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Abstract

Text-to-speech (TTS) is the artificial generation of human speech from texts. Since speech
is one of the most important ways of human communication, TTS systems have been
widely used in many applications, e.g., bus announcements, smartphone applications,
smart speakers, and speech-to-speech translation systems. With the spread of services
using TTS systems, they are expected to generate synthetic speech with not only high
naturalness but also various speaker characteristics, emotions, and speaking styles.

To achieve that goal, many researchers have been tackled the issues of TTS over the past
decades. One of the most successful approaches is corpus-based statistical parametric
speech synthesis (SPSS). In this approach, the relationship between the linguistic features
extracted from texts and the acoustic features extracted from the corresponding speech
waveforms is modeled by a statistical model. The major advantage is that the character-
istics of synthetic speech can be easily controlled by manipulating the parameters of the
statistical model. As the statistical model, the hidden Markov model (HMM) has been
widely used thanks to the well-defined algorithms and its flexibility for modeling sequen-
tial data. One of the major problems of the HMM is that it cannot fully exploit large
collections of heterogeneous speech data. In order to solve the problem, the factor ana-
lyzed HMM (FAHMM), which is a probabilistic version of eigenvoice, has been proposed.
In the framework of the FAHMM, the speech characteristics can be altered by changing a
low-dimensional variable, which is called factor, rather than very high-dimensional model
parameters. It should be noted that the factor is automatically extracted through model
training of the FAHMM. While the effectiveness of the SPSS methods has been shown in
various experiments, novel deep-neural-network (DNN)-based TTS approaches have been
recently proposed. They attempt to directly model the relationship between the linguistic
features and the raw audio speech waveforms using a specially-designed neural network
architecture. One of the most successful approaches is the WaveNet generative model. By
using a stack of convolutional neural networks (CNNs), the WaveNet can capture long-
term temporal dependencies in speech signals. The WaveNet model outperformed the
state-of-the-art TTS systems in subjective evaluation tests.
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In the paper, techniques for improving the naturalness of synthetic speech and control-
ling the speech characteristics are proposed. For controlling the speech characteristics,
the model structure to appropriately model heterogeneous speech data is studied using
the FAHMM. Although the model structure of the FAHMM has no constraints under its
framework, a single binary decision tree is typically used so that a simple algorithm for
building a model structure can be used. However, it would prevent to capture the complex
speaker/emotion/speaking-style-dependent relationship between the linguistic and acous-
tic features. To flexibly model the relationship, a more complex multiple-tree structure is
proposed. The multiple trees are grown simultaneously rather than sequentially because
building trees one by one makes it difficult to find the optimal model structure. How-
ever, since the possible combinations of tree structures exponentially increase according
to growing trees, simultaneously optimizing the model structures is computationally in-
feasible. In order to avoid the computational explosion of the optimization, two com-
putational complexity reduction algorithms inspired by techniques used in HMM-based
speech synthesis are introduced.

For improving the naturalness of synthetic speech, the quantization used in neural-network-
based speech waveform synthesis is investigated. One of the key techniques of neural-
network-based speech waveform synthesis is modeling speech signals composed of a set
of discrete values instead of continuous ones. In other words, speech waveform modeling
is formulated as a classification problem rather than as a regression one. This enables
more flexible waveform modeling because a categorical distribution has no assumptions
about the shape. Simple linear quantization or nonlinear quantization with µ-law com-
panding is typically used to obtain the discrete-valued speech signals. However, the quan-
tization scheme introduces white noise into the original signals. Since the white noise is
uniformly distributed over the entire frequency range, the quantization noise is easily per-
ceived by human listeners. This paper presents a quantization noise shaping method in
which a time-variant mask derived from mel-cepstrum is applied to the white quantiza-
tion noise. Since mel-cepstrum can be based on the human auditory system, some of the
quantization noise should be difficult for a human listener to perceive.

Keywords: Speech synthesis, signal processing, hidden Markov model, WaveNet, factor
analysis, mel-cepstrum
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Abstract in Japanese

音声は我々にとって最も身近なコミュニケーション手段の一つであることから，近
年，音声信号処理技術の発展に伴って，バスの運行案内やスマートフォンのアプリ
ケーション，スマートスピーカーなど，音声を利用したサービスが増加してきてい
る．このようなサービスにおいては，発話の内容が多岐に渡るため，人の発声を収
録したものを再生するのではなく，人工的に作られた音声を用いることが多い．そ
のため，人間らしい自然な音声を合成するための音声合成システムの需要が高まっ
てきている．また，合成音声を利用した円滑な意思疎通を実現するため，音声の個
人性や感情，発話スタイルなどを自由に表現可能な音声合成技術の実現が期待され
ている．

音声合成の問題は，与えられた任意のテキストから，対応する音声を求めることで
ある．この問題を解決するため，この数十年の間に様々な研究が成されてきた．最も
代表的な手法の一つとして，テキストから抽出した言語特徴量と，音声波形から抽
出した音響特徴量との関係を，統計モデルにより表現する統計的パラメトリック音
声合成方式が挙げられる．ここで，言語特徴量とは，音声に影響を与える音素や品詞
などの文脈的な情報を表し，音響特徴量とは，音声波形を良く表現するような低次元
の特徴量を表す．統計モデルのパラメータを変化させることによって，声を混ぜる，
声を真似る，声を作り出すといったことが容易に可能であることが，統計的パラメト
リック音声合成方式の大きな利点の一つである．統計モデルとしては，隠れマルコ
フモデル (Hidden Markov Model; HMM)が広く用いられてきた．HMMは，時間とと
もに変動する観測系列を統計的な枠組みで扱うことができるため，音声のモデル化
に適していると言える．しかし，HMMでは，様々な話者，感情，発話スタイルを含
む大量の音声データを有効利用することが難しく，極少量の音声データから音声合
成システムを構築することが困難であるという問題がある．このような問題を解決
する手法として，HMMを拡張した因子分析に基づくHMM (Factor Analyzed HMM;
FAHMM)が提案されている．因子分析に基づくHMMでは，音声の話者性や感情を
制御する低次元のパラメータ（因子）をモデルに組み込んでおり，この因子を変化
させることで，音声の多様性を制御できる枠組みとなっている．このような統計的
パラメトリック音声合成方式の有用性が示されている一方で，ディープニューラル
ネットワーク (Deep Neural Network; DNN)と呼ばれるモデルを用いて，言語特徴量
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と音声波形との関係を直接モデル化する手法が最近提案され，注目が集まっている．
特に，WaveNetと呼ばれるモデルは，特殊な構造を持った多層の畳み込みニューラ
ルネットワークを利用することで，長期の依存関係を持つ音声波形を効率的にモデ
ル化しており，WaveNetから合成された音声は人間が発話した音声と比べてほとん
ど劣化が見られないことが報告されている．

このような背景を踏まえて，本論文では，合成音声の自然性の向上および多様性の
制御の両方を目指す．まず，多様性においては，因子分析に基づくHMMのモデル構
造に着目する．これまで，因子分析に基づくHMMのモデル構造は，学習アルゴリ
ズムを簡単にするため，話者や感情に依存しないものとして捉えられていた．しか
し，言語特徴量と音響特徴量の対応関係は明らかに話者や感情に依存するものと考
えられるため，このようなモデル構造では，多様な音声データを精度良くモデル化
することが困難であり，合成音声の品質の劣化に繋がると考えられる．そこで，言
語特徴量と音響特徴量，および話者や感情の関係を柔軟に表現するためのモデル構
造と，そのモデル構造を自動獲得するためのアルゴリズムを提案し，合成音声の品
質の向上を目指す．提案法では，考慮すべきモデル構造の数が爆発的に増加するた
め，モデル構造を評価するために必要な計算量が年単位となり，そのままでは実現
が困難である．そこで，計算量を大幅に削減するためのアルゴリズムを導入し，現
実的な計算時間によるモデル構造の選択を実現する．

また，自然性の向上においては，WaveNetにおける量子化に着目する．WaveNetを
始めとして，音声波形を直接モデル化する手法においては，音声波形に対して量子
化を行うことで，音声波形のモデル化を回帰問題ではなく分類問題として捉えてい
る．これによって，音声波形を柔軟にモデル化することが可能であることが実験に
よって確かめられている．しかし，量子化を行うことにより発生する量子化ノイズ
が白色であるため，量子化ノイズの特に高域の周波数成分が知覚されやすく，合成
音声の自然性が低下する要因となっていた．この問題に対して，メルケプストラム
に基づくプリフィルタリングおよびノイズシェーピング量子化法を提案する．プリ
フィルタリングおよびノイズシェーピングの操作はメルケプストラムを介して行う
ため，これらの効果は人間の聴覚特性に合ったものとなっており，量子化ノイズが
音声によって効率良くマスクされ，知覚されにくくなることが期待される．

以上のように，本論文では，人間と人間，人間と機械との円滑なコミュニケーショ
ンを実現するために，合成音声の自然性の向上と，多様性を制御するための技術を
提案し，評価実験によってその有効性を検証する．
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Chapter 1

Introduction

Since speech is one of the most important ways for human communication, a number
of research topics for human-machine communication have been proposed. Text-to-
speech (TTS), which is the artificial generation of human speech from text, is a funda-
mental technology for human-machine communication, and a practical way to improve
our quality of life. In recent years, TTS synthesis systems are used in many application,
e.g., bus announcements, smartphone applications, smart speakers, and speech-to-speech
translation systems.

The goal of TTS synthesis is to let machines speak naturally like humans with various
speaker characteristics. In the past decade, the two main approaches, i.e., statistical para-
metric [1, 2] and concatenative [3] synthesis, have been widely developed to achieve that
goal, and the speech generated by the synthesizers has been gradually approaching hu-
man speech in terms of naturalness [4]. However, it is expected to synthesize speech with
not only high naturalness but also specific speaker characteristics. The amount of speech
data uttered by a specific speaker with specific style is typically not enough to build a
high-quality TTS system. Thus, leveraging a large amount of speech data consisting of
multiple conditions is the key idea to solve the problem of a lack of speech data of a
specific condition, but it makes building TTS systems challenging due to their acoustic
variation.

For exploiting large collections of heterogeneous speech data, many approaches have been
proposed especially in the hidden Markov model (HMM) [1] framework because speaker
characteristics can be easily altered by transforming its model parameters. Some of those
approaches are based on the idea of a speaker subspace. They assume that speaker char-
acteristics can be sufficiently captured in a low-dimensional subspace rather than in a very
high-dimensional model parameter space. By estimating the low-dimensional weights of
the basis vectors spanning the subspace, the desired voice can be created even if only
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a few utterances of the desired speaker are available. These subspace-based approaches
have become sophisticated over the years, and the three main approaches are described
as follows. 1) Interpolation [5, 6]: speaker characteristics are controlled by linearly in-
terpolating several speaker-dependent models. Each of the speaker-dependent models
can be viewed as the basis vectors. The speaker similarity of the synthetic speech gen-
erated by the interpolated model with the actual speaker strongly depends on the repre-
sentative speakers modeled by the speaker-dependent models. 2) Eigenvoice [7, 8]: the
basis vectors are obtained by applying principal component analysis (PCA) to a set of
parameters of speaker-dependent models. Dimensionality reduction by PCA makes the
model compact, and the resulting subspace can effectively capture speaker characteris-
tics more than the interpolation-based method. 3) Probabilistic eigenvoice [9]: one of
the critical drawbacks of the interpolation- and eigenvoice-based approaches is that train-
ing an acoustic model is independent of building a speaker subspace. That is, the basis
vectors are estimated so that they can reconstruct the parameters of speaker-dependent
models rather than speech data. To solve the problem, factor analyzed HMM (FAHMM)
has been proposed [9] as a well-defined probabilistic version of eigenvoice. Although
several subspace-based approaches, e.g., maximum likelihood eigenspace (MLES) [10],
multiple-regression HMM (MRHMM) [11, 12], and cluster adaptive training (CAT) [13,
14], have been proposed, they can be viewed as the variants of FAHMM. The difference
between FAHMM and those approaches will be discussed in the paper. FAHMM has been
shown to be effective [9], but its structure has much room for improvement.

Considering various speaker-independent linguistic contexts is important to synthesize
high-quality speech because it is well-known that spectral and prosodic features in human
speech are affected by contextual factors such as lexical stress, pitch accent, tone, and
part-of-speech information. Unfortunately, it is almost impossible to reliably estimate
the basis vectors for all possible combinations of the contexts with a finite set of train-
ing data. Thus, the basis vectors must be shared within similar contexts based on their
model structures representing the relation between linguistic contexts and their acoustic
realization. Although the model structures have no constraints under the FAHMM frame-
work, a single binary decision tree is typically used as the model structures [9] so that
decision tree-based context clustering [15], which is widely used in HMM-based speech
synthesis, can be used. However, since it can be seen that each of the basis vectors rep-
resents a representative speaker, they must be based on their own structure rather than
the same one to capture the complex speaker-dependent relationship between linguistic
and acoustic features. In this study, to flexibly model the relationship, a context clus-
tering technique for building the multiple-tree structure of the basis vectors is proposed.
The multiple trees are grown simultaneously rather than sequentially. Building trees one
by one makes it difficult to find the optimal model structures because the basis vectors
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depend on each other. However, since the possible combinations of tree structures ex-
ponentially increase according to growing trees, simultaneously optimizing the model
structures is computationally infeasible. To avoid the computational explosion of the op-
timization, computational complexity reduction algorithms inspired by techniques used
in HMM-based speech synthesis [16, 17] are introduced. Since they significantly reduce
computational cost, the proposed clustering can be considered a feasible technique.

Recent statistical parametric speech synthesis methods have achieved remarkable success
in producing high-quality synthetic speech. Most of them statistically model the rela-
tionship between the linguistic features extracted from the text and the acoustic features
extracted from the corresponding speech [1, 2]. Due to the difficulty of directly modeling
raw audio waveforms having long-term temporal dependencies, the relationship between
the acoustic features and the raw speech waveforms is externally represented using a
vocoder [18, 19] based on expert knowledge for human speech production process. Al-
though the vocoder can easily produce synthetic speech from the acoustic features, it
inevitably introduces degradation in speech quality. Efforts to prevent this degradation
include focusing on directly modeling speech waveforms using the power of neural net-
work machine learning [20, 21]. The most successful approaches have been the WaveNet
generative model [22] and the SampleRNN audio generation model [23]. They use a
specially-designed convolutional or recurrent neural network to capture the long-term
temporal dependencies in speech signals. The WaveNet model is well able to model raw
audio waveforms and outperformed the best TTS systems in subjective evaluation tests.

One of the key techniques of neural-network-based speech waveform synthesis is mod-
eling speech signals composed of a set of discrete values instead of continuous ones.
In other words, speech waveform modeling is formulated as a classification problem
rather than as a regression one. This enables more flexible waveform modeling because
a categorical distribution has no assumptions about the shape. Simple linear quantiza-
tion or nonlinear quantization with µ-law companding [24] is typically used to obtain
the discrete-valued speech signals. Although reconstructed speech signals after quantiza-
tion have been reported to sound very similar to the original ones [22,23], the quantization
scheme introduces white noise into the original signals. Since the white noise is uniformly
distributed over the entire frequency range, the quantization noise is easily perceived by
human listeners.

One possible solution for overcoming the problem caused by the quantization is to use
a noise shaping technique. Noise shaping techniques alter the spectral characteristics of
the quantization noise so that the noise is masked by speech. Parameters representing the
envelope of speech spectrum such as linear predictive coding (LPC) coefficients are used
for noise shaping [25]. The parameters should accurately capture the spectral peaks and
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valleys in the low-frequency range because the human ear is more sensitive to the low-
frequency range than to the higher frequency range. Mel-cepstral coefficients [26, 27]
meet this requirement and are well suited for noise shaping.

This paper presents a quantization noise shaping method in which a time-variant mask de-
rived from mel-cepstrum is applied to the white quantization noise. Since mel-cepstrum
can be based on the human auditory system, some of the quantization noise should be dif-
ficult for a human listener to perceive. The noise shaping filter can be easily implemented
with a finite impulse response (FIR) filter. However, this is computationally expensive
because the impulse response of the noise shaping filter is infinite and must be calculated
sample-by-sample. Another approach is to use the structure of the mel-log spectrum ap-
proximation (MLSA) filter [28]. Although the latter approach includes an approximation,
the filter can be applied in a computationally very efficient manner, and the accuracy of
the approximation is sufficient.

4



Chapter 2

Text-to-speech synthesis

2.1 Overview

TTS synthesis is the process of converting an arbitrary text to intelligible and natural-
sounding speech. Figure 2.1 shows the typical frameworks of TTS.

In the past decades, sophisticated approaches have been proposed with the advancement
of hardware technology. One of the most successful approaches is corpus-based HMM-
based speech synthesis [1]. In this approach, the relationship between linguistic features
and acoustic features are statistically modeled using HMMs (see Figure 2.1). The linguis-
tic features, e.g., phoneme identities, lexical stress, pitch accent, tone, and part-of-speech
information, are extracted from text by a text analyzer using natural language processing
techniques. On the other hand, acoustic features are compact representation of speech
waveform and are extracted by a vocoder based on expert knowledge for human speech
production process. Due to the rapidly advancing of deep learning, HMMs have been
gradually replaced by DNN [2]. Since DNN can flexibly capture the relationship be-
tween linguistic and acoustic features, DNN-based speech synthesis approaches achieved
significant progress [29].

There are some attempts to integrate some components of a TTS synthesis system. For
example, text analysis and acoustic modeling are simultaneously modeled in a unified
framework [30–32]. Acoustic feature extraction and acoustic modeling are integrated
using signal processing knowledge [20,21,33]. Most remarkable techniques are to directly
predict raw audio speech waveform from linguistic features based on specially-designed
neural networks [22, 23]. Since they avoid to use a vocoder, natural speech like humans
can be generated.
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Figure 2.1: Typical framework of text-to-speech synthesis.

In the next subsections, models typically used in TTS synthesis systems are described in
detail.

2.2 Hidden Markov models

2.2.1 Definition

A hidden Markov model (HMM) is a finite state machine that generates a sequence of
discrete time observations [34–36]. The model parameters Λ of an N -state HMMs is
represented as

Λ = {Π,A,B} , (2.1)

where Π = {πi}Ni=1 is a set of initial state probabilities, πi is a probability of being in state
i at time t = 1, A = {aij}Ni,j=1 is a set of state transition probabilities, aij is a probability
of going from state i to state j, B = {bi(·)}Ni=1 is a set of output probability distributions,
and bi(ot) is a probability producing an observation ot ∈ RD at time t in state i. The
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Figure 2.2: A left-to-right three-state HMM.

model parameters Π, A, and B satisfy the following constraints:

N∑
i=1

πi = 1, (2.2)

∀i
N∑
j=1

aij = 1, (2.3)

∀i
∫
bi(ot) dot = 1, (2.4)

respectively. The output probability distributions B can be discrete or continuous de-
pending on the observations. In continuous distribution HMMs, each output probability
distribution is usually modeled by a Gaussian distribution:

bi(ot) = N (ot |µi,Σi)

=
1√

(2π)D |Σi|
exp

(
−1

2
(ot − µi)

T Σ−1
i (ot − µi)

)
, (2.5)

where µi and Σi are the mean vector and the covariance matrix of the Gaussian distribu-
tion, respectively. The covariance matrix Σi is often assumed to be diagonal.

Figure 2.2 shows a three-state left-to-right HMM without skips over states. The left-to-
right model is useful for modeling temporal or sequential structures of stochastic signals
such as speech signals. At each time, the HMM makes a transition to a state according to
the state transition probability distribution, and then generates an observation ot according
to the output probability distribution of the current state.
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Let us assume that an observation ot is generated in a state zt ∈ {1, 2, . . . , N}. The joint
likelihood of an observation sequence o = [ o1 o2 · · · oT ] and a state sequence
z = [ z1 z2 · · · zT ] can be written as

p (o, z |Λ) = p (o | z,Λ) p (z |Λ)

=

(
T∏
t=1

bzt (ot)

)(
πz1

T−1∏
t=1

aztzt+1

)
. (2.6)

The total output probability of the observation sequence from the HMMs is calculated by
marginalizing Eq. (2.6) over all possible state sequences:

p (o |Λ) =
∑
allz

p (o, z |Λ)

=
∑
allz

(
T∏
t=1

bzt (ot)

)(
πz1

T−1∏
t=1

aztzt+1

)
. (2.7)

The likelihood calculation requiresO(T ·NT ) because at every time t = 1, 2, . . . , T there
are N possible states that can be reached, i.e., there are NT possible state sequences. This
calculation is computationally infeasible, even for small values of N and T . For example,
when T = 100 and N = 5, the computational complexity is O(100 · 5100) ≈ O(1072).
Fortunately, there is a very efficient algorithm to calculate Eq. (2.7) using forward and
backward procedures.

2.2.2 Forward-backward algorithm

The forward-backward algorithm is widely used to calculate p (o |Λ), which is the prob-
ability of an observation sequence o given the model parameters Λ. The detail of the
forward-backward algorithm is described in the following part.

Let us define the probability of a partial observation sequence from time 1 to t where ot

is generated in j-th state:

αj(t) = p (o1,o2, . . . ,ot, zt = j |Λ) . (2.8)

The forward probability αj(t) is recursively calculated as follows:

1. Initialization

αj(1) = πjbj(o1), (1 ≤ j ≤ N) (2.9)
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2. Recursion

αj(t) =

[
N∑
i=1

αi(t− 1)aij

]
bj(ot),

(
1 ≤ j ≤ N
1 < t ≤ T

)
(2.10)

3. Termination

p (o |Λ) =
N∑
i=1

αi(T ). (2.11)

The computational complexity isO(T ·N2). This is significant reduction from the method
of exploring all the possible states with a complexity of O(T · NT ). The left-to-right
constraint can further reduce the computational cost.

As opposite to the forward probability, we can define the probability of a partial observa-
tion sequence from time T to t+ 1 where ot is generated in i-th state:

βi(t) = p (ot+1,ot+2, . . . ,oT | zt = i,Λ) . (2.12)

In the similar way as the forward algorithm, the backward probability βi(t) can be calcu-
lated in a recursive manner as follows:

1. Initialization

βi(T ) = aiN , (1 ≤ i ≤ N) (2.13)

2. Recursion

βi(t) =
N∑
j=1

aijbj(ot+1)βj(t+ 1),

(
1 ≤ i ≤ N
1 ≤ t < T

)
(2.14)

3. Termination

p (o |Λ) =
N∑
j=1

πjbj(o1)βj(1). (2.15)

The forward and backward probabilities can be used to compute the total output proba-
bility as follows:

∀t p (o |Λ) =
N∑
i=1

αi(t)βi(t). (2.16)
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The probabilities can also be used to compute the probability of being in state i at time t,
and the probability of being state i at time t and state j at time t+ 1:

γi(t) = p (zt = i |o,Λ)

=
αi(t)βi(t)

N∑
i′=1

αi′(t)βi′(t)

, (2.17)

ξij(t) = p (zt = i, zt+1 = j |o,Λ)

=
αi(t)aijbj(ot+1)βj(t+ 1)

N∑
i′=1

N∑
j′=1

αi′(t)ai′j′bj′(ot+1)βj′(t+ 1)

, (2.18)

where

γi(t) =
N∑
j=1

ξij(t). (2.19)

2.2.3 Viterbi algorithm

The problem to finding the most probable state sequence ẑ = [ ẑ1 ẑ2 · · · ẑT ] given
the model parameters Λ and an observation sequence o is called the decoding task. This
problem is efficiently solved by the Viterbi algorithm [37] which is similar to the forward
algorithm. Let δj(t) be the likelihood of the most likely state sequence ending in state j
at time t:

δj(t) = max
z1,z2,...,zt−1

p (o1,o2, . . . ,ot, z1, z2, . . . , zt−1, zt = j |Λ) , (2.20)

and ψj(t) be a trace-back pointer to store the best path information. Using these vari-
ables, the complete procedure for finding the most likely state sequence can be written as
follows:

1. Initialization

δj(1) = πjbj(o1), (1 ≤ j ≤ N) (2.21)

ψj(1) = 0, (1 ≤ j ≤ N) (2.22)

2. Recursion

δj(t) = max
i

[δi(t− 1)aij] bj(ot),

(
1 ≤ j ≤ N
1 < t ≤ T

)
(2.23)
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ϕj(t) = argmax
i

[δi(t− 1)aij] bj(ot),

(
1 ≤ j ≤ N
1 < t ≤ T

)
(2.24)

3. Termination

max
z

p (o, z |Λ) = max
i
δi(T ), (2.25)

ẑT = argmax
i

δi(T ), (2.26)

4. Backtracing

ẑt = ψẑt+1(t+ 1). (1 ≤ t < T ) (2.27)

It should be noted that the Viterbi algorithm is identical to the forward algorithm except
that it takes the maximum over the previous path probabilities whereas the forward algo-
rithm takes the summation. Note also that the Viterbi algorithm has backpointers that is
not used in the forward algorithm. This is because the Viterbi algorithm must produce not
only a probability but also the most likely state sequence.

2.2.4 Expectation-maximization algorithm

For a given observation sequence o, there is no known method to analytically obtain the
optimal model parameters based on the maximum likelihood (ML) criterion, i.e., the Λ

that globally maximizes the likelihood p (o |Λ). This is because HMMs have hidden
variables, z. However, the model parameters Λ that locally maximizes the likelihood
p (o |Λ) can be obtained using an iterative procedure. The well-known procedure is the
expectation-maximization (EM) algorithm [38]. The key idea behind the EM algorithm is
to calculate the ML estimate for the incomplete data by using the complete data likelihood
instead of the observed likelihood. The algorithm can appropriately estimate Λ if a good
initial estimate is provided.

In the EM algorithm, an auxiliary function (so-called Q-function), Q(Λ, Λ̂), of the cur-
rent model parameters Λ and the new model parameters Λ̂ is defined as

Q(Λ, Λ̂) =
∑
allz

p (z |o,Λ) log p(o, z | Λ̂). (2.28)

The EM algorithm starts with some initial model parameters and iterates between the
following two steps:

E-step: compute Q(Λ, Λ̂)

M-step: Λ̂← argmax
Λ

Q(Λ, Λ̂)
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The E-step computes the posterior probabilities of the hidden variables p(z |o,Λ) while
keeping the model parameters Λ, and then computes Q(Λ, Λ̂). The M-step estimates the
new model parameters Λ̂ by maximizing theQ-function. Note that this iterative procedure
is guaranteed to monotonically increase the observed data log likelihood at each iteration
until it reaches a local maximum.

In HMM, the posterior probabilities of the state sequence p(z |o,Λ) can be effectively
computed by using the forward-backward algorithm as Eqs. (2.17) and (2.18). The new
model parameters Λ̂ can be derived by using the method of Lagrange multipliers [39] to
find the local maxima under the stochastic constraints shown in Eqs (2.2) and (2.3):

π̂i = γi(1), (2.29)

âij =

T−1∑
t=1

ξij(t)

T−1∑
t=1

γi(t)

, (2.30)

µ̂i =

T∑
t=1

γi(t)ot

T∑
t=1

γi(t)

, (2.31)

Σ̂i =

diag

[
T∑
t=1

γi(t) (ot − µ̂i) (ot − µ̂i)
T

]
T∑
t=1

γi(t)

=

diag

[
T∑
t=1

γi(t)oto
T
t − µ̂iµ̂

T
i

]
T∑
t=1

γi(t)

. (2.32)

2.2.5 HMM-based speech synthesis system

Figure 2.3 shows the HMM-based speech synthesis system [40]. It consists of the training
and synthesis parts. In the training part, acoustic features such as spectrum and fundamen-
tal frequency are extracted from speech waveform. The relationship between the extracted
acoustic features and the linguistic features extracted from the corresponding text is mod-
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Figure 2.3: Overview of HMM-based speech synthesis system.

eled by context-dependent HMMs, which will be described later. In the synthesis part,
a sentence HMM is constructed by concatenating the context-dependent HMMs from a
given text to be synthesized. The sequences of spectrum and excitation parameters are
generated from the sentence HMM using the well-established speech parameter genera-
tion algorithm [41–43]. Finally, speech waveform is synthesized using a synthesis filter
such as mel-log spectrum approximation (MLSA) filter [28].

Context-dependent models

Considering various linguistic contexts is important to synthesize high-quality speech be-
cause it is well-known that spectral and prosodic features in human speech are affected by
contextual factors, e.g., phoneme identities, lexical stress, pitch accent, tone, and part-of-
speech information. Unfortunately, it is almost impossible to reliably estimate the HMM
parameters for all possible combinations of the contexts with a finite set of training data.
The decision tree-based context clustering [15, 44] can effectively sovle the problem.

Figure 2.4 shows an example of the decision tree-based context clustering. In this tech-
nique, top-down clustering is performed to locally maximize the likelihood of parameters
with respect to training data using pre-defined linguistic questions about contexts. Ta-
ble 2.1 shows an example of contexts used in an English HMM-based speech synthesis
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Figure 2.4: An example of the decision tree-based context clustering.

system. The total log likelihood to be maximized while clustring is represented as

L =
T∑
t=1

∑
m∈M

γm(t) logN
(
ot |µf−1(m),Σf−1(m)

)
, (2.33)

whereM denotes a set of all contexts (|M| corresponds to the number of leaf nodes in
the decision tree), γm(t) is the state occupancy probability with respect to a context m,
and f−1(·) is the function gives a index of a leaf node that contains a context m. The state
index is omitted for simplicity. The mean vectors and the covariance matrices of HMM
states are shared on the same leaf node of the built tree, and reesimated using Eqs. (2.31)
and (2.32). The following steps are the procedure for the decision tree-based context
clustering algorithm:

Step 1. Create a root node.

Step 2. Evaluate all questions using Eq. (2.33) at the root node for the first time or two
nodes created by the previous split.

Step 3. Select a pair of node and question that maximizes the likelihood, and then split
the selected node into two by applying the selected question.
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Step 4. If the change of likelihood after splitting the node falls below a predefined thresh-
old, stop the procedure. Otherwise, go to Step 2.

In order to build the decision tress with less computational cost, the sufficient statistics
γm(t) is fixed in the clustering. Thus, this algorithm can be viewed as a kind of the EM
algorithm without E-step while changing model structures. For automatically controlling
the size of the decision tree, minimum description length (MDL) criterion [45] is widely
used in HMM-based speech synthesis. The MDL criterion mainly consists of two terms:
the first term is negative log likelihood used in the ML criterion, and the second one is a
penalty imposed for having a large number of parameters.

Table 2.1: An example of contexts used in HMM-based
speech synthesis.

the phoneme identity before the previous phoneme
the previous phoneme identity
the current phoneme identity
the next phoneme identity
the phoneme after the next phoneme identity
position of the current phoneme identity in the current syllable (forward)
position of the current phoneme identity in the current syllable (backward)
whether the previous syllable stressed or not (0: not stressed, 1: stressed)
whether the previous syllable accented or not (0: not accented, 1: accented)
the number of phonemes in the previous syllable
whether the current syllable stressed or not (0: not stressed, 1: stressed)
whether the current syllable accented or not (0: not accented, 1: accented)
the number of phonemes in the current syllable
position of the current syllable in the current word (forward)
position of the current syllable in the current word (backward)
position of the current syllable in the current phrase (forward)
position of the current syllable in the current phrase (backward)
the number of stressed syllables before the current syllable in the current phrase
the number of stressed syllables after the current syllable in the current phrase
the number of accented syllables before the current syllable in the current phrase
the number of accented syllables after the current syllable in the current phrase
the number of syllables from the previous stressed syllable to the current syllable
the number of syllables from the current syllable to the next stressed syllable
the number of syllables from the previous accented syllable to the current syllable
the number of syllables from the current syllable to the next accented syllable
name of the vowel of the current syllable
whether the next syllable stressed or not (0: not stressed, 1: stressed)

Continued on next page
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whether the next syllable accented or not (0: not accented, 1: accented)
the number of phonemes in the next syllable
gpos (guess part-of-speech) of the previous word
the number of syllables in the previous word
gpos (guess part-of-speech) of the current word
the number of syllables in the current word
position of the current word in the current phrase (forward)
position of the current word in the current phrase (backward)
the number of content words before the current word in the current phrase
the number of content words after the current word in the current phrase
the number of words from the previous content word to the current word
the number of words from the current word to the next content word
gpos (guess part-of-speech) of the next word
the number of syllables in the next word
the number of syllables in the previous phrase
the number of words in the previous phrase
the number of syllables in the current phrase
the number of words in the current phrase
position of the current phrase in the utterance (forward)
position of the current phrase in the utterance (backward)
ToBI endtone of the current phrase
the number of syllables in the next phrase
the number of words in the next phrase
the number of syllables in the utterance
the number of words in the utterance
the number of phrases in the utterance

Speech parameter generation

For a sentence HMM Λ, the problem of speech synthesis is to obtain an observation
sequence consisted of spectral and excitation parameters ô = [ ô1 ô2 · · · ôT ] that
maximizes the posterior probability with respect to o:

ô = argmax
o

∑
allz

p (o | z,Λ) p (z |Λ) . (2.34)

There is no method to analytically obtain o that maximizes p (o |Λ) in a closed form.
However, this problem is approximated by separating into two stages using the Viterbi
approximation: finding the best state sequence z for given Λ, and obtaining o that maxi-
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mizes p (o | z,Λ) with respect to o, i.e.,

ẑ = argmax
z

p (z |Λ) , (2.35)

ô = argmax
o

p (o | ẑ,Λ) . (2.36)

The optimization of Eq. (2.35) is performed using explicit state duration models [46, 47]
in the HMM-based speech synthesis system.

If an observation ot is independent from previous and next time, the predicted observation
sequence ô would contain discontinuities at transition of HMM states. To avoid this
problem, dynamic features [41] have been introduced. By letting a static feature vector be
ct ∈ RM , the dynamic features, i.e., delta and delta-delta parameters, can be represented
as

∆ct =

J
(1)
+∑

τ=−J
(1)
−

w(1)
τ ct+τ , (2.37)

∆2ct =

J
(2)
+∑

τ=−J
(2)
−

w(2)
τ ct+τ , (2.38)

where w(·)
τ ,K(·)

− andK(·)
+ are a window coefficient, the left length of window, and the right

length of window, respectively. The observation vector ot ∈ R3M to be modeled consists
of the static and dynamic features:

ot =
[
cTt ∆cTt ∆2cTt

]T
. (2.39)

Conditions (2.37) and (2.38) can be represented in a matrix form (see Figure 2.5):

o = Wc, (2.40)

where o = [ oT
1 oT

2 · · · oT
T ]T, c = [ cT1 cT2 · · · cTT ]T, and W is a sparse regres-

sion window matrix given by

W =
[
W1 W2 · · · WT

]T ⊗ IM×M , (2.41)

Wt =
[
w

(0)
t w

(1)
t w

(2)
t

]
, (2.42)

w
(0)
t =

[
0, . . . , 0︸ ︷︷ ︸

t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
T−t

]T
, (2.43)

w
(1)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−J

(1)
− −1

, w
(1)

−J
(1)
−
, . . . , w

(1)
0 , . . . , w

(1)

J
(1)
+

, 0, . . . , 0︸ ︷︷ ︸
T−

(
t+J

(1)
+

)
]T
, (2.44)

w
(2)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−J

(2)
− −1

, w
(2)

−J
(2)
−
, . . . , w

(2)
0 , . . . , w

(2)

J
(2)
+

, 0, . . . , 0︸ ︷︷ ︸
T−

(
t+J

(2)
+

)
]T
, (2.45)
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Figure 2.5: An example of the relationship between the static feature vector sequence and
the speech parameter vector sequence in a matrix form.

where ⊗ denotes the Kronecker product. The probability of o conditioned on z is calcu-
lated by multiplying the output probabilities of entire observation vectors, and is repre-
sented as a single Gaussian component:

p (o | z,Λ) =
T∏
t=1

N (ot |µzt ,Σzt)

= N (o |µz,Σz) , (2.46)

where µz and Σz are the supervector and the supermatrix corresponding to entire state
sequence z:

µz =
[
µT

z1
µT

z2
· · · µT

zT

]T
, (2.47)

Σz = diag
[
Σz1 Σz2 · · · ΣzT

]
, (2.48)

respectively. Under the constraint in Eq. (2.40), the static feature sequence ĉ that maxi-
mizes p (o | z,Λ) can be derived by solving a set of linear equations:

Rzc = rz, (2.49)

where

Rz = W TΣ−1
z W , (2.50)

rz = W TΣ−1
z µz. (2.51)
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As a result, a smoothly varying speech parameter trajectory is obtained. AlthoughO(M3T 3)

operations are required for solving Eq. (2.49), the computational cost can be significantly
reduced by using the Cholesky decomposition thanks to the symmetric band structure of
Rz.

2.3 Factor analyzed hidden Markov models

2.3.1 Eigenvoice

One of the advantage of HMM-based speech synthesis system is that voice characteristics
of synthesized speech can be easily modified by transforming HMM parameters. The
well-known techniques include speaker adaptation [48], speaker interpolation [5, 6], and
eigenvoice [8].

The eigenvoice method was originally proposed for very fast speaker adaptation in HMM-
based speech recognition [7,10]. Then, it was introduced to HMM-based speech synthesis
to overcome the problems with the interpolation method [6]. The basic idea behind the
eigenvoice method is to find a small set of basis vectors from a diverse set of speaker’s
voices by assuming that speaker characteristics can be sufficiently represented as a point
in a low-dimensional subspace rather than in a very high-dimensional model parameter
space. Since a speaker’s voice can be described as a linear combination of the basis
vectors, a new voice with desired speaker characteristics is easily obtained by estimating
the weights of the basis vectors from a small amount of speech data of the desired speaker.

With the eigenvoice method, R speaker-dependent HMM sets are first trained. Then,
R supervectors are created by concatenating all mean parameters of the HMM set. By
applying principal component analysis (PCA) to the mean-subtracted supervectors, R−1

eigenvectors are derived. Consequently, supervector µ̂ for a new speaker is calculated
from the first K eigenvectors e1, . . . , eK as

µ̂ = µ̄+
K∑
k=1

ωkek, (2.52)

where µ̄ is the mean supervector of R supervectors and ω1, . . . , ωK are the weights repre-
senting speaker characteristics. The weights can be estimated from adaptation data based
on the maximum likelihood criterion [7]. A new speaker-adapted HMM set is recon-
structed from the generated supervector µ̂.

The critical problems with the eigenvoice method are as follows: 1) The eigenvoice
model accurately represents the model parameters of the representative HMM sets rather
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than the training speech data. 2) Speaker-dependent HMMs must be based on the same
model structure to create fixed-dimensional supervectors. 3) Each representative HMM
set should be well-trained using enough speech data to construct reliable supervectors.
The first and second problems prevent to generate high-quality speech, and the third one
makes difficult to build TTS systems when only a small amount of speech data is avail-
able for each training speaker. While the first and third problems have been solved by
FAHMM described in this section, the second one, which is the very important part in
acoustic modeling, is addressed in this study.

2.3.2 Factor analysis

Factor analysis (FA) is a statistical method for modeling the covariance structure of high-
dimensional data by using a small number of latent variables. According to this model,
an observation vector, o ∈ RD, is generated as follows:

o = Lx+ n, (2.53)

where x ∈ RQ is the factor that cannot be observed, and n ∈ RD is the noise vector. The
relationship between each observation variable to the underlying factor is expressed by
the so-called factor loading matrix, L ∈ RD×Q, which is composed of Q basis vectors.
Traditionally, the factor x and the noise vector n are assumed to be distributed according
to a Gaussian distribution:

x ∼ N (0, I) , (2.54)

n ∼ N (µ,Σ) , (2.55)

where 0 and I are a zero vector and an identity matrix, µ and Σ are the noise mean vector
and the noise diagonal covariance matrix, respectively. In addition, it is usually assumed
that factor x has a lower dimension than that of the observation vector o (Q < D). Thus,
FA is basically a method for reducing the number of dimensions of the data by choosing
the dimensionality of the subspace spanned by the basis vectors, in a similar way to PCA.
The likelihood of the observation vector o given the factor x is

p (o |x) = N (o |Lx+ µ,Σ) . (2.56)

Furthermore, the joint likelihood of them is represented as

p (o,x) = N
([

o
x

] ∣∣∣∣ [ µ
0

]
,

[
LLT +Σ L

LT I

])
. (2.57)

This equation shows that FA can be viewed as a model whose variance is constrained to
be LLT +Σ. Thus, the covariance structure of the observation vector can be represented
using a smaller number of parameters than that of full covariance.
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Figure 2.6: Overview of FAHMM.

2.3.3 Definition

The eigenvoice method has been reformulated as a probabilistic model for HMM-based
speech synthesis. It is referred to as FAHMM because the generating process of obser-
vation sequences is based on FA. Figure 2.6 shows the overview of FAHMM. FAHMM
assumes that an observation sequence o(r) belonging to a speaker r is generated as

o(r) = Lz(r)x(r) + nz(r) , (2.58)

where

x(r) ∼ N (0, I) , (2.59)

nz(r) ∼ N (µz(r) ,Σz(r)) . (2.60)

The loading matrix Lz(r) and the noise vector nz(r) are composed by concatenating the
parameters of context-dependent HMMs aligned according to a state sequence z(r). Thus,
FAHMM directly represents a variable-length utterance rather than a fixed-length super-
vector consisting of model parameters, unlike the eigenvoice method, Since the factor is
shared among each speaker while the loading matrices and the noise vectors are shared
among all speakers, speaker-dependent characteristics are automatically extracted as the
factor through model training.

The joint log likelihood function of observation sequences o =
{
o(1),o(2), . . . ,o(R)

}
,

state sequences z =
{
z(1), z(2), . . . , z(R)

}
, and factors x =

{
x(1),x(2), . . . ,x(R)

}
can be
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written as

p (o, z,x |Λ) = p (o | z,x,Λ) p (z |Λ) p (x)

=
R∏

r=1

T (r)∏
t=1

b
z
(r)
t

(
o
(r)
t

)π
z
(r)
1

T (r)−1∏
t=1

a
z
(r)
t z

(r)
t+1

 · N (x(r)
∣∣0, I) ,

(2.61)

where

bi

(
o
(r)
t

)
= N

(
o
(r)
t

∣∣∣Lix
(r) + µi,Σi

)
= N

(
o
(r)
t

∣∣∣Wiζ
(r),Σi

)
, (2.62)

Wi =
[
µi Li

]
, (2.63)

ζ(r) =

[
1

x(r)

]
, (2.64)

and Li, µi, and Σi are the factor loading matrix, the noise mean vector, and the noise
diagonal covariance matrix in state i, respectively.

From Eq. (2.62), if Lix
(r) = 0, FAHMM is clearly same as the standard HMM. This

means that many techniques proposed in the standard HMM can be applied to FAHMM.
Eqs (2.74) and (2.75) are similar to the maximum likelihood eigen-decomposition (MLED)
estimator in the eigenvoice method [7]. However, in the MLED, the weight coeffi-
cients ω1, . . . , ωK are not random variables, and the basis vectors would not be updated.
Although maximum likelihood eigenspace (MLES) [10] re-estimates the basis vectors
based on the ML criterion, variance parameters are not considered. In the multiple-
regression HMM (MRHMM) [11, 12], the auxiliary vectors, which correspond to the
factors in FAHMM, are given and fixed through model training. Cluster adaptive train-
ing (CAT) [13, 14, 49] does not marginalize over the interpolation weights, which can
be viewed as the factors in FAHMM, to obtain a likelihood function. In contrast to these
models, FAHMM estimates the basis vectors and the factors in a unified framework. Thus,
it is expected that FAHMM outperforms these approaches.

2.3.4 Variational expectation-maximization algorithm

In the model training of FAHMM, a set of model parameters Λ is estimated by maximiz-
ing the joint probability over the observation vectors by marginalization over the factors
and the state sequences:

Λ̂ = argmax
Λ

R∏
r=1

∑
allz(r)

∫
p
(
o(r), z(r),x(r)

∣∣∣Λ) dx(r). (2.65)
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As a result, the observation vectors and the speaker subspace are simultaneously modeled
within a unified framework. However, since the calculation of Eq. (2.65) requires aver-
aging over all configurations of the two latent variables x and z, directly computing the
likelihood is computationally intractable. To solve that problem, the variational EM algo-
rithm [50] can be used. According to this algorithm, the lower bound of log likelihood is
maximized instead of true likelihood. The lower bound of the log likelihood of FAHMM,
F , is defined by using Jensen’s inequality:

log p (o |Λ) = log
∑
allz

∫
q (z,x)

p (o, z,x |Λ)

q (z,x)
dx

≥
∑
allz

∫
q (z,x) log

p (o, z,x |Λ)

q (z,x)
dx

≡ F , (2.66)

where o = {o(r)}Rr=1, z = {z(r)}Rr=1, x = {x(r)}Rr=1, and q (z,x) is an arbitrary distri-
bution. The relation between the true likelihood and the lower bound F is represented
as

log p (o |Λ)−F =
∑
allz

∫
q (z,x) log

p (z,x |o,Λ)

q (z,x)
dx

= DKL(q (z,x) || p (z,x |o,Λ)) , (2.67)

where the right-hand side is the Kullback-Leibler divergence (KLD) between the arbitrary
distribution q (z,x) and the true posterior distribution p (z,x |o,Λ). It can be seen that
maximizing the lower boundF is equivalent to minimizing the KLD between the two dis-
tributions. Thus, by maximizing the lower bound F , the optimal (approximate) posterior
distribution q (z,x) can be estimated. To further relax the computational complexity, the
latent variables are assumed to be conditionally independent given observation o:

q (z,x) = q (z) q (x) . (2.68)

Under this assumption, the optimal posterior distributions that maximize the objective
function F are given by using the variational method as

q (x) =
R∏

r=1

Cx(r)p
(
x(r)

)
× exp

⟨
log p

(
o(r)

∣∣∣ z(r),x(r),Λ
)⟩

q(z(r))
, (2.69)

q (z) =
R∏

r=1

Cz(r)p
(
z(r) |Λ

)
× exp

⟨
log p

(
o(r)

∣∣∣ z(r),x(r),Λ
)⟩

q(x(r))
, (2.70)
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where ⟨·⟩q(·) denotes the expectation with respect to distribution q (·), and Cx(r) and Cz(r)

are the normalization terms that satisfy the following probabilistic constraints:∑
allz(r)

q
(
z(r)
)

= 1, (2.71)∫
q
(
x(r)

)
dx(r) = 1. (2.72)

Since the obtained posterior distributions q (x) and q (z) depend on each other, they
should be updated iteratively. The variational EM algorithm consists of two steps and
guarantees that the value of an objective function monotonically increases at each iter-
ation in the same manner as the standard EM algorithm [38]. In the E-step, sufficient
statistics derived from q

(
x(r)

)
and q

(
z(r)
)

are calculated. Then, the set of model pa-
rameters Λ is updated to maximize the lower bound F in the M-step using the sufficient
statistics.

As the product of two Gaussian distributions, the posterior distribution of factor q(x(r))

is also represented as a Gaussian:

q
(
x(r)

)
= N

(
x(r)

∣∣∣ µ̂x(r) , Σ̂x(r)

)
, (2.73)

where

Σ̂x(r) =

I +
N∑
i=1

T (r)∑
t=1

γ
(r)
i (t)LT

i Σ
−1
i Li

−1

, (2.74)

µ̂x(r) = Σ̂x(r)

 N∑
i=1

T (r)∑
t=1

γ
(r)
i (t)LT

i Σ
−1
i

(
o
(r)
t − µi

), (2.75)

and γ(r)i (t) is the state occupancy in HMM state i at time t given observation o(r) which
can be obtained by using the standard forward-backward algorithm:

γ
(r)
i (t) =

⟨
δ
iz

(r)
t

⟩
q(z(r))

, (2.76)

where δ
iz

(r)
t

is the Kronecker delta:

δ
iz

(r)
t

=

{
1, if z(r)t = i

0. if z(r)t ̸= i
(2.77)
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The first- and second-order sufficient statistics of factor x(r) can be written as

⟨ζ(r)⟩ =
[

1
⟨x(r)⟩

]
=

[
1

µ̂x(r)

]
, (2.78)

⟨ζ(r)ζ(r)T⟩ =
[

1 ⟨x(r)T⟩
⟨x(r)⟩ ⟨x(r)x(r)T⟩

]
=

[
1 µ̂T

x(r)

µ̂x(r) Σ̂x(r) + µ̂x(r)µ̂T
x(r)

]
. (2.79)

Using these sufficient statistics and equating the partial derivative of F with respect to
each of the model parameters, the following updating formulae are derived:

π̂i =

R∑
r=1

γ
(r)
i (1)

N∑
i′=1

R∑
r=1

γ
(r)
i′ (1)

, (2.80)

âij =

R∑
r=1

T (r)−1∑
t=1

ζ
(r)
ij (t)

R∑
r=1

T (r)−1∑
t=1

γ
(r)
i (t)

, (2.81)

Ŵi =

 R∑
r=1

T (r)∑
t=1

γ
(r)
i (t)o

(r)
t

⟨
ζ(r)T

⟩ R∑
r=1

T (r)∑
t=1

γ
(r)
i (t)

⟨
ζ(r)ζ(r)T

⟩−1

, (2.82)

Σ̂i =

diag

 R∑
r=1

T (r)∑
t=1

γ
(r)
i (t)

⟨(
o
(r)
t − Ŵiζ

(r)
)(

o
(r)
t − Ŵiζ

(r)
)T⟩

q(x(r))


R∑

r=1

T (r)∑
t=1

γ
(r)
i (t)

=

diag

 R∑
r=1

T (r)∑
t=1

γ
(r)
i (t)o

(r)
t o

(r)T
t −

R∑
r=1

T (r)∑
t=1

γ
(r)
i (t)o

(r)
t

⟨
ζ(r)T

⟩
Ŵ T

i


R∑

r=1

T (r)∑
t=1

γ
(r)
i (t)

.

(2.83)
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2.3.5 FAHMM-based speech synthesis system

The framework of the FAHMM-based speech synthesis is similar to the HMM-based
speech synthesis system described in Section 2.2.5. In the synthesis stage, using the
trained model parameters Λ and given adaptation data o(r′) belonging to a new speaker
r′, the optimal parameter sequence, ô′, is obtained as

ô′ = argmax
o′

∑
allz′

∫
p
(
o′, z′,x′

∣∣∣o(r′),Λ
)
dx′

= argmax
o′

∑
allz′

∫
p
(
o′
∣∣∣ z′,x′,Λ

)
p
(
z′
∣∣∣Λ) p(x′

∣∣∣o(r′),Λ
)
dx′. (2.84)

Instead of the true posterior distribution, the approximate posterior distribution derived
from the variational EM algorithm is used for the calculation in Eq. (2.84). Consequently,
the suboptimal parameter sequence is calculated from

ô′ ≈ argmax
o′

∑
allz′

∫
p
(
o′
∣∣∣ z′,x′,Λ

)
q (z′) q (x′) dx′. (2.85)

The above equation is further approximated using the Viterbi approximation in the same
way as described in Section 2.2.5:

x̂′ = argmax
x′

q (x′) , (2.86)

ẑ′ = argmax
z′

q (z′) , (2.87)

ô′ = argmax
o′

p
(
o′
∣∣∣ ẑ′, x̂′,Λ

)
. (2.88)

2.4 Deep neural networks

2.4.1 Definition

A neural network is basically a sequence of operations applied to a matrix of input data.
These operations usually consist of additions and multiplications followed by non-linear
functions. Figure 2.7 shows a example of a simple neural network, which is called feed-
forward neural network that has no cycle. As shown in the figure, the common type of
neural network is composed of three groups: input layer, hidden layer, and output layer.
Nodes in the input layer receive input data, and nodes in the output layer give output to the
user. Nodes in the hidden layer(s) receive inputs from the previous layer and deliver their
output to the next layer. Each unit in a layer is connected via a trainable weight to each
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Figure 2.7: A three-layer feed-forward neural network.

unit in the next layer. The weights can be effectively updated through the well-known
backpropagation algorithm described latter. The complex relationship between input and
output data can be captured by stacking hidden layers followed by non-linear activation
functions such as

1. Sigmoid

σ(x) =
1

1 + e−x
, (2.89)

2. Hyperbolic tangent

tanh(x) = 2σ(2x)− 1, (2.90)

3. Rectified linear units (ReLU) [51]

ReLU(x) = max (0, x) . (2.91)

2.4.2 Backpropagation algorithm

The backpropagation is a common algorithm for learning of neural networks using gradi-
ent descent [52]. Given a neural network and a loss function to be minimized, the method
calculates the gradient of the loss function with respect to the weights of the network. The
basic concept behind backpropagation is to calculate error derivatives. After the forward
pass through the network, the network output is compared to the true output and a pre-
diction error is calculated. The prediction error is then propagated backwards through the
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network and changes are made to the weights in each layer. The cycle is repeated until the
overall error value drops below some pre-determined threshold. After then, the network
assumed to learn the relationship between input and output data well enough.

Standard gradient descent computes the gradient of the loss function with respect to the
parameters and updates the parameters as

Λ = Λ− η · ∇ΛL(Λ), (2.92)

where L(Λ) is an objective function parametrized by a set of model parameters Λ and
η is a learning late that determines the size of the steps to reach a minimum. Recently,
the update rule has been sophisticated [53, 54], resulting in stabilization and speedup of
convergence in training neural networks.

Letting true and predicted outputs be yi and ŷi respectively, the following objective func-
tions are usually used:

1. Squared error

L(Λ) =
∑
i

(yi − ŷi)2 , (2.93)

2. Absolute error

L(Λ) =
∑
i

|yi − ŷi| (2.94)

3. Cross entropy

L(Λ) = −
∑
i

yi log ŷi. (2.95)

2.4.3 DNN-based speech synthesis system

Thanks to the power of DNN, DNN has been introduced in some of the components of
TTS synthesis, e.g., F0 prediction, duration prediction, grapheme-to-phoneme [55], and
postfilter [56]. One of the most successful applications is acoustic modeling [2,57] where
DNN is trained to represent the mapping function from linguistic features to acoustic
features, which is typically modeled by a decision tree in HMM-based synthesis systems.
The acoustic modeling using DNN has been studied and proposed using special structure
such as mixture density and recurrent [58,59] for several years. However, novel generative
models that directly model raw audio speech waveform and linguistic features has been
recently proposed. The WaveNet model is well able to model raw audio waveforms and
outperformed the best TTS systems in subjective evaluation tests. In the next subsection,
the WaveNet generative model is briefly described.
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Figure 2.8: A stack of dilated causal convolutional layers.

2.4.4 WaveNet

WaveNet is a neural network that directly generates audio waveform signals. It mainly
consists a specially-designed convolutional layers, i.e., dilated causal convolutional lay-
ers. Figure 2.8 shows a stack of dilated causal convolutional layers. In causal convolu-
tions, the current output of networks is not depend on future timesteps. This constraint is
suitable to represent autoregressive models. One of the problems of causal convolutions
is that they require many layers to increase the receptive field. A dilated convolution is
a convolution applied to input with certain gaps. By stacking dilated convolutions, very
large receptive fields can be obtained with relatively few parameters. As shown in Fig-
ure 2.8, the dilation is doubled for every layer in the WaveNet. This results in exponential
receptive field growth with depth.

The entire architecture of WaveNet is shown in Figure 2.9 where the 1 × 1 block means
a one by one convolution. It can be seen a nonlinear predictive analysis with a very large
structure. First, input waveform signals are fed into a causal convolutional layers, and then
they pass through several dozens of residual blocks. The outputs of the residual blocks are
pooled and nonlinearly transformed by ReLU. Finally, the conditional discrete probability
distributions are obtained by a softmax output layer. The residual blocks consists of two
inputs, i.e., outputs of previous layer and auxiliary features, and two outputs for residual
connections and skip connections. The auxiliary features h affects to the dilated outputs
of previous layer s in gated activation units:

z = tanh
(
W (f) ∗ s+ V (f) ∗ y

)
⊙ σ

(
W (g) ∗ s+ V (g) ∗ y

)
, (2.96)

y = u (h) , (2.97)

29



Figure 2.9: Overview of WaveNet architecture with residual block.

where W (·) and V (·) are learnable convolution filters, ∗ denotes a 1× 1 convolution, and
⊙ denotes element-wise product. Since the time resolution of s and h would differ, it is
necessary to match the sequence length between the auxiliary feature sequence and the
speech waveform signals. Hence, the function u(·) is introduced for upsampling h. A
transposed convolutional network or a function copying V (·) ∗h is typically used as u(·).
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Chapter 3

Multiple decision tree-based context
clustering for FAHMM

3.1 Multiple decision tree-based context clustering

The goal of training FAHMM is to estimate the basis vectors that can represent any
speaker’s voice in all possible linguistic contexts. To estimate such basis vectors, the
model structures of the basis vectors for all linguistic contexts should be carefully de-
signed. In previous researches [9], a common single decision tree is used for the model
structures by assuming that all the basis vectors are based on the same structure. This
assumption enables to use well-known decision tree-based context clustering in the same
way as the standard HMM. The model structure is illustrated in Figure 3.1(a). Although
the context clustering needs a light computational load, the speaker-independent structure
makes it difficult to model speech of multiple speakers. Thus, the multiple-tree struc-
ture shown in Figure 3.1(b) is required. (In the Figure, the noise mean vector and the
noise covariance matrix have the same model structure for simplification.) In this section,
we propose a multiple decision tree-based context clustering technique to overcome the
limitation imposed by a simple model structure.

In terms of the output probability of FAHMM, the lower bound F to be maximized can
be rewritten as follows:

F ∝
∑
r,m,t

γ(r)m (t)
⟨
logN

(
o
(r)
t

∣∣∣Wmζ
(r),Σm

)⟩
q(x(r))

, (3.1)

where γ(r)m (t) is the posterior probability of context1 m generating observation o
(r)
t given

the current model parameters. The HMM state index is omitted to simplify description.
1A context corresponds to a combination of Q+ 2 leaf nodes belonging to each decision tree.
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Figure 3.1: Model structure of FAHMM.

Here, we assume that the noise covariance matrix, as well as the basis vectors and the
noise mean vector, have its own decision tree. Since each of the basis vectors and the noise
vector depend on each other, multiple trees must be built simultaneously. To evaluate all
of them simultaneously, let w be a vector that concatenates all the basis vectors and the
noise mean vector:

w =
[
wT

1 wT
2 · · · wT

V

]T
, (3.2)

where wv is a basis vector or a noise mean vector in leaf node v, and V is the sum of all
leaf nodes of decision trees for the basis vectors and the noise mean vector. Differentiating
(3.1) with respect to w and equating it to zero gives a set of linear equations for updating
w as

Gŵ = k, (3.3)
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where

G =


G1,1 G1,2 · · · G1,V

G2,1 G2,2 · · · G2,V
...

... . . . ...
GV,1 GV,2 · · · GV,V

 , (3.4)

k =
[
kT
1 kT

2 · · · kT
V

]T
. (3.5)

The each element is defined as

Gv1,v2 =
∑

m∈ f(v1)∧f(v2)

Σ−1

f−1
Σ (m)

∑
r,t

γ(r)m (t)⟨ζ(r)ρ(v1)
ζ
(r)
ρ(v2)
⟩, (3.6)

kv1 =
∑

m∈ f(v1)

Σ−1

f−1
Σ (m)

∑
r,t

γ(r)m (t)⟨ζ(r)ρ(v1)
⟩o(r)

t , (3.7)

where f(·) provides a set of contexts included in a given leaf node index of the tree
corresponding to a basis vector or the noise mean vector, f−1

Σ (·) returns a leaf node index
in the tree of the noise covariance matrix where the node includes a given context, ρ(·)
is a function to get a tree index where the tree includes a given leaf node, and ζ(r)q is the
qth element of ζ(r). The update formula for the noise covariance matrix is derived by
differentiating (3.1) with respect to Σu and setting its result to zero:

Σ̂u =

diag

 ∑
m∈ fΣ(u)

r,t

γ(r)m (t)
(
o
(r)
t o

(r)T
t − 2o

(r)
t ⟨ζ(r)T⟩W T

m +Wm⟨ζ(r)ζ(r)T⟩W T
m

)
∑

m∈ fΣ(u)
r,t

γ(r)m (t)
,

(3.8)

where u is a leaf node index in the tree of the noise covariance matrix, and fΣ(·) gives a
set of contexts included in a given leaf node index of the noise covariance matrix.

In the proposed clustering algorithm, multiple trees are built greedily and simultaneously
as follows:

Step 1. Create Q+ 2 root nodes for each of the basis vectors, the noise mean vector, and
the noise covariance matrix.

Step 2. Evaluate all questions at all leaf nodes of all trees using Eqs. (3.1), (3.3), and
(3.8).
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Step 3. Select a pair of node and question that maximizes Eq. (3.1), and then split the
selected node into two by applying the selected question.

Step 4. If the change of likelihood after splitting the node falls below a predefined thresh-
old, stop the procedure. Otherwise, go to Step 2.

Step 2 makes this procedure computationally intractable for the following three reasons.
First, solving (3.3) involves a matrix inversion where the size of matrix G depends on the
size of the trees. The complexity of matrix inversion is O(V 3). Note that the number of
leaf nodes V typically exceeds 1000. Second, the inverse matrix G−1 needs to be calcu-
lated for all possible combinations of linguistic questions and leaf nodes. The number of
linguistic questions is about 2000. Third, vector w and noise covariance matrix Σu must
be iteratively updated until convergence because they depend on each other, as shown in
(3.6), (3.7) and (3.8). These reasons exponentially increase computational complexity as
the trees grow, and such increased complexity makes the proposed clustering infeasible.
To solve the problem, two algorithms for reducing computational complexity inspired by
additive structure models [17], whose structure is quite similar to that of FAHMM, are
introduced in the following sections.

3.1.1 Reducing computational complexity by tying noise covariance
matrices

The basis vectors and the noise covariance need to be iteratively updated until a conver-
gence is reached. To reduce the computational cost coming from iterative updating, all
the noise covariance matrices are globally tied while clustering:

∀m (Σm = Σg) , (3.9)

where Σg is the globally-tied noise covariance matrix. By tying all the noise covariance
parameters, iterative updates are no longer required because the noise covariance matrix
in Eqs (3.6) and (3.7) are canceled out as follows:

Gv1,v2 =
∑

m∈ f(v1)∧f(v2)
r,t

γ(r)m (t)⟨ζ(r)ρ(v1)
ζ
(r)
ρ(v2)
⟩I, (3.10)

kv1 =
∑

m∈ f(v1)
r,t

γ(r)m (t)⟨ζ(r)ρ(v1)
⟩o(r)

t . (3.11)

Furthermore, the number of trees to be built is reduced to Q + 1 from Q + 2. After clus-
tering, the globally-tied noise covariance matrix Σg is untied and then retied according
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Figure 3.2: Decomposition of G.

to the tree of the noise mean vector. The improvement by re-tying them is small in early
experiments. Thus, the impact on speech quality of tying noise covariance parameters
during clustering is not critical. In fact, it has been reported that covariance parameters
are less important than mean parameters in terms of speech quality in HMM-based speech
synthesis [16].

3.1.2 Reducing computational complexity by using matrix inversion
lemma

The inverse matrix G−1 is calculated V ×NQ times every Step 2, whereNQ is the number
of linguistic questions. This calculation requires a huge computational time. However,
that computation time can be significantly reduced because the matrix inversions partially
include the same calculation. When a leaf node is split by a question, the sufficient statis-
tics are only changed in contexts related to newly created nodes by the split2; that is,
almost all elements of G are unchanged even if a different question is applied to that leaf
node. This fact can be exploited for computational reduction with the matrix inversion
lemma in a similar way to the additive structure models [17].

Let G′ and G′′ are matrices of G obtained by applying one question and another question

2This assumption is valid when the statistics of the factor represented as Eqs. (2.78) and (2.79) are fixed,
and the noise covariance matrices are globally tied while clustering.
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to a node, respectively. Then, G′′ can be represented as

G′′ = G′ +G−, (3.12)

where G− is the following symmetric matrix:

G− =



0 g−1,v g−1,v+1 0...
...

g−v,1 . . . g−v,v g−v,v+1 . . . g−v,V
g−v+1,1 . . . g

−
v+1,v g

−
v+1,v+1 . . . g

−
v+1,V

0
...

... 0g−V,v g−V,v+1


, (3.13)

where v and v + 1 are indexes of the leaf nodes newly created by the split. For simplicity
of notation, only one dimension of the observation vector is focused on here. The matrix
G− can be decomposed into two matrices:

G− = DE, (3.14)

where

D =
[
D1 D2 D3 D4

]

=



g−1,v g−1,v+1 0 0
...

...
...

...
g−v−1,v g−v−1,v+1 0 0
g−v,v
/
2 g−v,v+1

/
2 1 0

g−v+1,v

/
2 g−v+1,v+1

/
2 0 1

g−v+2,v g−v+2,v+1 0 0
...

...
...

...
g−V,v g−V,v+1 0 0


, (3.15)

E =
[
D3 D4 D1 D2

]T
. (3.16)

The relation between G′′ and G′ is illustrated in Figure 3.2. If G′−1 is known, G′′−1 can
be efficiently calculated using the matrix inversion lemma:

G′′−1 = (G′ +DE)
−1

= G′−1 −G′−1D
(
I +EG′−1D

)−1
EG′−1

= G′−1 −G′−1DΨEG′−1. (3.17)

Matrix Ψ is the inverse of I+EG′−1D, whose size is 4×4. As a result, the complexity of
the clustering O(NQNIDV

4) becomes O(NQV
2), where NI is the number of iterations

of updating the basis vectors and the noise covariance matrix. Thus, the clustering is
regarded as computationally feasible.

36



3.2 Experiments

3.2.1 Experimental setups

To evaluate the proposed method, speaker adaptation in speech synthesis was set as a task.
A Japanese speech database, which was constructed by our research group, was used for
the experimental evaluation. The database contains sets of 503 phonetically balanced
sentences uttered by more than 100 college students. At most 89 male and 11 female
speakers were chosen for training, and the other eight male speakers and two female
speakers were used for the evaluation. The number of training sentences per speaker was
at most 50, and the number of adaptation sentences was at most 10. Forty test sentences,
which were included in neither the training nor the adaptation data, were used for the
evaluation. The speech signals were sampled at a rate of 16 kHz and windowed by a 25-
ms Hamming window with a 5-ms shift. Each feature vector consisted of 24 mel-cepstral
coefficients including the zeroth coefficient, log-fundamental frequency (logF0), and their
first- and second-time derivatives. A five-state left-to-right MSD-HSMM [47,60] without
skip paths was used. The number of basis vectors for logF0 and duration were both
one. Decision trees were constructed based on the MDL criterion. The following three
methods were compared:

• PCA: The basis vectors were constructed by applying PCA to a set of supervectors of
speaker-dependent models trained by using constrained maximum likelihood linear
regression (CMLLR)-based speaker adaptive training (SAT) [61, 62].

• FA: The basis vectors were trained on the FAHMM framework. The model structure
was based on a single tree built by the standard decision-tree based context clustering.

• FA MT: The basis vectors were trained on the FAHMM framework. The model
structure was based on multiple trees built by the proposed context clustering algo-
rithm.

The proposed multiple tree-based context clustering was used only for spectral param-
eters, and the standard decision tree-based context clustering was used for logF0 and
duration modeling. To avoid estimating unreliable basis vectors, a constraint was applied
to the split in clustering: every node of a decision tree must always have training data
from at least 10 speakers in a similar way to the shared decision tree context cluster-
ing (STC) [63].

The computational time for building trees without GPU in FA and FA MT were about 40
minutes and three weeks, respectively, when the number of training sentences was 2000
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and the number of basis vectors was 30.

3.2.2 Objective evaluation

Mel-cepstrum distance (MCD) [64] was used as the objective measure. MCDs for 10
training speakers and 10 test speakers were calculated. They were then averaged for each
speaker set. First, the number of training speakers was varied (10, 20, 50, and 100), while
the number of training sentences was fixed to 500 and the number of basis vectors for
mel-cepstrum was fixed to five. The results of this experiment are shown in Figure 3.3.
As the number of training speakers increases, MCDs of test speakers decrease while those
of training speakers increase. This result indicates that a more robust speaker subspace
can be spanned by using multiple speakers. As expected, FA outperformed PCA, and
FA MT further improved MCDs in comparison with that of FA.

In the second experimental evaluation, the number of training sentences was varied (500,
1000, 1500, and 2000), while the number of training speakers was fixed to 100 and the
number of basis vectors was fixed to five. The results of the evaluation are shown in Fig-
ure 3.4. As for FA and FA MT, MCD monotonically decreases with increasing number of
training sentences. It can thus be said that FAHMM is able to exploit large, heterogeneous
speech data.

In the next objective evaluation, the number of basis vectors was varied (5, 10, 20, and
30), and 2000 training sentences uttered by 100 speakers were used. The relation between
MCD and the number of basis vectors is plotted in Figure 3.5. It is clear from the figure
that FA achieves lower MCD than that achieved by PCA, but MCD saturates at 10 basis
vectors. On the other hand, MCD attained by FA MT decreased as the number of basis
vectors increased, and FA MT achieved the lowest MCD for both the training and test
speakers. This result is due to the fact that the flexible multiple tree structures make it
possible to model the complex relations between linguistic contexts, acoustic features,
and speaker characteristics.

In the final objective evaluation, the number of adaptation sentences was varied (1, 2, 5,
and 10), while the number of training speakers, training sentences, and basis vectors were
100, 2000, and 30, respectively. The relation between MCD and the number of adaptation
sentences is illustrated in Figure 3.6. It can be seen that five sentences are enough to adapt
models. This is because only 30 parameters can be changed for a new speaker, resulting
in very fast adaptation. Combining FAHMM with powerful but data-hungry adaptation
techniques such as MLLR [48, 61] and maximum a posteriori (MAP) [65, 66] could well
decrease MCD when a large amount of adaptation data is available.

38



0 20 40 60 80 100

4
.4

4
.6

4
.8

5
.0

5
.2

5
.4

5
.6

Number of training speakers

M
el

−
ce

p
st

ru
m

 d
is

ta
n
ce

 [
d
B

]

PCA (test)

PCA (train)

FA (test)

FA (train)

FA_MT (test)

FA_MT (train)

Figure 3.3: MCD vs. number of training speakers, under the condition that the number of
training sentences is 500 and the number of basis vectors is 5.
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Figure 3.4: MCD vs. number of training sentences, under the condition that the number
of training speakers is 100 and the number of basis vectors is 5.
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training sentences is 2000 and the number of training speakers is 100.
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The number of leaf nodes for each HMM state is shown in Figure 3.7 where the bottom
bars denote the number of leaf nodes of noise mean vector, and the 30 stacked bars repre-
sent the number of leaf nodes of each basis vector. The tree sizes in the case of FA MT
differ, while they were fixed in the case of FA. This result means that the proposed algo-
rithm can take into account the importance of each of the basis vectors while clustering.

3.2.3 Subjective evaluation

Two subjective listening tests were conducted. The first test evaluated the naturalness
of synthetic speech by the mean opinion score (MOS) test method, and the second one
evaluated the speaker similarity between target speech and the synthetic speech by the
differential MOS (DMOS) test method. In the MOS test, after the subjects had listened
to a test sample, they were asked to assign it a naturalness score on a five-point scale. In
the DMOS test, after the subjects had listened to the natural speech of the target speaker
and a test sample, they were asked to assign it a similarity score on a five-point scale. Ten
native Japanese speakers evaluated 10 sentences, which were randomly chosen from 400
sentences (40 sentences× 10 test speakers), in both tests. Synthetic speech was generated
from models obtained under the condition that the number of training speakers, training
sentences, basis vectors, adaptation sentences were 100, 2000, 30, and 1, respectively.
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The results of the MOS and DMOS listening tests are shown in Figures 3.8 and 3.9,
respectively. Figure 3.8 shows that FA significantly improved the naturalness of synthetic
speech compared with PCA. PCA could not estimate reliable basis vectors because it
requires an adequate amount of speech data for each training speaker to build speaker-
dependent models. It can be said that FAHMM enables to effectively use speech data even
if only a few sentences per speaker are available. FA MT achieved better performance
than FA. It can thus be suggested that flexible spectral modeling based on multiple-tree
structures is essential in subspace-based methods.

As for the DMOS test, FA significantly outperformed PCA. It can be said that FA can
reliably estimate a speaker subspace even if a small amount of training data is available
for each training speaker. In addition, FA MT achieved a slightly higher score than FA,
though there was no significant difference. Since prosody strongly affects speaker sim-
ilarity, applying the proposed method to F0 and duration parameters as well as spectral
ones could be helpful for synthesizing speech with desired speaker characteristics.

3.3 Summary

A multiple decision tree-based context clustering technique for factor analyzed HMM
(FAHMM)-based speech synthesis was proposed and evaluated. Although the proposed
multiple tree-based clustering is computationally infeasible, two computational complex-
ity reduction algorithms made the proposed method computationally tractable. Both ob-
jective and subjective experiments showed that the proposed method significantly out-
performs the conventional method based on a single model structure. It can be said that
taking speaker characteristics into account modeling the relation between linguistic and
acoustic features is essential when using speech data consists of multiple speakers. The
comparison of FAHMM and other subspace-based approaches such as cluster adaptive
training [14] is future work.

Recently, DNN-based approaches have been shown to be effective for speech synthesis,
and the adaptation techniques have begun to be investigated [67, 68] including subspace-
based approaches [69–71]. However, it is not clear which approach is the most effective.
When a small amount of adaptation data is available, subspace-based methods are ex-
pected to be effective. Future work includes introducing the idea of FAHMM into DNN
framework based on the result of the experiments in this paper.
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Chapter 4

Mel-cepstrum-based quantization noise
shaping

4.1 Quantization in raw audio waveform modeling

Let us assume an autoregressive generative model that predicts the current value of the
real-valued time series x = [ x[0] · · · x[N − 1] ] using the past samples:

p (x |h) =
N−1∏
n=0

p (x[n] |x[0], . . . , x[n− 1]) , (4.1)

where N is the number of speech samples. In order to produce waveforms with specified
characteristics, auxiliary features, h, that affect the distribution, e.g., linguistic features in
TTS, are typically introduced to the model:

p (x |h) =
N−1∏
n=0

p (x[n] |x[0], . . . , x[n− 1],h) , (4.2)

To optimize the model, which is represented as a conditional probability distribution in
Eq. (4.2), the difference between the actual and predicted values of a speech sample must
be measured on the basis of some criterion. Although it is reasonable to use a continuous
criterion such as the minimum mean squared error (MSE) because x[n] takes a real value,
this implicitly imposes an assumption about the shape of the distribution. The WaveNet
and SampleRNN models are more flexible due to avoiding this problem. They quantize
x[n] and are optimized by minimizing the cross-entropy between the real and predicted
probability distributions. Then, the quantized sequence i = [ i[0] · · · i[N − 1] ] is mod-
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eled as

p (i |h) =
N−1∏
n=0

p (i[n] | i[0], . . . , i[n− 1],h) (4.3)

rather than as Eq. (4.2). The softmax function is used as the output layer of the neural
networks. A softmax distribution tends to work better than a Gaussian mixture distribu-
tion [23, 72] even when the data is implicitly continuous. To quantize speech samples, a
simple linear uniform quantization with µ-law companding [24] is used.

In µ-law companding, a speech sample is non-linearly transformed as follows:

f(x[n]) = sgn (x[n])
log (1 + µ|x[n]|)

log (1 + µ)
, (4.4)

where |x[n]| ≤ 1 and µ is the compression factor. The typical value for µ is 255 when
converting from 16-bit linear PCM to 8-bit sample. The sample x[n] is then quantized it
into q levels:

i[n] = round

[
(2q − 1)

f(x[n]) + 1

2

]
, (4.5)

where 0 ≤ i[n] < 2q and round(·) denotes rounding. The quantized sample i[n] can be
reconstructed by using µ-law decompression:

x̂[n] = f−1

(
2

2q − 1
i[n]− 1

)
, (4.6)

where

f−1(x[n]) = sgn (x[n])
(1 + µ)|x[n]| − 1

µ
. (4.7)

The z-transform of the reconstructed speech sample x̂[n] is represented as

X̂(z) = X(z) + E(z), (4.8)

where X(z) and E(z) are the z-transforms of x[n] and e[n], respectively, and e[n] is the
error caused by quantization:

e[n] = x̂[n]− x[n]. (4.9)

The quantization noise e[n] can be considered to be uncorrelated with x[n] when x[n]

is fairy complicated and q is large [73–75]. Thus, the frequency spectrum of E(z) is
assumed to be white. White noise is not very pleasant on the human ears as it contains
many high frequency components. The quantization bits q should be large enough to
prevent the degradation of speech quality caused by the quantization. However, there is
a trade-off between the amount of quantization noise and the difficulty of neural network
optimization. Current state-of-the-art techniques use 8-bit quantization [22, 23].
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Figure 4.1: Phase characteristic ω̃ of the first order all-pass transfer function z̃−1.

4.2 Mel-cepstral analysis

In the mel-cepstral analysis [26], spectral envelope H(z) is modeled using M -th order
mel-cepstral coefficients {c̃(m)}Mm=0:

H(z) = exp
M∑

m=0

c̃(m) z̃−m, (4.10)

where

z̃−1 =
z−1 − α
1− αz−1

(|α| < 1) . (4.11)

The phase characteristic ω̃ of the first order all-pass transfer function z̃−1 = exp (−jω̃) is

ω̃ = tan−1 (1− α2) sinω

(1 + α2) cosω − 2α
. (4.12)

For example, when the sampling frequency is 16 kHz, the phase characteristic ω̃ of the all-
pass function z̃−1 for α = 0.42 is a good approximation to the mel-frequency scale [76]
(See Figure 4.1). Thus, the spectral envelopeH(z) can imitate the non-uniform frequency
resolution of the human ear. Shaping the spectrum of the quantization noise using H(z)

should effectively mask the quantization noise by speech.
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Figure 4.2: Block diagram of quantization noise shaping.
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Figure 4.3: Power spectra of spectral envelope H(z) and filter Dγ(z) (γ = 0.4).
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4.3 Mel-cepstrum-based quantization noise shaping

Figure 4.2 shows the basic structure of the proposed quantization noise shaping. This
structure was inspired by previous work [77] on adaptive differential pulse code modu-
lation (ADPCM) speech coding. The basic concept of noise shaping is feedback of the
quantization error to the input of the quantizer. This enables the spectral characteristics
of the quantization noise to be changed. In the figure, D(z) is a minimum phase transfer
function derived from H(z) = K · D(z) where the gain factor K is factored out from
H(z). Hence, the impulse response of Dγ(z) at time n = 0 equals unity, and Dγ(z) − 1

has a delay. The z-transform of the de-quantized speech sample x̂[n] is represented as

X̂(z) = X(z) +Dγ(z)Ē(z), (4.13)

where Ē(z) is the z-transform of ē[n] = x̂[n]− x̄[n] (See Figure 4.2). It can be seen that
the noise spectrum Ē(z) is shaped by filter Dγ(z). Tunable parameter γ (0 ≤ γ ≤ 1)

controls the effect of noise shaping (γ = 0 corresponds to conventional quantization).

Figure 4.3 shows the example of the power spectra of H(z) and Dγ(z) in a frame where
red horizontal line denotes 0 dB. It can be seen from the figure that the H(z) represents a
spectrum envelope for which the shape is well captured in the low-frequency region. The
Dγ(z) has the same spectrum asH(z) multiplied by γ. Since Ē(z) is multiplied byDγ(z),
the altered quantization noise Dγ(z) · Ē(z) should be masked by speech. To demonstrate
the effect of the proposed quantization noise shaping, we applied it to a speech waveform.
The spectrograms of the quantization noise as well as of the input speech waveform are
shown in Figure 4.4. While the quantization noise is distributed over the entire frequency
range without noise shaping (See Figure 4.4(b)), it is concentrated at low frequencies by
the mel-cepstrum-based noise shaping with γ = 0.4 (See Figure 4.4(c)).

4.3.1 Implementation using FIR filter

A reasonable way to implement the proposed method is to use a FIR filter, which is easy
to implement. The D(z)− 1 can be represented using the impulse response:

D(z)− 1 =
∞∑
n=0

h[n]z−n − 1

=
∞∑
n=1

h[n]z−n, (4.14)
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Figure 4.4: Spectrogram of a speech waveform and its quantization noise.

where h[n] is the impulse response of D(z) and h[0] = 1. The D(z)− 1 can be approxi-
mated as follows by truncating the infinite impulse response:

D(z)− 1 ≃
I∑

n=1

h[n]z−n

= z−1

I−1∑
n=0

h[n+ 1]z−n

≡ z−1S(z), (4.15)

where I is the FIR length, which is typically more than a few hundred. A block diagram
of this implementation is shown in Fig. 4.5. This implementation is computationally
expensive due to the sample-by-sample conversion of D(z). The conversion consists of
two steps: from mel-cepstrum to cesptrum, and from cepstrum to impulse response. The
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Figure 4.5: Block diagram of quantization noise shaping using Sγ(z) for approximation
of Dγ(z)− 1.

computational complexities are O(MI) and O(I2). Since I is usually greater than M ,
the overall computational complexity for filtering is O(I2).

4.3.2 Implementation using MLSA filter structure

The proposed quantization noise shaping can be efficiently implemented by using the
MLSA filter structure [28]. First, the H(z) is decomposed as K · D(z) using one of the
methods proposed in [28]:

K = exp b(0), (4.16)

D(z) = exp
M∑

m=1

b(m)Φm(z), (4.17)

where

b(m) =

{
c̃(M) (m =M),

c̃(m)− αb(m+ 1) (m < M),
(4.18)

Φm(z) =

1 (m = 0),
(1− α2) z−1

1− αz−1
z̃−(m−1) (m > 0).

(4.19)

The Dγ(z) is clearly

Dγ(z) = exp
M∑

m=1

γb(m)Φm(z). (4.20)
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The D(z) is implemented as a digital filter by approximating exponential function exp(·)
as an L-th order rational function RL(·) using the modified Padé approximation [78]:

D(z) = expF (z) ≃ RL(F (z))

=

1 +
L∑
l=1

AL,l {F (z)}l

1 +
L∑
l=1

AL,l {−F (z)}l
, (4.21)

where {AL,l}Ll=1 are the coefficients of the modified Padé approximation, L is the order
of the modified Padé approximation (usually four or five), and F (z) is the basic filter for
the MLSA filter:

F (z) =
M∑

m=1

b(m)Φm(z)

≡ z−1G(z). (4.22)

The structure of G(z) and of basic filter F (z) are shown in Fig. 4.6. The D(z)− 1 can be
rewritten as

D(z)− 1 ≃ RL(F (z))− 1

=

2
L∑

l=1,3,···

AL,l

{
z−1G(z)

}l
1 +

L∑
l=1

AL,l

{
−z−1G(z)

}l
≡ z−1S(z). (4.23)

Figure 4.7 shows a block diagram of the filter D(z)− 1. Since there is no need to convert
it into the impulse response, this implementation is computationally faster than that using
a FIR filter described in Section 4.3.1. The computational complexity for filtering is
O(LM).

In the MLSA filter, the accuracy of the approximation of the exponential function can be
improved by decomposing the basic filter:

F (z) = F1(z) + F2(z). (4.24)

Although there are various ways to define F1(z) and F2(z), we use

F1(z) = b(1)Φ1(z), (4.25)

F2(z) =
M∑

m=2

b(m)Φm(z). (4.26)
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Figure 4.6: Block diagram of basic filter F (z) (M = 3).

Figure 4.7: Block diagram of noise shaping filter D(z)− 1 (L = 4).

Figure 4.8: Two-stage cascaded structure for noise shaping filter D(z)− 1.
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Figure 4.9: Block diagram of quantization noise shaping with prefiltering.

On the basis of decomposed basic filters F1(z) and F2(z), filter D(z) − 1 can be repre-
sented as

D(z)− 1 = D1(z)D2(z)− 1

≃ {RL(F1(z))− 1}+ {RL(F2(z))− 1}
× [{RL(F1(z))− 1}+ 1]

≡ z−1S1(z) + z−1S2(z)

×
[
z−1S1(z) + 1

]
. (4.27)

It is implemented as shown in Fig. 4.8. The structure illustrated in Fig. 4.5 is used for
noise shaping in a similar manner as described in Section 4.3.1. Using the MLSA filter
structure instead of a FIR filter enables to apply quantization noise shaping more than 30
times faster without any degradation for L = 4, M = 24, and I = 256.

4.3.3 Mel-cepstrum-based prefiltering

Figure 4.9 shows the structure of mel-cepstrum-based noise shaping with prefiltering. In
this Figure, z-transform of the de-quantized speech sample x̂[n] is represented as

X̂(z) = {kX(z) +Dγ(z)E(z)}Dβ(z), (4.28)

where k is a constant to normalize the power of signal, Dβ is a filter for prefiltering,
and β is a tunable parameter (0 ≤ β ≤ 1) controls the effect of prefiltering (β = 0

corresponds to no prefiltering). The transfer functionD(z) is obtained by setting c̃(1) = 0

and normalizing the gain as 1:

D(z) = exp
M∑

m=1

b(m)Φm(z), (4.29)
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where

b(m) =

{
−αb(2), (m = 1)

b(m). (m > 1)
(4.30)

The prefitering filter Dβ can be derived by multiplying b(m) by β:

Dβ(z) = exp
M∑

m=1

β b(m)Φm(z). (4.31)

The reason for replacing c̃(1) with 0 is to avoid the change of voice quality by the empha-
sis of the global slope of the spectrum. It has been reported that this kind of filtering is
effective to reduce noise in ADPCM [77].

4.4 Experiments

4.4.1 Experimental setups

The CMU ARCTIC databases [79] were used to evaluate the proposed quantization noise
shaping method. We used a female speaker (SLT) from the databases for the experi-
ments. The number of sentences used for evaluation was 40. The speech signals were
downsampled to 16 kHz. They were amplified on the basis of the maximum value of
the signals in the databases to reduce quantization error. The downsampled speech sig-
nals were quantized using µ-law compression with/without the proposed noise shaping
method implemented using a FIR filter. The filter coefficients were derived from 24-th
order mel-cepstral coefficients including the zeroth coefficient extracted from the down-
sampled speech signals windowed using a 25-ms Hamming window with a 5-ms shift.
Two methods were compared:

• NS-off: Conventional quantization with µ-law companding. This corresponds to the
proposed method for γ = 0.0.

• NS-on: Mel-cepstrum-based quantization noise shaping using µ-law companding.

4.4.2 Objective evaluation

Before modeling quantized speech waveform using the WaveNet model, we evaluated
the quantized speech waveform using the mean opinion score-listening quality objec-
tive (MOS-LQO) [80, 81] measure calculated from the perceptual evaluation of speech
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Figure 4.10: MOS-LQO value of speech quantized using mel-cepstrum-based quantiza-
tion noise shaping.

quality (PESQ) [82], which is a widely used perceptual measure for evaluating voice
quality in telecommunications. Figure 4.10 shows the results for different values of the
noise shaping parameter γ and the quantization level q. They are consistent with those
of our informal listening test. The proposed noise shaping method achieved a high score
when an appropriately tuned γ was used. When γ was too large, the score was low. This
is because the signal power was excessively amplified by the noise shaping filter. As
expected, the noise shaping was more effective for lower quantization levels. However,
improvement in the score was observed even when it was applied to 10-bit quantization.
In subsequent experiments, we set γ to 0.4 and used 8-bit quantization in accordance with
the previous work [22, 23].

4.4.3 Subjective evaluation

We subjectively assessed speech quality on the basis of opinion equivalent-Q [83]. The
participants rated not only target speech of NS-off and NS-on but also original speech
degraded by passing through a modified noise reference unit (MNRU) [84] with various
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Q (30, 35, 40, and 45 dB) on a 5-point scale, where Q is the ratio of speech power to
modulated noise power. The participants were 10 Japanese. Each of participants evaluated
10 sentences randomly chosen from the 40 test sentences, i.e., each of participants rated
60 sentences (10 sentences× 6 methods). Although MOS [85] is a simple and convenient
indicator of speech quality, it is easily influenced by various internal/external experimental
factors. While the absolute value of MOS may differ from experiment to experiment, the
relative quality between the MNRU and target speech should be preserved over different
subjective experiments. Thus, the use of MNRU removes the experimental dependence
of the MOS test [86]. The subjective experiments were performed in a soundproof room.
Stimuli were played to participants through headphones. The average duration of stimuli
was about three seconds. Speech volume was adjusted appropriately for each participants.

First, we evaluated raw quantized speech signals to measure the effectiveness of the pro-
posed method without prefiltering. The relationship between MOS and MNRU values
is shown in Fig. 4.11. NS-on significantly increased MOS by more than 0.6 from NS-
off. This is equivalent to a 4.0 dB improvement in equivalent-Q value, indicating the
effectiveness of mel-cepstrum-based noise shaping. The main reason for the gain is that
quantization noise spectrally shaped by the proposed method was more difficult for the
participants to perceive.

In a subsequent experiment, we evaluated synthetic speech generated by the WaveNet
model. The number of sentences used for training the WaveNet was 1091, which is not
included in the test sentences. The dilations of the WaveNet model were set to 1, 2, 4, . . .,
512. The 10 dilation layers were stacked three times, resulting in a receptive field with a
size of 3072. The channel size for dilation, residual block, and skip-connection were 128,
256, and 256, respectively. We used the Adam solver [54] with an initial learning late of
0.001 for training the WaveNet model. The WaveNet model was used as a vocoder [87],
not as a TTS model. The auxiliary features, h, were composed of 24-th order mel-cepstral
coefficients, which is the same as used in noise shaping, a log-fundamental frequency
(logF0) value, and a voiced/unvoiced binary symbol. The logF0 were extracted using a
robust algorithm for pitch tracking (RAPT) [88] with a 5-ms shift.

Figure 4.12 shows the relationship between MOS and MNRU values. As with the previous
experiment, NS-on significantly increased MOS by more than 0.6 from NS-off. This is
equivalent to a 4.0 dB improvement in equivalent-Q value. Although the equivalent-Q
values were lower than those in the previous experiment due to the statistical modeling
process, the relative improvement was almost the same. This indicates that the proposed
method is effective for neural-network-based raw audio speech waveform modeling.

In the next evaluation, mel-cepstrum-based prefiltering was evaluated using MOS instead
of the equivalent-Q method due to a number of samples to be evaluated. We compared
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Figure 4.11: Relationship between MOS and MNRU values where target speech is quan-
tized speech.
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each combination of with/without mel-cepstrum-based noise shaping and prefiltering. Ta-
ble 4.1 shows the details of the four methods. The experimental result is shown in Fig-
ure 4.13. NS-on PF-off and NS-off PF-on outperformed NS-off PF-off. This indicates
that both the mel-cepstrum-based noise shaping and prefiltering are effective to improve
speech quality. Alghouth the MOSs of NS-on PF-off and NS-off PF-on are almost same,
NS-on PF-on achieved a higher score than these methods. It can be seen that the proposed
mel-cepstrum-based noise shaping and prefiltering have different effects on human per-
ceptual system, and the combination of them is effective for neural-network-based speech
waveform speech syntheis.

Finally, the proposed method was evaluated in a TTS task. The WaveNet was feed with the
acoustic features h predicted by a feed-forward neural network with three hidden layers.
The phone durations of speech were predicted by five-state left-to-right hidden semi-
Markov models [47]. The recipe for training these models was the same as the HTS demo
script1. The WaveNet model was trained using the predicted acoustic features rather than
those extracted from natural speech. The other experimental condition was the same as the
previous experiment. Since prosody of natural speech and one of speech synthesized from
text differs, a preference test (AB test) was conducted instead of the equivalent-Q method
for evaluation. The result of the preference test is shown in Fig. 4.14. NS-on significantly
outperformed NS-off. It can be said that the proposed method is also effective in a TTS
task.

4.5 Summary

We have developed a mel-cepstrum-based quantization noise shaping method and applied
it to a neural-network-based speech waveform synthesis system using the WaveNet model.
Objective and subjective experiments showed that the proposed quantization noise shap-
ing significantly improves speech quality by masking quantization noise. Future work

Table 4.1: Methods compared by using MOS.
Name γ (for noise shaping) β (for prefiltering)

NS-off PF-off 0.0 0.0
NS-on PF-off 0.4 0.0
NS-off PF-on 0.0 0.2
NS-on PF-on 0.4 0.2

1http://hts.sp.nitech.ac.jp/?Download
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Figure 4.14: Result of preference test of speech quality with a 95% confidence interval.

includes integrating the training of the WaveNet with noise shaping.
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Chapter 5

Conclusions

The paper described techniques to let machines speak naturally like humans with various
speaker characteristics.

In the past decades, hidden Markov model (HMM)-based speech synthesis systems have
been widely developed. The basic theories and the fundamental algorithms of the HMM
were reviwed in Chapter 2. Chapter 2 also described the basic idea and the basic algo-
rithms of the factor analyzed HMM, which is a probabilistic version of the eigenvoice
method. The FAHMM is a well-established framework that can control characteristics of
synthetic speech. Although the model structures have no constraints under the FAHMM
framework, a single binary decision tree is typically used. Chapter 3 also proposed a
novel context clustering technique for building the multiple-tree structure of the FAHMM
with computational complexity reduction algorithms. Both objective and subjective ex-
periments showed that the proposed method significantly outperforms the conventional
method based on a single model structure. It can be said that taking speaker characteris-
tics into account modeling the relation between linguistic and acoustic features is essential
for modeling heterogenious speech data.

The paper also tackled to produce synthetic speech with high naturalness using the WaveNet
generative model, which is a state-of-the-art model for neural-network-based speech wave-
form synthesis. The overview of the WaveNet model was presented in Chapter 2. One
of the key techniques of neural-network-based speech waveform synthesis is modeling
speech signals composed of a set of discrete values instead of continuous ones using quan-
tization. However, this introduces white noise, which is easily perceived by human listen-
ers. To solve the problem, mel-cepstral-based quantization noise shaping technique was
proposed and investigated in Chapter 4. Using the proposed method, some of the quanti-
zation noise should be difficult for a human listener to perceive because mel-cepstrum is
based on the human auditory system. Objective and subjective experiments showed that
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the proposed quantization noise shaping significantly improves speech quality by mask-
ing quantization noise. The combination of the mel-cepstrum-based quantization noise
shaping and prefiltering achieved a significant improvement.

Future work includes integrating techniques for generating speech with high naturalness
and controlling the characteristics.
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Appendix A

Software

Figure A.1: HTS: http://hts.sp.nitech.ac.jp/
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Figure A.2: SPTK: http://sp-tk.sourceforge.net/
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