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Abstract—In recent years, low-rank based tensor completion,
which is a higher-order extension of matrix completion, has re-
ceived considerable attention. However, the low-rank assumption
is not sufficient for the recovery of visual data, such as color and
3D images, where the ratio of missing data is extremely high. In
this paper, we consider “smoothness” constraints as well as low-
rank approximations, and propose an efficient algorithm for per-
forming tensor completion that is particularly powerful regarding
visual data. The proposed method admits significant advantages,
owing to the integration of smooth PARAFAC decomposition for
incomplete tensors and the efficient selection of models in order to
minimize the tensor rank. Thus, our proposed method is termed
as “smooth PARAFAC tensor completion (SPC).” In order to
impose the smoothness constraints, we employ two strategies,
total variation (SPC-TV) and quadratic variation (SPC-QV),
and invoke the corresponding algorithms for model learning.
Extensive experimental evaluations on both synthetic and real-
world visual data illustrate the significant improvements of our
method, in terms of both prediction performance and efficiency,
compared with many state-of-the-art tensor completion methods.

Index Terms—Tensor completion for images, smoothness, low-
rank tensor approximation, CP model, PARAFAC model, total
variation (TV), quadratic variation.

I. INTRODUCTION

Completion is a procedure that facilitates the estimation
of the values of missing elements of array data, using only
the available elements and structural properties of the data.
Clearly, if there is no relationship between the missing ele-
ments and the available elements, completion is not possible.
However, real world data usually exhibits some correlations,
latent factors, symmetry, continuity, or repetition, in which
case completion is often possible. For example, when a vector
consists of the sampled values of some continuous function
that has several missing values, some interpolation methods
can be used for completion, such as simple linear interpolation,
spline interpolation, and polynomial interpolation. When a
given matrix has several missing entries and the low-rank ma-
trix factorization exists, then a low-rank structure can be used
for completion, by approximating the given matrix using the
low-rank factorization model. Such completion techniques are
closely associated with computer vision, pattern recognition,
and compressed sensing [17], [24], [38].

Techniques for vector/matrix completion have been compre-
hensively researched, and many sophisticated methods exist.
Furthermore, techniques for “tensor” completion have attracted
attention in recent years, because of their potential applications
and flexibility. A tensor is a multi-dimensional array, vectors
and matrices can be considered as first-order and second-
order tensors, respectively. For example, the data for a color-

image is a third-order tensor, because it consists of three
color shading images of red, green, and blue. Similarly, the
data for a color video is a fourth-order tensor, because it
consists of multiple frames of color images. There have been
several papers that have attempted the completion color images
using matrix completion [30], [27], [37]. In [27], the authors
proposed to complete each color shading image separately, and
subsequently concatenate them. However, such an approach
ignores the natural multi-dimensional structure of tensors, and
thus neglects some important information. In [30], [37], the
authors applied a matrix completion technique to matrices
that consist of set of similar patches selected by some patch
matching algorithms. However, patch matching is generally
time consuming, and it does not work well when there is an
extremely high ratio of missing data.

On the other hand, tensor completion methods have shown
significant progress in the completion of color images by
exploiting the structural information of 3rd-order tensors.
The state-of-the-art methods for tensor completion consist of
approaches of two types. The first approach, called nuclear
norm minimization, is based on the low-rank property [42],
[23], [43]. The nuclear norm of a matrix is defined as the
sum of all singular values, and is a convex envelope for the
rank of matrix [51]. The nuclear norm of the tensor was
first introduced and applied to tensor completion in [42].
Subsequently, some improved algorithms were proposed in
[23], [43]. The minimization of tensor nuclear norms has also
been applied in various contexts, such as error correction [39],
[40], medical imaging [44], compression [36], and saliency
detection [69]. The second approach involves the use of
low-rank tensor decomposition techniques, which have been
proposed in [2], [55], [35], [58], [12], [49], [77]. Tensor
factorization is a method for decomposing an N th-order
tensor into another N th-order tensor of smaller size, termed
as the “core tensor,” and N factor matrices. There are two
factorization models: Tucker decomposition [61] and polyadic
decomposition [29]. The polyadic decomposition is also called
several different names such as CANDECOMP (canonical
decomposition) [9], PARAFAC (parallel factor) decomposition
[28], and CP (CANDECOMP/PARAFAC) decomposition [32].
In the present paper, we usually refer to this model as
PARAFAC/polyadic decomposition (PD) model. A core tensor
of PD takes the form of a super-diagonal tensor, and a core ten-
sor of Tucker decomposition takes the form of a general tensor.
Thus, PD constitutes a special case of Tucker decomposition.
Similarly to the singular value decomposition (SVD) of matrix
factorization, the minimum size of a core tensor corresponds to
the rank of the original tensor. In [12], the authors consider the
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low rank Tucker decomposition model for tensor completion
and the minimization of the nuclear norms of individual factor
matrices. In [77], the authors consider the low-rank PD model
for tensor completion, by using a Bayesian framework to solve
tuning parameter problems. Furthermore, the authors of [12]
and [77] introduced a factor prior regularization, in order to
yield improved results for visual data.

In this paper, we investigate smoothness constraints for PD
model based tensor completion. Smoothness is an important
property that is embedded in many examples of real world
data, such as natural images/videos, some spectral signals,
and bio-medical data. For example, low-frequency (smooth)
components of natural images computed by discrete cosine
transform have higher magnitude than high-frequency com-
ponents. This is a reason why the JPEG encoder is efficient
and widely used in practice, and it indicates the usability of
smoothness property for natural image processing. When we
assume original images and additive noise are respectively
smooth and non-smooth, a smoothness constraint helps to
preserve a smooth original image and to remove non-smooth
noise. In fact, matrix/tensor factorizations with smoothness
constraints have many applications in which they are robust in
the presence of noisy signals, such as blind source separation
[74], [73], [75], video structuring [22], visual parts extraction
[71], genomic data analysis [67], and brain signal analysis
[13].

Total variation (TV) [53], which is defined as the l1-norm
of the difference of neighbor elements, is often used to im-
pose piece-wise smoothness constraints. Many methods have
applied the TV approach in image restoration and denoising
[47], [26], [65], [6], [46], [10]. Furthermore, the TV constraint
has been already applied to matrix completion in [18], [27], but
until now it has not been investigated for tensors. Therefore,
we apply the TV constraint to PD model based tensor com-
pletion. Furthermore, we investigate an additional smoothness
constraint, which is defined as the “l2-norm” of the difference
between neighbor elements, and is a stronger constraint than
the TV constraint. Our concept of smoothness is not same
as in other existing smoothness based completion methods
[53], [27], [12], [77]. The key point of our approach is to
assume that “latent component vectors” of factor matrices are
smooth, and different levels of smoothness are enforced on
different components adaptively. The details of the novelty of
our model are discussed in Section V-A.

In addition, we propose a new strategy for a rank de-
termination algorithm for the smooth PD model. A general
strategy of the above mentioned “state-of-the-arts” algorithms
involves setting the upper-bound of the rank for a tensor and
optimizing the rank by using some procedures to remove
redundant components, such as singular value shrinkage. How-
ever, if we impose our smoothness constraint on a tensor,
the number of required components increases, and we are
not able to determine an upper-bound. Therefore, we propose
a reverse strategy, estimating the rank of the tensor (i.e.,
the optimal number of components) by increasing the rank
step by step, starting with a rank-one tensor. Our algorithm
will stop when the smooth PD model fits the observed data
sufficiently well. We carried out experiments involving tensor

completion problems by using several difficult benchmarks
of color images with different types of missing pixels (e.g.,
text masked, scratched images, and random pixels missing),
incomplete MRI data, and multi-way structured facial data.

The remainder of this paper is organized as follows. In
Section I-A, we explain the notations used in this paper.
Section II reviews several existing matrix/tensor completion
methods. In Section III, we propose novel algorithms for
tensor completion based on the smooth PD model. In Sec-
tion IV, we investigate the performance and applications of
our algorithms, and compare them with some state-of-the-art
methods. In Section V, we discuss several aspects of our work.
Finally, we present our conclusions in Section VI.

A. Preliminaries and Notations

A vector is denoted by a bold small letter a ∈ RI . A matrix
is denoted by a bold capital letter A ∈ RI×J . A higher-order
(N ≥ 3) tensor is denoted by a bold calligraphic letter A ∈
RI1×I2×···×IN . The ith entry of a vector a ∈ RI is denoted by
a(i), and the (i, j)th entry of a matrix A ∈ RI×J is denoted
by A(i, j). The (i1, i2, ..., iN )th entry of an N th-order tensor
A is denoted by Ai1i2···iN , where in ∈ {1, 2, ..., In} and n ∈
{1, 2, ..., N}. The Frobenius norm of an N th-order tensor is
defined by ||X ||F :=

√∑
i1,i2,...,iN

X 2
i1i2···iN .

A mode-k unfolding of a tensor X is denoted as X(k) ∈
RIk×Πn6=kIn . For example, a first mode unfolding of a third-
order tensor X ∈ RI1×I2×I3 is given by X(1)(i1, (i3−1)I2 +
i2) = X i1i2i3 , where in ∈ {1, 2, ..., In} and n ∈ {1, 2, 3}. A
mode-k multiplication between a tensor X ∈ RI1×I2×···×IN
and a matrix/vector A ∈ RIk×R is denoted by Y = X ×k
AT ∈ RI1×···×Ik−1×R×Ik+1×···×IN , with entries given by
Yi1···ik−1rik+1···iN =

∑
ik
X i1···ik−1ikik+1···iNA(ik, r), and

we have Y (k) = ATX(k).

II. BRIEF REVIEW OF EXISTING METHODS

In this section, we explain the methodology for ma-
trix/tensor completion based on the low-rank assumption, and
review the several state-of-the-art methods.

Concerning matrix data, the most popular and basic ap-
proach for matrix completion is the minimization of the matrix
rank, subject to fitting the available elements:

minimize
X

rank(X), s.t. XΩ = TΩ, (1)

where X is a completed output matrix, T is an incomplete
input matrix, Ω denotes the indices of the available elements
of T , the equation XΩ = TΩ means that X(i, j) =
T (i, j), ∀(i, j) ∈ Ω, and rank(X) denotes the rank of matrix
X . Such a rank minimization approach has been applied in
various research fields, such as machine learning [4], [5] and
bioinformatics [60]. If an original matrix is structured as a
low-rank matrix, then this rank minimization approach can
be used to obtain an estimation of the ground truth matrix.
However, rank is not convex function with respect to X , and
rank minimization is generally NP-hard [25]. Therefore, the
nuclear-norm minimization method is widely used in practice:

minimize
X

||X||∗, s.t. XΩ = TΩ, (2)
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where ||X||∗ =
∑
i σi(X) denotes the nuclear norm, and

σi(X) denotes the ith largest singular value of the matrix X .
In order to solve the optimization problem (2), the following
augmented Lagrange function can be applied:

LA(X,Y ,W , β)

= ||X||∗ − 〈W ,X − Y 〉+
β

2
||X − Y ||2F , (3)

where Y Ω = TΩ is an auxiliary matrix, W is a Lagrangian
multiplier matrix, β is a penalty (trade-off) parameter for the
augmented term ||X − Y ||2F , and β is increased in each
iteration step. This problem can be optimized by applying
the alternating direction method of multipliers (ADMM) [8].
There are several existing papers that have applied the ADMM
scheme to matrix or tensor completion problems [41], [23],
[11], [43].

The smoothness property of data is often assumed for image
completion. If we consider X to be a gray-scale image, and
individual entries stand for the values of individual pixels,
then the difference between neighbor pixels should typically
be small. In [53], the minimization of the total variation (TV)
was employed as a smoothness constraint, which was defined
by

||X||TV :=
∑
i,j

√
Xv(i, j)2 +Xh(i, j)2, (4)

where Xv(i, j) := X(i + 1, j) − X(i, j) and Xh(i, j) :=
X(i, j+1)−X(i, j). Image completion via TV minimization
was proposed in [18], and formulated in the form of the
following optimization problem:

minimize
X

||X||TV , s.t. XΩ = TΩ.

This problem is convex, and can be solved using gradient
descent methods [18].

Furthermore, a combination of low-rank approximation and
smoothness constraints was proposed in [27]. Usually, natural
images yield both of these structural features, and this combi-
nation is quite efficient. The most straightforward approach for
the combination of low-rank approximation and smoothness
constraints is implemented by the following optimization
problem:

minimize
X

||X||∗ + γ||X||TV , s.t. XΩ = TΩ, (5)

where γ is a trade-off parameter between nuclear norm mini-
mization and TV minimization. In [27], a modified linear total
variation was defined, as

LTV(X) :=
∑
i,j

{Xv(i, j)
2 +Xh(i, j)2}, (6)

and a smooth low-rank matrix completion method was pro-
posed in the form of

minimize
X

||X||∗ + γLTV(X), s.t. XΩ = TΩ. (7)

The optimization problem (7) was referred to as the linear
total variation approximate regularized nuclear norm (LTVNN)
minimization problem, and this problem can be solved using
an ADMM like optimization scheme. This approach can be

considered as the state-of-the-art method for low-rank image
completion. However, LTVNN may be not useful for tensor
completion. Concerning color images (third-order tensors),
the authors separated an image into red, green, and blue
frames, and applied the completion method to each color frame
separately. However, when individual color frames are quite
similar, such a separated method may not be effective.

Tensor completion is a natural extension of matrix comple-
tion with respect to the data structure, and it can use such
structural information more effectively than matrix comple-
tion. A basic method for tensor completion was proposed using
simple low-rank tensor completion (SiLRTC) in [43], and this
was then formulated as the following constrained optimization
problem:

minimize
X ,Y (1),...,Y (N)

N∑
i=1

{
αi||Y (i)||∗ +

β

2
||X(i) − Y (i)||2F

}
,

(8)
s.t. XΩ = T Ω,

where X is a completed output tensor, T is an incomplete
input tensor, Y (i) is a low-rank matrix corresponding to the
mode-i matricization form X(i), and αi and β are weight pa-
rameters for individual cost functions. Essentially, this method
attempts to minimize the tensor nuclear norm, defined as∑
i αi||X(i)||∗, which is a generalization of the matrix nuclear

norm. Instead of the minimization of
∑
i αi||X(i)||∗, we

minimize the nuclear norm of alternate parameters Y (i), the
mean squared error between alternate parameters Y (i), and
the mode-i unfolding of X .

Note that when we strictly consider the minimization of∑
i αi||X(i)||∗, constraints X(i) = Y (i) should be added. The

high accuracy low rank tensor completion (HaLRTC) method
[43] was proposed on the basis of this concept, by formulating
the following optimization problem:

minimize
X ,Y(1),...,Y(N)

N∑
i=1

αi||Y (i)||∗, (9)

s.t. X = Y(i), XΩ = T Ω,

where Y(i) is the tensor form of matrix Y (i). The authors
considered an augmented Lagrange function, which is an
extension of (3), and can be minimized using the ADMM
optimization scheme in similar manner.

Recently, an alternative and very efficient completion
method has been proposed, called simultaneous tensor de-
composition and completion (STDC) [12]. This method is
based on Tucker decomposition, and minimizes the nuclear
norm of individual factor matrices by solving the following
optimization problem:

minimize
G,U(1),...,U(N)

N∑
i=1

αi||U (i)||∗ + δtr(ΦLΦT ) + γ||G||2F ,

(10)

s.t. X = G × {U (i)}Ni=1, XΩ = T Ω,

where G is a core tensor, U (i) is a factor matrix, G ×
{U (i)}Ni=1 := G×1U

(1)×2U
(2)×3 ...×NU (N) is the Tucker
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decomposition model of tensor, Φ := (U (1) ⊗ · · · ⊗ U (N))
is a unified factor matrix that consists of all factor matrices,
⊗ is the Kronecker product, and L is a matrix designed
by some prior information. The STDC method is based on
the “low-rank Tucker decomposition” and “factor prior.” The
minimization of δtr(ΦLΦT ) can be interpreted as enforcing
the similarity between individual components, which plays the
role of a regularization, and provides some smoothed results
for the visual data. Thus, STDC can be considered as a tensor
extension of low-rank and smooth matrix completion. The
authors considered an augmented Lagrange function, in order
to solve (10) in similar way.

Finally, an additional efficient and promising method
for tensor completion is given by fully Bayesian CAN-
DECOMP/PARAFAC tensor completion with mixture prior
(FBCP-MP) [77]. The FBCP-MP method is based on the
“probabilistic low-rank PD” and “mixture prior.” By using
mixture prior, this probabilistic model enforces a kind of
similarity between individual component vectors, similarly to
STDC. Furthermore, FBCP-MP finds a PD with an appropriate
tensor rank by using Bayesian inference, without need to tune
or adjust any parameters.

Hence, we can categorize the state-of-the art tensor com-
pletion methods into three types: low-rank-nuclear-norm, low-
rank-Tucker-decomposition, and low-rank-PD with optional
smoothness constraints. The above mentioned papers on tensor
completion did not discuss smoothness constraints in detail.
However, smoothness is quite an important factor for visual
data completion, which is obvious in matrix completion prob-
lems [18], [50], [27].

III. PROPOSED NEW METHOD

In this section, we propose a new algorithm for PARAFAC
decomposition (PD) based tensor completion with smoothness
constraints. First, the unconstrained PD model can be formu-
lated as

Z =

R∑
r=1

gru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r , (11)

where ◦ stands for outer product of vectors, u(n)
r are feature

vectors, called “components”, and gr are scaling multipliers.
By denoting factor matrices by U (n) = [u

(n)
1 ,u

(n)
2 , ...,u

(n)
R ]

and a super-diagonal core tensor by G, such that each super-
diagonal element is Grr...r = gr, the PD model can be also
denoted by Z = [[G;U (1),U (2), ...,U (N)]]. The minimum
number of components R needed to satisfy equation (11) is
called the “tensor rank” of Z . The exact PD with a minimal
R is usually refereed to as canonical polyadic decomposition
(CPD) or rank decomposition [33]. In general, when we
impose the smoothness constraint on the feature vectors u(n)

r ,
the minimum number of components R increases, because the
smoothness constraint decreases the flexibility of the decom-
position model. For this reason, it is difficult to determine
the upper bound of the tensor rank of the original tensor
when the smoothness constraint is imposed. In the STDC
[12] and FBCP-MP [77] approaches, the upper bound of the
Tucker/tensor rank is first determined as some large value,

and the subsequent Tucker/tensor rank is then estimated by
decreasing the number of components in each iteration. In this
paper, we propose a completely different approach, which does
not require the determination of the upper bound of the tensor
rank, because in the proposed method we increase the number
of components R gradually from 1 up to its optimal value. We
call the new method “smooth PARAFAC tensor completion”
(SPC).

A. Fundamental Problem for the Fixed Rank SPC (FR-SPC)

In this section, we consider the fixed rank version of
SPC (FR-SPC). The optimization problem for FR-SPC is
formulated as

minimize
G,U(1),...,U(N)

1

2
||X −Z||2F (12)

+

R∑
r=1

g2
r

2

N∑
n=1

ρ(n)||L(n)u(n)
r ||pp,

s.t. Z =

R∑
r=1

gru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ,

XΩ = T Ω, X Ω̄ = ZΩ̄, ||u(n)
r ||2 = 1,

∀r ∈ {1, ..., R},∀n ∈ {1, ..., N},

where X is a completed output tensor in which the missing
entries are filled using smooth PD approximation Z . Thus, the
constraints XΩ = T Ω and X Ω̄ = ZΩ̄ stand for

X i1i2...iN =

{
T i1i2...iN (i1, i2, ..., iN ) ∈ Ω
Zi1i2...iN otherwise . (13)

Next, ρ = [ρ(1), ρ(2), ..., ρ(N)]T is a smoothness parameter
vector, p ∈ {1, 2} is a parameter for selecting the types of
smooth constraints, and the matrix L(n) ∈ R(In−1)×In is a
smoothness constraint matrix, typically defined as

L(n) :=


1 −1

1 −1
. . . . . .

1 −1

 . (14)

The first term, ||X −Z||2F , of the objective function in (12)
represents the mean squared error (MSE) between the values
of the observed entries T Ω and the PD model ZΩ, because
XΩ = T Ω and X Ω̄ = ZΩ̄. Thus, the minimization of the
first term of the objective function in (12) provides a PD of a
given tensor T .

The second term of the objective function in (12) is a
penalty term, which assures smooth component vectors u(n)

r .
Note that we have ||L(n)u

(n)
r ||pp =

∑In−1
i=1 |u

(n)
r (i)−u(n)

r (i+
1)|p, and the minimization of this non-smoothness measure
enforces the smoothness of individual feature vectors. When
p = 1, the constraint term becomes the total variation
(TV), and when p = 2 it becomes the quadratic variation
(QV). In contrast to LTVNN [18], [27], which imposes the
smoothness constraint into the surface (output matrix), our
approach imposes the smoothness constraint into the cause
(latent components). The details of the difference between our
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Algorithm 1 FR-SPC Algorithm
1: input: T , Ω, R, p and ρ.
2: initialize: {gr, {u(n)

r ∈ UIn}Nn=1}Rr=1, randomly;
3: Construct matrix L(n) by (14); ∀n ∈ {1, ..., N}
4: XΩ ← T Ω;
5: X Ω̄ ← (

∑R
r=1 gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r )Ω̄;

6: E = X −
∑R
r=1 gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

7: repeat
8: for r = 1, ..., R do
9: Yr ← E + gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

10: for n = 1, ..., N do
11: u

(n)
r ← argminu∈UIn F

(r,n)
p (u);

12: end for
13: gr ← 〈Yr,u

(1)
r ◦u

(2)
r ◦···◦u

(N)
r 〉

(1+
∑N

n=1 ρ
(n)||L(n)u

(n)
r ||pp)

;

14: E ← Yr − gru(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

15: EΩ̄ ← 0;
16: end for
17: until Change of ||E||2F after the next iteration is suffi-

ciently small.
18: Z ←

∑R
r=1 gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

19: X Ω̄ ← ZΩ̄;
20: output: X , Z .

approach and other existing smoothing methods are discussed
in Section V-A.

Note that the g2
r terms are scaling factors for the smoothness

constraint terms in (12). This allows us to adaptively enforce
the different levels of smoothness into different components.
For image completion, the proposed method decomposes an
image adaptively into a strong smooth background and a
weaker smooth foreground.

B. Derivation of the FR-SPC Algorithm

We solve the optimization problem (12) using the hierar-
chical alternating least squares (HALS) approach [14], [15].
The HALS algorithm, included in block coordinate descent
scheme, considers ‘feature-wise’ update which allows us to
treat each unit-norm constraint separately. According to the
HALS approach, we consider the minimization of the follow-
ing local cost functions:

minimize
gr,u

(1)
r ,...,u

(N)
r

1

2
||Yr −Zr||2F +

g2
r

2

N∑
n=1

ρ(n)||L(n)u(n)
r ||pp,

s.t. Zr = gru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r

[Yr]Ω = T (r)
Ω , [Yr]Ω̄ = [Zr]Ω̄, (15)

||u(n)
r ||2 = 1,∀n ∈ {1, ..., N},

where Yr = X −
∑
i6=r giu

(1)
i ◦u

(2)
i ◦ · · · ◦u

(N)
i and T (r)

Ω =

T Ω − [
∑
i 6=r giu

(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(N)
i ]Ω. The local-problem

(15) only involves the rth components of PD with a fixed X .
In order to solve (15), we update u(1)

r ,u
(2)
r , ...,u

(N)
r , gr,

and reset Yr sequentially as follows:

u(n)
r ← argmin

u∈UIn

F (r,n)
p (u), (16)

gr ← argmin
g

F (r)
p (g), (17)

[Yr]Ω̄ ← [gru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ]Ω̄, (18)

where F
(r)
p (gr) = F

(r,n)
p (u

(n)
r ) = 1

2 ||Yr − gru
(1)
r ◦ u(2)

r ◦
· · · ◦ u(N)

r ||2F +
g2r
2

∑N
n=1 ρ

(n)||L(n)u
(n)
r ||pp for all n and r,

and UIn := {u ∈ RIn | ||u||2 = 1} is a sub-set of unit
vectors.

1) Update Rule for u(n)
r : The problem (16) can be charac-

terized as a unit-norm constrained optimization. When p = 2,
objective function is a quadratic function with respect to u
and it can be formulated as spherical constrained quadratic
optimization [57]. When p = 1, the objective function is
non-differentiable. Fortunately, many methods for solving this
problem have been studied, such as sub-gradient methods
[7]. To treat both cases (i.e., p = 1 and 2) equally, in
this paper, we consider the gradient (or sub-gradient) based
coefficient normalization update method [48], [21]. Although
it does not guarantee global convergence generally, sticking
into local minima of sub-optimization problem is not critical
issue because the objective of sub-optimization is to decrease
global cost function rather than to obtain strict solution of
itself. As other options, several optimization schemes can be
also applied such as Lagrange multiplier method [16], tangent
gradient [34] and optimization method on manifolds [1]. In
order the simplify the notation, we denote by uk and vk the k-
th updates of u(n)

r and ∂F (r,n)
p (u

(n)
r ) in the iterative algorithm,

respectively, where ∂F (r,n)
p (·) is a gradient (or sub-gradient)

of the objective function. Thus, the update uk+1 is given by

uk+1 =
uk − αvk√

1− 2αuTk vk + α2vTk vk

, (19)

where α a step size parameter, which should be tuned so
that F (r,n)

p (uk+1) ≤ F
(r,n)
p (uk). This update rule can be

considered as enforcing a sub-gradient descent on the hyper-
spherical surface ||uk||2 = ||uk+1||2 = 1. We iterate (19) until
convergence is achieved.

Next, we will demonstrate the gradient (or sub-gradient) of
the objective function. The objective function F (r,n)

p (uk) can
be simplified as

g2
r

2
ρ(n)||L(n)uk||pp − gruTk y(n)

r +
1

2
g2
ru

T
k uk, (20)

where y(n)
r := vec(Yr ×1 u

(1)T
r ×2 · · · ×n−1 u

(n−1)T
r ×n+1

u
(n+1)T
r ×n+2 ... ×N u

(N)T
r ). Thus, the gradient (or sub-

gradient) of the objective function is given by

∂F (r,n)
p (uk) ={
g2r
2 ρ

(n)L(n)TSGN(L(n)uk)− gry(n)
r + g2

ruk (p = 1)

g2
rρ

(n)L(n)TL(n)uk − gry(n)
r + g2

ruk (p = 2)
,

(21)
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Algorithm 2 Algorithm for Estimation of Optimal Number of
Components R

1: input: T , Ω, p, ρ, and SDR.
2: ε← 10(−SDR/10)||T Ω||2F ;
3: R← 1;
4: repeat
5: [Z,X ]← FR-SPC(T ,Ω, R, p,ρ);
6: R← R+ 1;
7: until ||ZΩ − T Ω||2F ≤ ε
8: output: Z , X .

where the vector function SGN is defined by

SGN(x) = [sgn(x1), sgn(x2), ..., sgn(xJ)]T , (22)

sgn(xj) =

 1 (xj > 0)
0 (xj = 0)
−1 (xj < 0)

, (23)

for any x ∈ RJ . This definition of SGN(x) provides the most
unbiased sub-gradient of ||x||1.

2) Update Rule for gr: Because the problem in (17) is an
example of unconstrained quadratic optimization, the unique
solution can be obtained analytically. The objective function
can be simplified as

1

2
g2
r − gr〈Yr,u

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r 〉

+
1

2
g2
r

N∑
n=1

ρ(n)||L(n)u(n)
r ||pp. (24)

Thus, the update rule is given by

gr ←
〈Yr,u

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r 〉

(1 +
∑N
n=1 ρ

(n)||L(n)u
(n)
r ||pp)

. (25)

Finally, the FR-SPC optimization scheme can be summarized
as shown in Algorithm 1. According to [72], several iterations
of inner-loop of 10-13th lines in Algorithm 1 may accelerate
convergence speed for N = 2, however it is not necessary for
N ≥ 3 [31].

C. Model Selection for the Number of Components R

The key problem of FR-SPC is choosing the optimal number
of components R. The PD model with too small an R is not
able to fit the data, and the PD model with too large an R
may result in over-fitting problems.

In order to estimate an optimal value of R, we gradually
increase R until we achieved the desired fit by formulating
the following optimization problem:

minimize
R

R, (26)

s.t. ||ZΩ − T Ω||2F ≤ ε,
Z ∈ S(R, p,ρ),

where S(R, p,ρ) is defined as a set of all possible solution
tensors via FR-SPC problem (15) with R, p, and ρ for any
input tensors, in other words S(R, p,ρ) is a tensor space
spanned by R smooth components, and ε is an error bound

Algorithm 3 SPC Algorithm (accelerated version of Algo-
rithm 2)

1: input: T , Ω, p, ρ, SDR, and ν.
2: ε← 10(−SDR/10)||T Ω||2F ;
3: XΩ ← T Ω; X Ω̄ ← average of T Ω;
4: Construct matrix L(n) by (14); ∀n ∈ {1, ..., N}
5: R← 1;
6: Initialize {u(n)

R ∈ UIn}Nn=1, randomly;
7: gR ← 〈X ,u

(1)
R ◦ u

(2)
R ◦ · · · ◦ u

(N)
R 〉;

8: E = X −
∑R
r=1 gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

9: EΩ̄ = 0;
10: t← 0;
11: µt ← ||E||2F ;
12: repeat
13: Update {{u(n)

r }Nn=1, gr}Rr=1 by the FR-SPC algorithm
(8th-16th lines);

14: µt+1 ← ||E||2F ;
15: if |µt−µt+1|

|µt+1−ε| ≤ ν then
16: R← R+ 1;
17: Initialize {u(n)

R ∈ UIn}Nn=1, randomly;
18: gR ← 〈E,u(1)

R ◦ u
(2)
R ◦ · · · ◦ u

(N)
R 〉;

19: E ← E − gRu(1)
R ◦ u

(2)
R ◦ · · · ◦ u

(N)
R ;

20: EΩ̄ ← 0;
21: end if
22: t← t+ 1;
23: until µt ≤ ε
24: Z ←

∑R
r=1 gru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ;

25: X Ω̄ ← ZΩ̄;
26: output: X , Z .

parameter. The criterion (26) allows us to finds a tensor Z
based on the smooth PD model, with the minimum number
of smooth components that guarantees a sufficient accuracy to
fit the input tensor T . In order to guarantee that the signal to
distortion ratio (SDR) is bounded within a specific threshold,
we can define the error bound as ε = 10(−SDR/10)||T Ω||2F .
Note that minZ∈S(R,p,ρ){||ZΩ − T Ω||2F } is a monotonically
non-increasing function with respect to R. Algorithm 2 is an
implementation to solve (26), and it allows us to obtain a
good estimation for R. However, this algorithm is quite time
consuming. If the current value of R is too small to fit the
PD model sufficiently well to the given data tensor during
the iteration process, then we can stop the algorithm for the
current R, increase as R ← R + 1, and run the algorithm
again for the new increased R. In this procedure, we propose
switching to an increased R at an early stage of the iterations
if the following condition is met:

|µt − µt+1|
|µt+1 − ε|

< ν, (27)

where µt = ||Zt
Ω − T Ω||2F , Zt denotes the PD model at the

iteration step t, and ν > 0 is a stopping threshold (typically,
ν = 0.01). The left hand side of (27) is a measure of the
convergence speed, so this condition means that when the
convergence speed becomes substantially slow, we stop the
iteration procedure for the current R. By incorporating this
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Fig. 1. Concept of optimization process in the SPC algorithm. An area
R between arcs indicates the space of the tensor that is spanned by the
components of R in the smooth PD model. An area that is filled with waves
indicates the space of the tensor satisfying the condition ||ZΩ−T Ω||2F ≤ ε.
Concatenated arrows show the optimization process of the SPC algorithm,
which gradually increases the number of components R from a rank-1 tensor
to its end point, when the criterion is satisfied.

Fig. 2. Iso-surface visualization of synthetic data and completion results using
SPC-TV and SPC-QV.

simple stopping criterion, we finally arrive at an improved
and considerably accelerated algorithm for the automatic de-
termination of the number of components R of FR-SPC. We
call this method simply “smooth PARAFAC tensor completion
with TV and QV minimization” (SPC-TV and SPC-QV), and
it is summarized in Algorithm 3. Fig. 1 presents the concept
of the optimization process of the SPC algorithm, and its
details are provided in Section V. Our algorithms have been
implemented in MATLAB, and are available for readers at
https://sites.google.com/site/yokotatsuya/home/software.

Because the best low-rank approximation problem for
smooth PD model may be often ill-posed in the same way as
for unconstrained PD model [19], our algorithm allows some
redundant terms in smooth PD model. Focusing on “good
approximation” rather than “minimum rank decomposition”,
although estimation of number of components for smooth PD
model is difficult, its accuracy does not need to be so high if
the reconstructed tensor is well approximated in practice.

IV. EXPERIMENTAL RESULTS

In the experiments to be described here, we apply our
proposed algorithms to one synthetic and several real-world
visual datasets, to demonstrate the sensitivity of the parameters
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Fig. 3. Convergence of mean squared error between ZΩ and TΩ, and
number of components R as a function of the number of iterations in
the SPC algorithm using the synthetic data with missing voxels rate of
80%. We performed simulations for various values of the stopping threshold
ν ∈ {0.1, 0.01, 0.001, 0.0001}. Other parameters were set as SDR= 30 dB,
ρ = [0.01, 0.01, 0.01] for TV smoothing, and ρ = [1.0, 1.0, 1.0] for QV
smoothing.

ν and ρ, and the advantages of our proposed algorithms
compared with the existing state-of-the-art methods LTVNN
[27], HaLRTC [43], STDC [12], and FBCP-MP [77].

A. Convergence Properties Using a Synthetic Third-Order
Tensor

Fig. 2 shows a visualization of the iso-surface of a synthetic
3rd-order tensor, and its completion results by achieved by
applying the SPC algorithm with TV and QV constraints. The
synthetic tensor was constructed using a combination of four
multi-dimensional Gaussian functions, and 80% of the voxels
were randomly removed in its incomplete tensor.

Fig. 3 shows the plots of the mean of squared errors (MSE)
between the tensors ZΩ and T Ω, and the number of estimated
components R with respect to number of iterations of the
SPC algorithm, with ρ = [0.01, 0.01, 0.01] for TV smoothing
and ρ = [1.0, 1.0, 1.0] for QV smoothing. In addition, we
set SDR= 30 dB and applied various switching threshold
values of ν ∈ {0.1, 0.01, 0.001, 0.0001}. We used the synthetic
smooth third-order tensor with a random 80% of voxels
missing. From Fig. 3, we can see the monotonic convergence
of MSE and the change in the number of components of R are
closely related to the change of the MSE. Note that the number
of components, R, is updated when the convergence speed of
the MSE becomes slow. Furthermore, the algorithm is seen to
require a much larger number of iterations for smaller values
of ν. However, the results for the final number of components
R were the same for different cases with ν ≥ 0.01. This
means that for too small a value of ν the convergence of
the algorithm is relatively slow. According to our extensive
experiments, ν = 0.01 is an acceptable default value.
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Fig. 7. Comparison of performances (PSNR and SSIM subtracted by baseline (LTVNN)) for all benchmark images and for various missing rates (from 60%
to 95%) obtained using the proposed methods (SPC-TV and SPC-QV) and the state-of-the-art algorithms LTVNN, HaLRTC, STDC, and FBCP-MP.

B. Color Image Completion

In this experiment, we applied our proposed and existing
methods to 10 color-images (Fig. 4). The size of all color
images is 256 × 256 × 3, and we generated incomplete data
by deleting elements of the images randomly, with several
different missing ratios ∈ {60, 70, 80, 90, 95%}. For the im-
ages “Giant” and “Wasabi,” all color elements of individual
pixels (so called dead pixels) were deleted for all missing
ratios. In order to evaluate the quality of completion, we used
the peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) [66]. PSNR is defined as 10 log10(2552/MSE),
and SSIM is defined by using the average and variance
parameters of the local small blocks in an image. As an
improved evaluation measure, SSIM is usually considered as
an improvement on PSNR, because SSIM evaluates both the
error and a kind of “local smoothness” of images for visual
quality. In this experiment, we generally set SDR = 25 dB
and ν = 0.01.

1) Convergence Behavior of SPC and FR-SPC Algorithms:
Fig. 5 shows the convergence curves for PSNR and SSIM
for 10 runs with random initializations in the SPC and FR-
SPC algorithms, using “Lena” with a random 95% of pixels
missing, with p = 2 and ρ = [0.5, 0.5, 0]. In both methods,
the number of components is the same. Interestingly, FR-SPC
converged to local minima that are larger than the convergence
points for SPC. Furthermore, the PSNR and SSIM values
achieved by SPC were significantly better than those for the
FR-SPC algorithm. This implies that the “rank-increasing”

approach results in an algorithm that converges to better local
minima.

2) Performances for Various Values of ρ: Fig. 6 shows
the PSNR, SSIM, and number of components R for different
values of the smoothing parameter ρ. A benchmark image,
“Lena,” with a random 80% of pixels missing, was used in this
experiment. We applied the SPC-TV and SPC-QV algorithms,
with various values of ρ = [ρ, ρ, 0]. We defined ρ := τ/(1−τ),
and tested for a wide range of τ ∈ [0.05, 0.95]. In this exper-
iment, we set the maximum values for R as 3000, because
of the limitations of the memory. We found that larger values
of ρ resulted in considerable increases in PSNR and SSIM
in QV/TV smoothing. However, too large a ρ substantially
decreases the performances in TV smoothing. Furthermore,
a larger ρ requires a larger number of components R to
achieve a more precise fit, and also a larger computational
cost. The SPC algorithm with TV smoothing required a larger
number of components R than QV smoothing, and usually
the performances, in terms of PSNR and SSIM, were inferior
in comparison with QV smoothing. According to our results,
QV smoothing performs, in general, better than TV smoothing
for tensor completion. We discuss our interpretation of these
results in Section V-B.

3) Comparison with the State-of-the-Art Methods: Fig. 7
shows the results of tensor completions using all 10 benchmark
images with various random pixel missing ratios using the
proposed method with TV and QV smoothing, and compares
these with the performances of four state-of-the-art methods.
The parameters for the SPC algorithms were set as ρ =
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Incomplete IALM LTVNN HaLRTC STDC Proposed (TV) Proposed (SV)FBCP-MP

Fig. 8. Simulation results for various incomplete images (top to bottom): text masked image, scratched image, random dead pixels missing (95%), and random
voxels missing (95% and 99%). Incomplete images are shown in the first column, and reconstructed images are shown in the other columns.

[0.05, 0.05, 0] for TV smoothing, and ρ = [1.0, 1.0, 0] for QV
smoothing. The hyper-parameters for the other methods were
optimally tuned manually. Interestingly, LTVNN outperformed
HaLRTC for several images with respect to SSIM. However,
it is difficult to say whether LTVNN outperformed HaLRTC
with respect to PSNR. This implies that the smoothness
constraint improves the structural similarity of images. Thus,
we can conclude that the smoothed methods (i.e., LTVNN,
STDC, FBCP-MP, and the proposed method) are evaluated
better by SSIM than PSNR. The proposed method with TV
smoothing was inferior to STDC and FBCP-MP in most cases
(e.g., “Peppers” and “House”). However, the proposed method
with QV smoothing considerably outperformed the all of the
existing methods for all of our benchmarks.

Fig. 8 presents several results for the completed images,
using the existing methods and the proposed method. We
prepared a text masked image of “Barbara,” a scratched image
of “Peppers,” an incomplete image with random pixels missing
(dead pixels) of “Giant,” and two incomplete images with
random voxels missing of “Lena.” In addition, for the first
time we tested an extreme case where the “99%” of pixels
are missing, and such a large missing ratio may constitute
an interesting challenge in this research field. There were
rather small difference between the performances of most
of the methods in the first and second rows. However, we
observed significant differences for the images missing random
pixels/voxels, especially when the ratio of missing pixels was

high. In the reconstructed images in the last three rows for
the non-smooth methods (i.e., IALM and HaLRTC), it was
difficult to recognize the shapes of objects. In the reconstructed
images in the second to last row, the smooth matrix completion
method (i.e., LTVNN) was not able to reconstruct the woman’s
facial features, but it is not difficult to recognize the woman’s
facial features in the second to last row where STDC, FBCP-
MP, and SPC were applied. For the last row with a 99%
missing ratio, the shape of “Lena” could be recognized only
for FBCP-MP and the proposed SPC-QV, but the performance
of SPC-QV was better than for FBCP-MP.

C. MRI Image Completion
Fig. 9 shows the results for several slices of MRI 3D-

images (of size 109 × 91 × 91), with 60%-95% of voxels
missing, obtained by HaLRTC, STDC, and SPC with TV and
QV smoothing. Since the MRI image is smooth in all three
dimensions (modes), the hyper-parameters of the SPC algo-
rithm were set as ρ = [0.01, 0.01, 0.01] for TV smoothing, and
ρ = [0.5, 0.5, 0.5] for QV smoothing. The hyper-parameters
of other methods were tuned optimally and manually. Table I
shows the performances (SDR) of the individual algorithms.
From Fig. 9 and Table I, we can observe that the SPC
algorithm succeeded in completing the incomplete MRI 3D-
images, even with a 90%-95% missing ratio of voxels, and also
significantly outperformed the other methods, with respect to
the SDR.
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Airplane Baboon Barbara Facade House Lena Peppers Giant WasabiSailboat

Fig. 4. Test images are 256×256 pixels color images, which consist of three
layers of red, green, and blue color images.
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Fig. 5. Comparison of the SPC and FR-SPC algorithms.
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Fig. 6. Results of PSNR, SSIM, and the number of components of the SPC
algorithms, using the image “Lena” with a missing ratio of 80%. We tested
various values of ρ = [ρ, ρ, 0]T , where ρ is calculated by ρ = τ/(1−τ). The
algorithms were relatively insensitive to the wide variation of the parameters.

D. 4th-order Tensor Completion Using a CMU Faces Dataset

Next, we applied the three completion methods to a fa-
cial image database, provided by Carnegie Mellon University
(CMU), called “CMU faces” [54]. The CMU dataset consists
of 6930 facial images of size 32 × 32 pixels. The 6930
facial images represent 30 individual people, 11 poses, and
21 kinds of illumination (i.e., 6930 = 30 × 11 × 21). Thus,
the size of the CMU dataset is (30× 11× 21× 1024). Since
each facial image is generally smooth in this dataset, but the
neighboring people, poses, and illuminations are not always
similar, we enforced the smoothness constraint in only the
final fourth dimension. Each facial image is described as a
1024-dimensional vector, which is a vectorized from a 32×32-
gray-scaled-image. Therefore, in this experiment we employed
a smoothness constraint matrix that applies a combination of
vertical and horizontal smoothness:

L(n) =

(
L(n)
v

L
(n)
h

)
, (28)

where L(n)
v and L(n)

h are the vertical and horizontal smooth-
ness matrices, respectively. The smoothness parameters of the
SPC were set as ρ = [0, 0, 0, 0.01] for TV smoothing and
ρ = [0, 0, 0, 0.1] for QV smoothing. Fig. 10 shows a section
of the original and incomplete CMU faces, with 80% of faces
missing, and its completed results obtained by the HaLRTC,

Incompleted (60% missing) Incompleted (80% missing) Incompleted (95% missing)

HaLRTC (60% missing) HaLRTC (80% missing) HaLRTC (95% missing)

STDC (60% missing) STDC (80% missing) STDC (95% missing)

Proposed (TV) (60% missing) Proposed (TV) (80% missing) Proposed (TV) (95% missing)

Proposed (QV) (60% missing) Proposed (QV) (80% missing) Proposed (QV) (95% missing)

Fig. 9. Results of tensor completion for MRI data by using HaLRTC, STDC,
and the proposed SPC -TV and SPC -QV methods for various missing rates.

Original tensor Incompleted tensor HaLRTC, 15.66dB

STDC, 21.98dB Proposed (TV), 23.06dB Proposed (QV), 23.91dB

Fig. 10. Results of tensor completion for the CMU face dataset by using
HaLRTC, STDC, and the proposed SPC -TV and SPC -QV methods. Values
of SDR [dB] are described in each subfigure. Considerable improvements in
performance were achieved.

STDC, and SPC algorithms. In this case, HaLRTC failed to
complete the faces, while STDC provided several broken faces.
However SPC achieved excellent results.

V. DISCUSSIONS

A. Smooth PARAFAC Decomposition Model

In Section II, we introduced three methods for “low-rank”
and “smooth” matrix/tensor completion: LTVNN [27], STDC
[12], and FBCP-MP [77]. We will now expand on the differ-
ences between these models and our proposed model.

First, our smooth tensor decomposition model is based on
enforcing the “local similarity between neighbor elements in
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TABLE I
SIGNAL TO DISTORTION RATIO OF MRI COMPLETION

methods 60% 70% 80% 90% 95%
HaLRTC 14.59 12.40 9.95 6.93 4.99
STDC 14.97 13.78 13.28 12.81 11.46
Proposed (TV) 18.13 16.23 14.16 11.20 8.36
Proposed (QV) 20.65 19.09 17.29 14.73 12.79

each component,” i.e., the vectors of the factor (component)
matrices. In contrast, LTVNN [27] imposes the smoothness
constraint on the “output matrix itself,” but not on the “com-
ponents.” Furthermore, the smoothness of both STDC [12]
and FBCP-MP [77] is designed to enforce the similarity
(or smoothness) between “individual components.” Thus our
method is quite different from above methods [27], [12],
[77]. In [56], a generalized framework for tensor factorization
with missing entries is proposed and smooth factor constraint
is included in this framework. However, it is considering
fixed-rank optimization problem, and does not propose model
selection method for R.

Second, our method is enforcing the different levels of
smoothness for different components adaptively. Note that
the smoothness constraint term in our objective function (12)
is multiplied by g2

r . Usually, the distribution of |gr| of the
PARAFAC decomposition is similar to the distribution of the
“singular values” of the singular value decomposition, which
may decrease exponentially from largest to smallest especially
for smooth image data. Thus, our model can be interpreted
as constructing a smooth image by building up the various
levels of smooth components, beginning with the smoothest
one. It should be emphasized that the adaptive smoothness in
our model is a key-technique to perform large improvements
from state-of-the-art methods for image completion.

B. TV Smoothing and QV Smoothing

In this paper, we consider two types of smoothness con-
straints: TV and QV smoothing. In image recovery problems,
such as denoising and restoration, it is generally considered
that the TV constraint is better than QV. On the other hand,
our result implies that the QV constraint performs better than
TV for the image completion problem. This is a new and
important discovery for the image completion research com-
munity, because many studies still consider the TV constraint
for completion problems [18], [27].

The advantages of QV for the completion problem can
be summarized as follows. If we consider the minimization
of the TV/QV term of a signal z = [0,NaN, 2,NaN, 0]T ,
the respective solutions are zTV = [0, a, 2, b, 0]T , where
a, b ∈ [0, 2] and zQV = [0, 1, 2, 1, 0]T . Since the QV term
has a strong convexity compared with the TV term, the
uniqueness of zQV can be enforced. Furthermore, zTV has
strong possibility of performing bumps in a component such
as [0, 0, 2, 0, 0]T , and including [0, 2, 2, 2, 0]T in the solution
set. In cases with high missing ratio, such as 90% or 95%, such
bumps will be performed very often by TV minimization.

C. Rank Increasing Approach

In this section, we discuss the some advantages of rank
increasing model selection which is employed in our method.

First, rank-increasing approach is more suitable than rank-
decreasing approach for our smooth PD model. If there is no
smoothness constraint, then the weak upper-bound of tensor
rank is mink(

∏
n 6=k In) for a general N -th order tensor X ∈

RI1×I2×···×IN , because any X can be factorized by only one
dense matrix U (k) = X(k) and a unit matrix constructed as
I = U (1) � U (2) � ... � U (k−1) � Uk+1 � ... � U (N) ∈
R

∏
n6=k In×

∏
n6=k In . However, such a unit matrix is not suitable

for a smooth constraint, and it is difficult to estimate the upper-
bound of the tensor rank, because it depends on the imposed
level of smoothness. In contrast, the rank-increasing approach
can easily be applied to various problems in practice since it
does not require prior information for the tensor rank.

Second, the rank-increasing scheme is useful for the ini-
tialization. In general, even if we know the exact minimum
(canonical) tensor rank of the smooth PARAFAC/Tucker de-
composition for a completion problem, many local minima
may exist for the optimization problem. Considering several
local optimal solutions for the problem, then the results of
optimization methods will depend on the initialization. Fig. 1
shows the concept of the optimization process for the SPC al-
gorithm. The algorithm starts from a rank-one tensor (R = 1),
the initialization of which has no critical meaning at this
moment. The initialization of the rank-R tensor factorization
is given by the rank-(R− 1) tensor factorization, which gives
a better initialization for the completion problem, because this
initialization arises from the lower-rank tensor space. When
the algorithm is finally stopped, the SPC algorithm is able
to find a good solution that is close to the lower-rank tensor
space.

In recent years, rank-increasing approach is a relatively hot
topic in matrix and tensor factorization models [45], [20], [59],
[63], [70]. The main statement in these papers is that the rank-
increasing (greedy) approach is more efficient for large scale
and ill-posed setting than nuclear-norm based scheme. Our
method is an additional positive result in this topic.

D. Convergence Property

Unfortunately, unconstrained low-rank tensor approximation
problem for higher ranks can be ill-posed or ill-conditioned
in many cases [19]. However, some other positive results
have been also established in recent years: Considering the
unconstrained problem for low-rank approximation without
missing values, a rank-one approximation by the ALS al-
gorithm achieves a local convergence [64], [76]. PARAFAC
decomposition with smooth spline components preserves the
local convergence of the ALS algorithm [52]. The local con-
vergence of the rank-one tensor approximation with penalized
smoothing is proven in [3]. As the latest result, rank-one
ALS with regularization can obtain global convergence via
Lojasiewicz inequality [62]. Please note that ALS and HALS
are completely equivalent for rank-one tensor approximation
R = 1.
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For the case of R ≥ 2, some results of block coordinate
descent (BCD) scheme can be applied for HALS. In [68],
local convergence of BCD scheme consisting of multiple
convex sub-optimizations is obtained for non-negative tensor
factorization model. In [31], a regularized PD based tensor
completion algorithm is proposed and its local convergence
is obtained. These results can be applied for our optimization
problem when p = 2 except unit-norm constraints.

Unfortunately, theoretical result about convergence of our
algorithm is not obtained. The difficulty of analysis for our
model may be caused by “unit-norm constraint.” This problem
will be addressed in our future works.

VI. CONCLUSIONS

In this paper, we proposed a new low-rank smooth
PARAFAC decomposition method for tensor completion prob-
lems. Our approach and algorithms are quite different from
existing methods. Instead of setting the upper bound of the
expected rank of the tensor, our algorithm increases the
number of components gradually until the optimal rank is
achieved. We considered two types of smoothness constraint in
our SPC method: total variation (TV) and quadratic variation
(QV). Our method was shown to outperform the state-of-the-
art algorithms, in particular HaLRTC, STDC, and FBCP-MP.
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