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Abstract: Remarkably enhanced light emission efficiency of AlGaN multiple quantum wells
(MQWs) was realized by growing on an n-AlGaN underlying layer (UL). The parasitic peaks
emitting from inactive regions can be effectively suppressed, and the nonradiative recom-
bination process in AlGaN MQWs proved to be substantially lessened with the inclusion of
the n-AlGaN UL. Numerical simulations showed that the electric field in AlGaN MQWs was
reduced by 26%, which efficiently weakened the quantum-confined Stark effect (QCSE).
Further analysis attributed this to the reduction of strain-induced piezoelectric electric field
in the AlGaN well layer. The enhanced emission efficiency of AlGaN MQWs was there-
fore due to the greatly suppressed nonradiative recombination and reduced QCSE with the
introduction of the n-AlGaN UL. The present research will be helpful to the future promo-
tion of high-performance deep ultraviolet (DUV) optoelectronic devices, as well as to better
understanding the recombination mechanism in AlGaN MQWs.

Index Terms: AlGaN multiple quantum wells (MQWs), n-AlGaN underlying layer (UL),
quantum-confined Stark effect (QCSE), recombination process.

1. Introduction
Wurtzite AlxGa1−xN alloys with a high AlN mole fraction (x) have attracted wide attention for op-
toelectronic applications in deep ultraviolet light-emitting diodes (DUV-LEDs) and lasers [1]–[12].
Towards the goal of commercial applications, the light emission efficiency of AlGaN multiple quan-
tum wells (MQWs), which function as the core structure of DUV optoelectronic devices, has become
one of the crucial issues. Unlike the InGaN MQWs, the light emission efficiency of AlGaN MQWs,
especially its internal quantum efficiency (IQE), has been very sensitive to the crystal quality [13]–
[15]. High dislocation density in AlGaN MQWs originating from the AlN buffer layer limits the value
of IQE to date. On the other hand, the large internal electric field in the c-plane AlGaN MQWs
leads to a significant charge carrier separation by quantum-confined Stark effect (QCSE) [16]–[20],
which, in turn, results in small optical matrix elements and a low radiative recombination rate, and
the light emission efficiency of AlGaN MQWs is consequently reduced.
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Up to now, a number of studies focused on improving the crystal quality of AlN buffer layer have
been done to boost the performance of AlGaN MQWs by special growth techniques [14], [21]–[25].
Although the electric field in AlGaN MQWs can be reduced via grown on nonpolar and semipolar
AlN substrates [26], [27], the density of nonradiative recombination centers seems to be enhanced,
which prevents their applications to efficient LEDs. Moreover, decreasing the well width can partly
suppress the QCSE [28], but it is disadvantageous to overcome the efficiency droop effect in LEDs
at high current injection. Cabalu et al. [29] reported that they succeeded in improving the light
emission efficiency of AlGaN MQWs with markedly suppressed QCSE by the growth on textured
GaN templates. Toropov et al. [30] reported a corrugated AlGaN MQW structure that exhibited an
enhanced light emission realized by the change of growth mode to reduce the electric field. Apart
from these, however, few achievements on the light emission efficiency enhancement of AlGaN
MQWs by diminishing the electric field have been reported, especially on the structural design.

In the present study, we investigated the optical properties of AlGaN MQWs grown on an n-AlGaN
UL, aiming to clarify the effect of the n-AlGaN UL on the light emission efficiency of the AlGaN
MQWs. The optical properties of AlGaN MQWs grown on the n-AlGaN UL were fully discussed with
those of comparative structures combined with numerical simulations.

2. Experimental Details
The AlGaN MQWs samples in this study were grown by metal organic chemical vapor deposition
(MOCVD) system with a horizontal geometry reactor (Taiyo Nippon Sanso SR2000). A 500-nm-thick
unintentionally doped Al0.7Ga0.3N layer was initially deposited on a c-plane AlN/sapphire template
(DOWA Electronics, typical linewidths: (002) ∼ 100-200 arcsec, (102) ∼ 1500-2000 arcsec), followed
by a 1-μm-thick Si-doped Al0.7Ga0.3N layer. Subsequently, a 20-nm-thick Si-doped Al0.65Ga0.35N UL
was grown, followed by three-period unintentionally doped Al0.5Ga0.5N/Al0.6Ga0.4N (2 nm / 5 nm)
MQWs. The Si concentration in these Si-doped layers was set to 8.4 × 1017 cm−3. The threading
dislocation density in the AlN/sapphire template (specially treated for epitaxy) and n-Al0.7Ga0.3N
layer was approximately 1.5 × 109 and 1.3 × 109 cm−2, respectively, estimated from X-ray diffraction
(XRD) measurement. For comparison, a similar AlGaN MQW structure without the n-AlGaN UL was
grown.

For optical investigation, photoluminescence (PL) measurements were performed by using a
frequency-quadrupled mode-locked Ti:sapphire laser (λ = 210 nm) as an excitation source, whose
repetition rate and pulse width are 80 MHz and 100 fs, respectively. The time-resolved PL (TRPL)
decay transients were acquired by a standard streak-camera system with a resolution of 15 ps
through a single photon counting system combined with a photomultiplier tube. The average output
excitation laser power was held constant at 7 mW. Samples were placed in a closed-cycle helium
refrigerator during the temperature-dependent characterizations. XRD reciprocal space mapping
(XRD-RSM) technique was carried out to study the strain distribution and its influence on the
polarization field in the AlGaN MQWs for both samples. Besides, simulation study was conducted
to investigate the band profile and electric field of AlGaN MQWs using a commercially available
software SiLENSe [31].

3. Results and Discussion
The optical properties of these two samples were systematically compared by means of low tem-
perature and temperature-dependent PL measurements. Fig. 1 shows the PL spectra taken at
10 K. A MQWs emission peak at λ ∼ 257 nm was observed in the sample with the n-AlGaN UL,
which exhibited a slight 3 nm blueshift compared to the case without the n-AlGaN UL emitting at
λ ∼ 260 nm. The integrated PL intensity of MQWs emission in the sample with the n-AlGaN UL
was significantly improved, which was about 2.25 times that of the sample without the n-AlGaN
UL, as obviously seen in Fig. 1. Meanwhile, the full width at half maximum of the PL spectrum of
the sample with the n-AlGaN UL was 4.8 nm, which was reduced nearly by half with respect to the
sample without the n-AlGaN UL, whose PL spectrum represented a FWHM of 9 nm. This denotes
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Fig. 1. PL spectra taken at 10 K, normalized to the peak of the sample with the n-AlGaN UL.

that the optical quality of the AlGaN MQWs was improved with the n-AlGaN UL. Notably, there
was a peak emission close to λ ∼ 240 nm for both samples, which was believed to be from the
n-Al0.7Ga0.3N layer [32]. Additionally, the emission peak at λ ∼ 248 nm was considered to originate
from the n-AlGaN UL.

The temperature-dependent PL spectra of the two samples in semi-logarithmic scale were shown
in Fig. 2. Two typical light emission peaks, MQWs and P1, generated from the AlGaN MQWs
and n-Al0.7Ga0.3N layer, respectively, were distinguished for the sample with the n-AlGaN UL in
Fig. 2(a). Correspondingly, the normalized integrated PL intensities of the peak emission from
MQWs and P1 were shown in Fig. 2(c). The MQWs emission, which dominated in each PL spectrum
under different temperatures, presented a gradually decrease on its integrated PL intensity. More
specifically, the PL intensity ratio of MQWs to P1 was estimated from 34 at 10 K to 18 at 300 K.
In contrast, diverse light emission behavior took place in the sample without the n-AlGaN UL in
Fig. 2(b). The MQWs emission only exhibited in the range of 10-175 K, which indicated that more
nonradiative recombination centers caused by threading dislocations or other crystal defects were
activated in AlGaN MQWs with increasing the temperature, while the P1 peak was unquenched
in the whole temperature range. Moreover, a deep-level emission at λ ∼ 287 nm, marked by P2,
was identified, and shifted to around 300 nm with a broad line shape, which probably resulted from
Al vacancy and its complex in n-Al0.7Ga0.3N layer [33], [34]. The PL intensity ratio of MQWs to P1
can be estimated from 10 at 10 K to 0.6 at 175 K, as shown in Fig. 2(d). Further, the integrated
PL intensity of MQWs emission showed a drastic decrease above 50 K, and larger intensity of P1
peak than that in Fig. 2(c), was obviously seen. According to these results, it is deduced that the
AlGaN MQW emission efficiency can be markedly enhanced by the introduction of the n-AlGaN
UL, which suppressed the detrimental band edge luminescence from the layers beneath the AlGaN
MQWs and light emission resulting from the defect-related deep levels in Si-doped AlGaN layers.
The absence of the deep level luminescence from the n-AlGaN UL in Fig. 2(a) was likely to be due
to the lower growth rate, which favors the point defects reduction during the MOCVD epitaxy, as
well as the smaller thickness [35].

In order to determine the degree of carrier localization in AlGaN MQWs, we used the following
two-channel Arrhenius equation to fit the normalized PL intensity, as demonstrated in Fig. 3:

I(T) = [1 + Aexp(−EA1/kBT) + Bexp(−EA2/kBT)]−1 (1)

Here, I (T ) represents the normalized PL intensity as a function of 1/kB T , where kB and T are the
Boltzmann constant and absolute temperature, respectively. A and B are two parameters related

Vol. 8, No. 5, October 2016 1601710



IEEE Photonics Journal Enhanced Emission Efficiency of Deep Ultraviolet

Fig. 2. Temperature-dependent PL results for samples (a) and (c) with the n-AlGaN UL and
(b) and (d) without the n-AlGaN UL.

to the density of nonradiative recombination center in the samples. E A 1 and E A 2 are two activation
energies, where E A 1 is a potential barrier against the carriers hopping from shallow localized states
to deeper ones, and E A 2 is a potential barrier between the localized potential minima and the
defect-related nonradiative recombination centers inside the MQWs [36], [37]. The parameters
obtained from the fitted curves were summarized in Table 1. It was obvious that the density of
nonradiative recombination center was greatly reduced in the sample with the n-AlGaN UL, which
can improve the optical quality of the AlGaN MQWs shown in Fig. 1. The lower E A 1 indicated
that weaker exciton localization took place in the sample with the n-AlGaN UL at low temperature.
Compared to the sample without the n-AlGaN UL, the activation energy E A 2 was larger in the
sample with the n-AlGaN UL, which means that carriers were prone to be localized in the potential
minimum rather than reach the nonradiative recombination centers located inside the AlGaN MQWs
at high temperature. As a result, a room-temperature IQE up to 6.7% of AlGaN MQWs, defined
as the integrated PL intensity ratio between 300 and 10 K [ηint = I PL(300 K)/I PL(10 K)] [38], was
achieved in the sample with the n-AlGaN UL. The inset of Fig. 3 shows the temperature-dependent
peak energy variation of the AlGaN MQWs for the sample with the n-AlGaN UL. The peak energy
exhibited a reversed “S-shaped” shift (increase – accelerated decrease – decelerated decrease)
with increasing T. The initial blueshift of peak position was considered to be attributed to the
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Fig. 3. Arrhenius plots of the normalized integrated PL intensity of the AlGaN MQWs for both samples.
(Inset) Temperature-dependent peak energy of AlGaN MQWs for the sample with the n-AlGaN UL.

TABLE 1

Parameters Obtained by Fitting the Arrhenius Plot: A and B are Two Constants Related to the Density
of Nonradiative Recombination Center, and E A 1 and E A 2 are Two Activation Energies

Type A B EA1 (meV) EA2 (meV)

w/ n-AlGaN UL 1.3 752.5 11.0 99.0

w/o n-AlGaN UL 14.7 1940.9 20.7 73.0

excitons repopulation from local potential minima to higher energy states due to the increased
thermal energy up to 25 K. The subsequent temperature-dependent peak energy variation was
found to well follow the Varshni equation [39], as fitted by the dashed line, which indicated that
the accelerated redshift of peak energy varying from 25 to 175 K resulted from the temperature-
induced bandgap shrinkage. The abnormal decelerated redshift of peak energy in the final part from
175 to 300 K was probably because the photon-generated carriers recombined before reaching the
lower-energy tail states included in the AlGaN MQWs light emission, which extended the higher
energy MQWs emission and weakened the temperature-dependent bandgap shrinkage [40].

To understand how the n-AlGaN UL influenced the recombination dynamics in AlGaN MQWs,
temperature-dependent TRPL decay transients were conducted for both samples. Fig. 4(a) shows
the low-temperature PL decay curves maintained at the peak emission energy. To measure the
decay time, the non-linear PL decay curves were fitted by

I(t) = exp
(

− t
τPL

)
(2)

where I (t) is the normalized PL intensity at time t, and τPL is the effective PL lifetime. Here, τPL

was defined as the time required for the PL intensity to decay by a factor of 1/e from its maximum
[41], [42]. The radiative recombination lifetime τR and nonradiative recombination lifetime τNR can
be derived from [41], [43]

ηint(T) = τPL(T)
τR(T)

,
1

τPL(T)
= 1

τR(T)
+ 1

τNR(T)
(3)
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Fig. 4. (a) TRPL decay transients maintained at AlGaN MQWs peak emission for both samples at
10 K and temperature dependence of the measured τPL and calculated τR and τNR of AlGaN MQWs
for sample (b) without and (c) with the n-AlGaN UL.

Based on the above, τPL was calculated to be 2671.8 and 794.2 ps for the sample without
and with the n-AlGaN UL at 10 K, respectively, as shown in Fig. 4(a). This significant reduction
of τPL led to the enhanced emission efficiency of the AlGaN MQWs grown on the n-AlGaN UL
shown in Fig. 1. The τR of AlGaN MQWs for both samples was around 1000 ps in Fig. 4(b) and
(c). Previous theoretical calculations have shown that τR of zero-dimensional (0D) exciton is almost
independent of T [44], [45], and thus, it is understood that 0D exciton localization was formed in both
samples. This may suggest that Al- and/or Ga-rich AlGaN localized structures exist in the AlGaN
MQWs due to the Al-composition fluctuations, which needs further investigations to provide insight
into understanding. Furthermore, the more fluctuant temperature-dependent variation of τR in the
sample with the n-AlGaN UL reflected that the behaviors of other dimensional excitons cannot be
excluded, and the effect of exciton localization in AlGaN MQWs was weaker than the case without
the n-AlGaN UL, which was in good agreement with the results in Table 1. At the same time, τNR

decreased rapidly at the initial stage with increasing T , and become dominant in the recombination
lifetime from 100 K in the sample without the n-AlGaN UL. However, τNR in the sample with the
n-AlGaN UL showed a gradual decrease with larger values in the whole temperature range and
become dominant above 150 K. It was obvious that the nonradiative recombination process in
AlGaN MQWs was sufficiently suppressed with the introduction of n-AlGaN UL, which can further
improve the light emission.

In order to figure out the effect of the n-AlGaN UL on the AlGaN MQWs samples from the basic
structural perspective, the conduction and valence band profiles of both structures were simulated
by using the commercially available software SiLENSe. In this simulation, the ratio of the conduction
and valence band offsets was assumed to be 7:3, and other parameters, such as piezoelectric and
spontaneous polarization constants, were based on previous reports [7], [46]. Fig. 5 shows the
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Fig. 5. Calculated conduction band (CB) and valence band (VB) profiles for sample (a) without and
(b) with the n-AlGaN UL, where the Fermi level is located at 0 eV. (Insets) Calculated electric field in
each QW.

Fig. 6. XRD-RSMs around (114) reflection for samples (a) without and (b) with the n-AlGaN UL.
The solid line represents the strain relaxation R(MQWs), and the dashed lines show the values of Q x .

calculated band diagrams accompanied with the electric field of AlGaN MQWs for both samples.
The built-in potential gradient across each QW of the samples without and with the n-AlGaN UL
were calculated to be approximately 65 and 50 meV/nm, respectively. The reduction of built-in
potential gradient represented that the n-AlGaN UL strongly modified the band bending between
the n-Al0.7Ga0.3N and AlGaN MQW layer. Simultaneously, the electric fields in AlGaN MQWs in the
samples without and with the n-AlGaN UL were calculated to be 0.69 and 0.51 MV/cm, respectively,
as seen in the insets of Fig. 5(a) and (b). The results showed that the electric field in the sample
with the n-AlGaN UL was reduced by 26% compared with the case without the n-AlGaN UL. As
is well known, the quantum-confined Stark effect (QCSE), which limits the emission efficiency of
MQWs, can be suppressed by diminishing the electric field [47]–[49]. Therefore, we can conclude
that the QCSE in AlGaN MQWs was weakened by introducing the n-AlGaN UL, which can further
increase the radiative recombination rate, enlarge the peak energy of the MQWs light emission,
and improve the light emission efficiency. The slight blueshift in peak energy of the AlGaN MQWs
grown on the n-AlGaN UL at 10 K in Fig. 1 was, hence, attributed to this.

The electric field in the MQWs consists of contributions from the intrinsic spontaneous and strain-
induced piezoelectric polarization fields [50]. The reduction of QCSE caused by the electric field
was, hence, likely to be due to strain relaxation of the AlGaN MQWs grown on the n-AlGaN UL.
To clarify the mechanism that caused the QCSE reduction by the n-AlGaN UL, XRD-RSM of the
asymmetric (114) reflections were performed to investigate the strain distributions in these samples.
Fig. 6 shows the measured (114) RSMs for the sample without and with the n-AlGaN UL. For the
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hexagonal III-nitrides, the in-plane lattice constant a and out-of-plane lattice constant c can be
obtained from the reciprocal coordinate Q x and Q y in the RSMs by [51]

a =
√

4
(
h2 +hk + k2

)
3

1
Qx

, c = l
Qy

. (4)

The degree of strain relaxation of AlGaN MQWs is defined as [52]

R(MQWS) = aMQWS − aAl0.7Ga0.3N

a0 MQWS(x) − aAl0.7Ga0.3N
(5)

where aMQWs and aAlGaN are measured lattice constants from RSMs, and a0MQWs is the relaxed
parameters predicted by Vegard’s law. The Al content in the Al0.7Ga0.3N layer was calculated to be
approximately 70% ± 1% in both samples, which was in good agreement with the nominal design.
It was found that the strain relaxation factor R(MQWs) was increased from 10.8% to 14.4% with
the inclusion of the n-AlGaN UL. The relaxed AlGaN MQWs was compressively strained grown on
n-Al0.7Ga0.3N layer, and the increased strain relaxation factor indicated that the compressive strain
of AlGaN MQWs became larger in the sample with the n-AlGaN UL than the case without it. More
specifically, the strain status can be described in terms of the transformation between barrier and
well within the AlGaN MQWs. The AlGaN barrier and well were compressive- and tensile-strained
in the relaxed AlGaN MQWs in the sample without the n-AlGaN UL. With further strain relaxation,
compressive strain in the AlGaN barrier was increased and tensile strain in the AlGaN well was
released in the sample with the n-AlGaN UL. As the piezoelectric field PPZ is closely related to
the strain relaxation, the electric field variation in AlGaN QW can be estimated from PPZ according
to [53]

PPZ = 2
(

e31 − e33
C13

C33

)
εxx (6)

where eij and C ij are the piezoelectric constants and elastic stiffness constants, respectively, linearly
interpolated from AlN and GaN, and εxx is the in-plane strain of AlGaN QW. Based on the analysis
above, the tensile strain εxx in AlGaN QW was released in the sample with the n-AlGaN UL, and
consequently resulted in the reduction of PPZ. The electric field was therefore weakened in AlGaN
QW which caused the QCSE reduction with the introduction of the n-AlGaN UL. We can note that
there is a diffraction peak locating between the AlN and the main Al0.7Ga0.3N peak in Fig. 6(a), and
it is nearly aligned with the AlN peak along Q x vector. Therefore, it is considered that there was a
thin AlGaN region pseudomorphically grown on the AlN/sapphire template in the sample without
the n-AlGaN UL during epitaxy. This doesn’t affect the comparison between the samples with and
without the n-AlGaN UL.

4. Conclusion
In summary, we have investigated the optical properties of AlGaN MQWs structure grown on an
n-AlGaN UL with comparative structures. Compared to the sample without the n-AlGaN UL, the
integrated PL intensity of the AlGaN MQWs was increased by a factor of 2.25, and a much smaller
FWHM of the PL spectrum was observed in the sample with the n-AlGaN UL at 10 K. Temperature-
dependent PL measurements showed that the parasitic peaks emitting from inactive regions can
be effectively suppressed by the n-AlGaN UL, which was beneficial for the light emission efficiency
enhancement. Further analysis on the PL data indicated that the nonradiative recombination centers
in AlGaN MQWs were greatly reduced, and carriers were prone to be localized in the potential
minimum with the introduction of the n-AlGaN UL. TRPL measurements represented that 0D exciton
localization took place in both samples; however, the nonradiative recombination process was
evidently lessened with the introduction of the n-AlGaN UL. Band profile simulations showed that
the inclusion of the n-AlGaN UL effectively modulated the band bending between the n-Al0.7Ga0.3N
and AlGaN MQW layer in terms of the decrease of the built-in potential gradient across each QW.
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Simultaneously, the electric field in AlGaN MQWs was calculated to be 0.51 MV/cm in the sample
with the n-AlGaN UL, which was reduced by 26% compared with the case without the n-AlGaN UL.
XRD-RSMs attributed this to the reduction of strain-induced piezoelectric electric field in AlGaN
well layer. The results showed that the QCSE in AlGaN MQWs was weakened in the sample with
the n-AlGaN UL. The light emission efficiency of AlGaN MQWs was therefore enhanced due to
the greatly suppressed nonradiative recombination and reduced QCSE with the introduction of the
n-AlGaN UL. The present research has potential application for the DUV optoelectronic devices, as
well as for better understanding the recombination mechanism in AlGaN MQWs.
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