$109 \rightarrow 118$	41.1
9	2.0294	611	0.0837	$109 \rightarrow 110$	13.1
				$109 \rightarrow 116$	27.0
				$109 \rightarrow 118$	57.8
11	3.1666	392	0.0037	$107 \rightarrow 110$	98.8
13	3.626	342	0.0124	$105 \rightarrow 110$	99.0

Figure B19. Absorption spectra of $\mathbf{2}$ in THF $(\varepsilon=7.4257)$ calculated by TD-DFT.

Table B11. Calculated transitions of $\mathbf{2}$ optimized in THF $(\varepsilon=7.4257)$

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
2	1.288	963	0.0003	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 111 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 114 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 51.9 \\ & 42.4 \end{aligned}$
3	1.6732	741	0.0011	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 109 \mathrm{~A} \rightarrow 113 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 113 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 13.6 \\ & 30.1 \\ & 38.3 \\ & 15.5 \end{aligned}$
4	1.6738	741	0.0005	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 109 \mathrm{~A} \rightarrow 113 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 113 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 30.5 \\ & 13.5 \\ & 15.6 \\ & 38.0 \end{aligned}$
5	1.8395	674	0.0007	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 115 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 116 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 44.6 \\ & 52.9 \end{aligned}$
12	3.5459	350	0.0005	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 113 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 112 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 55.3 \\ & 43.6 \end{aligned}$
14	3.6948	336	0.0392	$\begin{aligned} & 109 \mathrm{~A} \rightarrow 115 \mathrm{~A} \\ & 110 \mathrm{~A} \rightarrow 116 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 53.6 \\ & 44.1 \end{aligned}$
16	3.7983	326	0.0028	$\begin{aligned} & 108 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 107 \mathrm{~B} \rightarrow 110 \mathrm{~B} \\ & 108 \mathrm{~B} \rightarrow 109 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 12.6 \\ & 13.8 \\ & 54.6 \end{aligned}$
18	3.8277	324	0.0054	$\begin{aligned} & 107 \mathrm{~A} \rightarrow 113 \mathrm{~A} \\ & 108 \mathrm{~A} \rightarrow 112 \mathrm{~A} \\ & 108 \mathrm{~B} \rightarrow 109 \mathrm{~B} \\ & 108 \mathrm{~B} \rightarrow 113 \mathrm{~B} \end{aligned}$	$\begin{gathered} 17.0 \\ 33.0 \\ 19.9 \\ 9.8 \end{gathered}$
22	4.092	303	0.0253	$\begin{aligned} & 107 \mathrm{~A} \rightarrow 115 \mathrm{~A} \\ & 108 \mathrm{~A} \rightarrow 116 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 23.0 \\ & 52.7 \end{aligned}$

Figure B20. Absorption spectra of $\mathbf{3}$ in THF $(\varepsilon=7.4257)$ calculated by TD-DFT.

Table B12. Calculated transitions of $\mathbf{3}$ in the singlet state optimized in THF

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
2	1.9619	632	0.0009	$55 \mathrm{~A} \rightarrow 57 \mathrm{~A}$	98.4
3	2.1893	566	0.0008	$\begin{aligned} & 55 \mathrm{~A} \rightarrow 58 \mathrm{~A} \\ & 55 \mathrm{~A} \rightarrow 59 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 38.8 \\ & 58.9 \end{aligned}$
4	2.2365	554	0.0008	$\begin{aligned} & 55 \mathrm{~A} \rightarrow 58 \mathrm{~A} \\ & 55 \mathrm{~A} \rightarrow 59 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 58.7 \\ & 37.9 \end{aligned}$
9	3.8265	324	0.0033	$\begin{aligned} & 52 \mathrm{~A} \rightarrow 56 \mathrm{~A} \\ & 52 \mathrm{~B} \rightarrow 55 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 72.8 \\ & 22.7 \end{aligned}$
10	3.9793	312	0.0046	$\begin{aligned} & 53 \mathrm{~A} \rightarrow 56 \mathrm{~A} \\ & 54 \mathrm{~A} \rightarrow 57 \mathrm{~A} \\ & 54 \mathrm{~B} \rightarrow 57 \mathrm{~B} \end{aligned}$	$\begin{gathered} 6.8 \\ 64.4 \\ 21.8 \end{gathered}$
11	4.0759	304	0.0015	$\begin{aligned} & 51 \mathrm{~A} \rightarrow 56 \mathrm{~A} \\ & 51 \mathrm{~B} \rightarrow 55 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 72.5 \\ & 17.8 \end{aligned}$

Figure B21. Absorption spectra of $\mathbf{4}$ in THF $(\varepsilon=7.4257)$ calculated by TD-DFT.

Table B13. Calculated transitions of $\mathbf{4}$ optimized in THF $(\varepsilon=7.4257)$

Excited State	Energy (eV)	$\begin{gathered} \text { Wavelength } \\ \text { (nm) } \\ \hline \end{gathered}$	$\mathbf{f}_{\text {osc }}$	Transition	\%
1	1.6212	765	0.0009	$62 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	78.2
				$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	11.3
				$62 \mathrm{~A} \rightarrow 68 \mathrm{~A}$	8.1
2	1.7502	708	0.0004	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	7.4
				$62 \mathrm{~A} \rightarrow 65 \mathrm{~A}$	83.9
3	2.0503	605	0.0003	$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	64.9
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	8.2
				$62 \mathrm{~A} \rightarrow 68 \mathrm{~A}$	18.0
4	2.1466	578	0.0011	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	8.4
				$62 \mathrm{~A} \rightarrow 66 \mathrm{~A}$	6.3
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	77.6
6	2.9422	421	0.045	$62 \mathrm{~A} \rightarrow 64 \mathrm{~A}$	75.0
				$62 \mathrm{~A} \rightarrow 65 \mathrm{~A}$	7.4
				$62 \mathrm{~A} \rightarrow 67 \mathrm{~A}$	10.4
9	3.7233	333	0.0061	$61 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	8.0
				$60 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	50.9
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	33.0
10	3.7647	329	0.0057	$61 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	12.1
				$59 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	53.9
				$60 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	8.1
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	17.9
11	3.7947	327	0.0165	$61 \mathrm{~A} \rightarrow 63 \mathrm{~A}$	9.9
				$59 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	36.3
				$60 \mathrm{~B} \rightarrow 62 \mathrm{~B}$	33.7
				$61 \mathrm{~B} \rightarrow 63 \mathrm{~B}$	12.6

Figure B22. Absorption spectra of $\mathbf{5}$ in THF $(\varepsilon=7.4257)$ calculated by TD-DFT.

Table B14. Calculated transitions of $\mathbf{5}$ optimized in THF $(\varepsilon=7.4257)$

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
1	1.3283	933	0.0004	$75 \mathrm{~A} \rightarrow 76 \mathrm{~A}$	73.5
				$75 \mathrm{~A} \rightarrow 77 \mathrm{~A}$	17.5
2	1.5831	783	0.0008	$75 \mathrm{~A} \rightarrow 76 \mathrm{~A}$	18.8
				$75 \mathrm{~A} \rightarrow 77 \mathrm{~A}$	78.3
5	3.8563	322	0.0014	$74 \mathrm{~A} \rightarrow 76 \mathrm{~A}$	19.4
				$74 \mathrm{~A} \rightarrow 77 \mathrm{~A}$	11.4
				$74 \mathrm{~B} \rightarrow 75 \mathrm{~B}$	52.1
				$74 \mathrm{~B} \rightarrow 77 \mathrm{~B}$	7.3
6	3.887	319	0.0017	$74 \mathrm{~A} \rightarrow 77 \mathrm{~A}$	36.5
				$74 \mathrm{~B} \rightarrow 75 \mathrm{~B}$	34.2
				$74 \mathrm{~B} \rightarrow 77 \mathrm{~B}$	13.0
7	3.9494	314	0.0012	$74 \mathrm{~A} \rightarrow 76 \mathrm{~A}$	45.1
				$74 \mathrm{~A} \rightarrow 77 \mathrm{~A}$	19.5
				$74 \mathrm{~B} \rightarrow 76 \mathrm{~B}$	18.0
8	4.1083	302	0.0169	$74 \mathrm{~A} \rightarrow 78 \mathrm{~A}$	71.6
				$74 \mathrm{~B} \rightarrow 78 \mathrm{~B}$	7.9

Figure B23. Molecular orbitals for model complex 5 in THF $(\varepsilon=7.4257)$ (isosurface values: $\pm 0.07(74 \alpha, 75 \alpha$, $76 \alpha, 77 \alpha, 78 \alpha, 74 \beta, 75 \beta, 76 \beta, 77 \beta$ and $78 \beta)$.

B. 4 Computed profile of titanocene in toluene, THF, and Pyr $_{4}$ FAP

Figure B24. Computed profile of the equilibrium reactions among 1, 2, 3, 4, and 4-TS in toluene $(\varepsilon=2.3741)$ (blue) and ionic liquid, $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)(\mathrm{red})$, as estimated at 298.15 K .

Figure B25. Computed profile of the equilibrium reactions among 1, 2, 3, 4, 4-TS, and 5 in THF ($\varepsilon=7.4257$), as estimated at 298.15 K .

B. 5 Cartesian coordinates for optimized structure

structure of $\mathbf{1}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$			
Ti	-0.037336	0.001529	0.002383
Cl	1.972886	1.642132	0.002587
Cl	1.967705	-1.646331	0.003262
C	-0.539672	1.158501	2.042003
C	-1.783328	0.720170	1.526846
H	-2.589527	1.361351	1.178977
C	-1.786843	-0.709001	1.526617
H	-2.596202	-1.346130	1.178685
C	-0.545232	-1.153550	2.041402
H	-0.231676	-2.187849	2.154871
C	0.234535	0.000549	2.351208
H	1.243595	-0.002261	2.747963
H	-0.221229	2.191306	2.155460
C	-1.201917	-1.154985	-1.731339
C	-1.960426	0.001830	-1.384514
H	-2.950683	0.001855	-0.939424
C	-1.201863	1.158658	-1.731269
H	-1.503900	2.193805	-1.590774
C	0.005688	0.709777	-2.339038
H	0.805233	1.351761	-2.696836
C	0.005620	-0.706093	-2.339112
H	0.805427	-1.347950	-2.696600
H	-1.504019	-2.190121	-1.590876
Ti	3.977954	-0.005002	0.003444
C	5.140385	-1.164138	1.737070
C	5.901145	-0.008833	1.390188
H	6.891462	-0.010776	0.945210
C	5.144893	1.149498	1.737055
H	5.449059	2.184028	1.596609
C	3.936437	0.702979	2.344828
H	3.138134	1.346452	2.702725
C	3.933782	-0.712889	2.344926
H	3.132843	-1.353277	2.702519
H	5.440434	-2.199881	1.596701
C	4.487398	1.151258	-2.034285
C	5.728371	0.704229	-1.520078
H	6.538674	1.339764	-1.171422
C	5.722834	-0.724911	-1.521938
H	6.527935	-1.367797	-1.174681
C	4.478451	-1.160761	-2.037500
H	4.158562	-2.192994	-2.152064
C	3.705927	-0.001410	-2.345355
H	2.696789	0.003023	-2.741884
H	4.175507	2.18	-2.

Table B16. Cartesian coordinates for optimized structure of 2 in $\mathrm{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-0.062524	0.005048	0.002811
Cl	1.973205	1.620578	0.003230
Cl	1.967424	-1.617502	0.003028
C	-0.882421	1.250810	1.849586
C	-1.941468	0.402205	1.429328
H	-2.887113	0.730419	1.007202

C	1.588167	2.756162	3.013247
H	0.492597	1.741060	1.344395
H	2.665697	0.156671	1.195191
H	4.429020	0.954276	3.088731
H	3.332111	3.047579	4.396562
H	0.899952	3.542614	3.314714
H	3.479452	5.296436	3.530913
H	2.179239	6.043813	1.284643

H	1.450502	1.651455	-1.961249
C	0.186841	-0.173259	-2.339178
H	0.904508	-0.899958	-2.710716
H	-1.732435	-1.331251	-2.354345
N	2.747103	-0.093728	0.004222
N	3.781132	0.295044	0.073628

Table B20. Cartesian coordinates for optimized structure of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]^{-}$in $\mathrm{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-1.145365	0.009738	0.007495
Cl	0.618855	1.869171	0.063315
Cl	0.812708	-1.633689	-0.039754
C	-1.923937	1.104154	1.980633
C	-3.023827	0.353957	1.491741
H	-3.950227	0.765293	1.098957
C	-2.697848	-1.034756	1.588652
H	-3.327045	-1.864693	1.274690
C	-1.404912	-1.138890	2.155382
H	-0.854521	-2.060187	2.320394
C	-0.912601	0.175578	2.381832
H	0.073450	0.431654	2.758410
H	-1.852415	2.187409	2.023971
C	-1.959089	-1.183939	-1.884329
C	-3.020774	-0.352526	-1.432974
H	-3.960458	-0.695395	-1.008901
C	-2.639229	1.010778	-1.629869
H	-3.228256	1.887253	-1.368948
C	-1.357149	1.014843	-2.237558
H	-0.771245	1.897388	-2.475254
C	-0.927757	-0.327617	-2.382709
H	0.037671	-0.650749	-2.760691
H	-1.935059	-2.270476	-1.860405

Table B21. Cartesian coordinates for optimized
structure of $\mathbf{1}$ in toluene ($\varepsilon=2.3741$)
Table B19. Cartesian coordinates for optimized structure of 4-TS in $\mathrm{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-0.193359	-0.071060	-0.006679
Cl	0.224618	-2.451786	-0.050794
C	0.337982	1.335131	1.822735
C	-1.026529	1.569328	1.485614
H	-1.441855	2.501931	1.116570
C	-1.765157	0.371393	1.735961
H	-2.831728	0.229749	1.578513
C	-0.860619	-0.587934	2.263863
H	-1.102317	-1.613745	2.526903
C	0.432661	-0.004215	2.307769
H	1.343213	-0.506557	2.626597
H	1.149825	2.055440	1.754384
C	-1.207555	-0.400023	-2.157318
C	-1.775564	0.777896	-1.609074
H	-2.819299	0.919522	-1.338059
C	-0.733861	1.745581	-1.472462
H	-0.848194	2.759475	-1.100469
C	0.481627	1.160279	-1.919160

H	0.813361	-1.349294	-2.692941	C	3.946354	-0.712663	2.343589
H	-1.494910	-2.187907	-1.591483	H	3.144552	-1.354886	2.695578
Ti	3.969487	-0.005028	0.001885	H	5.455423	-2.198278	1.601286
C	5.132563	-1.163260	1.736891	C	4.495375	1.150040	-2.038866
C	5.893159	-0.008208	1.390140	C	5.739212	0.704480	-1.530790
H	6.884196	-0.010229	0.946619	H	6.550938	1.341563	-1.188225
C	5.136864	1.149882	1.736151	C	5.734772	-0.724309	-1.531597
H	5.439233	2.184875	1.596313	H	6.542470	-1.366808	-1.189588
C	3.928822	0.703436	2.343624	C	4.488244	-1.161415	-2.040427
H	3.130196	1.348384	2.697775	H	4.165936	-2.193529	-2.148410
C	3.926215	-0.711947	2.344113	C	3.713871	-0.003123	-2.345300
H	3.125271	-1.353738	2.698759	H	2.701413	0.000251	-2.733109
H	5.431161	-2.199450	1.597828	H	4.179648	2.184282	-2.145939
C	4.476691	1.149359	-2.039285				
C	5.718404	0.704091	-1.526474				
H	6.528851	1.341467	-1.181498	Table B23. Cartesian coordinates for optimized			
C	5.714112	-0.724838	-1.526542	structure of $\mathbf{3}$ in toluene ($\varepsilon=2.3741$)			
H	6.520639	-1.367099	-1.181420	Ti	3.236286	3.163710	1.327241
C	4.469790	-1.162516	-2.039512	Cl	3.078861	2.336981	-0.875889
H	4.148645	-2.194731	-2.149385	C	5.123777	4.527000	0.713362
C	3.696591	-0.004248	-2.347666	C	5.049347	4.507511	2.132097
H	2.686519	-0.001144	-2.741311	C	3.829360	5.141319	2.512224
H	4.161838	2.183500	-2.149267	C	3.136754	5.529209	1.328139
				C	3.949527	5.156055	0.217805
				H	3.693216	5.280917	-0.830249
Table	artesian coor	nates for opt	mized	H	5.916352	4.093228	0.107761
structu	in toluene (ε	$2.3741)$		H	5.793220	4.090333	2.807155
Ti	-0.053576	0.001722	0.003280	C	1.367216	1.795431	1.987509
Cl	1.973845	1.616856	0.002387	C	2.513570	0.959347	1.909043
Cl	1.968498	-1.620184	0.003321	C	3.455526	1.395635	2.886036
C	-0.545347	1.158225	2.046325	C	2.871041	2.495399	3.580084
C	-1.792049	0.721599	1.537579	C	1.587649	2.753618	3.013486
H	-2.599458	1.364406	1.195465	H	0.495523	1.740970	1.339288
C	-1.797015	-0.707188	1.536720	H	2.665779	0.160068	1.189297
H	-2.609028	-1.343970	1.194275	H	4.425203	0.947886	3.090584
C	-0.553305	-1.153216	2.044756	H	3.328330	3.040618	4.400875
H	-0.237931	-2.187572	2.151788	H	0.897098	3.536884	3.317978
C	0.228621	-0.000334	2.351149	H	3.483538	5.303444	3.529273
H	1.241118	-0.004105	2.738853	H	2.181922	6.047633	1.281803
H	-0.222703	2.190232	2.154319				
C	-1.214877	-1.153399	-1.733825				
C	-1.972788	0.004002	-1.388760	Table B24. Cartesian coordinates for optimized			
H	-2.964605	0.005178	-0.946823				
C	-1.212269	1.159672	-1.733857	Ti	-0.127607	0.008672	-0.002357
H	-1.512042	2.195579	-1.595002	Cl	-0.234658	-2.442517	-0.021171
C	-0.003590	0.709450	-2.337695	C	0.371005	1.375730	1.876550
H	0.798413	1.351442	-2.689620	C	-0.945302	1.707376	1.468094
C	-0.005170	-0.705911	-2.337639	H	-1.270671	2.667652	1.078882
H	0.795451	-1.349644	-2.689542	C	-1.777937	0.560645	1.667877
H	-1.517012	-2.188630	-1.595034	H	-2.840721	0.493570	1.447814
Ti	3.995895	-0.005101	0.002485	C	-0.978708	-0.465433	2.229533
C	5.155192	-1.162461	1.739824	H	-1.306981	-1.472911	2.463415
C	5.915228	-0.006534	1.394521	C	0.349132	0.019991	2.345035
H	6.907042	-0.007377	0.952578	H	1.197850	-0.541315	2.727087
C	5.156846	1.150601	1.739434	H	1.235014	2.036034	1.859983
H	5.458482	2.185925	1.600254	C	-1.320949	-0.281041	-2.056150
C	3.947312	0.702704	2.343331	C	-1.696908	0.987995	-1.546820
H	3.146425	1.346160	2.695116	H	-2.692852	1.274142	-1.217202

C	-0.540304	1.827226	-1.544426
H	-0.498492	2.863433	-1.220188
C	0.545966	1.075746	-2.055575
H	1.562310	1.437355	-2.191865
C	0.070394	-0.237392	-2.358135
H	0.662959	-1.063898	-2.739771
H	-1.964397	-1.150130	-2.154354
N	1.970396	-0.261849	0.002928
N	3.085286	-0.368968	0.004899

Table B25. Cartesian coordinates for optimized structure of 4-TS in toluene $(\varepsilon=2.3741)$

Ti	-0.248377	-0.084483	0.001271
Cl	0.108510	-2.437544	-0.020612
C	0.444913	1.270070	1.822604
C	-0.897161	1.634730	1.513623
H	-1.226034	2.607621	1.162832
C	-1.740725	0.510437	1.769665
H	-2.819178	0.471263	1.635340
C	-0.921031	-0.534735	2.274977
H	-1.251305	-1.538189	2.528524
C	0.426632	-0.071905	2.301648
H	1.300638	-0.664576	2.594126
H	1.319715	1.911336	1.744450
C	-1.121772	-0.464870	-2.215984
C	-1.815753	0.640844	-1.659701
H	-2.880723	0.687824	-1.444489
C	-0.868104	1.690019	-1.460882
H	-1.090109	2.686043	-1.089473
C	0.414876	1.217210	-1.864071
H	1.342443	1.788909	-1.856425
C	0.251074	-0.118023	-2.332764
H	1.044037	-0.778392	-2.675645
H	-1.548742	-1.437459	-2.444556
N	2.760603	-0.143996	-0.076410
N	3.717118	0.396574	0.069211

Table B26. Cartesian coordinates for optimized structure of $\mathbf{1}$ in THF ($\varepsilon=7.4257$)

Ti	-0.035634	0.001911	0.002377
Cl	1.973183	1.642840	0.002647
Cl	1.967331	-1.645990	0.003271
C	-0.535154	1.158339	2.043416
C	-1.779748	0.722418	1.528754
H	-2.585077	1.365347	1.182094
C	-1.785420	-0.706702	1.527342
H	-2.595932	-1.342588	1.179807
C	-0.544232	-1.153702	2.040912
H	-0.231852	-2.188540	2.152286
C	0.237313	-0.001038	2.351125
H	1.246919	-0.005462	2.746287
H	-0.214508	2.190449	2.156508
C	-1.201862	-1.152582	-1.731793
C	-1.957938	0.005902	-1.385313
H	-2.948516	0.008116	-0.940912
C	-1.196819	1.160984	-1.732048

H	-1.496299	2.196892	-1.592038
C	0.009837	0.709350	-2.339330
H	0.810886	1.350009	-2.696051
C	0.006732	-0.706394	-2.339104
H	0.805017	-1.350536	-2.695757
H	-1.505823	-2.187151	-1.591522
Ti	3.976110	-0.005466	0.003461
C	5.139194	-1.163234	1.737716
C	5.898584	-0.007006	1.390983
H	6.889139	-0.007829	0.946527
C	5.140853	1.150334	1.737612
H	5.443302	2.185350	1.597372
C	3.932901	0.702282	2.345011
H	3.133670	1.345253	2.701650
C	3.931966	-0.713466	2.345059
H	3.131886	-1.355290	2.701869
H	5.440152	-2.198700	1.597597
C	4.482812	1.149775	-2.036028
C	5.724749	0.705496	-1.522032
H	6.534090	1.343065	-1.174846
C	5.721606	-0.723633	-1.522243
H	6.528106	-1.364904	-1.175239
C	4.477759	-1.162285	-2.036518
H	4.158926	-2.195039	-2.148931
C	3.703286	-0.004527	-2.345267
H	2.693699	-0.002303	-2.740492
H	4.168621	2.183987	-2.148055

Table B27. Cartesian coordinates for optimized structure of $\mathbf{2}$ in THF ($\varepsilon=7.4257$).

Ti	-0.060089	0.001964	0.003676
Cl	1.974011	1.617201	0.002492
Cl	1.968576	-1.620109	0.003247
C	-0.554457	1.159615	2.043928
C	-1.800240	0.719682	1.534812
H	-2.608538	1.360027	1.190224
C	-1.802186	-0.709335	1.535681
H	-2.612180	-1.347946	1.191875
C	-0.557612	-1.152070	2.045344
H	-0.241598	-2.185974	2.155711
C	0.222310	0.002892	2.350777
H	1.234229	0.001858	2.740360
H	-0.235565	2.192758	2.153122
C	-1.219204	-1.154725	-1.732349
C	-1.979363	0.001161	-1.386002
H	-2.970339	0.000093	-0.942341
C	-1.221403	1.158796	-1.731530
H	-1.524439	2.193675	-1.591372
C	-0.012009	0.711328	-2.336705
H	0.788127	1.354177	-2.691591
C	-0.010556	-0.704372	-2.337134
H	0.790813	-1.345365	-2.692549
H	-1.520250	-2.190310	-1.593107
Ti	4.002827	-0.004872	0.002126
C	5.159077	-1.164242	1.738446
C	5.921808	-0.010057	1.392041
H	6.912827	-0.013503	0.948481

C	5.166317	1.149259	1.737345
H	5.471508	2.183496	1.597101
C	3.955830	0.704464	2.342382
H	3.157029	1.349107	2.697013
C	3.951366	-0.711222	2.343031
H	3.148641	-1.350503	2.698475
H	5.457959	-2.200488	1.599472
C	4.504099	1.151523	-2.036670
C	5.747206	0.703118	-1.528337
H	6.559605	1.338005	-1.183328
C	5.740213	-0.725884	-1.530827
H	6.546138	-1.369928	-1.187559
C	4.492913	-1.160132	-2.041073
H	4.170316	-2.191896	-2.152379
C	3.720141	-0.000034	-2.344934
H	2.708174	0.005717	-2.734349
H	4.191781	2.186781	-2.144862

H	1.264389	2.010164	1.860429
C	-1.310937	-0.296769	-2.059950
C	-1.709881	0.963963	-1.547643
H	-2.711262	1.232975	-1.220256
C	-0.566494	1.821755	-1.537804
H	-0.543432	2.857445	-1.210657
C	0.534603	1.089974	-2.045717
H	1.545727	1.468232	-2.174977
C	0.081492	-0.230430	-2.354606
H	0.689774	-1.043044	-2.741715
H	-1.942693	-1.173476	-2.167081
N	1.969864	-0.260933	-0.002501
N	3.084278	-0.370139	-0.003181

Table B30. Cartesian coordinates for optimized structure of 4-TS in THF $(\varepsilon=7.4257)$

Ti	-0.201294	-0.069405	-0.003129
Cl	0.192502	-2.447145	-0.045096
C	0.351237	1.333537	1.824571
C	-1.011682	1.582452	1.491765
H	-1.418285	2.520353	1.126641
C	-1.762404	0.392630	1.744307
H	-2.831075	0.262537	1.591215
C	-0.866714	-0.576343	2.269435
H	-1.118136	-1.599868	2.532028
C	0.433156	-0.006408	2.309372
H	1.339644	-0.519357	2.624523
H	1.170333	2.045514	1.755241
C	-1.183619	-0.411443	-2.170910
C	-1.781945	0.750585	-1.621069
H	-2.831870	0.869884	-1.363555
C	-0.761455	1.738564	-1.468126
H	-0.901339	2.749281	-1.096618
C	0.471429	1.179955	-1.903401
H	1.430843	1.691614	-1.933967
C	0.207134	-0.156075	-2.335252
H	0.942928	-0.867781	-2.700592
H	-1.685745	-1.353236	-2.376229
N	2.738771	-0.123880	-0.004404
N	3.779133	0.252743	0.030509

Table B31. Cartesian coordinates for optimized structure of 5 in THF ($\varepsilon=7.4257$)
Table B29. Cartesian coordinates for optimized structure of $\mathbf{4}$ in THF ($\varepsilon=7.4257$)

Ti	-0.128288	0.009060	-0.001814
Cl	-0.224142	-2.466467	-0.013801
C	0.388836	1.365327	1.877619
C	-0.921055	1.720416	1.467992
H	-1.229421	2.686766	1.080341
C	-1.774007	0.588299	1.665228
H	-2.837546	0.541552	1.443628
C	-0.992872	-0.453417	2.223757
H	-1.340912	-1.453811	2.460211
C	0.344240	0.008572	2.341585
H	1.183564	-0.565902	2.724994

Table B28. Cartesian coordinates for optimized structure of $\mathbf{3}$ in THF $(\varepsilon=7.4257)$

Ti	3.236426	3.163504	1.327748
Cl	3.076367	2.331452	-0.896046
C	5.124122	4.526354	0.715458
C	5.048238	4.504984	2.133878
C	3.826932	5.137971	2.513665
C	3.135891	5.528370	1.329513
C	3.949343	5.155508	0.219274
H	3.694858	5.285510	-0.828731
H	5.918906	4.094005	0.111480
H	5.789576	4.084337	2.809540
C	1.366995	1.796375	1.989154
C	2.514299	0.960506	1.909881
C	3.457138	1.397940	2.885882
C	2.873455	2.499075	3.578490
C	1.588542	2.755964	3.013263
H	0.493263	1.741411	1.343495
H	2.665306	0.157457	1.193884
H	4.428506	0.952949	3.088526
H	3.332027	3.046069	4.397266
H	0.900064	3.541941	3.315427
H	3.479509	5.297842	3.530459
H	2.179336	6.043674	1.283395

C	-1.999927	-2.512646	-1.472741
H	-2.563380	-3.340698	-1.052536
C	-2.528950	-1.238550	-1.844315
H	-3.561228	-0.913732	-1.736156
C	-1.465570	-0.476512	-2.394802
H	-1.531744	0.552640	-2.733282
C	-0.282292	-1.253056	-2.335968
H	0.707492	-0.921563	-2.640448
H	0.070418	-3.359045	-1.616641
O	1.290855	-0.833518	0.168412
C	2.124868	-2.039854	0.072822
H	2.267298	-2.262348	-0.996196
H	1.582018	-2.870626	0.544649
C	3.443986	-1.692783	0.763931
H	3.394167	-1.930341	1.837645
H	4.288861	-2.243457	0.328733
C	3.536450	-0.171608	0.555945
H	4.205681	0.320266	1.274997
H	3.886639	0.062651	-0.461170
C	2.088364	0.264384	0.737940
H	1.799530	1.177749	0.207703
H	1.823395	0.367554	1.803677

Table B32. Cartesian coordinates for optimized structure of 3' in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-2.395846	0.628893	0.128457
Cl	-3.822993	-0.009409	-1.660102
C	-1.064084	-0.951212	1.296551
C	-1.671941	-0.087648	2.255757
H	-1.150790	0.599617	2.914961
C	-3.085184	-0.270909	2.194776
H	-3.826238	0.243513	2.801041
C	-3.342316	-1.276157	1.218382
H	-4.322788	-1.621687	0.903584
C	-2.101340	-1.692140	0.666822
H	-1.973171	-2.407750	-0.141723
H	0.000054	-1.031473	1.089218
C	-2.806703	2.967154	-0.130356
C	-2.026100	2.807664	1.044346
H	-2.344215	3.033655	2.059063
C	-0.760603	2.273340	0.662109
H	0.059126	2.031711	1.332515
C	-0.761877	2.083394	-0.747904
H	0.058533	1.691006	-1.343398
C	-2.029239	2.521643	-1.236862
H	-2.360815	2.482627	-2.269657
H	-3.832634	3.325237	-0.172303

Table B33. Cartesian coordinates for optimized structure of $\mathbf{4}^{\prime}$ in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-2.276347	0.542388	0.005037
Cl	-4.454781	0.332485	-1.137838
C	-1.071977	-1.135111	1.140593
C	-1.452247	-0.171595	2.108757
H	-0.779969	0.461764	2.678416
C	-2.879706	-0.174202	2.207675
H	-3.478025	0.464065	2.852539

C	-3.373556	-1.168627	1.327133
H	-4.418752	-1.393796	1.144590
C	-2.271344	-1.753564	0.653822
H	-2.328961	-2.533591	-0.100282
H	-0.056735	-1.371156	0.832384
C	-2.832730	2.851002	-0.124272
C	-1.995456	2.696187	1.009226
H	-2.284360	2.859156	2.044113
C	-0.707286	2.274932	0.555979
H	0.156796	2.067461	1.179948
C	-0.751018	2.173420	-0.855166
H	0.074132	1.878363	-1.497742
C	-2.072659	2.512085	-1.281004
H	-2.438343	2.500696	-2.303387
H	-3.882074	3.128251	-0.111394
N	-1.488054	-0.403480	-1.695535
N	-1.033804	-0.902710	-2.589210

Table B34. Cartesian coordinates for optimized structure of 4'-TS in $\mathrm{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-2.454556	0.650868	0.168002
Cl	-4.465280	0.330340	-1.081791
C	-1.115238	-1.127818	0.951748
C	-1.331623	-0.239510	2.044398
H	-0.567521	0.325911	2.566499
C	-2.726394	-0.232251	2.350861
H	-3.209218	0.350866	3.130702
C	-3.362179	-1.150528	1.472257
H	-4.428783	-1.347691	1.420652
C	-2.377421	-1.694087	0.606532
H	-2.566162	-2.386542	-0.210053
H	-0.158709	-1.349822	0.485978
C	-2.869383	2.983137	-0.200060
C	-2.147762	2.856757	1.015448
H	-2.507283	3.122402	2.006315
C	-0.860416	2.323485	0.702286
H	-0.057871	2.139217	1.408409
C	-0.799856	2.089807	-0.699928
H	0.053126	1.698459	-1.247269
C	-2.047991	2.501839	-1.255473
H	-2.341415	2.416478	-2.298318
H	-3.897755	3.319303	-0.299186
N	-1.343094	-0.615749	-2.295278
N	-0.514474	-1.230449	-2.698346

Table B35. Cartesian coordinates for optimized structure of 3'-FAP in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$

Ti	-2.357521	0.615502	0.112759
Cl	-3.768099	-0.038096	-1.690681
C	-1.068534	-0.991645	1.277411
C	-1.636061	-0.100751	2.235591
H	-1.083525	0.575018	2.880603
C	-3.056029	-0.241901	2.197327
H	-3.772697	0.302406	2.806976
C	-3.358374	-1.248645	1.237470
H	-4.354024	-1.564901	0.939184

C	-2.138965	-1.705627	0.671014	H	0.113798	2.096461	1.232115
H	-2.044640	-2.430748	-0.133675	C	-0.740045	2.174434	-0.821728
H	-0.011830	-1.103070	1.055557	H	0.107657	1.878870	-1.432787
C	-2.831399	2.937647	-0.136450	C	-2.052685	2.498940	-1.287194
C	-2.061972	2.796647	1.047900	H	-2.390522	2.476117	-2.319089
H	-2.401445	3.005733	2.059376	H	-3.898637	3.110365	-0.174251
C	-0.775451	2.303017	0.681524	N	-1.492959	-0.392831	-1.704389
H	0.044292	2.081140	1.357052	N	-1.057194	-0.882794	-2.611830
C	-0.750086	2.123637	-0.728246	P	4.249164	0.123857	0.295222
H	0.093429	1.759945	-1.307624	C	4.605036	3.032292	-0.666697
C	-2.023448	2.521937	-1.234003	F	4.953036	-1.295347	0.865291
H	-2.338040	2.478290	-2.271975	C	3.201257	-1.827007	-1.850729
H	-3.866748	3.265535	-0.191814	C	3.593182	1.829230	-0.546309
P	4.244038	0.106932	0.252257	F	5.479091	1.001959	1.052209
C	4.591050	3.012433	-0.721365	C	3.171751	0.224290	2.017021
F	4.957695	-1.318352	0.795712	C	2.825084	-1.014344	-0.561405
C	3.102651	-1.832962	-1.857121	F	4.904483	3.582859	0.525875
C	3.572637	1.819337	-0.561848	F	5.750713	2.676078	-1.282332
F	5.508943	0.974141	0.963529	F	4.023101	4.010408	-1.422948
C	3.233252	0.214645	2.013757	F	2.483929	2.355381	0.075552
C	2.780480	-1.019774	-0.553432	F	3.228943	1.571047	-1.850429
F	4.940474	3.560389	0.458821	F	2.414761	-1.971957	0.344478
F	5.709469	2.645746	-1.379740	F	1.697281	-0.295842	-0.892012
F	3.990375	3.996070	-1.455551	F	4.276206	-2.616878	-1.645680
F	2.494607	2.355498	0.103407	F	3.436004	-1.028766	-2.910329
F	3.155640	1.565751	-1.851243	F	2.155278	-2.640037	-2.181967
F	2.396093	-1.974532	0.366091	C	3.533260	1.297874	3.103651
F	1.645701	-0.293760	-0.843235	F	1.831972	0.411101	1.739321
F	4.174710	-2.636156	-1.692180	F	3.259841	-0.964581	2.703746
F	3.309546	-1.034768	-2.922689	F	4.740958	1.054011	3.654862
F	2.035620	-2.632346	-2.153766	F	3.518433	2.554576	2.618838
C	3.656626	1.276077	3.089939	F	2.610453	1.240998	4.108477
F	1.887378	0.426204	1.790608	F	5.217986	-0.023212	-1.084362
F	3.327680	-0.979583	2.691012				
F	4.881365	1.008529	3.590846				
F	3.644169	2.535396	2.611834	Table B37. Cartesian coordinates for optimized			
F	2.774446	1.229838	4.131070	structure of 4'-FAP-TS in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$			
F	5.160624	-0.047786	-1.162043	Ti	-2.404656	0.605220	0.177369
				Cl	-4.335731	0.235215	-1.198850
				C	-1.126231	-1.164531	1.053696
Table B36. Cartesian coordinates for optimized structure of $\mathbf{4}^{\prime}$-FAP in $\operatorname{Pyr}_{4} \mathrm{FAP}(\varepsilon=14.7)$				C	-1.366998	-0.247442	2.116770
				H	-0.610754	0.319452	2.647650
Ti	-2.269084	0.540431	0.007720	C	-2.771209	-0.213458	2.374819
Cl	-4.457544	0.319764	-1.133293	H	-3.271773	0.397331	3.121751
C	-1.070389	-1.158293	1.117181	C	-3.391525	-1.141696	1.496552
C	-1.414673	-0.191074	2.094234	H	-4.459044	-1.322950	1.411592
H	-0.717855	0.426083	2.651131	C	-2.385140	-1.719078	0.678079
C	-2.839841	-0.168918	2.221950	H	-2.555774	-2.418741	-0.136059
H	-3.413798	0.476734	2.881518	H	-0.158637	-1.403205	0.622615
C	-3.368916	-1.150032	1.347444	C	-2.856892	2.928588	-0.189405
H	-4.421504	-1.354534	1.183711	C	-2.160503	2.817664	1.041145
C	-2.289718	-1.751287	0.649692	H	-2.548934	3.073996	2.023576
H	-2.375516	-2.525627	-0.107704	C	-0.856937	2.306780	0.759441
H	-0.065433	-1.403487	0.787370	H	-0.066690	2.131309	1.480442
C	-2.846686	2.843774	-0.155196	C	-0.757698	2.075397	-0.639805
C	-2.040307	2.705323	1.002133	H	0.119615	1.702226	-1.158472
H	-2.358755	2.874686	2.027371	C	-2.000872	2.461860	-1.225354
C	-0.736652	2.291317	0.588275	H	-2.266750	2.378636	-2.275617

H	-3.888625	3.246219	-0.313006	F	2.484911	2.348008	0.022221
N	-1.280809	-0.693809	-2.219399	F	3.251939	1.539676	-1.885324
N	-0.708858	-0.526281	-3.152527	F	2.418215	-1.977525	0.344067
P	4.249463	0.121353	0.289707	F	1.710537	-0.318294	-0.920208
C	4.613894	3.017246	-0.705541	F	4.296246	-2.648057	-1.618114
F	4.947628	-1.289920	0.886596	F	3.475708	-1.071825	-2.909920
C	3.226339	-1.857281	-1.844359	F	2.181325	-2.670809	-2.179262
C	3.601133	1.815348	-0.580434	C	3.502641	1.330436	3.074219
F	5.470970	1.009915	1.048330	F	1.817115	0.429641	1.699429
C	3.151960	0.244267	1.996520	F	3.230287	-0.936146	2.699673
C	2.836653	-1.030501	-0.568086	F	4.702900	1.090352	3.643468
F	4.898998	3.585003	0.482589	F	3.497052	2.581258	2.574496
F	5.767164	2.653042	-1.302169	F	2.567340	1.287846	4.068264
F	4.040930	3.984323	-1.482515	F	5.234021	-0.043649	-1.076919

B. 6 References

1. R. Jungst, D. Sekutowski, J. Davis, M. Luly and G. Stucky, Inorg. Chem., 1977, 16, 1645.
2. C. Wolff, A. Gottschlich, J. England, K. Wieghardt, W. Saak, D. Haase, and R. Beckhaus, Inorg. Chem., 2015, 54, 481.

Appendix C: Supporting information in Chapter 4

C. 1 Design of apparatus

Figure C1. The picture of a gas purification column for ${ }^{15} \mathrm{~N}_{2}$.

Figure C2. (A) Picture of a FT-IR film cell; WE and CE are Pt mesh $(0.8 \mathrm{~cm} \times 0.6 \mathrm{~cm})$ connected to Pt wire and Cu wire and RE is Pt wire and Cu electrode. The film of FT-IR cell is made from nylon and PE (thickness: $75 \mu \mathrm{~m}$), and the film is packed by laminating machine after setting electrodes and addition of sample solution. The thickness of FT-IR film cell is $<0.5 \mathrm{~mm}$. The nylon film is transparent for the infrared light in the range of $1700 \sim 2200 \mathrm{~cm}^{-1}$. (B) A picture of the FT-IR film cell and cell holder.

Figure C3. (A) Pictures and (B) drawing of resonance Raman cell made of quarts (diameter: 4 mm) (downside parts) and pyrex glass (upper parts). (WE: Pt mesh $(0.2 \mathrm{~cm} \times 0.4 \mathrm{~cm})$ connected by Pt wire, CE : Pt mesh $(0.2 \mathrm{~cm} \times 0.4 \mathrm{~cm})$ connected by Pt wire and quasi-RE: Pt wire. Each Pt wire is covered with PTFE tube for preventing to contact each other.

C.2. Cyclic voltammogram of trans-[Mo(depe $\left.)_{2}\left({ }^{15} \mathbf{N}_{2}\right)_{2}\right]$

(A)

Figure C4. (A) Cyclic voltammogram of 2 mM trans $-\left[\operatorname{Mo}(\text { depe })_{2}\left({ }^{15} \mathrm{~N}_{2}\right)_{2}\right]$ in $0.2 \mathrm{M} \mathrm{Pyr} \mathrm{Pa}_{4} \mathrm{FAP} / \mathrm{THF}$ before (blue) and after (red) CPE at 0.5 V (vs. Pt wire) (WE: Pt mesh, CE: Pt coil, quasi-RE: Pt wire, cell: handmade Raman cell (diameter: 4 mm), scan rate: $10 \mathrm{mV} / \mathrm{s}$), as shown in Figure S 3 , and (B) the plots of consumed electric charge (mC) against time (s) in CPE at +0.5 V (vs. Pt wire). The resonance Raman spectroscopy was performed under ${ }^{14} \mathrm{~N}_{2}$ by an excitation wavelength at 355 nm . The excitation laser was irradiated at $0,20,40$, 60, and 120 min when the CPE started (exposure times: 30 (s) and accumulation times: 10). Amount of solution: 0.5 mL .

C. 3 Evaluation of the appropriate functional for DFT calculation

To determine the appropriate functional for the calculations, we performed geometry optimization and frequency calculations using the B3LYP and B3LYP* functionals for complex 1. The obtained $v\left(\mathrm{~N}_{2}\right)\left(\mathrm{cm}^{-1}\right)$ and $\mathrm{N}-\mathrm{N}$ and $\mathrm{Mo}-\mathrm{N}$ and Mo-P bond distances (\AA) for trans- $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right](\mathbf{1})$ are summarized in Table C 1 . The reported $v\left(\mathrm{~N}_{2}\right)\left(\mathrm{cm}^{-1}\right)$ and $\mathrm{N}-\mathrm{N}$ and $\mathrm{Mo}-\mathrm{N}$ and $\mathrm{Mo}-\mathrm{P}$ bond distances (\AA) are $1928 \mathrm{~cm}^{-1}$ in $\mathrm{KBr},{ }^{1} \mathrm{~N}-\mathrm{N}$ $=1.117 \AA, \mathrm{Mo}-\mathrm{N}=2.030 \AA$ and $\mathrm{Mo}-\mathrm{P}=2.453,2.444 \AA$, respectively. ${ }^{2}$ We decided to adopt B3LYP* as hybrid functional and as the basis set, SDD on the Mo atom, $6-311 \mathrm{G}(\mathrm{d})$ on N and P atoms, and $6-31 \mathrm{G}(\mathrm{d})$ on C and H atoms, because they are the closest to the reported values. ${ }^{1,2}$

Table C1. Comparison of functionals and basis sets against $v\left(\mathrm{~N}_{2}\right), \mathrm{N}-\mathrm{N}$ and $\mathrm{Mo}-\mathrm{N}$ bond distances for trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right](\mathbf{1})$ under vacuum condition for DFT calculations

Hybrid Functional	Basis Set	$\begin{aligned} & v\left(\mathbf{N}_{2}\right) \\ & / \mathrm{cm}^{-1} \end{aligned}$	$\begin{gathered} \mathbf{N}-\mathbf{N} \\ / \AA \end{gathered}$	$\begin{gathered} \mathbf{M o - N} \\ / \AA \end{gathered}$	$\begin{gathered} \text { Mo-P } \\ / \AA \end{gathered}$
B3LYP	$\begin{gathered} \text { Mo: LanL2DZ } \\ \mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{H}: \quad 6-31 \mathrm{G}(\mathrm{~d}) \end{gathered}$	2118	$\begin{aligned} & 1.1230 \\ & 1.1230 \end{aligned}$	$\begin{aligned} & 2.0193 \\ & 2.0193 \end{aligned}$	$\begin{aligned} & 2.4431 \\ & 2.4354 \\ & 2.4431 \\ & 2.4354 \end{aligned}$
B3LYP*	$\begin{gathered} \text { Mo: LanL2DZ } \\ \text { N, P, C, H: } \quad 6-31 G(d) \end{gathered}$	2089	$\begin{aligned} & 1.1392 \\ & 1.1392 \end{aligned}$	$\begin{aligned} & 2.0349 \\ & 2.0349 \end{aligned}$	$\begin{aligned} & 2.4864 \\ & 2.4955 \\ & 2.4864 \\ & 2.4955 \end{aligned}$
B3LYP	$\begin{gathered} \text { Mo: LanL2DZ } \\ \text { N: 6-311G(d) } \\ \text { P, C, H: 6-31G(d) } \end{gathered}$	2103	$\begin{aligned} & 1.1263 \\ & 1.1264 \end{aligned}$	$\begin{aligned} & 2.0439 \\ & 2.0439 \end{aligned}$	$\begin{aligned} & 2.4914 \\ & 2.4994 \\ & 2.4914 \\ & 2.4994 \end{aligned}$
B3LYP	Mo: LanL2DZ N, P: 6-311G(d) C, H: 6-31G(d)	2104	$\begin{aligned} & 1.1262 \\ & 1.1262 \end{aligned}$	$\begin{aligned} & 2.0428 \\ & 2.0428 \end{aligned}$	$\begin{aligned} & 2.4932 \\ & 2.5024 \\ & 2.4931 \\ & 2.5024 \end{aligned}$
B3LYP	$\begin{gathered} \text { Mo: SDD } \\ \text { N, P, C, H: 6-31G(d) } \end{gathered}$	2099	$\begin{aligned} & 1.1370 \\ & 1.1370 \end{aligned}$	$\begin{aligned} & 2.0278 \\ & 2.0278 \end{aligned}$	$\begin{aligned} & 2.4868 \\ & 2.4947 \\ & 2.4868 \\ & 2.4947 \end{aligned}$
B3LYP*	Mo: SDD N, P: 6-311G(d) C, H: 6-31G(d)	2060	$\begin{aligned} & 1.1321 \\ & 1.1321 \end{aligned}$	$\begin{aligned} & 2.0285 \\ & 2.0285 \end{aligned}$	$\begin{aligned} & 2.4830 \\ & 2.4913 \\ & 2.4830 \\ & 2.4913 \end{aligned}$

C. 4 DFT and TD-DFT calculations of Mo complexes in THF

Figure C5. Absorption spectra of complex 1 calculated by TD-DFT.

Table C2. Calculated transitions of complex 1

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
2	2.4760	500.75	0.0012	$134 \rightarrow 136$	47.4
				$135 \rightarrow 136$	43.1
				$135 \rightarrow 137$	7.8
4	2.6481	468.2	0.0012	$133 \rightarrow 136$	46.8
				$134 \rightarrow 137$	52.1
11	3.8409	322.8	0.034	$135 \rightarrow 140$	83.0
13	3.9185	316.41	0.0439	$134 \rightarrow 140$	13.6
				$135 \rightarrow 141$	54.9
16	4.0115	309.08	0.0664	$133 \rightarrow 136$	7.7
				$133 \rightarrow 139$	8.4
				$133 \rightarrow 140$	3.2
				$133 \rightarrow 141$	2.8
				$134 \rightarrow 137$	6.2
				$134 \rightarrow 140$	13.1
				$134 \rightarrow 141$	48.8
				$135 \rightarrow 141$	6.6
28	4.5878	270.25	0.2564	$133 \rightarrow 136$	21.1
				$134 \rightarrow 137$	19.7

Figure C6. Molecular orbitals for model complex 1 (Isosurface values: $\pm 0.07(133,134,135,136$, and 137), ± 0.04 (140 and 141)).

Figure C7. Absorption spectra of complex 2 calculated by TD-DFT.

Table C3. Calculated transitions of complex 2

Excited State	Energy (eV)	Wavelength (nm)	fosc	Transition	$\%$
	2.9768	416.51	0.113	$258 \rightarrow 265$	73.6
14	3.1139	398.17	0.9651	$262 \rightarrow 264$	35.2
				$263 \rightarrow 265$	28.7
16	3.1763	390.35	0.1784	$263 \rightarrow 264$	15.6
				$263 \rightarrow 270$	11.6

Figure C8. Molecular orbitals for model complex 2 (Isosurface values: ± 0.07 (258, 259, 262, 263, 264 and 265), ± 0.04 (269 and 270)).

Figure C9. Absorption spectra of complex 3 calculated by TD-DFT.

Table C4. Calculated transitions of complex 3

Excited State	Energy (eV)	Wavelength (nm)	fose	Transition	\%
27	2.8757	431.14	0.0343	$\begin{aligned} & 248 \rightarrow 256 \\ & 248 \rightarrow 257 \\ & 249 \rightarrow 258 \\ & 249 \rightarrow 260 \end{aligned}$	$\begin{gathered} 11.0 \\ 16.2 \\ 57.5 \\ 2.5 \end{gathered}$
39	3.3406	371.15	0.2805	$\begin{aligned} & 245 \rightarrow 253 \\ & 248 \rightarrow 259 \\ & 248 \rightarrow 260 \\ & 249 \rightarrow 261 \end{aligned}$	$\begin{gathered} 16.9 \\ 6.3 \\ 15.8 \\ 20.9 \end{gathered}$
41	3.3746	367.4	0.2264	$\begin{aligned} & 244 \rightarrow 252 \\ & 245 \rightarrow 253 \\ & 248 \rightarrow 259 \\ & 248 \rightarrow 260 \\ & 249 \rightarrow 261 \end{aligned}$	$\begin{gathered} 11.6 \\ 4.3 \\ 5.4 \\ 9.9 \\ 15.4 \end{gathered}$

Figure C10. Molecular orbitals for model complex 3 (Isosurface values: ± 0.07 (248, 249, 259, 260 and 261), ± 0.04 (244 and 245)), ± 0.02 (252, 253, 256, 257 and 258).

Figure C11. Absorption spectra of complex 4 calculated by TD-DFT.

Table C5. Calculated transitions of complex 4

Excited State	Energy (eV)	Wavelength (nm)	$\mathrm{f}_{\text {osc }}$	Transition	\%
7	2.8099	441.24	0.0216	132B \rightarrow 135B	98.7
9	3.0829	402.16	0.0013	$\begin{aligned} & 134 \mathrm{~A} \rightarrow 136 \mathrm{~A} \\ & 135 \mathrm{~A} \rightarrow 137 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 44.5 \\ & 40.7 \end{aligned}$
10	3.1149	398.03	0.0039	$131 \mathrm{~B} \rightarrow 135 \mathrm{~B}$	98.7
36	4.5787	270.78	0.0938	$134 \mathrm{~B} \rightarrow 142 \mathrm{~B}$	67.8
37	4.6334	267.59	0.0916	$\begin{aligned} & 134 \mathrm{~A} \rightarrow 140 \mathrm{~A} \\ & 133 \mathrm{~B} \rightarrow 139 \mathrm{~B} \end{aligned}$	$\begin{gathered} 71.0 \\ 8.4 \end{gathered}$
39	4.6660	265.72	0.1748	$\begin{aligned} & 134 \mathrm{~A} \rightarrow 136 \mathrm{~A} \\ & 134 \mathrm{~A} \rightarrow 140 \mathrm{~A} \\ & 135 \mathrm{~A} \rightarrow 137 \mathrm{~A} \\ & 133 \mathrm{~B} \rightarrow 136 \mathrm{~B} \\ & 134 \mathrm{~B} \rightarrow 137 \mathrm{~B} \\ & 134 \mathrm{~B} \rightarrow 142 \mathrm{~B} \\ & 134 \mathrm{~B} \rightarrow 144 \mathrm{~B} \end{aligned}$	$\begin{gathered} 8.9 \\ 13.1 \\ 8.4 \\ 8.1 \\ 7.0 \\ 24.3 \\ 14.7 \end{gathered}$

Figure C12. (A) Molecular orbitals for model complex 4 (Isosurface values: ± 0.07 ($134 \alpha, 135 \alpha, 136 \alpha, 137 \alpha$ and $140 \alpha), \pm 0.04(140 \alpha)$).

Figure C12. (B) Molecular orbitals for model complex 4 (Isosurface values: ± 0.07 (1322, 133 $\beta, 134 \beta, 135 \beta$, 136β, and $137 \beta), \pm 0.03(142 \beta$ and $144 \beta)$).

Figure C13. Absorption spectra of complex 5 in the triplet state calculated by TD-DFT.

Table C6. Calculated transitions of complex 5 in the triplet state

Excited State	Energy (eV)	Wavelength (nm)	$\mathbf{f o s c}^{\text {cse }}$	Transition	\%
32	3.3126	374.28	0.4779	$258 \mathrm{~A} \rightarrow 264 \mathrm{~A}$	6.7
				$260 \mathrm{~A} \rightarrow 264 \mathrm{~A}$	13.4
				$261 \mathrm{~A} \rightarrow 264 \mathrm{~A}$	7.3
				$262 \mathrm{~A} \rightarrow 264 \mathrm{~A}$	7.3
				$263 \mathrm{~A} \rightarrow 265 \mathrm{~A}$	6.5
				$256 \mathrm{~B} \rightarrow 262 \mathrm{~B}$	3.5
				$256 \mathrm{~B} \rightarrow 263 \mathrm{~B}$	11.7
				$260 \mathrm{~B} \rightarrow 264 \mathrm{~B}$	6.2
				$261 \mathrm{~B} \rightarrow 265 \mathrm{~B}$	4.9

Figure C14. (A) Molecular orbitals for model complex 5 in the triplet state (Isosurface values: ± 0.07 (258 α, $260 \alpha, 261 \alpha, 262 \alpha, 263 \alpha, 264 \alpha$ and $265 \alpha)$.

Figure C14. (B) Molecular orbitals for model complex 5 in the triplet state (Isosurface values: ± 0.07 (256 $260 \beta, 261 \beta, 262 \beta, 263 \beta, 264 \beta$ and $265 \beta)$.

Figure C15. Absorption spectra of complex 5 in the singlet state calculated by TD-DFT.

Table C7. Calculated transitions of complex $\mathbf{5}$ in the singlet state

Excited State	Energy (eV)	Wavelength (nm)	fosc	Transition	\%
5	1.8105	684.79	0.1316	$259 \rightarrow 263$	79.7
				$262 \rightarrow 264$	18.8
11	2.6194	473.33	0.1878	$256 \rightarrow 263$	48.4
				$257 \rightarrow 263$	29.0
				$259 \rightarrow 263$	3.1
				$260 \rightarrow 265$	2.5
				$262 \rightarrow 264$	15.6
13	2.8659	432.62	0.8324	$254 \rightarrow 263$	8.6
				$255 \rightarrow 263$	4.1
				$256 \rightarrow 263$	5.5
				$257 \rightarrow 263$	15.0
				$259 \rightarrow 263$	12.7
				$262 \rightarrow 264$	48.8
18	3.2082	386.45	0.1171	$254 \rightarrow 263$	32.1
				$258 \rightarrow 264$	9.8
				$259 \rightarrow 265$	35.6
				$262 \rightarrow 264$	4.4
				$262 \rightarrow 266$	9.9

263

258

254

255

265
266

260

257

Figure C16. Molecular orbitals for model complex 5 in the singlet state (Isosurface values: $\pm 0.07(254,255$, 256, 257, 258, 259, 260, 262, 263, 264, 265 and 266).

Figure C17. Absorption spectra of complex 6 in the triplet state calculated by TD-DFT.

Table C8. Calculated transitions of complex 6 in the triplet state

Excited State	Energy (eV)	Wavelength (nm)	fose	Transition	\%
16	2.1959	564.61	0.2120	$248 \mathrm{~A} \rightarrow 254 \mathrm{~A}$	5.6
				$249 \mathrm{~A} \rightarrow 255 \mathrm{~A}$	8.7
				244B \rightarrow 248B	33.5
				245B \rightarrow 249B	47.3
38	3.5523	349.02	0.1101	$248 \mathrm{~A} \rightarrow 252 \mathrm{~A}$	5.5
				$248 \mathrm{~A} \rightarrow 253 \mathrm{~A}$	8.2
				$248 \mathrm{~A} \rightarrow 254 \mathrm{~A}$	4.1
				$248 \mathrm{~A} \rightarrow 256 \mathrm{~A}$	12.3
				$248 \mathrm{~A} \rightarrow 257 \mathrm{~A}$	5.7
				$248 \mathrm{~A} \rightarrow 258 \mathrm{~A}$	26.4
				$248 \mathrm{~A} \rightarrow 259 \mathrm{~A}$	9.1
				$249 \mathrm{~A} \rightarrow 255 \mathrm{~A}$	4.6
				$249 \mathrm{~A} \rightarrow 259 \mathrm{~A}$	6.8
42	3.6379	340.81	0.3810	$248 \mathrm{~A} \rightarrow 253 \mathrm{~A}$	3.8
				$248 \mathrm{~A} \rightarrow 254 \mathrm{~A}$	19.5
				$248 \mathrm{~A} \rightarrow 258 \mathrm{~A}$	3.2
				$249 \mathrm{~A} \rightarrow 255 \mathrm{~A}$	13.2
				242B $\rightarrow 248 \mathrm{~B}$	29.1
				$243 \mathrm{~B} \rightarrow 248 \mathrm{~B}$	13.9
44	3.6945	335.59	0.3112	$248 \mathrm{~A} \rightarrow 254 \mathrm{~A}$	8.2
				$248 \mathrm{~A} \rightarrow 259 \mathrm{~A}$	4.3
				$249 \mathrm{~A} \rightarrow 255 \mathrm{~A}$	11.9
				242B $\rightarrow 248 \mathrm{~B}$	50.6
				243B \rightarrow 249B	4.6

$\xrightarrow{\text { L }}$

259α

253 α

248α

249α (HOMO)

252α

Figure C18. (A) Molecular orbitals for model complex 6 in the triplet state (Isosurface values: ± 0.07 (248α, $249 \alpha, 254 \alpha, 255 \alpha, 258 \alpha$ and $259 \alpha), 0.03(252 \alpha, 253 \alpha, 256 \alpha$, and $257 \alpha)$.

Figure C18. (B) Molecular orbitals for model complex 6 in the triplet state (Isosurface values: ± 0.07 (242β, $243 \beta, 244 \beta, 245 \beta, 248 \beta$ and $249 \beta)$.

Figure C19. Absorption spectra of complex 6 in the singlet state calculated by TD-DFT.

Table C9. Calculated transitions of complex 6 in the singlet state

Excited State	Energy (eV)	Wavelength (nm)	fose	Transition	\%
11	2.5208	491.84	0.1205	$\begin{aligned} 245 & \rightarrow 249 \\ 248 & \rightarrow 254 \end{aligned}$	$\begin{aligned} & 73.1 \\ & 19.8 \end{aligned}$
19	3.3329	372.00	0.3709	$\begin{aligned} & 243 \rightarrow 249 \\ & 245 \rightarrow 249 \\ & 248 \rightarrow 254 \\ & 248 \rightarrow 255 \\ & 248 \rightarrow 259 \end{aligned}$	$\begin{gathered} 12.2 \\ 7.6 \\ 34.2 \\ 29.2 \\ 5.8 \end{gathered}$
20	3.3843	366.35	0.1058	$\begin{aligned} 243 & \rightarrow 249 \\ 248 & \rightarrow 254 \\ 248 & \rightarrow 255 \end{aligned}$	$\begin{gathered} 39.4 \\ 5.3 \\ 48.0 \end{gathered}$
21	3.4367	360.77	0.2431	$\begin{aligned} 243 & \rightarrow 249 \\ 248 & \rightarrow 254 \\ 248 & \rightarrow 255 \\ 248 & \rightarrow 257 \end{aligned}$	$\begin{gathered} 42.6 \\ 15.5 \\ 16.7 \\ 7.6 \end{gathered}$
22	3.4778	356.51	0.1283	$\begin{aligned} & 242 \rightarrow 249 \\ & 248 \rightarrow 257 \\ & 248 \rightarrow 258 \\ & 248 \rightarrow 259 \\ & 248 \rightarrow 261 \\ & 248 \rightarrow 263 \end{aligned}$	$\begin{gathered} 5.8 \\ 34.2 \\ 7.6 \\ 22.2 \\ 8.1 \\ 5.8 \end{gathered}$

Figure C20. Molecular orbitals for model complex 6 in the singlet state (Isosurface values: $\pm 0.07(242,243$, $245,248,249,254,258$ and 259), ± 0.03 (255, 257, 261 and 263)).

Figure C21. Absorption spectra of complex 7 in the triplet state calculated by TD-DFT.

Table C10. Calculated transitions of complex 7 in the triplet state

Excited State	Energy (eV)	Wavelength (nm)	fose	Transition	\%
17	2.2796	543.88	0.1168	$\begin{aligned} & 248 \mathrm{~A} \rightarrow 252 \mathrm{~A} \\ & 249 \mathrm{~A} \rightarrow 255 \mathrm{~A} \\ & 244 \mathrm{~B} \rightarrow 248 \mathrm{~B} \\ & 245 \mathrm{~B} \rightarrow 249 \mathrm{~B} \end{aligned}$	$\begin{gathered} 8.3 \\ 12.2 \\ 27.3 \\ 44.7 \end{gathered}$
37	3.4579	358.55	0.1641	$\begin{aligned} & 248 \mathrm{~A} \rightarrow 252 \mathrm{~A} \\ & 248 \mathrm{~A} \rightarrow 256 \mathrm{~A} \\ & 248 \mathrm{~A} \rightarrow 258 \mathrm{~A} \\ & 248 \mathrm{~A} \rightarrow 259 \mathrm{~A} \\ & 249 \mathrm{~A} \rightarrow 259 \mathrm{~A} \end{aligned}$	$\begin{gathered} 8.2 \\ 12.3 \\ 21.1 \\ 8.6 \\ 10.7 \end{gathered}$
40	3.5327	350.97	0.7940	$\begin{aligned} & 248 \mathrm{~A} \rightarrow 252 \mathrm{~A} \\ & 248 \mathrm{~A} \rightarrow 254 \mathrm{~A} \\ & 248 \mathrm{~A} \rightarrow 258 \mathrm{~A} \\ & 249 \mathrm{~A} \rightarrow 255 \mathrm{~A} \\ & 244 \mathrm{~B} \rightarrow 248 \mathrm{~B} \\ & 245 \mathrm{~B} \rightarrow 249 \mathrm{~B} \end{aligned}$	$\begin{gathered} 17.2 \\ 16.2 \\ 8.5 \\ 20.5 \\ 5.8 \\ 6.4 \end{gathered}$

Figure C22. (A) Molecular orbitals for model complex 7 in the triplet state (Isosurface values: ± 0.07 (248 α, $249 \alpha, 252 \alpha, 254 \alpha, 255 \alpha, 256 \alpha$ and 259α), ± 0.04 (254α and 256α).

Figure C22. (B) Molecular orbitals for model complex 7 in the triplet state (Isosurface values: ± 0.07 (244 β, $245 \beta, 248 \beta$ and 249β).

Figure C23. Absorption spectra of complex 7 in the singlet state calculated by TD-DFT.

Table C11. Calculated transitions of complex 7 in the singlet state

Excited State	Energy (eV)	Wavelength (nm)	fosc	Transition	\%
19	3.2693	379.24	0.2057	$\begin{aligned} & 245 \rightarrow 249 \\ & 248 \rightarrow 252 \\ & 248 \rightarrow 256 \\ & 248 \rightarrow 259 \end{aligned}$	$\begin{gathered} 6.9 \\ 12.4 \\ 58.8 \\ 9.1 \end{gathered}$
20	3.3410	371.10	0.5823	$\begin{aligned} & 245 \rightarrow 249 \\ & 248 \rightarrow 252 \\ & 248 \rightarrow 256 \\ & 248 \rightarrow 257 \end{aligned}$	$\begin{gathered} 17.0 \\ 28.1 \\ 33.8 \\ 5.8 \end{gathered}$
21	3.3943	365.28	0.1932	$\begin{aligned} & 248 \rightarrow 252 \\ & 248 \rightarrow 257 \\ & 248 \rightarrow 258 \\ & 248 \rightarrow 259 \\ & 248 \rightarrow 261 \end{aligned}$	$\begin{gathered} 6.5 \\ 33.6 \\ 10.0 \\ 21.6 \\ 8.6 \end{gathered}$
24	3.5104	353.19	0.1241	$243 \rightarrow 249$	81.2

Figure C24. Molecular orbitals for model complex 7 in the singlet state (Isosurface values: ± 0.07 (243, 245, $248,249,252,259$ and 261), ± 0.03 (256,257 and 258)).

Figure C25. Absorption spectra of complex $\mathbf{8}$ in the triplet state calculated by TD-DFT.

Table C12. Calculated transitions of complex $\mathbf{8}$ in the triplet state

Excited State	Energy (eV)	Wavelength (nm)	fosc	Transition	\%
1	1.4804	837.5	0.0084	$125 \mathrm{~A} \rightarrow 126 \mathrm{~A}$	98.2
3	2.4859	498.76	0.0049	$\begin{aligned} & 125 \mathrm{~A} \rightarrow 127 \mathrm{~A} \\ & 125 \mathrm{~A} \rightarrow 129 \mathrm{~A} \\ & 125 \mathrm{~A} \rightarrow 130 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 22.2 \\ & 57.9 \\ & 13.6 \end{aligned}$
4	2.6799	462.65	0.0093	$123 \mathrm{~B} \rightarrow 124 \mathrm{~B}$	94.7
6	3.0205	410.48	0.0102	$125 \mathrm{~A} \rightarrow 128 \mathrm{~A}$	88.0
8	3.1463	394.07	0.0411	$\begin{aligned} & 124 \mathrm{~A} \rightarrow 126 \mathrm{~A} \\ & 125 \mathrm{~A} \rightarrow 129 \mathrm{~A} \\ & 125 \mathrm{~A} \rightarrow 130 \mathrm{~A} \end{aligned}$	$\begin{gathered} 8.5 \\ 10.9 \\ 71.2 \end{gathered}$
9	3.3305	372.27	0.0301	$\begin{aligned} & 124 \mathrm{~A} \rightarrow 126 \mathrm{~A} \\ & 121 \mathrm{~B} \rightarrow 124 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 61.9 \\ & 16.3 \end{aligned}$
10	3.4303	361.44	0.0097	$125 \mathrm{~A} \rightarrow 131 \mathrm{~A}$	86.4
11	3.5436	349.88	0.0032	$125 \mathrm{~A} \rightarrow 132 \mathrm{~A}$	81.2

$\xrightarrow{\sim}$

127α

124α

128α

125α

123β

124β

Figure C26. Molecular orbitals for model complex $\mathbf{8}$ in the triplet state (Isosurface values: ± 0.07 ($124 \alpha, 125 \alpha$, $126 \alpha, 129 \alpha, 121 \beta, 123 \beta$ and $124 \beta), 0.04(127 \alpha, 128 \alpha, 130 \alpha, 131 \alpha$ and $132 \alpha)$).

Figure C27. Absorption spectra of complex $\mathbf{8}$ in the singlet state calculated by TD-DFT.

Table C13. Calculated transitions of complex 8 in the singlet state

Excited State	Energy (eV)	Wavelength $(\mathbf{n m})$	$\mathbf{f}_{\text {osc }}$	Transition	$\mathbf{\%}$
1	2.6001	476.84	0.0024	$124 \rightarrow 125$	99.2
2	3.0283	409.42	0.0097	$124 \rightarrow 126$	98.2
3	3.3294	372.39	0.0016	$124 \rightarrow 127$	96.9

Figure C28. Molecular orbitals for model complex $\mathbf{8}$ in the singlet state (Isosurface values: ± 0.07 (124, 125, 126 and 127).

Table C14. Summary for $v\left(N_{2}\right)$ in Mo- N_{2} complexes

Complex	Media	Wavenumber / cm^{-1}	Reference
trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$	in THF	2008 (vw), 1939	
	in toluene	2008 (vw), 1940	3
	KBr	2002 (vw), 1928	
$\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]$	in $\mathrm{Pyr}_{4} \mathrm{FAP}$	1919	this study
$\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)\right]^{+}$	in $\mathrm{Pyr}_{4} \mathrm{FAP}$	1955	
trans $-\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}\right]$	in Nujol	2020 (vw), 1975	4
trans- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}\right] \mathrm{I}_{3}$	in Nujol	2047	

Figure C29. The optimized structure of 12'. Selected bond lengths for the complex; F93 $\cdots \mathrm{H} 73$ 2.8278, F93 \cdots H71 2.3380, F89 \cdots H64 2.9302, F89 \cdots H63 2.6904, F90 $\cdots \mathrm{H} 63$ 2.3938, F90 $\cdots \mathrm{H} 21$ 2.9037, F90 \cdots H30, Mo1 \cdots F90 3.5837, F92 $\cdots \mathrm{H} 73$ 2.6136, F88 $\cdots \mathrm{H} 21$ 2.2994, F88 $\cdots \mathrm{H} 22$ 2.6106, F86 $\cdots \mathrm{H} 22$ 2.8267, F106 $\cdots \mathrm{H} 27$ 2.4178, F106 $\cdots \mathrm{H} 66$ 2.4039, F106 $\cdots \mathrm{H} 29$ 2.8833, F103 $\cdots \mathrm{H} 66$ 2.4849, F125 $\cdots \mathrm{H} 29$ 2.5953, F110 $\cdots \mathrm{H} 29$ 2.7437, F110 $\cdots \mathrm{H} 27$ 2.8770, F122 $\cdots \mathrm{H} 66$ 2.4211, F121 $\cdots \mathrm{H} 68$ 2.7540, F122 \cdots H54 2.3705.

C. 5 Electrochemical $\mathbf{N H}_{3}$ synthesis by trans-[Mo(depe $\left.)_{2}\left(\mathbf{N}_{2}\right)_{2}\right]$ in Pyr $_{4}$ FAP by using SPE cell

In order to characterize the electrochemical conversion of N_{2} to NH_{3} by trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in the SPE cell as shown in Figure A2 in appendix A, the reduction potential was evaluated and the linear sweep voltammograms in SPE cell were measured (Figure C30). Surprisingly, the electric current was found to dramatically increase at -0.24 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$). At this potential, trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in the $\operatorname{Mo}(0)$ state cannot receive any more electrons from the electrode. In fact, H_{2} evolution is not observed through the reduction of proton transferred from proton exchange membrane. Therefore, it appears that the observed current is derived from protonation of the terminal N_{2} of trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and successive electron transfer to generate NH_{3}, as shown in Scheme C1. In general, chemical protonation of trans-[Mo(depe) $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ proceeds by addition of a strong acid such as $\mathrm{H}_{2} \mathrm{SO}_{4}$ without a reducing agent, and the coordinated N_{2} is converted to $\mathrm{NH}_{3} .{ }^{5}$ In our system, protons are generated electrochemically when oxidation of $\mathrm{H}_{2} \mathrm{O}$ occurs at the counter electrode. These protons are transferred to the WE across the proton exchange membrane. On the basis of these results, we decided to carry out the CPE analysis at $-0.3,-0.5$ and -1.0 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$. The results obtained in the CPE analysis are summarized in Table C15.

Figure C30. (A) Linear sweep voltammogram of 10 mM trans-[Mo(depe) $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ in $\mathrm{Pyr}_{4} \mathrm{FAP}$ in SPE cell, where WE is carbon paper ($1 \mathrm{~cm} \times 3 \mathrm{~cm}$) coated with $50 \mu \mathrm{~L}$ of the $\mathrm{Pyr}_{4} \mathrm{FAP}, \mathrm{CE}$ is Pt mesh, RE is $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{NaCl})$, CE chamber was flowed with $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{aq}$, and WE and CE were separated by Nafion membrane (scan rate is $5 \mathrm{mV} / \mathrm{s}$). The rest potential was 0.59 V . (B) Plots of the consumed electricity (C) against time (s) in controlled-potential electrolysis at -0.3 V .

In the case of CPE analysis at $-0.3 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$, the yield of NH_{3} per trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ is 77% and the current efficiency is 0.013%. In this analysis, H_{2} evolution is not observed and hydrazine is not generated. ${ }^{6}$ Ammonia is generated under an Ar atmosphere. Therefore, it is clear that the ammonia is derived from N_{2} coordinated to the molybdenum ion. These findings indicate that 25% of the two coordinated N_{2} molecules are protonated to generate NH_{3}. Unfortunately, the current efficiency is quite low. This indicates that most of the electric charges are consumed for other reactions after the protonation reaction. We cannot yet rationalize these reactions in detail.

In the case of CPE analysis at $-0.5 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$, the yield of NH_{3} per trans- $\left[\mathrm{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ is 76% and the current efficiency is 0.015%. Likewise, the CPE analysis at -1.0 V (vs. $\mathrm{Ag} / \mathrm{AgCl}$) provides 71% yield of NH_{3} per trans- $\left[\operatorname{Mo}(\text { depe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ and current efficiency is 0.015%. Therefore, the reactivity is not improved at negative potential below -0.3 V .

It is well known that a $\operatorname{Mo}(0)-\mathrm{N}_{2}$ complex supported by a phosphine ligand can convert the coordinated N_{2} to ammonia by protonation of the terminal nitrogen in the presence of a strong acid. ${ }^{7}$ Therefore, the result obtained in the present work as shown in Figure C30 demonstrates that the reaction proceeds electrochemically through the proton exchange membrane, as shown in Scheme C1. Many reactions involving protonation of a dinitrogen complex using a protonation agent have been reported, but such a direct protonation of the metal- N_{2} complex through the proton exchange membrane has not been reported hitherto, to the best of our knowledge.

Scheme C1. Proposed reaction scheme for NH_{3} generation from trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$

Table C15. Results of controlled-potential electrolysis

Reduction potential (V) (vs. $\mathbf{A g} / \mathbf{A g C l}$)	Amount of $\mathbf{N H}_{3}$ generated (nmol)	Consumed electric charge (C) ${ }^{\text {a }}$	Yield of NH_{3} per Mo ion (\%) ${ }^{\text {b,c }}$	Current efficiency $(\%)^{b, c, d}$
-0.3	386	95.2	77.2	0.013
-0.5	378	83.3	75.6	0.015
-1.0	353	76.4	70.6	0.015

[^1]
C. 6 Cartesian coordinates for optimized structures

Table	Cartesian coos	dinates for	optimized	H	-1.024234	-5.047578	1.516860
structu				H	-2.409957	-5.554488	0.534654
Mo	-2.435421	-0.000034	0.000016	H	-1.994244	-2.916597	-2.397266
P	0.059795	0.021679	-0.003753	H	-1.804273	-4.415010	-1.487675
P	-1.985153	-2.453301	-0.018102	H	-4.463716	-2.879831	-1.815085
N	-2.451956	-0.018849	-2.020593	H	-4.272128	-4.402127	-0.927664
N	-2.480535	-0.043437	-3.154801	H	-4.010913	-4.358594	-2.679019
C	0.646431	-1.645908	-0.631356	P	-4.930635	-0.021760	0.003772
C	-0.124395	-2.762769	0.083415	P	-2.885700	2.453231	0.018131
C	0.886655	0.108255	1.679844	N	-2.418920	0.018811	2.020624
C	2.356020	-0.316886	1.806719	N	-2.390094	0.043262	3.154829
C	1.155045	1.190367	-0.973550	C	-5.517292	1.645838	0.631326
C	0.853675	1.262592	-2.476025	C	-4.746454	2.762692	-0.083443
C	-2.607522	-3.536768	1.374022	C	-5.757468	-0.108380	-1.679834
C	-2.116313	-4.989997	1.428867	C	-7.226888	0.316563	-1.806718
C	-2.379972	-3.480236	-1.536618	C	-6.025885	-1.190427	0.973594
C	-3.865200	-3.795332	-1.747263	C	-5.724496	-1.262639	2.476067
H	0.440581	-1.673964	-1.710745	C	-2.263284	3.536714	-1.373959
H	1.731089	-1.766385	-0.506702	C	-2.754495	4.989942	-1.428809
H	0.145945	-2.783303	1.149899	C	-2.490946	3.480155	1.536670
H	0.130866	-3.747144	-0.331525	C	-1.005723	3.795214	1.747407
H	0.771015	1.148120	2.015097	H	-5.311469	1.673914	1.710721
H	0.266890	-0.488548	2.361008	H	-6.601948	1.766310	0.506646
H	2.495958	-1.379781	1.572990	H	-5.016766	2.783209	-1.149934
H	2.704364	-0.161429	2.837146	H	-5.001730	3.747071	0.331476
H	3.016258	0.261075	1.148035	H	-5.641678	-1.148213	-2.015137
H	1.020913	2.182297	-0.517929	H	-5.137771	0.488538	-2.360961
H	2.206404	0.909869	-0.818251	H	-7.366999	1.379406	-1.572854
H	-0.184934	1.556902	-2.662596	H	-7.575163	0.161192	-2.837182
H	1.020203	0.296497	-2.969797	H	-7.887068	-0.261587	-1.148141
H	1.508642	1.997801	-2.963251	H	-5.891773	-2.182364	0.517984
H	-2.337350	-3.009155	2.299890	H	-7.077242	-0.909917	0.818307
H	-3.704492	-3.509023	1.323264	H	-4.685889	-1.556960	2.662628
H	-2.545164	-5.505887	2.298942	H	-5.891005	-0.296536	2.969829

H	-6.379467	-1.997834	2.963309	C	-3.033259	-1.377665	-4.075038
H	-2.533419	3.009108	-2.299842	C	-2.349248	-2.533256	-3.336241
H	-1.166315	3.508971	-1.323160	C	-3.428750	0.455407	-1.812476
H	-2.325615	5.505839	-2.298866	C	-4.842368	-0.141235	-1.768629
H	-3.846570	5.047521	-1.516839	C	-3.439204	1.462082	-4.450706
H	-2.460881	5.554426	-0.534583	C	-3.253688	1.375624	-5.970516
H	-2.876742	2.916528	2.397295	C	0.031480	-3.496088	-1.982561
H	-3.066618	4.414943	1.487689	C	-0.591995	-4.899230	-1.992934
H	-0.407239	2.879698	1.815290	C	-0.033015	-3.289312	-4.872182
H	-0.598725	4.401981	0.927821	C	1.375475	-3.900344	-4.884688
H	-0.860058	4.358493	2.679160	H	-2.756005	-1.395635	-5.138361
				H	-4.127098	-1.463816	-4.025738
				H	-2.677036	-2.552977	-2.287020
Table	Cartesian coor	ordinates for	optimized	H	-2.622590	-3.501514	-3.777692
struct				H	-3.475286	1.539396	-1.633115
Mo	0.050897	0.145078	-3.292999	H	-2.814873	0.045314	-1.003664
P	2.540258	0.004755	-3.558805	H	-4.822910	-1.236713	-1.831083
P	0.586411	2.561540	-3.584843	H	-5.342544	0.124858	-0.827848
N	0.046050	0.166490	-1.126702	H	-5.474826	0.226110	-2.587229
N	-0.011146	0.143093	0.019396	H	-3.171357	2.467807	-4.096436
C	3.293964	1.718980	-3.408669	H	-4.502162	1.320941	-4.206832
C	2.393977	2.748732	-4.100052	H	-2.207382	1.505565	-6.264018
C	3.073420	-0.423674	-5.308829	H	-3.590758	0.407827	-6.363202
C	4.558824	-0.622261	-5.636533	H	-3.846729	2.154848	-6.469609
C	3.654613	-1.045883	-2.472826	H	-0.191879	-2.986749	-1.036448
C	5.127737	-0.659169	-2.265043	H	1.126860	-3.565687	-2.030245
C	-0.236649	3.490893	-4.989532	H	-0.191038	-5.505337	-1.168366
C	0.285757	4.893359	-5.331860	H	-1.681306	-4.859992	-1.873206
C	0.502797	3.829703	-2.208513	H	-0.379922	-5.434512	-2.927030
C	-0.923033	4.197083	-1.784734	H	-0.148971	-2.605804	-5.722845
H	3.377158	1.948642	-2.340425	H	-0.776529	-4.087906	-5.003682
H	4.310161	1.747565	-3.825678	H	2.146985	-3.158667	-4.647624
H	2.425575	2.604597	-5.190168	H	1.470554	-4.717647	-4.159109
H	2.748720	3.770014	-3.904845	H	1.606090	-4.311841	-5.876837
H	2.510665	-1.318861	-5.596700	Mo	-0.079503	0.038126	2.184020
H	2.663432	0.380018	-5.934705	P	-1.875289	-1.696452	2.271136
H	5.169272	0.245753	-5.356274	P	1.337923	-2.014126	2.201153
H	4.685651	-0.774857	-6.717816	N	-0.043950	-0.121814	4.159419
H	4.973638	-1.503618	-5.132206	N	0.014284	-0.224801	5.296045
H	3.149807	-1.070900	-1.500917	C	-1.078609	-3.278979	2.894719
H	3.581240	-2.069481	-2.870461	C	0.232889	-3.545176	2.147195
H	5.223334	0.345108	-1.836027	C	-2.730648	-2.264153	0.696009
H	5.704279	-0.679344	-3.194874	C	-3.319055	-3.680699	0.639956
H	5.603133	-1.360605	-1.564591	C	-3.399925	-1.617846	3.371549
H	-0.152215	2.832772	-5.865004	C	-3.165556	-1.579397	4.887062
H	-1.306991	3.537804	-4.751697	C	2.574647	-2.412649	0.858420
H	-0.273265	5.311433	-6.180616	C	3.260190	-3.785676	0.881271
H	1.346083	4.877844	-5.612923	C	2.312740	-2.424963	3.750439
H	0.173300	5.589989	-4.491142	C	3.575830	-1.586747	3.975903
H	1.046946	3.392297	-1.362041	H	-0.873499	-3.125928	3.963364
H	1.054546	4.732095	-2.507639	H	-1.764504	-4.133410	2.819058
H	-1.502655	3.300294	-1.534367	H	0.029184	-3.768974	1.089913
H	-1.456962	4.727319	-2.584428	H	0.753695	-4.417340	2.566326
H	-0.915820	4.851335	-0.902326	H	-3.526487	-1.526741	0.522291
P	-2.437783	0.269132	-3.396020	H	-2.010463	-2.122490	-0.117693
P	-0.473632	-2.301407	-3.332377	H	-2.537088	-4.448578	0.686889
N	-0.025302	0.057753	-5.271858	H	-3.866894	-3.828705	-0.301388
N	-0.070268	-0.009464	-6.412400	H	-4.024648	-3.871773	1.458668

H	-3.947679	-0.718436	3.058652	N	-0.067478	0.112097	-1.136464
H	-4.042826	-2.475452	3.126356	N	-0.023052	0.069234	0.016536
H	-2.530408	-0.738523	5.183132	C	3.350219	0.998432	-3.124344
H	-2.686308	-2.498783	5.246745	C	2.732910	2.316985	-3.604532
H	-4.125045	-1.483993	5.414541	C	2.493457	-0.470045	-5.496350
H	2.027130	-2.279874	-0.082935	C	3.912395	-0.524781	-6.080849
H	3.326537	-1.611877	0.885229	C	3.233963	-1.955616	-3.089702
H	3.940972	-3.888268	0.024635	C	4.751057	-1.826654	-2.884567
H	2.532096	-4.604570	0.823484	C	0.379406	3.527101	-4.741506
H	3.855194	-3.931541	1.791697	C	1.125802	4.861492	-4.883701
H	1.625862	-2.289147	4.595954	C	0.778318	3.582057	-1.875413
H	2.574356	-3.491836	3.721837	C	-0.588161	4.234590	-1.642674
H	3.340775	-0.518153	4.034199	H	3.409155	0.977116	-2.027424
H	4.307620	-1.725631	3.168780	H	4.373287	0.886553	-3.507917
H	4.064815	-1.872274	4.917466	H	2.894968	2.421910	-4.687584
P	1.657751	1.813310	2.449222	H	3.222866	3.176936	-3.127894
P	-1.503879	2.083722	2.451682	H	1.916477	-1.332539	-5.858458
C	0.935295	3.409866	1.789080	H	1.972642	0.418892	-5.881413
C	-0.435113	3.659057	2.429331	H	4.535966	0.307529	-5.729713
C	2.022611	2.278903	4.234274	H	3.874983	-0.466613	-7.178117
C	2.688050	3.631826	4.522212	H	4.421716	-1.460441	-5.820986
C	3.401981	1.867054	1.770784	H	2.770025	-2.303347	-2.158019
C	3.483972	1.837886	0.244874	H	3.015378	-2.730296	-3.840178
C	-2.346055	2.279852	4.116101	H	4.987022	-1.110165	-2.087974
C	-3.055561	3.607907	4.414683	H	5.269649	-1.495178	-3.791077
C	-2.885829	2.625427	1.301337	H	5.180024	-2.795788	-2.592521
C	-4.173114	1.802021	1.407848	H	0.506048	2.927927	-5.655956
H	0.823320	3.274481	0.706809	H	-0.700916	3.707419	-4.651062
H	1.609059	4.264210	1.946830	H	0.771100	5.412032	-5.766631
H	-0.302738	3.981911	3.471573	H	2.206826	4.713021	-5.001138
H	-0.967714	4.469096	1.913490	H	0.972923	5.508623	-4.010630
H	2.641512	1.466216	4.639490	H	1.059245	2.991430	-0.995229
H	1.073006	2.214135	4.778133	H	1.548416	4.355955	-2.007900
H	2.062360	4.473367	4.198398	H	-1.360761	3.477063	-1.470596
H	2.852890	3.745258	5.602789	H	-0.901074	4.847131	-2.498874
H	3.664311	3.734446	4.032481	H	-0.561885	4.892459	-0.762456
H	3.919718	0.994172	2.192597	P	-2.435013	0.682557	-3.732316
H	3.916411	2.759971	2.151406	P	-1.107863	-2.120694	-3.108912
H	2.943182	0.978280	-0.168825	C	-3.571939	-0.838125	-3.605235
H	3.053520	2.747561	-0.193074	C	-2.945941	-1.930121	-2.726677
H	4.529081	1.776216	-0.087010	C	-3.516684	2.043022	-2.995376
H	-1.568076	2.090394	4.867803	C	-4.923405	2.282755	-3.562998
H	-3.054253	1.446082	4.209111	C	-2.671473	1.130013	-5.551046
H	-3.467027	3.598906	5.433622	C	-1.817186	0.315067	-6.529065
H	-2.371886	4.463512	4.345097	C	-0.576110	-3.340008	-1.788644
H	-3.889573	3.792971	3.726114	C	-1.364750	-4.644910	-1.613384
H	-2.481699	2.558460	0.284243	C	-1.247886	-3.268278	-4.600798
H	-3.106018	3.686149	1.486687	C	0.069642	-3.904620	-5.057982
H	-3.982424	0.737893	1.226497	H	-3.733007	-1.222010	-4.623224
H	-4.635693	1.895913	2.398831	H	-4.559140	-0.548457	-3.220849
H	-4.911025	2.139252	0.667463	H	-3.011216	-1.645999	-1.666613
				H	-3.485300	-2.881325	-2.846263
				H	-2.920701	2.961995	-3.081871
Table C18. Cartesian coordinates for optimizedstructure of 3				H	-3.576091	1.822547	-1.923324
				H	-5.546702	1.379927	-3.520532
Mo	-0.106016	0.112441	-3.201108	H	-5.440905	3.062925	-2.986268
P	2.239594	-0.438177	-3.619922	H	-4.891522	2.615737	-4.607698
P	0.848790	2.379114	-3.320369	H	-2.420926	2.196454	-5.643378

H	-3.733936	1.029906	-5.815355	C	3.415618	2.581619	0.756034
H	-0.743066	0.422071	-6.319233	C	-3.001922	1.519832	3.746839
H	-2.060451	-0.754472	-6.487413	C	-4.033023	2.638709	3.953548
H	-1.982089	0.647401	-7.564097	C	-3.036066	2.024521	0.907958
H	-0.579945	-2.755318	-0.859621	C	-4.028662	0.893487	0.618086
H	0.480995	-3.561960	-1.992732	H	0.385920	3.659245	1.082527
H	-0.957362	-5.233077	-0.778399	H	0.771806	4.461126	2.611510
H	-2.424193	-4.457938	-1.396319	H	-1.212601	3.570680	3.696515
H	-1.316500	-5.275264	-2.510705	H	-1.779872	4.149463	2.130023
H	-1.670734	-2.669693	-5.419239	H	2.136090	1.444363	4.834623
H	-1.984186	-4.054080	-4.377438	H	0.408766	1.739937	4.886899
H	0.816873	-3.140694	-5.306546	H	0.811186	4.236449	4.914245
H	0.500684	-4.547586	-4.278934	H	1.670786	3.436749	6.238437
H	-0.083852	-4.525918	-5.951409	H	2.558728	3.964411	4.801352
Mo	0.021595	-0.000116	2.087365	H	3.697269	1.801505	2.755222
P	-1.277918	-2.045766	2.495560	H	3.261432	3.512314	2.709784
P	1.843010	-1.635892	2.065048	H	3.163021	1.635193	0.259875
C	-0.158148	-3.584264	2.488754	H	2.879308	3.384456	0.236234
C	1.133185	-3.345944	1.697237	H	4.491209	2.761391	0.617927
C	-2.794723	-2.660509	1.554094	H	-2.360936	1.432673	4.636829
C	-3.503939	-3.942529	2.013641	H	-3.514336	0.552659	3.653353
C	-1.968708	-2.175590	4.245022	H	-4.612296	2.465301	4.871621
C	-1.028089	-1.633973	5.328006	H	-3.556111	3.622804	4.046619
C	3.260151	-1.567162	0.837987	H	-4.746845	2.692829	3.121859
C	4.209500	-2.770548	0.749948	H	-2.433058	2.228105	0.014171
C	2.787176	-2.071239	3.646337	H	-3.575167	2.951324	1.150941
C	3.885112	-1.085015	4.061671	H	-3.505741	-0.003370	0.266494
H	0.084489	-3.814471	3.536500	H	-4.608021	0.619655	1.510370
H	-0.700970	-4.455107	2.096989	H	-4.749532	1.189556	-0.156478
H	0.928299	-3.369406	0.618892				
H	1.867703	-4.136472	1.908433				
H	-3.501961	-1.820775	1.573224	Table C19. Cartesian coordinates for optimized			
H	-2.476622	-2.759605	0.507715	structure of 4			
H	-2.830098	-4.808897	2.025591	Mo	-2.435424	-0.000051	0.000018
H	-4.333402	-4.184994	1.333807	P	0.137416	-0.003317	0.001899
H	-3.926767	-3.835857	3.020308	P	-1.995033	-2.535693	-0.039462
H	-2.911025	-1.610063	4.256798	N	-2.508147	-0.028207	-2.029167
H	-2.223203	-3.222781	4.462680	N	-2.560006	-0.056391	-3.153822
H	-0.775559	-0.578733	5.148759	C	0.648298	-1.693705	-0.590419
H	-0.088057	-2.200142	5.369853	C	-0.149077	-2.785646	0.138384
H	-1.492728	-1.697586	6.322274	C	0.940144	0.118797	1.681186
H	2.783866	-1.377865	-0.132778	C	2.459582	-0.080066	1.770525
H	3.823828	-0.654199	1.075295	C	1.160617	1.156695	-1.032668
H	5.002327	-2.586680	0.012221	C	0.812776	1.185751	-2.526642
H	3.681110	-3.682264	0.443781	C	-2.695646	-3.571362	1.337622
H	4.698184	-2.977704	1.710818	C	-2.256357	-5.041646	1.389669
H	2.036726	-2.143337	4.445905	C	-2.348703	-3.519031	-1.582327
H	3.219568	-3.076350	3.534578	C	-3.832359	-3.782436	-1.864721
H	3.489570	-0.069798	4.183551	H	0.459736	-1.735309	-1.671305
H	4.691669	-1.038780	3.318336	H	1.726608	-1.842814	-0.448803
H	4.335972	-1.383083	5.018640	H	0.081389	-2.776727	1.212546
P	1.290756	2.009853	2.619550	H	0.128676	-3.778095	-0.239039
P	-1.813120	1.642333	2.284522	H	0.667518	1.103919	2.081159
C	0.322479	3.558206	2.173078	H	0.425150	-0.609679	2.320904
C	-1.137904	3.399961	2.612506	H	2.771951	-1.062062	1.394635
C	1.358013	2.148896	4.510472	H	2.776881	-0.015845	2.819342
C	1.613745	3.524319	5.144183	H	3.009353	0.687944	1.214136
C	3.058142	2.536380	2.245113	H	1.034713	2.156245	-0.593042

H	2.216142	0.885208	-0.899706	N	0.010563	-1.137572	-0.231552
H	-0.223261	1.496014	-2.698558	N	-0.036072	0.004293	-0.147814
H	0.954002	0.205016	-2.997498	C	3.164329	-3.245397	-2.090544
H	1.468214	1.896378	-3.046100	C	2.214056	-3.866588	-3.122991
H	-2.421343	-3.056273	2.268662	C	3.114286	-5.378685	-0.132447
H	-3.788998	-3.502939	1.262943	C	4.613212	-5.700671	-0.067086
H	-2.719300	-5.537344	2.252493	C	3.680942	-2.588881	0.756049
H	-1.169164	-5.139438	1.495751	C	5.133014	-2.315709	0.332816
H	-2.559925	-5.591733	0.490759	C	-0.455692	-4.800144	-3.737171
H	-1.899930	-2.964514	-2.417216	C	-0.053828	-5.038492	-5.199929
H	-1.804925	-4.470337	-1.507308	C	0.183333	-1.959975	-3.984623
H	-4.390959	-2.848246	-1.989959	C	-1.284333	-1.599708	-4.240287
H	-4.307016	-4.356431	-1.058935	H	3.205705	-2.158645	-2.209971
H	-3.941411	-4.359920	-2.791396	H	4.183798	-3.624544	-2.238331
P	-5.008264	0.003217	-0.001865	H	2.272385	-4.962644	-3.079247
P	-2.875814	2.535591	0.039501	H	2.514156	-3.576082	-4.137947
N	-2.362717	0.028108	2.029203	H	2.615977	-5.750275	0.770178
N	-2.310754	0.056278	3.153854	H	2.653273	-5.928133	-0.963753
C	-5.519144	1.693603	0.590458	H	5.161163	-5.325530	-0.940098
C	-4.721770	2.785546	-0.138343	H	4.749204	-6.789566	-0.037940
C	-5.810992	-0.118887	-1.681153	H	5.079427	-5.288030	0.834848
C	-7.330430	0.079977	-1.770490	H	3.152824	-1.637333	0.878272
C	-6.031468	-1.156799	1.032694	H	3.650781	-3.079205	1.739818
C	-5.683627	-1.185870	2.526667	H	5.182720	-1.800278	-0.633113
C	-2.175200	3.571263	-1.337582	H	5.728811	-3.229609	0.257142
C	-2.614490	5.041547	-1.389625	H	5.611258	-1.666692	1.078265
C	-2.522142	3.518925	1.582369	H	-0.270421	-5.703753	-3.141735
C	-1.038485	3.782322	1.864766	H	-1.532769	-4.604012	-3.668145
H	-5.330581	1.735204	1.671344	H	-0.615779	-5.890912	-5.602444
H	-6.597455	1.842713	0.448844	H	1.013331	-5.270255	-5.299071
H	-4.952237	2.776629	-1.212505	H	-0.273119	-4.170825	-5.833703
H	-4.999522	3.777994	0.239082	H	0.707004	-1.119233	-3.513508
H	-5.538367	-1.104008	-2.081131	H	0.698174	-2.164281	-4.933008
H	-5.295998	0.609592	-2.320867	H	-1.829254	-1.453294	-3.299837
H	-7.642798	1.061970	-1.394594	H	-1.800101	-2.384249	-4.807515
H	-7.647729	0.015762	-2.819307	H	-1.357802	-0.671596	-4.820722
H	-7.880201	-0.688037	-1.214104	P	-2.560259	-3.381315	-0.263501
H	-5.905569	-2.156346	0.593059	P	-0.349279	-3.472599	2.250317
H	-7.086992	-0.885306	0.899734	N	-0.023095	-5.276998	-0.304346
H	-4.647592	-1.496142	2.698580	N	-0.056946	-6.405756	-0.288598
H	-5.824845	-0.205138	2.997532	C	-2.954953	-4.149010	1.387133
H	-6.339070	-1.896497	3.046120	C	-2.200329	-3.441364	2.521869
H	-2.449504	3.056176	-2.268622	C	-3.550036	-1.801816	-0.295367
H	-1.081848	3.502839	-1.262902	C	-4.921469	-1.817489	0.395374
H	-2.151547	5.537246	-2.252449	C	-3.567068	-4.401360	-1.461275
H	-3.701682	5.139339	-1.495707	C	-3.349792	-5.919260	-1.458088
H	-2.310921	5.591632	-0.490715	C	0.292176	-2.172030	3.412689
H	-2.970919	2.964409	2.417255	C	-0.204368	-2.229881	4.864688
H	-3.065915	4.470234	1.507350	C	0.126289	-5.067442	3.099017
H	-0.479890	2.848129	1.990004	C	1.596105	-5.168481	3.529909
H	-0.563823	4.356315	1.058982	H	-2.662133	-5.205228	1.332183
H	-0.929432	4.359805	2.791441	H	-4.036860	-4.128502	1.568971
				H	-2.506079	-2.389087	2.581502
Table C20. Cartesian coordinates for optimizedstructure of $\mathbf{5}$ in the triplet state				H	-2.442355	-3.901796	3.488403
				H	-3.668966	-1.564641	-1.361593
Mo	0.022457	-3.269223	-0.303773	H	-2.916345	-1.011784	0.120722
P	2.585743	-3.602659	-0.358327	H	-4.831188	-1.938635	1.481700
P	0.415872	-3.414032	-2.848454	H	-5.443089	-0.869746	0.212455

H	-5.567994	-2.620489	0.020912	C	-0.692956	2.644293	-3.521913
H	-3.364538	-3.985216	-2.457667	C	1.865223	4.397917	-2.264175
H	-4.622199	-4.183497	-1.247481	C	2.536925	4.747846	-3.599739
H	-2.318566	-6.193901	-1.700062	C	3.283284	1.907457	-2.025902
H	-3.599534	-6.363918	-0.487280	C	3.371616	0.383200	-1.968087
H	-4.003835	-6.382798	-2.207668	C	-2.518302	4.204942	-1.877733
H	0.035334	-1.209296	2.953896	C	-3.335124	4.590806	-3.119388
H	1.388032	-2.239343	3.379226	C	-3.056777	1.392532	-2.380046
H	0.254224	-1.422945	5.450839	C	-4.276899	1.443238	-1.454467
H	-1.292078	-2.109131	4.928871	H	0.607315	0.912526	-3.354528
H	0.058993	-3.177336	5.349599	H	1.285549	2.219582	-4.333202
H	-0.121921	-5.885733	2.411955	H	-0.595304	3.707331	-3.777083
H	-0.523929	-5.186150	3.976019	H	-1.279798	2.182830	-4.325682
H	2.286007	-4.987993	2.697700	H	2.466160	4.785240	-1.430748
H	1.837514	-4.452425	4.324328	H	0.899356	4.911917	-2.191096
H	1.802447	-6.173960	3.917166	H	1.946227	4.412539	-4.460963
Mo	-0.026171	2.159192	0.062536	H	2.641349	5.837541	-3.679709
P	-1.757221	2.180965	1.980316	H	3.540831	4.317067	-3.688398
P	1.530116	2.107273	2.086801	H	3.854579	2.357924	-1.203194
N	0.120667	4.148177	0.312816	H	3.729604	2.270104	-2.960502
N	0.211644	5.262567	0.469296	H	2.913504	-0.014175	-1.054070
C	-0.817284	2.688830	3.510304	H	2.869732	-0.072677	-2.830570
C	0.499216	1.910958	3.635340	H	4.421336	0.064153	-1.991364
C	-2.595626	0.589207	2.482507	H	-1.730989	4.948830	-1.697865
C	-3.166411	0.481324	3.903586	H	-3.157429	4.223383	-0.985969
C	-3.223431	3.342296	2.014812	H	-3.753494	5.597013	-2.988391
C	-2.926652	4.847188	1.989855	H	-2.720803	4.605666	-4.027758
C	2.786979	0.746426	2.219965	H	-4.173451	3.905351	-3.291769
C	3.638005	0.687105	3.495875	H	-2.631712	0.382161	-2.399635
C	2.500880	3.639561	2.517081	H	-3.359481	1.627984	-3.409130
C	3.637101	3.987749	1.549184	H	-4.008826	1.211487	-0.417193
H	-0.614339	3.764020	3.422584	H	-4.757541	2.428758	-1.466769
H	-1.439084	2.557574	4.404699	H	-5.027539	0.710357	-1.776162
H	0.301963	0.840133	3.776480				
H	1.066281	2.251803	4.511216				
H	-3.399746	0.446897	1.747998	Table C21. Cartesian coordinates for optimized			
H	-1.873016	-0.214948	2.300872	struct	5 in the sing	let state	
H	-2.378412	0.506888	4.665253	Mo	0.009537	-3.102357	-0.281521
H	-3.702304	-0.470486	4.016890	P	2.525367	-3.579110	-0.338838
H	-3.880581	1.282688	4.127437	P	0.394046	-3.272383	-2.778486
H	-3.859397	3.066155	1.163220	N	0.022457	-1.089441	-0.208118
H	-3.797914	3.101580	2.919229	N	-0.008491	0.086974	-0.134179
H	-2.379363	5.150219	1.091922	C	3.152371	-3.187791	-2.048122
H	-2.341848	5.162696	2.862208	C	2.191220	-3.735128	-3.106858
H	-3.871117	5.405956	2.010745	C	3.027617	-5.368659	-0.148194
H	2.214652	-0.181610	2.100213	C	4.523341	-5.701474	-0.060526
H	3.432113	0.825766	1.334652	C	3.600128	-2.596032	0.823502
H	4.302099	-0.186484	3.458362	C	5.071053	-2.350917	0.450302
H	3.019557	0.596627	4.397181	C	-0.460883	-4.653509	-3.701656
H	4.270695	1.575328	3.607869	C	-0.016363	-4.903768	-5.150488
H	1.786521	4.470965	2.568316	C	0.136387	-1.814545	-3.912981
H	2.896588	3.504889	3.532531	C	-1.322005	-1.584529	-4.329675
H	3.260327	4.175422	0.537416	H	3.228326	-2.099675	-2.127801
H	4.385198	3.186792	1.490252	H	4.161120	-3.596667	-2.190982
H	4.151892	4.896893	1.884472	H	2.235946	-4.833134	-3.122628
P	1.559879	2.590845	-1.894467	H	2.490306	-3.395097	-4.106415
P	-1.666652	2.543523	-1.907527	H	2.513196	-5.763141	0.735119
C	0.697108	2.001634	-3.432255	H	2.586955	-5.889288	-1.008415

H	5.094049	-5.298820	-0.905870	P	1.390239	2.113481	2.143880
H	4.649711	-6.791761	-0.068930	N	-0.023185	4.155830	0.348194
H	4.969374	-5.326560	0.867304	N	0.020748	5.259483	0.528170
H	3.087613	-1.634300	0.933940	C	-1.009712	2.708758	3.462802
H	3.525353	-3.089961	1.802007	C	0.309985	1.956281	3.667108
H	5.166639	-1.839264	-0.513799	C	-2.657964	0.548728	2.339356
H	5.652579	-3.275427	0.399580	C	-3.267254	0.416577	3.742396
H	5.532531	-1.708714	1.212169	C	-3.361910	3.265912	1.848782
H	-0.306417	-5.562407	-3.104880	C	-3.149666	4.785389	1.871994
H	-1.537204	-4.445223	-3.667833	C	2.628609	0.742524	2.321285
H	-0.599426	-5.728107	-5.581246	C	3.376237	0.632782	3.656867
H	1.042149	-5.182630	-5.211116	C	2.370996	3.637459	2.600992
H	-0.169169	-4.024208	-5.787629	C	3.620772	3.916026	1.758382
H	0.519021	-0.942877	-3.370100	H	-0.821483	3.787352	3.380140
H	0.765874	-1.938102	-4.804446	H	-1.680590	2.572849	4.320164
H	-1.994784	-1.558790	-3.463928	H	0.119420	0.888420	3.835001
H	-1.677766	-2.373373	-5.002698	H	0.838688	2.331687	4.552715
H	-1.421628	-0.628854	-4.859483	H	-3.436559	0.395458	1.580437
P	-2.522915	-3.477638	-0.281658	H	-1.910944	-0.234996	2.172305
P	-0.402515	-3.335721	2.214456	H	-2.501802	0.450627	4.526724
N	-0.044638	-5.188472	-0.275054	H	-3.786839	-0.546668	3.832712
N	-0.066665	-6.308149	-0.249825	H	-4.003621	1.201178	3.953125
C	-2.984277	-4.136668	1.400490	H	-3.928820	2.980025	0.952701
C	-2.259120	-3.361129	2.507445	H	-3.979135	2.979163	2.710704
C	-3.472691	-1.881392	-0.448886	H	-2.611057	5.146306	0.990018
C	-4.888211	-1.850886	0.146306	H	-2.598349	5.110518	2.762460
C	-3.517991	-4.557796	-1.435513	H	-4.124419	5.289516	1.890404
C	-3.241630	-6.066296	-1.434590	H	2.068768	-0.178311	2.120449
C	0.193862	-2.068755	3.441022	H	3.335819	0.858055	1.488974
C	-0.314673	-2.180794	4.885513	H	4.062514	-0.223902	3.627917
C	0.066994	-4.940099	3.064089	H	2.687549	0.478490	4.496517
C	1.531030	-5.063974	3.506058	H	3.974445	1.526892	3.868902
H	-2.700870	-5.197405	1.427537	H	1.686484	4.494078	2.555406
H	-4.072267	-4.099166	1.538190	H	2.654076	3.528239	3.656273
H	-2.607206	-2.320453	2.526283	H	3.381562	4.048998	0.697751
H	-2.486344	-3.794590	3.489871	H	4.356421	3.106152	1.839452
H	-3.511879	-1.688561	-1.529560	H	4.105971	4.837246	2.104798
H	-2.852391	-1.088391	-0.019109	P	1.664052	2.580654	-1.736927
H	-4.877851	-1.946114	1.238640	P	-1.512733	2.559722	-1.984840
H	-5.370564	-0.895768	-0.096093	C	0.937147	2.076915	-3.376968
H	-5.527343	-2.646121	-0.255061	C	-0.455907	2.692325	-3.546626
H	-3.372582	-4.142047	-2.441276	C	1.980212	4.408400	-2.001048
H	-4.572257	-4.385811	-1.179465	C	2.842042	4.822444	-3.202239
H	-2.234323	-6.305651	-1.788726	C	3.393222	1.900376	-1.789308
H	-3.367732	-6.506465	-0.437851	C	3.454937	0.375749	-1.861544
H	-3.953293	-6.565865	-2.104021	C	-2.415145	4.193466	-2.018784
H	-0.072868	-1.093873	3.016172	C	-3.170985	4.536194	-3.310865
H	1.290667	-2.117363	3.419597	C	-2.835588	1.352288	-2.502370
H	0.121827	-1.382848	5.500733	C	-4.125173	1.397854	-1.675943
H	-1.404976	-2.084598	4.944799	H	0.872610	0.983916	-3.374034
H	-0.035239	-3.136455	5.344858	H	1.593912	2.361188	-4.209748
H	-0.189864	-5.762317	2.384965	H	-0.364381	3.759771	-3.786386
H	-0.587072	-5.050769	3.939185	H	-0.986879	2.227239	-4.386472
H	2.230323	-4.931647	2.673104	H	2.428319	4.791640	-1.075392
H	1.787912	-4.326989	4.276418	H	0.998073	4.891659	-2.074533
H	1.709745	-6.060164	3.930301	H	2.427750	4.468139	-4.153921
Mo	-0.059771	2.084038	0.057853	H	2.889488	5.917845	-3.254387
P	-1.845149	2.166453	1.881464	H	3.871571	4.455712	-3.121957

H	3.897008	2.259801	-0.882261	P	-2.363001	-0.508036	2.714294
H	3.921575	2.336345	-2.646313	P	-1.008675	2.325002	1.965395
H	2.894025	-0.083144	-1.038121	C	-3.406854	1.062521	2.707832
H	3.038937	0.006862	-2.807262	C	-2.855624	2.114444	1.733576
H	4.495771	0.033652	-1.802491	C	-3.465096	-1.783570	1.919059
H	-1.665354	4.968011	-1.810037	C	-4.849206	-2.023865	2.538105
H	-3.102739	4.198183	-1.163790	C	-2.424367	-1.020851	4.510633
H	-3.641433	5.522955	-3.213417	C	-1.487172	-0.236296	5.440137
H	-2.502897	4.574147	-4.179582	C	-0.517778	3.505895	0.617668
H	-3.964841	3.811934	-3.528375	C	-1.313360	4.811234	0.482589
H	-2.380131	0.357556	-2.442533	C	-0.980037	3.405538	3.495737
H	-3.064367	1.534557	-3.560850	C	0.346145	4.125112	3.770757
H	-3.935959	1.197936	-0.615134	H	-3.410826	1.460806	3.731480
H	-4.627435	2.369583	-1.751843	H	-4.448867	0.821894	2.463870
H	-4.829052	0.637870	-2.038338	H	-3.011965	1.787896	0.696152
				H	-3.382838	3.069399	1.861789
				H	-2.887537	-2.716662	1.917285
Table	Cartesian con	ordinates for	optimized	H	-3.562970	-1.478666	0.870748
structu	f 6 in the trip	et state		H	-5.458240	-1.111953	2.564687
Mo	0.003807	0.035915	1.956113	H	-5.396935	-2.765560	1.941903
P	2.394000	0.620521	2.288031	H	-4.776629	-2.411638	3.560909
P	1.020929	-2.268461	2.228417	H	-2.167067	-2.088189	4.536367
N	-0.024470	-0.018570	0.026235	H	-3.459914	-0.934720	4.866004
N	0.000194	-0.014309	-1.182152	H	-0.436913	-0.302263	5.118558
C	3.457018	-0.836843	1.801474	H	-1.758133	0.825981	5.492743
C	2.895513	-2.126686	2.415986	H	-1.541576	-0.636038	6.460824
C	2.655185	0.729504	4.142654	H	-0.566075	2.920290	-0.308257
C	4.089149	0.724186	4.693504	H	0.547175	3.720444	0.779597
C	3.281046	2.126592	1.620815	H	-0.912978	5.412122	-0.344720
C	4.799217	2.036050	1.403152	H	-2.374146	4.626377	0.274104
C	0.588160	-3.316969	3.713282	H	-1.252335	5.422029	1.391441
C	1.357183	-4.634390	3.888724	H	-1.239807	2.766894	4.349791
C	0.871543	-3.473018	0.813594	H	-1.791236	4.140714	3.401493
C	-0.510248	-4.115092	0.651402	H	1.179420	3.419748	3.866951
H	3.436841	-0.889259	0.704825	H	0.599345	4.834550	2.973436
H	4.502780	-0.692694	2.099705	H	0.280733	4.691232	4.708585
H	3.112595	-2.148585	3.493031	Mo	0.019937	0.003796	-3.111015
H	3.384493	-3.006835	1.979612	P	-1.306313	2.108364	-3.570277
H	2.139985	1.643090	4.468035	P	1.885344	1.679400	-3.292628
H	2.089943	-0.103150	4.585997	C	-0.151669	3.604143	-3.606597
H	4.652165	-0.162343	4.376691	C	1.172442	3.357069	-2.869297
H	4.061918	0.722045	5.791044	C	-2.763599	2.641765	-2.531947
H	4.647552	1.613111	4.380318	C	-3.436583	3.980797	-2.863675
H	2.783046	2.385789	0.677765	C	-2.050918	2.176968	-5.282879
H	3.042052	2.942596	2.317478	C	-1.137483	1.651461	-6.397565
H	5.056398	1.273415	0.658131	C	3.401785	1.574167	-2.220877
H	5.338355	1.795934	2.325563	C	4.318436	2.805755	-2.192871
H	5.179403	2.998354	1.036869	C	2.598715	2.018032	-4.997160
H	0.730862	-2.676319	4.595116	C	3.790292	1.145626	-5.415583
H	-0.490142	-3.514674	3.654368	H	0.047544	3.828179	-4.663614
H	1.025239	-5.142910	4.803182	H	-0.661135	4.484187	-3.195685
H	2.437941	-4.469663	3.975819	H	1.017873	3.363318	-1.782746
H	1.187254	-5.320674	3.050149	H	1.889955	4.155220	-3.102005
H	1.135514	-2.908697	-0.087989	H	-3.489041	1.823635	-2.627323
H	1.637304	-4.249939	0.942520	H	-2.429335	2.630007	-1.487696
H	-1.283389	-3.359345	0.475732	H	-2.752014	4.829851	-2.750599
H	-0.798696	-4.696035	1.536381	H	-4.280320	4.148953	-2.181470
H	-0.512119	-4.803431	-0.204102	H	-3.831814	3.998067	-3.886109

H	-2.973961	1.584391	-5.244804	N	0.003579	-0.023941	0.001210
H	-2.346821	3.212358	-5.498670	N	-0.009066	0.001717	-1.207097
H	-0.784802	0.630738	-6.187586	C	3.400492	-1.132499	1.972920
H	-0.256144	2.290055	-6.536725	C	2.680730	-2.391895	2.467376
H	-1.674399	1.625722	-7.354320	C	2.638808	0.487051	4.314808
H	3.041154	1.333955	-1.213168	C	4.065457	0.490738	4.883487
H	3.953771	0.687389	-2.560286	C	3.444440	1.824250	1.788608
H	5.220787	2.593862	-1.605922	C	4.944680	1.601697	1.541629
H	3.820899	3.669465	-1.735522	C	0.222079	-3.402854	3.573382
H	4.641807	3.100413	-3.198757	C	0.894318	-4.768294	3.778445
H	1.780170	1.887860	-5.716599	C	0.647840	-3.537133	0.701242
H	2.885509	3.077970	-5.038432	C	-0.743517	-4.166038	0.555525
H	3.554281	0.075916	-5.373810	H	3.462380	-1.127132	0.877410
H	4.667846	1.318596	-4.781807	H	4.428416	-1.094706	2.354742
H	4.078315	1.378645	-6.448643	H	2.810792	-2.487901	3.554273
P	1.300423	-2.057751	-3.737017	H	3.126599	-3.288227	2.018125
P	-1.854102	-1.683339	-3.403411	H	2.108740	1.394467	4.632237
C	0.304566	-3.570614	-3.291138	H	2.071394	-0.355178	4.734234
C	-1.146883	-3.403870	-3.760194	H	4.630805	-0.401326	4.587991
C	1.271570	-2.062670	-5.614675	H	4.022435	0.506247	5.980131
C	1.505413	-3.401488	-6.329895	H	4.627074	1.375363	4.562718
C	3.065665	-2.555805	-3.407720	H	2.955328	2.123287	0.853596
C	3.428636	-2.747062	-1.932028	H	3.289832	2.656570	2.488335
C	-3.012999	-1.478455	-4.858535	H	5.119905	0.825288	0.787595
C	-4.020217	-2.607041	-5.122456	H	5.480322	1.313188	2.452583
C	-3.038151	-2.053774	-2.010875	H	5.396137	2.531026	1.170779
C	-4.066922	-0.951852	-1.733126	H	0.347636	-2.785606	4.474356
H	0.347177	-3.669344	-2.199614	H	-0.860767	-3.531520	3.442601
H	0.751073	-4.478703	-3.718490	H	0.457771	-5.276236	4.648480
H	-1.201722	-3.549605	-4.847339	H	1.971336	-4.670287	3.960194
H	-1.789663	-4.169487	-3.307916	H	0.760102	-5.426150	2.911166
H	2.034134	-1.336978	-5.926778	H	0.892968	-2.949444	-0.191069
H	0.308869	-1.632624	-5.927398	H	1.409002	-4.324150	0.791004
H	0.730524	-4.139347	-6.090126	H	-1.531122	-3.403897	0.538750
H	1.489653	-3.247858	-7.416594	H	-0.965090	-4.857348	1.377442
H	2.478277	-3.837373	-6.073351	H	-0.813011	-4.736765	-0.379982
H	3.688211	-1.764241	-3.845944	P	-2.323661	-0.306916	2.828601
H	3.278032	-3.476093	-3.968647	P	-0.783208	2.355779	1.893585
H	3.201765	-1.847791	-1.345744	C	-3.236724	1.333753	2.811980
H	2.888470	-3.591285	-1.487918	C	-2.654458	2.283135	1.755207
H	4.501901	-2.952877	-1.830243	C	-3.499832	-1.500718	2.021229
H	-2.377306	-1.327999	-5.742714	C	-4.887221	-1.655344	2.660443
H	-3.543167	-0.529947	-4.703548	C	-2.363906	-0.805431	4.622296
H	-4.616342	-2.374174	-6.014378	C	-1.284930	-0.132415	5.482614
H	-3.522996	-3.568364	-5.299447	C	-0.314320	3.476684	0.483609
H	-4.717070	-2.737113	-4.285664	C	-1.022443	4.832759	0.359723
H	-2.423973	-2.239964	-1.121096	C	-0.628448	3.489208	3.382119
H	-3.549549	-2.996164	-2.248347	C	0.748964	4.128740	3.594870
H	-3.584957	-0.034729	-1.376565	H	-3.140740	1.774244	3.813807
H	-4.652026	-0.702483	-2.627227	H	-4.308452	1.169535	2.644530
H	-4.780200	-1.280128	-0.966314	H	-2.887693	1.914550	0.745815
				H	-3.100557	3.281789	1.853004
				H	-2.981938	-2.467900	2.002329
Table C23. Cartesian coordinates for optimized				H	-3.590297	-1.177370	0.976771
structure of 6 in the singlet state				H	-5.440956	-0.709067	2.686359
Mo	0.034809	0.015534	1.925583	H	-5.484037	-2.368452	2.077121
P	2.445290	0.393356	2.458000	H	-4.822850	-2.038756	3.685559
P	0.816773	-2.353131	2.139805	H	-2.240040	-1.895641	4.649813

H	-3.362658	-0.585558	5.022274	C	3.485895	-2.276906	-1.792676
H	-0.274310	-0.359222	5.112503	C	-2.933763	-1.691067	-4.910444
H	-1.400526	0.958649	5.507265	C	-3.853922	-2.895592	-5.157412
H	-1.344839	-0.491374	6.517890	C	-2.896587	-2.232734	-2.049760
H	-0.474444	2.868803	-0.415617	C	-4.006127	-1.211816	-1.774320
H	0.772546	3.620505	0.557567	H	0.565085	-3.647154	-2.241944
H	-0.635586	5.385246	-0.507320	H	1.053505	-4.378517	-3.773662
H	-2.104676	4.719939	0.221439	H	-0.953036	-3.606383	-4.907303
H	-0.861673	5.460512	1.244549	H	-1.517417	-4.276086	-3.379028
H	-0.898645	2.898111	4.267351	H	2.039166	-1.056424	-5.904745
H	-1.391659	4.274374	3.288378	H	0.431440	-1.752878	-5.950804
H	1.529670	3.373329	3.738699	H	1.435454	-4.088371	-6.041510
H	1.044385	4.758420	2.746405	H	1.981796	-3.066209	-7.378021
H	0.736769	4.764392	4.489562	H	3.060997	-3.377693	-6.010768
Mo	-0.032492	0.040566	-3.115043	H	3.791339	-1.539874	-3.808314
P	-1.489506	2.037027	-3.533889	H	3.452146	-3.268696	-3.724999
P	1.695948	1.844904	-3.385006	H	3.186569	-1.321287	-1.344446
C	-0.466377	3.620280	-3.695870	H	2.961270	-3.079904	-1.261115
C	0.914855	3.507516	-3.041710	H	4.561022	-2.413321	-1.618096
C	-2.940420	2.552702	-2.468667	H	-2.316354	-1.500030	-5.799398
C	-3.781042	3.757945	-2.913500	H	-3.534673	-0.786163	-4.759048
C	-2.283515	1.987744	-5.229473	H	-4.475220	-2.712397	-6.043578
C	-1.337347	1.572770	-6.366128	H	-3.287236	-3.817084	-5.336331
C	3.191940	1.844554	-2.278746	H	-4.530258	-3.073144	-4.312551
C	4.038001	3.125757	-2.250184	H	-2.260567	-2.349786	-1.165288
C	2.406370	2.122539	-5.101665	H	-3.333272	-3.217819	-2.261851
C	3.689538	1.351030	-5.441385	H	-3.595280	-0.256092	-1.430132
H	-0.356537	3.826337	-4.768854	H	-4.620108	-1.018032	-2.662700
H	-1.021667	4.466831	-3.273873	H	-4.679584	-1.590907	-0.994706
H	0.833595	3.593951	-1.952097				
H	1.572956	4.317044	-3.384392				
H	-3.578495	1.663451	-2.388351	Table C24. Cartesian coordinates for optimized			
H	-2.531638	2.725629	-1.464457	structure of 7 in the triplet state			
H	-3.180979	4.670626	-3.014097	Mo	-0.000555	0.028637	1.941214
H	-4.562509	3.961288	-2.169316	P	2.390217	0.612636	2.270974
H	-4.280303	3.575062	-3.872242	P	1.015355	-2.277734	2.217280
H	-3.128826	1.291039	-5.167192	N	-0.031205	-0.023969	0.025748
H	-2.705990	2.977452	-5.448803	N	0.003786	-0.009737	-1.232331
H	-0.845415	0.606404	-6.177886	C	3.451218	-0.847438	1.788722
H	-0.548982	2.319050	-6.526594	C	2.889055	-2.134610	2.408468
H	-1.891381	1.479830	-7.309163	C	2.654241	0.728947	4.124479
H	2.817602	1.608325	-1.274222	C	4.089343	0.723827	4.672234
H	3.802198	0.984577	-2.583384	C	3.274696	2.115823	1.594834
H	4.917306	2.980844	-1.609224	C	4.791622	2.022587	1.369931
H	3.472839	3.976354	-1.851211	C	0.580074	-3.329146	3.698961
H	4.398582	3.402943	-3.248419	C	1.347339	-4.648016	3.871216
H	1.616756	1.866582	-5.820692	C	0.868297	-3.476170	0.797585
H	2.588293	3.200191	-5.213399	C	-0.513741	-4.116657	0.631202
H	3.574526	0.269061	-5.310743	H	3.430050	-0.904004	0.692375
H	4.534869	1.672128	-4.822049	H	4.497328	-0.703117	2.085641
H	3.962009	1.528059	-6.489658	H	3.103599	-2.151455	3.486158
P	1.405333	-1.919685	-3.721774	H	3.379514	-3.016460	1.977177
P	-1.757239	-1.806026	-3.462013	H	2.140902	1.644736	4.446560
C	0.527892	-3.521782	-3.330721	H	2.088253	-0.100771	4.572394
C	-0.924041	-3.464347	-3.818511	H	4.649554	-0.166005	4.359716
C	1.457153	-1.936119	-5.601415	H	4.064647	0.728707	5.769816
C	2.016840	-3.191477	-6.287987	H	4.649099	1.609424	4.352039
C	3.181521	-2.295279	-3.294134	H	2.772012	2.372178	0.653445

H	3.040029	2.934225	2.290179	C	-1.136965	1.655358	-6.435072
H	5.043825	1.257430	0.625781	C	3.406762	1.581695	-2.259497
H	5.334962	1.784319	2.290395	C	4.322689	2.813755	-2.229156
H	5.171380	2.983301	0.999071	C	2.601068	2.027832	-5.035697
H	0.723433	-2.690860	4.582425	C	3.792815	1.156098	-5.455172
H	-0.498482	-3.525212	3.639107	H	0.052434	3.832517	-4.702088
H	1.014631	-5.158428	4.784335	H	-0.658637	4.490355	-3.236109
H	2.428295	-4.484834	3.958773	H	1.015761	3.364881	-1.818615
H	1.176566	-5.331860	3.030829	H	1.890296	4.163110	-3.132872
H	1.133324	-2.907324	-0.100802	H	-3.484105	1.828246	-2.659865
H	1.633551	-4.253920	0.924641	H	-2.422367	2.637124	-1.523988
H	-1.286276	-3.359271	0.460232	H	-2.749949	4.834924	-2.789648
H	-0.802470	-4.702987	1.512534	H	-4.276248	4.153680	-2.215614
H	-0.515760	-4.799597	-0.228630	H	-3.831895	4.000426	-3.921156
P	-2.368599	-0.512953	2.704735	H	-2.972680	1.588804	-5.280956
P	-1.011098	2.319517	1.947761	H	-2.346439	3.216863	-5.537071
C	-3.410062	1.058766	2.692986	H	-0.784116	0.634892	-6.224099
C	-2.857419	2.106389	1.714668	H	-0.255798	2.293960	-6.575378
C	-3.468051	-1.789946	1.908902	H	-1.674410	1.628538	-7.391484
C	-4.854533	-2.027003	2.523824	H	3.046103	1.339238	-1.252463
C	-2.429694	-1.021656	4.501765	H	3.959220	0.695956	-2.600771
C	-1.487890	-0.237552	5.427061	H	5.225011	2.600980	-1.642432
C	-0.518298	3.491386	0.593516	H	3.824736	3.676247	-1.769998
C	-1.311757	4.797313	0.451907	H	4.646141	3.110588	-3.234394
C	-0.983552	3.406760	3.472912	H	1.781794	1.896875	-5.754190
C	0.343522	4.125375	3.746285	H	2.886913	3.088018	-5.077267
H	-3.413212	1.460596	3.715269	H	3.557505	0.086235	-5.412751
H	-4.452509	0.818906	2.450088	H	4.670876	1.329894	-4.822336
H	-3.011329	1.774713	0.678511	H	4.079538	1.389026	-6.488595
H	-3.385614	3.061508	1.837443	P	1.305463	-2.051670	-3.770227
H	-2.890907	-2.723315	1.912418	P	-1.850233	-1.677579	-3.435254
H	-3.561480	-1.488626	0.859122	C	0.309097	-3.562655	-3.319726
H	-5.463770	-1.115038	2.542570	C	-1.142109	-3.397608	-3.790302
H	-5.399748	-2.772275	1.929800	C	1.277787	-2.061264	-5.647414
H	-4.785947	-2.408707	3.549208	C	1.511893	-3.401944	-6.358978
H	-2.175632	-2.089747	4.529749	C	3.070116	-2.547415	-3.435907
H	-3.464376	-0.931246	4.858600	C	3.429953	-2.730693	-1.958353
H	-0.438343	-0.310441	5.104580	C	-3.017369	-1.477991	-4.883763
H	-1.753461	0.826314	5.475225	C	-4.024958	-2.608494	-5.137859
H	-1.543292	-0.632534	6.449539	C	-3.021335	-2.042579	-2.030882
H	-0.567588	2.899088	-0.328156	C	-4.052941	-0.943134	-1.753532
H	0.547000	3.705100	0.754015	H	0.350779	-3.657023	-2.227746
H	-0.911769	5.392896	-0.379455	H	0.755829	-4.472403	-3.743295
H	-2.373242	4.613324	0.246180	H	-1.196118	-3.544405	-4.877368
H	-1.248230	5.413301	1.357101	H	-1.784492	-4.163280	-3.337520
H	-1.245828	2.772840	4.329772	H	2.040620	-1.336338	-5.960799
H	-1.793323	4.142870	3.373721	H	0.315333	-1.631520	-5.961221
H	1.175332	3.418978	3.847559	H	0.736628	-4.138973	-6.117875
H	0.599244	4.829979	2.945490	H	1.497146	-3.251215	-7.446084
H	0.277657	4.696673	4.680925	H	2.484432	-3.837320	-6.100293
Mo	0.023692	0.010037	-3.146392	H	3.693273	-1.758056	-3.877260
P	-1.304165	2.114619	-3.608581	H	3.283486	-3.470636	-3.991657
P	1.890506	1.687966	-3.330800	H	3.203573	-1.827596	-1.377836
C	-0.148868	3.609679	-3.645205	H	2.887084	-3.571157	-1.510387
C	1.173659	3.362842	-2.904736	H	4.502592	-2.938189	-1.853418
C	-2.759248	2.647190	-2.567380	H	-2.386535	-1.330104	-5.771889
C	-3.434105	3.985134	-2.899678	H	-3.547228	-0.529246	-4.729010
C	-2.049940	2.181829	-5.320386	H	-4.627822	-2.378578	-6.025996

H	-3.527527	-3.569459	-5.316153	C	-0.300842	3.448880	0.444122
H	-4.715487	-2.737537	-4.295671	C	-1.002655	4.807667	0.313552
H	-2.398291	-2.217661	-1.144951	C	-0.601487	3.489069	3.347015
H	-3.530140	-2.989186	-2.257017	C	0.776967	4.132199	3.542543
H	-3.572379	-0.022596	-1.404260	H	-3.120852	1.782390	3.797878
H	-4.644132	-0.700780	-2.645576	H	-4.297635	1.180919	2.635860
H	-4.760676	-1.270155	-0.981079	H	-2.878000	1.908856	0.728280
				H	-3.081115	3.282010	1.829812
				H	-2.984714	-2.464499	1.989982
Table	Cartesian	oordinates for	optimized	H	-3.582229	-1.172953	0.959556
structu	f 7 in the sing	let state		H	-5.439893	-0.693568	2.656619
Mo	0.039132	0.001584	1.912392	H	-5.485973	-2.355563	2.054898
P	2.453550	0.368580	2.443708	H	-4.831762	-2.020841	3.665167
P	0.807501	-2.373105	2.136555	H	-2.251632	-1.894679	4.638898
N	0.007165	-0.044999	0.001349	H	-3.362520	-0.574308	5.009960
N	-0.014853	0.013886	-1.255726	H	-0.272152	-0.376401	5.099796
C	3.399127	-1.170873	1.982729	H	-1.385491	0.953199	5.491774
C	2.666266	-2.419295	2.485716	H	-1.343956	-0.495279	6.505549
C	2.644798	0.493296	4.298291	H	-0.470811	2.831806	-0.447214
C	4.069575	0.488829	4.871548	H	0.787419	3.586427	0.509044
C	3.459743	1.780498	1.747585	H	-0.619462	5.351853	-0.560388
C	4.960400	1.549762	1.511251	H	-2.086403	4.699289	0.184034
C	0.195400	-3.426756	3.559421	H	-0.832582	5.441751	1.192106
C	0.858205	-4.797341	3.761271	H	-0.862699	2.902906	4.238397
C	0.648144	-3.545757	0.688572	H	-1.366528	4.272744	3.255499
C	-0.745180	-4.166339	0.526858	H	1.560836	3.379390	3.682821
H	3.468325	-1.178493	0.887495	H	1.062566	4.757650	2.687634
H	4.424808	-1.136739	2.370936	H	0.772393	4.772860	4.433727
H	2.781497	-2.502500	3.575468	Mo	-0.039534	0.054470	-3.149040
H	3.111790	-3.324154	2.053557	P	-1.507647	2.045492	-3.573646
H	2.125418	1.413124	4.597104	P	1.681082	1.868422	-3.421993
H	2.064821	-0.333323	4.731332	C	-0.491422	3.631884	-3.741076
H	4.624477	-0.415427	4.593879	C	0.889953	3.527788	-3.086245
H	4.023387	0.524490	5.967586	C	-2.959050	2.550662	-2.505538
H	4.643377	1.360326	4.536826	C	-3.796399	3.763013	-2.936553
H	2.975648	2.057811	0.803526	C	-2.301506	1.987600	-5.268444
H	3.303508	2.629376	2.426763	C	-1.350469	1.579742	-6.403753
H	5.137061	0.753435	0.778665	C	3.165565	1.879153	-2.301677
H	5.493223	1.285037	2.431036	C	4.012860	3.159524	-2.276470
H	5.413768	2.468537	1.117042	C	2.399616	2.143865	-5.135002
H	0.320356	-2.815308	4.464396	C	3.686995	1.375538	-5.466056
H	-0.887456	-3.547992	3.421604	H	-0.382257	3.833779	-4.814896
H	0.411657	-5.308091	4.624558	H	-1.050579	4.477825	-3.323278
H	1.934203	-4.706526	3.952523	H	0.807832	3.617774	-1.997042
H	0.727309	-5.449011	2.888851	H	1.544218	4.339350	-3.431464
H	0.902869	-2.951668	-0.196757	H	-3.598570	1.661184	-2.439939
H	1.405124	-4.336702	0.779335	H	-2.553041	2.708228	-1.497696
H	-1.527787	-3.399093	0.506669	H	-3.196417	4.678021	-3.013101
H	-0.978340	-4.860621	1.343084	H	-4.585737	3.951217	-2.196729
H	-0.809293	-4.731819	-0.412210	H	-4.285507	3.597939	-3.903752
P	-2.320382	-0.306060	2.816550	H	-3.140300	1.283123	-5.205749
P	-0.768056	2.345370	1.867717	H	-2.732678	2.973304	-5.489042
C	-3.224158	1.339114	2.797951	H	-0.850524	0.617866	-6.213849
C	-2.640152	2.280764	1.735431	H	-0.568262	2.332492	-6.564221
C	-3.498431	-1.494974	2.005033	H	-1.902643	1.480999	-7.347247
C	-4.889496	-1.641961	2.637942	H	2.775998	1.655991	-1.299972
C	-2.365748	-0.803467	4.610238	H	3.778208	1.014555	-2.587728
C	-1.280535	-0.139043	5.469553	H	4.881924	3.021123	-1.620140

H	3.443142	4.015816	-1.896684	C	-3.971301	0.292512	-3.692113
H	4.389404	3.423724	-3.272285	C	-1.615804	2.050918	-2.096937
H	1.614316	1.883800	-5.857438	C	-2.394739	2.377670	-0.815746
H	2.578804	3.221790	-5.248301	H	0.998627	1.540204	-3.771496
H	3.573611	0.293146	-5.337941	H	1.288529	0.390900	-5.070965
H	4.526958	1.697589	-4.839960	H	-0.787874	-0.887096	-4.445982
H	3.966789	1.554714	-6.512020	H	-1.169969	0.807234	-4.770578
P	1.413297	-1.897641	-3.747946	H	2.961370	-2.660999	-3.172864
P	-1.751798	-1.802072	-3.496805	H	1.577669	-2.506016	-4.240971
C	0.543095	-3.502033	-3.351630	H	2.959133	-0.970699	-5.772200
C	-0.906689	-3.455072	-3.847519	H	3.658596	-2.584528	-5.589006
C	1.470677	-1.921001	-5.627470	H	4.355842	-1.218485	-4.705157
C	2.031850	-3.179150	-6.307477	H	4.125559	-0.172455	-2.156964
C	3.189882	-2.257008	-3.310146	H	3.741252	0.798538	-3.575574
C	3.482596	-2.250601	-1.806108	H	2.767857	1.435008	-0.708313
C	-2.930337	-1.698624	-4.943819	H	2.454495	2.432249	-2.137996
C	-3.841880	-2.910520	-5.186646	H	4.112583	2.240400	-1.552505
C	-2.884458	-2.229745	-2.079779	H	-3.002651	-1.483952	-2.899751
C	-4.000127	-1.215054	-1.806283	H	-3.609031	-0.393325	-1.660027
H	0.574877	-3.620180	-2.261842	H	-4.956307	-0.187624	-3.752558
H	1.075473	-4.358831	-3.786331	H	-3.518363	0.245821	-4.689598
H	-0.929157	-3.598819	-4.936274	H	-4.133750	1.347063	-3.440017
H	-1.496869	-4.270074	-3.409784	H	-0.608666	2.483046	-2.038985
H	2.053570	-1.042393	-5.932076	H	-2.105935	2.488285	-2.977657
H	0.445760	-1.738290	-5.979886	H	-1.900853	1.942649	0.061376
H	1.449251	-4.074776	-6.059336	H	-3.425589	2.003112	-0.857909
H	2.000305	-3.058094	-7.398077	H	-2.443504	3.464999	-0.676123
H	3.075048	-3.365008	-6.026401	P	-1.128493	-3.250121	-0.722006
H	3.794605	-1.489345	-3.811950	P	1.675803	-2.409702	0.934664
H	3.475122	-3.222952	-3.748388	C	-0.139431	-4.474496	0.281864
H	3.171507	-1.302607	-1.349717	C	0.581350	-3.818009	1.468377
H	2.961399	-3.064025	-1.287127	C	-2.651198	-2.972576	0.323462
H	4.557638	-2.379442	-1.625298	C	-3.523282	-4.189472	0.661004
H	-2.315602	-1.505004	-5.834048	C	-1.765347	-4.330197	-2.109966
H	-3.537355	-0.797677	-4.793034	C	-0.719106	-4.649897	-3.184162
H	-4.466137	-2.733899	-6.072049	C	2.166023	-1.586902	2.521656
H	-3.268422	-3.827996	-5.364730	C	2.784204	-2.484494	3.602080
H	-4.515266	-3.091446	-4.340144	C	3.205886	-3.291887	0.344661
H	-2.244965	-2.336554	-1.196594	C	4.434552	-2.388488	0.177573
H	-3.314552	-3.219108	-2.285369	H	0.588068	-4.938846	-0.397403
H	-3.594061	-0.254229	-1.471074	H	-0.794191	-5.281056	0.637317
H	-4.620137	-1.032311	-2.692837	H	-0.145349	-3.405954	2.181620
H	-4.666625	-1.593362	-1.020308	H	1.175487	-4.565785	2.010190
				H	-3.247426	-2.215481	-0.203189
				H	-2.298492	-2.483597	1.241710
				H	-2.962190	-4.965525	1.196481
Table C26. Cartesian coordinates for optimized structure of $\mathbf{8}$ in the triplet state				H	-4.353330	-3.880462	1.309409
Mo	0.297310	-0.895680	-0.703983	H	-3.958045	-4.643519	-0.237215
P	1.841328	-0.545781	-2.857175	H	-2.617507	-3.801641	-2.559499
P	-1.390817	0.229457	-2.383030	H	-2.162338	-5.258760	-1.677668
N	0.194411	0.372755	0.417155	H	-0.339454	-3.735106	-3.656644
C	0.861356	0.491344	-4.064892	H	0.138417	-5.196408	-2.770768
C	-0.634790	0.139291	-4.082981	H	-1.160484	-5.276412	-3.969608
C	2.470977	-1.978138	-3.880536	H	1.254163	-1.098857	2.889902
C	3.413813	-1.660115	-5.049944	H	2.851677	-0.773170	2.250175
C	3.364936	0.490204	-2.590935	H	3.035246	-1.882022	4.484336
C	3.158356	1.716812	-1.693405	H	2.090939	-3.270665	3.924993
C	-3.112806	-0.422863	-2.638841	H	3.707681	-2.967088	3.258727

H	2.948053	-3.763845	-0.613072
H	3.426871	-4.105161	1.049537
H	4.232043	-1.548980	-0.497882
H	4.765481	-1.972960	1.137010
H	5.269888	-2.962933	-0.241606

Table C27. Cartesian coordinates for optimized structure of 8 in the singlet state

Mo	0.025931	-0.022029	-1.589648
P	-0.200686	2.468317	-2.059918
P	-2.514069	0.235005	-1.686795
N	0.148757	-0.047531	0.074099
C	-1.941115	2.993560	-1.634456
C	-2.959993	1.986736	-2.188756
C	-0.077551	2.880679	-3.876681
C	-0.360276	4.330190	-4.297102
C	0.859725	3.740247	-1.221018
C	0.908786	3.602669	0.307134
C	-3.620091	-0.805740	-2.765975
C	-5.105839	-0.423635	-2.827216
C	-3.296946	0.143310	-0.000333
C	-3.236816	-1.229870	0.676203
H	-2.003782	3.036047	-0.538899
H	-2.147577	4.005499	-2.006123
H	-2.980076	2.025322	-3.287052
H	-3.972227	2.232127	-1.842819
H	0.932144	2.589273	-4.191861
H	-0.763589	2.197850	-4.397737
H	-1.377214	4.645528	-4.034402
H	-0.257853	4.425356	-5.385688
H	0.344088	5.032863	-3.836595
H	1.867439	3.632458	-1.645393
H	0.496724	4.738207	-1.501592
H	1.243956	2.603265	0.608062
H	-0.074933	3.778323	0.760671
H	1.602182	4.342159	0.727412
H	-3.182446	-0.782170	-3.773971
H	-3.506853	-1.838544	-2.408875
H	-5.642530	-1.118899	-3.485563
H	-5.250285	0.587477	-3.226333
H	-5.582274	-0.470577	-1.840521
H	-2.773058	0.884491	0.616217
H	-4.338052	0.480497	-0.097364
H	-2.198661	-1.537043	0.842607
H	-3.739856	-2.003111	0.080579
H	-3.739124	-1.187775	1.651351
P	0.145317	-2.511724	-2.098584
P	2.543713	-0.306268	-1.908177
C	1.927895	-3.007220	-2.404729
C	2.898031	-2.120726	-1.613173
C	-0.420325	-3.625869	-0.722015
C	-0.322313	-5.139454	-0.953494
C	-0.710774	-3.172505	-3.611054
C	-0.500951	-2.301921	-4.858420
C	3.597213	0.537076	-0.631350
C	5.073125	0.121927	-0.559487
C	3.430988	-0.008534	-3.525762

C	3.788278	1.454786	-3.818206
H	2.114226	-2.904891	-3.482979
H	2.077415	-4.066586	-2.160836
H	2.779670	-2.291333	-0.533605
H	3.937633	-2.362017	-1.870528
H	-1.459768	-3.338333	-0.520130
H	0.154793	-3.327465	0.164739
H	0.708620	-5.467156	-1.134583
H	-0.682155	-5.671311	-0.063309
H	-0.936072	-5.463630	-1.802547
H	-1.780326	-3.237019	-3.371241
H	-0.361966	-4.196635	-3.799771
H	-0.859909	-1.276049	-4.696779
H	0.557034	-2.248320	-5.147112
H	-1.051962	-2.717084	-5.711668
H	3.092332	0.347268	0.324929
H	3.506854	1.616459	-0.812346
H	5.585995	0.704027	0.217087
H	5.184474	-0.938630	-0.304221
H	5.599184	0.298811	-1.505951
H	2.791643	-0.405726	-4.325701
H	4.344432	-0.618912	-3.524618
H	2.904756	2.103258	-3.815786
H	4.497837	1.854113	-3.083859
H	4.255448	1.535469	-4.807813

Table C28. Cartesian coordinates for optimized structure of 7-TS in the triplet state

Mo	-0.372216	0.340550	-3.252479
P	-2.221443	-1.066720	-4.276431
P	1.017212	-1.401953	-4.619010
N	0.194439	-0.066607	-1.625866
N	-0.206266	-0.060561	0.081463
C	-1.483414	-2.719109	-4.726199
C	-0.183077	-2.525025	-5.512818
C	-3.122240	-0.571283	-5.842224
C	-4.295408	-1.431458	-6.332335
C	-3.572604	-1.490185	-3.048270
C	-4.182395	-2.899639	-3.104098
C	2.161670	-0.909233	-6.005968
C	2.833374	-2.050656	-6.783675
C	2.039572	-2.600985	-3.624684
C	3.328534	-2.000272	-3.052346
H	-1.287508	-3.252193	-3.786957
H	-2.193749	-3.326837	-5.301203
H	-0.392531	-2.062555	-6.487488
H	0.295996	-3.491902	-5.714067
H	-3.454176	0.462969	-5.682310
H	-2.341003	-0.515302	-6.614204
H	-4.001819	-2.474271	-6.504860
H	-4.673571	-1.035591	-7.284269
H	-5.128368	-1.424381	-5.619416
H	-3.139375	-1.316580	-2.055365
H	-4.358296	-0.733834	-3.176150
H	-3.435515	-3.671736	-2.884944
H	-4.627671	-3.125668	-4.078692
H	-4.974916	-2.984891	-2.348750

H	1.554703	-0.298081	-6.686823	C	-2.755719	-3.180129	4.014758
H	2.923104	-0.240564	-5.584126	H	-1.961470	1.302584	4.768419
H	3.451827	-1.634674	-7.589303	H	-2.329122	2.773969	3.881254
H	2.097225	-2.719921	-7.244429	H	-3.054477	1.444858	1.889190
H	3.488205	-2.654738	-6.144642	H	-3.932529	0.880733	3.318965
H	1.391572	-2.955003	-2.814168	H	1.064333	3.373457	1.964571
H	2.268263	-3.468395	-4.258588	H	-0.543730	3.253188	1.275858
H	3.116735	-1.124522	-2.428311	H	-1.477408	4.649555	3.192359
H	4.021639	-1.693716	-3.845920	H	-0.177143	5.492449	2.343037
H	3.848236	-2.741175	-2.431107	H	0.143457	4.737202	3.910523
P	0.817000	2.308088	-4.512592	H	1.746357	2.320389	4.398839
P	-1.834566	2.345942	-2.636568	H	0.277088	2.748502	5.277445
C	0.041470	3.922121	-3.964388	H	1.378334	-0.123844	4.956534
C	-0.675515	3.801907	-2.613794	H	-0.094440	0.299057	5.854294
C	2.565576	2.441160	-3.866113	H	1.480246	0.867653	6.425232
C	3.448160	3.563164	-4.430323	H	-3.190247	-0.912496	0.314642
C	1.031328	2.626493	-6.345273	H	-3.141435	-2.488894	1.080069
C	-0.243487	2.417690	-7.170332	H	-5.512030	-1.799535	0.746089
C	-2.599616	2.328839	-0.948176	H	-5.259424	-0.300607	1.653531
C	-3.121214	3.670854	-0.414821	H	-5.194963	-1.865433	2.485256
C	-3.189261	3.002638	-3.751671	H	-1.974953	-1.340829	4.856059
C	-4.577175	2.373672	-3.576733	H	-3.679142	-1.262726	4.424706
H	-0.668958	4.224123	-4.745057	H	-1.795620	-3.608770	3.706020
H	0.813207	4.701587	-3.926917	H	-3.520686	-3.526442	3.309449
H	0.042909	3.629654	-1.801246	H	-3.001029	-3.596571	4.999818
H	-1.220028	4.728403	-2.388233	P	0.840645	-2.828588	1.595020
H	3.039611	1.466234	-4.037788	P	2.668085	-0.207333	1.491639
H	2.464064	2.537547	-2.777825	C	2.441131	-2.915277	0.647854
H	3.007163	4.556429	-4.279093	C	3.444957	-1.905462	1.218858
H	4.421920	3.557249	-3.923475	C	1.294580	-3.491837	3.285311
H	3.633740	3.435938	-5.503207	C	2.058238	-4.823113	3.342086
H	1.827528	1.959913	-6.700512	C	-0.187720	-4.201173	0.876626
H	1.401117	3.653558	-6.469489	C	-0.656928	-3.960202	-0.563171
H	-0.615307	1.388532	-7.082876	C	3.742766	0.475480	2.855087
H	-1.050592	3.091048	-6.852829	C	5.260540	0.434319	2.625709
H	-0.046031	2.619428	-8.230917	C	3.241943	0.729759	-0.013819
H	-1.832969	1.900888	-0.289866	C	3.146943	2.255826	0.097077
H	-3.409343	1.586782	-0.984901	H	2.202294	-2.671168	-0.394417
H	-3.597230	3.527526	0.564524	H	2.854880	-3.932475	0.660500
H	-2.311252	4.398738	-0.284503	H	3.813706	-2.255020	2.193298
H	-3.870266	4.118708	-1.079200	H	4.319382	-1.815514	0.562151
H	-2.844388	2.861303	-4.784098	H	0.353045	-3.574697	3.843793
H	-3.254459	4.087443	-3.586944	H	1.871169	-2.703968	3.789448
H	-4.562735	1.289958	-3.736666	H	3.030552	-4.760855	2.838476
H	-4.987953	2.559347	-2.577252	H	2.246402	-5.096635	4.388245
H	-5.274337	2.804811	-4.306185	H	1.490710	-5.642004	2.884575
Mo	0.164434	-0.430516	1.730093	H	-1.053103	-4.316652	1.542683
P	-0.220032	1.717918	3.116139	H	0.386746	-5.135666	0.935471
P	-2.254795	-0.762289	2.511825	H	-1.175514	-2.999456	-0.664007
C	-1.983450	1.740072	3.760983	H	0.187551	-3.961165	-1.262830
C	-2.936918	0.945072	2.860478	H	-1.343586	-4.758100	-0.874714
C	-0.000859	3.338113	2.225761	H	3.482103	-0.082046	3.765270
C	-0.404528	4.619203	2.968117	H	3.413696	1.508972	3.024815
c	0.752376	1.954072	4.686379	H	5.781642	0.851139	3.497263
C	0.883379	0.675047	5.524930	H	5.624858	-0.589956	2.481476
C	-3.431435	-1.442949	1.245219	H	5.557305	1.024416	1.750154
C	-4.931059	-1.342439	1.557784	H	2.614731	0.380035	-0.842890
C	-2.704673	-1.649100	4.095740	H	4.277629	0.428584	-0.221800

H	2.105321	2.584251	0.183796
H	3.704834	2.647977	0.956921
H	3.570100	2.723152	-0.801608

Table C29. Cartesian coordinates for optimized structure of 7-TS in the singlet state

Mo	-0.417610	0.379457	-3.317992
P	-2.217033	-1.193849	-4.110237
P	0.920912	-1.293804	-4.769422
N	0.010371	0.008412	-1.656577
N	-0.061248	-0.003365	-0.114391
C	-1.441160	-2.833071	-4.555393
C	-0.220050	-2.616668	-5.456216
C	-3.013825	-0.671190	-5.717768
C	-4.090467	-1.571828	-6.339576
C	-3.598396	-1.646392	-2.939601
C	-4.255659	-3.027516	-3.086199
C	1.963443	-0.886151	-6.260968
C	2.614369	-2.069876	-6.991723
C	2.076742	-2.298259	-3.701684
C	3.385691	-1.591066	-3.331046
H	-1.142623	-3.309993	-3.612279
H	-2.165574	-3.499361	-5.040196
H	-0.537762	-2.292430	-6.456738
H	0.334139	-3.554557	-5.589244
H	-3.416914	0.333843	-5.546577
H	-2.179402	-0.534771	-6.420443
H	-3.729516	-2.592539	-6.515276
H	-4.398679	-1.160421	-7.309680
H	-4.983971	-1.628285	-5.707127
H	-3.169679	-1.547425	-1.934790
H	-4.351042	-0.851451	-3.028632
H	-3.535707	-3.837343	-2.919586
H	-4.707121	-3.174719	-4.072756
H	-5.051360	-3.134475	-2.337283
H	1.312441	-0.331823	-6.950144
H	2.733113	-0.178777	-5.926382
H	3.200335	-1.702349	-7.843921
H	1.866536	-2.769851	-7.382721
H	3.296007	-2.630363	-6.340540
H	1.513798	-2.554103	-2.796632
H	2.290234	-3.238449	-4.228285
H	3.198365	-0.639985	-2.819987
H	4.003501	-1.387184	-4.214389
H	3.976649	-2.224507	-2.656678
P	0.813026	2.397364	-4.228353
P	-2.004134	2.227933	-2.747644
C	-0.075903	3.981405	-3.754075
C	-0.964856	3.766781	-2.525154
C	2.522364	2.629616	-3.517472
C	3.357268	3.805031	-4.044796
C	1.075769	2.650030	-6.056967
C	-0.176033	2.410387	-6.910155
C	-2.881513	2.080555	-1.116222
	-3.398549	3.361728	-0.535523
C			

H	-0.685871	4.288379	-4.614222
H	0.651940	4.784273	-3.580871
H	-0.351686	3.609221	-1.626530
H	-1.597464	4.645680	-2.344809
H	3.054196	1.683478	-3.682250
H	2.380388	2.713976	-2.432658
H	2.848947	4.768736	-3.916480
H	4.306390	3.860686	-3.495757
H	3.597687	3.688618	-5.108060
H	1.882635	1.974579	-6.366937
H	1.443821	3.674140	-6.205373
H	-0.567633	1.393518	-6.774793
H	-0.981395	3.112059	-6.656992
H	0.056887	2.547948	-7.973852
H	-2.137584	1.654597	-0.429552
H	-3.652296	1.309358	-1.247208
H	-4.043824	3.133684	0.390300
H	-2.732655	4.107857	-0.292623
H	-4.211105	3.828691	-1.226433
H	-2.936995	2.759096	-4.932978
H	-3.421013	3.955940	-3.736946
H	-4.684485	1.141230	-3.958749
H	-5.177606	2.411376	-2.830577
H	-5.380410	2.644905	-4.572498
Mo	0.244638	-0.374832	1.563821
P	-0.032858	1.716469	3.056037
P	-2.156335	-0.659867	2.441764
C	-1.769917	1.776536	3.761963
C	-2.774418	1.053325	2.858571
C	0.115827	3.286370	2.058783
C	-0.217064	4.612426	2.755840
C	0.984259	2.075811	4.575217
C	1.075278	0.907346	5.566277
C	-3.390416	-1.282623	1.200611
C	-4.875701	-1.094233	1.541076
C	-2.579981	-1.574964	4.021604
C	-2.809127	-3.086707	3.889821
H	-1.737268	1.298629	4.750046
H	-2.071774	2.817747	3.930402
H	-2.897193	1.593202	1.910058
H	-3.760581	1.004904	3.338607
H	1.152015	3.301313	1.698411
H	-0.512924	3.148071	1.169502
H	-1.258681	4.654767	3.095799
H	-0.069767	5.442193	2.052331
H	0.431270	4.795814	3.620645
H	1.985465	2.365053	4.232055
H	0.553514	2.954999	5.073105
H	1.473131	0.000620	5.092343
H	0.095693	0.660293	5.994415
H	1.738442	1.171343	6.399673
H	-3.142668	-0.774576	0.260585
H	-3.160873	-2.344422	1.041341
H	-5.497349	-1.549063	0.758892
H	-5.146276	-0.033597	1.603662
H	-5.145381	-1.567439	2.493155
H	-1.766395	-1.380104	4.732209
H	-3.480026	-1.103411	4.439759

H	-1.940409	-3.606213	3.470420	H	0.677441	-3.328440	-0.879031
H	-3.674228	-3.315419	3.256485	H	-0.146529	-4.050158	-2.264072
H	-3.001913	-3.517847	4.880260	H	1.313113	-2.713676	-3.835817
P	0.806192	-2.798502	1.575749	H	2.332030	-3.664410	-2.742716
P	2.773864	-0.302903	1.544399	H	-2.505539	-1.163912	-3.473761
C	2.451632	-3.000998	0.723649	H	-0.963500	-1.285409	-4.304219
C	3.474978	-2.040542	1.338262	H	-1.100314	-3.794186	-4.281024
C	1.118536	-3.516070	3.275609	H	-2.575337	-3.115826	-4.985053
C	1.676913	-4.944628	3.354795	H	-2.592876	-3.727801	-3.323088
C	-0.261565	-4.082265	0.757202	H	-2.913236	-1.454472	-0.882859
C	-0.588154	-3.773678	-0.709119	H	-2.459812	-3.157316	-0.999566
C	3.818303	0.334648	2.953768	H	-1.257067	-1.136895	1.009700
C	5.340672	0.206290	2.794423	H	-0.800973	-2.843937	0.902170
C	3.494652	0.578613	0.067166	H	-2.441631	-2.400032	1.400125
C	3.478434	2.108963	0.151200	H	2.972294	-0.548705	-4.423983
H	2.291562	-2.767224	-0.336741	H	4.115792	0.064504	-3.240918
H	2.801958	-4.040204	0.780063	H	5.224220	-1.604334	-4.752942
H	3.769113	-2.393937	2.336161	H	4.054469	-2.849115	-4.282345
H	4.389582	-2.002990	0.733310	H	5.211977	-2.222178	-3.093453
H	0.165855	-3.453298	3.816546	H	2.749248	-2.195645	-0.029329
H	1.794304	-2.814693	3.783469	H	3.968180	-2.761650	-1.171312
H	2.645540	-5.037296	2.848569	H	3.893383	0.011576	0.179594
H	1.827416	-5.223962	4.405586	H	5.097880	-0.460270	-1.036526
H	0.990966	-5.677651	2.914247	H	5.038658	-1.293913	0.524760
H	-1.185739	-4.146642	1.346435	P	1.908333	2.510494	-1.743077
H	0.235614	-5.058125	0.838506	P	-1.182485	2.050858	-1.119422
H	-0.978965	-2.755780	-0.828575	C	0.792136	3.977519	-1.433902
H	0.303029	-3.867656	-1.341940	C	-0.358383	3.598847	-0.494579
H	-1.336642	-4.482242	-1.087308	C	3.315235	2.757195	-0.564234
H	3.485727	-0.202146	3.852309	C	4.061548	4.093170	-0.636109
H	3.544169	1.385774	3.106245	C	2.648663	2.906834	-3.395546
H	5.841520	0.598884	3.688758	C	1.699629	2.543021	-4.543403
H	5.653899	-0.837405	2.672273	C	-2.353563	1.597012	0.243368
H	5.712337	0.773956	1.932853	C	-3.313270	2.691845	0.720071
H	2.915216	0.245030	-0.801656	C	-2.267727	2.735046	-2.459408
H	4.523770	0.219682	-0.067186	C	-3.069356	1.661920	-3.198970
H	2.453980	2.497372	0.179956	H	0.397819	4.293446	-2.408677
H	4.010569	2.481184	1.035650	H	1.365966	4.822735	-1.037146
H	3.974878	2.536882	-0.729017	H	0.021530	3.377602	0.512339
				H	-1.078047	4.422189	-0.405246
				H	4.005776	1.928620	-0.759835
				H	2.912348	2.587301	0.443591
Table C30. Cartesian coordinates for optimizedstructure of 9				H	3.407692	4.944063	-0.411448
Mo	0.590699	- 0.403157	-1.650679	H	4.879205	4.105508	0.095785
P	-0.753677	-1.673594	-1.920424	H	4.500096	4.256327	-1.627823
P	2.375777	-1.243914	-2.207349	H	3.582804	2.336201	-3.477779
N	1.111575	0.211638	0.213930	H	2.914983	3.971097	-3.433600
N	1.388350	0.107896	1.311542	H	1.473510	1.468060	-4.543604
C	0.376770	-3.150572	-1.919740	H	0.747431	3.083789	-4.467003
C	1.604728	-2.844454	-2.783872	H	2.146531	2.791880	-5.513828
C	-1.608657	-1.787355	-3.570040	H	-1.719100	1.252805	1.071338
C	-1.987134	-3.188336	-4.061543	H	-2.911754	0.717167	-0.100651
C	-2.085469	-2.160189	-0.731377	H	-3.936149	2.314803	1.540994
C	-1.617385	-2.132286	0.727638	H	-2.771819	3.570875	1.088871
C	3.581194	-0.840573	-3.557079	H	-3.985455	3.018772	-0.082128
C	4.571637	-1.945260	-3.939369	H	-1.608295	3.261274	-3.162295
C	3.436538	-1.867839	-0.819916	H	-2.931106	3.492755	-2.022431
C	4.421067	-0.839389	-0.260139	H	-2.399819	0.971435	-3.723505

H	-3.689974	1.072417	-2.511610	H	0.995789	-0.375857	-4.681602
H	-3.735141	2.118295	-3.941957	H	-0.532393	0.809255	-3.170532
				H	-1.540776	-0.325608	-4.071157
				H	3.591045	0.208265	-1.846968
Tabl	Cartesian c	ordinates for	optimized	H	2.296529	1.067422	-2.649202
structu	f 10			H	3.136209	0.148122	-4.907669
Mo	0.732671	-1.571047	-0.291253	H	4.330664	1.148300	-4.068649
P	-0.415340	-1.730498	1.910264	H	4.482704	-0.616776	-4.044626
P	2.498388	-2.698095	1.043919	H	3.655416	-2.802112	-2.617149
N	1.677731	0.068256	0.184087	H	3.021033	-2.526699	-4.244761
N	2.259436	0.993539	0.487925	H	1.564820	-4.186309	-2.076033
C	0.908643	-1.906585	3.203231	H	1.030736	-3.982707	-3.751402
C	1.874266	-3.018736	2.778957	H	2.516669	-4.878900	-3.404578
C	-1.514981	-3.199569	2.214423	H	-2.348538	0.839516	-0.666759
C	-1.831321	-3.536825	3.675051	H	-3.169297	-0.689765	-0.370222
C	-1.440447	-0.319013	2.529413	H	-4.596045	0.792752	-1.773892
C	-0.723116	1.031445	2.445713	H	-3.308734	0.985738	-2.961334
C	3.021999	-4.386670	0.478340	H	-4.107000	-0.594883	-2.766837
C	4.001672	-5.127969	1.394426	H	-1.215452	-3.038740	-3.058759
C	4.102982	-1.830320	1.369924	H	-2.846822	-2.391310	-2.940199
C	4.982572	-1.718724	0.122495	H	-1.346197	-4.002765	-0.767877
H	1.433838	-0.943838	3.254704	H	-2.930621	-3.248164	-0.504442
H	0.481981	-2.100246	4.194766	H	-2.749180	-4.534719	-1.706974
H	1.356589	-3.988637	2.770011	P	-2.577883	4.235326	-0.516711
H	2.715373	-3.104647	3.477641	C	-0.955534	4.992424	1.901169
H	-2.439100	-2.990412	1.660791	F	-3.591739	3.167477	-1.266755
H	-1.049774	-4.059147	1.714782	C	-4.793534	6.122944	-1.270521
H	-0.933792	-3.852848	4.219826	C	-1.508243	5.490095	0.539071
H	-2.555000	-4.360409	3.723783	F	-1.951952	2.971679	0.364385
H	-2.265730	-2.681464	4.206436	C	-1.204158	3.874745	-1.910625
H	-2.350551	-0.302776	1.915096	C	-3.367593	5.642843	-1.625204
H	-1.749957	-0.533664	3.561225	F	0.007638	4.067511	1.762268
H	-0.456131	1.275977	1.415352	F	-1.924888	4.486164	2.682653
H	0.195294	1.037593	3.046446	F	-0.410460	6.043362	2.555536
H	-1.369578	1.835527	2.812365	F	-0.425163	5.991212	-0.131143
H	2.094821	-4.964116	0.356497	F	-2.294255	6.563647	0.875979
H	3.444971	-4.272142	-0.527529	F	-3.466957	5.182437	-2.915361
H	4.221988	-6.123625	0.989148	F	-2.605729	6.780194	-1.673503
H	3.589536	-5.260394	2.401912	F	-5.664773	5.101393	-1.221786
H	4.951947	-4.588799	1.487070	F	-4.828946	6.781150	-0.102686
H	3.846723	-0.830658	1.743257	F	-5.218685	6.977101	-2.230308
H	4.635257	-2.349174	2.177349	C	0.120050	3.156481	-1.546470
H	4.436134	-1.246452	-0.700646	F	-0.812195	5.029441	-2.535077
H	5.320382	-2.704448	-0.221371	F	-1.730590	3.060218	-2.886861
H	5.873434	-1.112565	0.327962	F	-0.102957	1.916412	-1.072699
P	1.793144	-1.271213	-2.518847	F	0.870442	3.822528	-0.666183
P	-1.229552	-1.020700	-1.726090	F	0.855045	3.013589	-2.681613
C	0.534418	-0.957021	-3.873945	F	-3.744339	4.439137	0.649185
C	-0.721640	-0.252805	-3.344703				
C	2.934044	0.177915	-2.722951				
C	3.763828	0.210378	-4.009823	Table C32. Cartesian coordinates for optimized			
C	2.730749	-2.717877	-3.203619	structure of 11,			
C	1.914822	-4.012863	-3.102252	Mo	0.597034	0.375766	-1.877855
C	-2.711466	-0.070640	-1.155114	P	-0.821134	-1.681827	-1.915566
C	-3.737765	0.289994	-2.233752	P	2.325509	-1.342206	-2.401466
C	-1.946546	-2.622324	-2.355347	N	1.116496	0.161874	-0.021422
C	-2.259393	-3.655052	-1.269618	N	1.401300	0.031220	1.072257
H	0.269295	-1.931163	-4.301739	C	0.304540	-3.167538	-1.897823

C	1.491904	-2.948675	-2.842011	H	3.713317	2.834506	-5.191771
C	-1.916072	-1.947964	-3.397418	H	-1.257236	1.528060	0.977323
C	-2.145584	-3.392531	-3.852428	H	-2.594682	0.788846	0.112773
C	-2.010392	-2.078572	-0.546421	H	-3.410692	2.544880	1.723183
C	-1.413099	-2.025391	0.861493	H	-2.459575	3.782411	0.883788
C	3.481310	-1.006071	-3.800075	H	-3.823322	2.998596	0.063020
C	4.375337	-2.162815	-4.255411	H	-2.042763	3.003838	-3.395921
C	3.435042	-1.881628	-1.019012	H	-3.113210	3.346841	-2.040222
C	4.425958	-0.802439	-0.577160	H	-2.864901	0.667177	-3.546982
H	0.658663	-3.283276	-0.865045	H	-3.863798	0.876188	-2.095222
H	-0.248643	-4.078439	-2.153464	H	-4.250590	1.766642	-3.576904
H	1.156424	-2.880473	-3.883246	P	0.652224	-0.622828	-8.051159
H	2.203005	-3.782009	-2.777239	C	0.524542	-3.587990	-7.459286
H	-2.872501	-1.480359	-3.131552	F	0.395471	0.630552	-9.091279
H	-1.500849	-1.359802	-4.216361	C	-1.192544	1.100818	-6.385944
H	-1.230859	-3.837387	-4.258755	C	0.738379	-2.175638	-6.858272
H	-2.898005	-3.411614	-4.651477	F	0.967240	-1.614416	-9.339095
H	-2.510854	-4.029545	-3.036930	C	2.573737	-0.146799	-7.988081
H	-2.835850	-1.359660	-0.636241	C	0.267980	0.637088	-6.582218
H	-2.434820	-3.071938	-0.749569	F	1.530450	-3.973517	-8.253991
H	-1.049536	-1.021924	1.102918	F	-0.625220	-3.669086	-8.143199
H	-0.570689	-2.718951	0.972492	F	0.457683	-4.472988	-6.432942
H	-2.170453	-2.301787	1.606061	F	1.904735	-2.266301	-6.142842
H	2.850541	-0.675844	-4.625478	F	-0.276894	-2.073507	-5.935731
H	4.085359	-0.139014	-3.503176	F	0.962489	1.796562	-6.804425
H	4.954380	-1.857051	-5.136540	F	0.661883	0.182066	-5.335841
H	3.780457	-3.036818	-4.543071	F	-1.694211	1.650316	-7.496894
H	5.080513	-2.469551	-3.473281	F	-2.000927	0.107013	-5.985113
H	2.785097	-2.159833	-0.179606	F	-1.212638	2.048717	-5.409640
H	3.964562	-2.791057	-1.332660	C	3.621991	-1.092791	-8.622523
H	3.899306	0.099290	-0.249748	F	2.993868	0.039231	-6.691977
H	5.107197	-0.522043	-1.390177	F	2.787553	1.040684	-8.632587
H	5.036579	-1.160750	0.261206	F	3.494010	-1.129932	-9.957818
P	1.956652	2.474790	-1.842909	F	3.555305	-2.344790	-8.146321
P	-1.166222	2.066762	-1.352932	F	4.857352	-0.619330	-8.341421
C	0.798683	3.917305	-2.041446	F	-0.963091	-0.985375	-8.173910
C	-0.372580	3.735153	-1.068520				
C	2.784401	2.847378	-0.220674				
C	3.241036	4.290988	0.011662	Table C33. Cartesian coordinates for optimized			
C	3.312657	2.826277	-3.054040	structu	f 12'		
C	2.871021	2.665285	-4.509186	Mo	0.595839	0.405037	-1.791210
C	-2.048657	1.731423	0.243462	P	-0.783234	-1.672532	-1.823548
C	-2.987172	2.830046	0.751712	P	2.329351	-1.274033	-2.410581
C	-2.525186	2.553760	-2.520279	N	1.235128	0.128893	0.032542
C	-3.424497	1.396897	-2.956268	N	1.637609	-0.061064	1.074234
H	0.439634	3.911904	-3.079388	C	0.354434	-3.146742	-1.899292
H	1.313432	4.871801	-1.878913	C	1.503418	-2.879833	-2.876694
H	-0.016020	3.765567	-0.029641	C	-1.927925	-1.889267	-3.276122
H	-1.114713	4.534502	-1.183861	C	-2.205123	-3.323595	-3.736844
H	3.641105	2.163916	-0.162847	C	-1.913011	-2.100212	-0.413294
H	2.098968	2.535333	0.575401	C	-1.195686	-2.471106	0.887896
H	2.389850	4.979398	0.073094	C	3.448214	-0.890228	-3.827338
H	3.788943	4.360905	0.960172	C	4.371463	-2.009331	-4.317387
H	3.907739	4.647718	-0.782483	C	3.490024	-1.858179	-1.086419
H	4.122917	2.122573	-2.817484	C	4.529803	-0.812312	-0.679493
H	3.701448	3.837086	-2.873799	H	0.748976	-3.288105	-0.885339
H	2.484838	1.662415	-4.700765	H	-0.195103	-4.058157	-2.162289
H	2.082392	3.380554	-4.772658	H	1.129758	-2.784814	-3.901059

H	2.228596	-3.703737	-2.864031	C	0.506459	-3.650452	-7.353374
H	-2.862339	-1.400010	-2.970410	F	0.383423	0.500654	-9.147839
H	-1.527676	-1.303025	-4.106347	C	-1.232077	1.065587	-6.495916
H	-1.315895	-3.777325	-4.187971	C	0.712144	-2.214518	-6.808116
H	-2.994235	-3.323603	-4.500055	F	0.965297	-1.750098	-9.306198
H	-2.541252	-3.964264	-2.911436	C	2.554817	-0.226850	-8.000452
H	-2.545049	-1.216823	-0.258731	C	0.235278	0.604617	-6.642344
H	-2.575877	-2.915276	-0.736831	F	1.522756	-4.065306	-8.120019
H	-0.444228	-1.726910	1.162771	F	-0.634423	-3.762966	-8.047589
H	-0.703703	-3.447963	0.804147	F	0.429384	-4.493495	-6.293004
H	-1.906700	-2.517889	1.719043	F	1.877025	-2.270905	-6.087752
H	2.789778	-0.570842	-4.634604	F	-0.307130	-2.078292	-5.894158
H	4.029410	-0.006817	-3.532565	F	0.933122	1.754685	-6.899396
H	4.900134	-1.682316	-5.222335	F	0.607752	0.205644	-5.369388
H	3.804274	-2.909171	-4.579545	F	-1.731966	1.523610	-7.649289
H	5.119578	-2.283325	-3.563437	F	-2.027655	0.089539	-6.030177
H	2.877319	-2.133798	-0.219033	F	-1.276452	2.083928	-5.597554
H	3.981020	-2.774587	-1.439770	C	3.613805	-1.196610	-8.579869
H	4.044414	0.103509	-0.328727	F	2.960510	0.025363	-6.711933
H	5.186836	-0.548084	-1.517474	F	2.770258	0.929156	-8.700539
H	5.161051	-1.191503	0.134151	F	3.507803	-1.283892	-9.914935
P	1.922484	2.519724	-1.728094	F	3.541833	-2.430410	-8.059750
P	-1.191748	2.079094	-1.293442	F	4.844696	-0.711692	-8.295834
C	0.766957	3.978385	-1.799943	F	-0.977813	-1.085127	-8.182449
C	-0.416650	3.722149	-0.860058	P	-2.026426	0.307788	4.012363
C	2.827447	2.821908	-0.133693	C	0.293383	-1.512112	4.653496
C	3.461760	4.202073	0.062078	F	-3.165269	0.822281	2.925098
C	3.192594	2.926693	-3.013305	C	-4.517761	-0.222779	5.619434
C	2.661172	2.726600	-4.434409	C	-0.745373	-0.519893	5.242420
C	-2.371556	1.740281	0.087170	F	-0.989299	0.013704	2.749858
C	-3.250457	2.915224	0.523920	C	-1.296983	2.149567	4.092186
C	-2.314638	2.645492	-2.665171	C	-3.313834	0.728546	5.430714
C	-3.278140	1.576750	-3.181078	F	1.216727	-0.909164	3.894942
H	0.419346	4.071413	-2.837602	F	-0.286834	-2.486356	3.933260
H	1.286356	4.911117	-1.549352	F	0.945188	-2.103899	5.684462
H	-0.081689	3.675409	0.182691	F	-0.008962	0.381024	5.964563
H	-1.161243	4.524329	-0.933068	F	-1.437954	-1.284143	6.150242
H	3.595505	2.041570	-0.069701	F	-3.880390	1.950894	5.161144
H	2.118058	2.610647	0.674349	F	-2.738876	0.836019	6.669615
H	2.707991	4.998019	0.083481	F	-5.210790	-0.378281	4.478784
H	3.997617	4.233906	1.019710	F	-4.147013	-1.430334	6.070116
H	4.183085	4.440002	-0.728810	F	-5.357680	0.310844	6.537335
H	4.047645	2.262200	-2.826005	C	0.093556	2.458766	3.478858
H	3.545314	3.956215	-2.868805	F	-1.222209	2.594661	5.387187
H	2.296824	1.707412	-4.580748	F	-2.124736	3.021041	3.429287
H	1.831161	3.409744	-4.654255	F	0.078078	2.337274	2.132845
H	3.447189	2.910880	-5.177599	F	1.071177	1.685498	3.961857
H	-1.786810	1.368049	0.930893	F	0.413746	3.743955	3.751778
H	-2.995055	0.899495	-0.244277	F	-2.652558	-1.224643	3.841937
H	-3.887905	2.600217	1.355922				
H	-2.643076	3.755379	0.878768				
H	-3.891772	3.273569	-0.290735	Table C34. Cartesian coordinates for optimized			
H	-1.671059	2.994024	-3.480475	structure of 1 with empirical corrections			
H	-2.870155	3.520952	-2.303262	Mo	-2.435473	-0.000056	-0.000035
H	-2.738138	0.722488	-3.595978	P	0.014586	0.055207	0.026292
H	-3.936312	1.208477	-2.383779	P	-1.965565	-2.402597	0.029675
H	-3.913819	1.985362	-3.976853	N	-2.426323	-0.073120	-2.008662
P	0.635243	-0.711233	-8.058473	N	-2.441077	-0.135654	-3.141536

C	0.613787	-1.580140	-0.651461	H	-7.004396	-1.038043	0.747171
C	-0.110568	-2.708493	0.091292	H	-4.560915	-1.544296	2.564785
C	0.826605	0.070460	1.707653	H	-5.847584	-0.375203	2.890241
C	2.278009	-0.410527	1.800855	H	-6.213357	-2.108946	2.893107
C	1.070947	1.272684	-0.900233	H	-2.590660	2.922522	-2.348390
C	0.750162	1.328309	-2.397391	H	-1.198169	3.409483	-1.400587
C	-2.576688	-3.454795	1.433723	H	-2.371996	5.423009	-2.359811
C	-2.099859	-4.909697	1.475025	H	-3.865198	4.974028	-1.517601
C	-2.385193	-3.424987	-1.467376	H	-2.437452	5.467017	-0.590739
C	-3.887720	-3.599350	-1.687654	H	-2.932758	2.905304	2.325511
H	0.350131	-1.600467	-1.717672	H	-2.981140	4.401550	1.390010
H	1.704322	-1.680281	-0.580233	H	-0.495654	2.623450	1.781933
H	0.190851	-2.720851	1.148605	H	-0.511305	4.130549	0.851141
H	0.138720	-3.690706	-0.329996	H	-0.781351	4.170373	2.603146
H	0.748698	1.101021	2.076845				
H	0.186389	-0.528824	2.366602				
H	2.366850	-1.475030	1.552252				
H	2.658141	-0.278615	2.822690				
H	2.941054	0.146793	1.127578				
H	0.885838	2.251841	-0.437160				
H	2.133393	1.038182	-0.747145				
H	-0.309878	1.543454	-2.565306				
H	0.977095	0.374549	-2.890218				
H	1.342499	2.108371	-2.893508				
H	-2.280324	-2.922525	2.348434				
H	-3.672748	-3.409573	1.400580				
H	-2.498913	-5.423013	2.359985				
H	-1.005682	-4.974043	1.517822				
H	-2.433370	-5.467124	0.590920				
H	-1.938139	-2.905406	-2.325487				
H	-1.889106	-4.401624	-1.389983				
H	-4.375305	-2.624524	-1.781696				
H	-4.358976	-4.131595	-0.850877				
H	-4.089075	-4.171346	-2.602908				
P	-4.885550	-0.055214	-0.026352				
P	-2.905301	2.402480	-0.029639				
N	-2.444589	0.073026	2.008592				
N	-2.429862	0.135569	3.141466				
C	-5.484633	1.580078	0.651632				
C	-4.760289	2.708474	-0.091068				
C	-5.697626	-0.070098	-1.707690				
C	-7.148942	0.411173	-1.800779				
C	-5.941965	-1.272764	0.900020				
C	-5.620937	-1.328873	2.397108				
C	-2.294228	3.454734	-1.433667				
C	-2.771020	4.909651	-1.474861				
C	-2.485432	3.424723	1.467442				
C	-0.982851	3.598476	1.687863				
H	-5.220893	1.600279	1.717824				
H	-6.575171	1.680271	0.580498				
H	-5.061799	2.720948	-1.148354				
H	-5.009497	3.690658	0.330337				
H	-5.619923	-1.100615	-2.077035				
H	-5.057324	0.529167	-2.366574				
H	-7.237578	1.475653	-1.552002				
H	-7.529124	0.279498	-2.822627				
H	-7.812075	-0.146131	-1.127577				
H	-5.757099	-2.251824	0.436647				

C. 7 References

1. A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos, and N. Weidemann, Angew. Chem. Int. Ed., 2005, 44, 5979.
2. Johan Cugny, Helmut W. Schmalle, Thomas Fox, Olivier Blacque, Montserrat Alfonso, Heinz Berke Eur. J. Inorg., 2006, 3, $540 . \quad$ (CCDC Number: 280785)
3. A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos and N. Weidemann, Angew. Chem. Int. Ed., 2005, 44, 5979.
4. T. A. Geoge and C. D. Sebold, Inorg. Chem., 1973, 12, 2544.
5. M. Hidai, Coord. Chem. Rev., 1999, 185-186, 99.
6. See Section 2.4.5 in Chapter 2
7. J. Chatt, J. R. Dilworth, R. L. Richards, Chem. Rev., 1978, 78, 589.

[^0]: *Potential vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

[^1]: ${ }^{\text {a }}$ CPE was carried out for $180(\mathrm{~s}) . \quad{ }^{\mathrm{c}}$ Total amount of trans-[Mo(depe $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ used is 500 nmol .
 ${ }^{\mathrm{b}}$ Experimental error within $\pm 5 \% \quad{ }^{\mathrm{d}}$ The amount of NH_{3} was estimated by indophenol method.

