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Abstract

Model selection in tensor decomposition is important for real applications if the rank of the original data tensor is

unknown and the observed tensor is noisy. In the Tucker model, the minimum description length (MDL) or Bayesian

information criteria have been applied to tensors via matrix unfolding, but these methods are sensitive to noise when

the tensors have a multilinear low rank structure given by the Tucker model. In this study, we propose new methods

for improving the MDL so it is more robust to noise. The proposed methods are justified theoretically by analyzing

the “multilinear low-rank structure” of tensors. Extensive experiments including numerical simulations and a real

application to image denoising are provided to illustrate the advantages of the proposed methods.

Index Terms

Bayesian information criterion (BIC), higher order singular value decomposition (HOSVD), minimum description

length (MDL), model selection, multilinear tensor rank, Tucker decomposition

I. INTRODUCTION

Rank estimation is an important problem when determining the appropriate model order from a given data

matrix/tensor. We consider the following general model for matrix rank estimation:

Y = Y 0 +E, (1)
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where Y ∈ RI×J is a noisy data matrix, Y 0 ∈ RI×J is a rank-R latent matrix, and E ∈ RI×J is an additive noise

matrix, the individual entries of which eij are i.i.d. based on a zero-mean normal distribution with variance σ2. The

objective of rank estimation is to find the appropriate R from a noisy full rank matrix Y . Rank estimation methods

have several important applications depending on the objectives of the analysis. For example, the estimated rank

may be the number of clusters in clustering tasks, the number of latent signals in blind source separations, and the

appropriate dimension in dimensionality reduction (typically, principal component analysis) [36], [38], [37], [25],

[22], [5], [12]. In order to solve this problem, many methods have been studied since the 1970s, such as Akaike’s

information criterion [1], [35], Bayesian information criterion (BIC) [30], minimum description length (MDL) [29],

[35], generalized information criterion [20], the quotient of differences in additional values (QDA) measure [25],

exponential fitting test [10], [27], Laplace’s method (LAP) [24], cross-validation based method [4], and a method

for simultaneously estimating the rank and noise level [21].

In this study, we consider how to extend the problem of matrix rank estimation to a “tensor” (multi-way array).

In tensors, a straightforward and natural extension of the matrix rank is the CANDECOMP/PARAFAC (CP) rank,

where the CP rank of a tensor is defined as the minimum number of rank-one tensors required to yield its exact CP

decomposition [14], [11]. However, computing the CP rank of a tensor is known to be NP-hard [13]. The problem

of estimating the CP rank of a latent low-rank tensor from an observed noisy tensor may be very difficult, but there

are several methods for estimating the CP rank from noisy observations [3], [12], [8], [26], [23].

In the present study, we do not focus on the CP rank, but instead we consider another type of tensor rank: the

multilinear tensor rank. In contrast to the CP rank, which is based on CP decomposition, the multilinear tensor

rank is based on Tucker decomposition [34]. Tucker decomposition plays important roles in tensor data analysis

[16], [17], [33], [39], [2], [15], [18] and it is described as

X 0 = G ×1 U
(1) ×2 U

(2) ×3 · · · ×N U (N) ∈ RI1×I2×···×IN , (2)

where G ∈ RR1×R2×···×RN is a core tensor, U (n) ∈ RIn×Rn for n ∈ {1, 2, ..., N} are factor matrices with Rn ≤ In
for all n ∈ {1, 2, ..., N}, and ×n denotes the n-th mode tensor-matrix product: [G ×n U (n)]r1···rn−1inrn+1···rN =∑Rn

rn=1 gr1···rn−1rnrn+1···rNu
(n)
inrn

. A multilinear tensor rank of X 0, which is also referred to as the Tucker rank,

can be defined as

rankn(X 0) := min(Rn) = rank([X0](n)), (3)

where [X0](n) ∈ RIn×
∏

k 6=n Ik is a matrix that is unfolded from X 0 with respect to n-th mode and it is referred to

as “n-th mode unfolding matrix” [19]. If the observed tensor is contaminated by additive noise as: X = X 0 + E ,

the multilinear tensor ranks of X and X 0 can be different. Estimating the multilinear tensor rank of the original

tensor X 0 from a noisy tensor X is considered to be an important and challenging problem for model selection in

tensor data analysis research.

Considering the definition of a multilinear tensor rank in (3), any matrix rank estimation method can be employed

for multilinear tensor rank estimation via matrix rank estimation for the n-th mode unfolding matrix X(n). For
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example, MDL [29], [35] can be applied simply as

R̂n = MDL(X(n)), (4)

for each n ∈ {1, 2, ..., N}.

Moreover, several methods specifically for multilinear tensor rank estimation have been proposed such as DIFFIT

[32], TDA-SORTE [40], and MLREST [31]. In [32], all of the N -tuple (R1, R2, ..., RN ) candidates were considered

and evaluated based on the fitting rate, and an appropriate rank was selected from these candidates. In the tensor

decomposition toolbox “TDALAB” [40], an estimation strategy is implemented using the SORTE algorithm [12],

which was originally proposed for CP rank estimation. In TDALAB, the SORTE algorithm is applied to the n-

th mode unfolding matrix X(n). In another tensor decomposition toolbox called “Tensorlab” [31], an estimation

function is available as “mlrankest,” which uses an L-curve to evaluate the multilinear rank candidates. According

to [31], an L-curve is useful for finding a good point with the optimal trade-off between accuracy and compression.

Roughly speaking, the number of multilinear tensor rank combinations is
∏N
n=1 In for N -th order tensors. It is

computationally demanding to select one optimal value from all of these combinations, so DIFFIT and MLREST

require a relatively long time to obtain estimates. Cross-validation-based methods also require a long computational

time for their training and testing procedures. By contrast, matrix-based “mode-wise” rank estimation methods

that use an information criterion (such as MDL, QDA, and SORTE) are quite convenient and practical from a

computational perspective. However, when we consider how to apply matrix-based rank estimation methods to low

multilinear rank tensors, the gap between low-rank matrix and low-rank tensor models causes a weakness in the

presence of noise. The objective of this study is to investigate the difference between low-rank matrix and low-rank

tensor models by theoretically analyzing the covariance matrices and eigenvalues for both models. Based on this

analysis, we propose two new multilinear tensor (Tucker) rank estimation methods, which use the informative part

of the core tensor selectively to modify eigenvalues. The proposed algorithms are robust to noise, but they are also

relatively simple and computationally fast. The proposed algorithms are justified and compared competitively in

numerical simulations with state-of-the-art methods.

The remainder of this paper is organized as follows. In Section II, we review a matrix-based rank estimation

method and its direct application to tensors. Section III considers the difference in the covariance matrices and

eigenvalues between matrix and tensor models. In Sections IV and V, we propose two methods for robust multilinear

tensor rank estimation. In Section VI, we investigate the performance and applications of our algorithms, as well

as comparing them with some state-of-the-art methods. Finally, we present our conclusions in Section VII.

II. PRELIMINARIES: APPLYING A MATRIX MODEL TO TENSORS

A. Review of the MDL method

In this section, we first review a (basic) matrix rank estimation method called MDL. We assume that: (a) a noisy

observed matrix is given by Y = [y1,y2, ...,yJ ] = Y 0 +E ∈ RI×J , where the matrix Y 0 is rank R and I ≤ J ;
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and (b) each element in a noise matrix E follows an i.i.d. Gaussian distribution N(0, σ2) and it is independent of

Y 0.

The eigenvalues of its covariance matrix ΣY provide useful information about the original rank estimation

because it can be decomposed as

ΣY = ΣY 0
+ σ2II ,

=

(
R∑
r=1

λ(0)
r uru

T
r

)
+ σ2II , (5)

where λ
(0)
1 , λ(0)

2 , ..., λ(0)
R are the eigenvalues of ΣY 0 , and ur are the corresponding eigenvectors. Thus, the

eigenvalues of ΣY can be expressed as

λi =

 λ
(0)
i + σ2 (1 ≤ i ≤ R)

σ2 (R+ 1 ≤ i ≤ I)
. (6)

Plotting the eigenvalues with an ordering of λ1 ≥ λ2 ≥ · · · ≥ λI obtains an “L”-type curve, which allows

us to recognize some threshold between the signal and noise spaces. In practice, when J is a finite number, the

covariance matrix ΣY can be estimated by the sample covariance matrix SY := 1
JY Y

T → ΣY , and its eigenvalue

decomposition gives the estimators for the eigenvalues λi. Finally, the matrix rank of Y 0 can be estimated by the

MDL (which is equivalent to the BIC) criterion [29], [35]:

R̂ = argmin
r

−2 log

{∏I
i=r+1 λ

1/(I−r)
i

1
I−r

∑I
i=r+1 λi

}J(I−r)

+ r(2I − r) log(J). (7)

The MDL criterion usually works well [29], [35], [36], [22] when the number of samples J is sufficiently large,

even if the variance σ2 is unknown and the noise level is relatively high.

B. Application of MDL to tensors

Now, we discuss how to apply the MDL to tensors. In the form of the n-th mode unfolding, we assume that:

(a) the observed tensor can be decomposed by X(n) = [X0](n) +E(n) (n = 1, 2, ..., N ); and (b) each element of

a noise matrix E(n) follows an i.i.d. Gaussian distribution N(0, σ2) and it is independent of [X0](n). Based only

on the assumptions given above, the MDL can be applied to tensors, almost directly.

The n-th mode empirical covariance matrix and its eigenvalues can be derived by

SX(n)
=

1∏
n 6=k Ik

X(n)X
T
(n), (8)

Λ(n) = V (n)TSX(n)
V (n), (9)

where Λ(n) = diag
(
λ

(n)
1 , λ

(n)
2 , ..., λ

(n)
In

)
∈ RIn×In is a diagonal matrix of eigenvalues in descending ordering and

V (n) ∈ RIn×In is a factor matrix comprising the orthonormal column eigenvectors of SX(n)
. Using all of the
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mode factor matrices, a data tensor X can be decomposed exactly by

X = H×1 V
(1) ×2 V

(2) ×3 · · · ×N V (N), (10)

where a core tensor is given by H = X ×1V
(1)T ×2V

(2)T ×3 · · ·×N V (N)T . This decomposition (10) is referred

to as higher order singular value decomposition (HOSVD) [9]. The diagonal matrix Λ(n) of eigenvalues can be

expressed as follows:

Λ(n) =
In∏N
n=1 In

H(n)H
T
(n). (11)

The n-th mode multilinear tensor rank Rn can be estimated by using the MDL criterion (7) and the distribution of

the n-th mode eigenvalues Λ(n).

In a similar manner, most of the matrix-based rank estimation methods can be applied to tensors via n-th mode

unfolding. MDL and other matrix-based methods often work well for tensors, and they are competitive with some

methods designed specifically for tensors when the noise level is sufficiently low. However, these methods are

quite sensitive to strong noise, especially because this direct approach completely ignores the multilinear low-rank

structure of tensors. In this study, we derive some modified estimators of eigenvalues by considering the multilinear

low-rank structure of tensors and we propose new robust methods for multilinear tensor rank estimation.

III. MODIFIED EIGENVALUES FOR THE TUCKER MODEL

In this section, we consider a third order tensor to simplify the notation, but our method can be applied to any

order of tensor.

A. Modified form of tensor decomposition

The Tucker decomposition model of a noisy tensor is given by

X = G ×1 U
(1) ×2 U

(2) ×3 U
(3) + E, (12)

where X ∈ RI1×I2×I3 is a noisy observed data tensor, E ∈ RI1×I2×I3 is an additive Gaussian noise tensor,

G ∈ RR1×R2×R3 is a core tensor, and U (n) ∈ RIn×Rn is an n-th mode factor matrix of orthonormal columns. It

should be noted that the Tucker decomposition is not unique because we have G×1U
(1)×2U

(2)×3U
(3) = G×1

U (1)Q(1)TQ(1)×2U
(2)Q(2)TQ(2)×3U

(3)Q(3)TQ(3) = GQ×1U
(1)
Q ×2U

(2)
Q ×3U

(3)
Q for any orthogonal matrices

Q(n) ∈ RRn×Rn , where U (n)
Q = U (n)Q(n)T is a new orthogonal factor matrix and GQ = G×1Q

(1)×2Q
(2)×3Q

(3)

is a new core tensor. However, the minimum size of the core tensor (R1, R2, R3) is unique. The minimum size

of the individual modes of the core tensor (R1, R2, R3) is equivalent to the multilinear tensor rank. A matrix

representation of the Tucker model obtained via the n-th mode unfolding of (12) is given by

X(1) = U (1)G(1)(U
(3) ⊗U (2))T +E(1) ∈ RI1×I2I3 , (13)

where ⊗ denotes the Kronecker product. Now, we assume that: (a) the observed tensor is generated by X = X 0+E;

(b) each element in E follows an i.i.d. Gaussian distribution N(0, σ2) and it is independent of X 0 = G×1U
(1)×2
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U (2) ×3 U
(3); and (c) the rows of G(1) are orthogonal, i.e., Λ

(1)
0 = 1

R2R3
G(1)G

T
(1) is a diagonal matrix. It

should be noted that that any core tensor G can be transformed into a core tensor with the property in (c) via

singular value decomposition, (UG,DG,V G) = svd(G(1)), and by modifying the factors as U (1) ← U (1)UG,

and G(1) ←DGV
T
G. We note that assumption (c) does not impose any special restriction on tensor decomposition

and it is only used to simplify some of the formulations in this study.

In our approach, we consider a transformation of Eq. (13) by multiplying the orthogonal matrix (U (3) ⊗U (2)),

as follows:

Y (1) : = X(1)(U
(3) ⊗U (2))

= U (1)G(1) + F (1) ∈ RI1×R2R3 , (14)

where F (1) := E(1)(U
(3) ⊗U (2)). Eq. (14) can be rewritten in equivalent vectorized form as

y
(1)
i = U (1)g

(1)
i + f

(1)
i for all i ∈ {1, 2, ..., R2R3}, (15)

where Y (1) = [y
(1)
1 ,y

(1)
2 , ...,y

(1)
R2R3

], G(1) = [g
(1)
1 , g

(1)
2 , ..., g

(1)
R2R3

] ∈ RR1×R2R3 , and F (1) = [f
(1)
1 , f

(1)
2 ,

...,f
(1)
R2R3

]. It should be remarked that (U (3) ⊗ U (2))T is a mapping operator onto a signal subspace spanned

by orthonormal bases with respect to the second and third modes of the tensor. Thus, we can see that Eq. (15)

is equivalent to the matrix rank estimation problem (1), which is the problem of separating the whole space into

a signal subspace (spanned by basis matrix U (1)) and a noise subspace (orthogonal complement of the signal

space) with respect to only the first mode of the tensor. E(1) follows an i.i.d. Gaussian distribution, so the matrix

F (1) obtained by mapping E(1) onto its subspace spanned by orthonormal bases also follows an i.i.d. Gaussian

distribution. Hence, F (1) and G(1) are assumed to be statistically independent.

B. Modified eigenvalues

In this section, we analyze the covariance matrices of the signals in two different forms: (13) and (14). First, the

empirical covariance matrix for X(1) = [x
(1)
1 ,x

(1)
2 , ...,x

(1)
I2I3

] is given by

SX(1)
=

1

I2I3

I2I3∑
i=1

x
(1)
i x

(1)T
i

=
1

I2I3

(
U (1)G(1)(U

(3) ⊗U (2))T +E(1)

)
·
(
U (1)G(1)(U

(3) ⊗U (2))T +E(1)

)T
=

1

I2I3

(
U (1)G(1)G

T
(1)U

(1)T

+U (1)G(1)(U
(3) ⊗U (2))TET

(1)

+E(1)(U
(3) ⊗U (2))GT

(1)U
(1)T

+E(1)E
T
(1)

)
→ R2R3

I2I3
U (1)Λ

(1)
0 U (1)T + σ2II1 , (16)
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Fig. 1. Visual illustrations of the computation of λ(1)i , σ̂2, and λ(1)sp
i . (a) The eigenvalues λ(1)i for i ∈ {1, 2, ..., I1} are computed by the

MDL-based matrix rank estimation methods using the whole unfolding matrix H(1) of the HOSVD core tensor, as described in (11). Using the

permutation matrix P = [PG,PE ], (b) the noise variance estimator σ̂2 is computed by the modified eigenvalues estimator for Tucker rank

determination (MEET) method using the selected columns H(1)PE of H(1), and (c) the modified eigenvalues λ(1)sp
i for i ∈ {1, 2, ..., I1}

are computed by the SCORE method using the selected columns H(1)PG of H(1).

where→ denotes the convergence in probability based on the weak law of large numbers. In addition, the covariance

matrix of Y (1) can be expressed as

SY (1)
=

1

R2R3

R2R3∑
i=1

y
(1)
i y

(1)T
i

=
1

R2R3

(
U (1)G(1) + F (1)

)(
U (1)G(1) + F (1)

)T
=

1

R2R3

(
U (1)G(1)G

T
(1)U

(1)T +U (1)G(1)F
T
(1)

+ F (1)G
T
(1)U

(1)T + F (1)F
T
(1)

)
→ U (1)Λ

(1)
0 U (1)T + σ2II1 . (17)

A derivation of 1
R2R3

F (1)F
T
(1) → σ2II1 was partly provided by [7], [6]. Let us put ρ := R2R3

I2I3
, and considering

that I2I3 and R2R3 tend to infinity while keeping the ratio ρ constant, we obtain the following relationship between

both covariance matrices:

SX(1)
' ρSY (1)

+ (1− ρ)σ2II1 . (18)

In a strict sense, (18) holds at infinity. Thus, it does not hold generally in practice, however, it is meaningful to

understand the behavior of mode-eigenvalues of Tucker model, and design the approach for improvement. It should

be noted that there is a special case of SX(1)
= SY (1)

for ρ = 1 and SX(1)
is usually more noisy than SY (1)

for ρ < 1. In the case of R2R3 < I2I3 (i.e., ρ < 1), the dimensions (I2I3 − R2R3) corresponds to the noise

subspaces. The model (13) includes the noise subspaces and the model (14) does not. Thus, the MDL obtained via

SX(1)
based on the model (13), as introduced in Section II-B, would be more sensitive to noise than that based on
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the model (14) if ρ is small. Therefore, when we apply MDL to the unfolded and matricized Tucker model with a

small ρ, the model (14) would be better. In general, SY (1)
is unknown but the eigenvalue decomposition of SY (1)

can be approximated from (18) as SY (1)
' 1

ρSX(1)
− 1−ρ

ρ σ2II1 = V (1)
(

1
ρΛ(1) − 1−ρ

ρ σ2II1

)
V (1)T . Thus, the

effect of ρ can be reduced by using the following modification:

Λ
(1)
mod = diag

(
λ

(1)mod
1 , λ

(1)mod
2 , ..., λ

(1)mod
I1

)
=

1

ρ̂
Λ(1) − 1− ρ̂

ρ̂
σ̂2II1 , (19)

where Λ(1) ∈ RI1×I1 is the eigenvalue matrix of SX(1)
, σ̂2 is an estimator of noise variance, and ρ̂ is an estimator

of ρ. The remaining problem comprises how to choose the values of σ̂2 and ρ̂. In Section IV, we discuss an

estimation method for σ̂2 and ρ̂ by exploiting the core tensor in HOSVD.

IV. NOISE VARIANCE ESTIMATOR

Next, we discuss how to estimate the noise variance σ̂2 by considering a Tucker model with noise (12). Since

i.i.d. Gaussian noise does not change the eigenvectors of the covariance matrix, then we have V (n) ' [U (n), Ũ
(n)

],

where Ũ
(n)

is a set of basis vectors spanning the orthogonal complement space of U (n). A permutation matrix

P ∈ RI2I3×I2I3 exists such that (U (3) ⊗U (2))T (V (3) ⊗ V (2))P = [I,0]. Hence, we have

H(1)P = V (1)TX(1)(V
(3) ⊗ V (2))P

= V (1)T
{
U (1)G(1)(U

(3) ⊗U (2))T +E(1)

}
· (V (3) ⊗ V (2))P

=

G(1) 0

0 0

+E′(1) =

G(1) +E1 E2

E3 E4

 , (20)

where E′(1) := V (1)TE(1)(V
(3) ⊗V (2))P , and E1 ∈ RR1×R2R3 , E2 ∈ RR1×(I2I3−R2R3), E3 ∈ R(I1−R1)×R2R3 ,

and E4 ∈ R(I1−R1)×(I2I3−R2R3) are block matrices of E′(1). We note the orthonormal transform and permutation

preservation properties of i.i.d. Gaussian noise: [E′(1)]ij ∼ N(0, σ2). Let H(1) = [h1,h2, ...,hI1 ]T , hi for i =

1, ..., R1 correspond to the block [G(1) + E1,E2], and hi for i = R1 + 1, ..., I1 correspond to the noise block

[E3,E4]. The relationship between an estimated core tensor H(1) and a true core tensor G(1) = [g1, g2, ..., gR1
]T

can be expressed as

〈hi,hi〉 ≈ (〈gi, gi〉+R2R3σ
2) + (I2I3 −R2R3)σ2, (21)

where 〈gi, gi〉 = 0 for i ∈ {R1 + 1, R1 + 2, ..., I1}. The noise terms R2R3σ
2 and (I2I3 −R2R3)σ2 have different

interpretations. The former noise term corresponds to F (1) in Eq. (14) and it is the same noise level in the low

rank matrix model. By contrast, the latter noise term is removed in Eq. (14) and it appears only in the multilinear

low-rank tensor model. The noise in Eq. (18) also corresponds to the latter noise (I2I3 − R2R3)σ2, so we focus

on the latter noise term (I2I3 − R2R3)σ2 to estimate σ2. Note that the noise term (I2I3 − R2R3)σ2 corresponds
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Algorithm 1 Modified eigenvalues estimator for Tucker rank determination (MEET)
1: input: X ∈ RI1×I2×···×IN

2: Ī =
∏N
n=1 In;

3: In̄ =
∏
k 6=n Ik for n ∈ {1, 2, ..., N};

4: for n = 1, 2, ..., N do

5: V (n) ← a set of all eigenvectors of I−1
n̄ X(n)X

T
(n);

6: end for

7: H = X ×1 V
(1)T ×2 V

(2)T ×3 · · · ×N V (N)T ;

8: for n = 1, 2, ..., N do

9: λ
(n)
i ← 1

In̄
(H(n)H

T
(n))ii for i ∈ {1, 2, ..., In};

10: µj ← (HT
(n)H(n))jj for j ∈ {1, 2, ..., In̄};

11: ν ← sorted array of µ in descending order;

12: ρ̂← argminρ

{
ρ ∈ Sρ

∣∣∣ λ(n)mod
In

> 0
}

;

13: σ̂2 = 1
Ī(1−ρ̂)

∑In̄
k=ρ̂In̄+1 νk;

14: λ
(n)mod
i ← 1

ρ̂λ
(n)
i − (1−ρ̂)

ρ̂ σ̂2 for i ∈ {1, 2, ..., In};

15: Estimate Rn via the MDL criterion with λ(n)mod
i ;

16: end for

17: output: (R1, R2, ..., RN )

to E2 and E4. The permutation matrix can be split into two matrices: P = [PG,PE ], where PG ∈ RI2I3×R2R3 ,

and PE ∈ RI2I3×(I2I3−R2R3); hence from (20), we have

σ2 ≈ 1

I1(I2I3 −R2R3)

{
tr(E2E

T
2 ) + tr(E4E

T
4 )
}

=
1

I1(I2I3 −R2R3)
tr(H(1)PEP

T
EH

T
(1))

=
1

I1(I2I3 −R2R3)

I2I3∑
k=R2R3+1

(µTP )k, (22)

where µk := (HT
(1)H(1))kk for k ∈ {1, 2, ..., I2I3}. R2R3 = ρI2I3, so the problem can be converted into estimating

P and ρ.

We have

(µTP )k ≈


∑R1

i=1[G(1)]
2
ik + I1σ

2 k ≤ R2R3

I1σ
2 otherwise

, (23)

and thus the latent factor entries are approximately larger than the noise factor entries in µ. Therefore, we propose

that P can be obtained by sorting µ. The sorting procedure for µ in descending order outputs the sorted array

ν, where ν1 ≥ ν2 ≥ · · · ≥ νI2I3 , and µT P̂ = νT . Finally, we can estimate ρ and σ2 by applying the following
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criterion:

σ̂2 =
1

I1I2I3(1− ρ̂)

I2I3∑
k=ρ̂I2I3+1

νk, (24)

ρ̂ = argmin
ρ

{
ρ ∈ Sρ

∣∣∣ λ(1)mod
I1

> 0
}
, (25)

where Sρ is a set of candidates for ρ with 0 < ρ < 1. Figure 1(b) shows a visual illustration of the computation of

the noise variance estimator σ̂2. The parameter ρ̂ indicates how the whole matrix H(1)P is divided into left-hand

side and right-hand side matrices. The noise variance estimator σ̂2 is computed based on the average of the squares

for all entries in the right-hand side matrix. According to (19), the modified eigenvalues could be negative when the

noise variance estimator is excessively large. λ(1)mod
I1

is the minimum of the modified eigenvalues, so we constrain

it to being positive in (25). By substituting (24) into (19), the condition that λ(1)mod
I1

> 0 can be transformed into

λ
(1)mod
I1

=
1

ρ̂
λ

(1)
I1
− 1

ρ̂I1I2I3

I2I3∑
k=ρ̂I2I3+1

νk > 0,

⇐⇒ I1I2I3λ
(1)
I1

>

I2I3∑
k=ρ̂I2I3+1

νk. (26)

(25) can be solved easily by line-search because
∑I2I3
k=ρ̂I2I3+1 νk increases monotonically as ρ̂ decreases.

Finally, the rank is estimated by the MDL:

argmin
r
− 2 log

{∏In
i=r+1(λ

(n)mod
i )1/(In−r)

1
In−r

∑In
i=r+1 λ

(n)mod
i

}ρ̂In̄(In−r)

+ r(2In − r) log(ρ̂In̄), (27)

where In̄ =
∏
k 6=n Ik.

We summarize the generalized procedure of the proposed method in Algorithm 1 for any N ≥ 3. We refer to

the proposed method as MEET.

V. SCORE ALGORITHM

In the previous section, we proposed an improved method for modified eigenvalue estimation given by Eq. (19).

The proposed modified eigenvalue estimator is based on the selective estimation of the noise level using P̂E . In this

section, we consider another efficient approach for reconstructing eigenvalues from H(n) using P̂G, as follows:

λ
(1)sp
i ← 1

ρ̂I2I3
(H(1)P̂GP̂

T

GH
T
(1))ii, (28)

for i ∈ {1, 2, ..., In}, where P̂G ∈ RI2I3×ρ̂I2I3 and λsp
1 ≥ λsp

2 ≥ · · · ≥ λsp
In

. Figure 1(c) shows a visual illustration

of the computation of λ(1)sp
i . The use of several columns in the unfolding matrix H(1) of the core tensor can be

regarded as an approximation of Tucker decomposition by HOSVD with a block-sparse core tensor. Thus, we refer

to the proposed method as “SCORE” (sparse core). We note that the permutation matrix P̂ plays a key role for

both the MEET and SCORE algorithms (e.g., see Eqs. (23), (24), (25), and (28)). In contrast to MEET, the SCORE
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Algorithm 2 SCORE algorithm
1: input: X ∈ RI1×I2×···×IN , and ρ̂ (typically, 0.0001-0.01);

2: Ī =
∏N
n=1 In;

3: In̄ =
∏
k 6=n Ik for n ∈ {1, 2, ..., N};

4: for n = 1, 2, ..., N do

5: V (n) ← a set of all eigenvectors of I−1
n̄ X(n)X

T
(n);

6: end for

7: H = X ×1 V
(1)T ×2 V

(2)T ×3 · · · ×N V (N)T ;

8: for n = 1, 2, ..., N do

9: µj ← (HT
(n)H(n))jj for j ∈ {1, 2, ..., In̄};

10: Obtain the permutation matrix P̂ = [P̂G, P̂E ] by sorting µ in descending order;

11: λ
(n)sp
i ← 1

ρ̂In̄
(H(n)P̂GP̂

T

GH
T
(n))ii for i ∈ {1, 2, ..., In};

12: Sort λ(n)sp
i to satisfy λ(n)sp

1 ≥ λ(n)sp
2 ≥ · · · ≥ λ(n)sp

In
;

13: Estimate Rn via the MDL criterion with λ(n)sp
i ;

14: end for

15: output: (R1, R2, ..., RN )

TABLE I

ESTIMATORS OF ρ AND σ.

ρ σ ρ̂ σ̂

0.04 0.2 0.14 0.196

0.04 0.4 0.14 0.393

0.04 0.6 0.14 0.587

0.25 0.6 0.19 0.616

0.25 0.8 0.18 0.810

0.25 1.0 0.17 1.006

0.49 2.0 0.16 2.008

0.49 2.5 0.14 2.489

0.49 3.0 0.15 2.959

estimator is always positive for any ρ̂ > 0. The SCORE algorithm is simply developed by replacing λ
(1)mod
i by

λ
(1)sp
i in Algorithm 1. In contrast to MEET, SCORE does not need to estimate the unknown noise variance σ2

and the ratio parameter ρ̂ can be chosen from a wider range of 0 < ρ̂ < 1. Empirically, the SCORE algorithm is

quite robust to high noise by choosing a smaller value of ρ̂ and thus ρ̂ is typically in the range of 0.0001–0.01.

In Section VI-A3, we discuss the relationship between ρ̂ and the noise level based on extensive experiments. We

demonstrate that a sufficiently small value of ρ̂ provides very good performance with almost any noise level. The

SCORE algorithm for general N ≥ 3 is summarized in Algorithm 2.
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Fig. 2. Eigenvalues and MDL curves of the ideal, observed, MEET, and SCORE estimators with the noisy Tucker model (SNR = –10.7 dB)

obtained using the true values for ρ̂ = ρ = 0.04 and σ = 0.3. The true rank is 20.
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obtained using the estimators ρ̂ = 0.15 and σ̂ = 0.29. The true rank is 20, ρ = 0.04, and σ = 0.3.

0.2 0.3 0.4 0.5

ρ̂

noise level: σ

 

 

0.001

0.005

0.009

0.04

0.35

0.75

0

0.2

0.4

0.6

0.8

1

(a) MDL

0.2 0.3 0.4 0.5

ρ̂

noise level: σ

 

 

0.001

0.005

0.009

0.04

0.35

0.75

0

0.2

0.4

0.6

0.8

1

(b) MEET

0.2 0.3 0.4 0.5

ρ̂

noise level: σ

 

 

0.001

0.005

0.009

0.04

0.35

0.75

0

0.2

0.4

0.6

0.8

1

(c) SCORE

Fig. 4. Accuracy of multilinear rank estimation for various noise levels σ and the parameter ρ̂. The true ratio ρ is 0.04.

VI. EXPERIMENTAL RESULTS

A. Synthetic simulations

First, we generated a data tensor for the Tucker model (12) with using several different settings of (I1, I2, I3)

and (R1, R2, R3). All of the elements of G ∈ RR1×R2×R3 and U (n) ∈ RIn×Rn were generated according to a

normal distribution. The noise tensor E ∈ RI1×I2×I3 was generated based on a normal distribution with a mean of

zero and variance of σ2. A noise-free tensor was given by X 0 = G ×1 U
(1) ×2 U

(2) ×3 U
(3), and a noisy tensor

by X = X 0 + E . We calculated the noise level as the signal-to-noise ratio (SNR). The HOSVDs for X 0 and X

were given by X 0 = H0×1V
(1)
0 ×2V

(2)
0 ×3V

(3)
0 , and X = H×1V

(1)×2V
(2)×3V

(3). Each entry of E follows
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Fig. 5. Comparison of the proposed algorithm with other state-of-the-art methods.

TABLE II

AVERAGE COMPUTATIONAL TIME REQUIREMENTS

Method MLREST DIFFIT SORTE QDA MDL LAP SCORE

Time[sec] 7.3 63 0.013 0.010 0.033 0.13 0.11

an i.i.d. normal distribution, so V (n)
0 and V (n) are theoretically equivalent. We considered H0 and H as the true

and observed core tensors, respectively. We note that H0 does not contain any corresponding noise components.

According to Eq. (17), the true eigenvalues can be simulated by (λideal)i = 1
R2R3

([H0](1)[H0]T(1))ii + σ2. In

addition, the eigenvalues of the observed data X(1) were calculated by (λobs)i = 1
I2I3

(H(1)H
T
(1))ii.

1) Evaluations of the estimates of ρ and σ: For the first simulation, we evaluated the accuracy of the estimators

of ρ and σ2 by Eqs. (25) and (24). We fixed I1 = I2 = I3 = 100 and varied the ranks (R1, R2, R3) in

{(20, 20, 20), (50, 50, 50), (70, 70, 70)}, which corresponded to variations of ρ ∈ {0.04, 0.25, 0.49}. The noise

variance was also changed based on the SNR. Table I shows the results obtained for the estimators of ρ and

σ. We can see that ρ̂ estimators were not very accurate, whereas the σ̂ estimators were accurate.

The robustness of the estimated noise variance is explained based on Figure 1(b). We note that the accuracy

of the estimation of σ̂2 depends on the number of entries and the proportion of entries corresponding to noise

in the matrix H(1)PE . When ρ̂ < ρ, the proportion of noise entries decreases but the number of total entries
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in H(1)PE increases. When ρ̂ > ρ, the proportion of noise entries is 100% but the total number of entries in

H(1)PE decreases. Thus, the accuracy of σ̂2 is relatively robust with respect to the estimation error in ρ̂. Precisely

estimating ρ̂ as the ratio (R2R3/I2I3) is considered to be as difficult as rank estimation.

2) Evaluations of the estimated eigenvalues and multilinear ranks: In this experiment, the sizes of the data tensor

and core tensor were set at I1 = I2 = I3 = 100, and R1 = R2 = R3 = 20, respectively, and we applied the

MDL, MEET, and SCORE algorithms with two different values of ρ̂. Figure 2 shows the results for the eigenvalue

estimators and the MDL curves for MEET and SCORE obtained using the true ρ and σ. When ρ̂ = ρ, the eigenvalues

estimated by SCORE were quite similar to the ground truth. Using the MEET algorithm, the estimated eigenvalues

were accurate for the first to 20th values, but not accurate for the 21st to 100th and they included negative values.

Thus, the MDL curve obtained by SCORE matched well with the ground truth, whereas the MDL curve obtained

by MEET was not suitable because of the negative eigenvalues. Figure 3 shows the results for the eigenvalue

estimators and the MDL curves for MEET and SCORE with the values of ρ̂ and σ̂ estimated by Eqs. (25) and (24).

The eigenvalues were not estimated accurately, but the ranks selected from the MDL curves obtained by MEET

and SCORE were much more accurate than those produced by standard MDL.

3) Evaluation of the robustness for σ and ρ̂: In this simulation, we evaluated the accuracy of multilinear rank

estimation using various settings for the noise level σ. The basic settings were the same as those used in the

experiment above: In = 100, Rn = 20 for n ∈ {1, 2, 3}, etc. The rank estimation accuracy is defined by

α(R̂1, R̂2, ..., R̂N ) := 1−
∑N
n=1 min(∆Rn, |Rn − R̂n|)∑N

n=1 ∆Rn
, (29)

where ∆Rn = min(In − Rn, Rn − 1). Obviously, α(R̂1, R̂2, ..., R̂N ) = 1 if Rn = R̂n for n ∈ {1, 2, ..., N}, and

thus we have 0 ≤ α ≤ 1.

We tested the rank estimation performance of the MDL, MEET, and SCORE algorithms using various values of

ρ̂. Figure 4 shows the rank estimation accuracy with various values of σ and ρ̂ for each method. MDL failed to

estimate the multilinear ranks for larger values of σ, regardless of ρ̂. MEET performed very well for small values

of ρ̂, but it could not obtain good results for ρ̂ smaller than a threshold due to the negative eigenvalues. SCORE

performed very well for smaller values of ρ̂. Furthermore, SCORE usually performed very well with smaller values

of ρ̂ regardless of the noise level. These result suggest that the precise selection of ρ̂ is not important for the SCORE

algorithm if we choose a sufficiently small value for ρ̂. In addition, accurate estimation of the noise variance might

not be necessary for the rank estimation problem. Essentially, the rank estimation problem may be related to the

behavior as the eigenvalue changes rather than the exact values. The problem is that the behavior of the eigenvalue

changes was often deformed by noise and the multilinear low-rank structure. Thus, the SCORE algorithm can be

interpreted as a type of restoration for the behavior of the eigenvalue changes.

4) Comparison of the proposed algorithm with state-of-the-art methods: In these simulations, we compared

the proposed SCORE algorithm with existing state-of-the-art methods: DIFFIT [32], MLREST [31], TDA-SORTE

[40], BIC/MDL [30], [29], [35], QDA [25], and LAP [24]. To evaluate the performance of these methods, we

calculated the accuracy (29) by changing the noise variance σ2 over a very wide range. The basic settings were
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Fig. 6. Scheme for HOSVD denoising: (a) to estimate the multilinear rank by SCORE and to reconstruct patches using the truncated HOSVD;

and (b) to remove some entries of the core tensor by hard thresholding (HT) and to reconstruct patches by HOSVD.

(a) Noisy image (σ = 40) (b) HOSVD with HT (σ̂ = 20) (c) HOSVD with HT (σ̂ = 40) (d) Truncated HOSVD via MDL

(e) Truncated HOSVD via SCORE (f) Truncated HOSVD with under-

estimate (R̂1 = R̂2 = R̂3 = 1)

(g) Truncated HOSVD with over-

estimate (R̂1 = R̂2 = 5 and

R̂3 = 10)

Fig. 7. Selected images in denoising experiments.

the same as those used in the experiments described above. DIFFIT and MLREST can be regarded as tensor-based

methods because these methods evaluate each combination of multilinear ranks (R1, R2, ..., RN ) as one unit. By

contrast, SORTE, QDA, MDL, LAP, and SCORE are matrix-based methods because these methods estimate each

Rn independently. In computational terms, matrix based methods are more practical because the number of all

combinations of multilinear ranks (R1, R2, ..., RN ) increases exponentially with N . In this set of experiments, we

set ρ̂ = 0.001 for the SCORE algorithm.
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TABLE III

RESULTS OBTAINED AFTER DENOISING “LENA” USING THREE METHODS.

σ PSNR SSIM

noisy HOSVD MDL SCORE noisy HOSVD MDL SCORE

20 22.1312 32.7440 31.9589 32.9154 0.4484 0.8888 0.8796 0.8927

Lena 40 16.3679 29.1801 28.7732 29.3390 0.2410 0.7903 0.7992 0.8002

60 13.2679 26.8078 26.6925 26.8932 0.1484 0.7012 0.7256 0.7083

20 22.1248 26.0259 23.0561 25.2466 0.6772 0.8172 0.6639 0.7889

Mandrill 40 16.2889 23.0134 21.6267 22.7610 0.4188 0.6601 0.5420 0.6384

60 13.1732 21.5674 20.8570 21.4663 0.2713 0.5396 0.4659 0.5271

20 22.2198 31.5794 30.7761 31.7540 0.4122 0.8862 0.8838 0.8921

Peppers 40 16.3859 27.6211 27.0221 27.7665 0.2063 0.7784 0.7970 0.7915

60 13.2662 25.1401 24.8017 25.2001 0.1255 0.6840 0.7179 0.6931
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(a) HOSVD denoiser with various values of σ̂
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Fig. 8. Comparison of the HOSVD denoising and SCORE denoising performance with various values for the parameters σ̂ and ρ̂. The true

noise variance was σ = 40.

We compared three sets of tensor and core tensor sizes: (I1 = I2 = I3 = 100, R1 = R2 = R3 = 20),

(I1 = I2 = I3 = 100, R1 = R2 = 5, R3 = 25), and (I1 = I2 = 20, I3 = 500, R1 = R2 = 10, R3 = 50).

Furthermore, we varied the noise variance σ2 based on the SNR. We evaluated the computational time and estimated

accuracy of rank based on the average and standard deviation over 10 trials. A noisy tensor was generated randomly

for each trial.

Table II shows the average computational times for 10 trials in the first setting (i.e., I1 = I2 = I3 = 100 and

R1 = R2 = R3 = 20). The matrix-based methods were obviously faster than the tensor-based methods. Figure 5

shows the results in terms of accuracy for all of the methods, where the lengths of the bars denote the average

accuracy and the error bars represent the standard deviation of accuracy. We can see that MLREST and DIFFIT

worked well only for very small noise levels, but SORTE and QDA had low accuracy for high noise levels. LAP

and SCORE were quite robust with high noise levels. In particular, the SCORE algorithm outperformed all of the

other methods for almost any noise level.
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B. Real-world application: Image denoising

In this experiment, we applied the proposed multilinear tensor rank estimation method to a denoising problem

as an illustrative example. The denoising scheme based on HOSVD was proposed by [28], so we refer to this

method as the “HOSVD denoiser” and the concept is illustrated in Figure 6. The HOSVD denoiser is regarded as

a patch-based image processing method. In this algorithm, we selected a patch image, (p, p)-matrix, as a reference

patch from the noisy image and we then found K similar patches in the peripheral regions. A (p, p,K)-tensor

Z ∈ Rp×p×K was constructed using the K similar patches and we factorized this tensor with the HOSVD:

Z = H×1 V
(1) ×2 V

(2) ×3 V
(3), where H ∈ Rp×p×K , V (1) ∈ Rp×p, V (2) ∈ Rp×p, and V (3) ∈ RK×K . Using

hard thresholding [28], we obtained a modified core tensor by

Ĥ(i, j, k)←

 H(i, j, k) H(i, j, k) > τ

0 otherwise
, (30)

where τ = σ̂
√

2 log p2K. Hence, Ẑ was reconstructed by Ĥ×1 V
(1) ×2 V

(2) ×3 V
(3), and the denoised patches

are returned to their original positions. We repeated these procedures for all of the reference patches and the

overlapping pixels were filled based on their average. A key procedure in HOSVD denoising is hard thresholding

of the core tensor, where its threshold τ depends on the noise variance parameter σ̂. The noise variance parameter

σ̂ is considered to be a known parameter in [28], whereas we note that it is an unknown parameter in practical

applications. The estimation of σ̂ is a challenging problem for the HOSVD.

Next, we propose an alternative HOSVD denoising method. We estimate the ranks (R1, R2, R3) using SCORE

and reconstruct a patch tensor Ẑ with the truncated HOSVD model: Ẑ = G ×1 U
(1) ×U (2) ×U (3), where G ∈

RR1×R2×R3 , U (1) ∈ Rp×R1 , U (2) ∈ Rp×R2 , and U (3) ∈ RK×R3 . Core tensor is given by G(i, j, k) = H(i, j, k)

for i ∈ {1, 2, ..., R1}, j ∈ {1, 2, ..., R2}, and k ∈ {1, 2, ..., R3}. The factor matrices U (1), U (2), and U (3) are

given as the left R1, R2, and R3 column vectors of V (1), V (2), and V (3), respectively. We refer to this method

as the “SCORE denoiser”. During the denoising of image data, overestimating the rank still provides noisy signals

(Fig. 7(g)) and underestimating the rank yields distorted signals (Fig. 7(f)). Thus, the appropriate rank estimation

is required in its denoising task.

In fact, both hard thresholding with HOSVD and low rank approximation via SCORE produce sparse core tensors.

However, the SCORE denoiser performs slice-wise thresholding in contrast to the element-wise thresholding with

the HOSVD denoiser. Thus, the low rank approximation in the SCORE denoiser can be interpreted as the hard

thresholding of “factor matrices.”

In this set of experiments, we used gray-scale images of “Lena” (512 × 512), “Mandrill” (512 × 512), and

“Peppers” (256 × 256) for comparison, which were corrupted by additive Gaussian noise with σ ∈ {20, 40, 60}.

The general parameters were set as p = 8 and K = 30, where the correct value of σ̂ was used for the HOSVD

denoiser and ρ̂ = 0.01 was used for the SCORE denoiser. Table III shows the peak SNR (PSNR) results and structural

similarity (SSIM) measures for the images denoised by the HOSVD, MDL, and SCORE denoisers, where the MDL

denoiser used the low-rank HOSVD with rank estimation by MDL. The performance of the SCORE denoiser was
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very similar to that of the HOSVD denoiser for all images and noise levels although the correct σ̂ (which is unknown

in practice) was used for the HOSVD denoiser. This suggests that the rank estimation obtained by SCORE was

accurate and suitable for a wide range of images and noise levels. Figure 7 shows a noisy image obtained with

σ = 40 as well as the results obtained by the HOSVD denoiser with incorrect and correct values of σ̂, the MDL

denoiser, and the SCORE denoiser with ρ̂ = 0.01. We can see that the results obtained by the HOSVD denoiser

with incorrect σ̂ were still quite noisy, the results produced by the MDL denoiser were blurred, but the results were

very clear using the HOSVD denoiser with the correct σ̂ and the SCORE denoiser. Figure 8 shows the PSNR and

SSIM results obtained by the HOSVD and SCORE denoisers for various values of σ̂ and ρ̂. The HOSVD denoiser

was quite sensitive to the hyper-parameter σ̂, but SCORE denoiser was quite robust to the parameter ρ̂. Therefore,

the SCORE denoiser is more suitable in practice, especially when σ̂ is unknown.

VII. CONCLUSIONS

Multilinear tensor rank estimation is an important problem that affects the practical applications of tensor

decomposition techniques. In this study, we greatly improved the performance of matrix-based multilinear tensor

rank estimation methods for large noise by considering the multilinear low-rank structure of tensors from both

theoretical and practical perspectives. We demonstrated the robustness of the SCORE algorithm in terms of the

noise level based on extensive experiments. As a real-world application, we considered a denoising problem in this

study, but the SCORE algorithm can also be applied to a wide range of applications such as multi-way blind source

separation, dimensionality reduction, and the clustering of low-rank tensor data. The extension or improvement

of the proposed methods to CP rank selection or other information theoretic criteria can be investigated in future

research.
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