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Abstract

In this paper, we discuss a new efficient algorithm for nonnegative matrix fac-

torization (NMF) with smooth constraints imposed on nonnegative components

or factors. Such constraints allow us to extend the applicability of NMF tech-

niques, and to extract unique components with some physical interpretation

or meaning. In our approach, various basis functions are exploited to flexibly

and efficiently represent the smooth nonnegative components. For noisy in-

put data, the proposed algorithm is more robust than the existing smooth and

sparse NMF algorithms. Moreover, we extend the proposed approach to smooth

nonnegative Tucker decomposition and smooth nonnegative canonical polyadic

decomposition (also called smooth nonnegative tensor factorization). Finally,

we conduct extensive experiments on synthetic and real-world multi-way array

data to demonstrate the advantages of the proposed algorithms.

Keywords: Nonnegative Matrix Factorization (NMF), Nonnegative CP

decomposition (NCPD), Nonnegative Tucker decomposition (NTD), smooth

component analysis, blind source separation (BSS), multi-way data analysis,

Gaussian radial basis function

1. Introduction

Nonnegative matrix/tensor factorization (NMF/NTF) plays an important

role in feature extraction, classification, blind source separation (BSS), denois-

ing, the completion of missing values, and clustering for nonnegative signals.
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The standard NMF model is given by

Y ' AX ∈ RI×J+ , (1)

where A = [a1, a2, . . . , aR] ∈ RI×R+ , X ∈ RR×J+ , and Y = [y1, y2, . . . , yJ ]5

is an observation matrix consisting of J observations. The goal of NMF is to

compute A and X from the observation matrix Y for a given parameter R.

For example, we consider R ≤ J � I in BSS problems [5]. In this case, we

want to find R latent source signals from J mixed observations. NMF gives

A as an estimator of the latent source signals. In the case of extracting parts10

of facial images [20], I and J denote the number of pixels in an image and

the number of images, respectively. NMF then represents each facial image as

a linear combination of R nonnegative parts. In the case of clustering tasks

[33], A is the set of cluster centroids, and X represents the weight parameters

of the clusters. The nonnegativity constraint plays an important role in the15

physical interpretation of decomposition and the extraction of independent sig-

nals from physically mixed observations. Basically, luminance signals, spectral

signals, text data, and financial data should be nonnegative, and their latent

components are often preferred to be nonnegative for the interpretation of fea-

ture vectors. For the BSS problem in particular, the latent signals should be20

nonnegative. Furthermore, the physically linear mixing system is often given by

the nonnegative mixing matrix, such as for audio signals, luminance signals, op-

tical waves, and wavelength spectra. The nonnegative constraint on the feature

vector and mixing system plays an important role in separating independent

features. In fact, NMF can be applied to a wide range of real-world data anal-25

yses, such as document clustering, blind image separation, and image/video

denoising [33, 18, 36, 11].

In general, NMF/NTF is not unique. Thus, for many types of data, we need

to impose some additional constraints to relax the problem of non-uniqueness

and obtain physically meaningful components. To date, most researchers have30

imposed sparsity constraints [16, 18, 14]. In this paper, we investigate another

fundamental constraint: smoothness. Obviously, a signal may be smooth and
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sparse in separate domains. For example, harmonic signals are smooth in the

time domain and sparse in the frequency domain. Moreover, many physical

latent variables (e.g., event related potential) are often relatively smooth. In35

fact, the smooth NMF is useful for analyzing temporally or spatially smooth

signals (e.g., natural image data, brain waves, and financial data) [4, 35, 36, 12,

13, 34].

The many smooth NMF methods can generally be separated into two ap-

proaches. The first adds some smooth constraint term into the NMF criterion.40

For example, Chen et al. [4] proposed the addition of a temporal smoothness

constraint and a spatial decorrelation constraint into the Frobenius norm and

the Kullback–Leibler (KL) divergence-based NMF for electroencephalography

(EEG) analysis, and Zdunek and Cichocki [35, 36] added a Gibbs regularization

term for smooth NMF. Drakakis et al. [12] incorporated a sparseness constraint45

into the mixing matrix, and a smoothness constraint was added to the feature

matrix in the Frobenius norm and KL divergence-based NMF for the analysis of

financial data. Essid and Fevotte [13] applied the KL divergence-based smooth

NMF for audiovisual document structuring, and Dong and Li [11] reported the

application of smooth NMF using Laplacian regularization for incomplete ma-50

trix factorization.

The second approach approximates the feature vectors by a linear combi-

nation of several smooth basis vectors. This approach was first proposed by

Zdunek [34], where Gaussian radial basis functions (GRBFs) were used with a

single standard deviation parameter. This GRBF-NMF method provides effec-55

tive performance for robust data analysis with respect to noise. However, the

original algorithm was relatively slow, because it employed quadratic program-

ming (QP) optimization and the active-set algorithm. The computational cost

of QP optimization increases exponentially for large-scale problems. Thus, the

original GRBF-NMF algorithm is not practical for large-scale data.60

Another problem is that research into smooth nonnegative ‘tensor’ factor-

ization is not sufficiently well progressed, despite the many promising potential

applications. One reason for this is that most existing algorithms for smooth
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NMF are quite complex and have a very high computational cost. In this paper,

we address the following objectives:65

• Simplify the GRBF-NMF method and develop a new, practical algorithm

(i.e., reduce the computational cost).

• Extend the method to the nonnegative Tucker and canonical polyadic

(CP) decompositions.

For this purpose, we modify the original problem and propose a new, fast algo-70

rithm based on the hierarchical alternating least-squares (HALS) method [8, 6],

which is a fast and stable algorithm for general NMF/NTF. Furthermore, we

propose two extensions for GRBF-NMF. The first uses more flexible basis func-

tions that consist of Gaussian functions with multiple standard deviation param-

eters. The second involves two-dimensional Gaussian functions for processing75

image data. We call this extension GRBF-NMF-2Dbasis.

For the second objective, we propose two algorithms for smooth nonnega-

tive Tucker decomposition (NTD) and smooth nonnegative CP decomposition

(NCPD). These are extensions of our HALS-based GRBF-NMF algorithm. We

call these extensions GRBF-NTD and GRBF-NCPD. Furthermore, the NTF80

methods are extended to the ‘2Dbasis’ case. Note that we can select the target

modes on which to impose the smooth constraint. For example, for a 3D tensor

with a temporally smooth domain (the first mode), spatially smooth domain

(the second mode), and trial domain (the third mode), the smooth constraint

can be applied to only the first and the second modes.85

The remainder of this paper is organized as follows. Section 2 introduces

the original GRBF-NMF algorithm for a smooth representation. In Section 3,

we propose a novel fast algorithm for GRBF-NMF, and discuss its extensions.

Section 4 explores the tensor versions of our approach based on the Tucker and

CP models. In Section 5, we investigate the performance and applications of90

our new HALS-based GRBF-NMF/NTF algorithms, and compare them with

state-of-the-art methods. In Section 6, we discuss several aspects of our work,
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including its application to open problems. Finally, we give our conclusions in

Section 7.

2. Smooth Nonnegative Matrix Factorization with Function Approx-95

imation

In this section, we review the basic smooth NMF model using the function

approximation proposed by Zdunek [34]. According to this method, a feature

vector ar is represented as

ar =

N∑
n=1

φnwnr, (r = 1, 2, ..., R) (2)

where {wnr} are real-valued coefficients, and φn is a smooth basis function (e.g.,

Gaussian function). Let Φ = [φ1, . . . , φN ] ∈ RI×N+ , and W = [wnr] ∈ RN×R.

Note that W is not resticted to be non-negative. Then, we have the following

model for smooth NMF:

Y ' ΦWX, s.t. ΦW ≥ 0, and X ≥ 0. (3)

In this model, the feature matrix A is approximated by ΦW , and the objective

is to estimate W and X. When the observed data Y includes some noise, this

model can reduce its influence via smoothing constraints. For optimization, we

estimate the two parameter matrices W and X, since Φ is known.100

2.1. Selection of Φ

Zdunek [34] expressed Φ using GRBF with a standard deviation σ as

Φ(i, n) = exp

[
− (i− n∆t)2

2σ2

]
, (4)

where ∆t is an interval satisfying N = b(I − 1)/∆tc+ 1 (see Fig. 1). When σ is

large, the flexibility of this representation decreases, but it is expected that the

NMF will then be robust for noisy data. On the other hand, when σ is small,

φn will define orthogonal bases. This increases the flexibility of representation,105

but weakens the NMF for noisy data. Thus, σ can be regarded as a trade-off

parameter. This method is known as GRBF-NMF.
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Figure 1: Basis function φn

2.2. Original GRBF-NMF Algorithm

In this section, we introduce the original GRBF-NMF algorithm. To esti-

mate W and X, the most popular criterion is to minimize the Frobenius norm

as

minimize
W , X

1

2
||Y −ΦWX||2F , s.t. ΦW ≥ 0, X ≥ 0. (5)

Since this optimization is not convex, we separate this criterion into the following

two sub-problems, which are solved alternately and iteratively:

minimize
X

1

2
||Y −ΦWX||2F , s.t. X ≥ 0, (6)

minimize
W

1

2
||Y −ΦWX||2F , s.t. ΦW ≥ 0. (7)

To solve (6), we can apply the basic alternating least-squares (ALS) approach

[9]. The regularized fast combinatorial nonnegative least-squares (FC-NNLS)

algorithm [30] can also be used. This approach is based on the active-set al-

gorithm. To solve (7), we transform the objective function to the following

vectorized form:

1

2
||Y −ΦWX||2F =

1

2
||ȳ − (XT ⊗Φ)w̄||2

=
1

2
ȳT ȳ − ȳT (XT ⊗Φ)w̄ +

1

2
w̄T (XXT ⊗ΦTΦ)w̄, (8)

where w̄ = vec(W ) ∈ RRN and ȳ = vec(Y ) ∈ RIJ are vectorized forms of the

matricesW and Y , respectively, and ⊗ denotes the Kronecker product. Finally,

the problem is transformed to the following QP problem:

minimize
w̄

1

2
w̄TQw̄ + cT w̄, s.t. (IR ⊗Φ)w̄ ≥ 0, (9)

where Q = XXT ⊗ ΦTΦ ∈ RRN×RN , c = −(X ⊗ ΦT )ȳ ∈ RRN , and IR ∈

RR×R is an identity matrix.110
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2.3. Characteristics of the Model

This function approximation model is inspired by the regression methods

employed for nonlinear function models. In an earlier study of function approx-

imation by NMF, it was proposed that the feature vectors are fitted by the single

Boltzmann distribution function model to factorize the data from fluorescence115

correlation spectroscopy [32]. However, since the single Boltzmann distribution

function model is quite limited, it is difficult to apply this for our objectives.

Next, Ding et al. [10] estimated the feature vectors according to A ' YW ,

where the dataset Y includes positive and negative entries, and W ≥ 0 is a

nonnegative multiplier matrix. They claimed there was a close relation between120

this model and k-means clustering. Similarly, we claim that there exists a rela-

tion between their model and our model. They employ a weighted summation

as YW for clustering, whereas we employ a linear combination of smooth func-

tions as ΦW for smooth features. Next, Jiang and Yin [17] proposed to estimate

the feature vectors using a wavelet function model for sparse NMF. However,125

this was intended for sparse representations. On the other hand, the GRBF-

NMF method can be characterized as a Gaussian mixture model or some kernel

regression model [31] to represent smooth and nonnegative feature vectors; this

seems to be appropriate for our objectives (i.e., part-based representation and

BSS). Thus, the key to this model is the choice of a suitable value for σ, since130

the smoothness of results is directly dependent on this parameter. According

to a previous study [34], GRBF-NMF gives robust results with respect to noisy

data when an appropriate value of σ is used.

2.4. Computational Issues

The original algorithm employs the active-set algorithm for the matrix X135

and QP optimization for the matrix W . Each algorithm is an excellent opti-

mization method; however, their combined alternate use does not result in an

efficient optimization algorithm. This is because the parameter-space dimension

for the QP optimization will be large (i.e., RN), and the active-set method has

to iteratively solve the least-squares problem to evaluate the optimality of the140
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current active set. Thus, the computational cost becomes very high. The use

of strict optimization methods is not indispensable in each step of an iterative

algorithm. A low-cost approximation step is often better, even though it does

not give an exact solution. Based on this approach, a new fast GRBF-NMF

algorithm is proposed in Section 3.145

3. Fast Algorithm for GRBF-NMF

As stated above, the problem with the original algorithm is the high com-

putational cost of each step because of QP optimization and the active-set al-

gorithm in each iteration (i.e., double loop). In this section, we focus on com-

putational efficiency to reduce the computational cost of each step. The total150

computational efficiency is then evaluated experimentally.

First, we modify the GRBF-NMF optimization problem (5) as

minimize
W ,X

||Y −ΦWX||2F ,

s.t. W ≥ 0, X ≥ 0, ||xr||2 = 1 for r = 1, ..., R, (10)

where xTr is the r-th row vector of X = [x1, ...,xR]T . In this problem, the

constraint ΦW ≥ 0 is replaced by W ≥ 0. Since Φ ≥ 0, W ≥ 0 is a suffi-

cient condition for ΦW ≥ 0. Under this constraint, the flexibility of the model

decreases slightly; however, it becomes more robust to noise. In many regres-155

sion models, a highly flexible model may suffer from over-fitting without any

regularization. When the data is noisy, such a model often represents not only

the main feature, but also noise and outliers. To prevent this over-fitting, one

solution is to use the proposed simpler model, as we do not allow negative values

in W . Thus, the proposed model can be considered to be more robust for noise160

and outliers than the original model. In addition, we impose the constraint

||xr||2 = 1. This does not alter the flexibility, but normalizes each xr.

To obtain a solution to (10), we separate (10) into sub-problems based on

the HALS method [8]. Since the GRBF-NMF model can be decomposed to

ΦWX = Φw1x
T
1 + Φw2x

T
2 + · · ·+ ΦwRx

T
R (see Fig. 2), problem (10) can be
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a)

c)b)

Figure 2: Decomposition of the GRBF-NMF model

separated into the following sub-problems:

minimize
xr

||Y r −Φwrx
T
r ||2F , s.t. xr ≥ 0, ||xr||2 = 1. (11)

minimize
wr

||Y r −Φwrx
T
r ||2F , s.t. wr ≥ 0, (12)

where Y r := Y −
∑
k 6=r Φwkx

T
k .

First, we consider problem (11). Since Φwr is currently fixed, it is equivalent

to a simple least-squares problem with a nonnegativity constraint. This problem

has been studied in many papers [6, 8, 9]. The simplest update rule is given by

xr ← [Y T
r Φwr]+, (13)

xr ← xr/||xr||, (14)

where [x]+ := max(x, ε), and ε is a very small positive value (e.g., ε = 10−16).

Next, we consider problem (12). The objective function can be transformed

to

||Y r −Φwrx
T
r ||2F

= tr(Y T
r Y r)− 2tr(Y T

r Φwrx
T
r ) + tr(wT

r ΦTΦwr), (15)

since xTr xr = 1. By computing the partial derivative of the objective function

with respect to wr, the stationary condition for a solution is given by

∂

∂wr
||Y r −Φwrx

T
r ||2F = 2ΦTΦwr − 2ΦTY rxr = 0. (16)

This direct solution will be wr = [(ΦTΦ)−1ΦTY rxr]+; however, this formula is

unstable and has a high computational cost. Thus, we do not employ this update
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rule, but propose a more effective version. Note that the following problem is

equivalent to (12) via the same partial differentiation with respect to wr, since

||xr|| = 1:

minimize
wr

||Y rxr −Φwr||2, s.t. wr ≥ 0. (17)

Moreover, the objective function in (17) can be transformed to

||Y rxr −Φwr||2 = tr(xrx
T
r Y

T
r Y r)− 2tr(Y T

r Φwrx
T
r ) + tr(wT

r ΦTΦwr).

(18)

The only difference from (15) is in the first term; however, neither first term

depends on wr. Thus, we can ignore this difference from the viewpoint of opti-

mization with respect towr. Problem (17) can be solved by some nonnegativity-

constrained least-squares (NNLS) algorithms (see [30]); however, such algo-

rithms have a high computational complexity for large-scale problems. To fur-

ther reduce the computational cost, we propose the following multiplicative

update rule:

wr ← wr ~ [ΦTY rxr]+ � (ΦTΦwr), (19)

where ~ and � denote element-wise multiplication and element-wise division,165

respectively.

Finally, the proposed algorithm is summarized in Algorithm 1.

3.1. Computational Cost

In this section, we discuss the computational cost of our algorithm. The com-

putational cost of one step of the new algorithm is very low, because it consists170

of only four operations and the thresholding without any complex optimization

procedure. If we assume R ≤ J ≤ I = N , the maximum computational com-

plexity of the proposed fast algorithm is O(I2R) of arithmetic operations in

each iteration. For comparison, the maximum computational complexity of the

original algorithm is O(I3R3), assuming that Cholesky decomposition is used in175

the QP optimization. Thus, our modification dramatically improves the compu-

tational efficiency. In Section 5, we not only confirm that the proposed method
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Algorithm 1 Fast algorithm for GRBF-NMF

1: Input: Y , R, and Φ

2: Initialize: W and X

3: E = Y −ΦWX;

4: repeat

5: for r = 1, . . . , R do

6: Y r ← E + (Φwr)x
T
r ;

7: xr ← [Y T
r (Φwr)]+;

8: xr ← xr/||xr||;

9: wr ← wr ~ [ΦT (Y rxr)]+ � {ΦT (Φwr)};

10: E ← Y r − (Φwr)x
T
r ;

11: end for

12: until ||E||2F converges

13: Output: W and X

provides an improvement in computational efficiency, but also demonstrate its

robustness to noisy data.

3.2. Theoretical Guarantee of Monotonic Non-increasing Property180

The proposed update rule (19) has the important property that the objective

function of (17) is monotonically non-increasing. In this section, we propose and

prove a theorem.

Theorem 3.1. Let v ∈ RI , Φ ∈ RI×N+ , w ∈ RN+ , and F (w) := 1
2 ||v−Φw||2

be an objective function. Then, the update rule wt+1 = wt~[ΦTv]+�(ΦTΦwt)185

does not increase the objective function. Thus, F (wt+1) ≤ F (wt).

Note that the theorem is generally true, and the update rule can be applied

to other problems. Substituting Y rxr into v, the theorem can be applied to our

problem. Theorem 3.1 can be proved by the following definition and lemmas:

Definition 3.1. G(w,w′) is an auxiliary function for F (w) if the following
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conditions hold:

G(w,w′) ≥ F (w), G(w,w) = F (w). (20)

Lemma 3.1. We define the diagonal matrix K(w′) as

[K(w′)]ij = δij(Φ
TΦw′)i/w

′
i. (21)

Then,

G(w,w′) = F (w′) + (w −w′)T∇F (w′) +
1

2
(w −w′)TK(w′)(w −w′) (22)

is an auxiliary function for F (w).190

Lemma 3.1 has already been proved [21]. This auxiliary function is quadratic

with respect to w, and the minimization of G(w,w′) subject to nonnegative w

produces an update rule for the minimization of F (w). Next we introduce t to

indicate the number of updates of w, then, wt is after t-times updates of w0.

The following lemmas express an appropriate update rule to obtain wt+1 from195

wt.

Lemma 3.2. The expression

wt+1 = [wt −K(wt)−1∇F (wt)]+

= wt ~ [ΦTv]+ � (ΦTΦwt)

is a solution of

minimize
w

G(w,wt), subject to w ≥ 0. (23)

Proof. The Lagrange function of problem (23) is given by

L(w) = G(w,wt)−wTγ, (24)

where γ ≥ 0 is a vector of Lagrangian multipliers. Its Karush-Kuhn-Tucker

(KKT) conditions are given by

∂L

∂w
= ∇F (wt) +K(wt)(w −wt)− γ = 0, (25)

wi ≥ 0, γi ≥ 0, wiγi = 0 for i = 1, 2, ..., N. (26)
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We can rewrite (25) as

γi = [∇F (wt)]i + [K(wt)(w −wt)]i = wi(Φ
TΦwt)i/w

t
i − (ΦTv)i.

If (ΦTv)i ≤ 0, then wt+1
i = wti · 0 · (Φ

TΦwt)i = 0 and γi = 0 · (ΦTΦwt)i/w
t
i +

|(ΦTv)i| ≥ 0. If (ΦTv)i > 0, then wt+1
i ≥ 0 and γi = wt+1

i (ΦTΦwt)i/w
t
i −

(ΦTv)i = (ΦTv)i − (ΦTv)i = 0. Therefore, wt+1
i satisfies the KKT conditions

for all i, and is a global optimal solution to problem (23).200

Lemma 3.3. If G(wt+1,wt) ≤ G(wt,wt), then F (wt+1) ≤ F (wt).

Proof. F (wt+1) ≤ G(wt+1,wt) ≤ G(wt,wt) = F (wt).

3.3. Extensive Bases for GRBF-NMF

In this section, we discuss the efficient selection of Φ. We can use various

bases φ to make Φ; for example, multiple bases with various σ can be mixed.

Thus, we propose to construct Φ as

Φ = [Φσ1 ,Φσ2 , ...,ΦσU
] ∈ RI×N , (27)

where U is the number of σu and Φσu
denotes the basis matrix with standard

deviation σu. For example, if we set

σ1 = σ, σ2 = 2σ, σ3 = 4σ, ..., σU = 2U−1σ, (28)

∆t1 = δt, ∆t2 = 2δt, ∆t3 = 4δt, ..., ∆tU = 2U−1δt, (29)

then N < 2I/δt holds for any U . Let us set the horizontal size of Φσ1
as N0.

Then, the horizontal size of Φ is roughly bounded by N = N0 + 1
2N0 + 1

4N0 +

· · · + 1
2U−1N0

< 2N0 for any U . Furthermore, we propose to add an additional

direct-current (DC) component, such that Φ is given by

Φ = [Φσ1
,Φσ2

, ...,ΦσU
,1]. (30)

Finally, we have N =
∑U
u=1[b(I − 1)/(2u−1δt)c+ 1] + 1. This extension can be

applied to various resolutions of data.205
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3.3.1. 2D basis

We propose another kind of Gaussian basis function for smooth image sig-

nals. Let the observed signal yj ∈ RI be an unfolded vector of an (I1 × I2)

matrix Y j ∈ RI1×I2 representing the image, where I = I1I2. In this case, using

φn as defined in (4) represents only the vertical smoothness. However, natural

images usually have both vertical and horizontal smoothness. Therefore, we

consider the following 2D basis:

Φ(2)
n (i1, i2) := exp

− 1

2σ2

∣∣∣∣∣∣
∣∣∣∣∣∣
i1
i2

−
n1

n2

∣∣∣∣∣∣
∣∣∣∣∣∣
2
 ∈ RI1×I2 , (31)

where

n1 = {(n∆t− 1) mod I1}+ 1, (32)

n2 = b(n∆t− 1)/I1c+ 1. (33)

Thus, we have n∆t = (n2 − 1)I1 + n1, where 1 ≤ n1 ≤ I1 and 1 ≤ n2 ≤ I2. In

practice, we unfold the matrix Φ(2)
n into a vector as φ(2)

n = vec(Φ(2)
n ) ∈ RI , and

construct the basis matrix Φ(2) as

Φ(2) = [φ
(2)
1 ,φ

(2)
2 , ...,φ

(2)
N ] ∈ RI×N . (34)

The multi-σ version described in the previous section can be formed in a similar

way:

Φ = [Φ(2)
σ1
,Φ(2)

σ2
, ...,Φ(2)

σU
,1]. (35)

3.4. Dimensionality Reduction of the Basis Matrix

When the size of the basis matrix Φ is very large, function approximation can

occupy a lot of memory. For example, when we factorize images with a resolution

of 256×256 pixels, each image must be unfolded to a 65536-dimensional vector.210

Then, Φ becomes a (65536×65536) matrix, which would occupy about 34.36 GB

of memory. This is a critical issue of the GRBF-NMF methods. In this section,

we propose a method that drastically reduces the size of the basis matrix Φ.
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First, the observed signal yj is folded into a matrix Y (j). For example, a 1000-

dimensional vector is folded into a (100 × 10) matrix. Next, we replace the215

observed matrix with a block matrix Ỹ = [Y (1), ...,Y (J)]. For instance, if we

fold 1000-dimensional vectors into (100× 10) block matrices, we can reduce the

matrix size of Φ by almost 99% compared to the conventional method.

For image data, it is effective to split the image into several blocks to be

vectorized. We assume that the image Y j is given by a block matrix

Y j =


D

(j)
11 · · · D

(j)
1q

...
. . .

...

D
(j)
p1 · · · D(j)

pq

 ∈ RI1×I2 . (36)

This can be folded as Y (j) = [vec(D
(j)
11 ), vec(D

(j)
12 ), ..., vec(D(j)

pq )] ∈ RI1I2/(pq)×pq.

In this case, the 2D basis is easily applicable. We call this the GRBF-block-NMF220

method.

Note that this is related to the block transform using a 2D discrete cosine

transform (2D-DCT) for image compression, which splits an image into 8 × 8

blocks and factorizes each block by 64 2D cosine bases. If we apply the 2D

cosine bases to Φ, we obtain a similar effect to the block transform. However, our225

method differs from the block transform, because we not only obtain coefficients

of the bases, but also optimize the bases via linear model using Φ. Furthermore,

the DCT block transform is lossless, whereas our method is generally lossy.

One problem concerns folding the large-scale vector when the dimension is

a prime number. In this case, there are two approaches: we can either re-230

duce or expand the dimension. Although the reduction approach may lose

some information, it entails a lower computational cost. While the expansion

approach does not lose any information, it increases the computational cost

and the amount of redundant information. We propose repeat and symmetry

methods for the expansion approach. Let us consider expanding y ∈ RN to235

z ∈ RN+M . When y has a cyclic feature, it is appropriate to use the repeat-

type expansion from y = [y1, y2, ..., yN ]T to z = [y1, y2, ..., yN , y1, y2, ..., yM ]T .

The symmetry-type expansion takes y = [y1, y2, ..., yN ]T and produces z =
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Algorithm 2 Fast GRBF-NTD algorithm

1: Input: Y , R1, R2, R3, and Φ

2: Initialize: W randomly, and B, C, G by some initialization method for

NTD

3: E ← Y −G×1 ΦW ×2 B ×3 C;

4: repeat

5: Ξ← G(1)(C
T ⊗BT );

6: for r = 1, . . . , R1 do

7: Zr ← E(1) + (Φwr)ξ
T
r ;

8: ξr ← [ZTr (Φwr)]+;

9: ξr ← ξr/||ξr||;

10: wr ← [wr ~ {ΦT (Zrξr)} � {Φ
T (Φwr)}]+;

11: E(1) ← Zr − (Φwr)ξ
T
r ;

12: end for

13: A← ΦW ;

14: B ← B ~ (Y (2)(A⊗C)GT
(2))� (BG(2)(A

TA⊗CTC)GT
(2));

15: C ← C ~ (Y (3)(A⊗B)GT
(3))� (CG(3)(A

TA⊗BTB)GT
(3));

16: G← G~ (Y ×1 A
T ×2 B

T ×3 C
T )� (G×1 AA

T ×2 BB
T ×3 CC

T );

17: E ← Y −G×1 ΦW ×2 B ×3 C;

18: until ||E||2F converges

19: Output: W , B, C, and G

[y1, y2, ..., yN , yN , yN−1, ..., yN−M+1]T .

4. Smooth Nonnegative Tensor Factorizations and Decompositions240

Nonnegative tensor decompositions have already found numerous applica-

tions in positron emission tomography (PET), EEG, spectroscopy, chemomet-

rics, and environmental science [9, 2, 26]. There are two basic models of tensor

factorization/decomposition: Tucker and CP decomposition (CPD).

16



The Tucker model [29] for third-order tensors can be described as

Y ' G×1 A×2 B ×3 C

=

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3ar1 ◦ br2 ◦ cr3 , (37)

where Y ∈ RI×J×K+ is an observed data tensor, G ∈ RR1×R2×R3
+ is a core

tensor, A ∈ RI×R1
+ , B ∈ RJ×R2

+ , C ∈ RK×R3
+ are factor matrices, ×k is

the k-th way tensor-matrix product, and ◦ denotes the outer product. The

nonnegativity-constrained decomposition is called the nonnegative Tucker de-

composition (NTD). The Tucker model can be rewritten in matrix and vector

forms as

Y (1) ' AG(1)(C
T ⊗BT ), (38)

Y (2) ' BG(2)(C
T ⊗AT ), (39)

Y (3) ' CG(3)(B
T ⊗AT ), (40)

ȳ ' (C ⊗B ⊗A)ḡ, (41)

where Y (1) ∈ RI×JK+ and G(1) ∈ RR1×R2R3
+ are the mode-1 matrix forms of the245

tensors Y and G, respectively. We define modes 2 and 3 similarly. If we set

Ξ := G(1)(C
T ⊗BT ), the factorization Y (1) ' AΞ can be regarded as NMF.

Thus, the nonnegative factor matrix A can be updated by NMF-based update

rules. In a similar way, B, C, andG can also be updated by NMF-based update

rules (e.g., by applying ALS) [19].250

The CPD model is a special case of the Tucker model with R1 = R2 = R3 =

R and diagonal tensor G = Λ ∈ RR×R×R+ with entries λr on the main diagonal

given by

Y '
R∑
r=1

λrar ◦ br ◦ cr. (42)

The CPD model is also called PARAFAC [15] or CANDECOMP [3]. It can

be regarded as a straightforward tensor extension of NMF, since NMF can be

rewritten using Y '
∑R
r=1 λrar ◦ br. Thus, the CP model gives an R-rank

approximation of the observed data tensor.
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In this section, we discuss the extension of GRBF-NMF to tensor decomposi-255

tions. In some cases, we assume ar, br, and/or cr are smooth, and approximate

these as Φawr, Φbvr, and/or Φchr, respectively. The update rule for wr can be

applied to vr and hr; hence, we only provide an update rule for wr in Sections

4.1 and 4.2.

4.1. Tucker Model260

In this section, we extend GRBF-NMF to the smooth nonnegative Tucker

decomposition (NTD) to obtain A by the function approximation ΦW . For

this purpose, we consider the following optimization criterion:

minimize
G,W ,B,C

||Y −G×1 ΦW ×2 B ×3 C||2F ,

s.t. G ≥ 0, W ≥ 0, B ≥ 0, C ≥ 0. (43)

We call this the GRBF-NTD method. The key to this problem is the update of

W . This is because the other factors (B,C,G) can be updated by the ALS-

based algorithm for nonnegative Tucker decomposition [24, 25, 27, 19]. Focusing

on W and using a matrix form, the problem can be rewritten as

minimize
W

||Y (1) −ΦWG(1)(C
T ⊗BT )||2F , s.t. W ≥ 0. (44)

Setting Zr := Y (1)−
∑
k 6=r Φwkξ

T
k and Ξ = [ξ1, ..., ξR1

]T := G(1)(C
T ⊗BT ) ∈

RR1×JK , we consider the problem for wr as

minimize
wr

||Zr −Φwrξ
T
r ||2F , s.t. wr ≥ 0. (45)

Problem (45) is essentially equivalent to (12). Since the condition that ||ξr|| = 1

must be satisfied, the update rule for wr is given by

ξr ← [ZTr Φwr]+; (46)

ξr ← ξr/||ξr||; (47)

wr ← [wr ~ (ΦTZrξr)� (ΦTΦwr)]+. (48)

Note that update rules (46) and (47) are important steps for the accurate update

of wr.
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Algorithm 2 summarizes the GRBF-NTD process. Lines 5–13 give the up-

date procedure forW . If we apply the function approximation to factor matrices

B and/or C, the 14th and/or 15th lines must be modified in a similar way to265

W .

4.2. CP Model

In this section, we extend GRBF-NMF to nonnegative CP decomposition

(NCPD) to obtain A by the function approximation ΦW . The criterion is

given by

minimize
λr,wr,br,cr

∣∣∣∣∣
∣∣∣∣∣Y −

R∑
r=1

λr(Φwr) ◦ br ◦ cr

∣∣∣∣∣
∣∣∣∣∣
2

F

,

s.t. λr ≥ 0, wr ≥ 0, br ≥ 0, cr ≥ 0,

||Φwr|| = ||br|| = ||cr|| = 1 (49)

for r = 1, 2, ..., R. We refer to this as the GRBF-NCPD method. Prob-

lem (49) can also be solved with the HALS algorithm. Setting Y r := Y −∑
k 6=r λk(Φwk) ◦ bk ◦ ck and using the first-way matrix form, the sub-problem

for wr can be rewritten as

minimize
wr

||Y r(1) − λr(Φwr)(c
T
r ⊗ b

T
r )||2F ,

s.t. ||Φwr|| = 1,wr ≥ 0. (50)

By analogy to the relation between (12) and (17), problem (50) can be trans-

formed to

minimize
wr

||Y r(1)(cr ⊗ br)− λrΦwr||2F ,

s.t. ||Φwr|| = 1,wr ≥ 0, (51)

where we have (cTr ⊗b
T
r )(cr⊗br) = (cTr cr⊗b

T
r br) = 1. Since there is a constraint

||Φwr|| = 1 in (51), its solution is not dependent on λr. Thus, the update rule

for wr is finally given by

wr ← [wr ~ {ΦTY r(1)(cr ⊗ br)} � {ΦTΦwr}]+, (52)

wr ← wr/||Φwr||. (53)
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Algorithm 3 Fast GRBF-NCPD algorithm

1: Input: Y , R, and Φ

2: Initialize: W randomly, and B, C, G by some initialization method for

nonnegative CP decomposition

3: E ← Y −G×1 ΦW ×2 B ×3 C;

4: repeat

5: for r = 1, . . . , R do

6: Y r ← E + λr(Φwr) ◦ br ◦ cr;

7: wr ← [wr ~ {ΦT (Y r ×2 b
T
r ×3 c

T
r )} � {ΦTΦwr}]+;

8: wr ← wr/||Φwr||;

9: br ← [Y r ×1 (Φwr)
T ×3 c

T
r ]+;

10: br ← br/||br||;

11: cr ← [Y r ×1 (Φwr)
T ×2 b

T
r ]+;

12: cr ← cr/||cr||;

13: λr ← [Y r ×1 (Φwr)
T ×2 b

T
r ×3 c

T
r ]+;

14: E ← Y r − λr(Φwr) ◦ br ◦ cr;

15: end for

16: until ||E||2F converge

17: Output: W , B, C, and G

Algorithm 3 summarizes the GRBF-NCPD process. Lines 7–8 give the up-

date procedure for wr. If we also apply the function approximation to br and/or

cr, lines 9–10 and/or 11–12 should be modified in a similar way to wr.270

5. Experiments

5.1. Algorithmic Comparison

In this experiment, we compare the proposed algorithm with the original

form in terms of computation time. We selected 10 facial images of one subject

from the Yale Face Database [1]. As a result, we obtained a dataset in the275

form of a (99× 10) matrix. The small image size is necessary because the orig-

inal algorithm is slow, even when factorizing such a small matrix. For various
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Figure 3: Computation time for various ranks

rank decompositions R = {1, 2, ..., 5}, we tested the following algorithms: mul-

tiplicative algorithm for NMF [20], HALS algorithm for NMF [8], the original

GRBF-NMF algorithm, and the proposed GRBF-NMF algorithm. For GRBF-280

NMF, we set ∆t = δt = 1, σ = 1.0, and U = {1, 4}. Figure 3 shows the average

log 10-scale computation time over 10 runs for each rank decomposition. The

computation time of the original algorithm increased exponentially. In contrast,

the proposed algorithm required much less time to obtain a solution, and its

computation time was relatively independent of U . The proposed algorithm is285

around 10–100 times faster than the original algorithm for R = 3, 4, 5. Although

our proposed method may require many more iterations than the original al-

gorithm, the overall computation time is dramatically improved by the new

algorithm.

Next, we examined the convergence of the proposed algorithm. We used290

the same data and set R = 4, δt = 1, σ = 1.0, and U = 4. The objective

function value was recorded for each iteration over 1000 simulations. In each

simulation, the initial values ofW andX were varied at random. Figure 4 shows

the functional boxplots [28] of the objective function values for all simulations.

Simulations with values greater than 1.5 times the range of the central region295
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Figure 4: Functional boxplots of objective function for 1000 random simulations: black curve

shows the median result, blue denotes the 50% central region, outer blue lines are maxi-

mum and minimum values for all non-outlying simulations, and red dashed lines are outlying

simulations
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Figure 5: Estimates of W and A obtained by the proposed and original algorithms

were regarded as outliers. When the difference between backward and forward

steps is smaller than ε = 10−3, the algorithm was assumed to have converged.

From this criterion, we can see that all simulations converged to local optima.

The average final value of the objective function for all simulations was 895.3±

3.0, and that for non-outlying simulations was 895.3 ± 0.2. The variation in300

the latter becomes very small. For all simulations and iterations, no increase

in the objective function was observed. Thus, this experiment confirms the

non-increasing property of the algorithm.

Next, we compared the estimates of W and A obtained by the proposed and
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original algorithms. We set U = 1, δt = 1, σ = 0.8, and R = 2 for the proposed305

algorithm, and ∆t = 1, σ = 0.8, and R = 2 for the original algorithm (i.e.,

the same conditions). Fig. 5 shows the estimates of W and A obtained by the

proposed algorithm and the original algorithm. Despite the difference between

the constraints W ≥ 0 and ΦW ≥ 0, the results for A are highly correlated.

Furthermore, the proposed algorithm provides smoother components than the310

original algorithm. Many spikes in the estimates given by the original algorithm

are smoothed by the proposed algorithm.

In the following sentences, GRBF-NMF stands for the method applying the

proposed algorithm.

5.2. Blind Source Separation315

In this experiment, we applied GRBF-NMF to the BSS problem for both

synthetic and real-world datasets. The generative model is given by

Y = [SX0 +E0]+, (54)

where S ∈ RI×R+ is an original source signal matrix, X0 ∈ RR×J+ is a mixing

matrix, E0 ∈ RI×J is a Gaussian noise matrix, and Y ∈ RI×J+ is an observed

signal matrix. The signal-to-noise ratio (SNR) is defined as

SNR := 10 log10

[
||SX0||2F

||SX0 − Y ||2F

]
. (55)

Furthermore, we evaluated the estimated source A = ΦW using the mean

signal-to-interference ratio (SIR) measure, which is calculated by Algorithm 4.

This consists of several steps. First, each signal is normalized, because the NMF

problem may not have a unique solution. Next, the SIR combination matrix is

calculated as M(r1, r2) = SIR(sr1 ,ar2). For example, let M be

M =


3.02 0.74 4.13

5.37 2.38 3.30

3.51 3.54 5.58

 . (56)
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Algorithm 4 Calculation of mean SIR

1: Input: S, A ∈ RI×R

2: Initialize: v = 0

3: sr ← sr/||sr|| for r = 1, ..., R;

4: ar ← ar/||ar|| for r = 1, ..., R;

5: Calculate M(r1, r2) = 10 log10

[
||sr1 ||

2

||sr1
−ar2

||2

]
for all r1, r2;

6: for r = 1, ..., R do

7: [r∗1 , r
∗
2 ]← argmaxr1,r2 M(r1, r2);

8: v ← v +M(r∗1 , r
∗
2)/R;

9: M(r∗1 , :)← −∞;

10: M(:, r∗2)← −∞;

11: end for

12: Output: v

The maximum element in this matrix is M(3, 3) = 5.58. Next, M becomes

M =


3.02 0.74 −∞

5.37 2.38 −∞

−∞ −∞ −∞

 . (57)

The maximum element is now M(2, 1) = 5.37, and the next M is then

M =


−∞ 0.74 −∞

−∞ −∞ −∞

−∞ −∞ −∞

 . (58)

Finally, the mean SIR is given by (5.58 + 5.37 + 0.74)/3 = 3.90. Actually, the

maximum combination is given by (5.37 + 4.13 + 3.54)/3 = 4.35, but we need to

calculate R! combinations to obtain this solution. The mean SIR gives a useful

approximation for the combinatorial maximization problem of the mean SIR for

A.320

In the first BSS experiment, we used synthetic sparse and smooth nonnega-

tive signals given by nonnegative sine curves and soft thresholding. Fig. 6 (b)

shows the original sources S = [s1, ..., sR] ∈ RI×R+ . The individual lengths are
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Figure 6: Visualization of experimental results for synthetic signals

R = 4, I = 1024, and J = 20. Each element of the mixing matrix X0 is the

absolute value of a sample generated from the normal distribution N (0, 1). We325

applied traditional and state-of-the-art NMF methods to the BSS problem with

various noise levels: multiplicative NMF [20], Kim & Park’s sparse NMF [18],

nonsmooth NMF [23], Gibbs regularized NMF [35, 36], Chen’s smooth NMF

[4], and GRBF-NMF. The GRBF-NMF parameters were set to U = 4, δt = 1,

and σ = 1.0. Figs. 6 (c), (d), and (e) illustrate the moving-average filtered330

signals after separation by the Gibbs regularized NMF, Kim & Park’s SNMF,

and GRBF-NMF, respectively. Each value in Figs. 6 (c)–(e) is the mean SIR

of separated signals and filtered signals. Fig. 6 (a) shows the mean SIRs for

all simulations and noise levels. The individual lines in Fig. 6 (a) are the lin-

ear least-squares regression (LSR) results of the individual methods. From this335

figure, we can confirm the robustness of the GRBF-NMF method against noise.
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Figure 7: Visualization of experimental results for synthetic 2D signals

Next, we used the synthetic sparse and smooth nonnegative 2D signals il-

lustrated in Fig. 7 (b). In this experiment, each signal was a 64 × 64 = 4096-

dimensional vector. Figs. 7 (c), (d), and (e) illustrate the separated signals given

by the smooth NMF, Kim & Park’s SNMF, and GRBF-NMF-2Dbasis, respec-340

tively. Each value in Figs. 7 (c)–(e) is the mean SIR of the separated signals.

Fig. 7 (a) plots the mean SIRs and the linear LSR results for various noise levels.

Kim & Park’s sparse NMF exhibited the best performance with low-noise data,

whereas GRBF-NMF outperformed the other methods for high-noise data.

Finally, we applied GRBF-NMF to the blind non-mixed hyperspectral prob-345

lem using four spectral signatures selected at random from the US Geological

Survey (USGS) database. The angle between any pair of vectors {ai,aj} is

greater than 10◦, and the reflectance values of the endmembers (i.e., source sig-
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Figure 8: Endmember results and abundance maps
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NMF)

nals ar) are measured in 224 spectral bands, distributed in the interval 0.4–2.5

[µm]. Note that all these spectral signals are strictly positive. We generated350

abundance (i.e., weight parameters xr) maps synthetically using a low-pass

filtering strategy [22]; the resolution of each abundance map is 64 × 64 pix-

els. The mixtures are corrupted with an i.i.d zero-mean Gaussian noise with

SNR = 30 dB. The original endmembers and abundance maps are shown in

Fig. 8 (a), and those estimated using multiplicative NMF [20], Gibbs regularized355

NMF [35, 36], and GRBF-NMF are presented in Figs. 8 (b)–(d), respectively.

The mean SIR of these results was also evaluated. Fig. 9 illustrates the mean

SIR statistics obtained for estimating matrices A (left) and X (right) with var-
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ious NMF algorithms. The mean SIR samples were obtained for 20 uniformly

distributed random initializations for the factors A(0), W (0), and X(0) for each360

algorithm. From the results, we can see that GRBF-NMF outperforms the other

NMF methods in terms of source estimation. There is no significant difference

in the estimated mixture matrices given by RALS and GRBF. Since GRBF-

NMF only imposes a nonnegativity constraint on X, this implies that there is

a possibility of further improvement by imposing some additional sparsity or365

norm-based regularization constraint.

5.3. Local Parts Analysis

The GRBF-block-NMF method was also applied to image analysis for parts-

based feature extraction. The 3456× 4608 image shown in Fig. 10 (b) was used

with a noise level of 10 dB. The image can be transformed to a (1024× 15552)370

nonnegative matrix by unfolding the individual 32 × 32 blocks. In this experi-

ment, the GRBF-block-NMF was used to analyze local parts of this noisy image.

Setting R = 20, the GRBF-block-NMF method extracts the 20 local parts-based

feature images shown in Fig. 10 (c)–(h) (negative image). For comparison, we

applied the standard multiplicative NMF [20], non-smooth NMF (nsNMF) [23],375

Chen’s smooth NMF [4], and Gibbs regularized smooth NMF [35, 36]. Only the

parts shown in Fig. 10 (c) were learned from the original noise-free image (a).

This is used for the reference to evaluate the performances of the methods for

parts-analysis in the presence of noise. The parts in (d)–(h) were learned from

the noisy image (b), and mean SIRs between the reference parts and the indi-380

vidual obtained parts were calculated. We can see that almost all the features

are corrupted with strong noise, except for those extracted with nsNMF and

GRBF-NMF, which are fairly clear. Comparing the estimates obtained with

multiplicative NMF from the noise-free image with those given by the other

methods, we obtain the following SIR values: (d) 14.36 dB, (e) 16.65 dB, (f)385

13.68 dB, (g) 14.42 dB, and (h) 16.99 dB. Thus, GRBF-NMF produced the

best result. In fact, some noise remains in the features obtained with nsNMF.

To further improve GRBF-NMF, other constraints can be considered. It is well
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(e) Parts of noisy image by

     nonsmooth NMF (16.65 dB)

(f) Parts of noisy image by

     smooth NMF (13.68 dB)

(g) Parts of noisy image by

      Gibbs reg. NMF (14.42 dB)

(d) Parts of noisy image by

      multip. NMF (14.36 dB)

(a) Original image (b) Noisy image (10.0 dB)

(c) Parts of original image

      by multip. NMF (reference)

(h) Parts of noisy image by

      GRBF NMF (16.99 dB)

Figure 10: Parts-based feature extraction

known that sparseness works efficiently for the extraction of parts-based fea-

tures, but GRBF-NMF does not include any sparseness constraints. Thus, the390

proposed algorithms can be extended by combining smoothness with sparseness

constraints for feature extraction problems.

Next, we applied the nonnegative matrix and tensor factorization techniques

to the analysis of a color image. We used a 2048 × 2048 × 3 color image

(Fig. 11 (a)) and applied a noise level of 10 dB (Fig. 11 (b)). The data was395

separated into 64× 64 = 4096 blocks, from which 20 local parts were extracted.

Each part was a 32 × 32 × 3 color image, and individual blocks in the image

could be factorized as a linear combination of the 20 parts. We apply the ma-

trix, CP, and Tucker factorization models. In the CP and Tucker models, we

reformed the image as a (32 × 32 × 3 × 4092) tensor. In the matrix model,400

we reformed the image as a (3072 × 4092) matrix, and regarded each column

as the vectorized form of a (32 × 32 × 3) block. Multiplicative NMF, NCPD,
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=

(a) Original color image (2048 x 2048 x 3) (b) Noisy image (10 dB)

(c) Multi. NMF (origin)

          [reference]

(d) Multi. NMF (noisy)

          [3.92 dB]

(e) GRBF NMF (noisy)

           [5.90 dB]

(f) NCPD (origin)

          [reference]

(g) NCPD (noisy)

          [8.58 dB]

(h) GRBF NCPD (noisy)

          [10.78 dB]

(i) NTD (origin)

          [reference]

(j) NTD (noisy)

          [5.36 dB]

(k) GRBF NTD (noisy)

          [5.77 dB]

Figure 11: Parts-based feature extraction with a color image

NTD, GRBF-NMF-2Dbasis, GRBF-NCPD-2way, and GRBF-NTD-2way were

applied to the individual data. We set R = 20 for the NMF and CP models,

and R1 = R2 = 8, R3 = 3, R4 = 20 for the Tucker model. In the CP and405

Tucker models, parts are given by the 1st–3rd factor matrices (A,B,C) and a

core tensor (G): the kth part is given by gkak ◦ bk ◦ ck in CP decomposition,

and
∑
r1,r2,r3

gr1r2r3kar1 ◦ br2 ◦ cr3 in Tucker decomposition. Fig. 11 (c)–(k)

show the extracted local parts for each individual algorithm: Fig. 11 (c), (f),

and (i) were extracted from the original color image, the others were extracted410

from the noisy image. The GRBF-based methods and NCPD extracted smooth

and sparse local parts from the noisy image, and gave similar results to those
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extracted by standard algorithms from the original image. From the mean SIR

values, we can confirm that the individual GRBF-based methods outperformed

the other methods for each model.415

6. Discussion

6.1. Nonnegative and Smooth Multi-way Analysis

Smooth NMF methods have been studied extensively, because smoothness

and nonnegativity are physically meaningful in many applications. Many of

these approaches are based on additional penalty terms, and are only applicable420

to matrix factorization. The contributions of this research are twofold: first, we

have employed and improved a new function approximation approach for smooth

NMF; second, we extended this approach to multi-way nonnegative and smooth

component feature analysis. The proposed smooth NMF/NTF outperformed

other NMF/NTF methods in the BSS and parts extraction experiments with425

noisy data. The nonnegative and smooth multi-way analysis is a somewhat novel

technique. It would appear to have promising applications in various areas of

multi-way real-world data analysis, including brain, audio, and visual signal

processing. For example, some brain signals are smooth in the time domain and

sparse in the frequency domain. Thus, to apply our method to the analysis of430

brain signals, a combination of sparseness and smoothness is necessary. A proper

combination with decorrelation, statistical independence, or other meaningful

constraints should find some attractive applications.

6.2. Scalability Problem

In Section 3.4, we mentioned the scalability problem of Φ, and proposed435

a technique for reducing the matrix size. This was applied to the local parts

analysis of a large-scale image. However, it still cannot be used for low-rank

approximation and BSS problems when the dimension of observations is very

large. To address such problems, we may need to consider a new scheme, or

some preprocessing step to reduce the dimensionality. This scalability challenge440

is an open problem.
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6.3. Another Option for the Updating

In this paper, we focused on reducing the computational cost of updating

X and W . Thus, the proposed update rules (13) and (19) are very simple

and low cost. In cases where the data size is not large (e.g., I, J ≤ 100), some445

well-studied nonnegativity-constrained least-squares algorithms based on the

active-set or interior point methods could be employed to update X and W ,

giving better convergence to exact solutions with realistic computational costs.

It will be worthwhile to use different options according to the situation.

7. Conclusions450

In this paper, we proposed a new fast GRBF-NMF algorithm, multiple-σ ex-

tension for various degrees of data resolution, 2D basis extension for image pro-

cessing, and block-wise extension to reduce the size of the basis matrix. These

techniques were extended to nonnegative tensor decompositions with the Tucker

and CP models. BSS and parts-based feature extraction experiments were con-455

ducted to compare the proposed methods with state-of-the-art NMF methods.

The proposed algorithm does not require matrix inversion or mathematical pro-

gramming techniques, such as QP optimization. Thus, it is much faster than the

original algorithm (about 10–100 times faster). Moreover, we proposed the use of

the 2D basis for unfolded 2D array data (i.e., vector signals), and demonstrated460

that the GRBF-NMF-2Dbasis algorithm gave improved results. Furthermore,

the GRBF-based methods work well for Tucker and CP models with both sin-

gle and multi-way smooth representations. In the BSS experiments, the GRBF

method exhibited significantly better results compared to those of conventional

nonnegative matrix factorization methods, including state-of-the-art methods465

for various noise levels. Finally, GRBF-block-NMF/NCPD/NTD also produced

good results in the local parts-based feature extraction.

32



References

[1] Belhumeur, P., Hespanha, J., and Kriegman, D. (1997). Eigenfaces vs. Fish-

erfaces: Recognition using class specific linear projection. IEEE Transactions470

on Pattern Analysis and Machine Intelligence, 19(7):711–720.

[2] Bro, R. (1998). Multi-way analysis in the food industry: models, algorithms,

and applications. PhD thesis, University of Amsterdam, Amsterdam, Holland.

[3] Carroll, J. and Chang, J.-J. (1970). Analysis of individual differences in

multidimensional scaling via an n-way generalization of “Eckart-Young” de-475

composition. Psychometrika, 35:283–319.

[4] Chen, Z., Cichocki, A., and Rutkowski, T. M. (2006). Constrained non-

negative matrix factorization method for EEG analysis in early detection

of Alzheimer disease. In Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2006), 5:893–896.480

[5] Cichocki, A., Amari, S.-i., et al. (2002). Adaptive blind signal and image

processing. John Wiley Chichester.

[6] Cichocki, A. and Phan, A. (2009). Fast local algorithms for large scale non-

negative matrix and tensor factorizations. IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, 92(3):708–721.485

[7] Cichocki, A. and Zdunek, R. (2007). Regularized alternating least squares

algorithms for non-negative matrix/tensor factorization. In Advances in Neu-

ral Networks–ISNN 2007, 793–802. Springer.

[8] Cichocki, A., Zdunek, R., and Amari, S.-i. (2007). Hierarchical ALS algo-

rithms for nonnegative matrix and 3D tensor factorization. In Independent490

Component Analysis and Signal Separation, 169–176. Springer.

[9] Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S. (2009). Nonnega-

tive Matrix and Tensor Factorizations: Applications to Exploratory Multi-way

Data Analysis and Blind Source Separation. Wiley Publishing.

33



[10] Ding, C., Li, T., and Jordan, M.I. (2010). Convex and semi-nonnegative495

matrix factorizations. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(1):45–55.

[11] Dong, Q. and Li, L. (2013) Smooth incomplete matrix factorization and

its applications in image/video denoising. Neurocomputing, 112:458–469.

[12] Drakakis, K., Rickard, S., Frein, R. D., and Cichocki, A. (2008). Analysis500

of financial data using non-negative matrix factorization. In International

Mathematical Forum, 38:1853–1870.

[13] Essid, S. and Fevotte, C. (2013). Smooth nonnegative matrix factorization

for unsupervised audiovisual document structuring. IEEE Transactions on

Multimedia, 15(2):415–425.505

[14] Gillis, N. and Glineur, F. (2010) Using underapproximations for sparse

nonnegative matrix factorization Pattern Recognition, 43(4):1676–1502. El-

sevier.

[15] Harshman, R. (1970). Foundations of the parafac procedure: Model and

conditions for an ‘explanatory’ multi-mode factor analysis. UCLA Working510

Papers in Phonetics, 16:1–84.

[16] Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness

constraints. The Journal of Machine Learning Research, 5:1457–1469.

[17] Jiang, L., and Yin, H. (2012). Bregman iteration algorithm for sparse non-

negative matrix factorizations via alternating l1-norm minimization. Multi-515

dimensional Systems and Signal Processing, 23(3):315–328.

[18] Kim, J. and Park, H. (2008). Sparse nonnegative matrix factorization for

clustering. Technical Report, Georgia Institute of Technology.

[19] Kim, Y.-D. and Choi, S. (2007). Nonnegative Tucker decomposition.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR520

2007), 1–8.

34



[20] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by

non-negative matrix factorization. Nature, 401(6755):789.

[21] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix

factorization. In Advances in Neural Information Processing Systems, 13:556–525

562.

[22] Miao, L. and Qi, H. (2007). Endmember extraction from highly mixed data

using minimum volume constrained nonnegative matrix factorization. IEEE

Transactions on Geoscience and Remote Sensing, 45(3):765–777.

[23] Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., and Pascual-530

Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3):403–

415.

[24] Phan, A. and Cichocki, A. (2008). Fast and efficient algorithms for nonneg-

ative Tucker decomposition. In Advances in Neural Networks - ISNN 2008,535

Lecture Notes in Computer Science, 5264:772–782. Springer Berlin Heidel-

berg.

[25] Phan, A. and Cichocki, A. (2009). Local learning rules for nonnegative

Tucker decomposition. In Neural Information Processing, Lecture Notes in

Computer Science, 5863:538–545. Springer Berlin Heidelberg.540

[26] Phan, A. and Cichocki, A. (2010). Tensor decompositions for feature ex-

traction and classification of high dimensional datasets. IEICE, NOLTA,

1(1):37–68.

[27] Phan, A. H. and Cichocki, A. (2011). Extended hals algorithm for non-

negative tucker decomposition and its applications for multiway analysis and545

classification. Neurocomputing, 74(11):1956–1969.

[28] Sun, Y. and Genton, M.G. (2011). Functional boxplots. Journal of Com-

putational and Graphical Statistics, 20(2).

35



[29] Tucker, L. R. (1963). Implications of factor analysis of three-way matrices

for measurement of change. In Harris, C. W., editor, Problems in measuring550

change, 122–137, University of Wisconsin Press.

[30] Van Benthem, M. H. and Keenan, M. R. (2004). Fast algorithm for the solu-

tion of large-scale non-negativity-constrained least squares problems. Journal

of Chemometrics, 18(10):441–450.

[31] Vapnik., V. (1998). Statistical Learning Theory. Wiley, New York.555

[32] Watanabe, K., Hidaka, A., and Kurita, T. (2008). Automatic factorization

of biological signals by using Boltzmann non-negative matrix factorization. In

Proceedings of the IEEE International Joint Conference on Neural Networks,

IJCNN2008, 1122–1128.

[33] Xu, W., Liu, X., and Gong, Y. (2003). Document clustering based on non-560

negative matrix factorization. In Proceedings of the 26th Annual International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, 267–273, ACM.

[34] Zdunek, R. (2012). Approximation of feature vectors in nonnegative ma-

trix factorization with Gaussian radial basis functions. In Proceedings of the565

19th International Conference on Neural Information Processing - Volume I,

ICONIP’12, 616–623. Springer-Verlag.

[35] Zdunek, R. and Cichocki, A. (2007). Gibbs regularized nonnegative matrix

factorization for blind separation of locally smooth signals. In 15th IEEE In-

ternational Workshop on Nonlinear Dynamics of Electronic Systems (NDES570

2007), 317–320.

[36] Zdunek, R. and Cichocki, A. (2008). Blind image separation using non-

negative matrix factorization with Gibbs smoothing. In Neural Information

Processing, 519–528. Springer.

36


	Introduction
	Smooth Nonnegative Matrix Factorization with Function Approximation
	Selection of Phi
	Original GRBF-NMF Algorithm
	Characteristics of the Model
	Computational Issues

	Fast Algorithm for GRBF-NMF
	Computational Cost
	Theoretical Guarantee of Monotonic Non-increasing Property
	Extensive Bases for GRBF-NMF
	2D basis

	Dimensionality Reduction of the Basis Matrix

	Smooth Nonnegative Tensor Factorizations and Decompositions
	Tucker Model
	CP Model

	Experiments
	Algorithmic Comparison
	Blind Source Separation
	Local Parts Analysis

	Discussion
	Nonnegative and Smooth Multi-way Analysis
	Scalability Problem
	Another Option for the Updating

	Conclusions

