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Abstract 
With the recent significant development of computers, the use of computer 

simulation is rapidly spreading not only to basic research fields such as bio, material, 

fluid, and structure, but also to industrial application fields. Supercomputers are state-of-

the-art numerical computing machines for science and technology. Due to various 

constraints relating to hardware and materials, the majority of supercomputers are shifting 

to the distributed memory type. And multi-core CPUs and many-core accelerators are 

progressively used. Such supercomputers are often called as the massively parallel type. 

The development of novel simulation methods that can utilize the massively parallel 

supercomputer is highly expected. In particular, the technique utilizing the real space grid 

instead of the wavenumber space has attracted wide attention recently because it can 

achieve high parallelism on the massively parallel machine. 

In atomistic simulation of materials, either the classical molecular dynamics 

method using empirical interatomic force or the first-principles molecular dynamics 

method using the atomic force obtained by performing electronic state calculation every 

step is usually used. In the case of the electronic state calculation, the scope of the 

applicable target systems is wide and highly accurate, but the required calculation times 

can be huge. Hence, a long-term simulation of a system with chemical reactions is often 

difficult even using a supercomputer. The hybrid quantum-classical simulation method 

that we used in this thesis is designed so that the target system is divided into regions and 

either the electronic state calculation or the classical calculation is assigned to each region 

in parallel. This hybrid method is unique in that it can simulate large-scale systems with 

high accuracy. In this thesis, the hybrid quantum-classical simulations are executed on 

supercomputers for two themes that are interested in industries. We visualize the complex 

output data using our original software, to find new microscopic mechanisms. 

The hybrid quantum-classical simulation method can be stated as a new type of 

the molecular dynamics one composed of different types of domains: one for the classical 

molecular dynamics calculation and another for the electronic state calculation. For the 

hybrid quantum-classical simulation, we introduce a new data format suitable to 

visualization and software development. The resultant data in the hybrid quantum-

classical simulation consist of the particle data representing atoms and ions and the grid 

data representing electron density. It is necessary to efficiently handle and visualize these 

data sets with different characters. In the past, the particle data and lattice point data are 
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often handled separately. Such a handling is not suited to the hybrid quantum-classical 

simulation. In order to solve this problem, a file format that combines particle and lattice 

data is proposed. Furthermore, we develop a visualization software that reads and 

visualizes the file. We use this visualization software for the data analysis of the hybrid 

quantum-classical simulation and find (1) and (2) explained below. 

(1) As device miniaturization advances, stress caused by defects and structures 

in the crystal has a greater influence on the entire system. A hybrid quantum-classical 

simulation studied the diffusion of oxygen atoms in silicon crystals as to how the external 

stress field changes the electronic state and further influences the physical property value. 

In order to reproduce a realistic stress field, a relatively large-scale silicon system is 

required. Also, an oxygen atom in the silicon crystal migrates while recombining bonds. 

In the hybrid quantum-classical method, the oxygen atom and its surrounding region are 

calculated by electron density functional calculation method, and in other regions, 

classical atomic structure is calculated, and both regions are dynamically connected and 

simulated simultaneously and in parallel did. In addition, the nudged elastic band method 

was used to obtain the minimum energy path of oxygen atom diffusion. Based on the 

simulation results, we found that the diffusion barrier energy of oxygen atom varies 

depending on the strain direction of silicon type and the magnitude of strain. 

(2) High purity silica (SiO2) glass is a material with high durability and 

mechanical strength. In addition, it is used as an industrially important material such as 

optical fiber and semi-permanent storage device due to characteristics such as optical 

characteristics and heat resistance. SiO2 glass has relatively high water resistance, but 

many Si-OH is produced by reaction between water molecule and Si-O bond, and 

characteristics change. Therefore, it is important to theoretically understand the 

conditions and reaction process of Si-O bond breaking by water molecules. We simulated 

the Si-O bond breaking reaction by water molecules in SiO2 glass using hybrid quantum-

classical simulation. In the case of compression, Si-O bond breaking reaction was 

observed by water molecules in the dimer state. It was found that the bond breaking 

reaction occurred in three processes of Si-O bond breaking reaction of SiO2 glass by water 

molecules. (i) Proton transfer occurs between two water molecules in the dimer state. Is 

adsorbed to Si, and five-coordinated Si is produced. (ii) Si-O bond of five-coordinated Si 

breaks. (iii) react with O of Si-O where the bond breaks. On the other hand, in the water 

molecule in the monomer state, no reaction of bond breaking occurred. Examining the 
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barrier energy of the bond breaking reaction of the Si-O bond by water molecule, it was 

found that the barrier energy at the time of water molecule in the dimer state is smaller 

than that at the time of water molecule in the monomer state. It was also found that the 

barrier energy is reduced by compression. Finally, the diffusion of water molecules in the 

SiO2 glass was investigated from the void distribution in the glass. From the visualization 

results of the voids, it is considered that the voids in the SiO2 glass are large in size and 

the voids are connected, so that the water molecules diffuse inside and become a dimer 

state. 
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1 Introduction 
 

With the rapid development of computers in recent years, the use of computer 

simulation is rapidly spreading not only to basic research fields such as bio, material, 

fluid, and structure, but also to industrial application fields. Supercomputers, which are 

leading edge computers for science and technology, have changed to memory-distributed 

parallel computers in order to obtain higher calculation performance. In recent years, 

supercomputers have been changing to a massively parallel architecture as the use of 

CPUs and accelerators equipped with multi-core and many-core in the node computer. 

Development of a simulation method that can utilize the supercomputer having this new 

architecture is expected. Particularly, the technique using the real space grid is attracting 

wide attention because it can achieve high parallelism with the distributed memory type 

supercomputer. 

In the atomistic simulation on materials, either classical molecular dynamics 

method using empirical interatomic force or first principle molecular dynamics method 

using atomic force obtained by performing electronic state calculation every step is 

usually used. In the electronic state calculation, the scope of the applicable target system 

is wide and it is highly accurate, but since it requires a large amount of calculation, long-

term simulation including large scale reactions and chemical reactions is often difficult 

even using supercomputer. 

The hybrid quantum classical simulation method which I use in this research is 

a method to simulate particle dynamics by applying electronic state calculation or 

classical molecular dynamics calculation to a divided region in a divided target system. 

It is unique that we can simulate the dynamics of large atomic systems with high precision 

of electronic level. In Chapter 2, an algorithm for stably obtaining temporal evolution of 

the particle groups from the force acting on many atoms and ions will be described in 

detail including its accuracy. 

In the hybrid quantum classical simulation, we set the region where the 

temporal change of the electronic state is large in the target system to the "quantum" 

region where electrons are directly calculated by the density functional method (DFT). 

Other area is classical region. 

In research to investigate chemical reaction dynamics, it is necessary to 

simulate several tens of thousands of steps or to simulate many cases with different 
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settings, and it is necessary to speed up the simulation code. In the hybrid quantum 

classical simulation, the DFT applied to the quantum domain requires calculation time 

several orders of magnitude longer than the calculation time of the classical domain. the 

speed-up of DFT calculation leads to faster hybrid quantum classical simulation. In 

general, in order to speed up the calculation on a supercomputer, it is necessary to 

consider not only the operation but also the memory access and the inter-node 

communication. In Chapter 3, we explain the outline of the DFT method and the speeding 

technique applied to the standard orthogonalization by the Gram-Schmidt method of the 

electron orbital function, which is particularly computationally intensive. We will also 

describe the technique for speeding up the differential calculation by the difference 

method introduced in the DFT using the real space grid. 

Due to the development of computers, numerical data obtained by computer 

simulation is enormous. It is necessary to make input and output data easy to understand 

for human beings, and support software such as visualization is important. In the hybrid 

quantum classical simulation described above, the target system is divided into regions, 

and it consists of an area to which the electronic state calculation is applied and a domain 

to which the classical interaction calculation is applied. In the electronic state calculation, 

data on ions and fixed grid points related to electron density are outputted, and classical 

interaction calculation outputs atoms data. It is necessary for analysis to visualize these 

two types of data collectively. 

In hybrid quantum classical simulation, it is important to connect the quantum 

domain and the classical domain in a seamless manner. In chapter 4, the buffered cluster 

method used in this study will be explained. 

It is not easy to use existing visualization software for this use. Visualization 

with proprietary software is useful for elucidating the microscopic mechanism from the 

result of hybrid quantum classical simulation. I made easy to analyze hybrid quantum 

classical simulation by developing a new data format for hybrid quantum classical 

simulation and developing software to visualize it using that data format. In chapter 5, we 

will explain this visualization software developed independently.  

Two cases applying the hybrid quantum classical simulation are described in 

Chapter 6 and Chapter 7, respectively. One is the evaluation of the diffusion of oxygen 

atoms in the Si crystal, and the other is the bond breaking reaction by the water molecules 

in the silica glass. In these studies, we performed a large-scale simulation using the hybrid 
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quantum classical simulation method, taking into consideration the influence such as 

distortion which could not be done by a small system so far. 

 [Application 1] As the miniaturization of devices such as semiconductors has 

progressed, the influence of the stress due to defects and structures in the crystal on the 

entire system has become greater. A simulation using a computer studied diffusion of 

oxygen atoms in the silicon crystal as to how the external stress field changes the 

electronic state and further influences the physical property value. In order to reproduce 

a realistic stress field, a relatively large-scale silicon system is required. Oxygen atoms in 

the Si crystal migrate while recombining O-Si bonds.  

It is difficult to accurately represent this reaction using classical interactions. 

When handling chemical bonds, electronic state calculation is required. However, it is not 

practical to calculate the electronic state in terms of computational resources to apply it 

to a large-scale system like this research. I want to make the size of the system that 

calculates the electronic state small. Therefore, using the hybrid quantum classical 

simulation method, the electron density functional theory calculation is applied to the 

oxygen atoms and their peripheral regions, and the calculation of the classical atomic 

structure is applied to the other regions. We simulate the diffusion of oxygen atoms in a 

large-scale system by dynamically connecting these regions and computing them 

simultaneously and in parallel. In diffusion of oxygen atoms, the diffusion path of oxygen 

atoms in the Si crystal and its barrier energy are clarified using the Nudged Elastic Band 

(NEB) method in order to find the minimum energy path, and the dependence of diffusion 

on strain is investigated. 

 [Application 2] High purity silica glass is a material with high durability and 

mechanical strength. Further, it is used as an industrially important material such as 

optical fiber and semi-permanent storage device due to characteristics such as optical 

characteristics and heat resistance. Silica glass has relatively high water resistance. 

However, reaction of water molecules with Si-O bonds produces more Si-OH and the 

properties of the glass change. Therefore, it is important to theoretically understand the 

conditions and reaction processes of Si-O bond destruction by water molecules. In the 

simulation study of the reaction between SiO2 and water molecules, a simulation using a 

relatively small system has been carried out. It is a study using a small periodic system 

or molecular model. In such a small system, it is considered that the random structure of 

SiO2 glass is restricted and it is considered that the reaction with water molecules has the 



9 

influence of the strain of SiO2 glass structure. In such a system, it is considered difficult 

to estimate the reaction with water molecules correctly. In this study, we simulate the 

reaction of bond breakage with water molecules in large scale SiO2 glass. In order to 

simulate the reaction between SiO2 glass and water molecules in large-scale SiO2 glasses, 

a hybrid quantum classical simulation was carried out. In the hybrid quantum classical 

simulation, the electronic state calculation using the density functional method was 

performed in the peripheral region of the water molecule where the bond breakdown 

reaction occurs in the large scale SiO2 glass system, and the classical interaction was used 

for the remaining region. By the simulation of this research, we will clarify the conditions 

and reaction process of the bond breakdown reaction by water molecules in silica glass. 
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2 Molecular Dynamics Simulation Method 
 
2.1 Time Evolution Algorithms 

Assume an ordinary differential equation with a given initial value for a 

variable must be solved numerically. The well-known Euler method or the fourth-order 

Runge-Kutta method could be used. However, in general, such a method is not suited for 

the time evolution problem of atoms that follow Newton’s equation of motion in 

molecular dynamics (MD) simulation. The proper method for MD simulation should have 

the following features: (i) the ability to treat a large number of variables, which are in 

proportion to the number of atoms in a target system; (ii) the smallest number of force 

calculations per time step possible, i.e., one, because the force calculation is usually the 

most time-consuming part; (iii) high precision for both a single time step and long-time 

evolution; and (iv) uses a small amount of memory for the computer simulation. These 

features preclude the use of the fourth-order Runge-Kutta method, which requires five 

times the number of force calculations per time step and shows poor long-time stability. 

In recent years, the Verlet method, with accuracy comparable to that of the Runge-Kutta 

method (see below) despite the one force calculation per time step, has usually been used. 

In addition, its time reversibility provides long-time stability.  

In section 2.1.1, we present a simple derivation of the Verlet method. In section 

2.1.2, the velocity-Verlet method is rederived using the Liouville operator method in the 

statistical mechanics. The rederivation shows that the velocity-Verlet method preserves 

time reversibility and symplecticness. The atomic positions have the same trajectory in 

both the Verlet and the velocity-Verlet method; however, their orders of error appear to 

be different. In section 2.1.3, we explain the apparent contradiction. 

 

2.1.1 Simple derivation of Verlet and velocity-Verlet methods 

We derive the Verlet method using a Taylor expansion with time-step size ℎ. 

The Taylor expansions of position 𝑟(𝑡) of an atom at time 𝑡 + ℎ and 𝑡 − ℎ are given 

by  
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𝑟 𝑡 + ℎ = 𝑟 𝑡 + ℎ𝑣 𝑡 +
ℎ*

2
𝐹 𝑡
𝑚

+
ℎ.

6
	𝑟 + 𝑂 ℎ2 ,	

𝑟 𝑡 − ℎ = 𝑟 𝑡 − ℎ𝑣 𝑡 +
ℎ*

2
𝐹 𝑡
𝑚

−
ℎ.

6
	𝑟 + 𝑂 ℎ2 . 

(2.1) 

(2.2) 

Terms after (ℎ. 6)𝑟  are represented by 𝑂 ℎ2  as an order of error. Adding and 

subtracting equations (2.1) and (2.2) yields  

𝑟 𝑡 + ℎ = 2𝑟 𝑡 − 𝑟 𝑡 − ℎ + ℎ*
𝐹 𝑡
𝑚

+ 𝑂 ℎ2 ,	

𝑣 𝑡 =
𝑟 𝑡 + ℎ − 𝑟 𝑡 − ℎ

2ℎ
+ 𝑂 ℎ* . 

(2.3) 

(2.4) 

This is the Verlet method. Adding equations (2.1) and (2.2) cancels out the term (ℎ. 6)𝑟, 

so the term	𝑂 ℎ.  disappears. Thus, the order of error per step in the atomic position is 

𝑂(ℎ2). On the other hand, the order of error per step in the update of the velocity is 𝑂(ℎ*). 
These errors are due to the truncation error of the Taylor expansion. 

Equation (2.3) shows that the Verlet method evolves time by updating only the 

atomic position. The calculation of the next position of an atom involves the positions 

𝑟(𝑡)  and 𝑟 𝑡 − ℎ , where the atomic velocity is unnecessary. However, an actual 

simulation requires the kinetic energy to evaluate the total energy and other parameters, 

and the atomic velocity must be calculated. In addition, the velocity is updated at a time 

shifted by ℎ as opposed to updating the position, which is difficult to use. It is difficult 

to provide the initial positions 𝑟(𝑡) and 𝑟(𝑡 − ℎ) of atoms at the start of the simulation. 

The order of error 𝑂 ℎ5  represents a truncation error, i.e., an error on the order 

of n to the time-step size ℎ. As ℎ decreases, the truncation error decreases on the order 

of ℎ5. When ℎ is 0.1, the error £ 0.1 5. 

Next, we present a simple derivation of the velocity-Verlet method, which is an 

improvement on the Verlet method, by converting the Taylor expansions of the Verlet 

method. The velocity-Verlet method is as accurate as the Verlet method, easy to use, and 

widely used in MD simulation.  

The Taylor expansions of the atomic position 𝑟 𝑡  and velocity 𝑣 𝑡  at time 

𝑡 + ℎ are  

 

(2.5) 
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𝑟 𝑡 + ℎ = 𝑟 𝑡 + ℎ𝑣 𝑡 +
ℎ*

2
𝐹 𝑡
𝑚

+ 𝑂 ℎ. ,	

𝑣 𝑡 + ℎ = 𝑣 𝑡 + ℎ
𝐹 𝑡
𝑚

+
ℎ*

2
𝐹(𝑡)
𝑚

+ 𝑂 ℎ. . 

(2.6) 

Equation (2.5) is the updated position for the velocity-Verlet method. Substituting  

𝐹 𝑡 =
𝐹 𝑡 + ℎ − 𝐹 𝑡

ℎ
+ 𝑂(ℎ) 

into equation (2.6) yields  

𝑣 𝑡 + ℎ = 𝑣 𝑡 +
ℎ
2
𝐹 𝑡
𝑚

+
𝐹 𝑡 + ℎ

𝑚
+ 𝑂 ℎ. , (2.7) 

which is the updated velocity. These equations show that the order of error for both 

position and velocity after one step is 𝑂(ℎ.). In the velocity-Verlet method, the atomic 

position 𝑟(𝑡 + ℎ) at time 𝑡 + ℎ is updated using the initial position 𝑟(𝑡) and velocity 

𝑣 𝑡 . Unlike with the Verlet method, it is easy to evaluate the total energy using the 

velocity-Verlet method because the position and velocity can be developed at the same 

time. The velocity-Verlet method can be derived not only from the Taylor expansion of 

the Verlet method but also by using the Liouville operator, which is a time evolution 

operator. This derivation is described in the next section. 

 

2.1.2 Derivation of velocity-Verlet method using the Liouville operator 

The velocity-Verlet method can be derived using the Liouville time evolution 

operator. If Newton’s equations of motion are integrated, the formulation of the time 

evolution equation via Taylor expansion is sufficient. In MD simulation, a system with a 

large number of atoms is difficult to simulate, even using today’s high-performance 

computers, and in a system with few atoms, it is difficult to control temperature and 

pressure. For the latter case, we define a new Hamiltonian with temperature controls, 

pressure controls, and constraint conditions between atoms and perform the simulation. 

In formulating the velocity-Verlet method using the Liouville time evolution operator, the 

order of error for the position and velocity of the atom is due to the error in the Trotter 

symmetrical decomposition of the time evolution operator. Time symmetry is evident 

from the symmetrical decomposition of the time evolution operator. 

Below we derive the atomic position of the velocity-Verlet method using the 

Liouville time evolution operator. The time evolution of an arbitrary physical variable 
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𝐴 𝑡 ≡ 𝐴 𝑞;, ~, 𝑞=, 𝑝;, ~, 𝑝=  is  

 
d𝐴
d𝑡

=
𝜕𝐻
𝜕𝑝B

⋅
𝜕
𝜕𝑞B

−
𝜕𝐻
𝜕𝑞B

⋅
𝜕
𝜕𝑝BB

𝐴, (2.8) 

𝑞B =
𝜕𝐻
𝜕𝑝B

, (2.9) 

𝑝B = −
𝜕𝐻
𝜕𝑞B

,	 (2.10) 

 
where 𝐻  is the Hamiltonian of the system and 𝑞B  and 𝑝B  represent generalized 

coordinates and momenta, respectively. The Liouville operator is defined as  

𝑖𝐿 ≡
𝜕𝐻
𝜕𝑝B

⋅
𝜕
𝜕𝑞B

−
𝜕𝐻
𝜕𝑞B

⋅
𝜕
𝜕𝑝B

,
B

 (2.11) 

so equation (2.8) becomes  

d𝐴
d𝑡

= 𝑖𝐿𝐴. (2.12) 

The formal solution of equation (2.12) is  

𝐴 𝑡 = exp 𝑖𝐿𝑡 𝐴 0 . (2.13) 

Applying the Taylor expansion to exp 𝑖𝐿𝑡 	 in equation (2.13) yields  

exp 𝑖𝐿𝑡 = 1 + 𝑖𝐿𝑡 +
𝑡*

2!
𝑖𝐿 * +

𝑡.

3!
𝑖𝐿 . + ⋯. (2.14) 

If the Hamiltonian H is defined as 

𝐻 𝑟;, … , 𝑟= , 𝑝;, … , 𝑝= =
𝑝B

*

2𝑚M

=

BN;

+ 𝑈 𝑟;, … , 𝑟= ,	 (2.15) 

the Liouville operator [equation (2.11)] can be decomposed as follows: 

𝑖𝐿 =
𝜕𝐻
𝜕𝑝B

⋅
𝜕
𝜕𝑟B

−
𝜕𝐻
𝜕𝑟B

⋅
𝜕
𝜕𝑝BB

	

= 𝑖𝐿P + 𝑖𝐿Q, 
(2.16) 

where  
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𝑖𝐿P ≡ −
𝜕𝐻
𝜕𝑟B

⋅
𝜕
𝜕𝑝B

,
B

 (2.17) 

𝑖𝐿Q ≡
𝜕𝐻
𝜕𝑝B

⋅
𝜕
𝜕𝑟BB

. (2.18) 

If this decomposition holds true, the time reversal operator can be transformed by the 

Trotter formula as follows: 

exp 𝑖𝐿ℎ = exp 𝑖 R
*
𝐿P exp 𝑖ℎ𝐿Q exp 𝑖 R

*
𝐿P + 𝑂 ℎ. . (2.19) 

The Trotter product formula is  

exp 𝑡 A + B = lim
5→Y

exp
𝑡
𝑛
A exp

𝑡
𝑛
B

5
 (2.20) 

and contains the order of error 𝑂 𝑡* 𝑛 	 for a finite n. The Trotter product formula by 

symmetrical decomposition is  

exp 𝑡 A + B = lim
5→Y

exp
𝑡
2𝑛
A exp

𝑡
𝑛
B exp

𝑡
2𝑛
A

5
,	 (2.21) 

where the order of error is 𝑂 𝑡. 𝑛*  for a finite n. The time evolution for position and 

velocity is defined as 

 

𝑟 ℎ
𝑝 ℎ = exp −

ℎ
2
𝜕𝑈
𝜕𝑟

𝜕
𝜕𝑝

exp
ℎ𝑝
𝑚

𝜕
𝜕𝑟

exp −
ℎ
2
𝜕𝑈
𝜕𝑟

𝜕
𝜕𝑝

𝑟 0
𝑝 0 	

= exp −
ℎ
2
𝜕𝑈
𝜕𝑟

𝜕
𝜕𝑝

exp
ℎ𝑝
𝑚

𝜕
𝜕𝑟

𝑟 0

𝑝 0 −
ℎ
2
𝜕𝑈
𝑟 0

	

= exp −
ℎ
2
𝜕𝑈
𝜕𝑟

𝜕
𝜕𝑝

𝑟 0 +
ℎ
𝑚
𝑝;

𝑝;
	

=
𝑟;

𝑝; −
ℎ
2
𝜕𝑈
𝑟;

, 

(2.22) 

where 

𝑟; = 𝑟 0 +
ℎ
𝑚
𝑝;	

and 
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𝑝; = 𝑝 0 −
ℎ
2
𝜕𝑈
𝑟 0

.	

In summary, the position and momentum are defined as 

𝑟 ℎ = 𝑟 0 +
ℎ
𝑚

𝑝 0 −
𝑡
2
𝜕𝑈
𝜕𝑟 0

	

𝑝 ℎ = 𝑝 0 −
ℎ
2
𝜕𝑈
𝜕𝑟 0

−
ℎ
2

𝜕𝑈
𝜕𝑟 ℎ

.	 
(2.23) 

These equations define the velocity-Verlet method and are the same as those obtained 

using a Taylor expansion. 

Because the velocity-Verlet method provides time reversibility and 

symplecticness, there is no error divergence, even in time evolution for an extended time. 

Time reversibility can also be confirmed using the Liouville time evolution operator. 

When time reversibility is confirmed, the position is defined by 

exp𝑖𝐿 −ℎ 𝑞 ℎ 		

= exp 𝑖𝐿P −
ℎ
2
exp 𝑖𝐿Q −ℎ exp 𝑖𝐿P −

ℎ
2
𝑞 ℎ 	

= exp𝑖𝐿[ −
ℎ
2
exp𝑖𝐿Q −ℎ exp𝑖𝐿P −

ℎ
2
×	

exp 𝑖𝐿P
ℎ
2
exp𝑖𝐿Q ℎ exp𝑖𝐿P

ℎ
2
𝑞 0 	

= exp 𝑖𝐿P −
ℎ
2
exp𝑖𝐿Q −ℎ exp 𝑖𝐿Q ℎ exp𝑖𝐿P

ℎ
2
𝑞 0 	

= exp 𝑖𝐿P −
ℎ
2
exp𝑖𝐿P

ℎ
2
𝑞 0 	

= 𝑞 0 , 

(2.26) 

and returns to the original position. 

The symplecticness of the velocity-Verlet method is confirmed by the existence 

of the integral invariant Jacobian matrix of the Poincaré map of the phase space for the 

time transformation by canonical transformation. The existence is confirmed when the 

determinant of the Jacobian matrix is 1. The Jacobian matrix must exist for 

symplecticness to exist. For the determinant of the Jacobian matrix in the velocity-Verlet 

method, we have 
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𝜕𝑥 ℎ
𝜕𝑥 0

𝜕𝑥 ℎ
𝜕𝑝 0

𝜕𝑝 ℎ
𝜕𝑥 0

𝜕𝑝 ℎ
𝜕𝑝 0

=

𝜕𝑥 ℎ
𝜕𝑥*

𝜕𝑥 ℎ
𝜕𝑝*

𝜕𝑝 ℎ
𝜕𝑥*

	
𝜕𝑝 ℎ
𝜕𝑝*

⋅

𝜕𝑥*
𝜕𝑥;

𝜕𝑥*
𝜕𝑝;

𝜕𝑝*
𝜕𝑥;

𝜕𝑝*
𝜕𝑝;

⋅

𝜕𝑥;
𝜕𝑥 0

𝜕𝑥;
𝜕𝑝 0

𝜕𝑝;
𝜕𝑥 0

𝜕𝑝;
𝜕𝑝 0

	

=
1 0

ℎ
2
d𝐹 𝑥
d𝑥*

1 ⋅ 1
ℎ
𝑚

0 1
⋅

1 0
ℎ
2
d𝐹 𝑥 0
d𝑥 0

1 	

= 1. 

(2.27) 

The symplecticness of the velocity-Verlet method does not preserve the true energy H. 

For example, in the case of a harmonic oscillator,  

𝐻 =
(𝑥* + 𝑣*)

2
 (2.28) 

is not preserved, but 

𝐻^ =
𝑥* + 𝑣*

2
−
ℎ*

4
𝑥* (2.29) 

is preserved. The amount of preservation depends on the time step. Therefore, when ℎ 

is less than a certain value, there is no divergence of energy, even in a long-time 

simulation, and there is good preservation. However, as ℎ  increases, energy 

conservation will break. 

 

2.1.3 Accuracies of Verlet and velocity-Verlet methods 

There is an interesting relationship between the Verlet method and the velocity-

Verlet method. In this section, we have presented the derivation of the Verlet method and 

the velocity-Verlet method. The updated position of the Verlet method includes the order 

of error 𝑂 ℎ2  and that of the velocity-Verlet method includes the order of error 𝑂 ℎ. . 

However, the position 𝑟(𝑡 + ℎ) of the next step in both methods matches the numerical 

calculation. Consider the following contradiction. First, we show that 𝑟 𝑡 + ℎ  in the 

Verlet method is the same as that in the velocity-Verlet method. 

Using equation (2.5), 𝑟 𝑡 − ℎ  in the velocity-Verlet method is  

𝑟 𝑡 − ℎ = 𝑟 𝑡 − ℎ𝑣 𝑡 +
ℎ*

2
𝐹 𝑡
𝑚

	. (2.30) 

Substituting equation (2.30) into the right side of equation (2.3) yields  
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𝑟 𝑡 + ℎ = 2𝑟 𝑡 − 𝑟 𝑡 − ℎ + ℎ*
𝐹 𝑡
𝑚

	

= 2𝑟 𝑡 − 𝑟 𝑡 + ℎ𝑣 𝑡 −
ℎ*

2
𝐹 𝑡
𝑚

+ ℎ*
𝐹 𝑡
𝑚

	

= 𝑟 𝑡 + ℎ𝑣 𝑡 +
ℎ*

2
𝐹 𝑡
𝑚

	, 

(2.31) 

which is the equivalent of equation (2.5) for the updated position of the velocity-Verlet 

method. Deformation causes 𝑟(𝑡 + ℎ)  of both methods to be in agreement because 

𝑟(𝑡 + ℎ) of the Verlet method has the same value as that of the velocity-Verlet method 

by appropriately choosing 𝑟(𝑡)  and 𝑟(𝑡 − ℎ) . In addition, it can have the same 

trajectory. Here, 𝑟 𝑡 − ℎ  is that of the velocity-Verlet method. 

Although the position of the Verlet method and the position of the velocity-Verlet 

method are defined to coincide, the former has an order of error of 𝑂 ℎ2 , as shown by 

the equation (2.1), and the latter has an order of error of 𝑂 ℎ. . Thus, the accuracy of 

the numerically calculated position minus the error of the true solution of 𝑟(𝑡 + ℎ) for 

the Verlet method and the velocity-Verlet method should not be the same, which leads to 

an apparent contradiction because the value of 𝑟(𝑡 − ℎ) in equation (2.30) includes the 

error 𝑂 ℎ.  that is in the Verlet method calculation of 𝑟(𝑡 + ℎ). 	𝑟 𝑡 − ℎ  in equation 

(2.31) was calculated using the velocity-Verlet method. If atomic position 𝑟(𝑡) and 

velocity 𝑣 𝑡  are true solutions, then 𝑟 𝑡 − ℎ  includes the error 𝑂 ℎ.  of velocity-

Verlet method. Therefore, although the error of the Verlet method position is 𝑂 ℎ2 , as 

seen in equation (2.3), which is the first line of equation (2.31), the position 𝑟(𝑡 + ℎ) 
includes the error 𝑂(ℎ2) of the position 𝑟 𝑡 − ℎ  derived by the Verlet method and the 

error 𝑂 ℎ.  from the velocity-Verlet method. As a result, the error of 𝑟(𝑡 + ℎ) of the 

Verlet method and the velocity-Verlet method is 𝑂 ℎ. , which is the result of matching. 

In other words, if the initial values of 𝑟(𝑡 − ℎ) and 𝑣 𝑡  are chosen properly, then 

𝑟(𝑡 + ℎ) of the Verlet method and the velocity-Verlet method are identical. Up to now, 

the error of only one step of the Verlet method and the velocity-Verlet method has been 

described. In an actual simulation, the trajectory of the atoms over a long time is 

investigated using iterative calculations of several steps, causing the accumulation of 

error. The cumulative error of both methods is 𝑂 ℎ* . 

Computer simulation includes two kinds of error: a truncation error derived from 

the numerical integration algorithm and a round-off error generated by the computer 
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calculations. The round-off error accumulates with each iteration but the computer can 

handle only finite numbers. As the time-step size of the simulation decreases, the abort 

error of the numerical calculation decreases, but the number of steps needed to reach the 

target time of the simulation increases, as does the round-off error. 

The MD simulation requires a long time evolution. In the numerical integration 

of the equation of motion, it is desirable to make the time step as wide as possible from 

the viewpoint of the round-off error and the expense of the computer calculation. Both 

the Verlet method and the velocity-Verlet method have little error divergence, even in a 

long time evolution. 

 

2.2 Classical Interatomic Interaction 
In MD simulation, interatomic interactions play an important role in determining 

the characteristics of materials. Computer calculations of interatomic interactions are the 

most expensive. Interatomic interactions are determined from experiments and theoretical 

models and chosen to suit specific properties. To reproduce the characteristics of atomic 

bonds, e.g., rigid body models such as gases and covalent bonds, ionic bonds, metallic 

bonds, and van der Waals bonds, interatomic interactions are classified into two-body 

interaction, three-body interaction, multiple-body interaction, and Coulomb interaction 

in combination. Some representative potentials are discussed below. 

The Lennard-Jones (LJ) potential describes the potential energy of the 

interaction between two atoms such as noble gas atoms and van der Waals molecules. 

Because a noble gas is an element with a closed outer shell structure, there is no electron 

transfer between atoms. Thus, interatomic interaction can be represented by a two-body 

interaction. The LJ potential comprises a repulsive force term and an attractive force term, 

depending on the interatomic distance. The attractive force term represents repulsion due 

to the overlap of electron orbitals and the repulsive force term represents dipole-dipole 

interaction. The LJ potential is represented by  

𝑣 𝑟 = 4𝜖
𝜎
𝑟
	;* −

𝜎
𝑟
	b 	, (2.32) 

where 𝑟 is the interatomic distance, 𝜎 is a parameter with the dimension of distance, 

and 𝜖 is a parameter with the dimension of energy. For example, 𝜎 = 3.40	[Å] and 
𝜖 = 1.67𝑒h*;	[J] for Ar. 

The Stillinger-Weber (SW) potential models the potential of three-body 
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interaction, in particular, the interaction potential of Si crystal. Si crystals have a diamond 

cubic crystal structure. Si belongs to Group 14 and has four electrons in the outer orbital 

to form an sp. hybrid orbital. A Si atom forms a covalent bond with four other Si atoms 

to form a regular tetrahedron. The SW potential, designed to reproduce the structure of a 

Si crystal, comprises the sum of the potential between two atoms and the potential 

dependent on the angle between three atoms that reproduces the covalent bond angle. 

The total potential energy of the SW potential is  

𝛹 𝑟;,⋯ , 𝑟= = 𝑣* 𝑟M, 𝑟B +
M,B
MlB

𝑣. 𝑟M, 𝑟B, 𝑟m
M,B,m
MlBlm

,	 
(2.33) 

where 𝑣* and 𝑣. are two-body and three-body potential functions, respectively. The 

two-body potential term is a function of the distance between two atoms and is defined 

as  
𝑣* 𝑟M, 𝑟B = 𝑣* 𝑟MB , (2.34) 

𝑣* 𝑟MB = 𝜖𝑓*
𝑟MB
𝜎
,	 (2.35) 

where  

𝑓* 𝑟 = 𝐴 𝐵𝑟hp − 𝑟hq exp 𝑟 − 𝑎 h; , 		𝑟 < 𝑎
0, 		𝑟 > 𝑎 	. (2.36) 

The parameters 𝐴, 𝐵, 𝑝, 𝑞, 𝑎, 𝜎, 𝜖  that satisfy the experimental result are 𝐴 =
7.049556277 , 𝐵 = 0.6022245584 , 𝑝 = 4 , 𝑞 = 0 , 𝑞 = 0 , 𝑎 = 1.80,	  𝜎 =

0.20951	 nm , 𝜖 = 50	 kcal mol . The three-body potential term is a function of the 

distance between the atom of interest and the other two atoms and the angle formed by 

them. It is expressed as  

𝑣. 𝑟M, 𝑟B, 𝑟m = 𝑣. 𝑟MB, 𝑟Mm, 𝜃BMm + 𝑣. 𝑟Bm, 𝑟BM, 𝜃mBM + 𝑣. 𝑟mM, 𝑟mB, 𝜃MmB ,  (2.37) 

𝑣. 𝑟MB, 𝑟Mm, 𝑟BMm = 𝜖𝑓. 𝑟MB 𝜎 , 𝑟Mm 𝜎 , 𝜃BMm ,	 (2.38) 

where 

𝑓. 𝑟MB, 𝑟Bm, 𝜃BMm 	

= 𝜆 exp 𝛾 𝑟MB − 𝑎
h; + 𝛾 𝑟Mm − 𝑎 h; 	 ⋅ cos 𝜃BMm +

1
3

*

 
(2.39) 

and	𝜆 = 21.0 and 𝛾 = 1.20. For a tetrahedron, the angle 𝜃 = 120.0 and the energy 

𝑓. = 0. 
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The SW potential is in good agreement with experimental data for Si in the 

crystalline state. However, noncrystalline state conditions and reaction phenomena 

cannot be reproduced. For example, the reaction that occurred in the experiment from 

which the data were obtained was the progression of a crack fracture in a Si crystal. The 

potential for a crystalline state, such as the SW potential, cannot reproduce the 

experimental state in which the bond between the Si atoms at the crack tip of the 

breakdown phenomenon is changing. In such a situation, the potential that includes the 

breakdown of the bond rather than the potential that reproduces only a crystal structure 

must be considered. However, it is difficult to have the potential incorporate the 

experimental data that correspond to such varying conditions. Therefore, it is necessary 

to use the interatomic potential obtained from quantum mechanics with respect to the 

electronic state. 

The Coulomb force between ions is a function of r--1 and long-range force. The 

number of interactions in a bulk system is quite large so special computational methods 

are necessary for high-precision calculations. Various methods have been devised to 

increase the speed of calculating the Coulomb force, one of which is the Ewald method 

that is described later. 

Metallic bonds must reflect the effect of the Coulomb force between the cations 

of metallic crystals and the free electrons that move freely around them. Elements that 

have conduction electrons distributed over a relatively long distance must be in a large 

volume. For metallic bonding, a multibody action potential, such as the embedded-atom 

method (EAM) potential, has been proposed. In addition to the usual two-body potential 

(attraction and repulsion), EAM includes a multibody term, which is the energy that 

results from atoms with an electronic density 𝜌M , which is created by superimposing 

conduction electrons around the atoms: 

𝑉 = 𝛷 𝑟MB

MlB

M,B

+ 𝐹 𝜌M .
M

 (2.40) 

The potential of a molecular model such as an organic molecule is thought to 

include two-, three-, or four-body interaction and the Coulomb force by combining the 

covalent bonds between atoms. This potential requires many parameters depending on 

the molecular system. 
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2.3 Calculation Method for MD Simulation 
MD simulation of a large-scale system takes a long time. The most time-

consuming part of the simulation is the calculation of the force on atoms. The direct 

calculation of force becomes the calculation of 𝑂(𝑁*), where 𝑁 is the number of the 

atoms. As 𝑁 increases, it becomes impossible to calculate the force in a realistic time 

frame. To accelerate the calculation of the force, and thus the MD simulation, 

parallelization using a parallel computer has been employed. 

Here we discuss methods to accelerate MD simulation that correspond to the 

interaction distance between atoms. For short-range interactions, the calculation amount 

can be set to 𝑂(𝑁)  by introducing a cutoff interaction distance. For long-range 

interactions, a cutoff distance is not possible. However, it is possible to reduce the 

computational complexity of long-range interactions and maintain certain computational 

precision via the Ewald method. 

 

2.3.1 Calculation method of short-range interaction 

In MD simulation, the calculation of the force acting on a particle accounts for 

more than 90% of the simulation iteration loop time. Therefore, accelerating the 

calculation of this force is the most efficient way to shorten the execution time of the MD 

simulation. The force calculation reduces the number of pairs of interacting atoms since 

it is the sum of the interactions of the atom of interest and other atoms. For short-range 

interactions, the number of pairs of atoms can be reduced by setting a cutoff interatomic 

interaction distance. However, despite the use of a cutoff interaction distance, calculation 

of the distance for all pairs of atoms is still required, so the calculation of 𝑂 𝑁*  is 

necessary. Therefore, use of a cutoff distance does not significantly reduce the amount of 

calculation. Therefore, the next step is to accelerate the pair interaction calculation. The 

system is divided into square cells, with the length of each side the cutoff distance rcut, 

and the atoms in each cell are registered (see Fig. 2.1). The amount of calculation obtained 

by this cell division method is 𝑂 𝑁 . In the three-dimensional system, the pair 

calculation searches for only the cell in which the atom of interest is registered and the 

atoms registered in the 26 cells surrounding that cell. Therefore, because the number of 

atoms to be searched per atom of interest is almost constant, the amount of calculation is 

proportional to 𝑁. Therefore, the amount of calculation is 𝑂 𝑁 . 
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Figure 2.1. System divided into square cells of 𝑟��� size. To compute the forces on an 

atom, the calculation searches for atoms in the green area. 

 

There is another way to reduce the amount of calculation. Although the amount 

of calculation of the cell division method (Fig. 2.1) is 𝑂 𝑁 , the cell division performed 

in every step requires time. In addition, the pairing of each atom with atoms in 

neighboring cells must be calculated. To further reduce the amount of calculation, atoms 

registered around each atom via the neighborhood atom registration method are used. The 

atoms in solids such as crystals hardly move, with vibration the main cause of movement. 

Therefore, since the targets of pair computation hardly change, it is possible to eliminate 

the computational complexity of cell division by registering in advance the neighboring 

atoms of a particular atom to undergo pair calculation. In addition, instead of pairing an 

atom with the other atoms in its cell, it is sufficient to pair the atom with atoms near it, 

thus reducing the amount of calculation. 

The calculation of short-range interaction is suitable for the distributed-

memory-type parallel computer. In parallel computing, memory data are shared via 

internode communication, which causes a large bottleneck in parallel computation. In 

parallelization by real-space division, short-range interaction calculations can reduce the 

amount of communication data since the interacting atoms are those only in the 

neighboring region. Thus, excellent parallelization can be obtained. 

 

2.3.2 Calculation method for long-range interaction 

Coulomb force is repulsive between particles with different charges like ionic 

crystals and molecules and is proportional to 1/𝑟 . Coulomb force is a long-range 
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interaction, so a cutoff distance cannot be applied to it. Therefore, the amount of 

calculation is 𝑂 𝑁* . When there are a number of particles, direct calculation of the 

interactions is not realistic. The Ewald method accelerates the calculation of the Coulomb 

force by dividing the Coulomb interaction into a short-range component and a long-range 

component and calculating the long-range interaction in inverse space. The Ewald 

method used in this study is discussed below. 

Coulomb interaction is a problem of condition convergence, and charge bias 

occurs because of how the periodic boundary system is defined. This charge bias appears 

as a macroscopic dipole. Considering the effect of the macroscopic dipole, the energy 

varies depending on how the periodic system is defined; therefore, the energy cannot be 

evaluated accurately. The Ewald method can evaluate energy while ignoring the 

macroscopic dipole term, so the effect of charge bias is excluded. The Ewald method 

divides the Coulomb interaction into a short-range component and a long-range 

component, calculates the short-range component directly, and calculates the long-range 

component in wavenumber space. Therefore, the amount of calculation of the Ewald 

method is 𝑂(𝑁. *), so high-speed computation is possible. 
Because calculations for Coulomb interaction involve condition convergence, 

we introduce a convergence factor 𝑠. In the Coulomb interaction equation, Coulomb 

interaction is denoted as 

1
𝑟MB
→

1
𝑟MB
𝑒h����

�
. (2.41) 

The convergence condition is when 𝑠 → 0 in this equation. The Ewald method is the 

summation of the real-space sum and the wavenumber-space sum in consideration of 

periodic boundary conditions (PBCs). 

First, for an infinite sum in real space at PBCs,  

𝑣 𝑥, 𝑠 = eh����

��

1
𝑥 + R�

	 (2.42) 

where 𝑥 is the position of the period box and R� is the position vector of the period 
box. Transformation of equation (2.42) using the 𝛤 function yields  

𝑣 𝑥, 𝑠 =
1
π 𝑡h; *

Y
��� eh� ����

�
eh���d𝑡	 (2.43) 
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=
1
π

𝑡h; *
��

�
eh� ����

�

��

eh����d𝑡

+
erfc 𝜂 𝑥 − R�

𝑥 + R���

eh����. 

The complementary error function is defined as 

erfc 𝑥 = *
�

eh��d𝑡Y
� = ;

�
eh�Y

��
;
�
d𝑦. (2.44) 

Now, the Fourier component of wavenumber 𝑘 of eh� ����
�

��  is given as 

∫ eh� ����
�
ehMm⋅�

��

d𝑥 =
π
𝑡

. *
e�Mm⋅��ehm� 2�

��

. (2.45) 

Therefore, equation (2.45) can be written as  

 

eh� ����
�

��

=
d𝑘^

2π
π
2

. *
e�Mm⋅��ehm¡� 2�eMm⋅�

��

	

=
1
𝛺

π
𝑡

. *
eh m£

�
2�eMm⋅�

5

	

=
1
𝛺

π
𝑡

. *
ehm 2�eMm⋅�

m

, 

(2.46) 

which becomes  

eh� ��¤¥
��

=
1
𝛺

π
𝑡

. *
ehm� 2�

m

eMm⋅�. (2.47) 

Equation (2.47) is used as follows. Assume the convergence factor 𝑠 → 0. From equation 

(2.43), the first term of 𝑣 𝑥, 𝑠  is  

1
π

𝑡h; *	
��

�
exp −𝑡 𝑥 + R�

*
exp −𝑠R�* d𝑡

��

 

=
1
π

𝑡h; *d𝑡 exp − 𝑠 + 𝑡 R� +
𝑡

𝑠 + 𝑡
𝑥
*

��

exp −
𝑠𝑡
𝑠 + 𝑡

𝑥*
��

�
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=
1
π

𝑡h; *
��

�
d𝑡
1
𝛺

π
𝑠 + 𝑡

. *
exp −

𝑘*

4 𝑠 + 𝑡
��

exp 𝑖𝑘
𝑡

𝑠 + 𝑡
𝑥 exp −

𝑠𝑡
𝑠 + 𝑡

𝑥*  

=
π
𝛺

d𝑡 𝑠 + 𝑡 h. *
��

�
𝑡h; * exp −

𝑘*

4 𝑠 + 𝑡
�

exp 𝑖𝑘 ⋅ 𝑥
𝑡

𝑠 + 𝑡
exp −

𝑠𝑡
𝑠 + 𝑡

𝑥* 	. 

(2.48) 

When 𝑘 ≠ 0, the first term of 𝑣 𝑥, 𝑠  converges when 𝑠 = 0. On the other hand, it is 

necessary that 𝑘 = 0 for 𝑠 > 0,  
 

=
π
𝛺

d𝑡	𝑡h*ehm� 2�𝑒Mm⋅�
��

�
+ 𝑘 = 0	term

^

m

	

=
π
𝛺

d
1
𝑡
ehm� 2�𝑒Mm⋅�

Y

;
��

+ 𝑘 = 0	term
^

m

	

=
4π
𝛺

eMm⋅�ehm� 2�� 1
𝑘*
+ (𝑘 = 0	term)	

^

m

. 

(2.49) 

where the 𝑘 = 0 term is  

π
𝛺

d𝑡 𝑠 + 𝑡 h. *𝑡h; * exp −
𝑠𝑡
𝑠 + 𝑡

𝑥* 	
��

�
. (2.50) 

If 𝑢 = 𝑡 (𝑠 + 𝑡), equation (2.50) becomes 

=
π
𝛺

d𝑢
𝑠𝑢; * e

h�©��	
��
����

�
	

=
π
𝑠𝛺

eh�©��

𝑢; * d𝑢
��
����

�
. 

(2.51) 

With respect to 𝑠, equation (2.51) now becomes 

=
π
𝑠𝛺

d𝑢
1
𝑢; * 1 − 𝑠𝑢𝑥* + ⋯ +

π
𝑠𝛺

e�
;

�
−

𝜂
𝑠 + 𝜂* *

�N�
𝑠 + 𝑂 𝑠 	

=
π
𝑠𝛺

2 − 𝑠𝑥*
2
3
+⋯ −

π
𝛺𝜂*

+ 𝑂 𝑠 	

=
2π
𝑠𝛺

−
π
𝛺𝜂*

−
2π
3𝛺

𝑥* + 𝑂 𝑠 . 

(2.52) 
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When 𝑠 ≈ 0, as above,  

 

eh����

��

1
𝑥 + R�

=
erfc 𝜂 𝑥 + R�

𝑥 + R���

+
4π
𝛺

1
𝐾*

^

¤

ehm� 2� eMm⋅�	

−
2π
3𝛺

𝑥 * +
2π
𝛺𝑠

−
π
𝛺𝜂*

+ 𝑂 𝑠 . 

(2.53) 

For a charge-neutral system, 

2π
𝛺𝑠

−
π
𝛺𝜂*

= 0	

in total.  

Consider the application to a charge-neutral system. For a charge-neutral 

system, 𝑧M=
MN; = 0. The Coulomb potential 𝜙(𝑟) at position 𝑟 is  

𝜙 𝑟 =
𝑍B

𝑟 − 𝑟B − R�	

=

BN;��

	

=
1
𝛺

4π
𝑘*
eh¯�m�

^

�

𝑍BeMm⋅ ��h�
=

BN�

	

+
𝑍B

𝑟 − 𝑟B − R�
erfc

𝑟 − 𝑟B − R�
2𝛾

=

BN;��

	

−
2π
3𝛺

𝑍B 𝑟 − 𝑟B
*

=

BN;

, 

(2.54) 

where  

𝑘 =
2π
𝛺

𝑙	𝑏×𝑐 + 𝑚𝑐×𝑎 + 𝑛𝑎×𝑏 ,	

𝛺 = 𝑎 ⋅ 𝑏×𝑐 . 

(2.55) 

Since 𝑟 = 𝑟³  ( 𝑙 = 1, 2,⋯ ,𝑁 )  diverges when 𝜙 , let 𝜙(𝑟 = 𝑟³)  be calculated by 

eliminating its divergence term, i.e., removing the self-term. In other words, 𝜙^ 𝑟 = 𝑟³
＝𝜙 𝑟³ + 𝛿 = 𝜙 𝑟³ + 𝛿 − 𝑍³/|𝛿| at 𝛿 ≈ 0,  
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𝜙^ 𝑟³ =
1
𝛺

4π
𝑘*
eh¯�m� 𝑍BeMm⋅ ��h�¶

=

BN;

^

��

	

+
𝑍B

𝑟M − 𝑟B − R�
erfc

𝑟³ − 𝑟B − R�
2𝛾

�³

B��

	

+
𝑍³

𝛿 − R�
erfc

𝛿 − R�
2𝛾

−
𝑍³
𝛿

· N���

	

−
2π
3𝛺

𝑍B 𝑟³ − 𝑟B
*

=

BN;

. 

(2.56) 

If erfc 𝑥 = 1 − 2/ π d𝑡�
� eh��, then  

 

erfc 𝑥
𝑥 �≈�

=
1
𝑥
−

2
π𝑥

d𝑡eh��
�

�
	
�≈�

	

eh�� = 1 − 𝑡* +
𝑡2

2
− ⋯. 

(2.57) 

 

Therefore,  

eh��d𝑡
�

�
= 𝑥 −

𝑥.

3
+⋯	 

=
1
𝑥
−

2
π𝑥

𝑥 −
𝑥.

3
+⋯

�≈�
	

=
1
𝑥
−

2
π
+ 𝑂 𝑥*  

(2.58) 

and 

~ · N� =
𝑍³
R�
erfc

R�
2𝛾

−
𝑍³
π𝛾

^

��

,	 (2.59) 

𝜙^ 𝑟³ = 1𝛺 4π𝑘* eh¯�m� 𝑍BeMm⋅��¶=BN;�̂�
	

(2.60) 
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+
𝑍B

𝑟³B − R�

±³

B

erfc
𝑟³B − R�
2𝛾

	
��

	

+
𝑍³
R�
erfc

R�
2𝛾

−
𝑍³
π𝛾

^

�

	

−
2π
3𝛺

𝑍B 𝑟³ − 𝑟B 	*
=

BN;

	. 

The last term in equation (2.60) is a macroscopic dipole that can be ignored in the Ewald 

method. The total energy obtained via the Ewald method is  

𝑉 =
1
2

𝑍³𝜙^(𝑟³)
=

³N;

 (2.61) 

excluding the macroscopic dipole term. Because the Ewald method eliminates the 

macroscopic dipole term, the result does not depend on how to determine the MD box. In 

fact, the last term is 

𝑍³ 𝑍B 𝑟³ − 𝑟B
*

=

B

= 𝑍³𝑍B𝑟³* + 𝑍³𝑍B𝑟B* − 2𝑍³𝑍B𝑟³ ⋅ 𝑟B
B³

=

³

	

= −2 𝑍³𝑍B	𝑟³ ⋅ 𝑟B
B³

	

= −2 𝑍³𝑟³
³

⋅ 𝑍B𝑟B
B

 

(2.62) 

and represents the dipole term. 

Now we estimate the computational complexity of the Ewald method, 

𝑂 𝑁. * . Equation (2.61) is the amount of computation that occurs when the parameter 

is adjusted so that the sum of the computational amounts of the real-space component and 

the wavenumber-space component is minimized. First, let 𝐿 be the size of the PBC 

system of the simulation, where 𝐿 ∝ 𝑁; .  and N is the number of particles. The 
convergence factor is 𝛾, the maximum wavenumber is 𝑘º»¼, and the interaction distance 

in real space is 𝑟���. 𝑘º»¼ is related to the corresponding maximum integer 𝑛º»¼ =
𝐿𝐾5 2π. If 𝛾 is large, then 𝑟��� increases. The total energy of the Ewald method is 
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expressed as 

𝐸 =
1
2𝛺

4π
𝐾*

^

�

eh¯�¾� 𝑍BeM¾⋅��
=

B

𝑍BeM¾⋅��
¿

À

	

+
1
2

𝑍M𝑍B
𝑟MB − R�

erfc
𝑟MB − R�
2𝛾

MÁB

BM

^

��

	

+
1
2

𝑍M	*

R�M

erfc
R�
2𝛾

^

��

−
𝑍M.

2 π𝛾
M

. 

(2.63) 

Next, 𝛾 ≡ 𝑁Â , where 𝛼  is undetermined, and 𝑟��� = 𝛾 = 𝑁Ä . The amount of 

calculation for the real-space component is  

𝑁×𝛾���. = 𝑁;�.Â (2.64) 

from the second and third terms of equation (2.63). The amount of calculation for the 

wavenumber-space component is  

𝑁×𝑛º»¼. = 𝑁*h.Â (2.65) 

from the first term of equation (2.63). Since 𝐾º»¼ = 𝛾h; = 𝑁hÄ and 𝐿 = 𝑁; ., then 

𝑛º»¼ = 𝑁(; .)hÂ . The calculation amounts for the real-space component and the 
wavenumber-space component are the minimum when 𝛼 = 1 6 in the expression 1 +
3𝛼 = 2 − 3𝛼 . The order of error for both the real-space and the wavenumber-space 

calculations is approximately 𝑂 𝑁. * . 
 
3 Electronic State Calculation for MD Simulation 
 
3.1 Density Functional Theory 

Empirical interaction potentials are set to match certain properties of materials 

well. In addition, they have low computational costs and are easy to use, but they are not 

versatile enough for use in various situations. The potential is difficult to express using 

only simple parameters when the bonding state changes, such as in a chemical reaction. 

Originally, chemical reaction simulations had to deal with electrons, which are coupling 

carriers. Thus, electronic states had to be considered in interatomic interactions. When 

calculating electronic states using quantum mechanics, a direct method cannot solve the 

problem of multiple electrons. Methods such as the Hartree-Fock theory and the density 
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functional theory (DFT) are methods of approximation for solving multiple-electron 

problems. In this study, we used the DFT method. It has high precision, relatively low 

computational costs, is suitable for use on a distributed-memory-type parallel computer, 

and enables large-scale calculations. DFT was devised by Walter Kohn, who won the 

Nobel Prize in chemistry in 1998 with John Pople. 

To calculate the electronic state, the wave function of electrons must be 

determined using the Schrödinger equation; however, the multiple-body problem for ions 

and electrons cannot be solved directly. Therefore, by approximating the Hamiltonian or 

adding restrictions to the wave function, the Schrödinger equation is transformed into a 

solvable form. In the DFT, the Hamiltonian and the orbital function are based on the 

electron density instead of the wave function. The DFT equation can be solved using the 

Kohn-Sham equation, which has been devised to reduce the computational cost. 

First, in the DFT, the Hamiltonian must be expressed using the electron density 

rather than the electronic wave function. Next, the Coulomb potential of the external field 

caused by atomic nuclei and felt by electrons is defined as  

𝑉 𝑟 = −
𝑍Â𝑒*

𝑟 − 𝑅ÂÂ

	, (3.1) 

where α is the number of a particular nucleus. From equation (3.1), the electron density 

is uniquely determined. Conversely, Hohenberg and Kohn showed that the external field 

𝑉(𝑟)  can be determined using the electron density 𝑛(𝑟) . According to the 

Hohenberg-Kohn (HK) theory, the electron density and the external field correspond one 

to one, so the external potential energy is a functional of the electron density. The HK 

theory is the foundation of the DFT. The HK theory is proven by a contradiction. First, 

assume that 𝑉  and 𝑉^  produce the same 𝑛(𝑟) . When the external field is 𝑉 , the 

Hamiltonian is 𝐻, the wave function of the ground state is 𝛹, and the energy of the 

ground state is 𝐸. For the external field 𝑉^, the Hamiltonian is 𝐻^, the wave function of 

the ground state is 𝛹^, and the energy of ground state is 𝐸^. These parameters are related 

as follows:  

𝐸 = 	 𝛹 𝐻 𝛹 , (3.2) 

𝐸^ = 𝛹^ 𝐻 𝛹^ . (3.3) 

Use of the variation principle with equations (3.2) and (3.3) results in  

𝐸 < 𝛹^ 𝐻 𝛹^ = 𝛹^ 𝐻 + 𝑉^ − 𝑉^ 𝛹^ 	 (3.4) 



31 

= 𝛹^ 𝐻^ + 𝑉 − 𝑉^ 𝛹^ 	
= Ψ^ 𝐻^ Ψ^ + Ψ^ 𝑉 − 𝑉^ 𝛹^ 	
= 𝐸^ + 𝛹^ 𝑉 − 𝑉^ 𝛹^ , 

which results in 

∴ 𝐸 < 𝐸^ + 𝛹^ (𝑉 − 𝑉^) 𝛹^ . (3.5) 

Similarly,  

𝐸 < 𝛹 𝐻 𝛹 = 𝛹 𝐻 − 𝑉 − 𝑉^ 𝛹 	
= 𝐸 − 𝛹 𝑉 − 𝑉^ 𝛹 , 

(3.6) 

resulting in  

∴ 𝐸^ < 𝐸 − 𝛹 (𝑉 − 𝑉^) 𝛹 . (3.7) 

Combining equations (3.5) and (3.7), we get 

𝐸 + 𝐸^ < 𝐸 + 𝐸^ + 𝛹^ (𝑉 − 𝑉′) 𝛹^ − 𝛹 𝑉 − 𝑉^ 𝛹 . (3.8) 
However，𝑉 and 𝑉′ are functions of electron position only and 𝛹 and 𝛹′ produce the 

same 𝑛(𝑟). Therefore,  

𝑛 𝑟 = 𝛹 𝛹 = 𝛹^ 𝛹^ ,	

𝛹^ 𝑉 − 𝑉^ 𝛹 − 𝛹 𝑉 − 𝑉^ 𝛹

= ∫ 𝑛 𝑟 𝑉 𝑟 − 𝑉^ 𝑟 d𝑟 − ∫ 𝑛 𝑟 𝑉 𝑟 − 𝑉^ 𝑟 d𝑟	
= 0 

(3.9) 

This conflicts with  

𝐸 + 𝐸^ < 𝐸 + 𝐸^. (3.10) 

From equation (3.10), we conclude that it is impossible for 𝑉 and 𝑉^ to produce the 

same 𝑛 𝑟 , i.e., only one external potential energy can produce 𝑛(𝑟). The original paper 

presented the HK theory in which there is a one-to-one relationship between 𝑉(𝑟) and 

𝑛 𝑟 . Total energy is determined by 𝑉 𝑟  and the total number of electrons. Furthermore, 

the one-to-one relationship between 𝑉 𝑟  and 𝑛 𝑟  shows that the total energy is a 

functional of the spatial integral of 𝑛 𝑟  and is expressed as 𝐸 𝑛 𝑟 . The portion of 

the system that excludes 𝑉 𝑟  from the Hamiltonian, i.e., the energy value 𝛹 𝐻^ 𝛹  

for  

𝐻^ = 𝐻 − 𝑉	

=
𝑝M*

2𝑚
M

+
𝑒*

𝑟M − 𝑟BM,B
MlB

	, (3.11) 

also depends only on 𝑛(𝑟). 
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∴ 𝐹 𝑛 𝑟 = 𝛹 𝐻^ 𝛹 . (3.12) 

Therefore, the total energy can be written as 

𝐸 𝑛 𝑟 = 𝐹 𝑛 𝑟 + ∫ 𝑉 𝑟 𝑛 𝑟 d𝑟. (3.13) 

The total wave function 𝛹 has a real part and an imaginary part and is a function of the 

multiple-electron position set. The total energy can always be expressed as a function of 

𝑛 𝑟 , although the information it contains is much less than that of 𝛹. The Kohn-Sham 

theory seems capable of producing the same electron density as the correct electron 

density 𝑛 𝑟  that corresponds to 𝑉 𝑟 , with a free-electron (without interaction) system 

producing an effective external field potential. The wave function of this free-interaction 

free electron is represented by a single Slater determinant. The kinetic energy 𝐸ÉÊË of 

this free-electron system is written as 𝑇Í 𝑛 𝑟 . The Hartree term (i.e., the direct term or 

classical Coulomb term) is a functional of	𝑛 𝑟 :  

𝑒*

2
𝑛 𝑟 𝑛 𝑟^

𝑟 − 𝑟^
d𝑟d𝑟^ 

Thus, the total energy is expressed as  

𝐸 𝑛 𝑟 = 𝑇Í 𝑛 𝑟 +
𝑒*

2
∫ ∫

𝑛 𝑟, 𝑟^

𝑟 − 𝑟^
d𝑟d𝑟^ + ∫ 𝑉Î¼� 𝑟 𝑛 𝑟 d𝑟

+ 𝐸Ï� 𝑛 𝑟 , 
(3.14) 

where 𝐸Ð� is the remainder of 𝐸 	𝑛 𝑟  to 𝑇Í 𝑛 𝑟  minus the Hartree term and the 

external field energy; it is the definition of the exchange-correlation energy of 𝑛 𝑟 . It is 

also a functional of the electron density 𝑛 𝑟 . The Kohn-Sham orbital function is 

necessary in view of the variation principle by which the variation is zero for 𝑛(𝑟) under 

the normalization condition ∫ 𝜓M∗ 𝑟 𝜓M 𝑟 d𝑟 = 1 for 𝐸[𝑛(𝑟)]. If the unknown constant 
of Lagrange is {𝜖M} and the normalization condition is the constraint condition, then  

−
ℏ*

2𝑚
𝛥 + 𝑒*

𝑛 𝑟^

𝑟 − 𝑟^
d𝑟^ + 𝑉Î¼� 𝑟 +

𝛿𝐸ÏÐ[𝑛(𝑟)]
𝛿𝑛(𝑟)

		 𝜓M 𝑟 = 𝜖M𝜓M 𝑟  (3.15) 

can be calculated when  

𝛿 𝐸 𝑛 𝑟 − 𝜖M ∫ 𝜓M∗ 𝑟 𝜓M 𝑟 d𝑟 − 1]=
MN;

𝛿𝜓M∗ 𝑟
= 0.	 (3.16) 

The eigenvalues {𝜓M(𝑟)} in equation (3.16) can be calculated as the eigenvalues 𝜖M . 

The calculation procedure for the DFT is as follows: For 𝑁 electron systems 

(up spin ↑ and down spin ↓ are 𝑁/2 each),  

1. Set the Kohn-Sham orbital function 𝜓M 𝑟  randomly.  
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2. Obtain the electron density using 𝑛 𝑟 = 2 𝜓M 𝑟 *= *
MN; .  

3. Using equation (3.15), solve the eigenvalue function from the minimum fixed value 
𝜖; to the Fermi energy value 𝜖= * to get 𝜓Ê 𝑟 . 

Repeat steps 1, 2, 3, 2, 3, ... until 𝑛 𝑟  becomes self-consistent. This eigenvalue problem 

becomes a large-scale matrix when the number of electrons involved, 𝑁, is large, making 

it difficult to perform the calculation. Therefore, an iterative method such as the conjugate 

gradient (CG) method is generally used. For exchange-correlation interactions, the local 

density approximation (LDA), which depends on only electron density, and the 

generalized gradient approximation (GGA), which corrects the LDA by using the density 

gradient, have been proposed. 

Given the arrangement of nuclei (ions), the wave function of the ground state 

can be determined via the DFT method. The wave function can then be used to determine 

the Coulomb force and the force from the electron density that affect the ions. With 

respect to this force, the MD simulation is performed by moving the position of the ions. 

The force upon ions can be obtained using the Hellmann-Feynman theorem: 

𝐻 𝛹 	= 	𝐸 𝑅Â 𝛹 	with	 𝛹 𝛹 = 1, (3.17) 

where 𝑅Â is the position of ion a. The force on ion a is expressed as  

𝐹Ä = −
∂𝐸
∂𝑅Â

= −
𝜕
𝜕𝑅Â

𝛹 𝐻 𝛹 	

= −
𝜕
𝜕𝑅Â

𝛹| 𝐻|𝛹 − 𝛹 ∂𝐻
∂𝑅Â

𝛹 − 𝛹|𝐻
𝜕
𝜕𝑅Â

|𝛹 	

= −𝐸
∂	
∂𝑅Â

𝛹 𝛹 − 𝛹 ∂𝐻
∂𝑅Â

𝛹 	

= − 𝛹 ∂𝐻
∂𝑅Â

𝛹 ,	 

(3.18) 

with the derivative of energy calculated with respect to the ion position. Here, 

𝛹|𝐻 = 𝐸 𝛹| is used for formula deformation. Equation (3.18) shows that it is not 

necessary to calculate the derivative of the wave function, so the force can be determined 

with little computational cost. 

 

2.2 Technique to accelerate the DFT calculation 
Because the DFT calculation involves many electrons, the degree of freedom 

and the computational cost are large. Therefore, it is common for systems used in the DFT 
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calculation to contain several hundred atoms depending on the limitations of the computer. 

In recent years, large-scale parallel computers have performed DFT calculations on 

systems with thousands of atoms because of improved computer performance and 

advanced programs. Future DFT calculations must be performed more quickly to handle 

larger-scale systems. 

To calculate equation (3.15), the Kohn-Sham orbital function must undergo 

normalized orthogonalization. Various normalized orthogonalization methods have been 

proposed, but the Gram-Schmidt process is used most often. It is a simple and easy-to-

understand method for performing normalized orthogonalization of vectors one by one. 

However, its computational complexity is 𝑂 𝑁. , and for large-scale DFT calculations, 

it takes up most of the computation time. Therefore, in large-scale computation, it is 

necessary to speed up the normalized orthogonalization process. 
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We introduce a matrix-matrix multiplication method that enables the 

Gram-Schmidt orthogonalization computation to be performed on a high-speed computer. 

The memory of current computers has a hierarchical structure, with small-capacity cache 

memory but fast access and large-capacity memory but slow access. High-speed 

calculations on such a computer require that the cache memory be used effectively. 

The Gram-Schmidt orthogonalization process sequentially straightens the 

vectors one by one. In this process, the vector-vector and matrix-vector multiplications 

are the main calculations, so the cache memory is not used efficiently and thus many 

computers do not reach their maximum performance. The computation speed and 

computer performance can be improved by changing the order of operations and by 

having the computer efficiently perform many matrix-matrix multiplications. In addition, 

the performance of matrix-matrix multiplications implies that some computations are 

performed in parallel, which accelerates the process. This method is used in real-space 

DFT (RSDFT). It won the Gordon Bell Prize in SC11 in 2011 for execution performance 

using a supercomputer. 

 Gram-Schmidt orthogonalization is defined as 

𝜑; = 𝜙;,	
𝜑* = 𝜙* − 𝜑; 𝜑;∗ ⋅ 𝜙* ,	

𝜑. = 𝜑. − 𝜑; 𝜑;∗ ⋅ 𝜙* − 𝜑* 𝜑*∗ ⋅ 𝜙. ,	
𝜑2 = 𝜑2 − 𝜑; 𝜑;∗ ⋅ 𝜙* − 𝜑* 𝜑*∗ ⋅ 𝜙. − 𝜑. 𝜑.∗ ⋅ 𝜙2 ,	
𝜑Ý = 𝜑Ý − 𝜑; 𝜑;∗ ⋅ 𝜙* − 𝜑* 𝜑*∗ ⋅ 𝜙. − 𝜑. 𝜑.∗ ⋅ 𝜙2 − 𝜑2 𝜑2∗ ⋅ 𝜙Ý , 

(3.19) 

where 𝜙; represents an orbital function before orthogonalization and 𝜑; represents an 
orthogonalized orbital function. The standard Gram-Schmidt process orthogonalizes 

orbital functions one by one; therefore, calculations cannot be performed in parallel at the 

orbital function level. The main parts of this method are vector-vector multiplication and 

matrix-vector multiplication, which do not use the cache memory of current computers 

effectively, resulting in poor computational efficiency. By using matrix-matrix 

multiplication in the area of equation (3.19) shaded in gray, the calculations can be 

performed effectively using cache memory, thus improving the computational efficiency 

and accelerating Gram-Schmidt orthogonalization. The shaded area in equation (3.19) is 

calculated as 
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𝜙., 𝜙2, 𝜙Ý − 𝜑;, 𝜑*
𝜑;∗�

𝜑*∗� 𝜙., 𝜙2, 𝜙Ý	 , (3.21) 

which is replaced by two matrix-matrix multiplication calculations. This matrix-matrix 

multiplication can be partly computed in parallel. Use of the mathematical library BLAS 

(Basic Linear Algebra Subprograms) for matrix-matrix multiplication allows the efficient 

use of cache memory by blocking the matrix elements. The performance of some 

computers can reach 90% or more of their theoretical performance in executing the 

matrix-matrix multiplication. 

In solving the Kohn-Sham equation, it was common to solve the Kohn-Sham 

orbital as a wave function via Fourier transform. Because it is difficult for distributed-

memory-type parallel computers to calculate the Fourier transform efficiently, solving the 

Kohn-Sham orbital as real-space data and using the difference calculation became an 

attractive alternative. The difference calculation using real-space data is easy to 

parallelize by space division and is compatible with distributed-memory-type parallel 

computers only via communication between adjacent nodes. 

The RSDFT method treats the Kohn-Sham orbital and Hartree field as mesh 

point data with real-space coordinates. We solve the Laplace equation using the precise 

finite difference method. In this method, high-order differentiation is expressed as 

𝐶5𝑓 𝑥 + 𝑛ℎ=
5Nh; , where 

𝑓 𝑥 + 𝑛ℎ =
𝑛ℎ ß

𝑚!
𝐷ß𝑓 𝑥 			 𝐷 =

d
d𝑥

Y

ßN�

 (3.22) 

by Taylor expansion. For example, the second derivative is  

ℎ*𝐷*𝑓 𝑥 = 𝐶5𝑓(𝑥 + 𝑛ℎ)
=

5Nh=

	

= 𝐶5
𝑛ℎ ß

𝑚!
𝐷ß𝑓(𝑥)

Y

ßN�

=

5Nh=

	

=
1
𝑚!

𝐶5𝑛ß
=

5Nh=

ℎß𝐷ß𝑓(𝑥)
Y

ßN�

,	 

(3.23) 

which becomes  
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𝑚 = 0, 𝐶5

=

5Nh=

= 0 

𝑚 = 1, 𝑛𝐶5 = 0
=

5Nh=

 

𝑚 = 2,
𝑛*

2
𝐶5

=

5Nh=

= 1 

3 ≤ 𝑚 ≤ 2𝑁 + 1,
𝑛ß

𝑚!
𝐶5

=

5Nh=

= 0. 

(3.24) 

It is possible to determine 𝐶h= from 𝐶= by simultaneously solving equation (3.24). The 

order of error is 𝑂(ℎ*=�*). For example, when 𝑁 = 1,  

1 1 1
−1 0 1
1
2 0 1

2

𝐶h;
𝐶�
𝐶;

=
0
0
1

 

𝐶;
𝐶�
𝐶;

=
1
−2
1

. 

(3.25) 

Therefore, 𝑓 𝑥 + ℎ − 2𝑓 𝑥 + 𝑓 𝑥 − ℎ = ℎ*𝑓^^(𝑥) . In the DFT method, a fourth-

order difference calculation (𝑁 = 4 ) is performed. The precision of the numerical 

calculation is affected when the order is small, but generally, fourth-order accuracy is 

sufficient. 

A fourth-order difference calculation is performed using nine data points in the 

one-dimensional direction, and one lattice point is calculated using the 25 data points in 

the three-dimensional case. For a large-scale calculation, the number of lattice data points 

needed increases, so the difference calculation must be accelerated. The difference 

calculation of lattice point data has been used in various fields and has been accelerated. 

Generally, in difference calculations, access to an array of lattice point data often 

determines the calculation speed. Access to data is not a problem for one-dimensional 

calculations, but for three-dimensional calculations, access to the additional two-

dimensional data is not continuous, thus decreasing the utilization ratio of the cache 
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memory. In a typical computer, continuous access to memory data is fast when the order 

of access is known in advance. To speed up the difference calculation, data must be as 

accessible as possible. 

The DFT calculation used in this study targets the cluster system under free 

boundary conditions. The orbital function data are considered lattice point data in the 

system box; however, only lattice point data inside the sphere of a certain radius centered 

on the ions is considered. The orbital function outside the sphere is the boundary 

condition and the electron density is assumed zero. The lattice point data outside the 

sphere are not considered to reduce the amount of data to be handled and the amount of 

memory used. The data inside the sphere are handled as a one-dimensional rather than a 

three-dimensional array. Therefore, for a difference calculation, the index positions of the 

one-dimensional and three-dimensional arrays must correspond. The calculation of one 

data point requires access to 24 points in the three-dimensional array. Three indices of the 

three-dimensional array must be obtained from the index of the one-dimensional array 

and a one-dimensional index must be obtained using three indices. The difference 

calculation is performed repeatedly using the CG method to calculate the Kohn-Sham 

equation. In the DFT calculation, the size and position of the lattice point data of the 

orbital function do not change, so the index of the array required for the difference 

calculation is fixed. Therefore, if the necessary position is calculated in the difference 

calculation at the beginning of the program run, then list access can be reduced. As a 

result, a one-point difference calculation can be performed by accessing only 24 points in 

the one-dimensional position list, and the number of list accesses is reduced by one fourth, 

thus speeding up the computation. 
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4 Hybrid Quantum-Classical Simulation 
 

Hybrid quantum mechanical (QM)-classical (CL) simulation divides the 

system into regions and performs dynamic simultaneous parallel simulation of the regions 

by applying quantum interaction and empirical interaction. The quantum interaction 

considers the electronic state via a first-principle calculation such as the DFT. The region 

in which quantum interaction occurs is called the QM region and an atom in the QM 

region is called a QM atom. The region in which the empirically derived interaction is 

used, i.e., the region that remains after excluding the QM region from the entire system, 

is called the CL region and an atom in the CL region is called a CL atom. 

The problem with the hybrid QM-CL simulation is the method used to connect 

the two regions. At first, the ONIOM method was used to represent the total energy of 

the whole system comprising multiple regions. Therefore, the energy of the whole system 

in the hybrid QM-CL method is expressed as  

𝐻 𝑟 , 𝑝 = 𝐻�â
ÍãÍ�Îº 𝑟 , 𝑝 + 𝐸äå�æ�Í�Îç − 𝐸�â�æ�Í�Îç�æ�Í�Îç , (4.1) 

where {𝑟} and {𝑝} represent the set of all atomic positions and momenta, respectively. 

𝐻�â
ÍãÍ�Îº is the classical Hamiltonian of the whole system and comprises the terms for 

kinetic energy and potential energy, i.e., 𝐻�â
ÍãÍ�Îº = 𝐸ÉÊË 𝑝 + 𝐸�â

ÍãÍ�Îº({𝑟}). There can 
be more than one QM region. 𝐸äå�æ�Í�Îç  is the potential energy of the quantum (QM) 

calculation for the QM region and 𝐸�â�æ�Í�Îç is the potential energy of the classical (CL) 
calculation with respect to the QM region. The summation term of equation (4.1) can be 

thought of as replacing the classical calculated potential energy with the quantum 

calculated potential energy for the QM region. The set of atomic positions in the QM 
region used in CL and QM calculations is expressed as 𝑟äå . 

Several methods for connecting the CL region with the QM region have been 

proposed: the link-atom method and the modified version of the buffered-cluster 

method.1) In this study, we used the buffered-cluster method. How to handle the surface 

of the cluster system in the QM region in the QM calculation and the CL calculation that 

performs the calculation with the left side of equation (4.1) must be considered. For this 

situation, the link-atom method is used in the field of molecular chemical calculation. 

Various methods1) are available for fine, precise adjustment. In the link-atom method, 

atoms in the CL region, which were originally bonded within the entire system, are 
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arranged on the surface of the atomic cluster, which is the QM region. This reduces the 

influence of the surface in the calculation of the potential energy of the QM region. These 

atoms are called handshake (HS) atoms. Handshake atom coordinates are denoted by 

𝑟äåh�âèé , so the potential energy of the cluster in the QM region is given by 

𝐸äå�æ�Í�Îç = 𝐸äå�æ�Í�Îç 𝑟äå ; 𝑟äåh�âèé ,	 

𝐸�â�æ�Í�Îç = 𝐸�â�æ�Í�Îç 𝑟äå ; 𝑟äåh�âèé ,	 
(4.2) 

where, for the calculation in the CL region, 𝑟äåh�âèé  is same as an atom in the CL region. 

For example, in a Si crystal, handshake atom is the position of a Si atom depends on the 

arrangement of the CL region. On the other hand, in the QM calculation cluster, the 

terminal atoms become H atoms. The H atoms combine with atoms with dangling bonds 

to electronically stabilize the surface. The position of the H atoms is determined by 

interpolating between the surface atoms of the CL calculation cluster and the coordinates 
{𝑟äåh�âèé 	} of the handshake atoms as follows: 

𝑟èé = 𝛽𝑟äåh�âèé + 1 − 𝛽 𝑟äå, 𝛽 = 0.66,	 (4.3) 

where	𝛽 = 0.66 is the distance between Si and H atoms obtained from the calculation 

for SiH2. Several ways determine the arrangement of H atoms that affect accuracy. The 

force acting on an atom is calculated as  

𝐹M = −
𝜕𝐻
𝜕𝑟M

= 𝐹�â,M
ÍãÍ�Îº + 𝐹äå,M�æ�Í�Îç − 𝐹�â,M�æ��Îç

�æ�Í�Îç

,	 (4.4) 

where  

𝐹�â,M
ÍãÍ�Îº = −

𝜕𝐸�â
ÍãÍ�Îº

𝜕𝑟M
,	

𝐹äå,M�æ�Í�Îç = −
𝜕𝐸äå�æ�Í�Îç

𝜕𝑟M
,	

𝐹�â,M�æ�Í�Îç = −
𝜕𝐸�â�æ��Îç

𝜕𝑟M
. 

(4.5) 

For example, the force on a handshake atom in the QM region is given by 

𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äåh�âèé =
𝜕𝐸äå�æ�Í�Îç

𝜕𝑟è
d𝑟è

d𝑟äåh�âèé ,	 

𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äå
=

𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äå
	�îïðñòó +

𝜕𝐸äå�æ�Í�Îç

d𝑟è
d𝑟è

d𝑟äå
	. 

(4.6) 

In the link-atom method, the accuracy of the connection between the regions is affected 
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by the position of the H atoms. The link-atom method has two problems: The selection 

of the QM region is limited because the surface of the selected QM region limits the 

position of the terminating atom, and the type of atom being handled can make the 

selection of a terminating atom difficult. For these reasons, the buffered-cluster method 

was devised for selecting a free QM region that corresponds to a system composed of 

various atoms.  

In the buffered-cluster method, the energy term of the QM region on the right 

side of equation (4.6) is a function of only the position of the QM atom, as seen in the 

following energy equations:  

𝐸äå�æ�Í�Îç = 𝐸äå�æ�Í�Îç 𝑟äå ,	 
𝐸�â�æ�Í�Îç = 𝐸�â�æ�Í�Îç 𝑟äå . 

(4.7) 

(4.8) 

For both the QM calculation and the CL calculation for the QM region [equations (4.7) 

and (4.8)], buffer atoms at the QM-CL boundary are placed at the broken bonds of the 

QM atoms, thus terminating and stabilizing the electron orbit of the dangling bonds. For 

the CL calculation of the QM region [equation (4.8)], the buffer atoms are Si because they 

mimic the original bond at the QM-CL boundary. The buffer atoms are where the potential 
energy is minimal under the constraint in which the 𝑟äå  of the QM atoms in the cluster 

region is fixed. This is done each time 𝑟äå  is changed to simulate the potential energy 

𝐸�â�æ�Í�Îç. Therefore, in the buffered-cluster method, the position of the buffer atoms may 
be different from the CL atom coordinates in the whole system. Here, the Si buffer atom 

interacts with the Si atom of the binding pair of the CL atom in the whole system via the 

SW potential of the atom. In the buffered-cluster method, the buffer atom associated with 

the QM calculation of the QM region [equation (4.7)] is either H or Si depending on the 

original bonding characteristic of the Si system. For the QM calculation, the position of 

the H buffer atom is determined by the position of the buffer atom of the atomic cluster 

used for the CL calculation. For the atomic clusters used for the CL calculation, H buffer 

atoms are placed for each Si buffer atom located at 𝑟�âô�õõÎç and connected to 𝑟äå, within 

the atomic cluster for the QM calculation, with the scale factor of 𝛽 = 0.66. 

In the buffered-cluster method, the force on atom 𝑖 in the QM region is given 

by 

𝐹M = −
𝜕𝐻
𝜕𝑟äå,M

= −
𝐸�â
ÍãÍ�Îº

𝜕𝑟äå,M
−

𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äå,M
−
𝜕𝐸�â�æ�Í�Îç

𝜕𝑟äå,M�æ�Í�Îç

 (4.9) 

where  
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𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äå,M
=

𝜕𝐸äå�æ�Í�Îç

𝜕𝑟äå,M õÊ¼ �ö

+
𝜕𝐸äå�æ�Í�Îç

𝜕𝑟÷,B
𝜕𝑟÷,B
𝜕𝑟äå,M �â

�æ�Í�Îç

B

, 

𝜕𝐸�â�æ�Í�Îç

𝜕𝑟äå,M
=

𝜕𝐸�â�æ�Í�Îç

𝜕𝑟äå,M õÊ¼ �ö

. 

(4.10) 

The force on atom 𝑖 in the CL region is given by 

𝐹M =
𝜕𝐸�â

ÍãÍ�Îº

𝜕𝑟�â,M
. (4.11) 

In the buffered-cluster method, the position of the buffer atom in the QM calculation 

of the atomic cluster is determined by using the position of the buffer atom obtained by 
the CL calculation of the atomic cluster. Since 𝐸äå�æ�Í�Îç  and 𝐸�â�æ�Í�Îç , defined by 

equations (4.7) and (4.8), respectively, are not dependent on the position of the CL atom, 

{𝑟�â�æ�Í�Îç}, the DFT energy 𝐸äå�æ�Í�Îç of the atomic cluster is minimized by stabilizing the 

buffer atom at the QM atom. Because the structure of a crystal undergoes undesired 

deformation, the accuracy of the buffered-cluster method when applied to Si crystals with 

various choices of clusters is analyzed with respect to atomic position, atomic force, and 

electronic structure. Unlike the link-atom method, the buffered-cluster method can be 

applied to ionic materials such as alumina using long-range empirical interaction potential. 
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1) S. Ogata, Phys. Rev. B 72, 045348 (2005). 
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5 Visualization of Complex Simulation Data 
 

In this research, we report on a file data format for visualization of simulation 

results and its visualization software as research on the hybrid quantum (QM)-classical 

(CL) simulation1-3). The hybrid QM-CL simulation is a Molecular Dynamics (MD) 

simulation that combines a classical MD calculation region handling atoms and an 

electronic state calculation region handling ions and electrons, and these result data are 

particle data representing atoms and ions and lattice point data representing the electronic 

density. In data analysis of this simulation, it is necessary to visualize these two results 

data efficiently. It is common to handle particle data and lattice point data separately so 

far, and in the result of the hybrid QM-CL simulation, when it is desired to handle these 

data together, problems arise due to convenience. Therefore, in order to facilitate 

visualization of the hybrid QM-CL simulation, these problems were solved by developing 

a file format combining particle data and lattice point data. Furthermore, we have 

developed a visualization software to read these files and visualize these data. 

 

5.1 Visualization for Simulation with High Performance Computer 
Researches and developments by a computer simulation of a material simulation 

are progressing due to improvement in computational performance of the computer. The 

computer simulation has become the practical tool due to expansion of system size 

handled by computer simulation and improvement of computation accuracy. As the 

computer simulation becomes larger and widely used, utility tools supporting simulation 

run are increasingly important. Especially researches and developments for making input 

data of simulation, analyzing simulation result and visualization make it easier to use. 

In the field of computer simulations, visualizations are important methods as one 

of analysis methods of results. In the observation of natural phenomena and the 

measurement of experiments, the transition and change are quantified. On the other hand, 

in computer simulation, numerical data is obtained by simulating on a computer based on 

a numerical model. This result will be compared with experimental measurement data. In 

addition, the simulation imagines a phenomenon that cannot be seen in experiments and 

the like, and can model it and perform a virtual experiment. In such a case, by visualizing 

the simulation result, it is possible to intuitively understand the phenomenon of the 

simulation as compared with what is actually seen or compared with the imagined image. 
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For example, when a simulation system is in equilibrium state, it is possible to 

comprehend by statistically quantified data, but in non-equilibrium state, it is necessary 

to see the phenomenon change carefully, so it is difficult to understand with only 

numerical data. In the nanoscale simulation, when viewing the structure of the molecule 

and the reaction path of the chemical reaction, the analysis by visualization is thought to 

help many understanding of the phenomenon. 

The computer simulation consists of preprocess such as initial settings such as 

model setting, execution of iterative calculation based on the model, and postprocess that 

analyzes the result obtained. The execution of the simulation has been made larger and 

faster by the use of super computer like parallel computers. On the other hand, preprocess 

and postprocess are often performed by local computers. As the data handled in the 

simulation becomes larger and more complicated, efficiency of preprocess and 

postprocess for simulation becomes more important. 

In recent years, supercomputers, which are computers for scientific technology 

fields with high computational performance, are advancing large-scale parallel computers. 

According to TOP 5004) which announces ranking of supercomputer performance using 

the Linpack benchmark, the supercomputer performance has improved exponentially up 

to now. The supercomputer has become a distributed memory type parallel computer 

networked with many nodes equipped with many CPUs and accelerators such as GPU. 

Therefore, in the simulation, the space division method, which is a parallelization method 

suitable for a distributed memory type parallel computer, has come to be widely used. 

The space division method is a method of dividing data into real spaces and allocating 

them to parallel computers for calculation. The parallel computation by real space 

division is suitable for distributed memory type parallel computing machine because there 

are few communication processes between nodes which are bottlenecks in the parallel 

computer. In parallel computers, various methods are used to simulate with high accuracy 

with a realistic model. 

The hybrid simulation is a method of dividing the entire system into partial 

regions and applying a simulation method of different accuracy to perform a large-scale 

simulation. Electronic state calculation is performed in a region where chemical reaction 

occurs, and other regions are calculated by an atomistic model. By applying appropriate 

precision calculation to the divided region, the large-scale simulation with high 

calculation efficiency is enabled. In hybrid QM-CL simulation, the classical region 
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calculation based on the atomistic model and the quantum region calculation by the 

electron and ion model are performed in parallel and the time evolution is performed by 

the MD method. 

The MD simulation is a particle simulation in which atoms are treated as mass 

points and particle position information is updated by Newton's equation of motion by 

numerical integral method such as the Verlet method by interaction between atoms. Since 

atoms have position data and velocity data, they have six floating point number data in 

three-dimensional space. Furthermore, information data such as particle type and physical 

quantity may be added. Electronic state calculations calculate the state of electrons around 

ions. Electrons are handled as the electronic density and have values as lattice point data 

in real space. 

The result of a hybrid QM-CL simulation has classical region has atomic 

positions data, and the quantum region has ionic positions data and lattice point data of 

electronic density by electronic state calculation. In the visualization of the result of the 

hybrid QM-CL simulation, the whole system is visualized by atomistic system or only 

the quantum region is taken out to visualize the ion and electronic density together. 

Visualization of MD simulation, which is a classical region, generally shows 

atomic particles as spheres and visualizes the bonds by stick display. On the other hand, 

in the electronic state calculation, visualization is made by combining ionic particles and 

lattice point of electronic density. In this case, the ions are placed in the system box. The 

electronic density has data on lattice point of the entire box. There is many software to 

visualize such particle system data and electronic density data, and various functions can 

be used in visualization. 

In the case of visualization as a hybrid QM simulation, it is necessary to visualize 

lattice point data of electronic density by electronic state calculation applied to a part of 

regions for data of a large-scale particle system, Visualization by combining different data 

formats for regions is desired. However, it is difficult to visualize such result data. In the 

hybrid QM-CL simulation, since there is a large particle system and a part of the region 

is calculated by electronic state calculation, if lattice point data of electronic density is set 

with reference to the entire space of particle system, the number of lattice point data is 

huge It is inefficient to visualize it. There is also a method of handling particle data and 

lattice point data separately and displaying them overlapping at the time of visualization. 

In that case, it is necessary to arrange where to place the region of the lattice point data 
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in the particle system region. It is difficult to handle this because it is necessary to manage 

and add information. A file format that simultaneously handles visualization of particle 

data and electronic density data is necessary in domain segmentation simulation such as 

hybrid QM-CL simulation. 

Therefore, in order to easily visualize the hybrid QM-CL simulation, we propose 

a file format for visualization in which particle data of atomic position and lattice point 

data of electronic density are combined into one. Together with formulation of data format 

for visualization, we developed a visualization software to read and visualize the file of 

the data format formulated this time. 

 

5.2 Visualization of Hybrid Quantum-Classical Simulation 
The hybrid QM-CL simulation used in this study is a MD simulation consisting 

of two calculation methods. The system is divided into regions, and quantum regions 

using the electronic density functional theory (DFT) and classical regions using empirical 

interaction are applied. The quantum region treats electrons as density data on real space 

lattice point. The classical region treats the position of an atom as particle data. In the 

visualization of the hybrid QM-CL simulation, these two types of data are visualized in 

one space and progress in time. 

The particle simulation such as the MD simulation is a simulation in which 

particles are moved based on interaction between particles, time evolution is investigated, 

and physical quantity is examined by statistical mechanics and the like. Generally, the 

particle data consists of position information and its attached information. In the three-

dimensional space, the position information is vector data in tree-dimensional space and 

is a value obtained as a result of simulation. Electronic state calculation such as DFT 

treats electrons as density distributed in real space. Electronic Density is treated as data 

of a point divided into lattices, and lattice point data is a position regularly made in space 

and its attached information. When the position of the lattice points is determined 

regularly, the position information of the lattice points is unnecessary. In that case, 

information on the grid interval and the number of grids is required. The position 

information of lattice points is necessary at the stage of visualization. 

The problem in visualizing the results of hybrid QM-CL simulation is to deal 

with two types of data: particle data and lattice point data. Visualization of atomic particle 

data and lattice point data of electronic density has been done so far. In the case of 
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electronic state calculation, electronic density is calculated in a space in which ions are 

arranged. Currently, the electronic state calculation requires a lot of time for calculation, 

so the size of the system to be calculated is not originally large. Therefore, particle data 

and lattice point data were set to the same space size for visualization. In this way, 

visualization of data which treats particles and electronic density together is done. 

However, the hybrid QM-CL simulation is a system in which the space size of the particle 

system is large and only a part of the region has electronic density data. In this case, if the 

space of lattice point data of the electronic density is matched with the space size of the 

particle system, the size of the lattice point data becomes enormous and cannot be handled. 

Although the data size is enormous, lattice points where there is no value of electronic 

density are spreading in the space other than the quantum region, resulting in poor 

efficiency. When managing particle system data and lattice point data as separate files, 

the region of lattice point data will be embedded in the particle system. This is 

troublesome because it is difficult to align the two data and the two location information 

are required. 

 

5.3 Akira Format and Akira Software 
In order to easily visualize the result data of hybrid QM-CL simulation, we 

proposed a file format for managing particle data and lattice point data of electronic 

density as one file. In addition, we develop software that reads and visualizes the proposed 

data file and release this software to the public5). We will call the data file for visualization 

of hybrid QM-CL simulation as Akira format file. The Akira format manages particle 

data and lattice point data in one file. For the data of the whole system, the lattice point 

data is added to the particle data. The lattice point data is composed of the starting position 

of the lattice point data, the interval of the lattice points, the number of lattice points and 

values on lattice points. A hybrid QM-CL simulation sometimes handles a plurality of 

quantum regions. Therefore, in the Akira format, it is possible to have lattice point data 

of a plurality of regions. The Akira format makes visualization easy by treating it as one 

file including information necessary for visualization of the hybrid QM-CL simulation. 

We also developed a software to read the file of Akira format and visualize the result of 

hybrid QM-CL simulation. Visualization software Akira reads the particle data and lattice 

point data of the file of Akira format, the particle data performs the ball and stick display, 

and the lattice point data performs the isosurface and volume rendering display. This 
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visualization software is publicly available6), and anyone can use it. 

The visualization software Akira consists of a conversion program that performs 

a preprocess for visualization and a visualization program that performs a display. The 

conversion program that performs a preprocess for visualization reads a file of Akira 

format which is simulation result data, and creates an intermediate file of data that is easy 

to handle in the visualization program. The visualization program which performs a 

display reads and displays the intermediate file created by the conversion program. 

The preprocess conversion program reads simulation result data and creates an 

intermediate file converted into data suitable for visualization. This process is done to 

make data easy to handle with the visualization software. For example, it converts double 

precision floating point number data to single precision floating point number to reduce 

the data size, or combines multiple files of time-series data into one file. In addition, this 

process performs analysis of data and filter process for narrowing down the targets to be 

visualized. Intermediate files are created as binary files to reduce data size and speed up 

reading. 

Since these preprocesses can be executed on the supercomputer, it can be 

performed at high speed. The preprocess on the supercomputer does not require moving 

a large number of files output by simulation to the local computer. In the visualization 

program, by reading preprocessed data, speeding up from reading of file to visualization 

is done. In addition, the initial time of visualization and repetitive process are shortened. 

In visualization, animation can be displayed by reading time series data. In addition, 

display of particles can be performed with a color corresponding to the physical quantity 

of particles. 

Visualization software Akira has been developed to operate on general OS such 

as Windows, Mac and Linux. In the visualization program, GUI parts and file process are 

written using Java language. For graphics process, we use the OpenGL7) which is the 

widely-used graphics library. The OpenGL is capable of hardware process with many 

GPUs and process is fast. We use JogAmp8) to use OpenGL from Java. The developed 

software Akira is published on the web. 

 

5.4 Visualization Example 
An example of visualization of hybrid QM-CL simulation is shown in Figure 

5.1. 
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Figure 5.1. The visualization of the results of a hybrid QM-CL simulation on Li between 

graphite layers is shown. The atoms of the whole system are indicated by spheres. The 

QM region handled in the DFT calculation is selected around Li ions. Since the QM 

region has electronic density data of grid data, the electronic density is indicated by color 

contour display. 

 

 

 

In the hybrid QM-CL simulation, the calculation of the quantum region does not simply 

calculate the partial system. We calculate the cluster system by extracting the quantum 

region and adding terminal atoms and buffer atoms for stabilizing the boundary electronic 

state. Therefore, the electronic density obtained by the electronic state calculation is the 

electronic density including the terminal atoms and the buffer atoms, which is different 

from the electronic density of the quantum region. Therefore, in visualization of hybrid 

QM-CL simulation, it is not accurate to simply display lattice data superimposed on 

particle data. Originally it is desirable to display from the electronic density excluding 

the electronic data around the terminal atoms and buffer atoms. 
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5.5 Summary 
In recent years, the computer simulation has grown in scale due to the 

improvement of computer performance. In the supercomputer field, large-scale parallel 

computers in which a large number of computer nodes are network-connected in parallel 

are mainstream. In parallel computers, large-scale simulation and long-term simulation 

are performed by parallelization by space division. In this way, the size of the simulation 

result data becomes enormous. 

In a large-scale simulation using a large-scale parallel computer, the data to be 

stored is enormous. For example, in simulations using three-dimensional lattice data, the 

number of lattice points is on the scale of thousands of thousands. In the simulation of 

particle systems, it is on the order of hundreds of millions of large ones. When handling 

data of 4000	×	4000	×	4000 lattice points of double precision floating point number 

data (8 bytes), the result data of one time is 512 GBytes of data size. In the case of time 

series data of a plurality of times, the data size is multiplied by the step number. 

Generally, large-scale simulations are executed by large-scale supercomputers 

located in a remote place. On the other hand, when visualizing or analyzing, it is common 

to move the result data of the simulation to a local computer. This is because analysis and 

visualization of data are often performed interactively. In the case of large-scale 

simulation, since the result file is enormous, it is becoming difficult to move data to the 

local computer from the data storage capacity of the local computer and the data 

communication speed of the network. As a result, it is becoming difficult to analyze and 

visualize the results of large-scale simulation. 

In order to solve such a problem, it is also studied to perform analysis and 

visualization simultaneously with execution of simulation on a remote supercomputer 

located in a remote place. Other studies are also being conducted to reduce the size of the 

simulation result data. In some applications where visualization of simulation results is 

used, some high precision numerical data are not required, so research is being made to 

reduce the data size with low precision data and use it for visualization. For example, by 

changing floating point number data from double precision to single precision, the data 

size is reduced. 

Hagita and colleagues propose a method of compressing data. This method is the 

jointed hierarchical precision compression number-data format (JHPCN-DF)9). This 

method compresses data by discarding bit information of small digits according to 
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necessary precision in the data structure of floating point number. In floating point 

notation, the least significant bit of the mantissa relates to the precision number of floating 

point number. The characteristic of JHPCN-DF is that accuracy can be adjusted. Cutting 

off the lower bits with zero, or performing other compression such as zip will result in 

large compression. For remote controllers etc., it is suitable to store and use highly 

accurate data and use local computers to transfer data with reduced precision from 

supercomputer for visualization. 

In the long-term simulation, the resultant time series data becomes enormous. In 

order to reduce the amount of time series data, the frequency of storing data is reduced, 

but it is related to the quality of data, so it cannot easily be reduced. With respect to the 

visualization of the simulation result, it is possible to display it as smooth data by using 

interpolated data at the time of visualization by using data of a large time interval. 

In this research, in order to easily visualize hybrid QM-CL simulation, we 

proposed a data format Akira for visualization. We have developed a visualization 

software that visualizes data in Akira format. In the Akira format, in order to efficiently 

visualize particle data and lattice point data which are result data of hybrid QM-CL 

simulation, particle data and lattice point data of electronic density are managed in one 

file collectively. Furthermore, Akira visualization software to read and visualize data of 

Akira format was developed and made public. Akira software program consists of 

preprocess program for converting data and program for visualization. In addition to the 

Akira format, Akira program can handle general MD simulation files and visualize them. 

Large-scale simulation using high-performance supercomputer due to high 

parallelization of computers has been carried out. Although the advancement of 

simulation such as parallel calculation is advancing, it is also necessary to upgrade the 

postprocess such as analysis and visualization of the result data of the simulation. In 

addition, the development of utilities related to simulation such as saving of simulation 

result data is becoming an issue. 

In the result of the hybrid QM-CL simulation, we showed the result of 

visualizing particle data of atoms and ions and lattice point data of electronic density as 

one. The particle data can be displayed by ball display or the like, and the lattice point 

data can be displayed together with isosurface display and volume rendering display. In 

the future, when the range of application of computer simulation expands and various 

simulations are carried out, it is considered that the number of simulations combining 
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plural calculation methods such as hybrid QM-CL method will increase. In such a case, 

we think that the Akira format is useful to treat plural different data as one. 

  



54 

1) S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Comput. 

Phys. Commun. 138, 143 (2001). 

2) S. Ogata, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. 

Commun. 149, 30 (2002). 

3) S. Ogata, Phys. Rev. B 72, 045348 (2005). 

4) https://www.top500.org/ 

5) T. Nakamura, T. Kouno, R. Kobayashi, and S. Ogata, J. Comput. Chem. Jpn., Vol. 

10, No. 2, pp. 59-68 (2011). 

6) https://code.google.com/archive/p/project-akira/ (2017). 

7) https://www.opengl.org/ 

8) https://jogamp.org/ 

9) K. Hagita, M. Omiya, T. Honda, and M. Ogino, SC14 Poster, 2014 

  



55 

6 Activation Energy for Oxygen Diffusion in Strained Silicon: 
A Hybrid Quantum-Classical Simulation Study with the 
Nudged Elastic Band Method 
 
6.1 Introduction and Preparatory Examination 

Impurities of a variety of species such as O, P, and B are introduced naturally or 

intentionally in Czochralski (Cz)-grown Si crystals. Among others O is the most 

important and common impurity,1) which stems from the quartz crucible through its 

partial dissolution into the Si melt at high temperatures T ~ 1,800 K. Most O atoms exist 

in Si crystal as interstitials that occupy puckered bond-center sites of two neighboring Si 

atoms aligning along 111  direction. Because of decreased solubility of O in Si at lower 

temperatures, annealing of Cz-Si produces aggregates of O that range in size from 

nanometers to micrometers. At T = 700-800 K, small clusters of O and Si that contain up 

to tens of O atoms are formed, which are referred to as the thermal double donors (TDD)2) 

because of their electrical activity. At higher temperatures, there appear large-scale O 

precipitates accompanied by structural defects.1) 

Controlling diffusivity of a selected impurity-species in Cz-Si is one of the 

engineering challenges to which many semiconductor institutes have been addressing, to 

create advanced LSI devices. In general, external stress affects the impurity diffusivity in 

a material; one may think of advancing this to control the migration behavior of impurities 

in Cz-Si. In the case of O in Cz-Si, it has been demonstrated by measuring the time 

evolution of concentration of the TDD that hydrostatic pressure P ~ 1 GPa enhances the 

O diffusion in Cz-Si significantly at T = 720 K.3,4) Furthermore, understanding the stress 

dependence of the O diffusivity in Si is important to analyze the oxidation process of Si 

and also the stress corrosion cracking of Si-based materials as silica.5) In the oxidation of 

Si(111), for instance, it has been observed with the TEM that the oxidation proceeds layer 

by layer.6,7) Since the characteristic volume of Si doubles after the oxidation, the Si side 

at the SiO2-Si boundary may experience significant un-isotropic stretch from the SiO2 

side at the oxidation. Theoretical explanation of such a unique oxidation process of the Si 

surface requires detailed analyses on the O migration in Si at various stress conditions.8) 

Motivated by these, in the present paper, we will investigate theoretically the 

change of the activation energy for O diffusion in Si crystal due to a wide range of 

compressive and expansive strains. As an O atom moves along a transition path in Si 
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crystal, the strain field produced by the O should vary accordingly. Since the strain field 

can be long-ranged in an elastic medium, we will consider a Si system with large enough 

size for accurate computation of the activation energy. 

To further clarify our motivation of considering a large system, as a preparatory 

examination, we will investigate in this section the possible contribution of peripheral 

atoms (i.e., located far from the O atom) to the O activation in strained Si crystal using a 

classical inter-atomic potential only (i.e., without using the electronic structure 

calculation). Since the classical inter-atomic potentials for a mixture of Si and O 

appropriate to the present setting are not known, we will exploit the inter-atomic potential 

for pure Si system. To mimic the strain field created by the O atom inserted in Si crystal, 

we will prepare a large Si crystal without O, and will set two or three Si atoms selected 

in the Si crystal to the configuration that corresponds to either the minimum or the 

maximum energy state along the minimum energy path (MEP) of the O transition. After 

relaxation of the rest atoms, we will obtain the potential energy of each atom in the system 

for both states. Summation of the energy difference between the two states with respect 

to the peripheral atoms will give us an approximate estimate of the peripheral contribution 

to the activation energy. 

Following the procedure described above, we firstly consider the local atomic 

configuration in the close proximity of the inserted O in Si crystal at zero pressure 

predicted9) by the density-functional theory (DFT) with the local-density approximation 

(LDA). Figure 6.1(a) depicts the O interstitial in the minimum energy state, which is 

called the ‘‘end’’ state; while Figure 6.1(b), in the maximum energy state (i.e., the saddle 

point), called the ‘‘mid’’ state. In Figure 6.1(a) and 6.1(b), three principal Si atoms, Si1, 

Si2, and Si3, reside on the same 101  plane. In the end state, the O forms a bended 

structure with the Si2-Si3 bond elongated. The O may rotate around the Si2-Si3 axis or 

penetrate the center of Si2 and Si3 easily at low pressures.10) Former LDA-DFT 

calculations9,10) have predicted that the O in Si crystal makes a transition from the end 

state to one of the nearby end states through the mid state. The activation energy for the 

O transition in Si crystal at zero pressure has been predicted to be in the range between 

2.0 and 2.2 eV by the LDA-DFT calculations using the supercells.9–12) Referring to the 

former LDA-DFT results,9) we set the Si2-Si3 distance 𝑑 Si2 − Si3 = 3.20	Å in the 
end state. On the other hand, the local configuration of the mid state contains ambiguity. 
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We therefore consider three possible situations for the mid state: 𝑑 Si1 − Si2 , 𝑑 Si2 −
Si3 , 𝑑 Si1 − Si3 	= 	 (2.90	Å, 2.90	Å, 4.74	Å) , (2.74	Å, 2.74	Å, 4.32	Å) , 

(2.57	Å, 2.57	Å, 3.91	Å) , which correspond to 𝜃 = 109.5° , 104.5° , and 98.8° , 
respectively. 

 

 

 

Figure 6.1. (a) The end state of the O transition in Si. (b) The mid state of the O transition 

in Si. (c) Schematic view of the total system. 

 

 

 

Secondary we prepare a Si crystal under the periodic boundary conditions (PBC) 

with the three simulation-box vectors {𝐋;, 𝐋*, 𝐋.} parallel to { 100 , 010 , 001 }, as 

shown in Figure 6.1(c); the system assumes a cube with 𝐿; = 𝐿* = 𝐿. ≈ 130	Å at zero 
strain, and the total number of Si atoms is 110,592. We use the Stillinger-Weber (SW)13) 

inter-atomic potential for Si. To mimic either configuration of Si1, Si2, and Si3 for the 

end or the mid state, we pick up three Si atoms at around the center of the system [see 

Figure 6.1(c)]. The 𝑑(Si2 − Si3) is fixed in the end state; while (𝑑 Si1 − Si2 , 𝑑 Si2 −
Si3 , 𝑑 Si1 − Si3 ) are fixed in the mid state. For each state, we relax all other Si atoms 

to the minimum energy configuration. We thereby find 𝑑 Si1 − Si3 = 4.30	Å in the 
end state. The contribution of the peripheral atoms to the activation energy is evaluated 

as: 
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 Δ𝐸üÎçÊüý 𝑟 = 𝑒MºÊþ − 𝑒MÎËþ»�ÿºÍ
��h� ,   (6.1) 

where 𝑒MÍ�»�Î is the potential energy of atom-𝑖 for each state and 𝑟M is the distance of 

atom- 𝑖  measured from Si2 in the mid state. Irrespective of the setting of 

𝑑 Si1 − Si2 , 𝑑 Si2 − Si3 , 𝑑 Si1 − Si3  in the mid state, we find Δ𝐸üÎçÊüý 𝑟 <

0.01	eV at 𝑟 ≥ 10	Å, that is, negligible contribution of the peripheral atoms (see the 
dotted curves in Figure 6.2). 

 

 

 

Figure 6.2. The Δ𝐸üÎçÊüý 𝑟  in 101 -case calculated using the classical inter-atomic 

potential for Si. The 0%, 3%, 6%, 9% -stretches are considered for three settings of 

𝑑 Si1-Si2 , 𝑑 Si2-Si3 , 𝑑 Si1-Si3 , denoted simply with 𝑑 Si1-Si3  at 0%-stretch, in 

the mid state. 

 

 

 
Thirdly we investigate possible effects of system stretch on Δ𝐸üÎçÊüý 𝑟 . Three 

stretch-directions are considered: ⟨101⟩ , 010 , and ⟨101⟩ . In each case, uni-axial 
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stretches of 3%, 6%, and 9% are applied to the system by changing the simulation box 

vectors. The same degree of uni-axial stretch is applied to 𝑑 Si2 − Si3  in the end state, 

and to 𝑑 Si1-Si2 , 𝑑 Si2-Si3 , 𝑑 Si1-Si3  in the mid state, assuming similar stiffness 

of those bonds to that of the other Si-Si bonds in the system. Then the atomic positions 
are relaxed under the constraints. The calculated values of Δ𝐸üÎçÊüý 𝑟  are substantial 

only in ⟨101⟩-case as plotted in Figure 6.2, which are about one order of magnitude 
larger than those in 010 - and ⟨101⟩-cases. The Δ𝐸üÎçÊüý 𝑟  approaches to a constant 

as 𝑟 decreases to about 10	Å, which we call the peripheral energy Δ𝐸üÎçÊüý∗ . Though the 

magnitudes of 𝑒MºÊþ − 𝑒MÎËþ   are relatively large at small 𝑟M , they contribute little to 
Δ𝐸üÎçÊüý∗  since the number of the atoms is small. We find for ⟨101⟩-case in Figure 6.2: 

(i) the magnitude of Δ𝐸üÎçÊüý∗  increases in proportion to the stretch, which is nearly zero 

at 0%-stretch, (ii) the Δ𝐸üÎçÊüý∗  ranges between −0.40 and 0.40 eV at 9%-stretch for 

three settings of 𝑑 Si1 − Si2 , 𝑑 Si2 − Si3 , 𝑑 Si1 − Si3  in the mid state. We here 
note that the convexity of all the curves of Δ𝐸üÎçÊüý 𝑟  changes at 𝑟 ∼ 70	Å as seen in 

Figure 6.2, which corresponds to the half of the simulation box size. To confirm that the 

present system has a large enough volume, we also consider a five times larger 
simulation-volume for ⟨101⟩-case. We thereby find that Δ𝐸üÎçÊüý∗  changes little (∼

0.01	eV) by such a size change, while the shape of Δ𝐸üÎçÊüý 𝑟  appears to scale to the 

simulation box size. 

The (i) in the last paragraph may be understood as follows. The stretch applied 

to the system creates a uniform strain field in the system if inhomogeneity relating to the 

three Si atoms, Si1, Si2, and Si3, is ignored. The constrained configuration of the three 

Si atoms adds a weak strain field, which may be independent of the system stretch and 

dependent on the state (i.e., mid or end) of the system. Assuming that the change of the 

energy of atom-𝑖, 𝑒MÍ�»�Î, is proportional to the square of the local strain, we may consider 

that the energy difference 𝑒MºÊþ − 𝑒MÎËþ is approximately proportional to the product of 
the uniform strain due to the system stretch and the difference of the local strain between 
the end and the mid states. Therefore the summation of 𝑒MºÊþ − 𝑒MÎËþ, that is Δ𝐸üÎçÊüý∗ , 
should be proportional to the system stretch. This explains why Δ𝐸üÎçÊüý∗  is zero at 0%-

stretch and increases in magnitude in proportion to the system stretch. The (ii) in the last 
paragraph is because Δ𝐸üÎçÊüý∗  varies nearly linearly as a function of the difference 

Δ𝑑 ≡ 𝑑 Si1-Si3 |ºÊþ − 𝑑(Si1-𝑆𝑖3)|ÎËþ . In fact, at 9%-stretch, Δ𝐸üÎçÊüý∗ , Δ𝑑 =
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0.40	eV, −0.452	Å , −0.02	eV, 0.0	Å , and −0.40eV, 0.452Å . Since the direction 

of the Si1-Si3 line is parallel to ⟨101⟩, larger 𝑑(Si1-Si3) in the mid state acts to relax 
the peripheral region further in the stretched system, resulting in smaller Δ𝐸üÎçÊüý∗ . 

In the preparatory examination explained above, we have demonstrated that if 

the difference Δ𝑑 of order 0.1	Å exists in ⟨101⟩-stretched system (by several percent) 
substantial contribution of order 0.1 eV to Δ𝐸üÎçÊüý∗  should emerge from the peripheral 

region. In reality, the configuration of the two or three atoms (Si1, Si2, and Si3) and 

therefor 𝑑 Si1-Si3  in a strained system are the results of interplay of the reacting 

central atoms and the deformed peripheral atoms. Therefore we will adopt the concurrent, 

hybrid simulation scheme.14) In the hybrid scheme, a total system of Si crystal with one 

O atom is divided in real space; a quantum (QM) electronic-structure calculation method 

such as the DFT is applied to a local region around the O atom, and the classical (CL) 

interatomic potential such as the SW potential is applied to the rest of the system. Using 

the hybrid scheme we can treat the large-scale system as has been used in the preparatory 

examination with much higher physical accuracies. For a strained Si system, it is not 

known whether the mid state in Figure 6.1(b) corresponds to the saddle point in the energy 

surface. Therefore we will combine the hybrid QM-CL simulation method with the 

nudged elastic band (NEB)15) method to investigate the energy surface profile along the 

MEP in a strained system. 

In Section 6.2, we explain the hybrid QM-CL simulation method and its 

combination with the NEB method. The simulation results and their physical explanation 

are presented in Section 6.3. Comparison of the present results with the relating 

experimental data is given in Section 6.4 with concluding remarks. 

 

6.2 Methodology 
6.2.1 Hybrid QM-CL simulation method 

We consider the same model system of Si crystal 𝐿; = 𝐿* = 𝐿. ≈ 130	Å  

under the PBC as has been used in the preparatory examination in Section 6.1, but a single 

O atom inserted at the center; total number of atoms 𝑁 = 110,593. We have confirmed 

in Section 6.1 that the present system size is large enough to evaluate the peripheral energy, 
Δ𝐸üÎçÊüý∗ . For the hybrid QM-CL simulation, we set a QM region around the O in the 

system, which contains 53 Si and 1 O as depicted in case 3 in Figure 6.3. We call the 

atoms in the QM region as the QM atoms; the rest atoms in the system, as the CL atoms. 
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We adopt the SW inter-atomic potential for the CL calculation of Si. We have determined 

the present size of the QM region through comparison of the atomic forces for various 

selections of the QM region in the hybrid QM-CL simulation method (see the last 

paragraph of Section 2.1). We choose the DFT method for the QM calculation by 

considering balance between accuracy and computation speed, though any method that 

can describe the electronic structure of an atomic cluster may be used. 

 

 

 

Figure 6.3. The forces on O, Si1, Si2, and Si3 atoms, in unit of Ry/𝑎Q (𝑎Q is the Bohr 

radius), calculated with the hybrid QM-CL simulation method for an intermediate 

configuration (NEB image α = 3) between the end and the mid states at 9%-stretch in 

⟨101⟩-case. Three cases of the QM region are considered: numbers of the QM atoms are 

4 (case 1), 12 (case 2), and 54 (case 3). 

 

 

 

We write the total energy of the hybridized system in a modular form.16) Since 
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we have a single QM region in the present setting, the Hamiltonian that predicts the 

dynamics of all the atoms is:17,18) 

 𝐻 {𝐫 , {𝐩}) = 	𝐻�â
ÍãÍ�Îº 𝐫 , 𝐩 + 𝐸äå�æ�Í�Îç − 𝐸�â�æ�Í�Îç,  (6.2) 

where {𝐫}  and {𝐩}  represent the sets of positions and momenta of all the atoms, 

respectively. The 𝐻�â
ÍãÍ�Îº in Equation (6.2) is the classical Hamiltonian for the total 

system composed of the kinetic and the potential energy terms: 𝐻�â
ÍãÍ�Îº = 𝐸ÉÊË 𝒑 +

𝐸�â
ÍãÍ�Îº({𝒓}). The set of last two terms on the right hand side of Equation (6.2) may be 

understood as a quantum correction to the classical potential energy for the QM region. 
We denote the sets of the positions of the CL and the QM atoms as {𝐫äå} and {𝐫�â}, 

respectively. 

We adopt the buffered-cluster method19) to couple the QM and CL regions in a 

seamless manner with respect to the atomic forces. In the buffered-cluster method, the 

two cluster-energy terms on the right hand side of Equation (6.2) are functions of the 
positions of the QM atoms {𝐫äå} only: 

 𝐸äå�æ�Í�Îç = 𝐸äå�æ�Í�Îç 𝐫äå ,    (6.3) 

 𝐸�â�æ�Í�Îç = 𝐸�â�æ�Í�Îç 𝐫äå .     (6.4) 

In both QM and CL calculations of the QM region in Equation (6.3) and (6.4), fictitious 

atoms that are called the buffer atoms are placed at the broken dangling-bond sites of the 

QM atoms at the QM-CL boundaries to buffer possible effects due the bond cut. 

For the CL calculation of the QM region in Equation (6.4), the buffer atoms are 

Si to mimic the original bonds at the QM-CL boundary. Starting from the positions of 

either the corresponding CL-Si atoms or the buffer-Si atoms at the last step, the positions 

of the buffer-Si atoms are adjusted at every time step in the simulation run to minimize 
the potential energy 𝐸�â�æ�Í�Îç under the constraint of fixing {𝐫äå}. Here, the buffer-Si 

atoms are set to interact only with the bonding-pair QM-Si through the SW inter-atomic 

potential. Note that the positions of the buffer atoms in the buffered-cluster method may 

differ from that of the corresponding CL atoms in the total system. 

In the buffered-cluster method, the buffer atoms for the QM calculation of the 

QM region in Equation (6.3) are either H or Si depending on the bonding characteristics 

in the original Si system. For the present selection of the QM region depicted as case 3 in 

Figure 6.3, all the buffer atoms are H; for case 2, the buffer atoms are Si and H; for case 

1, all the buffer atoms are H. The positions of the buffer-H atoms for the QM calculation 

are determined by referring to that of the buffer atoms in the atomic cluster for the CL 
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calculation. For each buffer-Si atom located at 𝐫�âô�õõÎç that connects to a QM atom at 
𝐫äå  in the atomic cluster for the CL calculation, we put a buffer-H atom at 𝐫ô =

𝛽𝐫äåô�õõÎç + 1 − 𝛽 𝐫äå with the scaling factor β = 0.66 in the atomic cluster for the 

QM calculation. 

Characteristic features of the buffered-cluster method are the following. Since 
both 𝐸äå�æ�Í�Îç and 𝐸�â�æ�Í�Îç in Equation (6.3) and (6.4) are independent of the positions 

of the CL atom {𝐫�â}, the QM atoms interact with the CL atoms through the classical 

inter-atomic potential contained in 𝐻�â
ÍãÍ�Îº. If we were to minimize the DFT energy, 

𝐸äå�æ�Í�Îç, of the atomic cluster through relaxation of the buffer atoms in the QM calculation, 

there should appear various surface-reconstructions of the cluster, resulting in undesirable 

deformations of the crystalline structure. Such a reconstruction on the cluster surface is 

suppressed in the buffered-cluster method. Accuracies of the buffered-cluster method 

when it is applied to Si crystal with various choices of the QM region have been analyzed 

from various points of view including the atomic positions, the atomic forces, and the 

electronic structures.19) Merits of the buffered-cluster method as compared to the link-

atom method20) have been discussed. The buffered-cluster method has been applied also 

to ionic materials as alumina in which the empirical inter-atomic potential is long-

ranged.21) 

As for the DFT calculation of the QM cluster, we adopt the standard Kohn–Sham 

(KS) formulation for the valence electrons with the norm-conserving pseudo-

potentials.22,23) Cartesian mesh-points in real space are used to represent the KS orbitals 

and the Hartree potential.24) Those data on the mesh-points are spatially decomposed to 

store and to calculate them in compute nodes, which saves computer memory in a node 

and realizes fast computation on a parallel computer. The second derivatives of the KS 

orbitals and the Hartree potential are evaluated with the 6th-order finite-difference 

method.24) The Fourier components of the local and nonlocal pseudo-potentials with 

wavelengths shorter than the mesh size are suppressed. The mesh size for Si is ℎ = 0.55 

a.u., which corresponds to the cut-off energy of 𝜋 ℎ * ∼ 33	Ry in the plane wave 

representation of the KS orbitals. Finer mesh-points are used for the KS orbitals in the 

vicinity of O following the double-grid method.25) 

There is an important point that should be considered for accurate coupling of 

the QM and the CL regions in the hybrid QM-CL simulation scheme. The classical SW 

potential predicts the Si-Si bond distance in Si crystal as 2.35 Å at zero pressure, which 
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is quite close to the experimental value. On the other hand, the present LDA-DFT 

calculation predicts the bond distance as 2.31 Å, which is about 1.5% smaller than the 

experimental value. The distance is 2.36Å if the generalized gradient approximation 

(GGA)26) is adopted in the DFT. Though the LDA appears to give less accurate prediction 

of the bond distance as compared to the GGA, we choose to use the LDA because of the 

following three reasons: (i) the LDA is appropriate for a system with nearly homogeneous 

electron density and, in fact, the region around the inserted O in Si lattice may have nearly 

homogeneous electron density, (ii) the former DFT calculations9–12) in literature to which 

we will compare used the LDA, and (iii) we are interested in the change of the activation 

energy due the system stretch rather than in its absolute value. Since we will stretch the 

system by the same order of 1% as the error of the LDA with respect to the bond distance, 

adjustment of the parameters in the SW potential to reproduce the same bond distance 

with that in the LDA-DFT calculation is necessary for accurate coupling of the QM and 

the CL regions. We therefore shorten all the radial parameters of the SW potential by 

1.5% from their original values. 

We analyze the accuracy of the QM-CL coupling for the present Si system 

containing O in two ways. In one way, we consider an intermediate configuration between 

the end and the mid states, and examine possible variation of the forces on the QM atoms 

by changing the size of the QM region (without changing the total system). For this 

purpose we pick an NEB-image (α = 3; see Section 6.2.2) of the atoms close to the mid 

state at 9%-stretch in ⟨101⟩-case. We consider three QM sizes as shown in Figure 6.3 

(top), and compare the forces on Si1, Si2, Si3, and O in Figure 6.3 (bottom). We then find 

that the forces approach to limiting values as we increase the QM size. Therefore we may 

state that the present choice (case 3) of the QM region for the hybrid simulation has high 

accuracies with respect to the forces with possible errors less than 0.01	Ry/𝑎Q (𝑎Q is 

the Bohr radius) or a few percent. In the other way, we consider a two times larger total-

system without changing the QM size. By such an increase, Si1, Si2, Si3, and O move by 

less than 0.001 Å through the atomic relaxation with the hybrid simulation method. We 

parenthetically consider a pure Si system by removing O in the hybrid QM-CL method. 

Though the QM atoms at the QM-CL boundary are found to deviate from the correct 

crystalline-positions slightly (by 0.03 Å at most), they do not affect other QM and CL 

atoms; in fact, the other atoms deviate by less than 0.003 Å, which is two orders of 

magnitude smaller than the possible value (order 0.1 Å) of the difference of 𝑑(Si1-Si3) 



65 

between the mid and the end states and therefore may be ignored. 

 

6.2 Combining hybrid QM-CL and NEB methods 
Direct computer simulation of the O transition in Si crystal is difficult at normal 

conditions since its activation energy is much larger than the thermal energy. Such a rare 

event problem is usually addressed with the transition state theory (TST)27) based on the 

statistical mechanics. In the TST, the transition rate at temperature T is written as 

 𝑘0é0 = 𝑤exp −𝑄 𝑘Q𝑇     (6.5) 

with the activation free-energy 𝑄, the attempt frequency 𝑤, and the Boltzmann constant 

𝑘Q . Theoretical calculation of 𝑄 is not easy since, in principle, one should span the 

configuration phase-space in its evaluation. In the harmonic approximation27) to the TST, 

 𝑄 ≈ 𝐸Í»þ − 𝐸ÎËþ + 𝑘3𝑇 ln 𝑤MÍ»þ 𝑤MÎËþ.=h;
MN;   (6.6) 

for a system of 𝑁 atoms. Here 𝐸Í»þ is the energy at the saddle state, 𝐸ÎËþ is the local 

minimum of the potential energy corresponding to the end state, and {𝑤M}  are the 

corresponding normal-mode frequencies with the mode along the MEP excluded. The last 

term in the right hand side of Equation (6.6) corresponds to the entropy. At low 

temperatures, the energy difference 𝜖 ≡ 𝐸Í»þ − 𝐸ÎËþ  called the activation energy 

dominates in 𝑄. 

The NEB method is a simulation technique to search the MEP between the two 

end states of a transition and to evaluate its activation energy, 𝜖.15) It has been widely 

used, for examples, for chemical reactions of molecules28) in combination with electronic 

structure calculation such as the DFT, and for dislocation transition in metals29) with the 

empirical inter-atomic potentials. Let us consider 𝑀 + 1  images including two end 

images, in which each image is composed of 𝑁 atoms at 𝐑 ≡ {𝐫;, 𝐫*, … , 𝐫=} in 3N-

dimention. An elastic band denoted as [𝐑�,𝐑;,𝐑*, … ,𝐑6] contains two end images 

fixed at 𝐑� and 𝐑6 corresponding to the two local minima of the energy. The positions 

of the 𝑀 − 1 intermediate images are adjusted with an optimization algorithm. In the 

formulation of the NEB method, the tangent at image-𝛼  𝛼 ∈ 1, 2, … ,𝑀 − 1  is 

estimated using two adjacent images along the path, 𝐑Ä�; and 𝐑Äh;. We use one of the 

simplest methods to estimate the tangential direction: 

 𝐓Â = 𝐓Â 𝐓Â with	𝐓Â =
𝐑9:;h𝐑9
𝐑9:;h𝐑9

+ 𝐑9h𝐑9<;
𝐑9h𝐑9<;

.   (6.7) 

The total force acting on image-α is the addition of the spring force along the tangent and 
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the real force perpendicular to the tangent: 

 𝐅Ä = 𝐅Âé|∥ + 𝐅ÄçÎ»æ|?, 

where 
 𝐅Äé|∥ = 𝑘Â,ÍüÎ�ÊÎÍ 𝐑Â�; − 𝐑Â ⋅ 𝐓Â𝐓Â	
  −𝑘Äh;,ÍüÎ�ÊÎÍ 𝐑Â − 𝐑Âh; ⋅ 𝐓Â𝐓Â  (6.9) 

 
with the spring constant 𝑘Ä,ÍüÎ�ÊÎÍ that depends on both image pair and atomic species, 

and 

 𝐅ÄçÎ»æ|? = 𝐅ÂçÎ»æ − 𝐅ÂçÎ»æ ⋅ 𝐓Â𝐓Â.   (6.10) 
The spring forces, Equation (6.9), do not interfere with the convergence of the atomic 

positions within each image, while the real forces, Equation (6.10), do not affect the 

distribution of the images along the MEP. An improved way of estimating the local 

tangent in the NEB has been proposed in ref. 30. 

In the present simulation to obtain the O transition path in Si crystal, we calculate 

the real force 𝐅ÄçÎ»æ using the potential energy terms in the hybrid QM-CL simulation 
method. We introduce seven movable images (i.e., 𝑀 = 8), which are placed initially 

along the straight line connecting the two end states. We relax all the atoms in the images 

𝛼	 ∈ 	 {1, 2, … ,𝑀 − 1}  concurrently to minimize the addition of the real potential 

energies and the spring energies. The velocity Verlet algorithm is used for the relaxation 

dynamics with the velocity-damping factor 0.5-0.99 at each time-step 1.0-5.0 fs 

depending on the relaxation stage. We intend to set the inter-image distances at around 

the center of the image sequence relatively shorter for accurate determination of the 
saddle state. We therefore set 𝑘Ä,ÍüÎ�ÊÎÍ ≡ 𝑘Â,ÍüÎ�ÊÎÍ  in Equation (6.9) with 𝑘 ∼

100	a. u. , 𝐴�,A, 𝐴;,A, … , 𝐴åh*,A, 𝐴6h;,A = (1, 2, … , 2, 1) , and 𝐴Ä,éÊ =
𝑚ÍÊ 𝑚A 𝐴Â,A; mA and mÍÊ are the atomic masses of O and Si, respectively. The mass 

dependence of the spring constant, 𝑘Ä,ÍüÎ�ÊÎÍ, is effective to relax all the atoms coherently 

with the dynamic method. 

In the present setting, the cost of the DFT calculation for the atomic cluster 

composed of 53 Si, 1 O, and 48 H for buffering is significantly higher than that of the 

MD potential calculation for the total system; the cost of the spring interaction calculation 

is negligible. Therefore the positions of the QM atoms are updated much less frequently 

than that of the MD atoms to minimize the total computation cost. Typical relaxation run 

takes about 20 h, in which the DFT calculation is performed for several hundred times 
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while the MD calculation of the total system for 10Ý times. We use 64 processors on an 
in-house PC cluster or Fujitsu HPC2500: 8 processors for each DFT calculation, 1 

processor for each MD, and 1 processor for the spring interaction. If the MEP is 

symmetric with respect to the center, one may reduce the computation cost and the 

required memory size substantially by exploiting the symmetry. In the present study, 

however, we do not explore such a possibility for simplicity and generality of the 

simulation code. 

 

6.3 Results and Analyses 
Figure 6.4 shows the sequence of the real potential energies, 𝐸�â

ÍãÍ�Îº 𝐫 +
𝐸äå
ÍãÍ�Îº − 𝐸�â�æ�Í�Îç, in the images obtained with the hybrid QM-CL-NEB method. In the 

figure, the horizontal axis denotes the linear location of the O, which is obtained by 

projecting its position measured from that in the central image to the Si1-Si3 line; the 

energies at the two ends, which are the same, are taken as the origin of the vertical axis. 

The open circles with dashed curve in Figure 6.4 correspond to the 0%-stretched (i.e., 

zero pressure) system. The mirror symmetry of the data points with respect to the central 

vertical line of Figure 6.4 indicates high numerical accuracies of the present simulation. 

We find that the activation energy at 0%-stretch is 1.93 eV, which relates to the highest 

point in the sequence of the open circles in Figure 6.4. We confirm that the central image 

in the sequence corresponds to the mid state in Figure 6.1(b) and that the mid state is the 

saddle point in the energy surface. Recall that the former LDA-DFT calculations9–12) in 

literature using the supercells estimated the activation energy in the range 2.0-2.2 eV. The 

present value of 1.93 eV is obtained using the atomic clusters instead of the supercells, 

however, it is quite close to the former estimates. 
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Figure 6.4. The sequence of the real potential energies in the NEB images for the O 

transition in Si, calculated with the hybrid QM-CL-NEB method. The open circles with 

dashed curve for 0%-stretch; the open squares with solid curve for 6%-stretch in 010 -

case. 

 

 

 

To investigate the strain dependence of the activation energy, we consider three 

cases of stretch direction by changing the simulation box as has been done in the 

preparatory examination in Section 6.1: ⟨101⟩, 010 , and ⟨101⟩. In each case, both 
negative and positive stretches are applied: 2, 3, 6, and 9%. Stretching the system should 

be followed by substantial relaxation of all the atoms in the total system. As an example, 

the energy sequence at 6%-stretch in ⟨010⟩-case obtained with the hybrid QM-CL-NEB 

method is depicted in Figure 6.4 as the open squares with solid curve. Through 

comparison of the two curves in Figure 6.4, we find a substantial decrease ∼ 0.26	eV of 

the activation energy by the 6%-stretch in ⟨010⟩ direction. We have performed several 
trial runs with various inter-image distances (i.e., various 𝑘Ä,ÍüÎ�ÊÎÍ) to confirm that the 

center of the image sequence that corresponds to Figure 6.1(b) is the saddle point in the 

energy surface in the stretched system. 

Figure 6.5 summarizes all the calculated values of the activation energy for the 
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O transition in various conditions of stretched Si, obtained with the hybrid QM-CL-NEB 

method. We estimate possible error of each point in Figure 6.5 as 0.01-0.02	eV, from the 

fluctuation in the dynamic relaxation process in the hybrid QM-CL-NEB simulation. In 

all the three cases of the stretch direction, the activation energy varies monotonically as 

a function of the stretch. In 101 -case, the activation energy decreases by 0.11 eV due 

to 2%-stretch and increases by 0.19 eV due to 9%-stretch. On the other hand, in ⟨010⟩-

case, the activation energy increases by 0.02 eV due to 2%-stretch and deceases by 0.34 

eV due to 9%-stretch. In ⟨101⟩-case weak dependence of the activation energy on the 
stretch is observed; the activation energy decreases only by 0.08 eV due to 9%-stretch. 

The weak dependence in ⟨101⟩-case is reasonable since the stretch direction in the case 
is perpendicular to the plane formed with Si1, Si2, and Si3 in Figure 6.1(a) or 6.1(b), on 

which the O moves. We will return to investigate physical mechanisms of the relatively 

strong stretch-dependencies of the activation energy observed in ⟨101⟩- and ⟨010⟩-
cases. 

 

 

 

Figure 6.5. The activation energies for the O transition in stretched Si calculated with the 

hybrid QM-CL-NEB method. 
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As mentioned in Section 6.1, we are interested in the contribution of the 

peripheral atoms to the activation energy. The contribution of those atoms located outside 

of the sphere of radius 𝑟 from Si2 to the activation energy, which is calculated with the 

hybrid QM-CL-NEB method, is shown in Figure 6.6 for ⟨101⟩-, ⟨010⟩-, and ⟨101⟩-
cases. It should be compared with Figure 6.2 obtained using the SW inter-atomic potential 

only. For each curve in Figure 6.6, we may take the value at 𝑟 ∼ 10	Å and regard it as 
the peripheral energy Δ𝐸üÎçÊüý∗  in the same way as in the preparatory examination in 

Section 6.1. Some of the curves in Figure 6.6 are not smooth, which indicates possible 
errors contained in the present simulation. We, in fact, observed Δ𝐸üÎçÊüý at a given 𝑟 

fluctuate within 0.01 eV at the last stage of the relaxation run. We find that the magnitudes 
of Δ𝐸üÎçÊüý∗  at all the stretches are smaller than 0.04 eV in all the three direction-cases 

considered. In Section 6.1 we have demonstrated the possibility of substantial peripheral 
energy Δ𝐸üÎçÊüý∗ ∼ 0.4	eV at 9%-stretch in ⟨101⟩-case. However, the present results 
with the hybrid QM-CL-NEB method give quite small magnitudes of Δ𝐸üÎçÊüý∗  even at 

9%-stretch in ⟨101⟩-case. This indicates that the major contribution to the activation 

energy comes from the DFT energy for the QM region. For all the three cases we in fact 

find that about 80 to 95% of the change of the activation energy due to the system stretch 

originates from the DFT cluster-energy, 𝐸äå�æ�Í�Îç. 
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Figure 6.6. The Δ𝐸üÎçÊüý(𝑟) calculated with the hybrid QM-CL-NEB method. 

 

 

 
We consider the reasons why the Δ𝐸üÎçÊüý∗  calculated with the hybrid QM-CL-

NEB method is so small in magnitude in all the cases. In the preparatory examination, we 
have found that Δ𝐸üÎçÊüý∗  can be substantial at large stretches only in 101 -case, and 

that the larger the difference |Δ𝑑| of 𝑑(Si1-Si3) between the end and the mid states the 
larger the |Δ𝐸üÎçÊüý∗ | in ⟨101⟩-case. We summarize the principal interatomic distances 

in the end state in Table 6.I; the distances in the mid state, in Table 6.II. For ⟨101⟩-case 

we find in Tables 6.I and 6.II: (i) at 0%-stretch, 𝑑 Si1-Si3  in the mid state is 

substantially smaller by 0.17 Å than that in the end state, (ii) 𝑑 Si1-Si3  in the mid (end) 

state increases by 4.4 (1.6), 6.0 (3.3), and 8.9 (5.2)% due to 3, 6, and 9%-stretches, 

respectively, (iii) at 9%-stretch, 𝑑 Si1-Si3  in the mid state becomes quite similar to that 
in the end state. Therefore the small |Δ𝐸üÎçÊüý∗ | found at a relatively large stretch in 

101 -case corresponds well to the small |Δ𝑑| , in reference to the finding in the 
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preparatory examination. Since 𝑑 Si1-Si3  in the mid state increases linearly to the 

system stretch, we may think that neither Si1 nor Si3 exerts strong forces along the Si1-

Si3 direction to the surrounding Si atoms due to the Si1-O and the O-Si3 interaction. This 

is also understood by the observation that the system stretch of the mid state in ⟨101⟩-
case makes the Si1-O and the O-Si3 interaction weak, which will be demonstrated 

through the electron population analyses in the last paragraph of this section. The finding 
of negligible Δ𝐸üÎçÊüý∗  in ⟨101⟩- and ⟨101⟩-cases accords also well with that in the 

preparatory examination. 

 

 

 

Table 6.I. Inter-atomic distances, 𝑑, in the end state (see figure 6.1) of the O transition in 

strained Si, obtained with the hybrid QM-CL-NEB method. The 𝑑éÊçÎõ corresponds to 𝑑 
in the reference Si-crystal containing no O. 

Stretch (%) 𝑑 Si2-Si3  (Å) 𝑑 Si2-Si3
𝑑éÊçÎõ Si2-Si3

 
𝑑 Si1 − Si2  (Å) 𝑑 Si1 − Si3  (Å) 

0 3.264 1.409 2.322 4.459 

⟨101⟩ direction     

3 3.286 1.399 2.340 4.530 

6 3.314 1.391 2.363 4.607 

9 3.340 1.381 2.388 4.691 

⟨010⟩ direction     

3 3.284 1.404 2.346 4.461 

6 3.303 1.398 2.370 4.460 

9 3.321 1.392 2.396 4.461 

⟨101⟩ direction     

3 3.270 1.403 2.333 4.463 

6 3.274 1.397 2.344 4.460 

9 3.278 1.391 2.353 4.457 
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Table 6.II. Inter-atomic distances, 𝑑, in the mid state (see figure 6.1) of the O transition 

in strained Si, obtained with the hybrid QM-CL-NEB method. 

Stretch (%) 1 2 𝑑 Si1-Si2 + 𝑑 Si2-Si3  (Å) 𝑑 O-Si2  (Å) 𝑑(Si1-Si3) (Å) 

0 2.875 1.765 4.288 

⟨101⟩ direction    

3 2.888 1.746 4.476 

6 2.930 1.729 4.545 

9 2.957 1.728 4.671 

⟨010⟩ direction    

3 2.960 1.770 4.211 

6 2.990 1.763 4.297 

9 3.024 1.772 4.323 

⟨101⟩ direction    

3 2.880 1.763 4.348 

6 2.903 1.760 4.350 

9 2.930 1.761 4.337 

 

 

 

In the following, we return to explain the physical mechanisms of the stretch 

dependence of the activation energy in Figure 6.5. As stated in the former paragraph, most 

of the change of the activation energy due to the stretch comes from the change of the 

DFT energy difference between the mid and the end states. Firstly we clarify that which 

state (mid or end) makes a major contribution to the activation energy-change. Figure 6.7 
shows the changes of the DFT energy, 𝐸äå�æ�Í�Îç , for each state at -2, 3, 6, and 9%-

stretches; the top panel is for ⟨101⟩-case, the middle for ⟨010⟩-case, and the bottom for 
⟨101⟩-case. Additionally, as a reference, we plot in Figure 6.7 the changes of 𝐸äå�æ�Í�Îç 

for the QM region selected in pure Si crystal (i.e., no O atom is contained) in the same 
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way. In each panel, the mid-state energy (open circle) measured from the end-state energy 

(open square) at a given stretch (i.e., on a vertical line) corresponds to the activation 

energy-change. In ⟨101⟩-case, the end-state energy increases less than the Si-crystal 

energy does, due to positive stretches. In ⟨010⟩-case, on the contrary, the same behavior 

is observed for the mid-state energy. In 101 -case, both end-state and mid-state energies 
increase by the same amount as the Si-crystal energy does. 

 

 

 

Figure 6.7. The changes of the DFT energies of the QM cluster due to the system stretches 

calculated with the hybrid QM-CL-NEB method. The open circles with solid curves for 

the mid state; the open squares with dashed curves for the end state. For references, those 

of the corresponding QM cluster for pure Si crystal are shown by the filled squares with 

dotted curves. 
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Secondly we proceed to investigate mechanisms of the relatively small energy-

increases by 101 - and ⟨010⟩ -stretches in the end and mid states, respectively, 

observed in Figure 6.5 following the schema in Figure 6.8. Let us consider about the end 

state. Interesting behavior of the principal Si-Si distance is observed for the end state in 

Table 6.I; 𝑑éÊçÎõ Si2-Si3  is the distance in the reference Si-crystal containing no O. We 
here note that the direction of the Si2-Si3 line in the end state does not differ significantly 

from that in the pure Si crystal. For the end state we observe in Table 6.I that: as the 

system is stretched, (i) 𝑑 Si2-Si3  increases more in ⟨101⟩-case than in the other two 

cases, and (ii) the ratio 𝑑 Si2-Si3 ∕ 𝑑éÊçÎõ Si2-Si3  becomes more closer to unity in 
⟨101⟩-case than in the other two cases. As seen in the atomic configuration of the end 

state in Figure 6.3 (top), the Si2-Si3 segment experiences a compressive force from the 

surroundings at 0%-stretch. Therefore the (i) means enhanced structural relaxation 

occurring in ⟨101⟩-case. The (ii) supports the idea since a closer value of 𝑑 Si2-Si3 ∕

𝑑éÊçÎõ Si2-Si3  to unity means a smaller force acting on the Si2-Si3 segment from the 
surroundings and vice versa. In 101 -case, such a structural relaxation is minimal and 

hence the energy change in the end state is nearly the same with that in the Si crystal as 

shown in Figure 6.7(c). We may therefore conclude that the enhanced structural relaxation 

in the end state at a positive stretch in ⟨101⟩-case has given the smaller energy-increase 

of the end-state as compare to the Si-crystal. 
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Figure 6.8. Proposed mechanisms of the energy lowering of the end and the mid states 

relative to the corresponding Si crystal, when the system is stretched in 101 - and 

010 -directions. 

 

 

 

Let us then consider about the mid state (see Figure 6.8). We find in Table 6.II 

that 𝑑 Si1-Si2 , which is the same with 𝑑 Si2-Si3  by symmetry, extends slightly more 

in ⟨010⟩-case than in ⟨101⟩- and ⟨101⟩-cases. Table 6.III shows the Mulliken’s overlap 

populations31) 𝑝ÿæ  of electrons between the principal pair of atoms in the mid state. 

Significant decrease of 𝑝ÿæ Si1-Si2  and 𝑝ÿæ Si2-Si3  to below 0.1 is observed only in 

⟨010⟩-case, which means breakage of Si2-Si1(3) bond. In 010 -case, since the stretch 

direction is parallel to the Si1-Si3 line, the larger at a positive stretch means weaker 

bonding between O and Si1(3); therefore, the original Si2-Si1(3) bond remains as seen in 

Table 6.III. In ⟨010⟩-case, on the contrary, the stretch direction is perpendicular to the 

Si1-Si3 line, and substantial bonding remains between O and Si1(3) even at large 

stretches. Relating to this, the Si2-Si1(3) bond breaks when the system is stretched in 

⟨010⟩ direction, as seen in Table 6.III. We may therefore conclude that the breakage of 

Si2-Si1(3) bond acts to suppress the energy-increase of the mid-state due to ⟨010⟩-
stretch. The sudden drop of the activation energy at 3%-stretch in h010i-case, seen in 
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Figure 6.5, should be related to such a breakage of Si2-Si1(3) bond occurring between 0 

and 3%-stretches. 

 

 

 

Table 6.III. The Mulliken’s overlap populations, 𝑝ÿæ, in the mid state (see Figure 6.1) of 

the O transition in strained Si, obtained with the hybrid QM-CL-NEB method. 

Stretch (%) 1 2 𝑝ÿæ Si1-Si2

+ 𝑝ÿæ Si2-Si3  

𝑝ÿæ O-Si2  1 2 𝑝ÿæ O-Si

+ 𝑝ÿæ O-Si3  

0 0.171 0.712 0.141 

101  direction    

3 0.185 0.756 0.104 

6 0.155 0.885 0.082 

9 0.162 0.875 0.072 

⟨010⟩ direction    

3 0.098 0.870 0.145 

6 0.098 0.868 0.132 

9 0.097 0.847 0.128 

⟨101⟩ direction    

3 0.178 0.718 0.131 

6 0.177 0.752 0.125 

9 0.160 0.777 0.122 

 

 

 

6.4. Discussion and Concluding Remarks 

We have calculated the change of the activation energy for the O transition in Si 

crystal with the hybrid QM-CL-NEB simulation method. With a nano-structured Si 

system at a complex interface in mind, we have stretched the Si system with one O atom 

(𝑁 = 110,593, in total) to three mutually perpendicular directions at a wide range of 

degree between −2 and 9%. It has been found that the change of the activation energy 

ranging from −0.4 to 0.2 eV depends sensitively on both direction and degree of the 
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stretch, and that the peripheral atoms in the system make little contribution to the 

activation energy-change. We have elucidated the microscopic mechanisms of the 

activation energy-change from the combined analyses of the atomic structure relaxation 

and the electronic populations. On the other hand, experimental data about the pressure 

dependence of the O diffusion rate in Si are available only at small degrees of 

compression, i.e., less than 1%. As far as we know, two groups have reported 

experimental results on the pressure dependence of the activation energy for O diffusion 

in Cz-Si. Antonova et al.32) measured the partial dissolution of the O precipitates, which 

were created at 𝑇 = 900-1,000	K , at high temperature 𝑇 = 1,230-1,550	K  and 

pressure 𝑃 = 1.0-1.3GPa . In the experiment, the Acenters, which are the pairs of 

vacancy and O atom, were introduced into the O precipitates by electron irradiation, and 

the deep level transient spectroscopy was used to detect A-center agglomerates. They 

thereby estimated a significant drop of the activation free-energy to 𝑄 ∼ 0.62	eV at 𝑃 ∼
1.0	GPa.32) We here note that such a Cz-Si system annealed at high temperatures usually 

contains large-scale O precipitates accompanied by various kinds of defects around them, 

and that the O diffuses in the form of connected pairs of O and self-interstitials.32) Since 

the O is assumed to diffuse in Si crystal in the form of the O interstitial (OÊ) in the present 

simulation study, direct comparison of the present simulation results and the experimental 

data is difficult. 

The other group made a series of experiments to measure the time rates of 

concentration enhancement of the TDD (i.e., small O aggregates) in Cz-Si at 𝑇 = 720	K, 

to find that applying the pressure 𝑃 = 1.0	GPa increases the time rate by 3-10 depending 

on the initial concentration of O.3,4) We may consider that the formation process of the 

TDD starts with the diffusion of O in the form of OÊ. Meeting of two OÊ may result in 

creation of the double O interstitial (O*Ê), whose diffusion may be faster than that of OÊ.12) 

Assuming that the formation rate of the TDD is proportional to the diffusion rate of OÊ 
we may estimate from the experimental data3,4) that the activation free-energy for OÊ 

diffusion changes by Δ𝑄 = −0.08  to −0.16	eV  at 𝑇 = 720K  due to the applied 

pressure 𝑃 = 1.0	GPa. We will relate the present simulation results to this change as 

follows. 

We convert the hydrostatic pressure to the strain. The bulk modulus of Si crystal 

described with the SW potential is 𝐵 = 1.08	MBar,33) which is close to the experimental 

value of 0.99 Mbar.34) Therefore the hydrostatic pressure 𝑃 = 1.0	GPa corresponds to 
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the relative volume change of Δ𝑉 𝑉 = −0.010, which relates to shortening of each side 

length of the simulation box by 0.33%. Since such a length change is quite small and the 

three directions 101 , 010 , 101  in the present simulation study are mutually 

perpendicular to each other, we may simply sum the activation energy-change, Δ𝜖, at 

0.33%-stretch in ⟨101⟩, ⟨010⟩, and 101 -cases to evaluate the change Δ𝜖 for 𝑃 =
1.0	GPa. Using the linear interpolation method to estimate Δ𝜖 at 0.33%-stretch in each 

case in Figure 6.5, we estimate Δ𝜖 = −0.014	eV for 𝑃 = 1.0	GPa from the present 

simulation results. Though the entropy is not included in Δ𝜖, we may expect similar 

tendencies of Δ𝜖 and of Δ𝑄. In fact, the present estimate of Δ𝜖 takes the same sign, 

but is several times as small in magnitude as the experimental value of Δ𝑄. 

We parenthetically remark on a simple approach by Gusakov and Murin35) to 

estimate the effect of pressure on the O diffusion in Si. They considered a Si cluster with 

OÊ. The pressure was modeled by replacing the equilibrium distance of Si-Si bonds in the 

external part (𝑟 > 5-7	Å) of the cluster with the length of Si-Si bonds that corresponds to 
a given pressure. They thereby found lowering of the activation energy by 0.17% due to 

applied pressure 𝑃 = 1.0	GPa, which corresponds to Δ𝜖 = −0.03	eV in fair agreement 

with the present estimates Δ𝜖 = −0.014	eV despite the simple modeling of the pressure. 

With their approach, however, it is difficult to analyze the dependence of the activation 

energy-change on the stretch direction and the possible contribution of the peripheral 

atoms to the energy. 

Such a comparison analysis between the present results and the related 

experimental ones highlights inherent complexity of the experimental data, whose 

theoretical explanation is an open problem. It has been pointed out through the DFT 

calculation that there exists the saddle ridge in the energy surface around the MEP for the 

O transition at zero pressure.9) Significant difference between the activation energy 𝜖 =
1.93	eV calculated with the hybrid QM-CL-NEB method and the activation free-energy 

𝑄 = 2.53-2.56	eV obtained experimentally at normal conditions,36–40) may be explained 

by the entropy effects relating to the saddle ridge. Due to such a unique shape of the 

energy surface around the saddle ridge, the harmonic approximation to the free energy 

may not be accurate enough to estimate the activation free-energy. When Si crystal is 

strained, the shape of the saddle ridge is expected to change significantly. One of the 

possible reasons of the relatively large decrease of the activation free-energy Δ𝑄 =
−0.08 to −0.16	eV due to 𝑃 = 1.0	GPa estimated experimentally, might be related to 
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such a shape change of the energy surface around the MEP. Another possible reason is 

because of the existence of defects and dislocations in Cz-Si. Even if the hydrostatic 

pressure is applied to Cz-Si, un-isotropic and/or inhomogeneous stress field may be 

created in the system due to such imperfections. It means that the simple summation of 

the activation-energy changes at the same stretch in the three stretch-directions, which we 

did in the previous paragraph, may not be appropriate to a compressed Cz-Si. Considering 

that O diffuses preferably through the path with Δ𝜖 < 0 in such a compressed system, 

we may expect Δ𝜖 for ⟨101⟩-case only contributes. Then we have another estimate of 

the activation-energy change Δ𝜖 = −0.053	eV for 𝑃 = 1.0	GPa relating to −0.33%-

stretch in ⟨101⟩-case, which compares to the experimental estimates Δ𝑄 = −0.08 to 

0.16	eV. 
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7 Enhanced Si-O Bond Breaking in Silica Glass by Water 
Dimer: A Hybrid Quantum-Classical Simulation Study 
 

7.1 Introduction 
 Silica (i.e., SiO2) is known to form both glass and crystals, such as 𝛼-quartz 

under ordinary conditions and 𝛽 -quartz and cristobalite at higher temperatures, 

depending on the manufacturing procedure and environmental conditions. High-purity 

silica glass has superior durability and mechanical strength to other glasses such as soda 

glass.1,2) Silica glass therefore has been or is expected to be used for mission-critical 

applications such as for optical fibers,3) nearly permanent data-storage devices,4) and 

matrices for nuclear waste storage.5) While the migration of water to 𝛼-quartz in a moist 

environment is negligible, it is substantial to silica glass.6) Even in silica glass with 

relatively high water resistance, a substantial number of Si-OH groups are produced not 

only through manufacturing processes but also through Si-O bond-breaking reactions 

involving the migrated water.1) A further increase in the number of Si-OH groups is 

undesirable for applications since it affects both the coefficient of thermal expansion and 

the refractive index and thereby increases the loss of long-wavelength optical 

transmission in optical fibers.3) It also degrades the durability of silica glass in data-

storage devices.4) A theoretical understanding of both the conditions and the microscopic 

mechanisms of Si-O bond breaking by water is therefore essential. 

 Tomozawa’s group7) thoroughly investigated the reactions of silica glass with 

water molecules by infrared spectroscopic measurements to find the following key 

features; (i) Water molecules migrate from a moist environment and diffuse in the 

molecular form. (ii) Reactions between water molecules and Si-O bonds appear to involve 

a multiple-stage process and proceed slowly with a characteristic timescale on the order 

of 10 days, resulting in the formation of Si-OH groups. (iii) Hydrogen bonding occurs 

between a water molecule and a Si-OH group. We consider that the features suggest: two 

water molecules diffusing separately in silica glass may meet each other to form a water 

dimer under some conditions, and then the dimer breaks a Si-O bond.  

 Regarding the microscopic theory of reactions between water and silica glass, 

the Michalske-Freiman (MF) model,8) which involves a water molecule, has been thought 

to govern the crack-tip reaction9) in stretched silica glass given by ≡ Si-O-Si≡ + 
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H2O → ≡Si-OH HO-Si≡.  At the crack tip of silica glass in mode-I opening, an intrusive 

water molecule adsorbs at an elongated Si-O bond and breaks the bond to form two 

neighboring Si-OH groups. The MF model is also expected to account for the principal 

process in the stress corrosion cracking of Si in a moist environment. 

 Del Bene et al.10) presented a seminal theoretical study on the possible reaction 

between silica glass and multiple water molecules in dimer and trimer forms in addition 

to the monomer. To simplify the Si-O network structure of silica glass, they considered a 

small molecule FH2Si-O-SiFH2 with F and H for termination. The energetics of the 

reactions of the molecule with a water monomer, dimer, and trimer were investigated by 

the molecular orbital calculations with second-order perturbation theory for the electron 

correlation. The calculated energies should be regarded as qualitative values because of 

the ignorance of the glass structures and the existence of F and H adjacent to Si in the 

molecule. It was found that the binding energies of the water monomer, dimer, and trimer 

are in the order monomer < trimer < dimer; that is, the adsorption of a water dimer is the 

most probable. Also, the barrier energy of Si-O bond breaking by the dimer through the 

intermediate state of OH- + H3O+ is 1.3 eV. It was pointed out the possibility that Si-O 

bond breaking by a water dimer precedes that by a water monomer, which is in accordance 

with the above suggestion relating to the experimental data in Ref. 7. 

 Bakos et al.11,12) considered a 72-atom silica glass under the periodic boundary 

conditions and placed a water dimer at the center of a (Si-O-)8 ring. Using the density-

functional theory (DFT) with the generalized gradient approximation (GGA),13) they 

found that the barrier energy is 1.5 eV for the dissociative adsorption of the water dimer 

at the dual adsorbed state of Si-OHh + O-H.O� through the reaction 2H*O → OHh +

H.O� without breaking a Si-O bond. The two adsorption sites were located on the same 

(Si-O-)8 ring. Batyrev et al.14) calculated the barrier energies for both the diffusion and 

adsorption of a water molecule in another 72-atom silica glass. As we will explain below, 

however, such a small silica glass is suspected to contain artificial local strains and 

therefore substantial ambiguity in the barrier energies. 

 In this study we will therefore prepare a large-scale silica glass composed of 

4,608 atoms and will perform the hybrid quantum (QM)-classical (CL) simulation15-17) of 

internal Si-O bond breaking by either a water monomer or dimer. The hybrid QM-CL 
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simulation has a physical accuracy comparable to that of the first-principles molecular 

dynamics (MD) simulation. We will thereby demonstrate that when the silica glass 

containing a water dimer in a void is gradually compressed at a temperature of 400 K, the 

bond-breaking reaction is enhanced significantly if microscopic conditions are satisfied. 

The reasons for the conditions will be explained. On the other hand, when the silica glass 

contains a water monomer in the same settings, we will demonstrate that no bond 

breaking with the water occurs until the system collapses as a result of compression. 

Through separate calculations we will show that the barrier energy for Si-O bond breaking 

with a water dimer is substantially smaller than that with a water monomer. We will also 

show that the barrier energy in the case of a water dimer decreases significantly when the 

system is compressed.  

 For the existence of a water dimer in silica glass, water molecules are required 

to migrate to the interior from a moist environment and to meet and form a dimer. In this 

paper we will show that connected paths between voids exist in the present 4,608-atom 

silica glass, through which water monomers can diffuse thermally. The connected paths 

between the voids will be related to the existence of large (Si-O-)n rings in the silica glass. 

 The organization of this paper is as follows. Section 7.2 will explain the 

methodology used to prepare a large-scale silica glass and to perform the hybrid QM-CL 

simulation of it. Microscopic structures of the silica glass and their changes upon 

compression and expansion will be analyzed. In Section 7.3, the hybrid QM-CL 

simulation of the silica glass under gradual compression or expansion with a water 

monomer in a void will be performed at 400 K. No Si-O bond-breaking reactions will be 

observed. In Section 7.4, the hybrid QM-CL simulation of 24 cases with a water dimer in 

a void will be performed, and Si-O bond breaking will be found in 3 cases. Separate DFT 

calculations of the barrier energy and heat of reaction will be also performed. Section 7.5 

will demonstrate the existence of connected paths between voids in the silica glass, 

through which a water monomer can diffuse. A summary and concluding remarks will be 

also given.  

 

7.2 Methodology and Preparatory Simulation 
 We prepare a large-scale silica glass under the periodic boundary conditions to 

minimize artificial internal strains. There are several interatomic potentials to describe 
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silica glass.18-21) We adopt a recent one proposed by Takada et al.21) for gradually 

quenching a silica liquid in an MD simulation.22) For simplicity, we ignore the density-

dependent factors installed in the interatomic potential formula 𝑉MB(𝑟MB) by setting them 

to unity as follows: 

 𝑉MB(𝑟MB) =
I�I�
���

+ 𝑓MB 𝑟MB     (7.1) 

with 

 𝑓MB 𝑟MB = 𝐴MB 1 − exp 𝐵MB(𝑟MB − 𝐶MB)
* − 𝐴MB .  (7.2) 

Here, the charges in Equation (7.1) are 𝑄éÊ = 1.30	𝑒  and 𝑄A = −0.65	𝑒 , and the 

parameters in Equation (7.2) are 𝐴éÊA = 1.99597	eV,  𝐴AA = 0.023272	eV,  𝐴éÊéÊ =

0.007695	eV,  𝐵éÊA = 2.6518	Åh; , 𝐵AA = 1.3331	Åh; , 𝐵éÊéÊ = 2.0446	Åh; , 𝐶éÊA =

1.628	Å, 𝐶AA = 3.791	Å, and 𝐶éÊéÊ = 3.7598	Å．The Ewald method22) is used for the 

Coulomb calculation. 

 We begin by melting a 576-atom 𝛼-quartz at 5,000 K with volume expansion. 

Following the time-evolution schedule of the temperature and density used to prepare a 

silica glass in Ref. 17, we perform a long (about 5 ns in total) quenching run of the system 

by 100 K in a stepwise manner with a volume shrinkage. We then double the dimensions 

in all three (𝑥, 𝑦, and 𝑧) directions to obtain a system of eight times as large as the 

original. An additional relaxation run is performed at 400 K.   

 The thereby obtained silica glass, which is composed of 4,608 atoms (1,536 Si 

and 3,072 O), has dimensions of (𝐿�, 𝐿�, 𝐿J) = (41.782, 36.193, 46.424)	Å  and a 

density of 2.18 g/cm3. In general, each Si (O) atom has four (two) nearest-neighbor O (Si) 

in silica. Since a single bonding defect of Si (that has three nearest-neighbor O) remains 

in the original 576-atom system, eight defects exist in the present silica glass. We will 

insert water molecules at locations far from the defects to avoid undesirable effects due 

to the defects.  

 We refer to a local vacant space among the three-dimensional Si-O network as 

a void for simplicity. The void may be characterized by (Si-O-)5 rings on its surface. 

We count the numbers of (Si-O-)5 rings with 𝑛 ≤ 9. Figure 7.1(a) depicts a void in 𝛼-

quartz, which has (Si-O-)b and (Si-O-)K rings on its surface; representative rings are 

highlighted by dots. As can be seen in Figure 7.1(a), a (Si-O-)K ring can be regarded as 
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an aggregate of four (Si-O-)brings. However, for clarification, we count (Si-O-)b and 

(Si-O-)K rings independently. In 𝛼-quartz the population ratio of (Si-O-)b to (Si-O-)K 

rings is 1 to 7. On the other hand, the sizes (𝑛) of the rings are distributed widely from 

3 to 9 in the present silica glass, as depicted in Figure 7.1(b). The relative populations are 

respectively 0.75，5.73，15.86，24.37，28.63，22.74，and 1.92 % for 𝑛 = 3, 4, 5, 6, 

7, 8, and 9. We remark that a water molecule can pass through the rings with 𝑛 ≥ 7 as 

the barrier energies for the passage are on the order of 0.1 eV.11) 

 

 

 

 
Figure 7.1. (a) Representative (Si-O-)b  and (Si-O-)K  rings, highlighted by magenta 

and yellow dots, respectively, in 𝛼 -quartz. The red and blue spheres are O and Si, 

respectively. (b) Same as (a), but (Si-O-)2 , (Si-O-)b , and (Si-O-)K  rings are 

highlighted by cyan, magenta, and yellow dots, respectively, in the present silica glass. 

 

(a)

(b)
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 In both 𝛼 -quartz and the present silica glass, the Si-O bond lengths are 

1.61−1.69 Å. Figure 7.2 shows the distributions of the three-body angles in 5 %-

compressed (in the 𝑥-direction), 0 %-compressed (i.e., the present), and 5 %-expanded 

systems (a) for O-Si-O and (b) for Si-O-Si. Through comparison of the distributions, we 

find that the Si-O-Si angle at an O shared by two SiO4 units easily changes. While the 

deformation of a SiO4 unit by expansion is negligible, it is substantial by compression, as 

seen in Figure 7.2(a). We will find in Section 7.4 that the deformation of a SiO4 unit is a 

key requirement for Si-O bond breaking to occur and that the deformation degree of a 

SiO4 unit due to system compression strongly depends on its local structure. If one 

prepares a silica glass either at a much higher quenching rate or using a much smaller 

system such as 72 atoms, the distributions of both the ring sizes and three-body angles 

are altered substantially. In such silica glasses, the adsorption energies of a water molecule 

become unphysically large.  
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Figure 7.2. (a) Distributions of O-Si-O angles in the present silica glass at 5 % 

compression, 0 % compression, and 5 % expansion. (b) Same as (a), but for the Si-O-Si 

angles. 

 

 

 

 In Section 7.3 and 7.4, we will insert either a water monomer or dimer in a void 

in the present silica glass and will perform simulations with gradual compression or 

expansion to study the reaction dynamics between the water and Si-O bonds. For the 

simulations we adopt the hybrid QM-CL method, which is applicable to various large 

condensed systems including Al, alumina, Si, SiO2, and graphite,17,23-25) while 

maintaining a high accuracy of DFT.26) As depicted in Figure 7.3(a) for a water molecule 

in a void, the total system is virtually decomposed to QM and CL regions. The atoms in 

the QM region are described with DFT, while those in the CL region are described with 

the classical interatomic potential proposed by Takada et al.21) The QM region contains a 

water molecule near its center. The outermost atoms of the QM region are Si; H atoms 
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are added as the buffer atoms to terminate the Si of virtually broken Si-O bonds. The 

positions of the buffer atoms are controlled dynamically using the buffered cluster 

method.17) 

 

 

 

 
Figure 7.3. (a) Present silica glass with a water molecule in a void. The red and blue 

spheres are CL O and Si, respectively. The magenta and cyan spheres are QM O and Si, 

respectively. The large red and white spheres are respectively QM O and H of a water 

molecule. (b) Atomic cluster used for the QM calculation. 

 

 

 

 The electronic structure calculation of the QM region with the buffer atoms is 

performed using the real-space grid (RG) DFT code27) which is efficient in large-scale 

simulations28) on supercomputers. In the RGDFT, the norm-conserving 

pseudopotentials29) are used for valence electrons. The local density approximation 

(LDA) is used for the exchange-correlation potential for the following reasons. While the 

GGA describes the water dimer structure and energy better than the LDA (the energy 

difference is about 0.1 eV),30) the LDA reproduces various properties of individual silica 

phases better than the GGA.31) Since we will compress or expand the silica glass without 

changing the phase, the LDA is suitable for our study. In the RGDFT, higher numerical 

accuracy is obtained with a smaller gridsize ℎ at the cost of longer computation times. 

(a)

x
y

(b)
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We set ℎ = 0.40	𝑎Q (𝑎Q = 0.5292	Å) from the following observations. As we decrease 

ℎ , the equilibrium Si-O-Si angle of 𝛼 -quartz increases and the Si-O bond length 

decreases. At ℎ = 0.40	 0.35 	𝑎Q, the Si-O-Si angle is 137° (141°) and the Si-O bond 

length is 1.66 (1.63) Å, while the angle is 144° and the Si-O bond length is 1.61 Å in 

experiments. Despite differences of only a few percent in the angle and bond length, the 

computation time with ℎ = 0.35	𝑎Q is about five times that with ℎ = 0.40	𝑎Q.  

 

7.3 Hybrid Simulation with Water Monomer in Void 
 In this section, we consider a water molecule inserted in a void of the present 

silica glass. After the insertion, we select the QM region composed of water and its 

surrounding Si and O atoms in the hybrid QM-CL method, as shown in Figure 7.3(a). The 

radius of the QM region is about 17 Å and the region is composed of about 200 atoms. 

Figure 7.3(b) shows the atomic cluster including the termination H atoms used in the QM 

calculation. The RGDFT code calculates the electronic structures of this atomic cluster 

of about 260 atoms. The hybrid QM-CL simulation is performed for 1.0 ps with a time 

step of 1.0 fs at a temperature of 400 K using the Berendsen method32) until equilibration. 

That is, at each time step, the velocity vectors of all the atoms are scaled by 

1 + LMòNhL
L

/𝑛Q  with the required temperature 𝑇çÎO  and the number of relaxation 

time steps 𝑛Q = 100． 

 We then compress or expand the system gradually in either of the {𝑥, 𝑦, 𝑧}-

directions. For the compression procedure, we adopt the constant-volume-change 

method: the volume becomes 95 % of the initial value after 1,000 time steps. The present 

volume-change rate is chosen from the following facts. In a former classical MD 

simulation33) of the yield stress of a silica glass under expansion, a 2 %-higher (lower) 

value was obtained at a rate twice as high (low) as the present one. Also we perform a 

classical MD simulation to analyze possible compression-rate dependence of the Si-O-Si 

angle. By comparison with a simulation run at a rate five times as slow as the present one, 

we find no substantial difference in the angle until 10 % compression. We are interested 

in the reaction dynamics due to the inserted water. Since no Si-O bond switching is found 

until 20 % compression in the present silica glass without water in the classical MD 



92 

simulation, we perform the hybrid QM-CL simulation run for 4.0 ps (corresponding to 

20 % compression). 

 Several voids, in each of which a water molecule is inserted, are selected 

randomly in the present silica glass. For a void, we compress or expand the total system 

in either of the {𝑥, 𝑦, 𝑧}-directions. In all the compression and expansion runs, the water 

molecule moves inside the void and does not initiate the Si-O bond breaking. This 

indicates that the adsorption energy of a water molecule at a void surface is on the order 

of 0.1 eV at most and that the barrier energy for Si-O bond breaking by a water molecule 

is substantially larger than 0.1 eV order irrespective of the compression stage. In former 

DFT calculations14,30) of a 72-atom silica glass, it was found that the O of a water molecule 

formed a covalent-like bond with a Si of the Si-O network; the bonding energy was 0.5 

eV in Ref. 14. However, we did not find such a robust bond in the present runs. We assume 

that such a bond resulted from artificial residual stresses due to the smallness of the 

system under the periodic boundary conditions. 

 To understand the reasons for no Si-O bond breaking by a water molecule in 

the present runs, we separately calculate the corresponding barrier energy by DFT. Using 

a typical void (case 1y in Section 7.4), we calculate the energy of the relaxed system as a 

function of the constrained distance between the center of the target Si-O bond and the O 

of H2O to find the reaction path. For fast calculation, we relax about 130 atoms around 

the H2O and fix other atoms. We analyze the dependence of the energy on the compression 

in the y-direction. At 0 % compression, we find that the state ≡Si-OH HO-Si≡ is unstable 

(i.e., no transition state exists) and transforms barrierlessly to ≡Si-O-Si≡ + H*O. This is 

because a SiO4 unit hardly deforms from a regular tetrahedron at 0 % compression and 

hence approach of the O in H2O to the Si requires large deformation energy of the SiO4 

unit (3.1 eV at a constrained distance of 1.6 Å). At 5 % and 10 % compression, we find 

that the state ≡Si-OH HO-Si≡ is metastable and that the barrier energies are respectively 

0.52 and 0.92 eV. The substantial deformation of SiO4 units by compression makes the 

reacted state metastable. Figure 7.4 shows the configurations at the initial and near-

transition states at 10 % compression. If the system is expanded, we assume that the 

situation does not change substantially from that at 0 % compression because the 

significant amounts of stains are absorbed by the angular (Si-O-Si) relaxation between 

SiO4 units [see Figure 7.2(a)].  
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Figure 7.4. Zoom-in views of the atomic configuration in the Si-O bond-breaking reaction 

with a water monomer by DFT in case 1y at 10 % compression (a) for the initial state and 

(b) for the transition state. 

 

 

 

 The heat of reaction in Si-O bond breaking by a water molecule is endothermic: 

it is −0.82 and −0.40	eV at 5 % and 10 % compression, respectively. Considering the 

endothermic nature of the reactions, we expect that they have little opportunity to occur 

even at high temperatures. Note that the former calculations11,12) for the 72-atom silica 

glass gave a barrier energy of 1.5 eV and a heat of reaction of −0.3 − −0.7 eV at 0 % 

compression, and the heat of reaction was about 0 eV at 0 % compression in Ref. 13. 

Despite the significant difference in the system size, the endothermic nature of the 

reaction was predicted.  

 

7.4 Hybrid Simulation with Water Dimer in Void 
 In this section, we consider a water dimer placed in a void of the silica glass. 

To prepare the initial configuration, we first insert a water dimer at the center of a void 

selected randomly in the present silica glass. Since this causes a significant change in the 

potential energy owing to the relatively large size of the dimer, we then thermalize only 

the six atoms that compose the water dimer at 400 K. We then thermalize all the atoms of 
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the system at 400 K. If either a dimer or a molecule diffuses into a neighboring void, we 

choose another void. Starting from the initial configuration obtained thereby, we 

compress the system gradually in one direction for 4.0 ps at the same rate as in the water 

monomer runs (i.e., 5 % compression after 1.0 ps).  

For the locations of voids, we choose eight sites randomly. The centers of the 

voids are at 𝑥/𝐿�, 𝑦/	𝐿�, 𝑧/𝐿J 	 = (0.500, 0.500, 0.500)  for void 1, 

(0.434, 0.027, 0.120)  for void 2, (0.558, 0.596, 0.241) for void 

3, 	(0.456, 0.215, 0.594) for void 4, (0.921, 0.639, 0.758)  for void 5, 

(0.455, 0.024, 0.135)  for void 6, (0.424, 0.061, 0.886)  for void 7, 

and	(0.545, 0.067, 0.772) for void 8. We compress the system in the 𝑥 , 𝑦, and 𝑧-

directions and hence have 24 cases in total. We name each case; for example, case 2y 

denotes the case that void 2 is chosen and compressed in the y-direction. The surface of 

a void is characterized by the distribution of (Si-O-)5  rings. We define 𝑛M  as the 

number of the rings with 𝑛 = 𝑖 on the void surface. Table I shows the distribution of 

{𝑛M} for each of the eight voids. Figure 7.5 depicts the QM region with a water dimer in 

it for each void. As can be seen in Table 7.I and Figure 7.5, both small (𝑛 = 3, 4) and 

large (𝑛 = 9) (Si-O-)5 rings exist on the void surfaces. 

 

 

 

 
Figure 7.5. QM atoms in each of the eight voids with a water dimer (a) for void 1, (b) for 

(a) (b) (d)(c)

(h)(g)(f)(e)
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void 2, (c) for void 3, (d) for void 4, (e) for void 5, (f) for void 6, (g) for void 7, and (h) 

for void 8. The Si-O bonds within a distance of 2.0 Å and the O-H bonds within a distance 

of 1.2 Å are shown. 

 

 

 

Table 7.I. Distribution of (Si-O-)5 rings on the surfaces of the eight voids. 

Void 

case 

𝑛. 𝑛2 𝑛Ý 𝑛b 𝑛P 𝑛K 𝑛Q 

1 0 0 3 2 5 3 0 

2 0 0 1 5 1 2 0 

3 1 2 4 3 4 1 1 

4 0 2 1 2 3 2 1 

5 0 0 1 5 3 1 0 

6 0 0 1 5 1 2 0 

7 0 1 2 5 2 2 0 

8 0 2 1 4 3 0 0 

 

 

 

 The energy of the water dimer in a void relative to that of two isolated water 

molecules in two voids is −0.3 − 	0.0 eV in the 0 % compressed system. During the 

gradual compression of the system by the hybrid QM-CL method, we observe 

competition between the escape of an H2O to a neighboring void after dissociation of the 

dimer and the adsorption of H3O+ at Si after H-transfer within the dimer.  

 

7.4.1 Cases with Si-O bond breakings 
 Among the 24 cases, Si-O bond-breaking reactions are found in cases 1y, 2z, 

and 6x. In all three cases, the reactions occur through the formation of H3O+ and OH- via 

H-transfer between the two H2O. Regarding the charge states, Mulliken's population 

analyses34) show that they are H.O�R and OHhR with δ	~	0.5 relative to two charge-
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neutral H2O in a void. Considering the intrinsic ambiguity of the analyses, we regard them 

as H3O+ and OH-. In this subsection, we explain the three cases in detail. We find that the 

water assumes the form of H3O++ OH- if the O-O distance is less than 2.6 Å [see Figure 

7.7(b) later], which we call the H-transferred water dimer. Note that the O-O distance is 

2.7 Å at equilibrium if the dimer is set in vacuum. The reaction 2H2O = H3O++ OH- 

goes back and forth in a void in the present runs. When the O-O distance is between 2.6 

and 3.5 Å, we call the state the water dimer. Otherwise, we refer to the state as water as 

monomers. The coordination number of a Si corresponds to the number of O atoms within 

a distance of 2.0 Å from the Si. The Si of the target Si-O bond is often five-coordinated 

as a result of the adsorption of the O of H2O in addition to the original four O.  

 The time evolutions of the system in the three bond-breaking cases are as 

follows. 

Case 1y: At 0.0−0.5 ps, we observe the H-transferred water dimer and the five-

coordinated Si. At 0.5−1.3 ps, the water dimer state is seen. At 1.3−2.2 ps, the H-

transferred water dimer and the five-coordinated Si, which differs from the five-

coordinated Si during 0.0−0.5 ps, are seen. Figure 7.6(a) depicts the atomic configuration 

at 2.2 ps. At 2.3 ps, we find the reacted state of ≡Si-OH HO-Si≡ +	H2O after the Si-O 

bond breaking, as depicted in Figure 7.6(b). Figure 7.7 shows the time evolutions of the 

interatomic distances, bond overlap populations, and O-Si-O angles to substantiate the 

scenario mentioned above. We judge that a bond is formed if the bond overlap population 

becomes larger than 0.5. 

Case 2z: At 0.0−1.7 ps, the water dimer is seen and sometimes the water monomers are 

seen. The H-transferred water dimer and the five-coordinated Si appear at 1.7−3.1 ps. 

One of the four Si-O bonds of the Si, which is far from the water, is broken at 3.2 ps. 

Then the O of the broken Si-O bond forms a new O-Si bond with a surrounding Si 

maintaining twofold coordination. Finally, an O, which differs from the O of the 

originally broken Si-O bond, adsorbs H of H3O+ to form ≡Si-OH HO-Si≡ +	H2O. 

Case 6x: At 0.0−1.6 ps, the water monomers are seen. At 1.6−3.1 ps, the H-transferred 

water dimer and the five-coordinated Si appear. At 3.1 ps, the reacted state of 

≡Si-OH HO-Si≡ +	H2O is formed in a similar manner to in case 1y. 
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Figure 7.6. Snapshots in case 1y: (a) at 2.2 ps and (b) at 2.3 ps. (c) Zoom-out view at 2.0 

ps depicting the complex of three (Si-O-)2 rings adjacent to a five-coordinated Si. 
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 In both cases 1y and 6x, the water dimer is converted to the H-transferred water 

dimer, i.e., OH- + H3O+, and then the O of OH- adsorbs at a Si to form the five-coordinated 

Si. After that, within 1−2 ps, the H of H3O+ transfers to the O bonded originally to the Si 

in accordance with Si-O bond breaking to form ≡Si-OH HO-Si≡ +	H2O. In case 2z, the 

five-coordinated Si forms in the same way. The Si is unstable and breaks a backbone Si-

O bond that is not the closest to the H of H3O+. The Si-O bond breaking continues until 

the H of H3O+ transfers to the O of a broken bond. Although there are differences in terms 

of which of the four Si-O bonds breaks, essentially the same reaction mechanisms are 

observed in the three cases. Since an H2O remains after the reaction, we may regard such 

an H2O as a catalyst. 

 Observing the three cases, we state that all the following conditions need be 

satisfied for Si-O bond breaking by a water dimer to occur in a void: (i) a water dimer 

becomes OH- and H3O+ after the H-transfer, (ii) a Si on the void surface is five-

coordinated by the adsorption of OH- and is therefore unstable, (iii) H3O+ is located close 

to such an unstable Si-O bond so that the H of H3O+ can transfer to the unstable O after 

Si-O bond breaking. 

 We find by a separate DFT calculation for the H-transfer in 2H2O in vacuum 

that the energy increases monotonically as the distance 𝑟Aè between O of an H2O and H 

of another H2O decreases. In the LDA, the energies at 𝑟Aè = 1.1 and 1.0 Å are 1.3 and 

1.9 eV larger, respectively, than the equilibrium value and 1.5 and 2.1 eV according to 

the GGA.13) Therefore, the H-transferred state of H3O+ + OH- has little opportunity to 

exist in vacuum at an ordinary temperature of 400 K. The reason for our observation of 

the H-transfer in the present runs is that H3O+ and OH-, respectively, adsorb to O and Si 

on the void surface when the H-transfer occurs and thereby decrease both the barrier 

energy and the energy of the H-transferred state. In fact, conditions (i) and (ii) are satisfied 

simultaneously in the present runs. 
 For condition (i), a water dimer in a void has considerable opportunity to satisfy 

this condition, particularly when the system is compressed because of the increased 

interaction between the dimer and the surrounding Si-O network. The five-coordination 

of Si under condition (ii) requires significant deformation of a SiO4 unit from a regular 

tetrahedron, as depicted in Figure 7.7(d). Such a significant deformation tends to occur in 

a (Si-O-)5 ring with 𝑛 = 6 − 9 that resides next to a complex of small rings such as 
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(Si-O-)2 when the system is compressed. This is because such a complex of smaller rings 

is stiffer than a larger ring and hence the concentration of strain occurs at the larger ring. 

In fact, as depicted in Figure 7.6(c) for case 1y, the Si-O bond that breaks is located 

adjacent to a complex of three (Si-O-)2 rings. The realization of condition (iii) depends 

on the detailed structure of the Si-O network on the void surface. In case 2z, we found 

both a H-transferred water dimer and five-coordinated Si during 1.7−3.1 ps; i.e., 

conditions (i) and (ii) were satisfied. However, condition (iii) was not satisfied because 

the H3O+ adsorbed at an O far from the O of the target Si-O bond. Therefore, Si-O bond 

breaking did not occur. 
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Figure 7.7. (Color online) Time evolutions of quantities in case 1y: (a) atom ID’s at 2.15 

ps, (b) interatomic distances, (c) bond overlap populations, and (d) O-Si-O angles. 
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 No discussion of the preferred size of the (Si-O-)5 ring for the Si-O bond-

breaking process with a water dimer has been found. On the other hand, calculations for 

the process with a water molecule have been reported. On the basis of a GGA-DFT 

calculation for a 72-atom silica glass, Van Ginhoven et al.30) suggested that the process 

with a water molecule occurs not on small rings, such as (Si-O-). and (Si-O-)2, but on 

a ring adjacent to a small ring. Although the size of the system used in their calculations 

was much smaller than that in the present study, the idea that a ring adjacent to a small 

ring tends to react with water is in agreement with the present finding. Batyrev et al.14) 

showed by a GGA-DFT calculation for a 72-atom silica glass that the heat of reaction of 

the process with a water molecule becomes positive (as large as 1 eV) owing to significant 

stress relaxation if a broken Si-O bond belongs to a (Si-O-). ring. However, we found 

no such Si-O bond breaking on small rings in the present simulation. 

 The present observation of Si-O bond breaking with a water dimer in a void at 

400 K is in strong contrast to the case of no bond breaking with a water monomer. To 

understand the reasons for this different behavior, we separately analyze the energetics 

during Si-O bond breaking with a water dimer at 0 %, 5 %, and 10 % compressions. We 

adopt case 1y and calculate by DFT the energy as a function of the distance between the 

center of the target Si-O bond [O1-S1 in Figure 7.7(a)] and the O [O5 in Figure 7.7(a)] of 

the dimer similarly to in the monomer case. For a given value of the distance, we relax 

the remaining positional degrees of the atoms while taking care to avoid trapping in a 

local energy minimum by starting from various virtually shifted positions of the to-be-

transferred H atom [H1 in Figure 7.7(a)].  

 We thereby find that the state ≡Si-OH HO-Si≡ + H*O  is unstable and 

transforms barrierlessly to ≡Si-O-Si≡ + (water dimer) at 0 % compression. Similarly to 

the monomer case in Section 7.3, this is because substantial energy (about 4 eV) is 

required at 0 % compression for the O of an H2O to approach the central Si of a nearly 

regular SiO4 tetrahedron. At 5 % compression, we find that the barrier energy is 0.10 eV 

and that it decreases further to 0.05 eV at 10 % compression. The heat of reaction is nearly 

zero: −0.11 and 0.12 eV at 5 % and 10 % compression, respectively. The initial and 
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near-transition states of the reaction at 10 % compression are depicted in Figure 7.8. Such 

small barrier energies in compressed situations resulted because the existence of another 

H2O in close proximity to the H2O assists the H-transfer. While the reaction is 

endothermic in the case of a water monomer, the reaction with a water dimer is nearly 

exothermic. We assume that this is for two reasons: the high energy of the dimer under 

compression owing to its large size in the initial state and the hydrogen bond formation 

between an H2O and two Si-OH in the final state in the case of a dimer. 

 

 

 

 
Figure 7.8. Zoom-in views of the atomic configuration in the Si-O bond-breaking reaction 

with a water dimer obtained by DFT in case-1y at 10 % compression. (a) for the initial 

state and (b) for the transition state. 

 

 

 

7.4.2 Cases without Si-O bond breakings 
 In 21 out of the 24 cases examined by the hybrid QM-CL simulation in which 

a water dimer is inserted in a void of the present silica glass, no Si-O bond breaking is 

observed. We explain the reasons for this in the 21 cases. In about half the cases (cases 

1x, 1z, 2x, 2y, 3x, 3y, 3z, 5z, 6y, 6z, 7x, and 8z; 12 cases in total), we find transitions 

between the water dimer and the H-transferred water dimer states until about 2.0 ps. As 

depicted in Figure 7.9 for case 1x, the OH- of the H-transferred water dimer adsorbs at a 

Si [Figure 7.9(a)] on the void surface, but the H3O+ adsorbs at an O at the opposite side 
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to the Si on the void surface [Figure 7.9(b)], therefore no bond breaking occurs. This 

means that condition (iii) given in Section 7.4.1 is not satisfied. 

 

 

 

 
Figure 7.9. Snapshots in case 1x: (a) at 1.0 ps and (b) at 2.0 ps. 

 

 

 

 In the remaining nine cases with no bond breaking, a water dimer decomposes 

into two water monomers, and the monomers move within the void or diffuse into a 

neighboring void. A water monomer adsorbs at a Si on the void surface for a duration of 

about 1 ps. Hence, condition (i) in Section 7.4.1 is not satisfied. From the short times of 

the adsorbing state at 400 K, we assume that the adsorption energy of a water monomer 

is less than 0.1 eV even under high compression. 

 We also perform the hybrid QM-CL simulations with gradual expansion of the 

present silica glass. We find in all cases that a water dimer decomposes into two water 

monomers and that no Si-O bond breaking occurs. Condition (i) is thus not satisfied.  
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7.5 Discussion and Concluding Remarks 
 It has been suggested from the results of experiments6,7) that water molecules 

migrate from a moist environment into silica glass through voids. To confirm this, we 

analyze the possible formation of a network of voids in the present silica glass. To identify 

the void network, we set virtual grid points in a simple cubic structure (the side of each 

cube is 0.2 Å). If no atom exists within a distance of 2.0 Å from a point, it is regarded as 

a void point. The value of 2.0 Å roughly corresponds to the interaction range between Si 

and O. Figure 7.10(a) shows the void points by yellow spheres in the sliced region 

𝑥 =[0,30] Å, 𝑦 =[0,30] Å, and 𝑧 =[0,10] Å of the present silica glass (density of 2.18 

g/cm3). As we see in Figure 7.10(a), the void points form connected paths throughout the 

system, i.e., a void network. In the case of 𝛼-quartz (density of 2.43 g/cm3), the void 

points do not form connected paths throughout the system as shown in Figure 7.10(b). 

The size of a void in 𝛼-quartz appears to be smaller than that in the silica glass. A former 

GGA-DFT calculation30) gave the insertion energy of a water molecule into a void of 𝛼-

quartz as high as 1.2−1.5 eV, which supports the view given above. The existence of the 

void network in the present silica glass suggests that a water molecule can diffuse into 

the interior of silica glass. Two water molecules that diffuse in silica glass can form a 

dimer in a relatively large void (i.e., positive formation energy). 
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Figure 7.10. Void points plotted in yellow for (a) present silica glass and (b) 𝛼-quartz. 

The Si and O are drawn as bonds only.  

 

 

 

 To summarize this paper, we performed the hybrid QM-CL simulation of a 

4,608-atom silica glass at 400 K with a water monomer or dimer inserted in a void. During 

a simulation run, the system was gradually compressed or expanded to analyze possible 

Si-O bond breaking involving the water. In the cases of a water monomer, we found that 

the water monomer moves to various locations within the void and that no Si-O bond-

breaking reactions involving the water occur. In the cases of a water dimer, we found that 

Si-O bond breakings occur through three steps in 3 out of the 24 cases of compression: 
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(i) H-transfer as 2H*O → OHh + H.O� accompanied by the adsorption of OHh at a 

strained Si to make it five-coordinated, (ii) the breaking of a Si-O bond that originates 

from the five-coordinated Si, and (iii) H-transfer from H.O� to the O of the broken Si-

O bond. In two out of the three cases, steps (ii) and (iii) occurred instantaneously.  

 A separate DFT calculation confirmed that the barrier energy to bond breaking 

decreases when a SiO4 unit is deformed from a regular tetrahedron by the compression of 

the system. The barrier energy of a water-induced reaction under compression is smaller 

in the case of a water dimer than in the case of a water monomer. In the case of a water 

dimer, the barrier energy decreases significantly and the heat of formation becomes 

exothermic when the silica glass is compressed further. We demonstrated the existence of 

a void network throughout the present silica glass, which suggests that a water molecule 

can diffuse into the interior of the silica glass. The principal finding obtained through the 

present simulation, that is, a Si-O bond in silica glass breaks easily in the presence of a 

water dimer when the silica glass is compressed, suggests that silica glass should not be 

set in a compressive situation, such as bending or local heating, in a moist environment 

when it is used for mission-critical applications.  
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